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We demonstrate quantum signatures of deterministic nonlinear dynamics in the transition to su-
perradiance of a generalized open Dicke model with different coupling strengths for the co- and
counter-rotating light-matter interaction terms. A first-order phase transition to coexisting normal
and superradiant phases is observed, corresponding with the emergence of switching dynamics be-
tween these two phases, driven by quantum fluctuations. We show that this phase coexistence gives
rise to a hysteresis loop also for the quantum mechanical system. Additionally, a transition to a
superradiant oscillatory phase can be observed clearly in quantum simulations.

Introduction.—Atoms in a dilute gas radiate light inde-
pendently of one another through spontaneous emission,
whereby the number of excitations decreases exponen-
tially [1, 2]. In contrast, a large, tightly-confined en-
semble of atoms has its emission enhanced by coherence
stored in the atoms and emits strong pulses of radiation
over much shorter timescales than independent atoms [3].
This phenomenon, known as superradiance, was first sug-
gested in a seminal paper by Dicke in 1954 [4]. Hepp and
Lieb later showed that an ensemble coupled to a single
quantized radiation mode will undergo a quantum phase
transition to superradiance in the steady state in a model
now known as the Dicke model [5–7].
This phase transition is often studied in the semiclas-

sical (mean-field) regime where, if the number of atoms
is sufficiently high, the role of quantum fluctuations can
be neglected. In this case, the dynamics of the system
are governed by a system of nonlinear differential equa-
tions, and the transition to superradiance emerges via
a pitchfork bifurcation [8] which breaks the system’s Z2

symmetry.

Recently, the Dicke model has had experimental real-
izations in both Bose–Einstein-condensate and trapped-
ion systems [9–12]. Another realization was proposed by
Dimer et al. [13] using an ensemble of four-level atoms
confined to an optical cavity with atom-light interac-
tions generated by stimulated Raman transitions between
atomic ground states. This proposal allows for two dif-
ferent coupling strengths for the co- and counter-rotating
terms of the Hamiltonian. This possibility, which we refer
to as unbalanced coupling, was recently realized exper-
imentally [14, 15] and was shown to lead to additional
phases, including an oscillating superradiant phase.

Motivated by these experiments, a recent analysis of
the semiclassical model found a diverse set of complex
nonlinear behavior [16], including two types of chaotic
dynamics in the superradiant domain. In this Letter,
we explore the manifestation of deterministic nonlinear
dynamics in the fully quantum mechanical system. We

show that the appearance of a first-order quantum phase
transition leads to a state in which both the normal and
superradiant phases coexist, which has also been shown
in a similar model with atomic dissipation [17]. We
then simulate the quantum dynamics with a stochastic
Schrödinger equation to demonstrate switching between
these phases triggered by quantum fluctuations. We also
identify the superradiant oscillatory phase, emerging due
to a Hopf bifurcation in the semiclassical model, in the
fully quantum mechanical model. In this way, our re-
sults yield insight into quantum phase transitions and
the quantum–classical correspondence.

Model.—The unbalanced Dicke model consists of an
ensemble ofN two-level atoms confined to an optical cav-
ity with a single field mode, with coupling strengths λ−

for the co-rotating terms and λ+ for the counter-rotating
terms. The Hamiltonian is (~ = 1)

Ĥ = ωâ†â+ ω0Ĵz +
λ−√
N

(

âĴ+ + â†Ĵ−

)

+
λ+√
N

(

âĴ− + â†Ĵ+

)

, (1)

where â is the cavity field annihilation operator, ω is the
effective cavity mode frequency, and ω0 is the frequency
splitting of the atomic levels. Ĵ±,z are the collective an-

gular momentum operators given by Ĵ±,z =
∑N

ν=1 σ̂
(ν)
±,z,

where σ̂
(ν)
±,z are the spin- 12 Pauli operators for the νth

atom. We consider the case of indistinguishable atoms,
with maximal total angular momentum J = N/2.

The dominant source of damping in the experiments
of [14] is cavity decay. To this end, we model dissipation
with the quantum master equation

dρ̂

dt
= −i[Ĥ, ρ̂] + κ

(

2âρ̂â† − â†âρ̂− ρ̂â†â
)

, (2)

where ρ̂ is the reduced density operator of the atoms and
cavity mode, and κ is the cavity field decay rate.
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This model features a parity symmetry with the op-
erator Π̂ = exp[iπ(â†â+ Ĵz + J)], which acts on the
system operators as Π̂†âΠ̂ = −â, Π̂†Ĵ−Π̂ = −Ĵ−, and
Π̂†ĴzΠ̂ = Ĵz. Both the Hamiltonian and the Lindbla-
dian cavity-decay superoperator are invariant under this
transformation, giving rise to the system’s parity symme-
try, which is broken by the superradiant phase transition.
Steady state analysis.—We define the variables

α = 〈â〉 /
√
N ∈ C, β = 〈Ĵ−〉/N ∈ C, γ = 〈Ĵz〉/N ∈ R

and, in the semiclassical limit N → ∞, factorize operator
expectations, i.e., 〈âĴ+〉 ≈ 〈â〉〈Ĵ+〉. With this approx-
imation, the master equation (2) leads to a system of
nonlinear differential equations that determine the gen-
eralized Dicke model’s semiclassical dynamics:

dα

dt
= −κα− iωα− iλ−β − iλ+β

∗, (3a)

dβ

dt
= −iω0β + 2iλ−αγ + 2iλ+α

∗γ, (3b)

dγ

dt
= iλ− (α∗β − αβ∗) + iλ+ (αβ − α∗β∗) . (3c)

A comprehensive analysis of the dynamics described by
these equations is undertaken in [16]. We first turn our
attention to comparing the steady states of the semiclas-
sical model (3) and the fully quantum model given by
the master equation (2).
The superradiant phase is defined by a non-zero pho-

ton number in the steady state, while the vacuum state
is referred to as the normal phase. In the semiclassical
regime, the superradiant phase transition in the case of
balanced coupling (λ− = λ+) is described by a pitchfork
bifurcation, where a stable equilibrium point bifurcates
into two stable equilibria representing the superradiant
states and an unstable equilibrium representing the nor-
mal phase.
For unbalanced coupling (λ− 6= λ+), this situation is

preserved for some constant values of λ− (increasing λ+)
with the transition now taking place at a new threshold
value for λ+ (see [16] for details). Figure 1(a1) shows a
bifurcation diagram for this transition; here we plot the
equilibria of system (3) as λ+ is varied for λ− = 1. The
curves N and SR are the normal and superradiant equi-
libria, respectively; unstable equilibria are shown dashed.
The superradiant curves emerge from the normal phase
in a pitchfork bifurcation (P), which turns the normal
phase unstable.
In addition to this standard case, for larger values of

λ−, the superradiant phase transition is split into two

stages, with first the onset of superradiance and a subse-
quent disappearance of the normal phase. This is illus-
trated in a bifurcation diagram in Fig. 1(b1). Starting
from the normal phase, as λ+ increases the system un-
dergoes two simultaneous saddle-node bifurcations (SN),
which create a pair of stable and unstable superradiant
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Re〈â〉√
N

(a1)

λ− = 1

P

SR

SR

N

1 2 3

-1

1

λ+

Re〈â〉√
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FIG. 1. One- and two-stage superradiant phase transitions in
the unbalanced Dicke model for λ− = 1 and λ− = 3. Panels
(a1) and (b1) are the two corresponding bifurcation diagrams
of the semiclassical model, showing the normal phase (red)
and superradiant equilibria (blue); here unstable equilibria
are shown dashed. Below are steady-state Husimi Q-functions
evaluated along the single stage transition (a2)–(a4) and the
two-stage transition (b2)–(b4), plotted on the χ-plane in a
square from -6.5 to 6.5 in the real and complex axes. Darker
color indicates a larger value of Q(χ). Here κ = ω = ω0 = 1
and N = 8.

equilibria each. This is a first-order phase transition,
responsible for the creation of large amplitude superra-
diant states. The two unstable equilibria then disappear
by colliding with the normal phase equilibrium point in a
pitchfork bifurcation (P), turning the normal phase un-
stable. This configuration of the two bifurcations creates
a region of multistability, between the saddle-node and
pitchfork bifurcations, where there are coexisting nor-
mal and superradiant phases [18, 19]. Moreover, there
is a critical point in the (λ−, λ+)-plane from which mul-
tistability emerges, where the saddle-node and pitchfork
bifurcations coincide at λ∗

± =
√

ω0(ζ ∓ ω
√
ζ)/2ω, where

ζ = κ2 + ω2 (see [16] for details).

To compare the semiclassical description to the quan-
tum phase transition for finite N , we solve the master
equation (2) in the steady state to obtain the steady-
state density operator ρ̂ss. The quantum phase tran-
sition is visualized with the Husimi Q-function of the
light field, obtained by tracing over the atomic states,
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Q(χ) = 〈χ|TrA(ρ̂ss)|χ〉 /π, where |χ〉 is a coherent state
and χ ∈ C.
Figure. 1(a2)–(a4) shows the Husimi Q-function for

three values of λ+ along the single-stage transition. This
gives the quantum analogue of the stable equilibria of
the semiclassical system, which are now represented as
peaks of a distribution rather than points in phase space
that represent the mean-field behavior. Initially, the sys-
tem is in the normal phase [Fig. 1(a2)]. As the coupling
strength λ+ is increased, the peak splits [Fig. 1(a3)] as
two superradiant states emerge from the normal phase
[Fig. 1(a4)]. Note that, in contrast to the semiclassical
transition, due to finite size effects, the quantum transi-
tion has no clearly defined critical point.

The quantum analogue of the two-stage superradiant
phase transition is shown in Fig. 1(b2)–(b4). Again, the
system begins in the normal phase [Fig. 1(b2)]. As λ+

increases, two superradiant states spontaneously emerge
and the system becomes multistable, with coexisting nor-
mal and superradiant phases, leading to a three-peaked
Q-function [Fig. 1(b3)]. Unlike the above transition, this
first-order transition is less affected by finite size effects,
and therefore has a more clearly defined critical point.
The emergence of these states is the quantum analogue
of the pair of saddle-node bifurcations in Fig. 1(b1). As
λ+ increases further across the second stage of the transi-
tion, corresponding to the pitchfork bifurcation, the nor-
mal phase peak disappears, and the system is entirely
superradiant [Fig. 1(b4)]. It is quite remarkable that the
semiclassical model can give such insight into the quan-
tum phase transitions for such small numbers of atoms
as N = 8 as in Fig. 1.
As Fig. 2 shows, evidence of a two-stage superradi-

ant phase transition is also reflected in the steady-state
photon number and photon number variance, again for
only N = 8 atoms. The single-stage case is illustrated in
Fig. 2(a), where both the photon number and variance
begin to increase near the pitchfork bifurcation (P) of
the semiclassical model, after which they grow when the
system becomes superradiant. In the two-stage case, on
the other hand, the photon number grows very quickly in
the λ+-range between the pitchfork and saddle-node bi-
furcations [Fig. 2(b)]. This sharp growth is attributed to
the spontaneous emergence of the superradiant phase and
the onset of multistability. As λ+ is further increased, the
normal phase disappears and the photon number grows
more slowly once the system is entirely in the superradi-
ant phase.

The two-stage onset of superradiance appears even
more clearly in the variance in Fig. 2(b). In particular,
the variance begins to increase rapidly near the saddle-
node bifurcation (SN). This is because, in this regime of
multistability, the normal and superradiant phases are
in a statistical mixture. When the superradiant steady
states first emerge, their influence is small and the sys-
tem is dominated by the normal phase. As λ+ increases
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FIG. 2. Steady state photon number expectation 〈â†â〉 (blue)
and variance 〈(∆â†â)2〉 (red) as λ+ is varied. Panel (a) shows
the single-stage superradiant phase transition when λ− = 1.
Panel (b) shows the two-stage superradiant phase transition
when λ− = 2. The bifurcations P and SN of the semiclassical
model are indicated as gray vertical lines. Here κ = ω = ω0 =
1 and N = 8.

through the region of multistability, the normal and su-
perradiant phases compete until they gain equal influ-
ence on the global state. Here the variance reaches a
local maximum. After this point the superradiant phase
becomes dominant as the normal phase disappears, and
the variance decreases. It then reaches a local minimum,
where the decrease in the variance due to the disappear-
ance of the normal phase is balanced by the increase due
to the superradiant states increasing in amplitude. No-
tice that since 〈(∆â†â)2〉 > 〈â†â〉, the statistics of the
field are always super-Poissonian.
Quantum dynamics.—The emergence of multistability

in the steady state has a profound effect on the quantum
dynamics of the system. In the multistable region, vari-
ous stable states can be accessed by the system through
quantum tunnelling. Due to the system’s parity sym-
metry, there exist a pair of stable superradiant states,
related by the substitution â → −â, Ĵ− → −Ĵ−. The
two states are indistinguishable in the photon number as
â†â is invariant under the parity transformation. How-
ever, the two superradiant states can be distinguished
with the use of a stochastic Schrödinger equation [20, 21]
to simulate heterodyne detection of the quadrature op-
erator

X̂−π/4 =
1√
2

(

âe−iπ/4 + â†eiπ/4
)

. (4)

This method allows for an emulation of a phase sensitive
detection scheme, so that the two superradiant states
may be distinguished; see supplemental material [22] for
details.
Figure 3(a) shows five realizations with identical ini-

tial conditions, namely, ground states for the atoms and
vacuum state for the light field. The coexistent normal
and superradiant states can be seen clearly as trajecto-
ries are sustained around three distinct attractors: the
two superradiant states with 〈X̂−π/4〉 6= 0 and the nor-

mal phase with 〈X̂−π/4〉 ≈ 0. We also observe instances
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FIG. 3. Quantum jumps between normal and superradiant
phases. Panel (a) shows five illustrative stochastic realiza-
tions monitored via a heterodyne detection scheme. Panel
(b) shows superradiant switching in the photon number of

a single realization, also monitoring the X̂−π/4 quadrature.
Here κ = ω = ω0 = 1, λ− = 3, λ+ = 1.45, and N = 15.

of tunnelling between phases, where realizations initially
in the normal phase spontaneously jump to the superra-
diant phase, driven by quantum fluctuations. The pres-
ence of a stable normal phase disrupts direct tunnelling
of trajectories between the two superradiant states, be-
cause to do so trajectories would need to pass through
a region of phase space which is now attracting, hence,
pulling trajectories into the normal phase.

On a longer timescale, the system continually switches
between the normal and superradiant phase as quan-
tum jumps drive the system between stable states. As
Fig. 3(b) shows, this creates dramatic changes in the
photon number as trajectories move between the nor-
mal and superradiant states. As the classical limit is ap-
proached, the relative strength of quantum fluctuations
reduces and the switching rate gradually decreases. In
the limit N → ∞, the system becomes classically deter-
ministic and the final state is fully determined by the
initial condition.

Quantum hysteresis.—Systems with multistable states
generically feature history dependence, known as hystere-
sis, when parameters are swept. In this situation, during
a parameter sweep certain equilibria can only be accessed
when increasing or decreasing a parameter. A hysteresis
loop exists in the semiclassical model due to the multi-
stable regime between the saddle-node and pitchfork bi-
furcations. If a slow, adiabatic sweep is performed from
the normal phase for increasing λ+, the system remains
in the normal phase until the pitchfork bifurcation (P)
is reached and then it quickly transitions to the superra-
diant phase. If instead λ+ is decreased from the super-
radiant phase, the system tracks along the superradiant

0.6 0.7 0.8 0.9 1
λ+

0

10

20

〈â†â〉
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FIG. 4. Quantum hysteresis in the photon number 〈â†â〉,
monitored via photocounting. Shown is the ensemble average
of fifty quantum trajectories when λ+ is increased (green),
and when λ+ is decreased (black); also shown is the semiclas-
sical bifurcation diagram with normal phase equilibria (red)
and the superradiant equilibria (blue), where unstable equi-
libria are shown dashed. Here κ = ω = ω0 = 1, λ− = 1.8,
N = 30, and Tramp = 500/κ.

branch all the way to the saddle-node bifurcation (SN);
the system then makes a fast transition to the normal
phase.

The semiclassical hysteresis loop has a quantum me-
chanical counterpart. Figure 4 shows the ensemble aver-
age over a series of fifty (photon counting) quantum tra-
jectories subject to a slow, linear time-dependence on λ+,
either increasing or decreasing, overlaid atop the semi-
classical bifurcation diagram. We used a ramp time of
Tramp = 500/κ for N = 30 atoms, which was chosen to
be considerably slower than the equilibration time, to en-
sure the adiabatic tracking of the quantum states. The
ramp time is also considerably shorter than the switching
time, otherwise averaging over many switches will repro-
duce the master equation result. The quantum hystere-
sis loop in Fig. 4 is in good agreement with the predic-
tions from the semiclassical model. However, there are
some notable differences. In the upward sweep of λ+,
the photon number begins to increase before the pitch-
fork bifurcation due to quantum tunnelling. Similarly,
in the downward sweep, the photon number begins to
decrease before the saddle-node bifurcation, again due
to quantum tunnelling, and remains non-zero for a short
time even after the bifurcation. Indeed, the right hand
side of system (3) is near-zero in the region where the
equilibria just disappeared in the saddle-node bifurcation
(SN), this produces a “quasistable” superradiant area in
phase space, also referred to as a ghost [23], that can be
tracked during the downward sweep of the semiclassical
model. With the addition of quantum fluctuations, the
quasistable region can be accessed by tunnelling, so tra-
jectories can linger there for some periods of time during
the downward sweep of λ+, causing the photon number to
remain non-zero after the SN point. Contrast this with
the pitchfork bifurcation (P), where the stable normal
phase not only disappears, but is replaced by an unsta-
ble state that actively repels trajectories to drive them to



5

0.25 0.8f
0

1
|F̃

〈â
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FIG. 5. Superradiant oscillations in the quantum regime.
Panel (a) shows the (normalized) Fourier spectra of a semi-
classical (red) and quantum (blue) photon number trajectory,

where F̃{·} = F{·}/maxF{·}. Panel (b) shows the temporal
trace of the photon number oscillations of a quantum trajec-
tory. Here κ = ω = ω0 = 1, λ− = 1.5, λ+ = 1.8, N = 200,
and the total sample time is 2000.

the superradiant states, thus, not creating a possibility
for transient quasistability in the upward sweep.

Superradiant oscillations.—A major result of the ex-
periments in [14] is the observation of an oscillatory su-
perradiant phase, identified in a short-lived (due to de-
phasing) cavity output signal. In the semiclassical de-
scription, these oscillations emerge from a Hopf bifurca-
tion of superradiant equilibria (see [16] for details). Fig-
ure 5 shows that such oscillations can also be identified
in quantum simulations of (photocounting) quantum tra-
jectories. Compared to equilibria, the clear detection of
oscillations requires a significantly greater reduction of
quantum fluctuations, so we use a higher atom number of
N = 200. Figure 5(a) shows that the Fourier spectrum of
the quantum trajectories, while significantly broadened,
peaks at the single main frequency of the semiclassical
oscillation. The spectrum encodes the oscillatory prop-
erty of the quantum trajectory in Fig. 5(b), subject to
quantum fluctuations. Importantly, for only N = 200
atoms these fluctuations are small enough to reveal the
oscillations of the semiclassical limit.

Conclusions and outlook.—We have studied the quan-
tum signatures of nonlinear dynamics in a generalized,
open Dicke model. Our results provide fundamental in-
sight into the quantum–classical transition by explaining
how features of classical nonlinear dynamics arise from
the quantum world. Specifically, we have shown that
the presence of quantum fluctuations during a two-stage
transition to superradiance causes spontaneous switch-
ing between the normal and superradiant phases, and
that this situation leads to the formation of a quantum
hysteresis loop when parameters are swept adiabatically.
Given the success of recent experiments, our analysis
suggests that the multistable region may be of consid-
erable interest to probe experimentally. Moreover, we
have demonstrated that superradiant oscillations can be
identified for atom numbers several orders of magnitude
smaller than those in current experiments. This suggests
that it should be possible to access experimentally also

the quantum signatures of more complex nonlinear phe-
nomena observed in the semiclassical analysis [16]; in-
cluding other types of periodic oscillations, as well as
localized and non-localized chaotic atttractors. Overall,
our results demonstrate that insights offered by semiclas-
sical models extend further into the quantum world than
previously thought.
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M. Gärttner, K. A. Gilmore, J. E. Jordan, J. Cohn, J. K.
Freericks, A. M. Rey, and J. J. Bollinger, “Verification
of a many-ion simulator of the dicke model through slow
quenches across a phase transition,” Phys. Rev. Lett.,
vol. 121, p. 040503, Jul 2018.

[13] F. Dimer, B. Estienne, A. S. Parkins, and H. J.
Carmichael, “Proposed realization of the Dicke-model
quantum phase transition in an optical cavity QED sys-
tem,” Phys. Rev. A, vol. 75, p. 013804, Jan. 2007.

[14] Z. Zhiqiang, C. H. Lee, R. Kumar, K. J. Arnold, S. J.
Masson, A. S. Parkins, and M. D. Barrett, “Nonequilib-
rium phase transition in a spin-1 Dicke model,” Optica,

mailto:kevin.stitely@auckland.ac.nz


6

vol. 4, pp. 424–429, Apr 2017.
[15] Z. Zhang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Mas-

son, A. L. Grimsmo, A. S. Parkins, and M. D. Barrett,
“Dicke-model simulation via cavity-assisted raman tran-
sitions,” Phys. Rev. A, vol. 97, p. 043858, Apr 2018.

[16] K. C. Stitely, A. Giraldo, B. Krauskopf, and S. Parkins,
“Nonlinear semiclassical dynamics of the unbalanced,
open dicke model,” Phys. Rev. Research, vol. 2,
p. 033131, Jul 2020.

[17] J. Gelhausen and M. Buchhold, “Dissipative dicke model
with collective atomic decay: Bistability, noise-driven ac-
tivation, and the nonthermal first-order superradiance
transition,” Phys. Rev. A, vol. 97, p. 023807, Feb 2018.

[18] M. Soriente, T. Donner, R. Chitra, and O. Zilberberg,
“Dissipation-induced anomalous multicritical phenom-
ena,” Phys. Rev. Lett., vol. 120, p. 183603, May 2018.

[19] J. Keeling, M. J. Bhaseen, and B. D. Simons, “Collec-
tive dynamics of bose-einstein condensates in optical cav-
ities,” Phys. Rev. Lett., vol. 105, p. 043001, Jul 2010.

[20] H. J. Carmichael, An Open Systems Approach to Quan-

tum Optics. Springer Science & Business Media, May
1993.

[21] H. J. Carmichael, Statistical Methods in Quantum Optics

2: Non–Classical Fields. Theoretical and Mathematical
Physics, Springer, Jan. 2007.

[22] See supplemental material below for a brief discussion
of quantum trajectories and the heterodyne detection
stochastic Schrödinger equation.

[23] S. Strogatz, Nonlinear Dynamics and Chaos: With Ap-

plications to Physics, Biology, Chemistry, and Engineer-

ing, vol. 2. Westview Press, 2015.



ar
X

iv
:2

00
7.

13
27

1v
1 

 [
qu

an
t-

ph
] 

 2
7 

Ju
l 2

02
0

Supplemental Material for “Superradiant Switching, Quantum Hysteresis, and

Oscillations in a Generalized Dicke Model”

Kevin C. Stitely,1, 2, 3 Stuart J. Masson,4 Andrus Giraldo,1, 2 Bernd Krauskopf,1, 2 and Scott Parkins1, 3

1Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
2Department of Mathematics, University of Auckland, Auckland 1010, New Zealand

3Department of Physics, University of Auckland, Auckland 1010, New Zealand
4Department of Physics, Columbia University, New York, New York 10027, USA

In these supplementary materials we provide details on quantum trajectories and stochastic Schrödinger equations
used to give single realizations of an open quantum system. The stochastic Schrödinger approach is used to access
phase information of the system by simulating interference of the output of the cavity with a strong laser source with
a beamsplitter.

I. QUANTUM TRAJECTORY THEORY: PHOTOCOUNTING

Quantum trajectory theory [1–3] provides an avenue for “unravelling” the master equation

dρ̂

dt
= −i[Ĥ, ρ̂] + κ

(

2âρ̂â† − â†âρ̂− ρ̂â†â
)

(1)

in terms of a stochastic average over an ensemble of individual realizations of the dynamics as a set of pure states. The
quantum trajectory approach splits the master equation into two contributions: a continuous non-unitary evolution
and randomly applied discrete quantum jumps. The former involves evolution described by a Schrödinger equation
with the non-Hermitian Hamiltonian

Ĥeff = Ĥ − iκâ†â. (2)

During the course of a single realization, the quantum state is time-evolved under the non-Hermitian Hamiltonian
Ĥeff , interrupted by quantum jumps. Starting with an initial pure state |ψ0〉, at each step j = 0, . . . , n with a time
increment δt the probability of the occurence of a quantum jump is pj = 2κ 〈ψj |â†â|ψj〉 δt. Written as an algorithm
describing a single quantum trajectory under photocounting at each step j, the quantum state |ψj+1〉 is computed as
follows:

Step 1: Advance simulation time tj+1 = tj + δt.

Step 2: Calculate the probability of a quantum jump pj = 2κ 〈ψj |â†â|ψj〉 δt.

Step 3: Sample a random number rj ∈ [0, 1] from a uniform probability distribution.

Step 4: If pj > rj (quantum jump):

|ψj+1〉 =
â |ψj〉

√

〈ψj |â†â|ψj〉
. (3)

Step 5: Else (evolution by non-Hermitian Hamiltonian):

|ψj+1〉 =
e−iĤeffδt |ψj〉

√

〈ψj |eiĤ
†

eff
δte−iĤeffδt|ψj〉

. (4)

Under these rules for the system’s time-evolution, quantum trajectories are consistent with the master equation (1) in
that the ensemble average of the expectation values of operators over many realizations will recreate the expectation
values obtained by tracing over the density matrix solution to the master equation.

http://arxiv.org/abs/2007.13271v1
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II. STOCHASTIC SCHRÖDINGER EQUATIONS: HOMODYNE AND HETERODYNE DETECTION

In the quantum trajectories framework the choice of how to unravel the master equation (1) into discrete quantum
jumps and evolution via a non-Hermitian Hamiltonian is not unique. In fact, different unravellings may model
different measurement processes used to gather information about the internal dynamics of an open quantum system.
In particular, the unravellings we are concerned with give us the ability to access phase information that is otherwise
obscured by the photocounting method given above. We will consider here an unravelling of the master equation
based on the theory of quantum optical quadrature measurements [4, 5].
Instead of considering a single photodetector monitoring the output of the cavity, we consider the output field of the

cavity entering a 50/50 beamsplitter, with a strong local oscillator incident on the other input arm of the beamsplitter.
The local oscillator is modelled as a classical coherent field with large amplitude A ∈ R oscillating with a detuning Ω
from the frequency of the rotating frame and a phase θ. The outputs of the beamsplitter lead to two detectors D1

and D2. The annihilation operators for the fields at the two detectors are

Ĉ1 =
√
2κâ−Ae−iΩteiθ, (5)

Ĉ2 = i
√
2κâ+ iAe−iΩteiθ, (6)

respectively. In the limit of a very strong local oscillator A2 ≫ 〈â†â〉, most of the counts incident on the photodetectors
will be due to the local oscillator, with a small number of counts arising due to the internal dynamics of the cavity.
Our goal is to use the quantum trajectory approach in the limit A→ ∞ to model a continuous diffusion process that
can be cast into the form of a stochastic differential equation for the quantum state. To this end, consider the average
number of photocounts into detector D1 over a time ∆t,

N̄1 = 〈Ĉ†
1 Ĉ1〉∆t = (A2 −

√
2κA 〈eiΩte−iθâ+ eiΩte−iθâ†〉+ 2κ 〈â†â〉)∆t, (7)

and the average number of photocounts in detector D2

N̄2 = 〈Ĉ†
2 Ĉ2〉∆t = (A2 +

√
2κA 〈eiΩte−iθâ+ e−iΩteiθâ†〉+ 2κ 〈â†â〉)∆t, (8)

where X̂θ(t) = eiΩte−iθâ+e−iΩteiθâ† is a quadrature operator. Approaching the limit A→ ∞, where quantum jumps
occur at an infinite rate, the quantum dynamics appear as a simultaneous combination of quantum jumps governed by
the collapse operators Ĉ1 and Ĉ2, and continous non-unitary evolution governed by the non-Hermitian Hamiltonian
(2), so the mapping of quantum states from time tj to tj+1 is

|ψ̄j+1〉 = Ĉ1Ĉ2e
−iĤeff∆tj+1 |ψ̄j〉 , (9)

where the bar over a quantum state denotes the unnormalized form, and ∆tj+1 = tj+1− tj . Instead of considering the
times where quantum jumps occur at tj , tj+1 etc., to derive a diffusive form of the quantum dynamics, we consider a
coarse grained time interval ∆t over many quantum jumps, so we have

|ψ̄(t+∆t)〉 = ĈN1

1 ĈN2

2 e−iĤeff∆t |ψ̄(t)〉 , (10)

=
(√

2κâ−Ae−iΩteiθ
)N1

(

i
√
2κâ+ iAe−iΩteiθ

)N2

e−iĤeff∆t |ψ̄(t)〉 , (11)

= iN2

(

1−
√
2κ

A
eiΩte−iθâ

)N1
(

1 +

√
2κ

A
eiΩte−iθâ

)N2

e−iĤeff∆t |ψ̄(t)〉 . (12)

Applying the binomial expansion to the jump terms and a Taylor expansion of the exponential up to O(∆t2), the
mapping becomes

|ψ̄(t+∆t)〉 = iN2

(

1 +

√
2κ

A
(N1 −N2)e

iΩte−iθâ

)

(

1− iĤeff∆t
)

|ψ̄(t)〉 . (13)

The number of counts incident on the photodetectors N1 and N2 are interpreted as Poissonian random variables with
variances ∆N1 = ∆N2 = A

√
∆t. Over many quantum jumps the central limit theorem may be applied and N1 and N2

may be considered Gaussian random variables. The difference of the counts is then also a Gaussian random variable

N1 −N2 = 2
√
2κA 〈eiΩte−iθâ+ e−iΩteiθâ†〉∆t+A∆W, (14)
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where ∆W ∈ R is a Wiener increment. Substituting (14) into (13) we get

|ψ̄(t+∆t)〉 =
[

1− iĤeff∆t+
(

4κ 〈eiΩteiθâ+ e−iΩteiθâ†〉∆t+
√
2κ∆W

)

eiΩte−iθâ
]

|ψ̄(t)〉 , (15)

where the factor iN2 can be discarded as it only contributes an overall phase. In the limit ∆t → dt, ∆W → dW ,
(∆W )2 → dt, (dt)2 → 0, with |ψ̄(t+∆t)〉 = |ψ̄(t)〉+ d |ψ̄〉, this may be cast into the form of a stochastic Schrödinger
equation

d |ψ̄〉 =
[

−iĤeffdt+
(

4κ 〈eiΩte−iθâ+ e−iΩteiθâ†〉 dt+
√
2κdW

)

eiΩte−iθâ
]

|ψ̄〉 . (16)

When the frequency of the local oscillator is identical to the frequency of the rotating frame (for instance if the
probe laser is also used to drive the cavity), the detuning Ω is zero, leading to the stochastic Schrödinger equation for

homodyne detection

d |ψ̄〉 =
[

−iĤeffdt+
(

4κ 〈e−iθâ+ eiθâ†〉 dt+
√
2κdW

)

e−iθâ
]

|ψ̄〉 . (17)

On the other hand, if the probing laser is far detuned from the internal dynamics, i.e., Ω ≫ 2κ, (15) can be time-
averaged over ∆t to form the stochastic Schrödinger equation for heterodyne detection [5]

d |ψ̄〉 =
[

−iĤeffdt+
(

2κ 〈â†〉 dt+
√
2κdξ

)

â
]

|ψ̄〉 , (18)

where dξ is a complex Wiener increment.

[1] H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non–Classical Fields, Theoretical and Mathematical Physics
(Springer, 2007).

[2] A. J. Daley, Advances in Physics 63, 77 (2014).
[3] H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer Science & Business Media, 1993).
[4] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 642 (1993).
[5] H. M. Wiseman and G. J. Milburn, Phys. Rev. A 47, 1652 (1993).

http://dx.doi.org/10.1007/978-3-540-71320-3
http://dx.doi.org/10.1080/00018732.2014.933502
http://dx.doi.org/10.1103/PhysRevA.47.642
http://dx.doi.org/10.1103/PhysRevA.47.1652

	Supplemental Material for ``Superradiant Switching, Quantum Hysteresis, and Oscillations in a Generalized Dicke Model"
	I Quantum Trajectory Theory: Photocounting
	II Stochastic Schrödinger equations: Homodyne and Heterodyne Detection
	 References


