Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.

- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.

- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Occurrence and characterisation of enterococci
in terrestrial and aquatic environments

Sally Ann Anderson

Molecular Genetics and Microbiology Research Group
School of Biological Sciences

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy
University of Auckland
December 1999
Abstract

The use of enterococci as a microbiological indicator of water quality requires an understanding of the sources, persistence, and ecology of this group of bacteria in the environment. This research describes a series of investigations undertaken to describe the abundance, occurrence, and diversity of enterococci from aquatic and terrestrial environments.

A screening protocol for environmentally sourced enterococci was developed to describe species and sub-species variability. This protocol combined classical microbiological methods of selective culture and biochemical characterisation, with molecular techniques including gene probe screening for identity and RAPD-PCR for genotypic diversity.

Preliminary studies on the occurrence of enterococci in terrestrial and aquatic environments suggested that these organisms are ubiquitous. However, abundance varied between individual samples taken from terrestrial (e.g. leaf litter, sand, seaweed, animal faeces) or aquatic (marine or freshwater) environments, complicating the ability to predict the enterococci load from these sources.

Enumeration of enterococci from bathing beach environments indicated occasionally high levels from seaweed and sand, where levels of up to 660 CFU/100 g (wet weight) were recorded from aged and degrading seaweed but not from fresh seaweed samples. Restriction enzyme analysis (REA) of isolates from degraded seaweed indicated a dominance of clonal populations and supported the notion of replication or survival of strains.

Laboratory studies conducted to investigate enterococci persistence and growth on seaweed were not conclusive, although there was some evidence to suggest enterococci replication was occurring. This was indicated by molecular fingerprinting (REA analysis), which showed that the inoculated strain persisted for the full duration of experiments (up to 28 days). The isolation of non-inoculum strains from seaweed treatments, combined with increased abundance of these strains with incubation, suggested the persistence or replication of enterococci that were naturally occurring on seaweed.

To investigate the occurrence of enterococci in bathing environments a statistical analysis of Auckland Regional Council (ARC) bathing water quality data was undertaken. This analysis indicated a strong positive correlation between enterococci and turbidity, and hence turbidity may serve as a useful physical measure to indicate deteriorating water quality. Surveys of three marine bathing beaches on Auckland’s North Shore (Long Bay, Mairangi Bay, and Rothesay Bay) indicated the abundance of enterococci in all bathing beach environments surveyed. These included marine and fresh water, sand, seaweed, and stream sediment, and a significant association between enterococci levels found in the sand and in the seaweed.
Enterococci screening protocols were evaluated for use in describing enterococci species and sub-species diversity in bathing beach environments. This investigation showed a diversity of enterococci from all beach environmental sources, with highest levels of species diversity from marine and stream water. Enterococci diversity did not provide clues as to the sources in marine water samples. RAPD-PCR analysis and phenotypic screening of enterococci isolates did not indicate a pattern of niche-specific associations of enterococci strains, and there was no strong evidence from this study that enterococci sub-species associate with specific environments. However, the presence of identical genotypes indicated that enterococci can persist and possibly replicate in environments such as sand and seaweed. Calculation of similarity coefficients from *Ent. faecalis* and *Ent. casseliflavus* sub-species groupings indicated a greater level of sub-specific similarity between selected environments, for example, seaweed:sand, marine water:stream water, seaweed:marine water, although this was not a guarantee that environments were biologically or ecologically associated.

Where an elevated level of enterococci is measured in the absence in identifiable pollution source the separation of pigmented from non-pigmented enterococci was proposed as an indicator of the environmental or faecal nature of the enterococci within the sample. Although not tested under controlled conditions, this concept was found to have good utility for discriminating sources from elevated marine bathing water samples. Enterococci from one of 13 elevated ARC marine water samples examined was shown to be environmentally derived, with 5 of the 13 samples attributed to putative human or animal faecal sources. With further validation, this concept may be a useful means of determining source.
Acknowledgments

I would like to thank my supervisor Dr Gillian Lewis for all the advice, support and encouragement given to me during the course of this work. I am also appreciative of the additional supervision and advice of my co-supervisor Dr David Saul.

A special thanks goes to Dr Susan Turner for all the scientific advice and efforts reading thesis drafts. Thank-you also for all the encouragement, support, and friendship, and for introducing me to those challenging runs out at the beach.

I also wish to thank past and present members of the Environmental Microbiology/Anaerobic Microbiology Labs for their friendship and support.

I would like to thank and acknowledge other people who have assisted with my research, Dr Robin Hankin for insightful statistical advice, and Dr Gretel Silyn-Roberts for a willingness to read thesis drafts, offer encouragement, advice, and 'climbing therapy'.

I would like to acknowledge the funding support received from the Auckland Regional Council for part of this research.

Finally, I would like to thank my family, my parents Jenny and Robert and my sister Helen for their unfailing love and support without which this work would not have been possible.

For Ben.
Table of contents

Abstract ... i
Acknowledgments .. iii
Table of contents .. iv
List of figures ... viii
List of formulae .. ix
List of tables .. x
List of abbreviations .. xii

Chapter 1. GENERAL INTRODUCTION.. 1
1.1 Overview .. 2
1.2 Taxonomy of the genus Enterococcus ... 2
 1.2.1 Historical development ... 2
 1.2.2 The genus Enterococcus ... 3
1.3 Enterococci habitats and sources ... 6
 1.3.1 Faecal sources ... 6
 1.3.2 Non-faecal sources ... 6
 1.3.2.1 Characterisation of enterococci on plants ... 6
 1.3.2.2 Characterisation of enterococci from insects ... 6
 1.3.2.3 Characterisation of enterococci from soil .. 6
 1.3.2.4 Characterisation of enterococci from water ... 6
1.4 Survival and persistence of enterococci in the environment ... 9
 1.4.1 Persistence of faecal streptococci/enterococci in the environment 10
 1.4.1.1 Survival mechanism of faecal streptococci and enterococci 11
 1.4.2 The viable non-culturable phenomenon ... 11
 1.4.3 Significance for water quality monitoring ... 11
1.5 Enterococci/Faecal streptococci as faecal source indicators .. 12
 1.5.1 Faecal coliform/Faecal streptococci ratio ... 12
 1.5.2 Faecal streptococci species identification ... 13
 1.5.3 Alternative methods .. 14
1.6 Microbiological indicators of water quality .. 14
 1.6.1 Health risks associated with contaminated water ... 14
 1.6.2 The indicator concept .. 16
1.7 Development of water quality criteria ... 17
 1.7.1 Historical criteria: Development of USEPA standards 18
 1.7.2 Epidemiological investigations .. 18
 1.7.3 New Zealand water quality criteria ... 19
 1.7.4 New Zealand epidemiological studies .. 20
 1.7.5 Current New Zealand bathing water guidelines ... 21
1.8 Objectives of this study ... 22

Chapter 2. MATERIALS AND METHODS... 24
2.1 General materials and methods ... 24
2.2 Field samples; collection and handling ... 24
 2.2.1 Faecal samples .. 24
 2.2.2 Water and wastewater samples ... 24
 2.2.3 Environmental samples .. 25
2.3 Microbiological methods ... 25
 2.3.1 General methods .. 25
 2.3.1.1 Buffers .. 25
 2.3.1.2 Sample Dilutions ... 25
 2.3.1.3 Membrane filtration ... 25
 2.3.1.4 Spread Plating .. 25
 2.3.1.5 Incubation .. 25
 2.3.1.6 Storage of bacterial cultures ... 25
 2.3.1.7 Preparation of samples for microbiological analysis 25
 2.3.1.8 Dry weight determination ... 25
 2.3.1.9 Bacterial type strains ... 25
 2.3.2 Enterococci enumeration ... 28
 2.3.2.1 Media formulations ... 28
2.3.2.2 Sample analysis
2.3.2.3 Verification of enterococci
2.3.3 Faecal coliform enumeration 32
2.3.3.1 Media formulations
2.3.3.2 Sample analysis

2.4 Identification of microorganisms 34
2.4.1 General methods ... 34
 2.4.1.1 Nucleic acid labelling protocols
 2.4.1.2 Hybridisation
 2.4.1.3 Immunological detection
2.4.2 Enterococci identification 36
 2.4.2.1 Oligonucleotide gene probes
 2.4.2.2 Biochemical/phenotypic identification
2.4.3 Faecal coliform identification 44
 2.4.3.1 Biochemical identification
 2.4.3.2 E. coli − uidA gene probe

2.5 Molecular biology protocols 45
 2.5.1 General methods ... 45
 2.5.2 Buffers and solutions 46
 2.5.3 DNA manipulations .. 46
 2.5.3.1 DNA extraction
 2.5.3.2 Nucleic acid purification
 2.5.3.3 Ethanol precipitation
 2.5.3.4 Restriction enzymes
 2.5.4 PCR amplification .. 48
 2.5.4.1 RAPD-PCR analysis
 2.5.4.2 RAPD-PCR analysis of Ent. faecalis and Ent. faecium
 2.5.4.3 Analysis of RAPD fingerprint patterns
 2.5.5 Gel electrophoresis ... 50
 2.5.5.1 Agarose gels
 2.5.5.2 Acrylamide gels
 2.5.5.3 Molecular size and weight standards
 2.5.5.4 Visualisation of gels
 2.5.6 Image Processing ... 51

Chapter 3. ENTEROCOCCI SPECIES IDENTIFICATION AND STRAIN DISCRIMINATION .. 52
 3.1 Introduction ... 52
 3.1.1 Species identification 52
 3.1.2 Microbial typing ... 54
 3.2 Investigation and development of methods for enterococci identification .. 57
 3.2.1 RNA-targeted oligonucleotide gene probes 57
 3.2.1.1 Optimisation of the isolate screening protocol
 3.2.2 Biochemical/phenotypic identification 58
 3.2.2.1 Comparison of microtitre assay against rapid ID32 identity
 3.2.3 Comparison of identification methodologies 61
 3.3 Investigation and development of molecular fingerprinting methodologies ... 63
 3.3.1 Restriction enzyme analysis (REA) 64
 3.3.1.1 Optimisation of the REA method
 3.3.2 Ribotyping .. 69
 3.3.3 Intergenic spacer regions 71
 3.3.4 Amplified Fragment Length Polymorphisms (AFLP) 76
 3.3.5 RAPD-PCR analysis .. 82
 3.4 Evaluation and discussion 87
 3.4.1 Enterococci species identification 87
 3.4.2 Molecular typing methods 88
 3.4.3 Enterococci screening protocol 90

Chapter 4. OCCURRENCE OF ENTEROCOCCI FROM FAECAL AND ENVIRONMENTAL SOURCES 92
 4.1 Occurrence of enterococci from faecal and environmental sources ... 92
 4.2 Occurrence of enterococci from faecal and environmental sources ... 93
 4.2.1 Survey of native forest catchment areas for enterococci ... 95
 4.2.1.1 Materials and methods
 4.2.2 Survey of bathing beach environments for enterococci ... 96
 4.2.2.1 Materials and methods
 4.2.3 Survey of animal faecal samples for enterococci ... 97
 4.2.4 Survey of water and wastewater for enterococci ... 97
Table of contents

4.2.5 Results and Discussion ... 97
 4.2.5.1 Environmental sources 97
 4.2.5.2 Animal faecal sources 98
 4.2.5.3 Water and wastewater sources 98
4.2.6 Summary .. 105
4.3 Evaluation of the ecology of enterococci on seaweed 106
 4.3.1 Introduction ... 106
 4.3.2 Materials and methods 107
 4.3.2.1 Enterococci isolate preparation 107
 4.3.2.2 Seaweed incubation chamber preparation 107
 4.3.2.3 Enterococci analysis of seaweed samples 108
 4.3.2.4 Experimental design 108
4.3.3 Results .. 108
 4.3.3.1 Effect of incubation temperature and bacterial inoculum level 108
 4.3.3.2 Comparison of enterococci species recovery from seaweed 109
 4.3.3.3 Examination of initial stages of incubation 109
 4.3.3.4 Effect of competing microorganisms 109
4.3.4 Discussion .. 113
 4.3.4.1 Bacterial colonisation of seaweed 113
 4.3.4.2 Evidence of enterococci growth and persistence on seaweed 114
 4.3.4.3 Enterococci on seaweed in the natural environment? 114

Chapter 5. OCCURRENCE OF ENTEROCOCCI IN THE BATHING BEACH ENVIRONMENT 119
5.1 General introduction ... 119
5.2 Statistical analysis of ARC recreational water quality survey data 120
 5.2.1 Introduction ... 120
 5.2.2 Survey protocol .. 121
 5.2.3 Statistical analysis methods 123
5.2.4 Results .. 126
 5.2.4.1 Enterococci levels in marine bathing waters 126
 5.2.4.2 Correlation analysis 127
 5.2.4.3 Generalised linear models analysis 127
5.2.5 Discussion .. 131
5.3 Survey of selected beaches for enterococci 133
 5.3.1 Introduction ... 133
 5.3.1.1 Site selection .. 134
 5.3.2 Methods .. 135
 5.3.3 Results .. 146
 5.3.3.1 Physical parameters 146
 5.3.3.2 Microbiological survey 147
 5.3.3.3 Statistical analysis of microbiological sampling data 147
 5.3.3.4 Evaluation of membrane filtration methodology ... 148
5.3.4 Summary and discussion 154
5.4 Summary ... 155
 5.4.1 Statistical analysis of ARC bathing water quality data 155
 5.4.2 Survey of selected beaches for enterococci 156

Chapter 6. CHARACTERISATION OF ENTEROCOCCI DIVERSITY FROM BATHING BEACH ENVIRONMENTS 157
6.1. Introduction ... 157
6.2 Methods .. 158
 6.2.1 Isolate selection ... 158
 6.2.2 Species identification 158
7.2.3 Sub-specific characterisation 158
6.3 Results from an evaluation of enterococci diversity from beach field studies 160
 6.3.1 Enterococci isolates ... 160
 6.3.2 Speciation of enterococci from field studies 160
 6.3.3 Statistical analysis of enterococci species diversity 160
 6.3.4 Analysis of sub-specific diversity 164
 6.3.4.1 Ent. faecium sub-specific diversity 164
 6.3.4.2 Ent. faecalis sub-specific diversity 165
7.3.4.3 Ent. casseliflavus sub-specific diversity 165
6.4 Results of enterococci characterisation from elevated ARC bathing water samples 178
 6.4.1 Sample descriptions ... 178
 6.4.2 Speciation of enterococci 181
 6.4.3 Evaluation of enterococci sub-specific diversity 182
6.5 Discussion.. 183
6.5.1 Enterococci species diversity .. 184
 6.5.1.1 Enterococci speciation
 6.5.1.2 Enterococci species diversity
6.5.2 Catchment effects on enterococci levels and species abundance .. 189
6.5.3 Enterococci sub-specific diversity .. 190
 6.5.3.1 Characterisation of enterococci sub-species to examine possible selection or expansion in elevated marine water samples
 6.5.3.2 Enterococci survival strategies
6.5.4 Differentiating enterococci sources: the yellow-pigmented enterococci .. 193
 6.5.4.1 Evaluation of enterococci colony morphology as an indicator of faecal and non-faecal sources in marine bathing waters

6.6 General conclusions ... 199

Chapter 7. SUMMARY AND CONCLUSIONS .. 202
7.1 Introduction... 202
7.2 Methodology development .. 202
7.3 Faecal and environmental sources of enterococci .. 202
7.4 Evaluation of the ecology of enterococci on seaweed .. 203
7.5 Occurrence of enterococci in bathing beach environments .. 204
 7.5.1 Statistical evaluation of enterococci in marine bathing waters ... 204
 7.5.2 Occurrence of enterococci from bathing beach environments .. 204
7.6 Enterococci diversity from bathing beach environments .. 205
7.7 Future directions .. 206

APPENDICES
Appendix 1. ENTEROCOCCI TAXONOMY .. 209
Appendix 2. GENERAL METHODS ... 212
A2.1 Chemical and reagent suppliers... 213
A2.2 Assessment of enterococci colony colour ... 214
A2.3 Operon primers for RAPD screening ... 215
A2.4 Examination of RAPD fingerprints and evaluation of strain identity ... 215
A2.5 REA fingerprints of enterococci isolates for seaweed incubation experiments 218
Appendix 3. OPTIMISATION OF ENTEROCOCCI ISOLATE SCREENING PROTOCOL 220
A3.1 Introduction ... 221
A3.2 Results ... 221
Appendix 4. OPTIMISATION OF MOLECULAR FINGERPRINTING METHODS ... 230
A4.1 Optimisation of the AFLP protocol .. 231
 A4.1.1 General materials and methods .. 231
 A4.1.2 Optimisation of the AFLP-PCR protocol .. 232
A4.2 Optimisation of the RAPD-PCR protocol ... 235
 A4.2.1 General materials and methods .. 236
 A4.2.2 Optimisation of amplification components .. 236
Appendix 5. STATISTICAL ANALYSIS .. 242
A5.1 SAS Analysis – ARC bathing water quality data .. 243
A5.2 Descriptive statistics – ARC bathing water quality data .. 244
A5.3 GLM analysis - Site comparisons ... 245
Appendix 6. FIELD STUDY MICROBIOLOGICAL DATA .. 247
A6.1 Microbiological data - North Shore field study .. 247
A6.2 Isolate speciation data - North Shore field study .. 251
A6.3 Isolate speciation data - ARC bathing beach survey isolates ... 273

BIBLIOGRAPHY ... 277

PUBLICATION
List of figures

FIGURE 1.1 Phylogenetic tree of lactic acid bacteria and related bacteria ... 4
FIGURE 1.2 Distance matrix tree of Enterococcus species ... 5
FIGURE 1.3 Potential routes of waterborne infection .. 15

FIGURE 2.1 Microtitre plate assay system for identifying enterococci ... 41
FIGURE 2.2 RAPD-PCR amplification controls .. 49

FIGURE 3.1 Dot blot hybridisation of enterococci isolates control and unknown using Efs (Ent. faecium), Efs (Ent. faecalis) and EUB (Eubacterial) oligonucleotide probes ... 59
FIGURE 3.2 Comparison of enterococci genomic DNA preparation methods .. 66
FIGURE 3.3 Comparison of fingerprint patterns from REA of enterococci ... 67
FIGURE 3.4 Agarose gel electrophoresis of Sal1 digested genomic DNA from enterococci 68
FIGURE 3.5 Ribotyping analysis of enterococci .. 70
FIGURE 3.6 Position of conserved regions within the rRNA operon .. 72
FIGURE 3.7 Amplification of 16S/23S rDNA intergenic spacer regions from enterococci 75
FIGURE 3.8 Schematic representation of modified AFLP technique for enterococci 77
FIGURE 3.9 AFLP fingerprints of enterococci type strains ... 78
FIGURE 3.10 AFLP fingerprints of Ent. faecalis DNA isolated from a number of sources 79
FIGURE 3.11 Genotype analysis of AFLP fingerprint profiles from enterococci isolates 81
FIGURE 3.12 Comparison of single primer versus two-primer amplification of Ent. faecium isolates 83
FIGURE 3.13 RAPD analysis of Ent. faecalis isolates using selected primers (Operon series OPAX) 85
FIGURE 3.14 RAPD analysis of Ent. faecium isolates using selected primers (Operon series OPAX) 86
FIGURE 3.15 Test methodology for the isolation and characterisation of environmentally sourced enterococci ... 90

FIGURE 4.1 Location of survey areas for evaluating enterococci occurrence from faecal and environmental sources from within the greater Auckland region ... 94
FIGURE 4.2 Comparison of mean Enterococci levels in environmental and faecal samples from the Auckland region ... 105
FIGURE 4.3 Effect of incubation temperature and bacterial inoculum level on the recovery of Ent. casseliflavus (WH 104) from seaweed incubation chambers .. 109
FIGURE 4.4 Persistence of Enterococcus strains in seaweed incubation chambers 111
FIGURE 4.5 Recovery of Ent. casseliflavus (WH 104) following multiple sampling between 0 and 48 hours ... 112
FIGURE 4.6 Recovery of enterococci (Ent. casseliflavus - WH 104) from sterile (autoclaved) and non-sterile (washed) seaweed .. 113

FIGURE 5.1 Bathing beach survey sites for Auckland Regional Council recreational water quality surveys .. 122
FIGURE 5.2 Distribution of enterococci values from ARC bathing water quality survey data (1991 - 1996) ... 126
FIGURE 5.3 Location of bathing beaches for microbiological surveys .. 134
FIGURE 5.4 Long Bay survey sites and sample details .. 137
FIGURE 5.5 View of Long Bay .. 138
FIGURE 5.6 View of Vaughn Stream and sample site A .. 138
FIGURE 5.7 Vaughn Stream, a view in an easterly direction towards the stream mouth 139
FIGURE 5.8 Awaruku Creek, a westerly view back towards the footbridge and urban area 139
FIGURE 5.9 Awaruku Creek, an easterly view of sample site D. ... 140
FIGURE 5.10 Rothesay Bay survey sites and sample details .. 141
FIGURE 5.11 View of Rothesay Bay .. 142
FIGURE 5.12 Rothesay Bay, view of the stream discharging into the beach environment 142
FIGURE 5.13 Rothesay Bay, view downstream towards the stream mouth ... 143
FIGURE 5.14 Mairangi Bay survey sites and sample details ... 144
FIGURE 5.15 View of Mairangi Bay ... 145
FIGURE 5.16 View of stream sample site at Mairangi Bay .. 145
FIGURE 5.17 Microbiological data for Long Bay, Rothesay Bay and Mairangi Bay surveys - July and October 1997 ... 149
FIGURE 5.18 Microbiological data for Long Bay, Rothesay Bay and Mairangi Bay surveys - January and March 1998 ... 150
FIGURE 5.19 Combined enterococci speciation of marine and stream water samples from Long Bay study ... 153
FIGURE 6.1 Procedure for enterococci species identification and evaluation of species diversity. ... 159
FIGURE 6.2 Speciation of enterococci isolated from the Mairangi Bay surveys. ... 161
FIGURE 6.3 Speciation of enterococci isolated from the Rothesay Bay surveys ... 162
FIGURE 6.4 Speciation and species diversity of enterococci isolated from the Long Bay surveys. 164
FIGURE 6.5 Calculated diversity values for enterococci from Long Bay samples ... 166
FIGURE 6.6 Calculated diversity values for enterococci from Long Bay for each survey site ... 168
FIGURE 6.7 Similarity matrices obtained from comparison of Ent. faecium strains from four surveys of Long Bay 171
FIGURE 6.8 Similarity matrices obtained from comparison of Ent. faecium strains between different sample types from four surveys of Long Bay. ... 173
FIGURE 6.9 Similarity matrices obtained from comparison of Ent. casseliflavus strains from four surveys of Long Bay 177
FIGURE 6.10 Similarity matrices obtained from comparison of Ent. casseliflavus strains between different sample types from four surveys of Long Bay ... 178
FIGURE 6.11 Location of bathing beach survey sites from which anomalously elevated enterococci levels were recorded 180
FIGURE 6.12 Speciation of enterococci isolated from ARC bathing water quality samples ... 181
FIGURE 6.13 Comparison of enterococci species composition from elevated stream water samples with adjacent elevated marine water samples from the January 1998 survey of Long Bay ... 188
FIGURE 6.14 Speciation of enterococci isolated from Vaughn Stream and Awairuku Creek water and sediment samples 190
FIGURE 6.15 Proposed model for the differentiation of non-faecal and faecal enterococci sources from marine water samples based on the determination of enterococci colony morphology ... 195

FIGURE A2.1 Enterococci colony pigmentation on BHI agar .. 214
FIGURE A2.2 Procedure for the evaluation of Ent. faecalis and Ent. faecium strain diversity ... 216
FIGURE A2.3 Strain identities for Ent. faecium isolates sourced from seaweed and sand from the Long Bay (July 1997) field study ... 217
FIGURE A2.4 Restriction patterns of DNA from enterococci isolates selected for seaweed incubation experiments 218
FIGURE A2.5 Confirmation of enterococci inoculum persistence from seaweed incubation experiment ... 219
FIGURE A3.1 Optimisation of isolate screening protocol (Part 1) .. 222
FIGURE A3.2 Optimisation of isolate screening protocol (Part 2) .. 226
FIGURE A3.3 Optimisation of isolate screening protocol (Part 3) .. 228
FIGURE A4.1 Optimisation of adapter and primer concentrations and combinations for AFLP-PCR of enterococci 233
FIGURE A4.2 Comparison of AFLP fingerprint patterns from enterococci isolates using 3 different PCR primers 234
FIGURE A4.3 Effect of altering magnesium concentration on RAPD amplification of enterococci ... 237
FIGURE A4.4 Effect of altering magnesium and dNTP concentration on RAPD amplification of enterococci 238
FIGURE A4.5 Effect of altering Taq DNA concentration on RAPD amplification of enterococci ... 239
FIGURE A4.6 Effect of altering primer concentration on RAPD amplification of enterococci .. 240
FIGURE A4.7 Effect of template DNA preparation on RAPD amplification ... 241

List of formulae

FORMULA 6.1 Shannon-Weaver diversity index .. 165
FORMULA 6.2 Similarity coefficient .. 169
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 1.1</td>
<td>New Zealand Marine Bathing Guidelines</td>
<td>21</td>
</tr>
<tr>
<td>TABLE 2.1</td>
<td>Phosphate buffer plus magnesium solution</td>
<td>26</td>
</tr>
<tr>
<td>TABLE 2.2</td>
<td>Phosphate buffered saline (PBS) solution</td>
<td>26</td>
</tr>
<tr>
<td>TABLE 2.3</td>
<td>Preparation of samples for microbiological analysis</td>
<td>28</td>
</tr>
<tr>
<td>TABLE 2.4</td>
<td>Bacterial type strains</td>
<td>29</td>
</tr>
<tr>
<td>TABLE 2.5</td>
<td>Media and reagents for enterococci analysis</td>
<td>30</td>
</tr>
<tr>
<td>TABLE 2.6</td>
<td>Media and reagents for verification of enterococci</td>
<td>31</td>
</tr>
<tr>
<td>TABLE 2.7</td>
<td>Verification tests for enterococci</td>
<td>32</td>
</tr>
<tr>
<td>TABLE 2.8</td>
<td>Media and reagents for analysis of faecal coliforms</td>
<td>32</td>
</tr>
<tr>
<td>TABLE 2.9</td>
<td>Buffers and solutions used in DIG labelling</td>
<td>34</td>
</tr>
<tr>
<td>TABLE 2.10</td>
<td>DIG labelling protocols</td>
<td>35</td>
</tr>
<tr>
<td>TABLE 2.11</td>
<td>DIG-labelled gene probes - Hybridisation protocol</td>
<td>35</td>
</tr>
<tr>
<td>TABLE 2.12</td>
<td>Immunological detection of DIG-labelled probes</td>
<td>36</td>
</tr>
<tr>
<td>TABLE 2.13</td>
<td>List of oligonucleotide probes</td>
<td>37</td>
</tr>
<tr>
<td>TABLE 2.14</td>
<td>Alkalification of dot blots</td>
<td>38</td>
</tr>
<tr>
<td>TABLE 2.15</td>
<td>Hybridisation temperatures for DIG-labelled oligonucleotide probes</td>
<td>38</td>
</tr>
<tr>
<td>TABLE 2.16</td>
<td>Phenotypic tests for enterococci</td>
<td>39</td>
</tr>
<tr>
<td>TABLE 2.17</td>
<td>Preparation of media for the enterococci microtitre plate assay</td>
<td>40</td>
</tr>
<tr>
<td>TABLE 2.18</td>
<td>Identification scheme for enterococci by microtitre assay method</td>
<td>42</td>
</tr>
<tr>
<td>TABLE 2.19</td>
<td>'Type strain' microtitre profiles for identification of Enterococcus species</td>
<td>43</td>
</tr>
<tr>
<td>TABLE 2.20</td>
<td>Lysis and alkalification of E. coli colony blots</td>
<td>45</td>
</tr>
<tr>
<td>TABLE 2.21</td>
<td>Buffer and solution formulations</td>
<td>46</td>
</tr>
<tr>
<td>TABLE 2.22</td>
<td>Salt solutions for ethanol precipitation</td>
<td>47</td>
</tr>
<tr>
<td>TABLE 2.23</td>
<td>Optimised RAPD-PCR conditions for the analysis of Ent. faecalis and Ent. faecium isolates</td>
<td>48</td>
</tr>
<tr>
<td>TABLE 2.24</td>
<td>Agarose gel concentrations and electrophoresis conditions</td>
<td>50</td>
</tr>
<tr>
<td>TABLE 2.25</td>
<td>Acrylamide gel preparation</td>
<td>51</td>
</tr>
<tr>
<td>TABLE 3.1</td>
<td>Overview of microbial genotypic typing methods</td>
<td>56</td>
</tr>
<tr>
<td>TABLE 3.2</td>
<td>Comparison of physiological identification of enterococci isolates by microtitre plate assay and rapid ID32 Strep</td>
<td>61</td>
</tr>
<tr>
<td>TABLE 3.3</td>
<td>Screening comparisons of microtitre positive and probe negative environmentally sourced enterococci isolates</td>
<td>62</td>
</tr>
<tr>
<td>TABLE 3.4</td>
<td>DNA preparation methods for restriction endonuclease analysis of enterococci isolates</td>
<td>65</td>
</tr>
<tr>
<td>TABLE 3.5</td>
<td>Primers used for amplifying enterococci 16S/23S spacer regions</td>
<td>73</td>
</tr>
<tr>
<td>TABLE 3.6</td>
<td>Ent. faecalis primer screening results, Operon primer series OPAX</td>
<td>83</td>
</tr>
<tr>
<td>TABLE 3.7</td>
<td>Ent. faecium primer screening results, Operon primer series OPAX</td>
<td>84</td>
</tr>
<tr>
<td>TABLE 3.8</td>
<td>Summary of molecular fingerprinting methodologies investigated for subtyping enterococci</td>
<td>88</td>
</tr>
<tr>
<td>TABLE 4.1</td>
<td>Enterococci occurrence in environmental samples</td>
<td>99</td>
</tr>
<tr>
<td>TABLE 4.2</td>
<td>Speciation of selected Enterococci and Faecal Coliform isolates from decaying seaweed, sand, and seawater samples collected from Wenderholm Beach surveys</td>
<td>100</td>
</tr>
<tr>
<td>TABLE 4.3</td>
<td>Similarity of enterococci isolates from beach-associated sources from two surveys of Wenderholm Beach</td>
<td>100</td>
</tr>
<tr>
<td>TABLE 4.4</td>
<td>Enterococci occurrence in animal faecal samples</td>
<td>102</td>
</tr>
<tr>
<td>TABLE 4.5</td>
<td>Enterococci occurrence in wastewater and water samples</td>
<td>104</td>
</tr>
<tr>
<td>TABLE 4.6</td>
<td>Origin and identity of enterococci isolates used in the seaweed incubation experiments</td>
<td>107</td>
</tr>
<tr>
<td>TABLE 5.1</td>
<td>Enterococci single sample maximum (SSM) for the Auckland region</td>
<td>121</td>
</tr>
<tr>
<td>TABLE 5.2</td>
<td>Variables for the ARC bathing water quality survey data</td>
<td>124</td>
</tr>
<tr>
<td>TABLE 5.3</td>
<td>Sample site descriptions for Auckland region bathing beach survey sites</td>
<td>125</td>
</tr>
<tr>
<td>TABLE 5.4</td>
<td>Spearman rank correlation between physico-chemical variables and enterococci for all beaches in the Auckland region for each bathing season</td>
<td>128</td>
</tr>
<tr>
<td>TABLE 5.5</td>
<td>Spearman rank correlation between physico-chemical variables and enterococci for all beaches in the Auckland region sampled within each location grouping</td>
<td>128</td>
</tr>
<tr>
<td>TABLE 5.6</td>
<td>GLM analysis - Year Comparison</td>
<td>129</td>
</tr>
</tbody>
</table>
TABLE 5.7 GLM analysis - Location Comparison ... 129
TABLE 5.8 Sample dates for bathing beach survey ... 136
TABLE 5.9 Rainfall levels .. 146

TABLE 6.1 Number of verified enterococci isolated from beach survey samples and selected for further screening ... 160
TABLE 6.2 Ratio of identified (ID) enterococci (Ent. faecalis + Ent. faecium) to unidentified (unID) enterococci isolates for Rothesay Bay and Mairangi Bay .. 163
TABLE 6.3 Ratio of identified(ID) enterococci (Ent. faecalis+Ent. faecium) to unidentified (unID) enterococci isolates for Long Bay ... 167
TABLE 6.4 Evaluation of Ent. faecium diversity identified by RAPD typing of isolates from Long Bay ... 170
TABLE 6.5 Evaluation of Ent. faecalis diversity identified by RAPD typing of isolates from Long Bay ... 174
TABLE 6.6 Evaluation of Ent. casseliflavus diversity identified by biochemical typing of isolates from Long Bay .. 175
TABLE 6.7 Description of bathing water survey samples obtained for enterococci characterisation ... 179
TABLE 6.8 Evaluation of enterococci strain diversity from elevated ARC bathing water samples ... 183
TABLE 6.9 Summary of enterococci occurrence from field study samples and comparative reported abundance in faeces and vegetation .. 184
TABLE 6.10 Summary of enterococci species diversity in samples from the Long Bay field study... 185
TABLE 6.11 Ratio of white to yellow-pigmented enterococci isolates from surveys of Rothesay, Mairangi, and Long Bay beach environments .. 196
TABLE 6.12 Ratio of white:yellow pigmented enterococci from anomalous water samples (ARC 1997/98 survey) and proposed enterococci sources ... 198

TABLE A1.1 Description of species within the genus Enterococcus .. 210
TABLE A2.1 Chemical, reagent and general laboratory suppliers in New Zealand 213
TABLE A2.2 Operon primers – Kit AX .. 215
TABLE A3.1 Optimised direct lysis dot blot protocol for screening enterococci by oligonucleotide probe hybridisation .. 229
TABLE A4.1 Adapter sequences ... 231
TABLE A4.2 AFLP-PCR Primer Sequences .. 232
TABLE A4.3 Buffers and solutions for AFLP procedure .. 232
TABLE A4.4 Optimised AFLP-PCR protocol for enterococci .. 235
TABLE A4.5 RAPD PCR buffers and reagents .. 236
TABLE A5.1 Data analysis – SAS code ... 243
TABLE A5.2 Descriptive statistics for enterococci from ARC water quality survey bathing beaches ... 244
TABLE A5.3 GLM analysis, Site comparisons: Location 1 - Manukau Harbour 245
TABLE A5.4 GLM analysis, Site Comparisons: Location2 - West Coast 245
TABLE A5.5 GLM analysis, Site comparisons: Location 3 - Waitemata Harbour 245
TABLE A5.6 GLM analysis, Site comparisons: Location 4 - North Shore Beaches* 245
TABLE A5.7 GLM analysis, Site comparisons: Location 5 - East Coast Beaches 246
TABLE A5.8 GLM analysis, Site comparisons: Location 6 - Tamaki Estuary/Hauraki Gulf 246
TABLE A5.9 GLM, Site comparisons: Location 7 - Waiheke Island 246
TABLE A6.1 Enterococci survey of three North Shore beaches - July 1997 247
TABLE A6.2 Enterococci survey of three North Shore beaches - October 1997 248
TABLE A6.3 Enterococci survey of three North Shore beaches - January 1998 249
TABLE A6.4 Enterococci survey of three North Shore beaches - March 1998 250
TABLE A6.5 Rothesay Bay field study - Isolate speciation .. 251
TABLE A6.6 Mairangi Bay field study - Isolate speciation .. 255
TABLE A6.7 Long Bay field study - Isolate speciation .. 260
TABLE A6.8 ARC bathing beach survey isolates - Isolate speciation 273
List of abbreviations

Système International d’Unités (SI units) of measurement, standard notations for describing chemical formulae, and standard conventions for biological nomenclature were used in this work. Commonly used abbreviations cited in the text are listed below:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>260</sub></td>
<td>absorbance at 260 nm</td>
</tr>
<tr>
<td>A<sub>280</sub></td>
<td>absorbance at 280 nm</td>
</tr>
<tr>
<td>AFLP</td>
<td>Amplified fragment length polymorphism</td>
</tr>
<tr>
<td>ARC</td>
<td>Auckland Regional Council</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-forming units</td>
</tr>
<tr>
<td>DIG</td>
<td>digoxigenin</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleoside triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine-tetra-acetate acid (disodium salt)</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>hrs</td>
<td>hours</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase pairs</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre(s)</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre(s)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>nm</td>
<td>nanometres</td>
</tr>
<tr>
<td>PBW</td>
<td>Phosphate buffered water</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet light</td>
</tr>
<tr>
<td>RAPD</td>
<td>Randomly amplified polymorphic DNA</td>
</tr>
<tr>
<td>RE</td>
<td>Restriction enzyme</td>
</tr>
<tr>
<td>REA</td>
<td>restriction enzyme analysis</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAse</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>rDNA</td>
<td>ribosomal DNA</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal RNA</td>
</tr>
<tr>
<td>R/T</td>
<td>room temperature</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SSC</td>
<td>standard saline citrate</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate EDTA buffer</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-borate EDTA buffer</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA buffer</td>
</tr>
<tr>
<td>Tris</td>
<td>[2-amino-2-(hydroxymethyl) propane-1,3-diol, (tris)]</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet light</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>
1.1 Overview
1.2 Taxonomy of the genus *Enterococcus*
1.3 Enterococci habitats and sources
1.4 Survival and persistence of enterococci in the environment
1.5 Enterococci/Faecal streptococci as faecal source indicators
1.6 Microbiological indicators of water quality
1.7 Development of water quality criteria
1.8 Objectives of this study

This image of enterococci shown on each chapter title page was created by imaging a Gram-stain of enterococci viewed by light microscopy at 1,000x magnification. The final image was created in Adobe Photoshop using the emboss function to create the final cell impression.