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Time series data are often well modeled by using the device of an autoregres-
sive root that is local to unityUnfortunately the localizing parametdrc) is not
consistently estimable using existing time series econometric techniques and the
lack of a consistent estimator complicates infererides paper develops proce-
dures for the estimation of a common localizing parameter using panelRitzi&

ing information across individuals in a panel aids the identification and estimation
of the localizing parameter and leads to consistent estimation in simple panel
models However in the important case of models with concomitant determinis-
tic trends it is shown that pooled panel estimators of the localizing parameter
are asymptotically biaseome techniques are developed to overcome this dif-
ficulty, and consistent estimators ofin the regionc < 0 are developed for
panel models with deterministic and stochastic treAdamit distribution theory

is also establishedand test statistics are constructed for exploring interesting
hypothesessuch as the equivalence of local to unity parameters across sub-
groups of the populationThe methods are applied to the empirically important
problem of the efficient extraction of deterministic trend&ey are also shown

to deliver consistent estimates of distancing parameters in nonstationary panel
models where the initial conditions are in the distant plsthe development of

the asymptotic theory this paper makes use of both sequential and joint limit
approachesAn important limitation in the operation of the joint asymptotics that

is sometimes needed in our development is the rate condition— 0. So the
results in the paper are likely to be most relevant in panels whésdarge and

n is moderately large
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1. INTRODUCTION

Time series models with roots near unity are extremely common in economet-
ric applications and this feature of the data is often modeled by using the de-
vice of an autoregressive root that is local to undy that the time series has
the property of being near integratesluch time series are more general than
integrated processeand they allow more flexibility in the econometric mod-
eling of nonstationary serie¥Vhereas the local to unity parameter cannot be
consistently estimated using existing time series methatis useful in many
different econometric contextd few examples are as followshe analysis of
power properties of unit root tes¢(®hillips, 19873; the construction of confi-
dence intervals for the long run autoregressive coeffici&bck 1991); the
development of efficient detrending method®hillips and Lee 1996 Canjels
and Watson1997); and the construction of point optimal invariant tests for a
unit root (Elliott, Rothenbergand Stock 1996 and cointegrating rankXiao

and Phillips 1999.

This paper develops procedures for the estimation of the local to unity pa-
rameter in panel data modeM/hen there is a common time series local to
unity parameter across independent individuals in a pan& apparent that
the cross section data carry additional information that can be used to assist in
estimating a common localizing parametel. By simple pooling of time se-
ries estimatgswe might expect that a common local to unity parameter could
be consistently estimated with panel data that combined independent observa-
tions across individualdn the case where the data generating process involves
only a near-integrated stochastic trend proceas show that a simple pooled
least-squares estimator does produce a consistent estimator for the local to unity
parameterHowever the simple data-pooling heuristic does not hold in situa-
tions where there are both deterministic and near-integrated stochastic trends in
the model In such casest is shown that the pooled least-squares estimator of
the localizing coefficient generates an inconsistency that depends upon the
true unknown localizing parametédio resolve this problenwe develop a con-
sistent estimator foc in the important case wheie< 0. Asymptotic normal-
ity of these consistent local to unity parameter estimators is estahblisineld
the limit theory is used to develop an inferential framework for local to unity
modeling in panel datdn particulay test statistics are constructed for explor-
ing interesting hypothesgsuch as the equivalence of the local to unity param-
eter across subgroups of the population

Local to unity parameter estimation is useful in many empirical applications
We illustrate the usefulness of panel estimation of the localizing coefficient with
an application to efficient deterministic trend extraction and the construction of
confidence intervals for models with roots near unitgcording to Phillips and
Lee (1996, when the regression errors are near integradffitiency gains in
the estimation of deterministic trends can be obtained by quasi-differencing the
data However to implement this procedure in practjade localizing param-
eter in the near-integrated error process must be known or be consistently esti-
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mable neither of which normally appliedf inconsistent estimates of the
localizing parameter are used inste#ten the resulting trend coefficient esti-
mator has a highly nonstandard limit distributjavhich gives rise to new dif-
ficulties, for examplein setting up confidence intervals for the trend coefficient
Because of this problen€avanaghElliott, and Stock(1995 and Canjels and
Watson(1997) suggest the use of Bonferroni-type confidence intervwatich
are often very conservativih panel data model®ur consistent estimate of the
local to unity parameter can be used to overcome these difficultidact, our
feasible efficient estimator based on consistent panel data estimates of the local
to unity parameter has a standard limit distributiand this limit theory leads
to a conventional form of confidence interval for the trend

Another useful application of panel data for nonstationary time series lies in
the consistent estimation of the distancing parameter that arises in the formu-
lation of distant initial conditionsThe distancing parametewhich is ex-
pressed as a fractignot necessarily less than unityf the length of the present
time series sampleneasures how far into the past the initialization extends in
terms of the shocks that have determinedtiis shown that consistent estima-
tion of this parameter is possible with panel data when there is common dis-
tancing in the initialization across the panel and a common local to unity
parameter in the dynamick effect panel variation across individuals enables
us to learn something very specific about the nature of presample data—how
far its origins extend in relation to the historically observed data

In other recent researdPhillips and Moon 1999, the authors develop some
rigorous asymptotic theory for multi-index situations in which two indices may
pass to infinity This general theory is applied to obtain a nonstationary panel
data limit theory where there are large numbers of cross se@tipand time
series(T) observationsThe new limit theory allows for both sequential limits
whereT — oo andn — oo sequentiallyand joint limits wherel, n — oo simul-
taneously The present paper makes use of those methods in the development
of the asymptotic theory herdn important limitation in the operation of the
joint asymptotics that is sometimes needed in our development is the rate con-
dition n/T — 0. This condition means that the results are likely to be most
relevant in panels wher€ is large andh is moderately largéas is the case in
some cross country macroeconomic panels

The paper is organized as followSection 2 lays out the model and assump-
tions gives some heuristic discussiaand shows how consistent estimation of
the localizing parameter is possible in panel models with no deterministic com-
ponentsSection 3 studies the same problem in models with deterministic trend
componentsshows the inconsistency of the pooled least-squares estiraatbr
develops several alternative approaches to dealing with the bias proflem
consistent estimator is given for the case where the common localizing param-
eter satisfiexc < 0. A limit distribution theory is developedand matters of
inference are discusse8ection 4 applies these methods to testing for the lo-
calizing coefficientto the empirically important problem of the efficient esti-
mation of the deterministic trend coefficiengsd to estimation of the distancing
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parameter that arises in the formulation of distant initial conditi@esction 5
concludes the papeProofs technical derivationsand a brief review of some
double index asymptotic theory are given in the Appendixes

2. MODELS, ASSUMPTIONS, AND HEURISTICS

We start by assuming that the time series process for indiviugl, has a
decomposition into both deterministic and stochastic elements as follows

Z =Biot LGkt Yt t=1...,T; i=1,...,n,

c
Vit = &% —11 &, azexp(;), (1)
whereg, = (t,...,tP)" is a deterministic polynomial treng; = (B 1,...,Bi p)"
andy; ; is a near-integrated stochastic proc@dw initialization is at = 0 with
random variableg, o that are independent and identically distributeidd.) across
i with mean zero and finite varianeg? for all i. In this paper we assume that
the deterministic trendg; , + B/g; in (1) are heterogeneous acrdss These
heterogeneous trends reflect individual effects in the panelzjata

The parametec in the AR(1) coefficienta is the local to unity parameter
which is assumed here to be common to all individu&se of the aims of
this paper is to find a consistent estimation procedure for the paramefae
common localizing parametercan be considered a common limit of individ-
ually different sequences of local parametdiisat is we may regard th&R(1)
error process coefficierd as the limit of the sequence of coefficierdsr =
exp((c + ¢ 1)/T), wherec; +/T — 0 uniformly ini. In this case the common
coefficienta = exp(c/T) is an approximation o&; + = exp((c + ¢ 1)/T). In
some empirical applicationst may be too restrictive to assume a common
localizing coefficient in the panel regression mo@Blfor all individuals There-
fore, procedures that allow for some cross sectional heterogeneity in the local-
izing parameter and procedures for testing cross sectional heterogeneity in
localizing coefficients will certainly be of interest in empirical woks a par-
tial solution of the latter problenthis paper develops a testing procedure de-
signed to assess whether the localizing parameter is the same across subgroups
of individuals in the sample

With regard to the specification of the trend componertliit is important
to note that individual intercept terng; o are not consistently estimable with
time series data when the stochastic compomgnis near integratecas a re-
sult of the low signal to noise ratio relative to the latent stochastic tyepah
(1), namely 1/var(y; ;) = O(1/t) — 0 ast — oo. The Oy(1) assumption for the
initial conditions ofy; ; is made for convenience and could be extended in the
usual way to allow for distant initializatiofiUhlig, 1994 Phillips and Lee1996
Canjels and Watsqri997), at the cost of some additional complexity

To develop some quick resultee first consider the simple case where the
trend coefficient vectorg; are known(but intercept termg; , are unknown
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and the error processes, are ii.d. (0,02) across and overt. This covers the
case where there is no deterministic trendInandB; = 0. In this casethe
variablesz ; = z ; — B g, are observabldn time series regressiotaking into

account the relatiom = 1 + ¢/T, the natural estimator foris ¢ =T(a— 1)
where

T /T
_ 52 5 s
a=|> 2 D%z
=1 =1

Then asT — o

1 T — 1 T
T(a—a) = [ Elziz,t—1:| { E |t1((1_a)ﬂi,0+8i,t):|

1 T
X |:? g(ylt 1+BI 0)((1 a)18|0+ &i, t):|

-1
=><f0 Jc,i(r)zdr> fOJc,i(r)dW(r),

where J.;(r) = [5e""9°dW(s) and Wi(r) is a standard Brownian motion
(e.g., see Phillips 1987hH. From

c c 1
a=exp<?>=1+?+o<§>, (2

we have

- I

—||,_\ —||

T -1
'(:E:L(ylt l+:B| 0) :|

C—c=T(a—1)—c=T(a—a)+O<$>

= U:Jm(r)zdr>_lfolac,i<r>dw<r).

Thus as is well known ¢ is not a consistent estimator farand has a nonde-
generate limit distribution

Now suppose that panel data fgr; are availableAgain, one of the natural
ways to estimate the commdaxR(1) coefficienta is to pool the data and run a
least-squares regressidrhen we would have

a= <iizft_1>_l<§=iz 1z,t>, @)

¢=T(a-1). (4)
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To take a quick look at the asymptotic behavioréofor, equivalently ¢), we
consider the sequential weak limit 8f& — a) by letting T — oo first, followed
by n — oo, which we denote byT,n — c0)sq (see Phillips and Moanl 999
and the remark that folloysNow we have

1 n -1
T@a-a = { ZTZE(y. 1+Bi,0)2:|
117
{a IEl ? g 1t Bi,o)((l— a),Bi,o + 8i,t):|- 5)

As T goes to infinity whilen is fixed, we have as earlier

1. -1 1.
T(é—a)z(ﬁi_ﬁl Jc,i(r)2> <Ei_§:lf‘]c,i(r)dW(r)>~ (6)

Note thatE(J.;(r)dW(r)) = 0 andE(fJ.;(r)?) = [, [} €**"~9dsdr> 0. By
the weak law of large numberasn — o, 1/n > ; JJei(r)dW(r) —, 0. There-
fore, in sequential limits agT,n — co)seq We find thatT (a4 — a) —, 0 and

¢—c=T(a—a)+o(1) —,0. (7)

That is € is a consistent estimator for the local to unity parameter sequen-
tial limits as(T,n — 00)seq

Remarks

(a) The preceding asymptotic theory employs a sequential approach in which the

indexT passes to infinity first and then the indexpasses to infinity latemwhich
is denoted agT,n — o)seq IN general depending on how the two indices
and T, are treatedit is possible to have a variety of limit results for double
indexed random sequenceRecently Phillips and Moon(1999 have studied

this matter and suggested various limit concepts for multi-indexed sequences

classifying the main concepts into the following three casesequential ap-
proach a diagonal path approachnd a joint approaciThe sequential approach
passes the indices to infinity sequentially the present caseepending on which
index tends to infinity firstwe may have two different sequential limits accord-
ing as(T,n — )seq OF (N, T — ©)seq Where the order of appearance of the
index in the notation gives the order of the passage to infifitye diagonal
path approach allows the two indicesand T, to pass to infinity along a spe-
cific diagonal pathsay (n,T(n)), in the two dimensional arrayrhis approach

simplifies the asymptotic theory by replacing the double indexed process with a

single indexed proces¥he joint approach allows both indicesandT, to pass
to infinity simultaneously without placing specific diagonal path restrictions on
the divergenceOn the other handio obtain some joint limit resulisve often

need to exercise control over the relative rate of expansion of the two indices

One such requirement that is used in the present pap®iTis> 0, and in such
cases there will be a presumption thiais large relative ton in the limit. Al-

though this requirement is not unreasonable for some recent macroeconomic pan-

els it is much less relevant in traditional dynamic pane&heren is often very
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large andT is quite small In such casesfixed T with large n asymptotics or
joint asymptotics withT/n — 0 will be more relevantThe present paper fo-
cuses mainly on sequential asymptotics Wilhn — oo)seq and joint asymptot-
ics undem/T — 0.

(b) We emphasize that the different approaches may yield different lidiestol
(1974 p. 200 gives examples of real number sequences with this propanty
Phillips and Moon(2000 give examples for double sequences of random vari-
ables In light of such examplest is natural to ask whether there are cases where
the different approaches yield the same linfihe paper by Phillips and Moon
(1999 provides a partial answer to this questidocusing on the relation be-
tween sequential limits and joint limité\ppendix B of the paper summarizes
some important details about these relations

(c) As the preceding analysis indicatsgquential limits are often easy to derivie-
deed they are usually much easier to derive than joint limits a device for ob-
taining quick asymptotic resultsve will proceed in this paper withil, n — 00)seq
sequential limits and theim the Appendixdemonstrate the results under the more
general environment of joint limitSThere are two main reasons for dealing with
(T,n = 00)seq limits instead of(n, T — 0)seq limits. The first is simply con-
venience In many of the cases investigated in this pajpleriving (T, n — 00)seq
limits is relatively straightforward and is especially advantageous when the non-
stationary time serieg ; in model(1) are generated from weakly dependent pro-
cesses such as those in Assumptipwhich follows Second (T, n — co)seqlimits
seem appropriate for some recent cross country macroeconomic panels such as
those of the Penn World Tablesater in the paper and as relevant matters arise
some further discussion of these issues will be provided

The consistency aof in (4) depends upon two unrealistic assumptidisthe
&i¢ are ii.d. (0,02); and(ii) the trend coefficient vectors; are known When
the g; ; are serially dependenas in Assumption lwhich follows the limit of
T(a — a) in (6) involves a bias term that depends on the one-sided long-run
covariance og; ;. In this casewe can correct the bias easifpr example by
estimating the one-sided long-run variance nonparametrically as in Phillips
(19873 or by using parametric autoregressions in which the order of the auto-
regression expands with the sample s&=in Said and Dickey1984).

When theg; are unknownthe problem becomes much more complicated
The obvious point of departure is to remove the deterministic trends by prelim-
inary regression and then to defide= T(4 — 1), where the estimatoa is
obtained by autoregression with the detrended.ddtas suppose; ; andz (—;
are the detrended datebtained as regression residualszpf andz; ;—; on g;.
Then we have¢ = T(4 — 1), where

This estimator ofc is a simple extension of that used in the case where the
trends were knowninterestingly howevey € is not consistent in this casm-
tuitively, the reason for the inconsistency is that preliminary detrending filters
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the stochastic treng ;—; and the filtered process is correlated with the station-
ary error process; ; in (1). These matters will be explored in the next section
We close this section with two assumptions on the error progess

Assumption 1 g;  are linear processes satisfying the following conditions

@ &, =C(Lui1=2726C Ui -

(b) u; ¢ are ii.d. acrossi and overt with Eu; = 0, Eu?, = 1, andEU}, = 0.

(c) C;j are a sequence of real numbers with= sup|C; j| < o0 andX%,j C; < oo
for someb = 1.

(d) sup 0% < o, whereoZ, = E(yZ).

LetC = Gi(1), & = C? andA; = 32, C (,C; ;. The termsQ; and A; are
the long-run variance and the one-sided long-run covariance of the error pro-
cessg; ¢, respectively The next assumption is about the limits of the averages
of the individual long-run variances and covariances

Assumption 2

(@ Q=Ilim,(1/n)>",Q is finite.
(b) A =Ilim,(1/n) >, A, is finite.
(©) @ =lim,(1/n) >, Q2 is finite.

Remark LetQ, = Ee?,. Under Assumption 2here exist, = lim,(1/n) X
i—1Q, andQ, = Q — 2A.

3. ESTIMATION OF THE LOCALIZING COEFFICIENT IN PANEL
MODELS WITH DETERMINISTIC TRENDS

First, rewrite the panel moddll) in augmented regression format as
Zi = az 1T YioTVigt & (8)

wherey; o = Bio(l — a) + aB/tp, the deterministic trend componentg, is
constructed as

Y0 = Bi(g —ag-1) — aBit, = B{Ar(C)g,

A:(c) is ap X p matrix that depends uponandT, and:, = (—1, (-12...,
(=DP).

As is well known the formulation(8) has the drawback that the regression
leads to inefficient trend eliminatigrbut it has the advantage that the de-
trended data are invariant to the trend parametefg)init will be convenient
for us to work with both formulation§l) and(8), depending on the context
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3.1. Iterative Ordinary Least Squares: Biased Estimation
We start by introducing some definitioniset

g =@g), 9gr)=(r,...,rP),  gr)=(1,9(r)),
Dy = diag(T%...,TP), D; = diag(1, D7)

and define

T 1
hr(t,s) = (Drg,)’ < EDTgtgt,DT> D+ s,

—||H —||H

T -1
hr(t,s) = (Dr @)’ ( 2 gt,[~)T> Dr G,

-1
h(r,S)=g(r)’<Jo g(r)g(r)’dr> g(s),

B 1 -1
fr,s) = g(r)’( f g(r)g(r)’dr) a(9).

Whent = [Tr] ands = [Tp], it is easy to see that 86— oo,
D: g — g(r) uniformlyinr € [0,1]

and

hr(t,s) — A(r,p) uniformly in (r, p) € [0,1] x [0,1].

Let z ,—, and Az, denote the ordinary least squar@LS) detrended pro-
cesses of; ;_; andAz ., respectivelythat is for t = 23

Zit-1= Zijt-1— 2 hr(t, S)Z 51,

N
Az = Az, — = X h(t,9)Az s
s=1

=~

Then from model(1), we have

T T -1
Zit-1= Yit-1 Bi’<Agt_ <21AGSgé>(t_Zthg{> gt> =V fort=2

9)
Also, let zi o = z o = Yi,0 = Yio-
It is well known that under Assumption &sT — oo,
1
—VYirm =G Ji(r) (10)

N
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(Phillips, 1987h. Using standard manipulationis is not difficult to show that
when[Tr] =1, asT — oo,

Zii1 Yt

VT AT

whereJ (1) = Jo(r) = fo A(r,9)J; (s)ds

We now discuss an estimation procedure for the local to unity parameter with
panel data when the trend coefficiefBsare unknown Suppose thaf\; are
consistent estimators fok; as T — oo. Consider a simple estimato™, de-
fined as a serial correlation bias correct@drequired pooled least-squares
estimatora™ of a,

=G i (n), (11)

n T -1 n T R

a" = (2 2 Zi2,t1> 2 2 (Zi,1-12i,c — TA)), (12)
i=1t=1 i=1t=1

and

¢t =T(&a" —-1).

The estimatod™ is a bias correctédpooled least-squares estimator with OLS
detrended dataNe define¢™ from &* in view of the relationa = 1 + (¢/T).
Hereafterwe call¢* an iterative OLS estimator

In view of (11) we have

l n

10 17 Rl R
ra-a- (33 5350) 315 ennt) 03

and from the limit theory in Phillips(1987h, asT — oo for fixed n,
1 n -1 1 n
T@ —a= (HE ch,i(r)dr> (aE Jc,i(r)dW(r)>-
i=1 i=1

Note that

E(folggi(r)dr>
1 1 1
2 - 4 (s
E(fo JC’I(r)dr) E(fofoJc,,(r)Jc’,(s) (r,s)drds)

2C

{1+—(1 ezc)} ffe°<’+5>2—(1 e 2D A(r, s)drds

= w4(C), say (14)
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and

1

E(fo Jc,i(r)dW(r)>

E(flJc,i(r)dW(r)> - E<flJc,i(r)dW(S)ﬁ(r,S)drdS>
0 0

1 r
—f f er=SCR(r, s)dsdr
0 0

w,(C), say (15)

Because both of theiid. sequencesf, J2;(r)dr}; and{[3 J.;(r)dW(r)}; have
finite second momentst follows by the weak law of large numbers that as
n — oo

l n -1 1 n ﬂ)z(c)
<H.—21 Qéi(f)df> <EI_21 Qc,i(r)dW(f)> —p 1(0)’
Thus in sequential limits a$T,n — 00)seq

w,(C)
w,(c)’

and in consequence

T(@" —a)—,

w,(C)
. wl(C)'

é+—c=T(é+—a)+O<%>—> (16)

Hence the iterative OLS estimata™ is inconsistent and has an asymptotic
bias given by the ratidw,(c)/w+(c)] that depends on the unknown parameter
c¢. The main reason for the inconsistencyédfis that the detrending procedure
produces a correlation between the lagged filtered regressorand the equa-
tion errorg; ;. This correlation yields the nonvanishing limit

1 r
w,(C) = —f f e""9°h(r,s)dsdr 7
0o J0
in the numerator off (4 — a).
Define
w,(C)
F(c)=c+ ——. 18
w(C) (18)

Becausew,(c) is nonzero in generakt™ is not consistentHowever because
the probability limit of ¢*, F(c), depends only ore, we can expect the limit
function F(c) to give some information about the true parametegspecially
in regions wherd-(c) is a monotone functianThe graph ofF(c) is plotted for
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Ficure 1. Graph ofF(c) wheng; = 1.

the two caseg; = 1 (Figure 1° andg; = (1,t)’ (Figure 2, which are the most
common in empirical applications

Wheng; = (1,t)’, that is when we detrend the data to estimafdt is appar-
ent from Figure 2 that in the regidft: —0.8 = ¢ = 1.2} the limit function of
the estimaté™ does not identify the true parametbecausé-(c) is not a one-
to-one function in the regiarDutside of this region the probability limit of the
estimate¢™ does identify the true value of the local to unity parametend
can be used to construct a consistent estimate Bfirthermoreif we assume
that the true localizing parameter is nonpositithet is the true localizing pa-
rameter set i$c: ¢ = 0}, then we can identify the local to unity parameteior
all c = 0 using¢™ (and its probability limit because the probability limit func-
tion F(c) is monotonic with respect to on {c: c = 0}, the true localizing pa-
rameter setln this case(i.e., under the assumption that= 0), there is no
unidentifiable regionandF ~*(¢*) is a consistent estimator of

An analytic form of the inverse functioR ~*(c) of the probability limit func-
tion F(c) is not readily availableBut the function is easy to calculate numeri-

Ficure 2. Graph ofF(c) wheng; = (1, t)".
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cally and is given in Table 1 for the cage= (1,t)’.° We summarize the results
in the following two theorems

THEOREM 1 Let F(c) = ¢ + [w,(c)/wy(c)]. Under Assumption$—4 (As
sumptions3 and 4 follow), ¢ —, F(c) in sequential limits agT,n — o0)seq

THEOREM 2 Under Assumptiond—4 (Assumptions3 and 4 follow), in
sequential limits agT,n — 00)geq

Vn(€" = F(c)) = N(0, V- (c)),

where
—wy(C)
_ —w,(C) 1 w,(c)?
wo- (S me)ol "y |

w4(C)
V(c) is defined in AppendiA, and ® is defined in Assumptio®(c).

The variancéV,+(c) is a complicated function of the unknown parameter
but, again can be calculated numerically as shown in Table 2o+ (1,t)".

Remarks

(a) The two results are stated here in termgDi — co)seqSequential limits for the
indicesT and n. Appendixes C and D show that these results continue to hold
when joint limits (T,n — oo) are takenIn fact according to the results given
therg joint asymptotic normality of/n(¢™ — F(c)) continues to hold under the
additional rate restrictioftn/T) — 0 as(n, T — o0), whereas joint convergence in
probability ¢* —, F(c) as(n, T — o), holds without the additional rate restriction

(b) The intuition behind the requiremefit/T) — 0 for joint asymptotic normality of
¢ is simple Under the assumptions in the theoreme usually haveE(¢) # F(c)
for fixed T, but E(¢) — F(c) asT — co. In this casethe restriction(n/T) — 0
works to prevent an explosive bias #n(¢* — F(c)).

(c) WhenE(¢) # F(c) for fixed T, which is the case under the assumptions of this
paper a limit theory based om — oo with T fixed encounters some additional
difficulties. In the case of the probability limit of*, whenn — co with T fixed,
we obtain a different limit fronf (c) and one that depends dnAdditionally, as
far as the limit distribution of™ is concernedcentral limit theory asn — o
with T fixed cannot be applied to/n(¢* — F(c)) but rather to the recentered
estimatorv/n(¢* — E(¢%)), which is not as useful becaugg¢*) depends on
additional unknown parameters

(d) In the region wheré(c) is one to ongwe can define a consistent estimator ¢or
by taking the inverse value of the bias functiBfc), and we defing = F ~2(¢™).
Then the limit distribution of¢ is found easily by the delta methotet b =
F(c). Because the bias functidna(c) is differentiable on the region wher&(c)
is one to onewe have
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TaBLE 1. Numerical values of bias functiof(c) in (18) wheng, = (1,t)’

c F(c) c F(c) c F(c) c F(c)
-8 —-1309 -4 -9.71 0 -75 4 397
—-7.9 -13 -39 —-9.63 01 —-75 41 4.09
—-7.8 —1291 —-3.8 —9.55 02 —7.51 42 4.2
7.7 —12.82 —-3.7 —-9.48 03 —-7.52 43 431
—-7.6 —1273 —3.6 -94 04 —7.54 44 442
—-7.5 —-12.64 —-35 —-9.33 05 —7.56 45 452
74 —1256 —-34 —-9.25 06 —7.58 46 4.63
-7.3 —-1247 -3.3 —-9.18 Q7 —-7.6 4.7 4.73
—-7.2 —12.38 —-3.2 =91 0.8 —7.62 48 4.83
-7.1 —-1229 -3.1 —9.03 Q9 —7.63 49 493
-7 —-122 -3 —8.96 1 —-7.61 5 503
-6.9 —1212 —-2.9 —8.88 11 —7.58 51 513
—6.8 —1203 —-2.8 —8.81 12 —-7.51 52 523
—6.7 —11.94 2.7 —-8.74 13 —7.38 53 533
—6.6 —11.86 —-2.6 —-8.67 14 —-7.2 54 543
—-6.5 1177 —-25 —8.6 15 —6.93 55 552
—-6.4 —-1168 —24 —854 16 —6.57 56 562
—-6.3 —-116 —-2.3 —8.47 17 —-6.1 57 572
—-6.2 —1151 —-2.2 -84 18 —5.54 58 582
—-6.1 —1143 2.1 —-8.34 19 —4.88 59 592
-6 —-1134 -2 —8.28 2 —-4.14 6 602
—-5.9 —-11.26 -19 -8.21 21 —-3.36 61 6.12
-5.8 —-1117 -1.8 —-8.15 22 —2.56 62 6.21
=57 —-11.09 =17 —8.09 23 =177 63 6.31
—5.6 —11 —-1.6 —8.04 24 —1.03 64 6.41
-55 —10.92 —-15 —7.98 25 —-0.34 65 6.51
—-5.4 —-10.84 —-1.4 —7.93 26 0.27 66 6.61
—5.3 —10.75 -13 —7.88 27 0.82 67 6.71
—-5.2 —10.67 —-12 —7.83 28 129 68 6.81
=51 —10.59 =11 —7.78 29 17 6.9 6.91
-5 —1051 -1 —7.74 3 206 7 701
—-4.9 —-10.43 -0.9 —7.69 31 2.36 71 711
—4.8 —-10.34 -0.8 —7.66 32 2.63 7.2 721
—-4.7 —-10.26 -0.7 —-7.62 33 2.86 7.3 7.31
—4.6 —-10.18 —-0.6 —7.59 34 307 74 741
—45 -101 -0.5 —7.56 35 325 7.5 75
—-4.4 —10.02 -04 —7.54 36 342 7.6 7.6
—-4.3 —9.94 -0.3 —7.52 37 357 7.7 77
—4.2 —9.86 -0.2 —7.51 38 371 7.8 7.8
—-4.1 —-9.79 -0.1 —-75 39 384 7.9 7.9
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TaBLE 2. Numerical values of asymptotic standard ernf)—t/é+(c) of iterative
OLS estimator wheg{ = (1t)’

c A[Va+(c) c A/ Ve+(c) c AVsr(€) € AVer(c) ¢ A/Ver(o)

-8 6.0079 —46 55106 —12 51166 22 49802 56 0.0864
—79 59932 —-45 54965 —-11 51097 23 46617 57 0.0782
—7.8 59785 —44 54824 -1 51032 24 42764 58 00709
—7.7 59638 —-43 54683 -09 50971 25 38520 59 0.0642
—7.6 59491 -—-42 54544 -08 50913 26 34167 6 00582
—75 59344 -—-41 54405 -07 50858 27 29939 61 0.0528
—-74 59197 -4 54267 —0.6 50806 28 26001 62 0.0479
—73 59050 -39 54131 -05 50758 29 22447 63 0.0435
—7.2 58902 -38 53995 -04 50711 3 19316 64 0.0395
—71 58755 —-37 5380 -03 50667 31 16603 65 0.0358
-7 58608 —36 53727 —02 50624 32 14281 66 0.0325
—6.9 58460 -35 53595 -01 50583 33 12307 67 00295
—6.8 58313 -—-34 53465 0 50540 34 10637 68 00268
—6.7 58166 —33 53336 01 50503 35 09226 69 00244
—-6.6 58019 -32 53208 02 50463 36 08032 7 00221
-65 57871 —-31 53082 03 50424 37 07021 71 00201
—-6.4 57724 -3 5.2958 04 50386 38 06160 72 00183
—-6.3 57577 —29 52836 05 50351 39 05425 73 00166
—6.2 57430 -—-28 52716 06 50321 4 04794 74 00151
—6.1 57283 —27 52598 07 50301 41 04250 75 00137
-6 57136 —2.6 52483 08 50299 42 03779 76 00125
—-59 56989 -25 52369 09 50323 43 03368 77 00114
—58 56843 —-24 52258 1 50387 44 03009 78 00103
—57 56696 —-23 52150 11 50510 45 02694 79 00094
—56 56550 —22 52045 12 50711 46 02416 8 00085
—55 56404 —-21 51942 13 51016 47 02170

—54 56258 -2 51843 14 51444 48 01951

—53 56113 -19 51746 15 52000 49 01757

—52 55968 -18 51653 16 52658 5 01584

—51 55823 -—-17 51563 17 53330 51 01429

-5 55679 —1.6 51477 18 53853 52 01290

—49 55535 -15 51394 19 53991 53 01166

—48 55392 -14 51314 2 53481 54 01054

—4.7 55249 -13 51238 21 52114 55 0.0954

Note: The numerical values are obtained by,a@ iterations of the simulation with size0DO data
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22
2

1.8

-8 -6 -4 2 0 2 4 6 8 c

Ficure 3. Graph ofdF(c)/dc wheng; = 1.

dc  dF (b 1+ d [wy(c)\\ 7t
db db de\ wy(c) /)
wherec = F~1(b), and[dF ~(b)/db] is well defined on the regiofib = F(c):

[dF(c)/dc] # O}. If b = F~1(c) and(dc/db) = [dF ~*(b)/db] are well defined
then by the delta methoave have

\Vn(c—c) = Vn(F1(¢*) - F1(F(c))

dF1(b)\2
= N0 = | Ve (@), (19)

whereb = F(c).

(e) In Figures 3 and 4 we plot the graphs[adf-(c)/dc] wheng, = 1 andg; = (1,t)".
Wheng, = 1, [dF(c)/dc] # 0. However wheng, = (1,t)’, [dF(c)/dc] = 0 at two
points ¢ = 0 andc = 0.895 and at these points the derivatiy@F —*(c)/dc] is
not defined

S

L~)

8 6 4 2 00 2 4 8 8 ¢

Ficure 4. Graph ofdF(c)/dc wheng; = (1,t)".
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Consistent estimators; and(); for the individual long-run variances; and
Q; can be obtained by employing standard kernel estimdtesse estimates
can then be averaged by produce consistent estimates of the quattities
and (. More specifically let & be the pooled least-squares estimator of the re-
gression mode(8), that is

and & ; be the residuak; ; = z; — &z, from this regressianDefine the
sample covariancel(j) = (1/T) X & 1+j, Where the summation is defined
over 1=t,t +j = T. Then the kernel estimators fok; and () are

Z, ( )F(J) (20)

W( )ﬁ(j), (21)
j==T

wherew(-) is a kernel function an& is a lag truncation parametdiruncation
occurs whenw(j/K) = 0 for |j| = K. Averaging over cross section observa-
tions now leads to consistent estimators\ofb, and(). The following assump-
tions concern the class of admissible kernels and the choice of the bandwidth
to be employed in the kernel estimat@®) and (21). These assumptions are
used in our joint convergence arguments in the Appendixbsre it is shown

that (1/n) 3", A, —p A as(T,n) — co. For sequential limitsit is possible to

use weaker conditions

Assumption 3(Kernel Condition. The kernel functionw(-): R — [—1,1]
satisfies the following

(@ w(0) =1, w(x) = w(—x), f_llw(x)zdx < o0, andw(-) is continuous at zero and
all but a finite number of other points

(b) w(x) =0, [x] =1

(©) Wq = lim,_,o[1 — w(x)/|x|%] is finite for someq € (3,0).

Assumption 4 Bandwidth Condition We assume thadsT — oo, the band-
width parameter satisfiel§ — oo, (K%T) — 0, and (K?9*YT) — y > 0 for
somes < q = b for which W, is finite, whereb is given in condition(c) in
Assumption 1

The Parzen exponeigtin Assumption 3 is related to the smoothness of the
kernel at zeroThe most frequently used kernels in applications satisfy this
assumption—sedor example Andrews(1991) for details
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Remarks

(@

(b)

The iterated OLS estimator discussed previously is a pooled least-squares estima-
tor based on OLS detrended dataturally there are many pooled least-squares
estimators based on data that have been detrended in different @sagproce-

dure that is used widely in applications is to use first differenced. ddtes de-
trending procedure has difficulties similar to those of iterated Old%e specific
assume a simple linear trend in the panel mddglso that

Zi = Bit+ Vi

c
Vit = @ -1t & a:eXp<?>~ (22)
The difference detrended data are then simply
Z. =7, Bit,

wheregi; = (1/(T — 1) 2, Az ,. Define
R n T -1 . n T
¢t = T<QS 2 2 Zi2,t1> (Q 2 2 AZi,tZi,tl)v
i—1t=2 i—1t=2

where ), = (1/n) 21 (1/T)S,(Az )2 In this case applying similar argu-
ments to those used earlier in this sectime find

1
ct _—, 23
7 " 20g(0) 23)

where ws(c) = [i(1/2c)(e®® — 1) — 2r((1/2c)(1 — e 2)esd™n) +
r2(1/2c)(e®® — 1)}dr. From this outcomgit is apparent that the probability limit

of ¢*, [1/—2ws(c)], is different fromc in general and therefore the estimatdr

like ¢*, is not consistent(More details on this estimation procedure are given in
the previous version of this pap@ioon and Phillips 1999a)

The asymptotic bias in iterative OLS estimation arises because of the correlation
between the detrended regressors and the regression dinerasual economet-

ric approach to the consistent estimation of regression coefficients when there is
correlation between the regressors and the errors is instrumental varlattles
present casen instrumental variable procedure is possible in which backward-
recursive detrended data are used to produce an instrumental variable for the re-
gressor in a forward-recursive detrended regression mddetxplain this idea

take the regression mode&3) and consider the following two recursive detrend-
ing proceduresrirst, detrend the data recursively through to,..., T, starting at
some observatioy > p, wherep = dim(g,), and calculate the backward-detrended
data

t -1 t
zZ,=2z,-0 < ;l gsg;> ( gl gszi,s>.
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Similarly, for t = 1,...,T — t;, we have the forward-detrended data as follows

T -1 T
zi,t=zi,lg{< > gsgg> ( > gszi,s)

s=t+1 s=t+1

Then we employ the forward-detrending procedure in the regression equation
(8) and have

Zi = az 1t &

Now, using the backward-detrended data as an instrumentonstruct the fol-
lowing instrumental variablélV ) estimator

Gy =Ty —1),

where

n Tt 1/ /T4
ay = <2 > zi,tl_zi,tl> ( < > % Zia— Ai>>-
i=1t=t, i=1\ t=t,

The forward-recursive detrended data use future information in detrendiegeas

the backward-recursive detrended data use past information in detreftiung

we might expect that the forward-recursive detrended efrpin the numerator

of &}, — 1 might be asymptotically uncorrelated with the backward-detrended
regressoiz ;—1. In the earlier version of the papéMoon and Phillips 19993,

we showed that the IV estimat@y, is consistent for almost all the values far
However it turns out that!, also has a problem that the numerato€gfis not
always nonzeroln particular whenc = 0, the limit of the denominator oty,
degenerates to zero in probabiliand so the IV estimatag;!, is not consistent in
this caseResolving the bias problem that arises in the numerator yields a degen-
eracy problem in the denominator for some values,aind in particular at =

0. In effect there is insufficient informatioriin terms of persistent excitation in
the regressgiinstrument about the true value = 0 to deliver a consistent esti-
mate for this value o€.

3.2. Double Bias Corrected Estimation

The iterative OLS estimator has an asymptotic bias that depends only on the
unknown localizing parameter. The idea behind the method we investigate
here is to adjust for the bias that arises from the correlation of the filtered data
and the regression ertdn particular we use a linear representation of the ex-
ponential term that appears in the bias producing elertient so that the es-
timator of c can be adjusted directly to take the bias in OLS regression into
account
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First, notice that whert is close tocy, we can approximate the asymptotic
bias w,(c), of the numerator o€™ — ¢ by

T [ R WE N

C =~
wz( ) T T
If there exists a consistent estimasay ¢, for ¢, then we may further approx-
imate w,(c) by

Tt 1_S\¢ t s t_s .
éy(C) = 2 2[ (+-%)e <? - ?>e(T T>C(c— c)] Fir(t,S).
Because this approximation to the bias(c) is linear inc, it is possible to
adjust the estimatot™ to take the bias information into accoufithe adjust-

ment is designed so that the new estimator, satisfies the system

10 1 7T
<;2§E? )C++—C)

=1 =1

-

n T
%2[%2(2 18— Ay)
T t s t s
+ 0 <T_12 tzzlsgl(e<T_T>c + <% _ ?s>e<T_T)c(é++ _ C))
X hy(t, s))] +0,().
Then
101 7
<; 21z tElqu)(é” ~c)
_ 13 iT t s\ (33| ++ _
<n.Elﬂ'T2t21521[<T T>eT ! }hT(t’5)>(é ©)
1010 N 1 T (ros)..
= H;l{;;l(zi,tlg,t—/\ <§t215216(-r T) hT(t,S)>

) eGTS)C] h(t, s)] +0,(1).

(24)
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Becauset is consistent foc, the third term on the right hand side (%4) van-
ishes The other two terms on the right hand sideg®#) also converge in prob-
ability to zero because as— oo for fixed n, they converge in distribution to

1 n 1
HEQ(L Qc,idW_wz(C)>,

which converges in probability to zero as— oo becauseE(folgC,i dw) =
w,(c) and (/M >, 0 — Q.

To implement the idea if24), we use the consistent estimatoe= F (™)
defined in Section 2assuming that there are no problems of identification
Then the preceding heuristic analysis leads to the following panel estimator
for the local to unity parametear

e

—Hm
~
3
_‘
—~~
I—F
wn
N
v
—
[E—
|
N

X e<Tt$)cﬁT(t,s)}. (25)

The inclusion ofA; in the formulation of¢** provides the usual serial correla-
tion bias correctionThe adjustment of the numerator and the denominator by

T t S\ .4
bhESS [1— <% _ ?SHe(T‘T)é Ar(ts)

T2t=1s=l
and
L1 /TS I8¢
o = <2 S - 9el” T>chT<t,s>>
t=1s=1

corrects for the bias from the use of detrended .data
From the definition of¢™*, we deduce that

t:1

wherery = T2(exp(c/T) — (1 + ¢/T)) and equality holds becausg, =
az -1+ &t
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To derive the probability limit of¢e™ under sequential limitswe first let
T — oo for fixed n and then leh — co. Because& is consistent foc, it follows
that

7)ot 9)

T

1
+rr ) > Ziz,tl} +0,(1).

t=1

WhenT — oo with fixed n, by the continuous mapping theorem and cross sec-
tion independenceve have

FEFEeaan(Z2G 1) Pres)l]”

1 10 L. 1T (tos\ 1 T
X El:zl ?Zflli,t—l&,t*/\i + ﬁgle(T 7) hT(trS)+rT-|-_3t_21Zi2,ll}
1 .n 1 ) 1 [t ~ -1
ﬂ[al_ZlniUO Jc,i(f)df—jofo(r—s)h(r,s)dsdrﬂ
1N 1 1 rr
— . . (r—s)cfr
X nEIQUO Jc,.(r)dW(rHJOfoe h(r,s)dsdr>. (26)

In view of (14), we have

E(nggi(r)dr—LILr(r - s)ﬁ(r,s)dsdr)

1 rr
= w,(C) —fo fo (r —s)h(r,s)dsdr= w(c), say

where
-1

1 1rl 1 "
w,(C) = E{lJr - (1- ezc)} —fo fo ecrts) 2_c (1— e 2¢)A(r, s)drds

We know thatfolgz(r)dr has finite second momentalso, it is assumed that
sup|Ci] = C < o so sup|Q;| = C? < w. Then by the weak law of large
numbersasn — oo

1" 1 1 rr B
<ﬁ iE:LQi<J; géi(r)dr—fo fo (r—s)h(r,s)dsdr>> -, Qo(C). (27)

For the time beingassume thab(c) # 0 at the true value of.
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Similarly, in view of (15) we have

1 r
E(f:]c,idW) +J f e"9°h(r,s)dsdr= 0.
0 YJ0

n

Because lim(1/m >, O, = Q and lim,(1/n) > ; A; = A, and using the weak
law again asn — co, we have

1" 1 rr
— ' . (r=s)ch
<n .21<Q' ch,l(f)dW +fo fo e h(r,s)dsdr)) —, 0. (28)

Combining(27) and(28), and providedw»(c) # 0, we then have under sequen-
tial limits as(T,n — 00)seq

¢t >, (29)

In summary we have the following result for the consistency ®f" under
sequential limits Appendix C extends this result to give consistency¢of
under joint limits

THEOREM 3 Under Assumption& and 2, if w(c) # 0 and if ¢ is consis
tent for ¢ then as(T,n — ©)seq €™ —p C.

Remarks

(a) The consistency of** in the preceding theorem holds only for valuescafuch
thatw(c) # 0. In general w(c) is quite a complicated function afand is depen-
dent on the explicit form of the deterministic trends in the mo@ainsequently
it is hard to find analytically the set afsuch thatw(c) = 0. Figures 5 and 6 plot
the graphs ofv(c) for the most commonly used trengs= 1 andg; = (1, t)".

(b) These graphs show three important features @f). First, we see thatw(c) # 0
whenc < 0; secondw(c) = 0 whenc = 0; and third, there is another point af
for which w(c) = 0 in the regionc > 0 wheng; = (1,t)".

10.8
10.6
0.4

10.2

5 -4 -3 . Y] 1 2 c

Ficure 5. Graph ofw(c) wheng, = 1.
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+0.03 /
t0.02

10.01

0o 1T 2 c

0.01

+0.02

FiGure 6. Graph ofw(c) wheng, = (1,1)".

(c) Unfortunatelyatc = 0, w(c) is always zero regardless of the form of the deter-
ministic trends assumed in the mod€his can be verified by the following sim-
ple calculation for the general caskle have

w(0) = E(folwiz(r)dr —folfor(r - s)ﬁ(r,s)dsdr)
= folrdr —folfol(r Ds)ﬁ(r,s)dsdr—J;lLr(r — s)h(r,s)dsdr
= jol rdr —foljrlrﬁ(r,s)dsdr—folforrﬁ(r,s)dsdr
= f:rdr ffolf:rﬁ(r,s)drds=f:rdr ffolsds= 0,

where the last line holds for the following reasdret L,[0,1] be a space of
square integrable functions d40,1] with inner product f,g) = folf(r)g(r)dr.
Let Q denote a space of polynomial functions of degpesn [0,1] generated by
{Lr,...,rP}L Letg(r) = (1,r, ., IP). Then the operatorP from L,[0,1] to Q
deflned asP(f)=g(r)y (fo g(r)g(r) dr)(fO g(s)f(s)ds) is a projectionHence
whenf(r) =r, P(f(r)) = f(r) = r, and so we havé0 rh(r,s)dr = s.

As Figures 5 and 6 shqwven thoughw(c) # 0 for c < 0, w(c) is very close to
zero aroundc = 0. Because of thiswe can expect that the estimatdt* may
perform poorly forc ~ 0.

d

=

Next we derive the limit distribution o€** using sequential limit argu-
ments Here we assume thatsatisfiesw(c) # 0, F (c) is well defined and
[dF(c)/dc] # 0. In this case¢ = F ~*(¢") is V/n consistent and/n(¢ — c) is
stochastically bounde@ee(19)).
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First, standardizingg™ — ¢ by vn, we write

><e<TL 7)e h(t, s)+rTi32 }

Becauset is consistent foc, we have

n T t t s
: >0 %(Z > (- s)e<TT)CﬁT(t,S)>
n= T\
10, 1 /(T2 (£-2)e.
== 0|22 t-9eT T/ hi(ts) | +0,). (30)
n= T\

Next, by the mean value theorem we write

10 .17 t t_s
F207EE (0 (7-7)e0)s P
10,1045 (o5
‘_nZ“'?ElZe(T ?)o (1, 9)

_ inzlﬂ{?lilile_ $>e<Tt 7) hT(t,s)}(C—c)
no 1T t 1 sy, t s
X An(¢—-c), (31)

wherec* is located between and¢. Becausec™ converges in probability to
andv/n(¢ — c) is stochastically bounde@ee(19)), it is easy to see that

(31) = 0,(1). (32)
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Sq, in view of (30)—(32), we now have

\/ﬁ(é++ C)
n T T t t s -1
= {} 2{% 2 Zizt—l - Qi iz <2 E (t— 5)e<TT)CﬁT(t,5)>H
Nz T <7 T \iZ151
n T T t s

S D P T W N SD L SRR A
n=|T&E ’ TS

+ 0p(1).

For fixedn, asT — oo, the main term ofVn(¢** — ¢) converges in distri-
bution to

1N 1 1 rr . -1
{ﬁzﬂ.(fo ch,i(r)dr—fofo(r—s)h(r,s)dsdrﬂ

1 N 1 1 rr .
—_— . ) (r—s)c
X \/ﬁ izzlﬂl (J;) :]c,|(r)dW(r) J’_J; J;) e h(r,s)dsdr). (33)

As shown in the previous section

E[Qi <folgc,i(r)dW(r) +folf0r e<’5>°ﬁ(r,s)dsdr>] =0.

Appendix A derives the variance of the numerato(38).2 It is

1 1 r 2

E[Q(fo Jc,i(r)dW(r)waoLe<"3>°ﬁ(r,s)dsdr>]
1 2 1 r 2

= 02 ) _ (r=sicp
0 {E(fogc,.(r)dwm) (fofoe (r,s)dsdr)}

= ()'izvtf++ (C)7

where

1 rr 1 rl1 rpis B
Vé++(c)=ffezc“‘s’dsdr—szf ec(Prs=29dxh(p, s)dsdp
0 Y0 0o <YJ0 Y0
1 rp (s B
- Zf f f ec(sNec(s™Ih(p,s)drdsdp
0o J0 Y0
1rl 1 ptq
+ f f f (f e°<p+q‘2’0dx> h(g,r)h(p,r)drdpdg
0 0 Y0 0
101/ P . q .
+ f f <f e°<p5>h(q,s)ds><f e“'(q”h(p,r)dr)dpdq (34)
0 0 0 0
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Because sym? < oo and lim,_ (1/n)>" ;02 = @, it follows by the
Lindeberg—Levy central limit theorem thasn — o«

1 n 1 1 r
_ . . (r—s)ch Y
NG ZLQI <J; Je.i (NdW(r) +JO fo e h(r,s)dsdr) = N(O, DVe++(C)).

Combining this with the probability limit for the denominator (#3), Qw(c),
we have established the following theorem under sequential limit arguments
The same limit theory is obtained in Appendix D under joint limit arguments

THEOREM 4 Suppose that Assumptiodsand 2 hold. Also assume that
¢ = FY(¢") is consistent for cdF~(c)/dc is well definedand w(c) # O.
Then as(T,n — 0)seq

\Vn(¢tt —c) = N(O

PVe++(C) >

" 0%w(c)? (35)

where \{++(c) andw(c) are defined in(34) and (27), respectiely.

Remarks

(@

In Table 3 we calculate numerical values¥,++(c)/w(c)% —8 = ¢ = 8, where
g = (1,t). Whenc is close to 0 or BB, w(c) ~ 0 (see Figure § and so

Al Ve++(c)/w(c)? takes high values arourzl= 0 andc = 1.3.

(b) Appendixes C and D establish joint consistency ag2i® for (n,T — o0) (see

(©)

Theorem 13 and joint asymptotic normality as it85) for (n,T — oo) with

(n/T) — 0 (see Theorem 14

When a consistent preliminary estimator fors available one may think of an
estimator that corrects for the double biases in a simpler way by subtracting the
estimates of\; andw,(c). Let € be a consistent estimator foyfor example ¢ =
F~%(¢%) or c = ¢**. A simple double bias corrected estimator could then be
defined as

Becauset is consistent forc and w»(c) is continuousit is straightforward that
€*** —, c. However this simple bias corrected estimator has an undesirable
property—its limit distribution depends on the asymptotic distribution of the pre-
liminary estimator that is used to estimate the higéc). Write, by definition,

VA(E ~ o)

1017 o
X <_n .:21 T zl("l —18it — A — Qi w,(0))
120 .
_ <H .71‘Qi (W(wz(()) - a)z(c)))> . (36)
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Ve++(C
TABLE 3. Numerical values o C(C()z) in Theorem 4 wherg{ = (1,t)’
w
Vere(0) ® Ver+ () va(c) \/ve++<c) \/ve++<c>
c w(c)> ¢ w(c)®> ¢ w(c)? ¢ w(c)? ¢ w(c)?

-8 49136 —46 75581 —1.2 446729 22 48422
—-79 49572 -—-45 77080 -11 519287 23 4.0131
—78 50019 -44 78665 -1 614285 24 33761
—7.7 50477 -43 80343 -0.9 742174 25 28747
—76 50948 -42 82123 -0.8 920310 26 24718
—-75 51430 -4.1 84015 -—-0.7 1179273 27 21423
—74 51926 -4 86030 —0.6 1577059 28 18690
—73 52436 -39 88181 —-05 2235227 29 16394
—7.2 52960 -—3.8 90481 —0.4 3444371 3 14446
—7.1 53499 —-37 92947 -03 6052925 31 12778
-7 54054 —36 95597 —-0.2 13499285 32 11339
—69 54625 —-35 98451 -0.1 53695697 33 10090
—6.8 55214 —-3.4 101535 0 — 34 09000
—6.7 55822 —33 104875 01 53762421 35 0.8044
—-6.6 56448 —3.2 108503 02 1,3558429 36 07202
—-6.5 57095 —3.1 112457 03 6122524 37 06459
—64 57764 -3 116780 04 3530930 38 0.5800
—-6.3 58455 -—-29 121523 05 2344024 39 05215
—6.2 59171 -—-28 126746 06 1714487 4 04694
—-6.1 59912 -27 132520 Q7 1354350 41 04228
-6 6.0680 —2.6 139830 08 1147475 42 03813
—59 61477 -25 146078 09 1046621 43 03440
—58 62305 -—24 154088 1 1046484 44 0.3106
—-57 63165 -23 163110 11 1205580 45 0.2806
—56 64061 —-22 173329 12 1893297 46 0.2537
—55 64993 -21 184976 13 — 47 02294
—-54 65965 -2 198338 14 1233519 48 02076
—-53 66980 —19 213779 15 513654 49 01879
—-52 68040 -—-1.8 231768 16 290267 5 01701
—-51 69150 -17 252913 17 187699 51 01541
-5 7.0312 —1.6 278017 18 131506 52 0.1396
-49 71532 -15 308156 19 9.7317 53 01266
—48 72813 -—14 344803 2 74963 54 01147
—-4.7 74161 -13 390012 21 59536 55 0.1040

56
57
58
59

61
62
63
64
65
66
67
68
69

71
12
73
74
5
76
144
78
79
8

0.0944
0.0856
0.0777
0.0705
00640
0.0581
0.0527
0.0478
0.0434
0.0395
0.0358
0.0325
0.0296
0.0269
00244
0.0222
0.0201
0.0183
0.0166
0.0151
0.0137
0.0125
0.0113
0.0103
00094

Note: The numerical values are obtained by,a@ iterations of the simulation with size0DO data

aBecausaw(0) = 0 andw(1.3) = 0, we do not report the values otj (Va++(c)/w(C)?).
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In view of (36), the asymptotic distribution of the numerator gh(¢*** — c)
depends on the joint weak limit ofl/\n) 2L WD (Yiragie — A —
Qi w(c)) and Vn(w,(C) — w,(c)). The asymptotic distribution of/n(w,(¢) —
w»(c)) then depends on the weak limit afn(c — c¢) by standard delta method
argumentsTherefore the asymptotic distribution of/n(¢*** — c) relies on the
limit distribution of the consistent preliminary estimator of

(d) On the other handhe double bias corrected estimator™ has a limit distribu-
tion that is independent of the weak limit of the preliminary consistent estimator
Therefore even though the double bias corrected estimétoris more compli-
cated than the simple estimatdf** and suffers from the problem of a degener-
ate denominator for certain specific valuesmfnotably ¢ = 0), we prefer to
recommenct™ ™.

4. APPLICATIONS
4.1. Tests on the Localizing Coefficient

The asymptotic normality of/n(¢™ — F(c)) andvn(¢*" — ¢) given in Theo-
rems 2 and 4 enables us to construct tests for many interesting hypotBepes
pose for instancethat we are interested in testing the null hypothesis

HO: Cc= Co, (37)

wherec, belongs to a consistently estimable paramete? $&en for example
Theorem 4 suggests the following simpteest based od*:

\/ﬁ(é++ - Co)
tstae = = ’
[dv.(et)
Q2w(é++)2

whereQ) = (1/n) 3", O, = (1/n) S, O2. By Theorem 4we have
tsmr = N(0,1)

as(T,n — ©)seq The joint limit convergence af, to N(0,1) is established in
Appendix D

As mentioned earliethe panel model specification in modd) that allows
for a common local to unity parameter across individuals can sometimes be
too restrictive In such cases it may be of interest to test the difference of local
to unity parameters between specific subgroups of individu&lgppose that
a andl, denote two subgroups of individuals and we are interested in test-
ing hypotheses about the local to unity parameters of m(jeh the follow-
ing form:

= Su +ylg +
Zi ¢ = €Xp T Ziv 1 TYiG T &t
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wherec, = c,if i € I, andc, = ¢, if | € iy,. A natural hypothesis is
HO: Ca = Cb'

Let n, = #(1,) andn, = #(ly,), respectivelyAlso, assume that,/n, = k < oo
asn,, n, — co. The null hypothesis can be tested by computing the Wald statistic

W (6 —6)?
=N, ——————=—=

b b )

* (na/nb)va+ Vb

where ¢, is a consistent estimator far in group . € {a,b} and Vv, =
D, Verr (Er ) (Q5w(€;7)%) Y u € {ab). By Theorem 4 as(T,n — o)seq
we know

2
Wa,b:>/\/l’

a chi-square distribution with degree of freedom .one

4.2. An Application to Efficient Trend Elimination

In this section we show how consistent estimation of the localizing coefficient
¢ can be used for efficient estimation of the trend coefficieBtgppose a trend-
ing time serieg; is generated by the system

z. = Bot Bitt Y, t=1...,T,

c
Y, = ayi_; T &, a=e°/T<~—~1+ ?> (38)
wherec denotes a local departure from unity has mean zero and finite vari-
ance andy, = Opy(1) with a finite variance a§ — co. Suppose that our pri-
mary interest is in estimating the trend coefficigsit and in constructing
confidence intervals foB,. We assume a linear trend in mod8B) because it
is the most widely used specification in empirical applicatidnis straightfor-
ward to allow for general polynomial trendsut to keep the algebra simple we
do not discuss the general case here

According to recent researdihillips and Lee 1996 Canjels and Watsgn
1997, when the residual term in (38) is nearly integrateda partial general-
ized least squarg$&LS) procedure based on quasi-differencing the desdled
quasi-differencing detrending or QD detrending asymptotically more effi-
cient than OLS in estimating the trend coefficight However to execute fea-
sible QD detrending it is necessary to estimate the unknown local to unity
parametec. But consistent estimation affrom a single time series trajectory
is not generally possibJeand this complicates estimation and inference about
B1 and the construction of valid confidence intervals fior However if panel
data are availabJ¥ then the parametarcan be consistently estimated almost
everywhereas discussed in previous sectipand this makes efficient estima-
tion of the trend coefficient§B,;, say possible and facilitates statistical inference
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Let ¢ be a consistent estimate affor instance¢ = F~1(¢*), wherec is in

the identifiable region of OLS estimatipor ¢ = ¢** andw(c) # 0. Define
g: = (1, t) and set

5 ¢ T 3 1
Ot =0 — |1+ ? G1= e ) Oe1 =01 = 1)
1—?(11—1)

and

y ¢ y
Lt = 4~ <1+ ?)Z’[—la Z1= 2y,

fort=2,...,T. The QD estimator of the trend coefficient in a particular equa-
tion, say B = (Bo,B1) where we omit the subscriptfor conveniencgis de-
fined as

T -1/ T
Be = (Egctgét> <ch,t2c,t>’ (39)
t=1 t=1
Let Fr = diag(1,T). Then it is easy to verify thatasT (andn) — oo,
1 0
-
Fri/2 5. 0., |FrY? > 1 . 40
T (Zlgc,tgc,t> T p 0 f (1_ cr)zdr ( )
0

Because the limit if{40) is block diagonal

A

. 1 T é 271-1
\/T(B:L,c_lgl) = {_2(1_?“_1)) :|

T

1 J ¢ ¢
8- to-s)oor 2 )
+ 0p(1).

Write Q = lim1_, . E(t/NT)3, )2 As T (andn) — oo,

o 1 -1 1
NT(Bre— B :Q(f 1- cr)zdr> <f (1- cr)dW(r))
0 0
1 -1
2 _ 2
N(O,Q (fo (1—cr) dr) >
QZ
N|{O,—— .
< 1-c+ §c2>
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This estimator has the same limit distribution as the GLS estimat@ afid
hence attains the efficiency bound for the estimation®in this class

Next suppose thaf) is a consistent estimate ¢f. Then using the consis-
tent estimate ot, ¢, we can conduct statistical inference ab@yt For exam-
ple, a (1 — a)% asymptotic confidence interval f@;, can be constructed as

. 1 02 . 1 02
Bic™ Zi-(a2) \/_T 1_c+ie2 %éz,ﬁl,c"' Z1_(a/2) \/_T 1_c1 ie2 e | (41)

wherez;_(,,» is the two-sidedv% percentage point of th(0,1) distribution
In addition to test hypotheses such as

Ho: 81 = Bio
we can use the Wald statistic

} 02\

W= T(,Bl,c - ,310)2 (m) .

Becauset — c, the Wald statistic converges in distribution ¢ as T (and
n) — oo.

4.3. Estimation of Distant Initialization

As a referee has mentiongtithe initial conditions are random and in the dis-
tant pastthen the limit theory and confidence intervals sucli4l need to be
modified to account for their effect§hus suppose we havén place of the
Op(1) condition ony; o, the alternate initialization

[o1]
Yi(fo = _20 als; (42)
i=

(as in Phillips and Leel996 Canjels and Watsqri997), wherey?; is param-
eterized by the distant past paramealewhich measures the distance into the
past that the initialization extends in terms of some fractioof the present
sample of time series dalaWhene; _; satisfies Assumption,the distant past
initialization (42) gives data at the beginning of the time series sample statisti-
cal properties similar to those of the sample itsétien asT — oo we have

\/’T

whereKg; is a diffusion process with the same propertiedas Furthermore
in place of(10), we now have

1 7
- yi(fo = CKi(0) =4N (0, Qif ezcrd"), (43)
0

1
\/_T Yirr = Ci i (r) + e C K i (0), (44)
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whereK ; andJ.; are independentn view of the short memory of the errors
&. It follows that @, in addition toc, now plays a role in the limit theory and
any confidence intervals constructed from it

Just asc can be consistently estimated in panelstoy F~1(¢") under cer-
tain conditionswe might expect there to be some prospect for estimatiing
a related waylndeed if the initialization parameteé is the same across it
follows from independence acrosand(43) that as(T,n — 0)seq

1.0 0 \2 [4 e2c9_1
&(?:—2(&) —>pﬂf0 e2e'dr = O T

niS\NT

From this formula it is apparent thatwhenc is known a simple consistent
estimator off is given by

. 2coé
f(c) = —log|1+ T , (45)

where) = (1/n) 3" ; (. Notice that in cases of panel models with unit roots
(i.e., c = 0) the corresponding consistent estimatordofvould simply be the
variance ratid (0) = [roz/f). Whenc is unknown joint estimation ofc andé is
possible and the following outlines a consistent estimation proceddith ini-
tial observations as if¥2), the probability limit of¢* is dependent on the two
unknown parameters and 6. Suppose we write this dependenceRs,6).
Then a consistent estimator af say ¢, can be found by inverting the concen-
trated limit functionF (c, #(c)) in the range ot whereF(c, §(c)) is monotonic
just as we did in the case of the iterated OLS estimator in Sectidncdnsis-
tent estimate of is then found a®(¢). Note that in all these casésis also
consistent whem = 0 and the initialization iy(1).

What the preceding discussion indicates is thatler the assumption that all
members of the panel originate at the same time in the distantthast is the
prospect of consistently estimating the distance parangetbttuitively, esti-
mates liked work because if there is distant initialization in the elements of the
pane] it can be expected to show up in the extent of the observed variation in
the first sample data point across the paféle estimatod simply assesses
this observed variatioinamely ¢2) relative to a consistent estimate of the
average long-run variation displayed by the pameimely }), with some ad-
justment to account for the presence of a root that is local to unity rather than
at unity,

5. CONCLUDING REMARKS

This paper has studied the estimation of a common localizing parameter for
models with near unit roots using panel deast, it was shown that the local

to unity parameter in a simple panel near-integrated regression model can be
consistently estimated by straightforward pooling and ordinary least-squares re-
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gressionWhen deterministic trends are present in the panel regression model
the situation is much more complewe have shown that the nice results for
the model with no trends do not extend easily

In particular the simplest pooled estimator that is based on the use of ordi-
nary least squares with detrended data has an asymptotic bias that depends upon
the unknown localizing parameteé®ne solution suggested here is to use the
numerical inverse of the bias function to obtain a consistent estimate of the
localizing parameteHowevey this suggestion works only when the true value
of cis in the identifiable region

As a second methgdave developed an estimation procedure that corrects for
the bias from the serial correlation and from the use of the detrended.datg
a preliminary consistent estimator af This double bias corrected estimator is
consistent except for a finite number of values in the parameter space of
However the set of values where this estimator is not consistent contang,
which is an especially interesting cagdso, when the true parameter takes a
value close to zerdn practice we can expect the double bias corrected proce-
dure to provide a poor estimate of the true localizing parameter because the
denominator of the double bias corrected estimator will be close to zero in this
case Similar problems arise in the case of an IV estimator that avoids bias by
prudent instrumentingThus even with panel data and a common localizing
coefficient consistent estimation of the localizing parameter is a challenging
task when we want to allow for deterministic trends in the model

For those cases where consistent estimation of the localizing coefficient is
possible(notably whenc < 0), the methods are used to show how to perform
efficient trend extraction for panel dat&his gives us an empirically useful
algorithm for efficiently estimating a deterministic trend in the presence of sto-
chastic trends generated by near-integrated processes with a common localiz-
ing parameterAnother useful application of panel data lies in the consistent
estimation of the distancing parameter that arises in the formulation of distant
initial conditions This parametefwhich is expressed as a fraction of the length
of the present time series sampihaeasures how far into the past the initializa-
tion extends in terms of the shocks that have determinédtig shown that the
observed variation in panel observations at the initial point in the time series
sample provides enough information about presample observations to construct
a consistent estimate of this parameter

In the development of the asymptotic theory we make use of both sequential
limits and joint limits for the indicegn, T). A limiting feature of the joint as-
ymptotics that is sometimes needed in our development is the rate condition
(n/T) — 0, which means that the results are likely to be most relevant in pan-
els whereT is large andch is moderately large

Finally, although we do not report the analysis hetee authors have been
able to show that the Gaussian maximum likelihood estimatar isfalso in-
consistent in panel models with deterministic trends and near-integrated
stochastic trendsThis panel data example provides an interesting new case
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where maximum likelihood estimation is inconsistent in the presence of an
infinite number of nuisance parametefsis explored in Moon and Phillips
(1999h.

NOTES

1. Some recent work by Phillipgvioon, and Xiao(2001) develops new block local to unity
models in which the autoregressive roots are local to unity but not as close to unity as they are in
conventional near-integrated moddis these block local to unity modelthe authors show that it
is possible to consistently estimate the block localizing coefficient from a single trajectory

2. Recently Moon and Phillips(1999h study a panel model such &¥) with homogeneous
trends The present paper considers only the heterogeneous trends, wbeeé there are special
complications in estimation and inferenas we will show

3. Suppose that; = (z1,..., 2z 1), Z-1i = (Z,0s-.., Z,7-1)’, andG = (Qy, ..., gr)". Then z; 1
and Az ; are thetth elements 0fQsZ_1; and Qs(Z; — Z_4), respectivelywhereQg = I+ —
G(G'G)™'G’ andt = 2.

4. The correction is for serial correlation i, following Phillips (19873.

5. In this casethe trend coefficients; are zerosand so we can estimateconsistently as we
have shown in the previous sectidtiowever it is common in empirical practice to use demeaned
data and use of this estimator results in hias is apparent from the probability linfi(c).

6. We consider only the linear trend case because it is the most widely used specification in
empirical application

7. For examplewe may assume that the parameter set includes only negative region and zero
c<0.

8. Seevyy(c) in Appendix A

9. For examplein the case of iterative OLS estimatiory € {c: F(c) is monotonig¢.

10. The panel data are assumed to have common localizing paraceté¢may have individ-
ually different unknown trends
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APPENDIX A

Proof of Theorem 2. This proof derives the limit distribution af* under sequential
limits. First, note that

w,(C)

_ . w,(C) \/_ﬁ
= \/ﬁ(T(a —a) — _wl(c)> +O< = )

Vn(et — F(c) = \/ﬁ(T(é* 1 —c— "’Z—(C)>

Let
101 7
Avr==2 = D 21,
n, T niZE:LTZtZElNut 1
10 /170 .
B,t=— — D, Zit1E A
n, T niZ:L(T §l~|1 1§|,l |)
Then
1 n
_E )‘Uz(c)
A+ wz(c) _ Bn,T <n =1
Vi(T(@ -a) - = Vn —
w,(C) Ant

1 n
(H i:ElQi ) w,(C)

To establish asymptotic normality 6éf", we first show that

o (Ea )

\n 10
- (E ; )wz(c)

= N(0, ®V(c)), (A1)
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where
V() v12(C)  v1(C)
C =
v12(C)  v,,(C)

is given at the end of this proobefinef(a,b) = (b/a). Then application of the delta
method leads directly to

w,(C)
4(C)

\/ﬁ<T(aJr —a)— > = /n( f(A,1,Bn 1) — T(Qws(c), Qw,(c)))

—w,(C)

—w w4 2
=N o,<p< 20 1 )V(c) (©)

w,(C)?  w,(C) 1
w4(C)

= N(07 (I)Vé+ (C))7 Say

We now establisi{A.1) with sequential limits

As T — oo for fixed n,
Z <f9i,2c(r)dr - wl(C))

()

: b
n 1 n ,
( Z‘ )wZ(C) N O <Jgi,c(r)dW(r) - w2(0)>

whereJ; o(r) = J.c(r) — JJ.c(s)A(s r)ds Note that sup); < co. Then by the multi-
variate Lindeberg—Feller central limit theorem with Jja/n) XL, Q2 = ®, we have

T ; o (fJi?c(r)dr - w1(0)>
; ( 3.o(NAW(r) - w2<c>>

éll

= N(0,®V(c)),

where

2
vy4(C) = E<J‘Q5C(I’)dr - w1(0)>

2
vap(C) = E(fgi,c(r)dW(r) - wz(0)>

v1z(C) = E(f:]i,zc(r)dr - wl(c))<J.‘Ji,c(r)dW(r) - w2(0)>,

and® = lim,(1/n) >, O2. The limit covariance matri¥/(c) has components that are
as follows For notational brevitywe omit the individual index in the following
expressions
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(@ v1a(c)

E( f *g2(r)dr - wl<c>)2
1 2
= E(fo Jf(r)dr) — wy(c)?

1 1,1

1 1 1
2 _ . o )
x(fo Jé(s)ds fofoJc(x)Jc(Y) (x,y)dxdy) w,(c)
B flflE(JCZ(r)JcZ(S))drds
0 Jo
1 r1 1
2 3 A(s, p)drdsd
f()f()fo E(Jc(r)JC(S)JC(p)) (S,p) rdsdp

n f f f j E(3.(1)3(8)2(P)3(a) i(r, )R p, @) dadpdsdr

— w4(C)?

1 1 1 1 1
= f f W(r,r,s,s)drds— 2[ f f w(r,r,s p)h(s p)drdsdp
0 YO o Jo0 Yo

1 1 1 1
+fjffW(r,ap,q>ﬁ(r,s)ﬁ(p,q)dqdpdsdr—wl(c)%
0 0 (0] 0

where

w(r,s, p,q) = E(J(r)Je(8)I(p) I(a)

= E(for f:fopfoq ec(”s‘*p*q”"yz)dW(u)dW(x)dW(y)dW(z))

ris pCq
— f ec(r+sf2x)dxf ec(p+q72x)dx
0 0

rOp slq
+f ec(r+p—2x)dxj ec(s+q—2x)dx
0 0

riq pls
+ f ec(r+qux)dxf ec(p+372x)dx.
0 0
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(b) vas(c): Note that

E<L1Jc(r)dW(r)>2
1 11
:EKL J(r)dw(r) —LLJc(p)h(p,q)dW(q)dp>

1 1 r1
x(fo J.(s)dW(s) —LLJC(X)h(x,y)dW(y)dXﬂ

1 1
:fofo E(Je(r)Je(s)dW(r)dW(s))
1 1 1
—2f0 Jofo E(J(r)dW(r)Js(p)h(p,a)dW(q))dp

1,1 1 1
+foj;fofoJc(p)ﬁ(p,r)dW(r)Jc(q)ﬁ(q,s)dW(s)dpdq

Using Lemma 5which follows we have

1 2
E(f ~J°(r)dW(r)—wz(C)>
0
1 1 1 el
:f f e2c(r-s)qdsdr— Zf f f eC(p+q_2X)dXﬁ(p,C|)dqdp
0 -0 o Jo Jo
1rp r ~
—2f f <f e°('_s)h(p’5)d8>e°<P—'>drdp
o Jo \Jo
101 1/ rplg ) )
+ f f f (f ec(p+q—2x>dx> h(g,r)h(p,r)drdpdq
o Jo Jo \Jo
101/ P i o )
+ f f <f ec(ps>h(q,s)ds)(f ec<qr)h(p,r)dl’>dpdq
o Jo \Jo o

1 2
+ <f0 fopec(ps)ﬁ(p,s)dsda — w,(C)2 (A.2)

(c) v1s(c): Note that

1 1
E(fo J2(r)dr — aa(@)(fo Je(r)dW(r) _wz(c)>

1 1
= E(fo JS(r)drfo Jc(r)dW(r)> — w,(C)w,(C)
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1r1
:f f E(32(r)J.(s)dW(s)dr)
0 Yo
- Jo JO fo E(3.(r)3.(s)A(r, 9)Jo( p)dW( p)) dsdr
1rl1 1
- fo fo fo E(J2(r)J:(s)h(s, p)dW( p))dsdr

1 1 1 1
+fofofojoE(Jc(r)Jc(S)ﬁ(r,S)Jc(p)ﬁ(p,q)dW(q))dpdsdr

— w1(C)wy(C).

By simple modifications ofd) and(e) in Lemma 5 which follows we have

1 1
E(f J2(r)dr — w1(0)> (J Jo(r)dW(r) — w2(C)>
0 0
1 r s
= zf f <f ec(r+s—2x)dx> ec(r=9dsdr
o Jo 0
1 rl s rOp )
-2 f f f <f ec(r+p2x)dx> ec(s—p)dph(r,s)dsdr
o Jo Jo 0
1rl ris r
_ 2f J <f ec(r+szx)dx><f ec(rfp)ﬁ(s, p)dp) dsdr
o Jo 0 o
1 1 r s
_ f J <f e2c(r><)dx><J ec(s—p)ﬁ(S7 p)dp) dsdr
o Jo 0 0
1,1 1 ris p
+ f f f (f ec(r+s—2><)dx)<f ec<p‘q)ﬁ(p,q)dq)dpﬁ(r,s)dsdr
o Jo Jo 0 o
1,11 pOs . i ~
+ f f f (f ec(p+52y)dy><f ec““)h(p,q)dq> dph(r,s)dsdr
o Jo Jo 0 o
1,11 pCr s i ~
+ f J f (f ec(p+r2x)dx><J eC(S‘”h(p,q)dq> dph(r,s)dsdr
o Jo Jo 0 o

— w1(C)wy(C). u
LEMMA 5. The following hold

(@

1,1 r1
EfofofoJc(S)Jc(p)dW(r)dW(S)dp

1 1l rpOs 1 rp s
=f f f ec(p*sf2x)dxdsdp+f f (f e°<5”dr> ec(P~9dsdp
o] 0o Yo o] 0 0
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(b)

EfolfolJC(r)JC(s)dW(r)dW(s)

1 r
= J f e2cr=sdsdr
0 0]

(©)

1 1 1 1
EffffJc(p)Jc(q)dW(r)dW(s)
o Y0 Y0 YO
1,1l 1 plq
=f f f <f e°<p+q2x>dx>drdpdq
o Jo0 Yo ]
1 r1 P q
+J f <f ec(ps)ds><f ec(q”dr>dpdq
0o Jo 6] 0]
11/ (P q
+ f f <f ec(p”dr><f ec(qs)ds>dpdq
o0 Yo 0 0

(d)

1 1 1
Efo fo Jo Jo(r)3(s)3o( p) dW( p) dsdlr

1,1 s rOp
= Zf f f <f ec”“’zx)dx) e°s~Pdpdsdr
(0] 0 0 0

(e)

1,112
EffffJc(r)Jc(S)Jc(p)dW(Q)deSdr
0 J0 Jo Yo
1,1l 1 ris P
:f f J <j ec(”szx)dx)(f ec(p‘”dq)dpdsdr
o Jo0 Jo 0 0
1,1 1 pls r
+ f f f (f eC<p+S‘ZY)dy><f e°(r‘q)dq>dpdsdr
o Jo0 Jo 0 0
1rl 1 pLCr s
+ f f f (f ec”’“zx)dx)(f ec(s‘”dq> dpdsdr
o Jo0 Jo 0 0

967



968 HYUNGSIK R. MOON AND PETER C.B. PHILLIPS

Proof.

(a) Note that
1 1 1
E J J dW(r)dW(s)d
fofofo (8)J.(p)dW(r)dW(s)dp

1 1 1 s
=f f f f fpeC(S‘X)eC(F"V)E(dW(x)dW(y)dW(r)dW(s))dp. (A.3)
0] 0o Yo 0 YJo

Then part(a) holds because

1 1 pls
(A3) = f f f ec(Prs=29gxdsdp if x=y(<p) <s=r
0 (0] 0]

1 rp s
= f f <f e°<s')dr> e“P~9dsdp ifx=r<y=s<p
[0] 0] ]

=0 otherwise

(b)

EfoljolJc(r)JC(s)dW(r)dW(s)

_ Jolfoljor f:ec(’*x)ec@*y)E(dW(x)dW(y)dW(r)dW(s))

1 r
= f J e2c(r=sigsdr
(0] 0

because only wher=y <r = s, E(dW(X)dW(y)dW(r)dW(s)) # 0.
(c) Note that

Efolfolf:f:%( P)J.(q)dW(r)dW(s)dgdp

- folfoljolfolfopfoq ec(P=0ef@YE (dW(x)dW(y)dW(r)dW(s))dpdqg

(A.4)
Then part(c) holds because

1,1 1 pCig
(A4 = f J f <f eC(p*qzx)dx> drdpdg if x=y,r=sx#r

o Y0 Jo 0o
11/ b q

= f f <f e°(ps>ds> <f e°<q”dr> dpdq if x=sy=rx#y
0 Jo 0 0
1r1 p q

= f f (f e°“’”dr)<f ec(qs’ds> dpdg if x=r,y=sx#y
0 Yo 0 o]

=0 otherwise
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(d)
1 1 1
Efo fo Jo Je(r)Je(9)3.(p)dAW( p) dsdr

1,1 1 fr s (P
= J f f J f J eC(PX)eC(sfy)GC( p—2)
o Jo Jo Jo Jo Jo

X E(dW(x)dW(y)dW(z)dW( p))dsdr (A.5)

1 rl s rOp
= 2] f J <f eC““’ZX)dx) e®s P dpdsdy
0 Jo o] 0

where the last equality holds because

11l s rOp
(AS) = f J f <f eC(r+P2X)dX> eC(S*P)dpdsdr if z=x < p=y <s
o Jo Jo \Jo
1,1 r sfp
= f f f (J ec(s+p2y)dy> e°<"p)dpdsdr ifz=y<p=x<r
o Jo Jo \Jo

= 0 otherwise

(e) Note that

3| 1 / ' [ ' I " 2.()3.(9)3,(p) AW(c) dpdisdlr

1,1 1 1 1 S [P
= f f J f J f f ecr—x gc(s—y)gct(p—2)
o Jo Jo Yo Jo Jo Jo

X E(dW(x)dW(y)dW(z)dW(q))dpdsdr (A.6)

Then part(e) holds because

1,1l 1 rs P
(A.6) =f f J <f e°"*52">dx><f eC”"”dq) dpdsdr
o J0 Yo 0 0

ifx=y#z=q

1,1 1 pls r
:f f f (f ec(p+5‘zy>dy><f e°("q)dq> dpdsdr
0 0 (0] 0 0

ifx=q#z=y

11 r1 pOr s
:f f f (J e°<p“2x)dx><f ec‘sq)dq> dpdsdr
0 0 (0] 0 o]

ifx=z#q=y

=0 otherwise |
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APPENDIX B

Background of joint convergence theoryThe primary object of this paper is to de-
velop asymptotic theories of inference for localizing coefficients in panel data models
In many applications of large andT panel regression modelwe are interested in the
limit behavior of double indexed quantities suchXas; that are constructed as averages
of i.i.d. random variable¥; 1, that is

l n
Xt =~ ZYi,T, (B.1)
ni=1

where theY; 1 are independent acrossor all T. Typically, we need to find the proba-
bility limit of X, 1 or the limit distribution of scaled quantities such €5X, + when

(n, T — o0). In earlier work the authorgPhillips and Moon 1999 provide a conceptual
framework and rigorous definitions for joint convergence in probability and joint con-
vergence in distribution for double indexed proces3éss section briefly reviews some
concepts and helpful results from that earlier work that will be used frequently for es-
tablishing joint limits in this pape/All of the results given in this section are proved in
Phillips and Moon(1999.

As mentioned in the text of the papdghe sequential probability limit oK, + =
(1/n) XL, Y. 1 is established by letting the indek go to infinity first and then the
second index is passed to infinity lateftUsing existing time series limit theory we
can often easily obtain the limit behavior ¥f+. For examplesuppose that a§ — oo

Yo=Y, (B.2)
or
Yir—p Y, foralli. (B.3)

Then by the independence of; + acrossi for all T, it follows that X, = X, or
Xn1 —p XnasT — oo for all n, whereX, = (1/n) S, Y,.

Also, in the case 0fB.2), it is assumed that th€ are defined on the same probabil-
ity space for alli so that the sum of the limit random variablggn) X", Y; is mean-
ingful. (The assumption that thg are defined on the same probability space can be
justified. For this see Phillips and Moqnl999) By allowing n — oo and applying an
appropriate law of large numbers to

1 n
Xo==2Y, (B.4)
ni=1

with some regularity conditions we may then find the sequential limXpf. Let
1 n
iy = lim = > EY,. (B.5)
n Ni=
Then
12 12
X, = _EYi_)a.s:aX:“mEEEYi
i=1

i=1 n
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S0 as(T,N — )seq
Xn,T _>p /1X~

In general the sequential probability limiix of X, 1 is not the same as the proba-
bility limit of X, 1 under joint divergence of the indicés, T), and in fact, the latter
may not even exist without further conditioribhe following theorem gives a set of
sufficient conditions under which the joint probability limit and sequential probability
limit of X, + are equivalent

THEOREM & Suppose that we he (k X 1) randomuvectors Yt that are indepen
dent across i for all T and integrabléssume that% = Y; as T— oo for all i. Define
X1 = (/ML Y, rand X, = (1/n) 2L, Y.

Suppose the following conditioiig—(iv) hold:

(i) limsup, + (/M S, ENY, 1] < oo,
(i) limsup,(1/N) X ENY;] < oo,
(i) limsup,+(1/n) XL, [EY, + — EY| =0,
(iv) limsup, +(1/m) 2L, E[Y, 1 |1]Y, 1| > ne} = 00e > 0.

If fix = lim,(1/n) S EY, exists and X —, @ix as N— oo, then X, 1 —>p fix as
(n, T — o0).

An interesting special case arises when e are scaled versions of some.d.
random vector®); r. Suppose tha¥; + = C;Q; 1, whereQ 1 are ii.d. across for all T
andC; are(k X k) nonrandom matrices for aill Suppose tha®; + = Q; asT — oo for
alli, so thatY; = C;Q;. In general Y; 1 are heterogeneous acrasmlessC; are same for
all i. The source of the heterogeneity Yy is the scale effect€;.

COROLLARY 7. Suppose that;¥ = C;Q; 1, where Qr are i.i.d. across i for all T
and G are (k X k) nonrandom matrices for all.iAssume that @ are integrable for
all Tand Q1 = Q as T— co. Assume that G lim,(1/n) X", C; exists If (i) Qi 1|
are uniformly integrable in T for all i andii) sup|Ci| < oo, then(1/n) =L, Y, + —p
CE(Q) as(n, T — o).

Remarks. Here we present four useful ways to verify conditiohof Corollary 7,
the uniform integrability of|Q; r| in T. For notational simplicitywe omit the individ-
ual index i.

(a) Suppose tha®r = Q asT — oo. Then uniform integrability of| Q| is equiva-
lent toE||Qr| — E|Q| asT — o (see Billingsley 1968 Theorem 54).

(b) Suppose thaE|Qr|" < oo for some 0< r < co andQr —, Q asT — . Then
the following are equivalenti) | Qr|" are uniformly integrable ifT; (ii) E| Q" —
E|QJ"; and(iii) E|Qr — Q|" — 0. This is the Vitali theorem

(c) Suppose that there exists a sequence of random varidplesch thaUy = | Q|
for all T. Then uniform integrability ofUr implies the uniform integrability of
IQrl.

(d) Suppose tha®; = W, Z+. If [Wr|? and| Z1|? are uniformly integrable if, then
|Qr| are uniformly integrable
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Next we consider the joint convergence in distribution of the-standardized dou-
ble indexed sequencénX, ; given by

\/ﬁXn,T = i

1
N

In many nonstationary panel applicationge find that a standardized sum of the time
series for individuali,; r, can be approximated by a scaled version.oéli random
variables(or vectors, that is

~CQr,

whereC; is a constant an@; 1 is i.i.d. over the cross section with mean zero and finite
variance

The following lemma is helpful in deriving the joint limit distribution of a double
indexed process such agnX,+ = (1/Vn) =, Y, 1+, whenY, + = C;Q; .

THEOREM 8 Suppose that¥ = C;Q; , where the(k X 1) randomvectors Qt
are ii.d. (0,37) across i for all T and Care nonrandom matricesAssume the follow
ing hold

(i) Leto? = Amin(S7) andliminf; o2 > 0,

(i) [maxn[C; ”2/Amin(2in:1Ci C/)] = O(1/n) as n— oo,
(i) |Qi.7|? are uniformly integrable
(iv) lim,+ (/M XL, G2, C/ = > 0.

Then

n

TZ‘ Y.+ =N(0,Q) as(nT— o).

Some preliminary results. This section gives some useful results that will be used
repeatedly in the following subsectians

(@ A particularly useful tool in treating the linear process is the BN decomposi-
tion, which decomposes the linear filter into long-run and transitory elements
Phillips and Solq1992 give details of how this method can be used to derive a
large number of limit resultdnder Assumption Jthe linear process; ; is de-
composed as

=Gl + &1 &p, (B.6)

whereC; = Ci(1), &1 = 2;20Ci j U, andC; ; = 32,1 Ci . Under the sum-
mability condition(c) in Assumption 1

Gl =

HM8

c (B.7)
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and

2 oo 2
Eéfts< JCJ) s( jij> < oo, (B.8)
i=0 i=0

whereb = 1 andC; = sup C; ; (see Phillips and Sojd.992.
(b) LetC = X2,C;. Define

M

E.= 2 Cj|Ui,1—j‘ (B.9)
=)

and

Ei,t = Zéj‘ui,t—j‘7 (B.10)

whereéj = Eﬁ":jﬂ(fk. The two random variables defined (B.9) and(B.10) are
dominating random variables fer ; andg; , respectivelyin the sense thd; =
lei.:] andE = | &_ | for all i andt. By definition, E; , andE; , are ii.d. across
for all t and satisfy

E(Ei,t) = E|Ui,1| E C_J <M
i=0

and
=) . 2

E(E2) = Eu51< Eq) <M (B.11)
j=0

for someM < oo. Throughout this Appendix and elsewhere in the paper we use
M to denote a generic constant
(c) Next, recall that

- _ 10 . -\t
hr(t,s) = DTQ{(? E DTgtg{DT> 0sD+.
t=1
It is easy to see that when= [Tr] ands = [Tp], asT — o

~ 71 ~
hr(t,s) —>Q’(r)<f99’> a(p) = h(r,p)

uniformly in (r, p) € [0,1] X [0,1]. The following limit also holds

sup h.(t,s)— sup h(r,p). (B.12)
1=t,s=T O=r,p=1
(d) Using the BN decomposition af; ;, we can decomposg ; into two terms—a

long-run component of; ; and a transitory componerBy virtue of the defini-
tion of y; ¢,

t  (t-s)

t
[+ = 2C
Vii=2€ ' gstel Yo
s=1
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Using the BN decompositiofB.6) of &; ;, we can decomposg ; as

Vii=CiXi+ Ry, (B.13)
where
(t—9)
XI t = 2 e T ul S
s=1
and
(t—1) t (t—s—1) c t
Ri = e T C"Si,o —&.+>e T Céi,s(l_e?) +eT Cyi,o-
s=1

Next we introduce bounds for the moments of some random variables that will be
frequently used in the following proafén particular

Xizt 1 =Soe r .
El=)==>eT "> f er92ds< M if t=[Tr], (B.14)
T T s=1 0
17 (xﬁ) 17 /1 s 50
— E —_ — — e T
T tzzl T T zl Tgl
1 r 1/2
ef <f e<f3>2°ds) dr < M, (B.15)
0 0
and

sup sup ER%
i 1=t=T
-1
2c
= sup 4le T " supEs?, + SUpE&? + (1— e%T)?
1=t=T i i
t-1-p t—1-s

ot t
X3 Xe T e T “supE(5.5,) +e’ 2 sngyfo}
I I

o 2 2t—2—p—sc
EJQ) +(1—e°”)2< sup e T >

j=0 1=p,s=t

QZC
=4 sup{(e T T4
t t
X ¥ > SUpE(& <& p)|} + 4 sup e/Tze supEy,

1=t=T

1 1
{ sup (e T 4 1)+ T (1—e¥T)2

2t—2—p-s 2
T ¢ t
x| sup e sup —
1=p,st=T 1=t=T T2

T2 2
+ 4 Sup e supa'i,o
i

1=t=T
o) _ 2

- 4( > jC,-> { sup (€% +1) + 02< sup e<2rps>°>}
i=0 0o=r=1 O=p,sr=1

+4 sup e’° sup(r %
O=r=1

<M asT— oo ift=[Tr], (B.16)
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where the first inequality usés + b + ¢ + d)? = 4(a? + b? + ¢? + d?), the second
inequality usegB.8), and the third inequality holds by applying the Cauchy—Schwarz
inequality and(B.8) to |E(&j s&i,p).

The next two lemmas will be useful in proving joint limits

LEMMA 9. Under Assumption& and 2, as(T,n — oo) the following hold

(@ @/n=; 1(1/T2)2t 1Z|t 1 —p Qw4(C)

(b) 1/m)>! 1(1/T)§‘,t 1Zi 1€|t —p A + Qwy(c), where wi(c) = (—1/2c) X
{1+ (1/2c)(1 — €°)} — [ fa e°“+5>(l/2c)(l — e~ 2c0DA(r, s)dsdr, wy(c) =
— 5 J3e"¥°h(r,s)dsdr, and h(r,s) = g(r)' (o 09")*a(s).

Proof. Part (a). Because (1/n)3 (1/T)XL122, = (/ML (1/T?) %
S 1yIt L by (9), we wﬂlestabhsh(l/n)}‘, LL(/THS lyIt l—),, Qw4(C).

Define X1 1 = X, 1 — (U/T)SLix s 1fr(st) andR 11 = R 1 — (1/T) X
Es,lR,,s 1 hs(s t). From the decompositiofB.13), we have

1001 T
= = 2
nlgl-l-zzyl,tl
120 1T 120 1T 101 T
:Hizzl iT_Z: |t1+2 Z 'T_gz(l,tlei,[l EET_E

=1+ 2, +1Il, say

In what follows we show thalt, —, Qw;(c) andll 4 Il ; =, 0 as(n, T — o).
For |, recall that

1 n 1 T
.= 2
2 ,:21 T2 g
DefineQ.r = (1/T?) 3L 1X%_1. Note that{Q; +}; are ii.d. acrossi andQ, + = Q; =
J332,(r)dr. BecauseEQ = wi(c) and lim,(1/n) 3L, C2 = Q, la =, Qws(c) as
(T,n — o)seq Thus to conclude that, —, Qwi(c) as(T,n — oo) it suffices to verify
conditions(i)—(ii) in Corollary 7. Condition(ii) of Corollary 7 clearly holds by Assump-
tion 1(c). For condition(i) of Corollary 7 observe that

17 1T (=2 /18- k2c>~
= > = e (=>eT h(t,s)
TET 21{ <T 22 !

1 r 1 1 ris
- f f e“‘smds—f f gc(r+s) <f e‘2k°dk) A(r,s)drds
[0] 0 0 Yo 0

= w,(c) =EQ asT — co.
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BecauseQ,+ = 0, Q1 = Q;, andEQ 1+ — EQ asT — o are enough to assert that
{Qi,t}7 are uniformly integrable by Theorem4in Billingsley (1968, it follows that
(i) in Corollary 7 is satisfied

Next, we prove that

12 1 T
”a: HE ‘T_Ez(,t—lBi,tflépo
i=1 t=
and
1001 L
HZT—EBft,l—%O asn, T — o

by showing tha€E|ll .|, E|lll ;] — 0 asn,T — co.
First we have

Elll,] =

|
m

1 T
Ci|E‘ T2 2 Xit—1Rit—1
t=1

I\
Sl
-

—

}

T 1 1T T .
2 Xi -1 Ri -1 T_ E E Xi -1 Ri s-1hr(t,8)
t=1s-1

n

1 1 T T
+C sup [h(t, 5)|_EE<T_E Exi,thi,“I).
t=1s-1

1=t,s=T i=1

Observe that

120 1T
— E|l— Xi -1 Ri —
nigl ‘th_zlltlltl
11017 [x,.,
=—>3 3 E=R
Tnz‘ngl Nai
11"1T/ "L (1)
=—=3=3 E|==| EIR. ,?=0(—=,
TniZ‘lTZ‘ NT IRl \NT

where the equality holds because sup =7 E|R; ;—1|2 = O(1) by (B.16) and the
Xi,1—1 are ii.d. across with (1/T)3, VE|(X —1/VT)|2 = O(1) by (B.15).
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Next
1.n 1 17T
" E E<_3 E 2 |Xi,t—1||Ri,s—1|>
Ni=1 T° =i
11 1 L 1T
= - - 2E(zm 22Xl )| 7 IR-_|>
Tn|:21 (T T[:El |,t1><-|-521 i,s—1

T
Because sup=7|hr(st)| = O(1), we conclude tha€|ll,| = O(1/NT) — 0 as
T — oo.

Similarly, Ill ; =, 0 as(n, T — o) because&|lll ;| — 0 as(n, T — co) in ll,, and we
have all the required results to complete the proof of part

Part (b). From (9) we know that(1/m) 3 (U/T)S 1z 18 = (I/M)S, X
(1/T)S{1 Vi 18 By definition,

10170
E;?z~i,t—lsi,t
1017 101 32 -
= 521; zlyi,t—lsi,t ThET Elgl)ﬁ,t—lsi,shT(t,S).
i= t= i= t=1s=

To complete the proof we shom/n)2{‘:1(1/T)21T:1yi’t,lei,t —p A and (1/n) X
?:1(1/T2>E;r:12l:1 Vi -18i, shir(t,8) =p —Qw,(c) as(n, T — o).
Recall thaty; ; = ay; (1 + &;.1, Wherea = e“T. Note that by squaring; ; = ay; —1 +
&i,¢ and averaging overandi we have

1017
a— 2, = 2 VYit18i
néTZ‘l B
121 1 17 121
=2 = TV —v2)— (a2 —1) — = 2 = - 2
2ni:1T(y"T1 yI,O) ( )ZniZZnglyu,tl 2ni§1Tt:218“

=a%l,—ll,— ill,, say
Modifying the arguments in the proof of pai) by substitutinghy(t,s) = 0, we have

(1/2n) 31 (1/T2) S y2 1 —p 30 J5 [oe9%ds as (n, T — o). Also, it follows
thatT(a? — 1) — 2c asT — oo. Combining these two resulta/e have

1017 T
I, =T(@*—1) on 21 T2 213’&—1 ~p Cﬂfo fo el %ds (B.17)
i= {=

as(n,T — o).
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Next, we show using Theorem 6that as(n, T — o)

1017 1 n 1
Ny=—>3 = Zlim Q,=-0-A. B.18
" 2n ng RGP 20, 2 (B.18)

Define Y, r = (1/T)EL1.9§t andY; = Eg?, = Q... Then by the ergodic theoreymas
T—> o

—HH

.
Z Yi7

sq for fixed n, (1/MXL; Y+ —p /MY, asT — oo Also (I/MIL,Y; —
lim,(/n)>L,Q, = Q@ — 2A asn — oo. Thus according to Theorem ,6veri-
fying conditions(i)—(iv) is enough to ensure th&B.18) holds under joint limits as
(n,T — o). Conditions(ii) and (iii) clearly hold by the preceding argumen@ondi-
tion (i) holds because

n

1
Esft =lim - >0, =0-2A
n

1
lim sup= 2 ElY, +| = lim su

n,T ni:

1
TN

HM—q

1
T ;

2
For condition(iv), note by the definition of; ; in (B.9) that

1 T
0=Y r=Yi+l= ? E
Because the sequen&g, is strictly stationary and ergodic infor all i, /TS, %
EZ —p E(E?) by the ergodic theoreniThen by Vitali's theorem(see Remarkb)
following Corollary 7, (/T)>, EZ are uniformly integrable iff. Hence for given
e >0,

l n
lim sup= > E[Y, +[{[Y,r| > ne}
nT Ni=1

17 17
=lim supE(_I—_ > Eﬁ){‘? > EZ
t=1 t=1

nT

> na} =0,

and we have verified conditiotiv).
Finally, considerly,. Because it holds thatl/2n) 3, (1/T)E(y%) = (1/2T) X
supo% — 0 as (n,T — o) by Assumption 1d), we consider only(1/2n) X
(/TP

anzl-l-)’n' 1
12 1
:2_2 |'r1+ ZC XiraRir1+ 5 ZTRlTl
i= i=1
= lpy + lpp + lps, SaAY (B.19)

where the second equality holds by the decompositia3) of y; 1.
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We now employ the principle used in the proof of péat Write Q + = (1/T)x?r_,
andQ; = JZ,(1). Then

12 120
b1 = % i:zlcizQi,T = % i:ZlcizQi

asT — oo for fixed n. Because sy, = C < oo andQ; have finite second moments
(note thatl, ; (r) is a Gaussian procesdy the strong law of large numbers for indepen-
dent nonidentically distributed random variab)ege have

— 2 1' _E (i 2c _ )
2n|§:1c Q %pZQE(Qi)* ZQ 2C(e 1 ).

Thus as(T,n — o0)seq

We now verify conditiong(i) and (i) of Corollary 7 to obtain the joint probability
limit of Ip;. First, condition(ii) clearly holds by Assumption(g). For condition(i), note
by (B.14) that asT — o

1 1
EQ+=E T X1 1> fo e’ 9cds=EJ. (1) = EQ.

Clearly the Q; 1 are positive It follows therefore from the preceding discussion and
Theorem % of Billingsley (1968 that theQ; 1 are uniformly integrableCombining
this with the fact thag® — 1, asn, T — oo, finally we have

1 1 1 1
a%ly —p > Qfo e2(1-scqg = > Q P (e**—1)). (B.20)

By similar arguments to those used in the discussion of tiégrm part(a), we can
show that a$, T — o«

Ib2s b3 —p 0.

Now, in view of (B.17), (B.18), and(B.20), we have a®, T — o

Sk
Ms
M-

1
1?1 Yit—18it

1

91(20 1)-Q Lo 11 1Q+A A
—(e**-1)-Q(—e*-——-——- |- =A.
G 4Ac 4c 4c 2 2

Because agn, T — o) we have

Sk
M>s
Sk

M-

s

1
iz T ¢

M-

1
= 2 Yit-18i T Vi t-18i.t —p 0,
1T ¢

1 1
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it follows that as(n, T — o)

S

HM:

1 T
? ; t-18it “p A.

Next we prove that(1/n) S, (1/T2) S 31y 18shr(t,s) —p Quwa(c) as
(T,n > o). Using the decomposition of ;1 in (B.13) and the BN decomposition e&f ;
and noticing thatE|(1/n) 2, v o(1/T2) 21 & shr (0,5)| = (1/T)(supyo%Q,) X
(SUp=s=7 N7 (0,5)) = O(1/T),

1 n 1 T T
_2_222y|t 18|shT(tS)
noaT s
1.0 1 T T
:_ECF—gEEXit 1U,Sh-|—(tS)
no T s
1N 1 T T
+ _ECI _22 Exi,t 1(8|s 17 & s)hT(t S)
n= T Sa
1N 1 T T
+_ECI_222R|'[ lulshT(tS)
N TS
1" 1 T T
+ _2 _22 2 Rit 1(§i,571 & hs (1 S)+Op(l)
nNoaT =

= lpp+ Ny + Uy + 1V, say

We show that aST, n— OO), lob —p sz(C) andll bbs 1 bb, Voo —p 0.
Note that

1
Elbb 2 CZ E E E(XI t— 1u| s)hT(t S)

tZsl

1N 1 T t—1 :50~
( 2C>§22e(T)hT(t,s)

1 r
- Qf f e"9°A(r, s)dsdr= Qw,(c) as(T,n— co).
0o Jo
Thus for lp, =, Qw,(c) as(T,n — o) it remains to show that
1
T2

1T .
lop — Elpp = E C2<T_2 > 2 Xl she(ts) —
i=1 t=2s=1

—,0 as(T,n— o).

2 [i e<t%s)cﬁT(ty S))

Define

1 T T B 1 T t=1 (I;S)C -
Qr= T2 > 2 XU shr(ts) — 12 222 e T/ he(ts).
i1 t=2s=1

t=2
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Then asT — o

1 T T B 1 T t—1 t—s co
Q= <_ E Xi i—1U shr(t,s) — T_2 22 Zle< i ) hT(t,S)>

th:25:1
1 1 B t (t;s>c~
:f {f Jc,i(t)h(t,s)dW(s)—fe T h(t,s)ds}dtzQi, say

0] 0 0]

For fixedn, asT — oo

12 12

_ECiZQiTﬁ_ECiZQi'

ni=; ’ ni=

Note that

1 t t
EQ=EJ0 U Jo: (DR, $)dW(s) — J T h(t,s)ds}dt

+ f:{f E(J. (DR, s)dW(s))}dt - 0.

Because sypC? = C? < oo, and the second moments ©f are finite(Q; is a stochastic
integral of a Gaussian process with respect to a standard Brownian mdtyotne weak
law of large numbersasn — oo we have

12 1.2
= >, C2Q —,lim = > C?EQ =0,
Ni=1 n Ni=y
and sg9as(T,N — 0)seq

‘EC Qir—p0.

ni=1

Now, verifying conditions(i) and (ii) in Corollary 7 is enough to conclude thiat-
El = (1/n) 2{L, C2Q;. 1 —p 0 as(n, T — o0). Condition(ii) holds by the assumption that
sup C? = C? < . To verify condition(i), note that

iz (%S)CHT(L s)|.

MMT

T T B 1 T
2 2 Xi,t—lui,sh‘r(t, s)| + T_ 2
t=2s-1 =

Q.rl =

t=s
Because the nonstochastic tefifl/T2)3 , >4 1e( )e h.(t,s)] = O(1), for the
uniform integrability of the |Q.r| it is enough to prove that(1/T?)3. , X
E;lxi,t_lui,sﬁT(t, s)| are uniformly integrablewhich holds by Remarkd) following
Corollary 7 if |(1/TNT)Z,X -1 Dr /2 and [(1/NT) S, u; By gsf? are uni-
formly integrable Because

2
asT — o

H VT 2 2 X, t— 1DTgt = H ch,i(r)G(r)dr
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and
1 2
EHﬁ > %1010,
t=2
1T
_tr<-|__3E E EXH 1%, s—lDTgtgsDT>
t=25=2
1 T T (-1 (ths—2-q) )
:tr<F22 e< ! )CDTgtggDT>
t=2s=2 g=1
1 1 (rds)
%tl‘(f ff e(’*sq)cg(r)g(s)’dqudr>
o J0 Yo

= tr(ﬂEJc,i(r)Jc,i(S)G(r)G(S)’dsdr>,

it follows that|1/(TVT) =, .1 D1 G2 are uniformly integrable if. Similarly we
can verify thatH(l/\/T)E;lui,sf)T g41? are uniformly integrableSo condition(i) is
satisfied

Next we show
1.2 1 5T .
Npp = 2 G T_ > 21 Xi t—1(&i s—1 — & s)Nr(t,8) =, 0.

ni=1

Write
120 1T -
Npp = _ECI _ZZXi,t—léi,lhT(t,l) ZC let 18|Th (t,T)
n= T ni=y
1" 1 T _ -1 T-1 _
+ - 2 p— 2 G Xi,tlgt'DT( 2 Dr 6, o DT) E Dr(Gs+1— 05) i s
n=T = t=T s=1

=y T ppo + 1l pg,  SAY

For ll,, —p 0 as(T, n — o), we show thaE|llp,| — 0 as(T,n — oo) for all i = 1,2,3.
First, E|ll yp2| — 0 as(T,n — oo) because

E|Ilbb2|slil[J<pTﬁT(t,T)E< gn‘, iz:i X 1§i’T|>
n 1%
S m ]
= sup fir(tT) - E( \/—_ %é Xi/‘%l >2Eéi,T|2>
17 0x 2 1
= li?EThT(t T)CT\/ (?; :/‘%1 ) E|E .| _O<ﬁ>’
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where the third inequality uses Cauchy—Schwére fourth inequality holds by the def-
initions of C and E,T, and the equality holds b{B.12) with s = T andq = 1, (B.15)
and(B.11).

By similar arguments to those given earjiete can also show that

E[llgp| >0 asn, T — oco.

For Il pns, Observe that

1 n 1 T T -1 T-1
“Ibb3|: -E—ZC. X t— lgt<2 gtgt,> Z(gs+l_gs)éi,s
N T t=1 s=1
1 n 1 T T-1
= sup fr(t,s) = 2 G T2 2 > [Xi 18 tls
1=t,s=T =1 t=2s=1

wherefr(t,s) = ¢/D7((1/T) 2, Dr 6 6/ D5) *TDr(Gss1 — Gs). Thenllps —;, 0 as

(T,n — o) because
2 1 — 2
[J(5e)

- f(ts)C—— \/( > ( j|E 2)—o<i
= s kL9 = [E(T 3 S8 )=o)

To show thatll —, 0 as(T n — o), it is enough to show th|lll | — 0as(T,n—
o). Write Gr = ((1/T) 31, D1 6,6/ D)~ By the definitions offir(t,s), C = sup|Gil,
and by the triangle inequalityve have

A

—| |

1=t,s=T

E||| | f~ (t )C—\/E<—l ET X,
= Ssup S
bb3 T (—T thz

|11

—|||—\

T
- 2 2 E Ri,tflui,sﬁT(ty S)

i=1 T t=2s=1

1 n
E[Hl | = E’EEQ

10 1 /X - - L
=E|-XC _2<E Ri,tlDTg{> GT<2 DTgsui,s>
n= T°\i= s=1
1 n 1 T T
SC—EE—2<ER” 1DTgt>GT<Z |s>
niZ | T2 \= =1

n

1 1
—CHGT“_E _EH Eth lDTgt

i=1

’

‘\/—EDTGS.S

where the last inequality uses Cauchy—Schwarz and the ineqaBy= |A||B]. Again,
by Cauchy—Schwarzhe last term in the preceding expression is less than

2
CGT_Z\/ HT ;ZZRI[ :LDTgt 2 DTgs i,s
2
|GT”\/SUPE Eth 1DTgt EDTQS |s (821)
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Note that

2 l T 2
= sup | DTgtzsupE<; > IRi,uI)
t=2

1=t=T

17 -
SUpEH T E R -1D1 G
i t=2

IN

sup | Dy g1 supsupER?,

1=t=T i t=T

=0(1) asT - oo, (B.22)

where the last equality holds i{8.16) and sup==1| D1 g% = O(1). Also it is easily
seen that

2 1J . _
H T & Z Droslis| = tr<-|_- > DTgsgéDT> =0(1) asT— co. (B.23)
s=1

In view of (B.21)—(B.23) it follows that E|lll,,] = O(1/N/T), and so we have the re-
quired resultThe proof ofIVy, =, 0 as(T,n — o) is analogous to that df ,ps. u

LEMMA 10. Let A = (1/n)3L, A, and Q = (1/n) 3L, O, whereA; and §; are
defined in(20) and (21), respectiely. Suppose that Assumptiods-4 hold. Then as
nT—=o0A—=,AandQ —, Q.

Proof of Lemma 10. In this proof we show only that —p A as(T,n — o). Then
by the same principle as that used in the proofAof>, A, we find that() —, Q as

(T n — oo) holds by a simple change of the summation of the lag window @Tnl to
Define

i Ais (B.24)

T 1T
:Z <_>?28|t8|t+1’ A,

Before we start the proof of Lemma 10 we introduce the following useful lemma

LEMMA 11. Suppose the assumptions in Lemfrtahold. Then as (n,T — o),

Ag e —p A

Proof of Lemma 11. We show that ag$n, T — o0)

. 1 n 2
E<Am -=> Ai> =0. (B.25)
ni=1

Then becausd1/n) X ; A; — A it follows Ag = —p A. Observe that

R 1. 2 1"
E<AE,£__2Ai> HZ ,S_Ai)z

i=1

= supvar(A; , ) + sup{bias(A; , .)}2
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Let Ti(j) = E(ei,&i,t+j) and cum(0,k,1,m) denote the fourth order cumulant of
(&i,ts &i, t+ks €, t+1, &, t+m)- We know by Assumption 1 that

supli(j) =T(j) = X CCpy
i k=0

and

Suplcum O,kl,m|=|o,— 3| E Cj cj+kc_:j+l Cirm
1

Also, from the summability conditioiic) in Assumption 1it follows that if g = b where
b is given in condition(c) in Assumption 1then

() =22 CCui =2 G X (j+KkIC; <o (B.26)
j=o0 =0~ k=0 k=0 j=0

and

SUPE > > caumOklm=|o,—3[X > > > CCikCiiCum

k=01=0m=0 k=01=0m=0j=0

oo 4
504—3|<E(§j> < co.

j=0

Choosingq as in the condition of the lemma and following the same lines of proof as
that in Theorems 9 and 10 of Hannék®70, we have ad — oo
T R
i supvar(A, . ;) = O(),
K9 supbias(A, , ,) = O(1), (B.27)
i
which leads to

. 10\ K
E<AM—HZAi> =o<?>—>o asn, T — co. (B.28)
i=1

Now, we start the proof of Lemma 1Qet
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Also, let

then in view of Lemma 11 we have the required resultamely
A—opA= I|m EA as(T,n — o).

Notice by the triangle inequality that

R R T-1 J 1 n 1T*j
‘AfAs,e‘_ 21 (E)H%?t 1(8|l8|t+1 8|t8|l+1)
j= i= =
T-1 ; noq T
J)l 1.
= wl—|=2> =2 (& & ¢)&€

T-1 ; noq T
V141 .
_ W<E> H 2 ? i (& 1) — & eaj) |- (B.29)

By the Cauchy—Schwarz inequality the first term(B.29) is less than

1 Tl 1201
\/ EE(SM Si,t)z\/az?Eéiz,t

le Niz1t=1

K?2 1K 1 101 "

where the equality holds becaus# j/K) vanishesby assumptionif j > K. First, we
have

EIE:“E:L(EM ai,t)z
1 n T 2
HEE[(a a)zlt l+ zsl shT(t S):|
1 n 1 T 2 n T
SERCEEEED P TS DY 5 P )
NS T 3™ NiZii=1 s=1
=2l +2ll, say (B.30)

It follows by Lemma a) that(1/n) 3 ,(1/T2) S 1281 = 0p(1) asn, T — o. Also,
from Lemma 9it is not difficult to see thalf 2(a — a)2 = Op(1) asn, T — co. In con-
sequencel = Opy(1) asn, T — co. Note that
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T 2
2 8i,sﬁT(ts S)> :|

Sl
Ms

—|
1]

=1

E||||—E[

i

sup fr(t,s) sup Rr(tp) = i ) (1—@>n<h><oo,

1=t s=T 1=t,p=T i=1h=-T+1

2

>

t=1s

Sk

HM:
N
M=

Z si,sei,p I:]T(tr S) F]T(tr p):|

i=1 1p=1

I\

where the last inequality holds k. 26), which implies thatl = O,(1) as(T,n — o).
Hence (/N3 S (& — & 0)? p(1) as(T n — o).
Also, in a similar Way(l/n)Z 1(1/T)§‘,t 182 = Op(1) as(T,n — o) because

1017
- =3 g2
néné ‘
3 n 1 T ) ) ) n 1 T )
=-> - Y& teT?(a-a) ‘2_32%,1—1
n=T < T
3 n 1 T 1 T B 2
+ - = = g he(t,s)| =0,(1)
Finally,

K21 K/
?EEW E —0 asT — oo, (B.31)
j=1

where the convergence holds beca(i€é/T) — 0 and(l/K)ZjK:lw(j/K) - folw(x).
Hence the first term in(B.29) is 0,(1), and the second term iB.29) is alsoo,(1). We
now have all the desired results u

APPENDIX C JOINT CONSISTENCY
THEOREM 12 Under Assumption&—4
¢" —,F(c)
as(T,n — o).
Proof. The theorem holds by Lemmas 9 and 10 u

THEOREM 13 Suppose that the assumptions in Theofehhold. Also assume that
w(c) #0. Then as(T,n — c0),

¢ >, c
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Proof. Recall that

SN [1— (1 - EH e<Tt$)°ﬁT(t,s)}-

T T

Then the consistencg™ —, c as(n,T) — oo is straightforward in view of the fact
thatc —, cas(n, T — o), rr = T3(exp(c/T) — (L + (¢/T))) = O(1), and Lemmas 9
and 10 |

APPENDIX D: JOINT WEAK CONVERGENCE

To establish asymptotic normality @¢f* and ¢** under joint convergenceve need a
stronger assumption on the bandwidth parameter used for the estimation of the long-run
variance

Assumption 5 (Bandwidth Condition’). As (n,T — o0), the bandwidth parameter
satisfiesk — co, (NK%/T) — 0, and (nK24*YT) — » > 0 for somes < q = b for
which wy is finite, whereb is given in condition(c) in Assumption 1

THEOREM 14 Suppose that Assumptiods-3 and 5 hold. Also assume that =
F~1(¢™) is consistent for cdF~1(c)/dc is well definedand w(c) # 0. Then as
(n, T — o0) with (n/T) = 0,

‘DVC*+(C)>

Vn(étt—c) = N<0, o (0)?

where \++(c) and w(c) are defined in(34) and (27), respectiely.

Proof. To establish the joint limit distribution of** it is enough to show that

= N(O,®V,++(c)) as(T,n— o).
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Notice that

R LS —22[ (120l

t=1s=1

(3-%7)e S
xe'T TVhe(t,s) +1p = T3 E ~Zi2,tf1
t=1

1 n 1 T 1 T t t s B
S DI EETRTES =S5 Ly e
nNiZ (T TaS
12 1 T
+ _2 T3 22z

As discussed in Section.3 by the mean value theorenthe third term of(D.1)
equals to

<1i )( ii(———)(e(ﬂs)* e(””)ﬁT(t,s))mc—c),

ni=1

wherec* is located between and¢. Notice thatc* —, c as(n, T — o) becaus& —, ¢
as(n, T — o). Also, it is possible to show that/n(¢ — c¢) is stochastically bounded by
applying Theorem 15wvhich follows and the delta method in joint limit &9, T — o).
Therefore the third term in(D.1) is 0,(1) in joint limit as (n, T — o).

The remaining proof consists of the following two steps

Step 1

=}
-

1 T 1 rr B
{? > V18— A+ Qif f e(’S)Ch(r,s)dsdr} = N(0, dV,++(C))
[0] (0]

as(T,n — o).

Step 2
n 1 T . . 1 T t (L §> T
_2{?Egi,t—1§i,t_/\i +Qi?2 el T hT(t S)+rr— T3 EZiz,t—l}
h t=1

1 N 1T 1 rr
- — — ) = A+ O (r=s)ch
NG iZ{T 2 Yit-18it i .J; jo e (r,s)dsdr}

=0,(1) as(T,n— o).
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To establish step,dt is enough to show that 83, n — o)

1 .
Ill:ﬁ;(Ai —Aj) =0,(1)

1 n R 1 T t B 1 r B
I,: NG %{Q, = > > el 9%h(t,s) — Qifo fo e“3>°h(r,s)dsdr} =0,(1)

12 12
”3:\/—er-|-322|[ 1_Op(1)

wherer+ = T?(exp(c/T) — (1 + (c/T))). First, I, holds because

1 no nK2

by (B.28), (B.31) and the condition in Assumption 5 thétK?/T) — 0. In the same
fashion it holds also that

n nKZ
Write
120 . 1t ¢ -
= (520 -0)(F 5 e i)
Ni=1 T S1is1
1 n 1 T t
+ (H 29i>\/ﬁ<; > 2 e 9°h(t,5) — f f e °n(r, s)dsdr> (D.4)
i=1 t=1s=1
From
t\k 1
sup sup =] —r¥==0(1) fork=1,...,p,
1=t=T (t—1)/T=r=t/T T T

we can show that

T t 1 r 1
> Z er9°%h,(t,s) :f f er=9°h(r, s)dsdr+ O<?>
=1 0 0

1
T&s

Thus we havell; = 0,(1)O(1) + O(1)O(Vn/T) = 0,(1). Finally, I3 holds because

1o 17 Voo (13810 Vn
_E M3 22 1= JfT(HiEl?;lZiz,t—l) :op<?n> = 0p(1).
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We now show step.IRecallw,(c) = —[3 [ €~9°h(r,s)dsdr Using the decompo-
sitions(B.6) and(B.13), we write

1 n 1 T
T ; (? glyi,t—l§i,t — A = wz(C)>
1 0/17 \n
=ﬁlzl<?t2y —Ai—inz(C)>+?Op(l)

12 17
= ﬁz‘i (?2 |l 1u|t w2(c)>
n 1 T 1 n 1 T
Z(;Z &2 — Q,, )Jrﬂi_ElQi(;t_Zz(uftl))
\/—
+ _n IEl(rluT roit) + ?nop(l)y

wherery;r = a%(1/T)2C R 1x.1 + R*) — T(a2 — 1)(1/T) S ,(2C %, (1 ¥
Ri,t—l + Riz,t—l),

1
T2

o1 = {R—1hr (69U s+ R 1 (4,9)(8 51— & o)

uM—c

22
+ CiXi -1 hr(t,9)(& 51 — & 9}

The first line holds becaus&|(1/Vn) XL, (1/T)yiogi1l = (\/—/T)O (1), and the
second line holds becaus¢éa — 1)(1/vn)>M,(/T)SL 1Yi-18i  (1/n) X
2|—1(y|,0/T) = (\/_/T)O (D).

In view of Iy, lpa, lpp, by, @nd1Vyy in the proof of Lemma &), it follows that

12 n
ﬁ Z(rl,i,T +roir) = \/;Op(l) =0,(D).

Next, (1/Vn) S, 0 (1/T) (U2, — 1)) because

1 n 1 T ) 2
E<% i;Qi (? tz}:z(ui,t_ 1)>>

“(R2er)elr 2]

Il
47
N
=
/
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Also, (1/VN) 3L, (1/T)Sa(e2 — Q) —p 0 because

1

T i=1lh=-T+2

110 =2 /[T—1h|
=132 5 (

T niTin="T42 T

12 1T
T 2 <? ; Xi t—1Ui, ¢ — wz(C)>
1 20 17 n
= _n ;Qi <? ; Xit—a1Yi ¢ — w2T(C)> - ( Z >\/_(sz(0) w,(C)),
where

1 T
wyr(C) = E<? E Xi, t—14i, t>
t=2

l T T
E(Xi —1Ui () — = Z E E(Xi,t—lui,s)ﬁT(t,S)

2
t=2 T t=2s=1

Il
—| =
MA

f>cE(Ui,pui,s)ﬁT(t, s)

T >CﬁT(t9 p)'
From sup=i=r SURt—1)/1=r=t/7|(t/T)* = r¥| = (1/T)O(1) for k =1,..., p and

t/T 1
sup sup  |eYT—e'| = =0(),
1=t=T (t—1)/T=r=t/T T
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we can showw,r(€c) = wy(c) + O(1/T). Thus because it is assumed that
(1/M L0 — Q and (n/T) — 0, we have((1/n) 2L, Q) Vn(w,r(C) — wa(c)) =
O()O(Wn/T) = 0o().

To finish the proof of step,lit remains to show that

120 10
—=>0 <_ > Xi -1t sz(C)> = N(0, PV,++(C)).
Let
1 T 2
Vi e++(C) = E(? Z X tlyi,t> — wor(C)
t=2
1 T 2 1 T 1 T T
:E<_EXI t—1u|t) 2E<_EXII 1u|t_22 i,t 1U|Sh-|—(t S))
T = T= T2 5 &
1 T T 2
+ E<T_2 t:zzs:].E( it lul s)h (t S)) _(1)21—(0)
Because

T CE(u Ui Ui qU; s)

(325w ~HEESSe

1T TT y
El = 2 Xi t-1Ui ¢ =5 2 2 Xi -1 shr(t,s)
T= T 5

i e<t 'T' p>ce<57i7q)cE(u Ui, ¢ Ui U, W)hT(SW)

(ths)—1 t+57272p>

CFIT (t7 S)

- A3 ES LTI i ap o 2),

E<i2 2 2 E(Xi,llui,s)ﬁT(t:s)>

T s—1 T <t717p> (sflfq)
2 2 e T °e T )¢
=1lw=1

s=2q

17T
>
1r=1

X E(ui,pui,r ui,qui,w) F]T(ty r)ﬁT(S,W)
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T >CﬁT(t»r)ﬁT(s7r)

T s—1 t—1-p s—1—q
> e< i )e< i )cﬁT(t,p)ﬁT(&q)

35 LT TR s + °<Tl>

we have
Vi e+ (C)
1 T t-1 t—=1-p 1 T T (t0s)—1 (t+s—2—2p
LSS T s s ST s
T t=2p=1 T t=2s=2 p=1
1 T s—1t—1 t—1-p s—1-t .
2522 ol )l )ChT(p,S)
T s=3t=2p=1
1 T T (s-1 T <t+s—2—2p>C~ 3
+;EE > et T hr(t,r)he(sr)
t=2s=2 p=1 r=1
1 T t—-1 T s-1 t—1-p s—1—q B 1
+_42 2 e< T )Ce< T )ChT(t,q)hT(s,p)+o<_>- (D.5)
T t=2p=1s=29g=1 T

Now employ Theorem 8Write Q; 1+ = (1/T)EtT:12<i,t_1yi,t — wor(C). The Q; 1 are
i.i.d. with mean zero and varianeg. Also, we know that

Qr=Q= J.‘Jc,i(r)dw(r) — wp(C),

and it is not difficult to verify that
E(Qi,T)2 =V ¢++(C) = Ver+(C) = E(Q)2

From supQ? < oo, the convergence o .++(c) — Vg+(c), and 1/, 0% - @,
we verify conditions(i), (ii), and(iv) of Theorem 8Also, condition iii ) is satisfied by
applying Remark(@) following Corollary 7 (see also Billingsley1968 Theorem 54)
with Q% = Q? (by the continuous mapping theoremnd E(Q; )2 — E(Q)% Thus
by Theorem 8(1/NN) 2L, ©;(1/T)S{1 X -1l ¢ — w2r(c)) = N(O,®V,++(c)), and
we have all the required results u

THEOREM 15 Suppose Assumptioris-3 and 5 hold. Then as (n,T — oo) with
(n/T) =0,

An(e* — F(c)) = N(O, dV,q+(c)),
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where
—w,(C)
_ —w,(C) 1 wy(c)?
Ver (€} = < wy(c)? w1(6)>v(c) 1

w,(c)
and V(c) is defined in the préious section

Proof. The proof is entirely analogous to that of Theorem W simply sketch the
proof here To establish the joint limit distribution od* it is enough to show thaA.1)

holds under joint limits agn, T — o). The idea of the proof is similar to that of Theo-
rem 14

First, by definition

AnT_<}iQi

’ nisy

\/_ n
>

)wl(c)
n
1
Bn,T - (E _Zlﬂi ) ,(C)

T . (D.6)
Z Zi t—18it — Ai = wz(C))

By applying similar arguments to those in the proof of Theorem 14 we can show that
the main component for the joint asymptotic normality(B£6) is the following

1 1 )
_I’l E O ﬁ E X1 — w4(C)
=1 t=1
1 - 17T
_n E O <-|_- Z X t—1Ui ¢ — w2(0)>
i=1 t=1
1 - 17 1T
N I:Zlﬂ. <T—2 t:zlz(i%tfl - E(; t_le.ztl»
- 1 X 170 17
= 2 O ? 2 X t—1Ui ¢ — E(? 2 Xi,tl%,t))
i t=1

Sl
1Y
=
PN
m
PR
—|
M-
x
T
=
c
<
|
e
N
N
(9]
<
N—————
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In much the same fashion as for step 2 in the proof of Theorenw&3an show that
Ilg = 0 as(T,n — o). Thus to complete the proof it remains to show tHat=
N(0, ®V;+(c)), for which we use Theorem.&onditions(a) and (b) are obviousAlso,
after some tedious algebra similar to the derivatiof®6) in the proof of Theorem 14
we can show that

E(lgld) — ®Ve+ (o),

which is enough by Remarta) following Corollary 7 to assert that conditiorii ) and
(iv) are satisfied [ |

Proof of the Joint Weak Convergence ofts;. For the joint limit of tg to N(0,1),
in view of the joint asymptotic normality in Theorem 14 is enough to show that as
(T,n — o0)

D -, d,

that is

120 .

" i:El(Qiz —07) = 0,(D).

Note that

DlH

_Z(ﬂ Q) (& — Q)‘<—2(Q Q)2+23uqn|(

We know sup| (| is finite, and so to show(1/n) 31, (02 — Q2) = 0,(1), it is enough
to show that(1/\n) =, — @] = 0p(1).

Let fli,” be a kernel estimator fa®; using the unknown errors; ;, defined in an
analogous way t¢B.24). By the triangle inequality

1
\/_

By Cauchy—Schwarzave have

n n
|Q|_QI|S_E‘QI_ Iss Z

HM:

12 N i N 0 N
72 Bl -0 = \/Z (El0 . —h2= |3 E@,. — )2
i=1 i=1

The square of the last term is less than

N N N nK
NSUPE((Y; ., — &) = nsupvar(®; ) + nsupbias((; .,)]* = = O(1), (D.7)



ROOTS NEAR UNITY USING PANEL DATA 997

where the last equality holds HB.27), and so(1/vn) ;[ Q; .. — Qi = 0,(2).
Next, by the triangle inequality again

P
o
o
x
|
o
o
x
=

T
10 T 1
+ —= 2 W(E)’? ESi,t(éi,tH — & t+j) > (D.8)
i 1 t

where the summations ovesatisfy 1=t,t + j = T. Then following the same lines as
in the argument following(B.29) with a change of summation in the lag kernel to
S k. we are led to

_ [nKZ1 & j 3
(D.8) = TK j_z_:KW(E>Op(1) = 0,(1).

This, together with(1/~m) L[ — O .|, (V) ZL1 [ .. — Qif = 0(1), gives
us (1/Vn) 2L, — O] = 0p(1). u



