

Deus ex Machina:

Towards a Negative Ontology of Software

Josh Firth

A thesis submitted in partial fulfilment of the requirements for the degree Doctor of Philosophy in

Management, the University of Auckland, 2020.

2

Abstract

Organisations are increasingly turning to software to manage, monitor, organise, and optimise

almost every aspect of work today. This is especially true in the healthcare industry, where a global

trend towards rising costs and surges in demand have led to the use of software to ease this burden

by optimising healthcare with algorithmic management techniques, data analytics, and the promise

of AI. This thesis draws on an ethnographic study of a global health software company to

investigate the construction of a fantasy discourse lurking behind its software. It finds that software

is ontologically problematic. This fact has been overlooked, and as a result, its consequences for

organisations have gone unexamined. Rather than trying ever harder to define software once and

for all, this thesis demonstrates that what software is not has important effects for organisations.

Through a poststructuralist discourse analysis of ethnographic data, this thesis reveals the

emptiness of software as a signifier, and the way in which this emptiness constructs a powerful

fantasy of the ultimate perfection of healthcare through software. More significantly, this thesis

further demonstrates that the inevitable failure of this fantasy to deliver on its promises has the

paradoxical effect of reinforcing itself and silencing effective critical engagement. In practical

terms this thesis seeks ultimately to challenge the tendency towards abstract, grandiose visions in

software discourse. Instead it aims to invite managers, clinicians, and society itself to re-ground

our conversations about software in specifics, so that we might find new means for critical

conversations regarding software’s purportedly inevitable domination of organisational life.

3

For Grayson and Violet

4

Acknowledgements

This thesis would not exist in any form had it not been for the unwavering encouragement and

support from my supervisor, Brigid Carroll. Over the decade that I have known her, Brigid has

done more to shape who I have become than anyone else. I will be forever grateful for the way she

has inspired me to achieve more than I ever thought I could.

I would also like to give special acknowledgement to my family. My parents were there for me

when I really needed them, as they have always been. Without their unconditional love, this thesis

would have been little more than a dream. My children also have inspired me in more ways than I

can describe. Over the years, months, and days I spent working on this thesis, their artworks

adorned my desk while their smiles spurred me on. This thesis is for you, Grayson and Violet.

I want to acknowledge my dear, beautiful Neda, who has filled my life with love and laughter, even

when the night was darkest. Your encouragement fuelled me with the energy to finish and being

with you in our lab together transformed those long hours of work into something I always looked

forward to. For this, and immeasurably more, I am so thankful to have you in my life.

I would also like to thank the organisations that allowed me into their spaces for this research and,

more importantly, the people I met along the way. It goes without saying that without your

kindness, openness, and generosity, this research would not be possible.

There are a great many others who deserve my enduring gratitude for the completion of this thesis,

indeed too many to name. Of those, however, I especially thank Helen and Cris, whose early

guidance laid sure foundations for the rest to follow. I also thank Brad for surfing and laughter, my

brothers Caleb and Daniel for their friendship, Laura for tea and wisdom, and the team at NZLI,

especially Fiona, for kindling my love of research in the first place. Truly this thesis exists only

because of the love and support these people, and many others, have shown me.

5

Table of Contents

ABSTRACT .. 2

ACKNOWLEDGEMENTS ... 4

TABLE OF CONTENTS .. 5

1. INTRODUCTION .. 7

THE HYPE OF SOFTWARE ... 8
FUNCTIONAL STUPIDITY ... 10
THE ONTOLOGY OF SOFTWARE ... 12
RESEARCH DESIGN .. 16
OVERVIEW OF CHAPTERS ... 20

2. PROBLEMATISATION .. 25

PROBLEMATIC DEFINITIONS OF SOFTWARE DEVELOPMENT .. 27
PROBLEMATIC DEFINITIONS OF SOFTWARE .. 30
BEYOND SOCIOMATERIALITY ... 43
TOWARDS A NEGATIVE ONTOLOGY OF SOFTWARE .. 46

3. THEORETICAL FRAMEWORK ... 50

THE LIMITS OF PRACTICE .. 51
DISCOURSE AND PRACTICE ... 55
DISCOURSE AND IDENTITY: POSTSTRUCTURALISM ... 56
THE FAILURE OF IDENTITY ... 65
FANTASY AND DESIRE ... 67
IDEOLOGY AND EMPTINESS .. 72

4. METHODOLOGY .. 78

ETHNOGRAPHY .. 78
DISCOURSE ANALYSIS ... 93
EPISTEMOLOGICAL REFLEXIVITY .. 102
ETHICAL CONSIDERATIONS .. 107

5. EMPTINESS ... 110

WHAT IS SUPERSMART? ... 112
SUPERSMART AS AN EMPTY SIGNIFIER .. 123
WHAT ARE SOFTWARE PRODUCTS? ... 125
WHAT IS SOFTWARE? ... 129
WHAT SOFTWARE ISN’T .. 133

6 FANTASY .. 135

THE UBER-CLINICIAN ... 138
PRE-EMPTIVE PATIENTS ... 149
PERFECTED WORKFLOWS .. 156
BRINGING IT ALL TOGETHER ... 164

7. FAILURE .. 168

MUNDANITY AND GAPS ... 172
WHO IS TO BLAME? .. 177
INEVITABLE FAILURE .. 180
THE AFFECTIVE FORCE OF FANTASY ... 188
HEGEMONIC EFFECTS ... 192

8. DISCUSSION .. 201

FUNCTIONAL STUPIDITY ... 203
THREE KINDS OF FUNCTIONAL STUPIDITY IN HEALTHCARE PERFECTED ... 207

6

COMMUNICATIVE ACTION AND IDEOLOGY .. 214
REACTIVATION .. 216
SOCIOMATERIALITY .. 221

9. CONCLUSION .. 224

CONTRIBUTIONS TO THE LITERATURE ... 224
PRACTICAL RECOMMENDATIONS ... 230
LIMITS & FUTURE RESEARCH .. 236
CLOSING STATEMENT ... 241

10. REFERENCES ... 244

7

1. Introduction

It’s my very first day at CloudDoc1 and I feel like Charlie on his visit to Willy Wonka’s

chocolate factory. I’ve been here a few times already but each time I’ve had to sign in on an iPad,

declaring my acknowledgement of their IP and avowing to never reveal their secrets. Today, there

is no NDA to sign. Today I am becoming an employee, a ‘Clouder’. And like the chocolate factory,

this place emanates a powerful vibe of excitement and fun. I’m led through the large cafeteria in

which a couple of young guys are playing ping-pong next to an 80s space invader machine. The

guys are in shorts and tees, with EPSN is playing on a large flat screen behind them, next to a well-

stocked beer fridge. A smile spreads uncontrollably across my face… I like this place! The kitchen

has a homely feeling to it, with cereal boxes strewn untidily down the length of an impressively

long island bench. Clouders crowd around a full-size barista coffee machine at one end where they

chat in relaxed tones about their weekend and fiddle with the machine. Some of them aren’t even

wearing shoes.

 I’m led further into the heart of this amazing building, past meeting breakout rooms that

look more like cosy corners in a posh bar, with funky wooden panelling and mismatched leather

couches. Eventually I am taken to the IT guys and I marvel momentarily at the fact that a software

company has its own IT department. What do these guys even do? But I forget about my questions

as soon as I enter the small room. It’s lined floor to ceiling with shelving on all sides, brimming

with carelessly stacked technological gadgets. The largest side of the room has MacBook pros piled

on top of each and sorted by year. Another wall has stacks and stacks of iPhones, and third is full

of accessories like keyboards and headphones. After about 15 minutes I’m issued my first company

laptop and an all access swipe card and then taken to my new desk, situated in the middle of the

HR team on the corporate side of the building. My team are all younger than me, save the team

lead who is about my age, and after brief introductions (including an introduction to the barista

machine given my new, hoody-clad colleague) I set to work on my induction process.

1 A pseudonym to protect the identity of my research organisation.

8

Like almost everything, the induction here at CloudDoc is conducted virtually. I am

required to learn everything I need to know to survive in this strange environment at the CloudUni,

an online learning space created by the company’s learning and education team. I fire up my laptop

and find that I am greeted by a large message box reminding me that CloudDoc ‘trusts’ me to use

my laptop responsibly (which is why they will be monitoring everything I do on it). There is only

an ‘OK’ box, so I consent. Later I will learn that I must agree to this checkbox every time I log in.

One of the first modules aims to teach me more about CloudDoc and I learn many

interesting facts about the company, as well as many less interesting nuggets like how to cross the

road safely between the two main buildings of the campus. Seriously. Then I find something that

really captures my attention. I am shown a historical timeline in which the establishment of

CloudDoc around 25 years ago is featured as one of the landmark events in the history of healthcare,

along with events like the development of penicillin, x-rays, vaccines, and decoding the human

genome. I’m told that this company is revolutionising healthcare worldwide with products that are

making a step-change in the possibilities of health. There’s an incredible sense of grandeur about

this company and this is matched by the sentiments expressed by almost everyone I’ve met so far.

They all tell me how fantastic it is to work with such ‘super smart’ people who are changing

patients’ lives. I look around and feel, well, a sense of pride—pride that I have managed to land

myself in such a cool company for my fieldwork. I simply can’t help but feel excited.

* * *

The Hype of Software

I have chosen to begin this thesis by recreating a sense of what it was like to begin my

ethnographic fieldwork in a global health software company that was, at that time at least, regarded

as one of the leading lights in software throughout Australasia. But as this thesis shall show, my

initial sense of grandiosity would come to be undermined and ultimately irrevocably shattered as

my fieldwork progressed. I began to find that, like a cheap veneer peeling around the edges, there

was a darker underside to this story, one that would come to provoke the most intriguing and vexing

9

questions, and which would eventually culminate in what I believe is a novel and as yet unexplored

way of thinking about software. Substantiating this claim is the central aim of this thesis.

It seems that software everywhere is being hailed as world changing and revolutionary. The

top five companies in the world are now all software companies, leading to some hailing data as

the new oil (Parkins, 2017). These companies seem to compete not only for market share, but also

in terms of their reputations to be the coolest, most future-forward tech company leading to stunts

like people jumping from helicopters over a convention while wearing live video camera glasses

and then riding mountain bikes through the crowd and up onto the stage.2 There is a pronounced

sense of hype about our expectations of software, visible in the public press (Financial Times, 2020;

NZ Herald, 2020; The Economist, 2020) through to academic literature (e.g. Duan, Edwards, &

Dwivedi, 2019; Garbuio & Lin, 2019; Haenlein, Kaplan, Tan, & Zhang, 2019; Kaplan & Haenlein,

2020; Obschonka & Audretsch, 2019; Shrestha, Ben-Menahem, & Von Krogh, 2019). Software is

ripe with claims about the digital revolution we are witnessing with the advent of technologies like

blockchain (e.g. Montecchi, Plangger, & Etter, 2019; Schmeiss, Hoelzle, & Tech, 2019), the

Internet of Things (e.g. Omerovic, Islam, & Buxmann, 2020; Paukstadt & Becker, 2019) and

especially AI and big data (e.g. AI Forum, 2019; MBIE & AI Forum, 2018; Walsh et al., 2019).

In the context of healthcare, we hear that AI offers huge potential benefits around increasing

accuracy, efficiency, and even making healthcare more personalised (AI Forum, 2019), with

somewhere between $1.6b and $3.6b NZD of savings on offer from labour efficiencies through AI

(MBIE & AI Forum, 2018, p. 49). Certainly, there are examples that lend credibility to these claims

in terms of AI being able to produce outcomes beyond that which is apparently achievable by

people. For example, researchers recently utilised the power of AI to develop a new super-antibiotic

(Trafton, 2020). In another example, IBM’s Watson was trundled out to Bondi Beach in Australia,

where it scanned over 800 beachgoers in order to provide early diagnoses on Melanoma. It is

claimed that Watson has a 91% accuracy rate at making this diagnoses, which is, at least according

2 This literally happened at a Google convention, demonstrating Google Glasses (a technology which, despite the hype,

subsequently fizzed into nothing).

10

to IBM, far superior to a doctor, with either the naked eye (60%) or a microscope (~80%) (Batstone,

2017).

However, because of all the hype about software, it’s easy to overlook how often we

encounter IT systems that are inefficient, cumbersome, pedantic, controlling, and simply just

broken. I became especially attuned to this throughout my doctoral research, during which I would

marvel at the number of times I’d hear apologies that ‘we’ve just updated our system and now I

can’t find any products’ (or something similar). Closer to the topic of this thesis, if I happened to

mention to a clinician that I was studying health software, I’d be immediately cut off mid-sentence

and then subjected to an impassioned tirade about the many, many woes inflicted by poorly

designed, slow, tedious, and dysfunctional IT systems. Many clinicians I met would tell me that

their latest health software system meant that they now had to spend extra time after their shift,

often unpaid, to work through frustrating digital forms and documentation. How can the daily and

apparently common experience of broken, inefficient health software be so far removed from the

transcendent imagery of radical healthcare revolution that permeated the language and beliefs of

the people I met at CloudDoc? How can software be at once so fantastic and yet so prominently

failing?

Functional Stupidity

I’m going to argue in this thesis that this contradiction is in fact the sign of a much deeper

problem. Ultimately I aim to demonstrate that the way organisations are thinking and talking about

software is an example of what Alvesson and Spicer (2012) call ‘functional stupidity’, which they

define as an ‘organizationally-supported lack of reflexivity, substantive reasoning, and

justification’ (p. 1196). As the name implies, functional stupidity is at once functional and stupid.

It’s functional because there are certain stories and beliefs that lead to cohesive and compliant

organisations which therefore run smoother than those that promote or at least allow reflexivity

and questioning. For this reason, such beliefs are often sanctioned or even nurtured by organisations

11

through an emphasis on symbolic rather substantive aspects of work (Alvesson & Spicer, 2012, p.

1202). But these beliefs and practices are also stupid because of the way they lead to undesired and

paradoxically dysfunctional outcomes. This thesis will highlight several examples of these.

At this point, however, a note on the word stupid is warranted. This may seem like harsh

language and perhaps it is. But it’s important to recognise two things about this claim: 1) it is not

a claim that people themselves are stupid but rather the opposite. The people in functionally stupid

organisations are often in fact demonstrably smart individuals and therein lies the problem.

Functional stupidity is characterised by an unwillingness or organisationally produced inability to

exercise cognitive capacity for the purposes of reflexivity and sound reasoning. It is, in other words,

the surprising finding that smart people don’t always use their full intelligence at work. This leads

to a corollary point: 2) The goal therefore of highlighting functional stupidity is not to insult but

rather it is meant to inspire us to reengage our full intellectual capacity when it comes to thinking

clearly, and critically, about software. As will be argued throughout this thesis, there are important

shifts at play in healthcare as software comes to increasingly mediate or control all aspects of

healthcare practice. Health software is filled with promise, and this comes at a time when one of

the great imperatives of developed nations is to find new ways of coping with the burgeoning costs

of healthcare amid rising and aging populations. But equally it is important that we get these

transitions right, given that the costs of mistakes in healthcare are measured not only in dollars, but

in lives. As I shall show in this research, the immense promise of software is frequently tempered

with the repeated failure of these products to live up to the hype. And while this may well be

nothing more than ‘speed bumps’ along the way to perfect healthcare, this research reveals a

pronounced inability to think critically about the failures of software, nor the important

organisational consequences they lead to.

I will argue that this demonstrates profound functional stupidity regarding software, where

significant trade-offs are being made due to a lack of reflexivity. In particular, this thesis culminates

in a discussion of three surprising areas of functional stupidity through software. I show that under

12

the guise of humanity’s most modern and progressive technology—software—lurks an unexpected

renaissance of Taylorist scientific management assumptions. I show further that this is advanced

by unreflective belief that software automatically equals efficiency. In contrast, my research

highlights many areas in which software actually decreases efficiency, partly due to the

functionally stupid lack of reflection about this point. Lastly, I show that, overall, health software

discourse is underpinned by the cynical dismissal of human autonomy and expertise, and that this

pervasive view of humanity as deficient makes discourse about software difficult to reflect on and

resist.

Closing down reflexivity is one of the key consequences to functional stupidity, blocking

what Alvesson and Spicer (2012), drawing on Habermas (1984), call communicative action, which

is defined as ‘dialogue that creates views and norms that are well-grounded in arguments’

(Alvesson & Spicer, 2012, p. 1200). My argument is that software is precisely a subject that needs

engaged, open dialogue and yet this is currently stifled, at least in the context of healthcare.

Increasing communicative action about software is the overarching goal of this thesis, aiming

therefore to reduce functional stupidity in this domain. However, its most important contribution

is not merely the rhetorical argument that this needs to happen, but rather in providing a theoretical

framework that explains how software is able to slip the bounds of reason, tending instead towards

functional stupidity in organisations—specifically healthcare. To make this argument leads me to

introduce the important, if often overlooked, problematic ontology of software.

The Ontology of Software

As the subtitle of this thesis indicates, the major thrust of this research is an examination of

the ontology of software and, in particular, the argument that we should move Towards a negative

ontology of software. Two key questions occur at this point: First, what is so interesting about the

ontology of software? And second, what do I mean by a negative ontology? Taking the first

question first, the ontology of software may seem to be a fairly esoteric notion that has little to do

13

with the observations raised so far in this chapter. Yet what software actually is—in other words,

the ontology of software—has been a surprisingly difficult topic to ascertain throughout its history

within technology studies.3 As I will detail throughout this thesis, despite many varied attempts to

pin down the ontology of software, no easy consensus has been found.

This may surprise the reader. Because software is such a common entity in the world today,

the question of just what exactly it is has come to be taken-for-granted. But what is software, really?

What kind of a ‘thing’ is it? Where are edges of software? Where is it actually located? Is it the

lines of code written by developers or the function it delivers? If it is the functions, at what level is

it? The individual scripts, the interactions between whole programmes, or the complex

functionality delivered through networked computers? Moreover, if its essence depends on

functionality, in what way does the ‘thingness’ of software then become contingent on its user?

Does that mean a bad user makes the software bad? Or, conversely, does a skilful user change what

software is? Indeed a key question that has troubled scholars since it was first posed is whether

software remains the same ‘thing’ when it is used for purposes never anticipated by its developers,

as is typical of software (Orlikowski, 2000). What can explain this plasticity of meaning for

software? And yet, on the other hand, if the meaning of software is so determined by its use then

what if some software is not, in fact, used at all but sits on a hard drive somewhere, all but forgotten.

Is that still software or is it just writing? If it is only writing, however, then software would seem

to have no real inherent meaning except through its use, therefore implying its meaning is entirely

contextual. All this leads to great difficulties in defining software, and, as I shall demonstrate, the

boundaries, thingness, and definition of software is a question that just keeps unravelling as one

attempts to pin it down. Most surprisingly to me, I found this difficulty was experienced even by

those who we would most expect to be able to define software, namely developers themselves.

Even highly technical experts were stumped when it came to defining what software was, or even

3 By which I mean in particular the disciplines of Information Systems research, Socio-technical Studies and

Organisation studies. This is reviewed in greater detail in Chapter Two.

14

specific software products within their product suite. Software, it turns out, is unexpectedly difficult

to locate as a specific ‘thing’ in the world.

The sociomateriality perspective (e.g. Orlikowski, 2007, 2009, 2010) has offered the most

developed consideration the question of the ontology of software in organisation studies.4 As I will

demonstrate, this position has arisen as a counterpoint to a longstanding, dualistic, and ultimately

inadequate theorisation of software. To deal with this difficulty, the sociomateriality perspective

effectively concedes defeat at attempting to define software as any single ‘thing’ in the world,

whose essence and properties can be known and fixed. Instead sociomateriality locates the ontology

of software in its instantiation in an entanglement of social and material practice. This means that

‘what software is’ is dependent on its specific instantiation and it is therefore always open to novel

interpretations and new practices. Through its relational ontology that emphasises the mutual

constitution of the social and material (Barad, 2003), this perspective is able to sidestep a simplistic

and dualistic understanding of software.

Despite the unquestionable utility of this approach, in this thesis I argue that there is,

nevertheless, a problem with it, and also every mainstream answer to this issue within the field’s

history. This problem is the key gap which this thesis seeks to both identify and fill. The issue is

that despite their differences, all of these approaches share an emphasis on persevering in the effort

to locate and fix an answer to the question of what exactly software is. Yet for all their efforts, none

of these projects manage to satisfactorily pin down the ontology of software. And, even more

importantly, none of the perspectives recognise the significance of this issue either. This argument

in unpacked in proper detail in the next chapter. For now, however, the key point is that, in response

the first question about why the ontology of software should matter, the answer is that when we

ignore or overlook the consistent problems we have in identifying what software is, we fail to

recognise that this is precisely what enables software to evade effective criticism. Put differently,

4 I use the shorthand organisation studies to refer to the broader field of management and organisation studies, that

being my natural disciplinary home as at student in the Management department.

15

software is fundamentally difficult at the level of ontology and this directly leads to functional

stupidity within organisations when this is overlooked. This is the core argument of this thesis.

To make this argument, I need, therefore, to explain further the concept of a negative

ontology (our second question), which is the key theoretical lens that makes this argument possible.

I use the phrase ‘negative ontology’ to signal a way of looking at ontology from a theoretical

perspective that considers failure and impossibility. According to this perspective, consistent

difficulties in accurately identifying what a ‘thing’ is may indicate that this difficulty is itself

ideologically significant. This argument has been made particularly well in the fields of

entrepreneurship (Jones & Spicer, 2005) and leadership (Kelly, 2014), with the latter inspiring the

phrase ‘negative ontology’ in this study. While this link will be explained in far more detail in the

following two chapters, the key point is that certain objects marked by a consistent problematic

ontology may come to produce significant power effects directly through their failure to fully

achieve an identity (or in other words, be clearly identified as an object). I argue that software tends

to produce this effect through the immense difficulty in identifying its ontology and this is

something that has not yet been done anywhere in the literature.

Given that the ontology of software thus forms a central place in the explanatory framework

I produce in this thesis, I devote more space than is typical to my theoretical perspective on

ontology. In particular, I depend heavily on a perspective I term Poststructural Discourse Theory

(PDT), notably drawing on Ernesto Laclau, Chantal Mouffe (Laclau, 1990, 1996a, 1996b,

2015[1996]; Laclau & Mouffe, 2001[1985]) and the subsequent developments of this framework

articulated through the Essex School of Discourse Analysis (esp. Glynos, 2011; Glynos & Howarth,

2007; Glynos, Howarth, Norval, & Speed, 2009; Glynos & Speed, 2012; Glynos, Speed, & West,

2015; Howarth, 2000; Norval, 2000, 2004). One of the key distinctions of this perspective is the

argument that discourse constitutes social reality, a claim that I shall subsequently substantiate in

much further detail. This distinction is vital in understanding how it is that the ontology of an object

like software should come to produce the significant effects documented throughout this thesis.

16

The key point here is that discourse itself has power, specifically the power to shape our sense of

self and the meaning we confer on the objects and practices around us. This insight makes it

possible to connect an analysis of discourse about software with the real effects this discourse

produces in organisations. Following this line of inquiry, I offer an analysis of the discourse about

health software which shows this discourse itself to be surprisingly powerful, even when the

software products fail in reality to match the way they are spoken about and positioned with in

discourse. All of these points will be developed in full detail in the chapters to come.

Key Questions

The primary research questions this research sought to answer were as follows:

1. How is software and the software products at CloudDoc articulated and understood

by different people and different departments across the organisation?

2. Where are the points of tension and contradiction between these understandings (if

any), and why?

3. Why are any such tensions and contradictions significant?

This thesis puts forward an answer to all of these questions with an explanatory framework

that links these elements together. Overall, the model seeks to show that the problematic ontology

of software is inherent to the complexity of software itself; and, furthermore, this problematic is

significant because it allows software to become decoupled from discourse about itself. Software

discourse thus tends towards abstract, vague, hyperbolic, and grandiose narratives. However, as

this thesis takes the view that discourse is itself constitutive of social reality, there are important

ideological effects unleashed by this decoupling, ultimately leading to the argument outlined above

that the net effect of this runaway fantasy discourse is functional stupidity in organisations.

Research Design

To explore these questions, I undertook a 12-month participant-observer ethnography of a

global health software company. In this my aim was to explore how software was constructed at

17

the level of discourse by those involved at all levels of the organisation. I was interested in this line

of questioning particularly because software is considered a paradigmatic example of knowledge

work (Castells, 2000; Scarbrough, 1999), which produces a knowledge product that is both

increasingly important and sufficiently different from more traditional products of the past. But

given that this product is at least in part, immaterial as a knowledge product, I was intrigued by the

implications of this for its construction through discourse.

Ethnography is increasingly recognised as a viable, important, and resurgent methodology

for answering deep questions about the changing nature of work through technology (Akemu &

Abdelnour, 2018; O’Doherty & Neyland, 2019; Watson, 2011; Ybema, Yanow, Wels, &

Kamsteeg, 2009). As such it follows in the footsteps of other seminal ethnographic texts exploring

working life in seemingly exciting, technology-focused companies (e.g. Casey, 1995; Kunda,

1992). Ethnography is, however, not only a methodology characterised by immersive observations;

it is also a style of writing (Watson, 2011) which involves weaving together a story from the various

texts of analysis (Hastrup, 2004). Hence, although this thesis incorporates much interview data and

discourse analysis that would not be uncommon in many other types of organisational research, I

have purposely included excerpts from my field journals and move, at times, into a more narrational

style in order to construct a cohesive story out of the many diverse datapoints that ethnography

involves.

My approach to organisational ethnography was loosely informed by Nicolini’s (2009)

concept of zooming in and out in order to follow a particular practice. In my case, the practice I

followed was the production of the meaning of software. Following a negative ontological

perspective, I did not assume a priori that software has a definite identity, that it actually is

something we can pin down and identify. Instead, I explored the very processes by which software

comes to be what it is; how, that is, its identity is produced and constructed through processes of

articulatory practice (Laclau & Mouffe, 2001[1985]). Moreover, I also paid special attention to the

ways in which this identity failed to be produced and, as this thesis shall demonstrate, it was

18

precisely this failure—of the type evinced in the vignettes I offer throughout—that led to what I

consider to be highly surprising and significant findings.

Following discursive construction meant that my ethnography was different to some of the

more classic exemplars of organisational ethnography (e.g. Kunda, 1992). One of the foremost

differences was that I did not stay with a single team for the duration (a kind of ‘zooming in’) but

rather I moved in and out of different departments and teams in the search for the, often elusive,

locus of what software is, and how and where it is produced. In this sense I ‘sampled’ different

contexts (Hammersley & Atkinson, 2010) and this gave rise to a complex and often contradictory

picture of just what exactly this organisation thought they were doing. This was, in fact, itself quite

a surprising finding. Typically, ethnographers aim to develop an understanding of how things go

around here (Van Maanen, 2011, p. 220) however, my experience led me to the realisation that one

of the hallmarks of how things go at CloudDoc was anomie and confusion. As I detail in Chapter

Five, my classic ethnographic ‘aha’ moment was, in fact, the unravelling of certainty not a suddenly

clicking into place; and this, moreover, was indeed the typical experience according to my

participants.

I recall one particular conversation over morning tea with one of the developer teams I

worked with, late into my fieldwork. We were discussing the fact that the product that these

developers were responsible for engendered so much confusion that half of the non-developer

employees I had met in my fieldwork swore to me this product didn’t even exist. As we sat in

cafeteria that morning, each of the developers tried to explain what this product was. Despite being

its creators, they wildly disagreed even among themselves. Then one of the very senior managers

who was responsible for the technical direction of this product chimed in and declared that the

product was a platform. ‘But’, I said hesitantly, ‘don’t you already have another product called the

CloudDoc Platform?’5 This led to a kind of nervous laughter, a collective ‘ah!’, and then one of the

junior developers said ‘yes we do. We have two actually cos there’s also the data platform’.

5 Like all names of people and products, this is pseudonym for reasons outlined in Chapter Three.

19

Strangely, however, this seemed to constitute a conclusion to the matter and the conversation

moved on as if we had reached a satisfying resolution. It was as if the realisation that there were

several products all trying to be the same thing made sense of the tension: Oh that’s right, our

products are crazy so that’s why there was a tension. Problem solved! This was a typical experience

at CloudDoc.

I spent much of my fieldwork with software developers and machine learning specialists,

as the natural expectation was that if I wanted to see software being produced, then I’d better spend

time watching people writing code. However, this thesis will promote a somewhat more complex

view of the production of software. I will argue that software doesn’t exist as an easily identifiable

entity somewhere ‘out there’ and, consequently, the production of software occurred across many

different contexts and in multifarious ways. To explore this, I spent time with a variety of different

teams, including sales, marketing, communications, human resources, and support services. Even

more non-traditional in terms of my ethnographic approach, following the practice of software

development led me, ultimately, to observe and interview people from a local hospital that was

involved with CloudDoc both in terms of using much of their software and in implementing and

testing new innovations. These additional data points helped to produce the complex picture of

software development as outlined in the following pages and reveals the ways in which software

both is articulated into being and also resisted in various ways outside of the traditional

organisational walls.

This study therefore draws on over 12 months of extensive observations and accompanying

fieldnotes, as well as 53 semi-structured interviews with staff from a wide range of positions within

and external to the organisation. In addition, it draws on a large dataset of documents including

those that were publicly available (e.g. media stories, PR releases, and company webpages) and

internal documentation (e.g. technical documents, internal marketing case studies, reports,

proposals for new products and features, and video or audio recordings of meetings). As I explain

further in Chapter Four, this research also included elements of virtual ethnography (Hine, 2008)

20

given that the company also used a private social media platform to discuss and debate issues as

benign as Google’s latest innovations through to the disturbing implications arising out of

predictions based on a patient’s genome. Each of these kinds of data were used to build a complex

mosaic of the discourses that constitute, sustain, and contest software within CloudDoc and which

are produced by CloudDoc for various reasons, aimed both internally and externally. This mosaic

of data has been poured over, analysed, pulled apart and, finally, woven back together into this

ethnography of software.

Overview of Chapters

I close out this chapter with an overview of the chapters to come. In Chapter Two -

Problematisation I provide a literature review that substantiates the argument made above

regarding the problematic ontology of software. In that chapter, I discuss the literature on the

problem of defining the ontology and meaning of software. Through tracing a history of the field,

I demonstrate an initially dualistic understanding of software that separates the technical object out

from the social context of its production and use. This is, however, shown to be dissatisfactory and

contradicted by detailed empirical studies of the variations in real technology use. This dualistic

treatment of software and technology has, for this reason, been subject to many varied attempts at

better definitions which incorporate the social dimension. For reasons I will outline, I take the best

of these positions to be the sociomaterial practice perspective, and this is detailed in the following

chapter. I end this chapter, however, by showing that even sociomateriality does not satisfactorily

resolve the problematic ontology of software. Overall then, this chapter functions as a

problematisation of the literature on software, establishing a series of questions that the thesis

determines to answer.

Building on from this problematisation, Chapter Three – Theoretical Framework

establishes the ontological and theoretical framework that underpins the thesis. It’s in this chapter

that I define and explicate the idea of a negative ontological approach. I do this through a sustained

21

exposition of a specific ontological position I call Poststructural Discourse Theory, or PDT. In this

chapter I pull together elements from Ernesto Laclau’s work and his colleagues through the Essex

School of Discourse Analysis. I also link this to a discussion of Lacan insofar as this is necessary

for the analysis proffered in this thesis. I recognise that this is, at times, a fairly technical discussion

of discourse theory, hence I have framed this chapter around a comparison with the Sociomaterial

perspective emphasised in Chapter Two. Overall, this chapter is aimed at showing how the negative

ontological approach through PDT is able to offer a more compelling explanation of the

problematic ontology of software, and, most importantly, this framework provides a means by

which to analyse the ideological effects arising from this.

Chapter Four – Methodology follows this with a substantive chapter outlining the unique

approach undertaken in this research. In this chapter, I first defend and explain my use of

ethnography as a means of answering the research questions advanced in this research. I then

provide further explanation about my specific analytical methods through a discussion of discourse

analysis. Since Chapter Two elaborated at length on PDT as an ontological and theoretical

framework, this chapter aims instead to position my approach within and relative to other similar

approaches in Organisation Studies. I also outline the actual methods undertaken in this analysis. I

finish this chapter with a discussion of epistemology and reflexivity, acknowledging that these

aspects are, naturally, interwoven throughout the thesis given its subject matter includes questions

about ontology.

Chapter Five – Emptiness is the first of three chapters presenting the empirical data of

this thesis. In this chapter, my goal is to validate the problematic that was raised in the literature

review chapters against real-world observations. Following the principles of ethnography more

generally (Hammersley & Atkinson, 2010), this thesis is intended to create a narrative that brings

the reader into the world of software development; thus, Chapter Five aims to build to the sense of

software as deeply problematic in terms of its meaning and identity. I achieve this by working

outwards from a vignette that depicts an ‘aha’ moment for me, through to increasingly generalised

22

interview excerpts and observations that all show the meaning of software to be fundamentally

empty. By the end of this chapter, the reader ought to be beginning to see that from both an

academic theoretical perspective and the world of the practitioner, software is fraught with vagaries

and emptiness. Furthermore, we begin to see at this point that this emptiness is not merely idle but

has been filled with ideological substitutes in ways that seem to constitute the very identity of

software products as something other—and far more—than merely lines of code.

It’s in the next chapter, Chapter Six – Fantasy that we come to see just what exactly the

emptiness of software has been transformed into. In this chapter, I deconstruct the broader

discourse that prevails at CloudDoc as the dominant understanding of what their software actually

is. Through further empirical data we find a construction of health software that depicts clinicians

as almost god-like figures, able to achieve omniscience, infallibility, and unprecedented levels of

personal efficiency through the use of CloudDoc’s software. These clinicians are also seen to be

acting on a new class of patient who, again through the use of software, are in the process of being

perfected. These patients are turned into digital data mines of information across every aspect of

their social beings, all for the purpose of pre-emptively acting on poor health before it even occurs.

Here we find a vision of healthcare that is vastly extended beyond the traditional boundaries of

healthcare and come to encompass social citizens in totality. Lastly, we find that this discourse

reconstructs the practices of healthcare as well, with a vision of perfecting these through

standardisation, streamlining for efficiency, and a marked increase in transparency and auditability.

Overall these elements combine to form a compelling fantasy of Healthcare Perfected through

software. Notably, this discourse is not positioned as some future vision of how software could be,

but rather it is, through the emptiness of software, articulated as the present and compelling identity

of what CloudDoc currently do and the meaning underpinning their product suite.

In Chapter Seven – Failure, however, we encounter the darker side of this fantasy. In this

chapter I highlight the ways in which CloudDoc’s products fail to deliver on this fantastic promise

of perfect healthcare. I show the moments in which participants experience dislocation (Laclau,

23

1990), an experience of the failings of a discourse to fully capture reality, which is in this case

exhibited through a tension of failure and mundanity where grandiosity was expected. Here,

however, instead of collapsing the discourse is surprisingly resilient. Thus, in this chapter we see

the power of this fantasy in full force as it is able to not only withstand failure, but actually reinforce

itself through it. This software discourse is revealed to construct a sense of failure and absence that

is only strengthened when reality doesn’t live up to the hype. Ultimately, this final empirical

chapter unites the empirical section as a whole to model the ideological power of the emptiness of

health software discourse: through the emptiness produced by its problematic ontology, software

is able to become a key empty signifier in the construction of a powerful, self-reinforcing fantasy.

Chapter Eight – Discussion takes up the question of ‘so what?’ in relation to the argument

put forward in this thesis. Why does it matter if software lends itself towards empty signification

and fantasmatic discourses? At this point we come full circle to the position outlined earlier in this

chapter, which is to argue that, in fact, it matters a lot. The reason it matters is because this feature

of software acts to close down reflexivity and allows functionally stupid beliefs and practices to

thrive. In this discussion chapter, therefore, I flesh out the interrelationships between my PDT

theoretical framework and the concept of functional stupidity. Here I make the point that, contra

Alvesson and Spicer’s original position on functional stupidity, discourse itself may also produce

this result and, notably, it does so with a ‘runaway’ effect without necessarily implicating human

agency. However, the real thrust of this chapter is not only to highlight the ways in which this

discourse is functionally stupid, but it is also to argue for a way in which this can be successfully

countered. I argue here that there is, in fact, a complementary relationship between sociomateriality

and negative ontology in terms of one being able to highlight issues of power and ideology

(negative ontology) whilst the other is able to counter this by re-grounding conversations in the

specifics of practice (sociomateriality). This is, as far as I know, a completely novel approach to

the study of software and in terms of promoting a specific strategy of resistance to the types of

issues highlighted herein.

24

Finally, in Chapter Nine – Conclusion, I speak directly to the practicalities arising out of

this research by directing my attention to recommendations for managers and clinicians considering

the great disappearing act of software and the fantasy narratives it engenders. This is a difficult task

because, as highlighted in Chapter Seven, this discourse is well adept at deflecting its many failures

onto others. Resisters are regularly recast as old, dishonest, or even as donkeys and drones, and this

makes genuine reflexivity regarding the ethical issues around software exceedingly difficult. I

therefore consider practical ways in which managers can be supported in this endeavour, including

offering recommendations to business schools in our role as management educators. I also consider

recommendations for clinicians, though this group are, in some respects, more constrained since

the position this thesis outlines for them is particularly fraught. Finally, I finish this thesis with a

reflection on the limits of this present research and the recommendations these engender for future

research opportunities.

With that overview in mind, we turn now to the first step in this argument, which is a

problematisation of the academic literature regarding software.

25

2. Problematisation

In this chapter I make an important theoretical move that, to my knowledge, has not been

made elsewhere in the literature. I argue that software is ontologically problematic and that the

various attempts made within the literature to define it have overlooked the significance of this

difficulty. To make this argument, I begin with an overview of the academic literature defining

software development and software itself. However, because an important focal point of this thesis

concerns ontology—specifically the importance of a negative ontology in contrast to the many

positive variants—I have needed to broaden my discussion to the concept of technology. This is

because software by itself has seldom been theorised or problematised explicitly to the degree that

this discussion requires. Where possible I have tried to feature articles that explicitly discuss

software (or Information Technology, hereafter IT), and, while many articles I outline below

position their arguments vis-à-vis technology in general, they tend nevertheless to empirically

examine IT, simply because its near ubiquitous prominence in modern life makes it the default

choice. However, because these discussions so often retain the term ‘technology’ whereas the point

I want to make is about software, I shall use the shorthand ‘software/technology’ to indicate my

acknowledgement of this particularity/generality tension. Throughout this thesis I will qualify my

position in terms of generality with much greater precision; here I am constrained by the literature

itself and ask the reader to bear this in mind.

I also frame this chapter largely through a discussion of, or in contrast to, the prolific work

of Wanda Orlikowski, who has contributed more than anyone to the analysis of technology in

Organisation Studies (OS). Orlikowski’s work is especially relevant for this chapter for three

further reasons. First, she is a prime example of someone who often makes general arguments about

technology from empirical analyses of software (examples below). Second, Orlikowski has also

been highly attuned to issues of ontology, and these feature, often explicitly, throughout her work,

which makes her an especially useful conversational partner given my focus on ontology. Lastly,

and as I will demonstrate in detail below, Orlikowski’s work is also illustrative of the general

26

movement of the field itself in its progression through various ontological positions over the years.

This is, of course, just another way of stating her pre-eminence in the field since she has often been

among the first to herald an important theoretical shift, and for this as well I would like to

acknowledge my debt.

 Framed largely through the lens of Orlikowski’s work then, this review traces what I shall

describe as an ontological progression towards increasingly more relational and diffuse

perspectives on just what exactly software/technology is. I will argue that the literature

demonstrates a failure to locate the ‘essence’ of software/technology as a discrete entity. To

overcome this problem, theoretical perspectives have increasingly sought to locate this essence in

complex relations with social reality, ultimately trying to theorise how software/technology comes

to be what it is in a given social context. The final position that I will discuss, and one that is very

much predominant in the OS literature currently, is that of sociomateriality. Sociomateriality is

notable for its total collapse of any remaining bastion of separation between software/technology

on the one hand and social reality on the other. It thus has reached an ontological position of full

relationality, where ontology is totally located in relations constituted through practices. But

throughout this chapter and the next, I will question whether or not this diffuse relationality has, in

fact, succeeded at overcoming the problematic ontology of software, and I will suggest that what

it has actually accomplished is the elision of the significance of the problematic failure of software

to be satisfactorily identified.

 Acknowledgement of this point will lay the groundwork for the argument I will take up in

this thesis, namely that the position sociomateriality takes is in many respects strikingly similar to

the poststructuralist discursive ontological theory (here after, PDT)6 upon which this thesis is based

and which I will explicate much more thoroughly in the following chapter. Though it uses different

terminology, the two theories are largely orientated toward the same problem and resolve it in

fundamentally similar ways. However, as I shall show in both this chapter and the next, there are

6 PDT will be my shorthand for the theoretical perspective chiefly advanced by Laclau and his colleagues and outlined

explicitly in Chapter Three.

27

important limitations of sociomateriality insofar as it can only account for what

software/technology is, that is, its positive ontology. In contrast, a key premise in this thesis is that

any accomplishment of an ontological identity7 of software/technology is always discursively

constituted, precariously unstable and, crucially, never fully attained. Far from being trivial, it is

precisely the failure to fully attain identity that will be critically analysed and shown to have

important effects in this thesis. I will continue to develop these arguments throughout the thesis,

but to begin with we must first appreciate the ontological difficulties inherent to studies of software

and its development.

Problematic Definitions of Software Development

Our review begins with an overview of software development, since this formed the context

of this ethnographic study. Software development is a relatively recent field of work, and hence

area of study. The work of designing software began within the electrical engineering discipline,

and it was only in the 1950s and 60s that software development began to be recognised as an

occupation in its own right (Kraft, 1979), though it would still be many decades before software

(or IT) would become a pertinent feature of OS. Because of the centrality of software to what has

been heralded as the new knowledge economy of post-industrial societies (Bell, 1973; Drucker,

1959, 1969; Freeman, 2008), software development is now considered to be paradigmatic

knowledge work (Castells, 2000; Scarbrough, 1999). Indeed, Rowena Barrett (2001, p. 19) argues

that ‘the work of software developers is central to discussions about the transformation of work

and the economy and is tied into debates about knowledge and knowledge workers’. The dominant

image is of a ‘sunrise’ industry characterised by strong job growth, high levels of skill, and high

7 I am using the phrase ‘ontological identity’ in a specific sense that is somewhat different to the way identity is

commonly understood in OS. Typically identity refers to a discursively constructed sense of self and is conceptually

overlapping with other terms such as subjectivity or subject positions (see e.g. Brown, 2015 for an overview). As I

shall expand on throughout this chapter and the next, by ‘ontological identity’ I mean the way in which some ‘thing’

comes to be recognised (i.e. identified) as a thing by being constituted into an ordered discourse. Identity therefore

means much more that the narrow concept of a personal human identity; as will be explained in the next chapter, human

identities (which I will call subjectivities) are a subset of the broader category of ontological identity. This point rests

upon the distinct social ontology that will be subsequently expanded upon, but the key point is that all identities

(including those held by non-human objects) are discursively constituted rather than objectively pre-given.

28

status (Bergvall-Kåreborn & Howcroft, 2013; Marks & Baldry, 2009). However, software

development—and IT more generally—occurs throughout all economic sectors and often this work

takes place inside of organisations whose industry would not be characterised as IT (Barrett, 2001).

Thus it proves problematic to define the boundaries of the IT industry as a whole, with some

suggesting a network of firms rather than a discrete entity (Barrett, 2001; Castells, 2009).

In the same way, the work itself similarly resists generalisations. While the perception

clearly is that software work is an exemplar of knowledge work, it remains problematic to try and

categorise software workers: are they professionals or craft workers, artists or engineers (see Case

& Piñeiro, 2006, 2009; Jemielniak, 2010)? Is their work typically highly skilled or more routine

and technical? On all of these points and even the most fundamental of work distinctions—that

being whether it produces products or services—software development defies clear delineation

(Barrett, 2001; Marks & Baldry, 2009).8 A key difficulty lies in the fact that software development

includes a diverse range of functions, roles, and kinds of products/services. For example, within

software development, roles may include those with a higher-level, systems-wide design focus such

as software or system architects, through to developers or programmers, whose task it is to ‘code’

(write the designs into a highly structured programming language). Further down the hierarchy in

terms of status and skill requirements are the testers, who often run fairly routine and standardised

tests and which may not require much in the way of formal qualifications; though, conversely, this

work can also be highly varied and require significant skill (Marks & Huzzard, 2010; Marks &

Scholarios, 2007). Significant diversity exists in the production of software products and this says

nothing of the vast numbers of IT service workers whose roles focus on the maintenance and repairs

of software, systems, and networks, which again varies immensely in degrees of routinisation and

skill requirements. As final layer of complexity, today’s software products increasingly emphasize

skilled visual designs, which is true for websites and packaged software products, right through to

8 I think this problematic is, in fact, key to what makes software so difficult to position ontologically. This is because

software seems to be inherently processual—software is only software insofar as its code is being executed. This leads

to the confusing fact that software is therefore able to ‘wrap up’ services into products. Software is thus both a product

and a service, the latter being bundled into the former.

29

new media such as video games and virtual reality applications. In these contexts, the work of

development will also include designers and artists who blur the boundaries between writing code

and producing art (Hodgson & Briand, 2013).

Undoubtedly the most frequent characterisation of software development work is of

inherent complexity and uncertainty. The very fact that, as an industry, it defies delineation

illustrates the complexity of this work; so too does the extreme diversity of tasks and functions

required for successful projects. Adler (2005) argues that software is notable for very high levels

of complexity, interdependence, and uncertainty. He further elaborates on this by defining

complexity as the number of different types of problems, uncertainty as the difficulty of these

problems due to their degree of unknowns, and interdependence as the dependencies between

different parts (2005, p. 406), all of which, he argues, prominently afflict software development.

Wastell (1999, p. 582) goes even further to argue that software development is inherently stressful,

owing to ‘the high complexity (technical and managerial) of IS [information system] projects, that

such undertakings typically involve a daunting combination of exacting cognitive demands, high

levels of risk and uncertainty, political strife and the need to accommodate multiple stakeholder

interests’. The rapid and continuous evolution of programming languages and techniques also

contributes to a sense of anxiety, with the effect that many developers often feel compelled to

allocate time for self-directed learning and upskilling after hours (Bergvall-Kåreborn & Howcroft,

2013). Another factor contributing to this sense of uncertainty is that, unlike other kinds of

knowledge-intensive industries (e.g. biotechnology), there is a relatively low level of input

resources required to potentially produce innovative software: all one needs, at least in theory, is a

computer and the internet (Despa, 2013),9 thus disruption can potentially come from anywhere at

any time.

Ultimately, these elements combine to form a sense of software development as one that

stretches the boundaries of easy classifications. Clearly the nature of software development defies

9 And a lot of beer and pizza, naturally.

30

agreement upon some of the most fundamental assumptions. Moreover, we shall find no solace in

the literature defining the one thing that ostensibly unites this industry either, namely the object it

produces: software.

Problematic Definitions of Software

Entity Perspective

Software has been defined as ‘a uniquely designed, highly structured set of assertions,

instructions and decisions all of which must be negotiated, codified, analysed for consistency and

validated for effectiveness in a constantly changing environment’ (Weber, 1997, p. 37). This

definition appears at first blush to present a stable and unified object which laudably and

unproblematically accounts for an element of dynamic uncertainty. However this simplicity is

short-lasting, for upon further examination we see that this stability is achieved at the cost of a

dualism which has plagued the software studies literature since its inception (Leonardi & Barley,

2010).10 This dualism is one that cleaves a convenient rift between the social and technological.

Thus, as we see in the above definition, uncertainty is shifted into an external ‘constantly changing

environment’ while software maintains the identity of a seemingly objective, stable entity.

The issue at stake here is, without doubt, ontological. According to a positivist essentialist

paradigm, objects, including software/technological artefacts, are unproblematic entities whose

identities are grounded in their immutable properties. This perspective has a long philosophical

history with roots at least as far back as Aristotle’s essays on metaphysics, and its prominent place

in contemporary social theory (and consequently OS) is especially due to Hobbes and Locke. These

great minds were central in the development of a realist ontology, which conceptualises the world

as one of causal forces pushing and pulling against one another (Ball, 1975). The key metaphor

here is one of billiard balls (J. Locke, 1959, vol. I, bk. 11, ch. xxi, pp. 311-12), whose properties

10 Note that in the ensuing discussion I necessarily discuss ontological perspectives on technology more generally,

since the literature devoted to this question specifically vis-à-vis software are limited. The debate on technology, in

contrast, has been lively and philosophically sophisticated, and its points carry well to software as a specific subset of

technology.

31

(e.g. weight, size) can be discovered and thus their movement can be predicted to the extent that

one can accurately understand the causal relations and forces involved in an interaction. On this

view, technological objects are simply stable entities or tools while contingency, uncertainty, and

instability are generally relegated to the realm of the social.11

Definitions within Information Systems

This view, which I shall call an entity perspective, has plagued studies of technology, in

which software has begun to feature with increasing prominence. It has led to a pervasive failure

to properly theorise software (and technology more generally) and especially to the tendency to

treat software/technology as an unproblematic entity whose most salient features lie in its relation

to other organisational variables. Consequently, software has proved continually difficult to define.

Indeed, this is the case even in the field of Information Systems (IS), which would have been

expected to be at least one domain with a respectable grasp on its central object of analysis. Yet

Orlikowski and Iacono (2001) reviewed the then-full set of articles (188 articles spanning 10 years)

in a leading IT journal (Information Systems Research—ISR) and came to the troubling conclusion

that the IT artefact itself tends to ‘disappear from view, be taken for granted, or is presumed to be

unproblematic’ (p. 121). The issue, they argue, is that there is a tendency to conceptualise IT

artefacts as ‘as relatively stable, discrete, independent, and fixed’ with the effect that IT is treated

like a monolith ‘black-box’ or simply vanishes (p. 121). Where it was conceptualised, they found

14 different definitions that they grouped into 5 broad categories, all of which were problematic. I

outline these here since these provide a useful overview of the different ways in which software

has been defined and indeed are demonstrative of exactly the same issues found in OS (to which I

will come shortly).

The first definition, unsurprisingly, was the Tool view which posits IT as a ‘computing

resource (that) is best conceptualized as a particular piece of equipment, application or technique

11 Incidentally, according to this perspective, the social can also be discovered to function according to principles of

causality and inherent properties; it’s just that people are considered somewhat more complicated.

32

which provides specifiable information processing capabilities’ (Kling, 1987, p. 311). This tool is

assumed to have a set of attributes as per its intended design and which remain stable despite the

contexts in which it is used. Examples of this view include a labour substitution tool (e.g.

Applegate, Cash, & Mills, 1988), information processing tool (e.g. Leavitt & Whisler, 1958), and

a communication tool (e.g. George, Easton, Nunamaker Jr, & Northcraft, 1990). A second and

similar definition was the Proxy view—where one or a few elements were ‘understood to represent

or stand for the essential aspect, property, or value of the IT’ (Orlikowski & Iacono, 2001, p. 124).

In particular, they found three different proxies for IT: individual perception (e.g. Moore &

Benbasat, 1991; Venkatesh & Davis, 2000), diffusion rates (e.g. Rogers, 1983), or simply dollars

spent. Both the tool and proxy view took technology to be a stable entity whose main relevance for

analysis was in its effect as a variable on other more interesting variables such as organisational

structure or performance.

The third definition they labelled the Ensemble view, which was specifically developed in

contrast to the tool and proxy views above. In this case technology came to be understood as part

of a bundle of diverse socio-economic activity, such as ‘the commitments, additional resources

such as training, skilled staff, and support services, and the development of organizational

arrangements, policies, and incentives to enable the effective management and use of new

technologies’ (Orlikowski & Iacono, 2001, p. 125). An example of this view, they argue, is the

work of Bruno Latour (1987) who sees technology as (not only) a system of alliances between

specific technical artefacts but also ‘inventors, research and development organizations,

commercial companies, and national governments’ (Orlikowski & Iacono, 2001, p. 126). They also

include the early structuration theories of technology within this group, including Orlikowski’s

earlier work (1992) and DeSanctis and Poole (1994), and which I will discuss in more detail shortly.

The contention here is that in expanding the definition of IT so broadly, the IT artefact itself—the

actual technology in question—still tends to slip from view and thus remain under-theorised.

33

The fourth definition was the Computational view of technology, which was focused

exclusively on the computational power of IT, including the abilities of a specific algorithm or

model (e.g. Trice & Davis, 1993). These, however, did not attempt to address the relationship

between technology and people (except where people were included as data for models and

algorithms) and thus also assumed that its essence remained stable in use without any further

consideration. The final view was the Nominal view of technology, intended to denote usages that

were ‘in name only’ (p. 128). In such cases technology was absent from these articles and was

considered as nothing more than the background context for some other topic of interest.

Surprisingly, this final view was in fact most common, accounting for a quarter of all articles

reviewed. A similar fraction viewed IT from the computational perspective (24.3%), while a further

20% took the tool view; 18% the proxy view; and only 12.5% featured an ensemble view of

technology. Common to all approaches, however, was a tendency to under-theorise the IT artefact

and instead tend to typically treat it as a stable, fixed object whose main significance is its

relationships with other more interesting things. Moreover, a fundamental assumption here is that

technology (however it is defined) is a discrete entity that can be posited in various theoretical

formations as interacting in some way (or not) with a separate sociality. From this perspective then,

any analysis of power, struggle, complexity, and contradiction will all tend to be reduced to

fundamentally human issues, while the technology in question is stable and ancillary.

Definitions within OS

This dualism and tendency towards under-theorisation has fared no better within OS

(Leonardi & Barley, 2010; Orlikowski & Barley, 2001) and has come under increasing scrutiny

from a wide range of perspectives. Most notable among its critics has been the substantial

contribution of Wanda Orlikowski, whose early arguments were pivotal in discrediting this

dualism, and whose work has produced progressively refined theoretical ways of posing the

interdependence and mutual constitution of both categories. To appreciate these arguments, I begin

34

with Orlikowski’s (1992) highly cited, early critique of this dualism. Note that the structure-agency

debate was a prominent feature of the social and organisational theory landscape, and hence

Orlikowski maps out the dualistic treatment of technology within OS onto the categories of

structure and agency.

Orlikowski (1992) argued that the most common side of the dualism is a Technological

Imperative (later, Techno-centric) model which is typical of the entity perspective outlined above.

This view tended to overemphasise a hard, determinist view of structure (e.g Carter, 1984; Foster

& Flynn, 1984; Hiltz & Johnson, 1990; Pfeffer & Leblebici, 1977; Siegel, Dubrovsky, Kiesler, &

McGuire, 1986). Note that Orlikowski included the typical Marxist treatment of technology as an

element of historical materialism in this category (e.g. Braverman, 1974; Edwards, 1979; Shaiken,

1985). Orlikowski was highly critical of this view and, while she conceded that it provided some

insight into the determining aspects of technology (i.e. those limited elements of its fixed material

properties), she argued that it ignored ‘the action of humans in developing, appropriating, and

changing technology’ (1992, p. 400).

At the other end of the spectrum, however, Orlikowski also criticised what she called the

Strategic Choice (later, Human-centred) model. On this view, human agency was overemphasised

to the extent that technology was understood as a highly mutable object produced essentially only

through human action and choices (e.g. Child, 1972; Kling & Iacono, 1984; Markus, 1983; Perrow,

1967; Zuboff, 1984). She included in this perspective the social constructionist perspectives on

technology (Boland Jr & Day, 1989; H. Klein & Hirschheim, 1983; Newman & Rosenberg, 1985)

because constructionism tended to maintain the separation of technology and the social, and simply

reverse the direction of causality: technology’s material and structural effects were downplayed as

the meaning given to these takes centre stage (see also Leonardi & Barley, 2010 for a thorough

analysis of this point).

The resolution for this early Orlikowski was to draw on Gidden’s (1979, 1984) theory of

structuration, the crux of which was to posit an ongoing reciprocal interaction between agency and

35

structure such that neither is privileged. Orlikowski saw this as shifting the debate from a ‘false

dichotomy’ to a duality (1992, p. 406), which affirms both human action in producing technology

and technology’s structural properties. Interestingly, she observed that there is a time and space

dichotomy that exacerbates this problematic. This is because the elements of design (e.g. software

development) are typically undertaken prior to, and away from, the organisational site that they

come to subsequently structure. Thus, researchers are likely to emphasise one or the other

depending on the site of focus. But within a structuration perspective, the design is not considered

to be completely dominant, and she introduces the term interpretative flexibility to recognise that

there is a certain degree of flexibility in the way that technology can be understood and used. This

flexibility is not considered infinite, however, since it is limited by the material characteristics (both

in terms of those possessed by the material in use, e.g. the speed of a processor, and limitations in

its design, e.g. the way it can recognise inputs).

However, despite being an early advocate of structuration theories of technology,

Orlikowski began to see these as still maintaining an unsatisfactory dualism. Orlikowski (2000)

went on, therefore, to acknowledge the contribution of structuration theories of technology in

beginning to account for the dynamic role of human actions in shaping what a technology is, and

how it is used. But she critiqued these structuration theories for lacking the means to ‘account for

changes in both technologies and their use’ (p. 405). For although structuration theories

acknowledged change, they did so in a temporally spaced, iterative sequence. In other words,

change required a recursive interplay between structure and agency, with actions creating the

structures that then shape future action in turn (such as the development/organisational site split

noted above). This moved the debate forward by acknowledging that technology was not

ontologically sealed off and was instead actively shaped by humans; yet throughout each stage in

this sequence, technology still had a stable essence—yes it changes over time, but at any given

time it is stable, its identity is clear.

36

Orlikowski recognised that structuration was insufficient to effectively account for the fact

that the ontological identity of technology (and hence the way that it structures the social) is not

stable at any given time, since it is always open to new, often contradictory interpretations. Social

constructionist perspectives on technology came close to account for this in their emphasis on the

ways in which ‘technology achieves ‘‘stabilization’’ through processes of negotiation, persuasion,

and debate aimed at achieving rhetorical closure and community consensus’ (2000, p. 405).

However, Orlikowski criticised these perspectives as well for not going far enough because they

too held on to a notion of eventual stabilisation, even if it was contested and process orientated.

Against this, Orlikowski argued that such perspectives overlook ‘the empirical evidence that people

can (and do) redefine and modify the meaning, properties, and applications of technology after

development’ (p. 405-6). This erroneous assumption of stability was carried into structuration

theories with the effect that these depict ‘technologies as static and settled artifacts with built-in

arrays of fixed and determinate structures that are (always and readily) available to users’ (p. 406).

On the basis of strong empirical evidence to the contrary, Orlikowski argued that this view was

unacceptable. Moreover, it was especially inappropriate for ‘the dynamically reconfigurable, user-

programmable, and highly internetworked technologies being developed and used today’ (p. 406),

or in other words, software.

The key difficulty for Orlikowski was that in mapping this debate onto the structure-agency

dichotomy, technology was positioned as possessing a set of attributes which then acted as a

structuring force against the user. Software, for Orlikowski, was a key example of the inadequacy

of this view because it clearly defies such a conception of structure. Software cannot be said to

possess any such properties outside of its specific instantiation in human practice. As she put it,

consider the myriad software packages, network tools, and data files installed on countless desktop

computers and corporate mainframes worldwide. Until such time as these are actually used in some

ongoing human action—and thus become part of a process of structuring—they are, at best, potential

structuring elements, and at worst, unexplored, forgotten, or rejected bits of program code and data

cluttering up hard drives everywhere (Orlikowski, 2000, p. 406).

37

Thus, structuration theories were also found wanting because they failed to account for the

emergence and change in practice that belied the notion that software (or technology generally)

had a stable, pre-given structuring essence.

To counter this inadequacy, Orlikowski opted for a practice theory approach (Schatzki,

2001, 2002). This provided a detailed theoretical language to account for the relationship between

structure and agency through the instantiation of practice (see esp. Reckwitz, 2002 for an excellent

overview of this point). Such a view opened up many theoretical possibilities, and we shall pursue

some of these further as they lay the groundwork for the most recent theorisations of software in

OS. The key argument for the utility of practice theory for software/technology is summarised in

the following:

A practice lens more easily accommodates people’s situated use of dynamic technologies because it

makes no assumptions about the stability, predictability, or relative completeness of the technologies.

Instead, the focus is on what structures emerge as people interact recurrently with whatever properties

of the technology are at hand, whether these were built in, added on, modified, or invented on the fly

(Orlikowski, 2000, p. 407).

Practice theory offered the means to critique the view, typical not only of structuration theories but

also of all the other dualist views outlined above, that structures are inherent properties of

technology. Instead Practice theory argues that ‘Technology structures are thus not external or

independent of human agency; they are not ‘‘out there,’’ embodied in technologies simply waiting

to be appropriated. Rather they are virtual, emerging from people’s repeated and situated

interaction with particular technologies’, something Orlikowski coined technologies-in-practice

(2000, p. 407), and which has been used to great effect in the research of a variety of different

technologies (e.g. Dery, Hall, & Wailes, 2006; Dumas, Dietz, & Connolly, 2001) including IT

research (e.g. Gillingham, 2012).

The practice perspective on technology was heralded at a time when it was beginning to

grow in status in OS more generally, leading to what would come to be called ‘the practice turn’

(Corradi, Gherardi, & Verzelloni, 2010; Miettinen, Samra-Fredericks, & Yanow, 2009; Ortner,

1984; Reckwitz, 2002; Schatzki, 2001). Importantly, it also reiterated the conclusions of several

very influential studies of technology, including and especially Julian Orr’s (1996) Talking about

38

machines and Lucy Suchman’s ([1985], reprinted in 2007) renowned critique of engineering

rationalism in technological design. Both highlighted situated, mundane practice as the means by

which technology comes to (temporarily) have properties—in contrast to the assumptions of the

entity and structuration models above. In particular, Orr (1996) followed copy machine technicians

as they accomplished their day-to-day repair work tasks. His key insight was that the performance

of technical repairs was grounded in situated practical knowledge, rather than following explicitly

defined procedures in the technical manuals. He tells of technicians who regaled each other with

their performances of bravado: men wrangling unruly machines and celebrating their deliberate

eschewing of the hopelessly irrelevant technical documentation that had been written by the

designers and mandated by management. Orr therefore showed how a body of much more accurate

and useful technical knowledge was maintained through a narrative process of telling ‘war stories’.

This was influential within practice perspectives on technology because it highlighted, once again,

the fact that technology isn’t a stable, clearly defined object whose behaviour (and misbehaviour)

can be known in advance by its designers, which is, of course, an entity perspective. Rather what

technology is, the struggles we have with it, and the ways in which it can be made to function in

accordance with our needs, understandings, and expectations, are all achieved through situated

practice.

Suchman (2007) similarly critiqued these same assumptions, which she saw as underpinned

by a cognitive science conception of rational planning. She argued that technology (and notably

software) consists of attempts to anticipate future events and predefine responses in advance. This,

she argued, exposes a weakness more generally in a cognitive science model of communication,

which holds the view that humans act or speak from plans in their head and interactants understand

each other by reconstructing these plans. The implication was that these plans can be inferred and

generalised by rules and hence that software/technology can enter into the fray as simply another

actant with a plan, interpreting and responding to users’ plans. However, Suchman drew on

phenomenology and early practice theory to show that people actually do something far more

39

complex. A sentence, for example, can take on wildly different meanings depending on context,

and rules cannot describe its possible usages. (This point is of course made especially poignantly

by Wittgenstein’s (1953) deconstruction of rule-following, and indeed is redolent of

poststructuralism more generally—to be discussed in the next chapter). Suchman argued that any

attempts to explain literally what was meant in a sentence would only lead to an infinitely

expanding horizon of more and more statements that would each require further explanation to

ensure that whatever knowledge is shared is made explicit. At base, therefore, her argument was

that meaning is something that is produced in practice because it is drawn from shared

understandings that are reproduced and reinvested with meaning in situ. Consequently, static rules

are bound to fail and thus software/technology cannot be an entity whose meaningful plans and

future interpretations are known in advance, not at least insofar as it actually engages with people

in practice. Consequently, software/technology must continually produce its ontological identity

through interactions in practice—and so we have, from a different angle, the practice perspective

on technology once again.

Sociomateriality

Building on these arguments and the continuing development of a practice perspective on

technology, Orlikowski (2007) came to her fullest elaboration of practice theory with the

development of what she calls sociomaterial practices. Orlikowski’s main target here was an

omission within OS regarding the centrality of materiality in practices. This is partly a continuation

of her ongoing criticism of the disappearing act of technology in OS and she repeats her indictment

of its dualistic treatment as we have seen above. However, the key difference from her earlier

criticisms was that even the practice perspective in OS still tended to under-theorise the materiality

of technology and reinforce a dualistic separation. It is for this reason that Orlikowski introduces

the concept of ‘sociomaterial’ practices in order to achieve: (a) a heightened emphasis on

materiality in practices generally; and (b) a fundamental shift in the dualism debate that collapses

40

the separation of social and material once and for all (indicated by the concatenation of these terms,

sociomateriality).

There is an important sense in which Orlikowski’s development of sociomateriality goes

beyond her earlier practice approach to technology studies. This is especially clear when

Orlikowski directs her attention to its ontological assumptions explicitly (Orlikowski, 2010). Her

key move lies in a shift to a relational ontology, which is characterised by an emphasis on the

mutual interpenetration of reality and the complete rejection of an ontology of separate,

independently existing entities (Barad, 2003, 2007). This is encapsulated in the notion of

constitutive entanglement, which means that ‘Humans are constituted through relations of

materiality — bodies, clothes, food, devices, tools, which, in turn, are produced through human

practices (Orlikowski, 2007, p. 1438)’. This is significant because it marks a shift in the dualism

away from its narrative of increasingly elaborate ways of describing the influence of technology

on humans and vice versa but which nevertheless maintains their essential separation. Instead,

Orlikowski (2007, p. 1437, original emphasis) asserts that:

A position of constitutive entanglement does not privilege either humans or technology (in one-way

interactions), nor does it link them through a form of mutual reciprocation (in two-way interactions).

Instead, the social and the material are considered to be inextricably related — there is no social that is

not also material, and no material that is not also social.

Orlikowski sees this as contributing to a rising tide of related research in OS, marking a key shift

in the fundamental ontological assumptions underpinning the debate about the relationship between

technology and the social (Orlikowski, 2010) This broad ontological reorientation reaches across a

varied melange of disciplines and includes theoretical perspectives such as Actor Network Theory

(Callon, 1986; Latour, 2005), mangle-of-practice, (Pickering, 2010), object-centred sociality

(Cetina, 1997), and even, to an extent, the Communication as Constitutive of Organisations (CCO)

perspective (Cooren, Taylor, & Van Every, 2006), among others.

The sociomateriality perspective represents the most sophisticated theoretical attempt, and

the current position, in a progressive distancing from the dualistic entity view with which we began

this chapter. It has produced many insightful analyses of software/technology, on diverse topics

41

such as: virtual reality as a collaboration tool (Orlikowski, 2009); plagiarism software (Introna &

Hayes, 2011); the effect of social media on commensurability (Orlikowski & Scott, 2012); online

travel rating systems (Orlikowski & Scott, 2013; Scott & Orlikowski, 2012); algorithmic

governance (Introna, 2016); and innovation in computer game design (Scarbrough, Panourgias, &

Nandhakumar, 2015). Insofar as this perspective both builds on a relational ontology and

emphasises the constitutive role of materiality, I consider it similar in these respects to recent actor

network affordance approaches (Faraj & Azad, 2012; Robey, Raymond, & Anderson, 2012) as well

as the way the CCO perspective deals with technology (e.g. Leclercq-Vandelannoitte, 2011).

Though the criticism I develop in this chapter and the next is most explicitly directed towards

sociomateriality, these points pertain to these other perspectives insofar as they similarly focus on

positive ontology alone—but more on this shortly.

At this point, however, it’s worth stepping back to consider the broader narrative of this

literature review. We have seen that each of these theoretical perspectives have sought answers to

the question of what software/technology is and therefore how its ontological identity is produced

by, and structuring of, the social. Yet recurrent throughout has been a persistent difficulty to locate

a stable ontological essence underpinning software/technology. Earlier accounts tended to deny the

problem altogether and in so doing they sacrificed empirical adequacy for the sake of theoretical

simplicity. The more fundamentally stable technology is assumed to be, the less it effectively

describes the way in which the actual meaning and function of technology depends upon its messy,

varied, and sometimes contradictory instantiations in practice. To counter these inadequacies, we

see progressively more relational, processual, and social ontologies being drawn upon to give

technology the theoretical depth and nuance it deserves. This trend has continued through to its

current position in which the ontological identity of technology is now fully located within social

Figure 2.1: Trade off continuum between stable essence and complex change

42

relations. We can therefore conceptualise these attempts as belonging to continuum that depicts a

trade-off between a stable and discrete ontological identity vs adequate theoretical sophistication

(see Figure 2.1).

The trend within OS in particular can be understood as a move largely from the left (stable

and simple) to the right (complex and diffuse); though it is, of course, possible to find examples of

studies that continue to draw on what I have characterised as ‘older’ ways of thinking about this

relationship. Indeed one needn’t look hard to find a smorgasbord of exactly the same kinds of

dualistic and under-theorised conceptions of technology that Orlikowski and Iacono (2001)

critiqued almost 20 years ago (e.g. Branstetter, Drev, & Kwon, 2019; Khalid & Eng-Thiam, 2018;

Lee, Lee, & Keil, 2018; Perry & Vandenhouten, 2019; Reisinger, Ressner, Schmidtke, & Thomes,

2014; Salminen-Karlsson, 2015; Srikanth & Puranam, 2014; Zhou & Song, 2018). The positivist

entity perspective on technology shows an impressive ability to continue to survive what should

otherwise have been fatal criticisms, and for this at least it should be commended.

These outliers notwithstanding, the trend within OS overall is characterised by a shift

towards increasingly relational ontologies in order to account for the problematic, shifting, and

varied meaning held by software/technological artefacts in practice. The central problem

throughout this debate has been to locate the identity and meaning of these artefacts, and this has

been motivated by a recognition of the inadequacy (both theoretically and empirically) of accounts

that attribute stable, pre-given, essential properties to software/technology. In OS, such a view has

now been largely rejected in favour of a more complex view of socially constituted relational

constructs, yet how precisely this happens has remained hard to pin down and is the source of much

ongoing research. Overall then, the crux of this issue has been to show how, ontologically speaking,

what a technology is is constituted socially.12 The sociomateriality perspective is, in my opinion,

the most successful of these attempts, and it has offered many important insights into how the

12 Sociomateriality also makes the converse point, namely that the ontological identity of social practices is constituted

through the materiality they engage with. This point is equally acceptable within a poststructuralist framework since it

still maintains the fundamental proposition that all identities (including both social and technological) are not essential

but are constituted through discourse. I expand on this argument in the following chapter.

43

ontological identity of technology is constituted through a relational system of practices. Such a

view does much to shift the debate from the dualism we began this chapter with. But does it really

resolve the issue of software/technology’s problematic ontology?

Beyond Sociomateriality

In the remainder of this chapter, I want to suggest that while sociomateriality has much to

offer research into what software is and how it affects organisations and society, it nevertheless

suffers from an important blind spot. It is striking that these approaches succeed in locating the

ontology of software only to the degree that they simultaneously sacrifice precision in terms of the

specific object: What is software? Well we can’t exactly say, but we can explain what a social

practice that incorporates software is. Theoretically useful though this explanation may be, it has

clearly shifted levels in terms of its specificity. The reason for this is that the ontological identity

of software/technology is inherently problematic and open to ongoing revision and contestation, as

this literature review has demonstrated.

It is, however, my contention that the fact of software’s problematic ontology is

fundamentally important, and we miss the significance of this ontological problematic in our efforts

to keep on trying to locate what it actually is. This error is indicative of a broader trend in western

thinking more generally, which Derrida (responding to similar points made by Heidegger) has

Figure 2.2: Positive vs Negative Ontology

44

described as a kind of tyranny of a metaphysics of presence (see e.g. Derrida, 1972). A metaphysics

of presence is characterised by an insistence that the only ‘thing’ that ‘matters’13 is the extent to

which an object/person/practice shows up as something. This approach can best be understood as

a positive ontology, and although all the above perspectives may diverge from one another along

an entity/relational axis, they are all, in fact, united by their insistence on only the positive aspect

of ontology, as demonstrated in Figure 2.2. This is their key limitation, therefore: not only

sociomateriality but all the perspectives outlined so far are all focused on software/technology only

insofar as it is actually present in a given organisational site, specific practice, or wherever else it

may be studied.

The theoretical and ontological framework taken in this thesis is, in contrast, open to the

possibility that it is precisely in the inability or failure of technology to fully claim an ontological

identity that produces some of its most interesting features. This opposite emphasis can be

understood as a negative ontological approach (Kelly, 2014). Note that negative here carries

connotations of the inverse, underside, or dark side of an image, much like the negatives of an

(antiquated) camera film; conversely positive does not necessarily mean beneficial but rather points

to the analysis of the actually achieved and recognised ontological identities attained in a given

context (see Figure 2.2). Thus, a positive ontology of software may still be fairly negative in terms

of identifying malevolent, controlling, or exploitative features, for example. A negative ontology,

therefore, is an approach that looks beyond just what something is in practice and considers how

its failure to be something may, in fact, produce significant theoretical insights. In thinking through

a negative ontological perspective, I want to know why it is that software is so hard to pin down:

Why is software so ontologically problematic? What happens when it is precisely software’s links

to material reality that are difficult to establish? How can we theorise the software object when

what is most pertinent is not, in fact, its direct, observable material effects but a certain discursive

13 It’s interesting to notice how much a bias towards presence saturates even our language such that it’s difficult to

even describe something as important without using language that implies material substance.

45

emptiness? These questions, which are the focal point of this thesis, bring us to the point at which

we must move beyond sociomateriality.

As we have seen, sociomateriality (and the practice perspective generally) is commendable

for its positioning of identities as relationally constituted within practices. Its key point, and the

reason it went beyond Structuration (and the other highlighted theories), was that the identity of

software/technology is always contingent upon its moment-by-moment instantiation in practice.

My issue with this, however, is that even as sociomaterial practice theory problematises this notion

of pre-given, stabilised identities, it nevertheless still proceeds to drop this healthy scepticism as

soon as objects are constituted in practice. True, practice theory acknowledges an openness inherent

to practice: this is manifested in the fact that practices must be continually reproduced and thus

each practice performance is partly enduring and yet partly open to change (Nicolini, 2012). But

despite this partial acknowledgment of openness, practice theory nevertheless maintains that, in

order to be socially recognised, practices are always framed and constituted by a shared

understanding that confers identity on each actor, artefact, space, object, intention, and so on. Yes,

identity is open to change, but in each moment, it is always fully attained through social practices.

Here marks our point of departure. The issue here is that sociomateriality is all too willing

to unproblematically accept objects constituted through practice as fully attaining identity, however

ephemeral that accomplishment may be. One of the key insights of a negative ontological approach

is its recognition that no identity can ever be fully attained, even momentarily. Identity has a

positive sense that is constituted in relationships within practice or, as I shall argue in the next

chapter, discourse; but crucially this positivity is always threatened and undermined by a negativity

arising out of its lack of an essential meaning and an impossibility at the heart of identity. Identity

is thus is always already penetrated by failure, and sociomateriality has no way to acknowledge

this, much less account for its effects. My key criticism is, therefore, that even identities attained

within sociomaterial practices must still be considered failed and partially achieved. However, it

remains the case that sociomateriality (as well as practice theory generally and certainly all other

46

perspectives so far reviewed) is a fundamentally positive ontology, and as such, it cannot account

for the effects of absence, failure, and lack that ceaselessly penetrate all identities, social or

material.

Towards a Negative Ontology of Software

A key motif woven throughout this chapter has been the theme of problematisation. The

narrative I have presented has traced a history of various attempts at defining software (or

technology more generally) and its related work contexts as inherently problematic. One

observation of this narrative is that it has revealed a surprising difficulty in defining just what

exactly software (or technology in general) really is. The simplest approaches, characterised here

as entity perspectives, foundered upon their misrecognition of this difficulty. This prompted

various attempts to integrate definitions of software with the complexity of social reality, tracing

through a variety of variable relationships, constructionist theory, structuration models, and, most

recently, the Sociomaterial practice perspective. Accompanying this shift, then, is a marked

ontological diffusion where the difficulty of defining software as a particular thing has led to its

identity becoming just one element among many in a dispersed sociomaterial practice. In other

words, these definitions have succeeded only insofar as they broaden what they are defining to the

level of practice while definitions of software itself still remain problematic. All this leaves me, at

least, with the lingering suspicion that software may be one of those concepts whose perennial

difficulty and disappearance indicates something more than just a tricky subject.

Indeed, this is precisely the argument that has been made for other similar disappearing

acts. Jones and Spicer (2005), for instance, utilise the concept of an empty signifier to problematise

the disappearing and contradictory nature of the entrepreneur. In so doing, they pose the following

haunting question:

‘What if entrepreneurship research has not failed at all, but has uncovered something significant about

the underlying structure of entrepreneurship discourse, that is, that “the entrepreneur” is an empty

signifier, an open space or “lack” whose operative function is not to “exist” in the usual sense but to

structure phantasmic attachment?’ (p. 235).

47

Their analysis draws on poststructuralist discourse theory and takes a specifically Lacanian slant

to show how the entrepreneur becomes a ‘sublime object’ (Zizek, 1989), whose most theoretically

interesting features lie not in how the entrepreneur is variously instantiated in practice, but rather

in what the lack of a core meaning itself achieves. It is also interesting to note that this leads Jones

and Spicer (2005, p. 237) to suggest ‘other dominant discourses that might be approached in an

analogous way’, among which they include technology.

Simon Kelly (2014) makes a similar case for leadership studies. He maps out the long and

fragmented search for the positive ontology of leadership, from individual essence (i.e. leaders as

an entity), through contingency theories beginning to pose interrelatedness in a fashion similar to

structuration theories and winding up with a now-familiar practice perspective. Kelly argues that

this history of endless failure to find the essence of leadership indicates that it is ontologically

problematic and defies attempts to locate or define it as a thing. It therefore lends itself to a

relational and diffuse ontological position in a manner reminiscent of the technology literature

surveyed above. The reason for this, argues Kelly, is that leadership is an empty signifier. To be

clear, this is by no means a disappointing conclusion for it is precisely this that makes leadership

such a powerful force: Its power, according to Kelly, derives not from ‘its ontological reality as

personality, relation, practice or process – but its ideological function to organize, direct, deflect,

categorize, centralize, marginalize, inspire, control, liberate, improve, stimulate, seduce, transform,

stabilize, threaten, protect and reassure’ (p. 912). Note that this long list of functions is

contradictory in relation to each other, but this is exactly what we should expect of an empty

signifier because its main function is to empty itself of meaning so as to take on broad and diverse

ideological functions. This will be explored further in the next chapter; here the key point is that

what is most important about leadership is what it isn’t rather than what it is. Could the same be

true of software?

 Admittedly software seems prima facie to be a categorically different kind of ‘thing’

compared with the lofty heights of entrepreneurs and leaders. But as I have demonstrated in this

48

chapter, software is anything but concrete and simple (like entrepreneurship), and its own literature

has taken much the same journey as leadership. Moreover, like leadership and entrepreneurship,

it’s surprisingly difficult to say what or where software is: Is it the code on the developers’

machines? Is it the code being executed by a user’s machine? Is it the electromagnetic currents

flowing through some machine either in an organisation or ‘in the cloud’? Is it the effect that it has

on the user? Or through the user? Perhaps is it none of these things but rather some kind of diffuse

practice? Like Kelly, I wouldn’t deny that any of these things actually exist in reality. Instead my

suspicion is that some of the most interesting effects of software are somewhat disconnected from

the specific realities of each these moments, or even its identity within sociomaterial practices. Put

simply, if our focus is only on the positive ontology of software, as in sociomateriality and every

other perspective above, then the ideological functions of its failure to attain a stable identity will

forever remain invisible. For this reason, my argument is that we need to move beyond

sociomateriality and towards a negative ontology of software.

To the best of my knowledge this link has not yet been specifically made anywhere else in

the literature on software. To be sure, some studies have suggested that ‘technology’ functions as

a macro-level empty signifier which is able to be invested with meaning by various political

interests (e.g. Haarstad, 2017; Wullweber, 2015); the same has been said of ‘digital discourses’

such as ‘big data’ and ‘network’ (Barassi, 2016). Other studies that come close will be reviewed in

my discussion of methodology (see Chapter Four). Of relevance here is that, to my knowledge,

only one study has demonstrated the potential critical insight for technology made possible by the

direct analysis of negative ontology. This comes by way of Contu and Willmott (2006), who

demonstrate the limits of the practice approach (and positive ontologies in general) by

deconstructing Orr’s (1996) seminal book Talking About Machines, whose relevance for practice

theories of technology was reviewed above. Their critique of this study will be revisited in detail

in the following chapter but, as I will show, even this is focused on technicians and technology; no

study has yet linked the potential of a negative ontology specifically to software. And, furthermore,

49

of those that come close by claiming that technology or digital discourse are empty signifiers, none

of these has drawn on first-hand empirical data, let alone provided a sustained analysis through

ethnography.

This chapter has, therefore, identified a significant gap in the literature that this thesis seeks

to fill. This is an important contribution because it offers a correction to a glaring imbalance in the

literature on software and indeed on technology more generally, which, in its efforts to keep trying

harder and harder to find the positive essence of software, has overlooked the ideological

significance of this difficulty. Moreover, as Kenny and Scriver (2012) argue in response to Jones

and Spicer’s (2005) problematisation of the entrepreneur outlined above, it’s one thing to accuse a

subject of emptiness and quite another to demonstrate empirically the production, function, and

effects of this emptiness. This thesis aims, therefore, to redress this gap by offering an in-depth,

empirical examination of the emptiness of software from a negative ontological perspective. It thus

holds out the promise of novel insight into the fascinating inner workings of software and its socio-

political effects on users, organisations, and indeed modern society itself. Whether or not a negative

ontology has something to offer beyond sociomateriality is, ultimately, an empirical question—in

other words, it remains to be seen. This is exactly what this thesis intends to demonstrate. But

before we can consider the empirical data, we will need to unpack the ontological and theoretical

framework that underpins what we mean by negative ontology and how what something isn’t can

have real effects in the world. That task shall occupy us in the next chapter.

50

3. Theoretical Framework

In the previous chapter I argued that studies about software have consistently struggled to

pin down precisely what software is. I argued that in its attempts to deal with this, the literature

trended towards an increasingly relational, diffuse ontology and that this led to perhaps the most

sophisticated of these attempts, sociomaterial practice theory. But I also argued that even the

sociomateriality perspective has glossed over the importance of the difficulty of locating software,

and in doing so it demonstrated a key weakness: neither sociomateriality nor any other prominent

theory in the literature has satisfactorily theorised the importance of the failure of software in fully

attaining its identity. This, I argued, calls for a negative ontological approach.

However, in that chapter I introduced some assumptions in my commentary that have not

yet been adequately explained or defended. In particular: why is it the case that identity can’t be

fully attained? And how can what something isn’t have any significant effects in reality? These are

central premises for this thesis; hence it is the task of this chapter to articulate the ontological and

theoretical framework that explains the pivotal role negative ontology plays in social and

organisational reality. To achieve this aim, the chapter proceeds as follows: I begin by arguing that

another way of thinking about social practices is through discourse theory. Discourse, I will argue,

captures the same insights available through a sociomaterial practice lens but it also opens up

another level of analysis that practice misses. Once we begin to think in terms of discourse theory,

we can then step back and consider the process by which ontological identity is constituted—this

being the central puzzle highlighted in the previous chapter with respect to software/ technology.

This is a necessary piece in the argument because understanding this process is key to

understanding how and why it fails. Poststructural Discourse Theory (PDT), drawing especially on

the work of Ernesto Laclau and colleagues, shall furnish us with a set of tools that explicate this

key process of ontological identification and, more importantly with respect to this thesis, the

centrality of failure and absence that lurks ever-present behind all claims to identity. This

framework will allow us to then approach directly the effects of the inevitable failure of identity.

51

In closing out this chapter I offer two such levels of effects, looking first at the personal level of

subjectivity and ending with an examination of the role of absence, lack, and emptiness in giving

this failure its ideological force.

The Limits of Practice

Practice theory has offered important insights for the understanding of how people, things,

places, and spaces come to matter. Here, however, I want to show that a particular understanding

of discourse can offer much the same insights and yet take us beyond practice in important ways.

To open up this discussion, I begin with an example that will bring to light some of these important

differences and frame the discussion generally. Let’s consider again the question of what a

technology is, that question of ontological identity. For our example we will take a technological

object that is far simpler than software and consider a knife for the moment. What is a knife? I have

a particularly impressive looking ‘hunting’ knife that I keep in my desk drawer that will serve

nicely as an example. I call it a hunting knife because I bought it at a hunting store, but since I have

never hunted anything in my life let alone used this knife for it, what kind of object is it? If I were

to take an entity perspective, I could say that it has certain qualities such as sharpness, hardness,

and an ergonomic design that make it clearly useful for cutting. I might conclude therefore that it

is a tool for cutting: my knife is a domestic tool.

On the other hand, my knife also has a very sharp point that has no particular use to me.

This point lends itself more to stabbing that cutting, and indeed knives like mine have a long history

of use as weapons, against both animals and people. What makes my knife a domestic tool and not

a violent weapon when it possesses both qualities? This kind of question brings us to the same

limitations we witnessed with respect to software in the previous chapter. As we saw, the apparently

structuring properties as per its design does not necessarily fix what a thing is.14 The resolution for

14 Note that the point also holds for other less obviously lethal objects. As any Cluedo player knows, a candlestick,

rope, or pipe wrench will serve just as well for a murder weapon quite irrespective of their intended designs and obvious

properties.

52

this was to move towards practice theory: my knife is what it is by virtue of the practices it is used

in. Since I use my knife for the purpose of cutting fruit and vegetables for my lunch at work, these

practices constitute it (that is, they produce its ontological identity) as the domestic tool I take it to

be. Conversely, were I to use it to murder someone, apart from spending the rest of my life in prison

I would also have constituted my knife as a weapon. Everything seems to be in order here then,

according to a practice perspective.

 However, there is more to this story than first meets the eye. When I walk from my desk at

work to the kitchen with a large and very sharp cutting/stabbing object in my hand, it really matters

what I am holding. More to the point, if it so happens that I am holding a weapon in my hand, as a

society we will want to be able to identify it before this is confirmed in practice. This is surely a

fundamental expectation we hold for security and police services, not to mention the wider public:

we want to know that a weapon is a weapon before it is constituted as one in practice. But according

to the practice perspective, how would we know the difference? Say I am harbouring devout and

delusional plans to stab a colleague with my knife (who happens to be in the kitchen). What exactly

marks the difference in my walk to the kitchen with a knife in my hand from all the other times

I’ve done exactly this in order to cut fruit? My practice of walking with a sharp object in my hand

is not enough to account for the constitution of its identity as either a weapon or a tool since it is

identical in both respects. Something more is needed, preferably without us having to wait and see.

Moreover, and to complicate the matter further: what if I am suddenly struck by the cold light of

reason when my colleague smiles at me, and this leads me to abandon my malice and reach instead

for a piece of fruit. Was my knife ever a weapon? It seems to me that it was, at least for a time, if

only because during my walk to the kitchen I believed I was holding a weapon not a tool. But what

made it so if my practice never outwardly changed?

It seems then that the intentions I have make a difference to what an object is. But how do

we account for this in practice theory? Perhaps we could say that while practices may outwardly

look the same, they necessarily include ways of thinking, purposes, and rationales as integral to

53

their composition—and indeed Schatzki (1997) would be quick to point this out with his notion of

practices as doings and sayings. In my head then, I was walking within ‘the practice of murder’,

but then I spontaneously changed to ‘the practice of fruit-cutting’. Yet this explanation is still

unsatisfactory because it seems to imply that practice is something highly individualised and

therefore that ontological identity is an individual accomplishment. I, and I alone, can determine

what an object it simply by mentally framing it as such. This is inadequate because, in fact, the

constitution of identities is fundamentally social process. To see that this is so, let’s say that it has

never even occurred to me that I could use my knife as weapon. Instead I am walking to the kitchen

with a serious bout of fruit-paring firmly in mind. But as I walk through a crowded space, it doesn’t

only matter what I intend to do with my knife; it also matters how I am ‘read’ by other people

around me. Someone suffering from PTSD,15 for example, may be profoundly terrorised by the

sight of me and my knife irrespective of my innocent intentions. For that person, I am holding a

weapon.

Alternatively, I may unknowingly be in breach of regulations against weapons in public

and thus I may be found to have broken the law because society has constituted my knife for me

irrespective of my own mental frame. Indeed, anyone who thinks that intentions alone matter needs

merely to try to board a plane with a hunting knife in his or her carry-on with the intention of using

it to cut an in-flight meal. In such an instance, you will find that you are most definitely carrying a

weapon, your best intentions notwithstanding. These examples raise questions that are difficult to

reconcile with the sociomaterial practice perspective’s fundamental point that ontological identity

is constituted through instantiation in practice. At the gates of airport security, a knife is constituted

as a weapon because of an a priori understanding of what kinds of technology are weapons, and

this happens irrespective of its owner’s intentions or past practices. Sticking with the practice

perspective, we could say that in these instances, the practice of airport security has ‘trumped’ the

15 Post-Traumatic Stress Disorder.

54

practice which the fruit-cutter thought they were performing.16 I agree with the general idea of this

assessment, but I want to suggest that there is a better set of analytical language to describe how

technology is constituted and which has much better answers to these sorts of questions.

The crux of the issue in these examples is that the ontological identity of my knife is never

fully claimed as one thing or another. Rather we see that it is constantly undergoing a kind of

struggle for interpretation and that this interpretation is not a purely individual phenomenon (as per

intentions) but that it is fundamentally social. Insofar as practices refer to what people actually do

(note that this is a positive ontological orientation), practice struggles to account for the

contestability of meaning at stake here. This is because in many respects it is the broader framework

of understanding—what I shall come to define as a discourse—that is the field of struggle and the

reference point for practice; practices follow from discourse and are therefore secondary

appearances. It’s this discursive framework that makes possible some practices while denying

others; it’s discourse that is the level at which one practice can be said to trump another in

succeeding in providing the definition of an object. In the case of airport security, the predominant

understanding (discursive framework) around constructs like terrorism frames what objects are as

they pass through those gates. And it is the purpose of airport security to be so successful in its

framing that all objects it declares as prohibited never have the chance to become instantiated in

any other way than as a (confiscated) weapon. This is explicitly the goal of this discourse and the

social practices of search and security it engenders. However, in formulating explanations such as

this, we have moved beyond the realms of practice theory and a positive ontology and begun to

scratch the edges of an ontological and theoretical framework that brings the political struggle for

meaning right into the heart of identity. We have moved, in other words, to begin to think about

discourse.

16 Though this explanation would be quite stretched to also explain the reaction of the person with PTSD given above

since there is no particular, observable practice that causes that person’s interpretation to trump anything. It rather is

evidence of the possibility of many different understandings of what a thing is in a given situation.

55

Discourse and Practice

There is much in common between the sociomaterial practice perspective and the

poststructuralist discourse perspective that will be developed in this chapter. Both approaches are

attempting to solve a fundamentally similar problem, namely, how to give an account of ontological

identities in the context of emergent, unstable, changes in meaning. Both approaches resolve this

issue by locating identity in differential relations.17 That is, they both deny that identity stems from

some internal essence, asserting in contrast that it is constituted through social relations. For

example, Orlikowski (2007, p. 1438, emphasis added) notes that this move ‘requires replacing the

idea of materiality as “pre-formed substances” with that of “performed relations”’; and again:

there are no independently existing entities with inherent characteristics (Barad 2003: 816). Humans are

constituted through relations of materiality — bodies, clothes, food, devices, tools, which, in turn, are

produced through human practices. (Orlikowski, 2007, p. 1438)

Here we see that identities, including of both humans and technological artefacts, are constituted

in and through relationships with other identities in a system. In the case of sociomateriality these

relationships are called practices, but in this chapter, I will argue that we can make the same claim

for discourse and, moreover, that this leads to even better explanations of software.

This therefore signals the point at which we will depart from practice theory, while

continuing to acknowledge the considerable overlap in both the recognition of the problem and its

resolution. Thus, in making this jump we will try to retain as much of the key insights of

sociomateriality as possible. Indeed, Laclau (Laclau & Bhaskar, 1998, p. 6) has even stated that

practices are more or less just another word for what he calls discursive formations (for a thorough

integration, see also Glynos & Howarth, 2007) and he frequently equates the two (e.g. Laclau &

Mouffe, 2001[1985], pp. 111-112, 113-114). In the following chapter, I will return to one key

objection to this shift towards discourse instead of practice for software and technology studies,

namely that in overemphasising the symbolic (i.e. discourse) we risk a regression back to an under

theorisation of technology—that great disappearing act that the previous chapter dismissed. I will

17 By ‘differential’ I refer to the fact that a system (e.g. practice, discourse) orders elements in a such a way as to

differentiate them from one another. I will elaborate on this point much more thoroughly throughout this chapter.

56

show that this is not necessarily so, but before we get there, we need to unpack in more detail the

process by which identity is constituted according to discourse theory, and how, more importantly,

this opens insights for a negative ontological approach.

Discourse and Identity: Poststructuralism

In order to begin to work with the concept of discourse, we are going to need to define it

with more precision. There are many varieties of discourse theory and in the next chapter I will

disambiguate my own position from other kinds of common conceptions of discourse within OS.

Here, however, my aim is to outline in detail the distinct ontological and theoretical framework

that underpins this research, namely the poststructuralist discourse theory (PDT) advanced chiefly

by Ernesto Laclau & Chantal Mouffe (Laclau, 1990, 1996a, 1996b, 2015[1996]; Laclau & Mouffe,

2001[1985]). This was subsequently developed by the Essex School of Discourse Analysis, whose

many works supplement the framework that I here explicate (esp. Glynos, 2011; Glynos &

Howarth, 2007; Glynos et al., 2009; Glynos & Speed, 2012; Glynos et al., 2015; Howarth, 2000;

Norval, 2000, 2004).

The foundational premise of PDT is that social reality is constituted by ordering frameworks

that we call discourse. A discourse, then, is a system of differential relations that constitutes the

identity of each element it subsumes. Much needs to be unpacked from this definition, however.

To begin with, as obvious as it may now seem, PDT initially posed a radical challenge to the

dominant paradigm of positivist essentialism. Readers of this thesis will likely be familiar with the

many criticisms of this paradigm (but see Guba & Lincoln, 1994; Jørgensen & Phillips, 2002;

Rorty, 1979; Shotter, 1993, 2006; Willmott, 1993) so I will not belabour the critique here; it is, in

any case, quite explicit in the argument developed in this chapter and the previous. However, once

the basic critique of positivist essentialism is accepted, it becomes an open question as to how to

ground the meaning and identity of social reality. As indicated by the literal connotations of the

word ‘discourse’, PDT looked to language in order to understand social ontology. This was partly

57

because of the claim that as symbolic animals, we have no way outside of language to make sense

of what Robert Chia (2000, p. 513) calls the ‘undifferentiated flux of fleeting sense-impressions’.

Life flows on all around us and it is only through language that we can give meaning to this

otherwise shapeless experience. In this sense, language does not simply reflect pre-given categories

and essences as if it were a mirror, but actively constructs them (Berger & Luckmann, 1966; Rorty,

1979, 2009).

Yet for PDT, discourse means more than the empirical observation that human experience

is inescapably shaped by language. Discourse also offers the paramount metaphor by which to

understand what social reality is. In other words, discourse offers a distinct social ontology as well

as an epistemological stance on the role of language in knowledge construction. Here,

poststructuralism and notably Laclau owes a great deal to the profound contribution of Ferdinand

de Saussure in opening up new lines of theoretical reflection on the nature of language, chiefly in

his seminal contribution to structuralism, Cours de linguistique générale (1983 [1916]). Saussure’s

most fundamental insight was his analysis of the nature and characteristics of ‘signs’, which he

argued are the basic units that comprise language. He coined the term Semiology18 to denote its

study and intended his work to become the starting point for a new discipline.19 Saussure argued

that signs are composed of two elements in tandem: the signifier, which is a ‘sound-image’20 and

the signified, the concept to which the former refers.21 From this flows two important points that

have continued to influence PDT. The first is that the relation between signifier and signified is

fundamentally arbitrary (Saussure, 1983 [1916]). In other words, there is no natural or necessary

18 From the Greek σημεῖον (sēmeion, ‘a sign’.)
19 His insight on this point was rather profound and foreshadowed much of the later social constructionist argument

(e.g. Berger & Luckmann, 1966). He argued that Semiology was different to linguistics per se because its object of

analysis was something that existed in collective minds of individuals as a kind of mental construction, rather than the

raw empirical phenomena of linguistics, which focused on what he would come to term parole.
20 Saussure (1983 [1916], pp. 65-71) noted that the actual sound that a signifier makes is not part of the sign, but rather

the image that a person has in their mind of what that noise sounds like. The proof for this is the fact that we can think

in language in our heads. No sound is made, yet we can use signs, which are signifiers and signified.
21 Note that Saussure concedes that there are many other kinds of signifiers that are not sound-images. Sign language

for hearing impairment presents an obvious example, but there are many others including pictures used for street signs,

bodily language like winks and smiles, through to head-wobbles in certain parts of Indian culture. However, sound-

images are, for Saussure, the most comprehensive human system of signs. Saussure argues that this is because the

primary semiological system is speech, while every other system exists as a kind of second-order system which merely

attempts to represent speech.

58

reason that a signifier should indicate a specific signified. All that matters is that within the present

linguistic system, we understand that they are linked.22 But if signs are arbitrary in their form, how

then do they come to have a meaning?

This to leads to the second, and most important point: Saussure argued that the only relevant

quality either needs to have is that it is in some way different from the sound-images (for signifiers)

or concepts (for signifieds) around it. The sign ‘cat’ is thus broken into its signifier ‘kaet’, whose

defining quality for this role is simply the fact that this sound is different from other similar sounds

(e.g. ‘bat’, ‘cot’, ‘can’). Likewise, its signified concept is, of course, the image we have in our

minds of a small furry mammal with pointy ears and an imperious disposition. The identity of a

signifier/signified therefore depends not an essential quality but simply its difference from all other

signifiers/signifieds. In this way, Saussure argues that the value of a signifier or signified is negative

rather than positive because it is based on difference and thus it is essentially arbitrary.23

The key point here, and the point that was to become immensely influential for PDT, is

simple yet profound: the necessary condition for signs to have any meaning at all is a structured

system that differentiates one sign from another. All identity is therefore fundamentally negative

and differential. As Saussure put it:

it is a great mistake to consider a sign as nothing more than the combination of a certain sound and a

certain concept. To think of a sign as nothing more would be to isolate it from the system to which it

belongs. It would be to suppose that a start could be made with individual signs, and a system

constructed by putting them together. On the contrary, the system as a united whole is the starting point,

from which it becomes possible, by a process of analysis, to identify its constituent elements (Saussure,

1983 [1916], p. 112).

22 One may object that onomatopoetic words belie this point, but Saussure (1983 [1916], p. 69) shows that even these

are arbitrary by comparing the ways in which different languages use these words differently from one another.
23 Saussure went on to offer a positive basis for the identity of a sign, drawing on what he saw as distinction from other

signs vs pure difference in the case of signifier/signifieds. In this sense the sign ‘cat’ also has a positive value in that it

has a meaning relative to comparably similar signs like dogs, foxes, rabbits, squirrels, rats, mice, etc. There exists a

system—a discursive structure—in which small animals are categorised (wild/domesticated; predator/prey;

canine/feline/other, etc). Note that that positive in this sense is completely different from a positivist essentialism. This

has all been subject to fascinating debates (see e.g. Derrida, 1997; Howarth, 2000) but for my purposes this distinction

is not necessary since it is developed directly in the works of Laclau as outlined in this chapter.

59

The identity of something, therefore, is grounded in the broader system of order; identity is

fundamentally negative and grounded only in discourse, which holds true whether that something

is an object, a person, a place, a practice, or anything else.

Now in developing this theory, Saussure was primarily interested in literal linguistic

systems rather than social ontology. To arrive at the latter point it took several turns through various

fields, notably through the French anthropologist Claude Lévi-Strauss and the complex criticisms

and reworkings of Derrida (esp. 1997). For our purposes, it forms the crucial background for the

distinct version of PDT as developed initially by Ernesto Laclau and Chantal Mouffe in their (1985)

book Hegemony and Socialist Strategy and advanced by Laclau in a series of books and articles

(1990, 1996a, 1996b, 2015[1996]).24 Their chief contribution was to drive this technical discussion

of the function of language radically into the domain of social ontology. Their key argument, in

other words, is that discourse is more than just the language we use to come to know reality;

discourse is in fact a powerfully incisive theoretical lens (or metaphor) that explains how reality

comes to actually be something and, moreover, it therefore follows that identity itself is similarly

fundamentally negative and grounded in differential relations.

To advance this argument, Laclau and Mouffe developed a social ontology around the

concept of articulation as the central practice that temporarily fixes identities within discourses. In

their words, ‘we will call articulation any practice establishing a relation among elements such that

their identity is modified as a result of the articulatory practice. The structured totality resulting

from the articulatory practice, we will call discourse.’ (2001[1985], p. 105 emphasis in original).

It is easy to overlook the significance of this formulation because there are two key points packed

into this: the first is a fairly standard social constructionist claim that discourse is the ordering force

structuring the social world. We could get to such a place from a variety of different constructionist

24 Interestingly, despite Laclau and Mouffe’s considerable influence on poststructuralist discourse theory, they did not

initially set out to advance a theory of discourse but were instead addressing the problem of necessity and contingency

in class identity within Marxism at the time, the details of which fall outside the scope of this thesis. Hence for this

reason, their framework is often labelled as Post-Marxist (the label the authors use themselves) in their introduction to

their second edition.

60

positions, or even Saussure himself. But an important and often elided element of this claim is the

issue of who fixes these identities within a discourse, and how this is accomplished. Indeed, this is

precisely what is overlooked in the all-to-easy notion of shared understandings that sociomaterial

practice theory rests on, and it is precisely these questions that caused it to come unstuck with our

earlier example of the knife. What PDT brings back into the foreground with its emphasis on

articulation, therefore, is a thoroughly political conception of the very process by which identities

are fought, fixed, and unfixed in the ongoing struggle for interpretation of meaning.

This moves the picture of discourse well beyond that envisaged by Saussurean

Structuralism because the emphasis here is on the way in which the system changes, rather than

how it works at a given moment in time. Of course, Saussure also acknowledged that discourses

change over time, but he was mostly interested in the deeper structure of language at a given point

in time.25 This led him to hold a stable and closed conception of the structural system and the

corollary assumption that any identities derived from such a system were equally stable: they might

have no essential meaning of their own, but the system at large secured their stability and

underwrote their enduring meaning. This assumption was subsequently dismantled, particularly by

Derrida (1997)26 and the critique of this point is what defines the ‘post’ in poststructuralism. For

PDT, no discourse is ever complete because it is always possible that new articulations can fix old

meanings in unexpectedly new ways, or conversely that new meanings can change old meanings

as a result of the shift in relations. This can be seen, for example, in the meaning of the element

carbon. In the broader discourse of the industrial revolution, carbon was associated with energy,

25 In his words, he was interested in what he called synchronic analysis, which focused on langue (the deeper structure

that underpins parole, i.e. spoken, instantiated language). In contrast, he coined the term diachronic analysis as the

study of change.
26 Derrida took aim at a seemingly trivial binary in Saussurean Structuralism: the privileging of speech over writing.

Where Saussure had argued that writing merely represented language’s real essence (speech), Derrida argued that

writing demonstrates the defining features of language. One such feature can be seen in the fundamental difference

between speech and writing: durability. Speech exists only in the moment that it is being heard (precluding for the sake

of simplicity the confounding factor of the ubiquitous audio recording technology now available to us) and thus, speech

always involves a speaker and (at least) one hearer. In contrast, writing has an enduring quality that enables it to persist

well beyond its instantiation by a writer and therefore language must necessarily have a shared, public quality to it.

This, Derrida concludes, makes language always open-ended, and the system that gives meaning to a sign cannot ever

have closure since there is always the possibility of new contexts that open up unexpected meaning.

61

progress, and even as the main building block of life itself on earth. Yet as the discourse around

environmental sustainability grows in dominance, carbon begins to shift from life and progress to

death and destruction as it undergoes a shift in its relationship to other elements in the system:

carbon alongside climate change is a very different kind of thing to carbon alongside industrial

expansion. A similar phenomenon was evident above in the example of the knife: a knife alongside

global terrorism and an aircraft is a different kind of thing to a knife in the kitchen. The system

itself is always open to future change and, more importantly, this change implies the political

processes of articulation.

It should also be obvious from the foregoing discussion that discourse for PDT is not at all

synonymous with a language (such as English or Farsi). A discourse is instead a specific ordering

of the relations between certain differential positions, similar to the Foucauldian notion of

regularity in dispersion (Foucault, 1972). This means that there will be many different discursive

formations within a single language and thus it is more useful to think of the site of the social as a

space of multiple, criss-crossing discursive fields. Criss-crossing, moreover, implies that there will

be degrees of antagonism between the various discourses in a given context. I may be

simultaneously a football fan, for instance, and a devout Buddhist. Each discourse will constitute

elements within in it that shape my understanding of myself and my environment, giving rise to

practices such as cheering wildly and sitting serenely. Yet despite their disparity, these discourses

are unlikely to be antagonistic because they do not generally compete to articulate the same

elements. On the other hand, the many competing ways of articulating vaccines offers an example

of a highly antagonistic relationship between discursive ‘frontiers’. Multiple discourses are

attempting to fix the identity of what a vaccine is with meanings as diverse as a government

conspiracy on the one hand through to humanity’s greatest medical invention on the other. Note

that this is not simply conflict over the ontology of a vaccine but extends also to competing

articulations of practices: These extremes, for example, may define the practice of either giving a

child a vaccine or, conversely, abstaining from vaccines as child abuse. The key point here is that

62

antagonism is not a simple conflict of interests between two opposed parties but rather an

articulatory war at the level of what a thing, person, or practice actually is. It is, in other words, a

battle between discourses, each of which attempts to redefine certain identities fixed by the other

(cf. Foucault, 1981).

Armed with the theoretical concepts of PDT, we can return to the example of the hunting

knife and find that the difficulty in deciding exactly what my knife is makes more sense. PDT

makes clear the fact that my knife is subject to an ongoing process of articulating its place within

a discursive formation that gives it meaning. When I walk to the kitchen with the intention of

cutting fruit, I am engaged in articulatory practice that seeks to position the object in my hand

within a discursive framework of ordinary culinary activity. It is this discourse that constitutes who

I am in that moment (someone preparing food), what I am holding (a cooking utensil), my

intentions (I’m going to the kitchen where the food is), and the practices I’m engaged in (walking

with a tool). All of these elements are related to each other within a specific discursive formation.

When I switch contexts and find myself at the gates of airport security, I will encounter an

antagonistic frontier between competing discourses that each seek to deny the other’s articulation

and assert the dominance of their own. This is why, as we saw above, my knife will be constituted

as a weapon irrespective of my intentions or any alternative discourse I may try to articulate: it is

being (successfully) rearticulated by the articulatory practice of airport security.27 In the context of

airport security we also meet another important element in this discussion, namely the concept of

hegemony.

Hegemony refers to projects that ‘attempt to weave together different strands of discourse

in an effort to dominate or structure a field of meaning, thus fixing the identities of objects and

practices in a particular way’ (Howarth, 2000, p. 102). Importantly, the hegemonic struggle is

always ongoing and only ever a brief and uncertain accomplishment (Norval, 2004; Walton &

27 Note here that ‘articulate’ does not necessarily mean a literal attempt to speak out what something is. Articulation

has a broader, more metaphorical meaning that characterises the many ways in which social actors and their various

institutions act directly or indirectly to create a sense of ‘what things are and how things go around here’.

63

Boon, 2014) because discursive fields themselves are never fixed or static and this makes changes

and challenges inevitable. Nevertheless hegemonic projects try to appear as if they are the

permanent, even naturalised state of affairs (Glynos & Howarth, 2007). Thus airport security is

attempting to hegemonize the discursive field that constitutes what we can and cannot take onto a

plane, and it succeeds in this task to the extent that (a) its definitions appear natural and decontested

(‘of course my knife is weapon’) and (b) that this in turn bolsters its ability to exercise its authority

(‘of course security can take my weapon’). In other words, if hegemony is successful, its

articulations seem natural and objectively true and those enforcing them appear to be merely

following through with the natural order of reality. In this way, the exercise of authority is also

naturalised, the functioning of power is masked. To give an example of what happens when this

hegemony is unsuccessful, I once had the experience of being stopped by security at a US airport

and asked to discard a brand new, full container of expensive hair wax because of a ban against

taking liquids on flights.28 I promptly began to argue with the officer, attempting to explain the

fundamentals of states of matter and why therefore a solid wax cannot be classed as a liquid. Here

airport security seemed to overstep the bounds of its successfully hegemonized articulations of

banned substances (like knives) and thus this particular articulatory attempt had moved from being

decontested to an overt conflict. Unfortunately, I was not successful in my impromptu science

lesson and my new wax was left abandoned at the bottom of the bin, but this was due to the overt

power wielded by the officer rather than the hegemonic force of his discourse of contraband. Of

course, his power in this situation can be seen to be the effect of hegemony at another level: it is

decontested and naturalised that airport security have the right to decide whether or not I can board

a flight, regardless of my rights as a consumer to receive the service I have paid for. This same

discourse has also naturalised the stark asymmetry manifested by the right of the officer to carry a

handgun while I am denied even the right to possess the weapon of hair wax. This is therefore a

28 This was shortly after the 9/11 attack and airport security was on high alert.

64

good example of the way in which a social field is shot through with multiple layers of discursive

formations.

Overall then, this section has explicated the process by which ontological identity is

constituted, including of things, people, places, practices, and spaces. We have seen that discourse

provides an analytically useful lens with which to theorise how a ‘thing’ comes to be something

and how, more importantly, this process is fundamentally located in differential relationships. The

effect of this was to characterise social reality as a domain that is criss-crossed with various

discursive formations, and to various degrees of antagonism. Yet in the discussion so far, we have

essentially followed the same trend as that outlined in the previous chapter. We have really only

considered the way in which something comes to be; we have emphasised only the positive side of

ontology, and thus we are still not in a position to consider the problematic ontology of software.

Consequently, the account at this point has offered a different set of theoretical language to arrive

at much the same destination as the sociomaterial practice perspective. The theoretical position so

far taken, moreover, is unlikely to radically surprise any reader familiar with a general social

constructionist or discourse perspective on OS.

What I have offered so far then is to essentially develop the groundwork of how, from a

PDT perspective, ontological identity is constituted. But this thesis aims to go further than this and

demonstrate the importance of negative ontology for the study of software. The question here then

is not just what something is in PDT, but also what something is not. This element of negative

ontology has, in fact, been lurking all throughout this chapter because once we open the door to an

understanding of antagonistic discursive frontiers at the heart of ontological identity then we have

already begun to acknowledge the significance of the impossibility of full identity constitution. This

point takes the discussion into uniquely poststructuralist terrain and in so doing it furnishes us with

the constructs necessary to move beyond a metaphysics of presence: it leads us to consider the

centrality of failure in identity.

65

The Failure of Identity

The argument so far has made the case that what a thing is—its ontological identity—is

constituted through a process of being articulated into an ordered discursive formation. Because

this identity depends upon its relationships to other elements in the discourse, we saw that this leads

to an open-endedness and instability to any meaning: Discourse can always change, ergo identity

is never final. Jørgensen and Phillips (2002) note that a discourse is achieved ‘by the exclusion of

all other possible meanings that the signs could have had: that is, all other possible ways in which

the signs could have been related to one another. Thus, a discourse is a reduction of possibilities’

(pp. 26-27). These excluded possibilities always threaten to become included once again and lead

to the precarious instability of identity. But there is a more fundamental impossibility lurking

behind identity that we need to explore in order to develop the centrality of failure to identity and

hence a negative ontology. To get to this ‘deeper’ impossibility, we begin by asking: what are the

necessary conditions for articulation to be possible at all? Answering this question takes into the

territory of the basic relationship between reality and discourse, for it is only in appreciating this

that we can begin to see how the ‘inverse’ of reality (negative ontology) can have real effects.

In order for articulation to be possible, PDT argues that at the heart of human experience

there is a fundamental, utterly uncrossable rift between objective, ‘out there’ reality and discourse.

Laclau and Mouffe use the construct ‘surplus meaning’ to capture the way in which meaning cannot

ever ultimately align with the deeper, fundamentally indescribable reality it aims to represent (this

they call the ‘final suture’ that would seek to sew up discourse to reality). It’s worth quoting the

authors at length on these points:

We have referred to ‘discourse’ as a system of differential entities — that is, of moments. But we have

just seen that such a system only exists as a partial limitation of a ‘surplus of meaning’ which subverts

it. Being inherent in every discursive situation, this 'surplus' is the necessary terrain for the constitution

of every social practice. We will call it the field of discursivity. This term indicates the form of its

relation with every concrete discourse: it determines at the same time the necessarily discursive

character of any object, and the impossibility of any given discourse to implement a final suture

(2001[1985], p. 111)

And further:

66

The practice of articulation, therefore, consists in the construction of nodal points which partially fix

meaning; and the partial character of this fixation proceeds from the openness of the social, a result, in

its turn, of the constant overflowing of every discourse by the infinitude of the field of discursivity

(2001[1985], p. 114)

We see here that the basic principle that makes articulation possible is the ‘infinitude’ of

possible discourses which creates an endless ‘surplus meaning’ that overflows every given identity

in a discourse. This goes further than the idea explored in the previous section which argued that

meaning is open to change because of changes in the system. Here we see that the ultimate open-

endedness of the system is not merely the potential for a new relationship between signs, but also

the fundamental impossibility of discourse to ever finally capture the essence of that which it seeks

to articulate. What this means is that discourse must not be seen as a kind of mechanism by which

identity is fully constituted, if only temporarily; rather discourse is always already a failed project

that nevertheless perseveres in almost wilful ignorance of this fact. Every identity, indeed every

discourse, is therefore always penetrated by an ever-present sense of absence, the absence of full

identity.

Moreover, acknowledgement of this feature of discourse takes us well beyond the debate

about what software/technology is in its limited positive ontological sense. Yes, we have a theory

of how software/technology comes to take on an identity by being articulated into a discursive

formation and this in itself is theoretically useful, as we have seen. But PDT also shows us why

this identity cannot ever fully articulate what software/technology is; it will always remain a partial

attempt to fix its identity around certain nodal points,29 and it will always be ultimately subverted

by the impossibility of ever fully capturing the overflowing and infinite possibilities within the

field of discursivity.30

It is precisely the effects of this failure that concern a negative ontological approach. But

why should it matter that we can never fully articulate what software/technology is? How can what

software is not have a meaningful effect in organisations and society? Indeed, perhaps the most

29 A nodal point is an important and highly emphasized word within a discourse, which is typically constructed around

several other key nodal points.
30 As per the quote from Laclau and Mouffe above, the field of discursivity is the infinite scope of possible discourses.

67

incisive question is: why should a negative ontology of software be interesting if this failure is a

feature of all discursive identity? What’s so unique about software? Granted, for the most part the

identities that comprise social life often function just as if they were stable and complete, and we

are perfectly happy with this. Very few of us wile away the hours wondering whether our toasters

are really toasters. What this demonstrates is the fact that, while the ultimate failure of any identity

has the potential to generate powerful ideological effects, only some words come to take up these

privileged positions in a discourse (Laclau, 2015[1996], p. 71). It is the task of a negative

ontological approach, therefore, to analyse empirically whether and how the failure of a specific

identity has come to possess a certain extra significance. As we saw in the previous chapter, the

case has been made that entrepreneurship (Jones & Spicer, 2005) and leadership (Kelly, 2014) have

taken on this extra dimension with important ideological effects. It is the occupation of this thesis

to consider whether the same case can be made for software. In order to accomplish this, I turn now

to a consideration of two kinds of ideological effects that are opened up through a negative

ontological approach.

 Fantasy and Desire

Broadly speaking, we can class negative ontological effects into two spheres of influence.

We can consider how a discourse takes on an ideological force that enables it to hegemonize a

field, which will be explored in the next section. In this section, however, our focus is at the more

personal end of the spectrum of effects. We are interested here in the effects of this failure of

identity on people themselves. Note that since I have been using the construct ‘identity’ in a sense

that goes beyond the kind of personal identity more typical of the OS literature, I will use the term

subjectivity to describe the subset of identity that pertains specifically to the ways in which human

beings understand themselves and others. There is no substantive difference, however, in the ways

in which subjectivity is constituted as compared to the identity of any other ‘thing’: subjectivity is

nothing other than the same kind of differential position within an ordered discursive structure

68

(Laclau & Mouffe, 2001[1985], p. 115) except that it describes a (usually) human position.31

Accordingly to PDT, therefore, as a subset of identity generally, subjectivity is constituted through

being interpellated into a discourse (Althusser, 2006): someone comes to interpret themselves or

be interpreted by others through a discursive formation and it is in this moment that s/he is

acknowledged, and constituted, as a subject.32

Since subjectivity is constituted in discourse, it therefore shares the same character as

identity as we have so far discussed it. Consequently, subjectivity is similarly fraught with failure

and based on a fundamental impossibility. ‘The category of subject is penetrated by the same

ambiguous, incomplete and polysemical character which overdetermination assigns to every

discursive identity […] the subjectivity of the agent is penetrated by the same precariousness and

absence of suture apparent at any other point of the discursive totality of which it is part’ (Laclau

& Mouffe, 2001[1985], pp. 121-122). This means that a negative ontological approach to software

will aim to explore not just how the relevant software discourses interpolate subjects such as users,

developers, managers, administrators; it will also analyse the way in which these subjectivities fail

to be achieved and its consequences. In order to theorise the impact of impossibility for subjectivity,

however, PDT is guided by the important theoretical overlaps with, and extension by, Lacanian

Psychodynamics.

There are many significant overlaps between the way in which Laclau understands

discourse, and the Lacanian understanding of the Symbolic order (Butler, Laclau, & Zizek, 2000;

Glynos, 2011; Glynos & Howarth, 2007; Stavrakakis, 2002) and Laclau often paraphrases his

points in Lacanian language to show their agreement (e.g. Laclau, 2015[1996], p. 68). In particular,

Lacan stresses the idea of a fundamental break between ‘the Symbolic’ and ‘the Real’ register in

31 There is some interesting research exploring the ways in which technological objects can take on agent-like positions

within discourse, acting as, for example, leaders (e.g. Carroll, 2016; Hawkins, 2015; Oborn, Barrett, & Dawson, 2013).

This is also increasingly becoming an important consideration for the future of AI research (Bostrom, 2016).
32 As Post-Marxists, Laclau and Mouffe (2001[1985]) made much of Althuser’s notion of interpellation though they

did critique it along the same lines as their critique of Marxism in general: For Althuser, interpellation still maintained

a sense of essential class identity at the core of being, whereas for Laclau and Mouffe, essentialism is denied and only

interpellation remains.

69

the same way that PDT posits the impossibility of a final suture between discourse and objectivity.

Drawing on Lacan, notably the theory of the mirror stage (Lacan, 2014), Stavrakakis (2002)

explicitly links these ideas and argues that,

Symbolisation, that is to say the pursuit of identity itself, introduces lack and makes identity ultimately

impossible. For even the idea of identity to become possible its ultimate impossibility has to be

instituted. Identity is possible only as a failed identity; it remains desirable exactly because it is

essentially impossible (p. 29)

Though Stavrakakis uses the terminology of identity here, its meaning is precisely the same as

subjectivity as I have defined it. The key point is that subjectivity is only possible as an always

already failed project, and consequently subjectivity must be understood as an ongoing, precarious

attempt to achieve the impossible. The most important ideological force behind subjectivity is,

therefore, desire.

Following this Lacanian-infused Poststructuralist theory of subjectivity, we see that

subjectivity is fundamentally problematic insofar as it is sustained, ultimately, by a kind of fantasy

of desire. By fantasy, I mean ‘a narrative that covers-over or conceals the subject's lack by

providing an image of fullness, wholeness, or harmony, on the one hand, while conjuring up threats

and obstacles to its realization on the other’ (Glynos & Howarth, 2007, p. 130). Note that this does

not imply that all subjectivities are ‘fantastic’ as if we all secretly strive to be Gandalf the Grey or

Wonder Woman. The fantasy here is the elusive impossibility of full identification, and it is

therefore the object of profound desire (Zizek, 1989). It is desirable because it offers the promise

of complete fulfilment in the place of the traumatic reality of our inability to identify ourselves

outside of discourse; and it is desirable also in the sense that it is constructed within a compelling

narrative—a discourse—that offers order, purpose, and meaning in the place of chaotic anomie of

the infinite disorder of the social. It is this understanding of subjectivity within PDT that opens up

our first analytical avenue to explore the effects of the negative ontology of software. We might

ask, therefore, what are the fantasies that underpin software subjectivities and what are the effects

of their impossibility and failure?

70

To my knowledge, only one study comes close to these questions in terms of a negative

ontological analysis of technology and this study will here serve as an example of the kinds of

possibilities this framing makes possible. As we saw in the previous chapter, the practice

perspective rightly celebrates Orr’s work in demonstrating the value of situated, practice

understandings of technology over an entity perspective. However, Contu and Willmott (2006)

highlight some of the limitations inherent to this research, precisely because of its emphasis on

positive ontology alone. They draw on PDT and its further Lacanian elaborations including those

by Butler, Zizek, and Laclau (Butler et al., 2000). They argue that a key benefit of this approach,

as opposed to a practice (positive) perspective, is its recognition of negativity and politics as

constitutive of the social. Responding to a key definition of practices (indicated by the quoting of

Schatzki in the final sentence below), Contu and Willmott (2006, p. 1772) argue:

‘In its problematizing of traditional categories, [PDT] exemplifies a form of analysis that is distinctive

in its thematizing of antagonism and negativity as constitutive of the social; and in placing politics at

the centre of its ontology of the social in a way that problematizes the status of any ‘shared’ and

‘consensual’ understandings through which ‘materially interwoven practices’ are organized (Schatzki

2001: 3).

The key point here is that according to practice theory, practices are shared understandings: a kind

of sociomaterial logic for how to go about life in certain ways (e.g. how to be a copier technician,

as in Orr’s study). However, Contu and Willmott problematise the core assumption in this

definition because shared understandings will always be politically accomplishments that,

according to a negative ontological perspective, are continually undermined by an unavoidable

failure to fully claimed.

By considering the importance of negative ontology, Contu and Willmott (2006) add a

much needed critical dimension to Orr’s classic analysis. In the original, the technicians’ situated

practice is celebrated as a kind of subversive deviance in which the technicians demonstrate an

allegiance to their own professional community rather than the organisation. Orr positions this as

an act of resistance against management’s attempts to reduce their autonomy and optimise their

performance (through mandating adherence to the technical documentation). Yet Contu and

Willmott (2006) argue that the technicians’ so-called resistance still ultimately serves the

71

corporation’s bottom line by working to solve customer’s problems as efficiently as possible, even

in spite of management. To explain how it is that ostensible acts of resistance ultimately reinforce

the status quo, something more is needed than practice theory has to offer.

Contu and Willmott (2006) therefore draw on PDT to critically analyse the important role

of lack (that is the failure of identity) in underpinning this ultimately compliant technician

behaviour. In so doing, they argue that there is a collective fantasy of heroism held by the

technicians. In their words, ‘The copier machine becomes a fantasmatic object of fascination that

provides the space of ambiguity and uncertainty through which the technicians live out the fantasy

of heroism by battling to control its performance’ (p. 1776). Through never being sure of their own

subjectivity as technicians because of the impossibility of fully attaining this subjectivity, these

technicians are co-opted back into conformity and continue to keep working ever harder for,

ultimately, management. Here we see that a negative ontology opens up space for critical analysis

that is otherwise invisible to a positive ontology, including even the celebrated practice perspective.

When subjectivity is understood as a fundamentally failed project, we can consider the ways in

which desire and fantasy fuel subjectification and the effects that this has on those who come to be

interpellated by a particular discourse. No study that I am aware of, however, has yet made such

an analysis of software, let alone done so through a sustained ethnographic analysis of this question.

Lest I give the impression that the impossibility of subjectivity is irredeemably dark and

despairing situation, I close this section by considering the surprising way in which, for Laclau at

least, this failure engenders hope. In Laclau’s later writing (1990, 1996b, 2015[1996]), he began to

argue against the overly deterministic interpretation of discourse that PDT is sometimes accused

of (see esp. the debate following Alvesson & Kärreman, 2011a, which will be discussed in more

detail in the next chapter). For Laclau, the fact that discourses can never fully contain that which

they purport to describe means that people regularly encounter breakdowns in the adequacy of a

given discourse, something he calls dislocation. Dislocation refers to moments in which we

72

recognise the constructedness of a given discursive formation through noticing its breakdown.33

These are points at which the discursive formation appears inadequately equipped to contain all the

surplus meanings that are overflowing around us. While this clearly presents the potential for

discomfort and produces effects such as those demonstrated by Contu and Willmott (2006), Laclau

sees dislocation as also potentially ‘the source of freedom’ to ‘construct an identity through acts of

identification’ (1990, p. 60). By this, Laclau envisages subjects carving out new subjectivities and

even refashioning discourses ‘which emerge in the “spaces” opened up by the fracturing of

structures, and whose decisions reconstitute dislocated orders’ (Howarth, 2000, p. 111). For PDT

then, agency reasserts itself through the ability to produce a kind of creative bricolage out of the

broken inadequacies of discourse.

We have here then several useful ways in which to consider the personal effects of the

failure of identity through a negative ontological perspective, and this will guide our analysis in the

chapters to come. This framing opens up the following sorts of questions: What are the

subjectivities that software discourse creates? What are the fantasies that make these subjectivities

desirable? Where do subjects experience dislocation and why? How might these points of

dislocation give rise to the possibility of new discourses and new subjectivities? Such questions

offer as yet unexplored possibilities for the study of software in terms of its development, use, and

impact on organisations and society. But there is one further ‘sphere’ of impact and effects that a

negative ontological perspective makes visible. This brings us to ideology.

Ideology and Emptiness

If the first level looks at the effects of discourse and its impossibility at the level of the

subject, the second level takes a step back and considers how it is that a discourse comes to be in

the privileged position to structure subjectivities in the first place. What is it, in other words, that

makes some discourses more compelling than others? How do discourses become dominant, that

33 This temporary breakdown is echoed in practice theory, which draws on Heidegger’s building mode (Chia, 2004;

Chia & Holt, 2006), which is marked by a break with mindless absorbed coping (cf. Dreyfus, 1991, pp. 69-71).

73

is how do discourses hegemonize a particular context? If there is no natural link between objective

essence and our (ultimately impossible) attempts to capture this discursively, then it follows that

there is also no natural reason that one discourse should take hold of a context over another and

become the way of ordering social reality. This implies, once again, the way in which politics lies

at the heart of articulation and it leads us directly to this second analytical lens which explores the

political force of a particular discourse. It asks: How does a given discourse sustain itself? What

were its conditions of existence? And how does it supress alternatives? These are precisely the

kinds of questions that are foremost in this analysis of the negative ontology of software. To answer

them, we need an additional theoretical construct that emphasises the way in which the failure of

identity can come to directly support the compelling force of a discourse. We need to understand

empty signifiers.

Simply put, an empty signifier is a signifier that no longer signifies a specific referent—it

is empty of concrete meaning. It is how and why a signifier should come to be empty that makes

this paradoxical creature so significant in the analysis of negative ontology. Taking these questions

in reverse order, let’s begin with why this should be useful at all. Glynos and Howarth (2007)

explain that,

Certain signifiers or linguistic expressions - “sustainable environment”, “health”, “justice for all”, and

so forth - function as names that stand in for the absent fullness of a dislocated community or life.

Though they are metaphors with no corresponding facts - they are moments of naming in a radical sense

- they strive to represent the failure of a signifying system (p. 122).

The key point is that in losing their specific localised meaning, empty signifiers can come to

symbolise much broader ideas. Moreover, since they lack specificity, they are able to articulate a

sense of the absence that lies at the heart of sociality, which otherwise (and in keeping with the

fundamental impossibility at the heart of discourse) cannot be directly signified. Leadership,

according to Kelly (2014), is a prime example of this: leadership doesn’t actually symbolise a

specific, concrete set of practices or attributes and this is what makes it such a useful construct.

Instead, leadership symbolises a sense of something that is missing: it stands for a sense of

inspiration in the place of boredom, change instead of dull monotony, a different way of relating

74

to colleagues that is more authentic, confident, caring, and so on. In this way, empty signifiers are

able to tap into the failure and sense of lack that lies at the heart of discourse (e.g. how we wish

organisations/work/society should be) and subjectivity (who I wish I was as a manager or ‘leader’).

To understand how this works, a more technical explanation is required. According to

Laclau (2015[1996], p. 66), an empty signifier is ‘something which points, from within the process

of signification, to the discursive presence of its own limits’. In order to do this, a signifier must

first empty itself of its meaning and, in so doing, subvert the process of signification itself. This is

possible, argues Laclau (2015[1996]), because of an inherent ambiguity baked into the core of

every sign. On the one hand, a sign has an identity based on the fact that it is different from all

other signs in its discursive system—this is the logic of difference that we saw with Saussure. Yet

on the other hand, every sign carries within it something it shares in common with every other sign

in the system, namely the fact that they all belong to the same discourse as opposed to other

potentially antagonistic discourses—this is the logic of equivalence.34 An empty signifier,

therefore, has emptied itself of the differential half of this ambiguity in order to place greater

emphasis on the equivalential. In doing so, it comes to be a broad umbrella that unifies a sense of

‘what we are about’ (e.g. ‘democracy’, ‘freedom’). In emphasising commonality and equivalence,

moreover, it also constructs a sense of ‘them’; a sense, in other words, of a vague externality that

is the basic premise upon which the sense of commonality depends. Put succinctly, then, empty

signifiers are vague words that construct a sense of ‘us’ versus what we are against (‘them’).

This is highly relevant for a negative ontological perspective because it elucidates the fact

that what a signifier lacks (a specific referent and clear identity) is the means by which a discourse

can build a compelling narrative. Empty signifiers are, therefore, the crown jewel of the negative

ontological inquiry because they are the pivotal constructs (called nodal points in this literature)

34 Laclau and Mouffe (2001[1985]) cleverly link this to Saussure’s original observation that the relations between signs

can be either syntagmatic or associative. Syntagmatic refers to the differential relation that we encounter in a linear

sentence; the difference between words in a sentence is what gives the sentence meaning. Meanwhile, Associative

relations refer to the fact that words share a commonality with other similar words and, when not ordered linearly, the

can been seen to be related together (e.g. cats are clearly associated with dogs, mice, rabbits but not skyscrapers or

rocket ships).

75

that underpin an entire discursive formation (Laclau, 2015[1996]; Walton & Boon, 2014). By being

decoupled to any clear referent, these important signifiers are able to function in the creation of

powerful fantasies that speak to our sense of something missing (absence) and construct the

promise of its fulfilment (Glynos, 2011; Glynos & Howarth, 2007; Norval, 2004). These

constructed fantasies and the compelling force that they bring to bear on a context are exactly what

PDT understands as the definition of ideology:

the ideological dimension signals the way in which the subject becomes complicit in covering over the

radical contingency of social relations by identifying with a particular discourse. […] the hold of this

misrecognition inures or insulates the subject from the vagaries of the structural dislocation that always

threaten to disrupt it. What we term the 'grip of ideology' thus comprises a myriad of practices through

which individuals are turned into subjects with an identity, and through which such identities are

sustained and reproduced. The ideological can thereby induce the 'forgetting of political origins' and it

can enable subjects to live as if their practices were natural (Glynos & Howarth, 2007, p. 117).

By representing lack and absence, empty signifiers are therefore critical to the analysis of how a

discourse comes to possess the ideological force that ‘grips’ a given context.

Furthermore, it is precisely the emphasis on a negative ontology that renders these

important ideological effects visible. For if our emphasis is simply on how something such as

software attains its identity and meaning (positive ontology) then the significance of the failure of

identity may be overlooked as nothing more than confusion or ambiguity. But what if the

problematic ontology of software is not, in fact, a simple failure of the field to properly define its

object? What if the failure of software’s identity is the mechanism by which significant ideological

effects are achieved? If so, then we must critically analyse whether, where, and how software sheds

itself of its referents. We must ask: if and where software is empty as a signifier, what has it come

to signify instead? What is the sense of absence and lack to which it points? What is the fantasy

that is made possible by this emptiness? What is its promise of fulfilment, and what are its effects?

As Kelly (2014, p. 915) puts it, ‘What is required then is not just an acknowledgement of empty

signifiers, but a means of identifying the work and politics that are performed in their name’.

In summary then, this chapter has demonstrated that PDT offers a compelling and

theoretically incisive way of critically analysing not just how identity is accomplished, but also the

way in which identity is always already a failed project that is ultimately impossible. It has shown

76

that this perspective, which is united under the idea of a negative ontology, opens up fresh ways of

theorising the significance of this failure that would otherwise be marginalised or rendered

invisible, and that the software literature as a whole has overlooked this fact. By drawing on PDT,

a negative ontological approach is able to offer explanations to the same sorts of questions

sociomateriality answers, but crucially it also opens up a range of new questions that explicitly

explore the real effects of the failure of ontological identity These questions are summarised in

Table 3.1.

Table 3.1—Questions Opened Up by Negative Ontology

Positive Ontology Negative Ontology

What is this software/technology
What do people believe this software/technology
is?

What does it do? What do people think/say it does?

How is it shaped by practices?
What is the broader narrative that gives it is
identity?

How does it shape practices?
What role does it play in constructing this
narrative?

How does it transform the identities of its users? What subjectivities does it construct?

How do its users transform what it is? How do people construct this discourse?

How closely coupled is its discourse to its
observable effects?

What is the fantasy it offers, and what is the
absence which this fantasy seeks to cover over?

 How does it fail to achieve the fantasy it offers?

How do people fail to achieve the subjectivities it
offers?

 What are the effects of these failures?

How does power operate through this discourse
and who does it privilege/marginalise?

This chapter has done more than provoke questions, moreover. Through desire and empty

signifiers, it also put forward two ways of working with a negative ontology that offer a vista onto

the power of absence, lack, and failure to permeate our every attempt to articulate who we are and

what our world is. Overall, it has argued that the problematic ontology of software may, in fact, be

a hint that what software is not is just as important as the difficult question of what software is, and

hence it has suggested ways in which we might move towards a negative ontology of software.

Having therefore established both a gap in the literature and a theoretical framework that holds out

77

the promise of fulfilling it, I am now in a position to outline the methodological considerations that

make such an inquiry possible. Thus, it is to methodology that we now turn.

78

4. Methodology

In this chapter, I argue that, given the social ontology and framework outlined in the

previous chapter, a methodological strategy employing both ethnography and discourse analysis is

most appropriate to explore my research questions. Ethnography has been described as central to a

burgeoning interest in ‘new objects of concern’, that is new technologies such as algorithms and

software that are transforming our fundamental assumptions about what constitutes an

organisation, where the action happens, and who (or what) is agentic in these new hybrid

configurations of technology and people (O’Doherty & Neyland, 2019). Moreover, research

suggests that software development—like the modern organisation in general (Van Maanen,

2011)—is strongly affected by contextual processes of struggle, fracture, and tension, leading to

limitations in de-contextualised quantitative methodologies that fail to understand these (Boden,

Müller, & Nett, 2011; McBride, 2008). As I will argue, ethnography provides an excellent

opportunity to map out the contours of the discursive formations and antagonistic frontiers within

a context. However, ethnography provides only one piece of the puzzle: discourse analysis is also

required to equip the researcher with the tools to critically unpack the discursive formations

elucidated through ethnography. Since I have already outlined the theoretical orientation I bring to

this research in the previous chapter, in this chapter, therefore, I clarify the methodological features

of this approach and situate it within the literature more generally. I then move to practicalities and

describe the details of the actual empirical research undertaken. I close this chapter by reflecting

on the epistemological and ethical considerations of relevance to this project.

Ethnography

This research can be generally characterised as falling within the broad umbrella of social

constructionism (Berger & Luckmann, 1966), which can be summarised as the idea that social

reality is actively constructed through discourse rather than objectively pre-given. These ideas are

implicit, and more thoroughly unpacked, in the previous chapter outlining my poststructuralist

79

approach to ontology, which can be considered a subset of the broader social constructionist

orientation.35 The assumptions outlined in the previous chapter may not be agreed upon in all

quarters of the constructionist camp, but they all share a kind of ‘family resemblance’

(Wittgenstein, 1953). These assumptions, moreover, imply the use of certain methods while all but

rule out others as highly incompatible—most obviously, positivist essentialist methods of variable

testing. As I have argued in the preceding chapter, this essentialism is unacceptable from a

discursive perspective since entities cannot be taken as given but are constituted through discourse.

Thus, even the very question of what a thing is—let alone testing it as a variable—is an empirical

question that requires careful analysis of the relevant discursive formations and their lines of

antagonism. This research, and the ontological foundations on which it rests, therefore required an

approach that was sensitive to context rather than one that attempts to ignore or isolate it. For these

reasons, I argue that ethnography is highly appropriate to my ontological foundations and research

aims.

Ethnography can be defined as:

a style of social science writing which draws upon the writer’s close observation of and involvement

with people in a particular social setting and relates the words spoken and the practices observed or

experienced to the overall cultural framework within which they occurred (Watson, 2011, pp. 205-206).

Ybema et al. (2009) further characterise ethnography as a distinctive methodology (or a 'frame of

mind', Czarniawska-Joerges, 1992) entailing multiple, complementary methods including

observation (with varying degrees of participation), conversations (including informal and formal

interviews) and document analysis. Ethnography was originally part of an anthropological

methodology (Bate, 1997), and as such its central focus is to gain understanding and to provide

‘thick descriptions’ of the meanings held by ‘natives’ of a particular, situated cultural context

(Geertz, 1973).

35 This assertion is contestable, however, with others positioning Laclau and Mouffe as anti-constructionist, and hence

realists (e.g. Bridgman & Willmott, 2006). However, I think that the ontology outlined in the previous chapter would

be recognizable and acceptable to all but the most radical constructionist position, which may argue that there

absolutely nothing other than our constructions—carbon for example, has no boundaries as an entity that are not

constructed by us. See Hacking (1999) for an excellent analysis of the contours of constructionism and the debate

between Ernesto Laclau and Roy Bhaskar (1998) on the relationship between discourse and objective reality.

80

A word on my understanding of culture is relevant here. I do not consider culture to be

underwritten by a deeper structure mirroring langue (a la structuralism); rather, and in line with

poststructuralism, I see the symbolic order of cultures (in the plural) as multiple, overlapping, and

antagonistic ‘surface inscriptions’, which are similar to the construct I have outlined previously as

discursive formations. By surface inscriptions, I refer to the fact that there is no ontologically

separate ‘deeper’ level of discourse from which empirical phenomena spring forth. Identities within

the system—which includes subjectivities, objects, and practices—derive their meaning from the

whole structural formation. But this system is not ontologically prior precisely because the system

is also modified and constituted by these identities—in other words, the relationship is mutually

constitutive rather than unilateral, ontologically flat rather than layered. This is implicit in the

notion of articulatory practices as outlined previously, which include as an integral component the

possibility of rearticulation. It is with this conceptual translation that I understand the task of

ethnography as understanding and providing ‘thick descriptions’ of situated discursive cultural

formations.

 A further clarification is needed regarding ethnography, given that this research took place

within an organisation rather than a particular ‘culture’ in a geographic sense. Organisational

ethnography of the kind undertaken by this research can be understood as a subset of ethnography

more broadly with the main difference being that the cultural context is a bounded organisation

rather than a (traditionally ‘exotic’) foreign culture (Bate, 1997; Watson, 2012; Ybema et al., 2009).

From a discursive perspective, this presents no real issue because there is no theoretical difference

between discourses constituting regional or ethnic identities vs organisations. Both are simply

subsets of the broader social terrain and, while they differ in terms of content and scope, they do

not differ in terms of function. Note also that this implies that participants are likely to have multiple

cultural backgrounds which they bring into the research site (Gregory, 1983), including both their

ethnic discourses in a traditional cultural sense, and their organisational discourses. Anthropology

in general is increasingly recognising the multiple, fragmented nature of culture across all areas of

81

life (Geertz, 1973) and, from a discursive perspective, this is already assumed because of the nature

of antagonisms and the surplus meaning of the social. I thus considered the aim of my ethnography

as an attempt to understand and analyse only those discursive formations that were unique to this

organisation—which I will call CloudDoc—in constituting the meaning of its various subject

positions, objects and practices. While I accepted that there were many different discursive

formations criss-crossing my social field (a default poststructuralist assumption), I emphasised

those that were specifically constitutive of software development by considering questions such as:

how do employees understand their roles in this work? What are the objects that are necessary for,

or constituted by, this work? What are the practices that are required for this work and how are

they structured?

However, organisational ethnography, in contrast to ‘exotic’ ethnography, leads to several

unique practical considerations that I will explicate in the following sections.

Ethnographic Fieldwork Design: Site

I begin by providing a brief outline of the company in which this ethnography was situated

and the reasons for its selection. Note that some details of the company have been obscured in order

to protect their identity. While this is admittedly less than ideal, it was a condition of entry, as I

explain subsequently in the section on ethical considerations. I have chosen to call the organisation

in this thesis ‘CloudDoc’ in order to indicate the core vision of their software projects, which is to

provide a cloud-computing36 based health software platform that optimises healthcare delivery

36 Cloud computing denotes the recently popular strategy of designing software products to run on a remote, third-

party infrastructure via the internet. The concept of ‘cloud’ is purely metaphorical and is intended to signify the absence

of visible hardware running the software (such as client-side servers supporting the infrastructure). One of the key

benefits of this approach is the ability to outsource the specific expertise involved in maintaining the complex hardware

needed to run large software systems. Additionally, because hardware is not physically setup or required at the client

side, this means that software is able to scale with ease (meaning that a system can use as much or little hardware as it

needs it, when it needs it, rather than needing to physically add to the hardware stack). It should be noted, however,

that there is no fundamental difference in the hardware required to run software systems—all that has happened is that

this been shifted out of site and clients now connect to these systems via the internet rather than internal networks.

82

through the use of artificial intelligence (AI)37 and big data38 analytics. They describe themselves

as a company that ‘develops software to drive efficiency in healthcare and improve healthcare

outcomes’ (WC_MP1:1)39. Despite their current vision, the company is known for developing

rather less inspiring software that enables, inter alia, the viewing and sharing of electronic health

records (EHR); communication between disparate software systems; and managing the basic

administrative tasks of hospitals such as scheduling operations and creating workflow checklists.

The company itself is a multinational, publicly listed corporation with offices in approximately 30

countries around the world. Its products are used all over the world, with its biggest market being

the United States. While many of its global offices are mainly support and sales orientated, it houses

large software development teams in four countries. One of those was in the Asia-Pacific area, and

it was in this location that I based my research, though I had conversations with employees from

around the world, both virtually and face to face when they came to my organisational site. The

office at which I was based employed around 600 people, though during my time in the company

this number was reduced substantially. This site in particular was chosen because it was one of the

largest and most successful software companies that I could access within my time and budget

constraints; it was also interesting from a research perspective because of its emphasis on

innovative AI techniques for healthcare.

As I will explain in the next section, my fieldwork eventually took me beyond this single

organisation and into one of their customer organisations, a local hospital. However, the primary

37 I have chosen to use the term artificial intelligence, or AI, because this is typically the language that is used externally

in order to construct a specific image of these systems. However it should be noted that internally to the organisation

the term ‘machine learning’ is used interchangeably. This term seems to be more tech-savvy (it is used almost

exclusively by the team working specifically on developing these features). Machine learning (ML) is considered to

be one of the most promising tools in the newly established field of ‘data science’, the field in which the experts at

CloudDoc preferred to see themselves working.
38 Big data simply refers to the very large datasets that have been made possible through the increasing use of software

throughout all aspects of life. Furthermore, because these big datasets are required for the ML algorithms to function

and, conversely, ML algorithms are often used to extract value from such datasets, big data often signifies the use of

AI/ML or at least sits within a common chain of equivalences that is prevalent in software discourse generally.
39 Because confidentiality was a condition of this research, I have chosen not to include the specific reference to the

quoted news story as this would betray the identity of my research organisation. Instead I have opted to use an internal

indexing system for documents so that the reader can see continuity between sources without identifying CloudDoc’s

real name. Note also that where direct quotes are used within my paragraphs, I have opted to stylize these in italics to

distinguish them from my own writing or other, non-empirical sources.

83

objective of this research was to explore a single site in rich detail, rather than perform a

comparative analysis of multiple sites. This may be seen as a limitation of the study (which I will

discuss further in Chapter Nine), especially since narrowly focused research has been accused of a

reduced ability to produce generalisable results that are representative of the broader sector

(Buchanan, 2012). In contrast, multiple case studies are typically recommended for more robust

theory building (Eisenhardt & Graebner, 2007). However, while I can appreciate this criticism, in

many respects its logic runs contrary to principles of ethnography (O’Doherty & Neyland, 2019).

Watson (2011) notes that it is only through sustained immersion in a context that deeply held

meanings in practice can be understood. Geertz (1973, p. 8) further argues that ‘the essential task

of theory building here is not to codify abstract regularities but to make thick description possible,

not to generalize across cases but to generalize within them’.

As outlined in the beginning of this section, a poststructuralist ontology upholds the

centrality of context because of its emphasis on the discursive construction of social relations. If

this is true, then there is no compelling reason why the specific content of context should be

replicated elsewhere and hence be generalisable; identities are not essential and thus there are no

essential properties that carry across discursive frontiers. That said, a discursive order is not

necessarily a localised phenomenon and there is no neat overlap between discursive frontiers and

geographic regions, thus its contextual boundaries must be established through ethnographic

exploration and cannot be posited a priori—indeed this is the reason why my ethnography also

moved into the hospital space as I recognised that the discourse I was tracking plays a prominent

role in other spaces, especially medical contexts. Insofar as this study is able to elucidate the general

features of a specific discursive regime, its findings hold wherever this regime is to be found, and

indeed this travels much farther than the single organisation I observed—how much further is an

open empirical question and will inform my own future research trajectory.

84

Ethnographic Fieldwork Design: Data Collection

Following ethnographic methodology generally, this study utilised multiple methods

including participant and non-participant observation, shadowing, informal conversations, semi-

structured interviews, document analysis, and an ethnographic diary (Czarniawska-Joerges, 2014;

Ybema et al., 2009). In what follows I outline in more detail the specifics of these methods.

Participant/non-participant Observation and Shadowing

In 2017, I conducted participant-observation ethnographic fieldwork for 12-months within

CloudDoc and, both during and subsequent to this I also shadowed (Czarniawska-Joerges, 2014)

several nurses and attended meetings at a local client hospital. Because my interest was in the

construction, contestation, and effects of software discourses, I was cautious not to presume that

software developers were all that mattered in this exploration for the simple reason that they neither

produce nor arbitrate these discourses alone. Hence although I spent the longest amount of time

with developers and machine learning specialists, I also spent time in various other departments

and specialisations. My approach can therefore best be characterised as sampling different contexts

within the broader social terrain, which allows the analysis of differences and tensions

(Hammersley & Atkinson, 2010). Indeed, because this enabled me to consider these discourses

from multiple perspectives, I was able to observe many layers of contradiction, confusion, and

tension. This, as I shall demonstrate in my findings, afforded many interesting insights that would

not have been visible elsewise.

I included observation of the following organisational functions (enumerated in

chronological order):

1. ‘Talent Engagement’ (Human Resources)

2. Marketing

3. Communications and Public Relations

4. Sales

5. Support services

6. Innovation Partnerships

7. Machine Learning Research & Development (henceforth, R&D)

85

4. Two different Software Development teams.

5. Nurses in admission ward

I generally spent 4 – 6 weeks with each team, except the software development teams, which

occupied the final three months. In any given week I was present for 2-5 days per week, except for

the software development teams and my initial weeks in the company, for which I was present 5

days per week. I began in each new team by introducing myself and my research aims, and then

took up a desk alongside the rest of the team. I scheduled in shadowing days with most team

members throughout my time with them. On shadowing days, I sat beside my ‘shadowee’ and

observed their daily routine for an entire workday. Whenever it was appropriate, I asked questions

and found that they usually appeared happy to talk about their work—the exception to this,

however, was software developers who typically found this awkward (as did I!) and tended to point

out that all they were doing was writing a bunch of words on a screen and thinking. For software

developers, therefore, I developed the strategy of letting them do this work without my intrusion

and then quickly joining them whenever they began to talk about an issue with a colleague or attend

a meeting. Apart from shadowing, I spent the rest of my time attending all team, department, and

company-wide meetings and informal discussions.

Around the halfway mark of my fieldwork, I was privileged to accompany two employees

that I was shadowing for a site visit at a local hospital. We were attending an innovation partnership

meeting, which was a regularly scheduled meeting in which CloudDoc and the hospital could share

expertise around innovative software initiatives. In practice this meant that CloudDoc worked with

various hospital IT leaders and clinicians who were implementing some new experimental features

in a few selected wards; additionally, the space was open for anyone who was interested in

proposing new software and these proposals were informally reviewed by the CloudDoc attendees,

who offered an expert perspective. The meeting took most of the afternoon and we also met with a

few other key hospital stakeholders. It was here that I was first introduced to the importance of

following the discourse of CloudDoc’s software out into the organisations that deployed it.

Subsequent to this meeting I followed up with some of the people I met and began the arduous

86

process of applying for ethics approval at the hospital. Consequently, in the months immediately

after my fieldwork ended at CloudDoc, I interviewed several hospital staff and shadowed nurses

as they went about their daily work. This gave me the opportunity to see how they used software

(including software that was not produced by CloudDoc) and observe the way software was used

at key moments, such as a shift-change handover and a variety of software-mediated patient

interactions. During this time I also engaged in many informal conversations with the staff I met

about their interactions with health software, especially CloudDoc’s; regrettably I did not get to

audio record or formalise these conversations with the ‘lower’ ranked nursing staff who, frankly,

were already worked off their feet. This again informs my future research ambitions as I would like

to spend a lot more time interviewing and observing clinicians in action.

I had intended to accompany my formal observations during my initial ethnographic

fieldwork at CloudDoc with some more informal observations so as to develop a sense of what

Gabriel (1995) calls ‘the unmanaged organisation’, that is, spaces outside of direct managerial

control. However, this proved far more difficult than I had anticipated simply because, on the

whole, most employees in the teams that I observed didn’t take breaks throughout the day or, if

they did, they tended to either eat at their desks or leave the building by themselves. Consequently,

I seldom felt a sense of team bonding that went beyond formal roles—this, I note, did not appear

to be because I was excluded but rather was typical of most people’s experience and quite a few

participants bemoaned this fact. The exception to this was the R&D team who, partly because they

saw themselves as quite distinct from the rest of the company, regularly scheduled in social events,

which I attended.40 Software developers also provided a little more social engagement. Although

like the rest of the company they tended to eat at their desks, they also scheduled in weekly shared

morning teas. Consequently, in both of these areas of the company I enjoyed the addition of

informal time spent with my participants.

40 They frequently took care to distinguish themselves from developers, and from the rest of the company, all of whom

were devoted to the building or selling software products. In contrast, the R&D team seemed more like academics and,

in fact, most of them were actively involved in university research projects (as part of their work) and writing

publications.

87

The other main social event was the Friday night drinks, which I occasionally attended

though I never felt entirely comfortable about this since there was free food and alcohol provided

to employees and, given my unpaid, liminal status as a researcher, I never felt sure whether this

extended to me. But I found an alternative means of participating in, and observing, informal

conversations via the work social media platform (Yammer).41 This provided a steady stream of

conversations about the various current events in the life of the company—recalling, of course, that

I was there during a phase of severe downsizing—and served as a useful way to observe many

different discussions. While I did not ever comment on this forum, I made a habit of reading

through it every morning as part of my observations and I also followed it on the days that I wasn’t

present on site, via my company-issued MacBook. Finally, something must be said about pizza,

for it seemed that almost any meeting would be naked if it wasn’t adorned in copious amounts of

super cheap pizza. I have never eaten so much pizza in my life (!) and these occasions always

provided an informal opportunity to reflect on the meeting, exchange some gossip, or simply catch

up.

Some qualifications are needed at this point to define the extent to which I was a participant

or non-participant observer. Because work and other organisations are typically in operation (or at

least are only fully occupied) for a limited number of hours each day, the experience of participation

is rather different to a 24/7 immersion that one might experience in a foreign culture. Full

participation in an organisation, therefore, means something other than full-time immersion. Many

organisational ethnographies thus consider full participation as working alongside normal

employees during work hours and fulfilling work duties as if it was one’s normal occupation (see

41 Admittedly this forum was highly visible to everyone including senior management and so people no doubt self-

censored what they wrote. This was also what made the forum so interesting, however, as people seemed to use the

fact that management could see it as a means of venting their criticisms to the top levels of the organisation. The

discussions tended therefore to be split between the utterly banal sharing of inspirational quotes, jokes, and media

articles about their competitor’s products or industry news on the one hand; and on the other, there would be highly

politically charged comments that would rapidly escalate and draw responses from ranging from supportive, to

chastisement, until, after some delay, an official response from an authority figure. These topics ranged from invective

about the latest company billboard (which at least once saw it changed within a few days) to criticisms of the

management of the restructuring and subsequent fiscal tightening. On the latter, one conversation achieved immediate

company-wide fame due to its opprobrious lampooning of the company’s choice to switch to providing ‘Budget’ brand

bread in the staff kitchens following the poor financial performance.

88

Latour & Woolgar, 1979 for a classic example of this kind of science and technology orientated

ethnography). However, ethnographies employing full work participation tend to focus on lower

skilled work, which makes this much easier. In the case of highly skilled work—such as software

development—ethnographers are limited in the extent to which they can actively contribute and

participate in the work itself (Czarniawska-Joerges, 2014). This was certainly the case for my

ethnography given how little I knew about software development and the exceptionally complex

nature of their product suite. Hammersley and Atkinson (2010) suggest, however, that this may be

a positive, as full participation can hinder the researcher’s flexibility and mobility within the wider

organisation beyond their prescribed job role. Moreover, a position of liminality, sliding between

participation and observation, can produce the best ‘creative insights’ since it resists being either

too immersed or too distant (Hammersley & Atkinson, 2010). Bate (1997) argues that this should

be an active tension ‘so as to ensure that one is close enough to see what is going on, but not so

close as to miss the wood for the trees’ (p. 1151).

An active tension was the strategy that I adopted, although I acknowledge that ultimately

the role of an ethnographer is co-constructed with participants rather than unilaterally decided

(Nyberg & Delaney, 2014). I tried to participate as often as I could, while been mindful—in many

cases painfully self-conscious—of how little I knew about their jargon-filled world. In terms of full

participation, I joined in the rhythms of working life at CloudDoc, starting and leaving when they

would, taking breaks as they did (or didn’t), attending meetings, and generally did my best to

become a ‘Clouder’.42 I was also inducted as any normal employee would be: on my first day, I

was led to a small windowless room that was literally stacked with Apple MacBooks and an

assortment of myriad wires and other gadgets. I was issued my own MacBook and then required to

spend the first two days completing many online courses (all internally designed by the Learning

and Education team), each replete with interactive, animated tests that scored my performance. I

learnt about the history of the company, their diverse, utterly confusing, array of products, their

42 This is not the actual term they used to refer to themselves since I am using a pseudonym, but they did have a similar

special name that signified an insider who ‘bought into the company vision’.

89

standards for computer usage, what to do if should ever encounter PHI (Protected Health

Information), and many other interesting facts and skills.

During my initial months when I was located with the HR, marketing, and communication

teams, I was able to contribute in limited ways. For instance, I reviewed all of the company’s many

job advertisements and the workflows involved and offered feedback; I helped as an editor for

marketing collateral and communications; I helped the Graduate committee hold a ‘hackathon’ at

a university campus to attract new grad students; and I actively participated in the standard weekly

‘stand up’ and ‘retro’43 meetings, in which we shared our current work and reflected on our

performance as a team respectively. Often, however, I found myself merely observing as a non-

participant. During this time, I typically browsed through the company social media site, caught up

on company emails, and got lost on the company’s endlessly vast internal network called the ‘woki’

(a cross between a wiki and a Wookie from Star Wars). But my personal favourite was the

CloudTV44 site available on the intranet, which featured many years’ worth of video recorded

meetings and internal presentations, ranging from company-wide quarterly meetings, through to

small team presentations of new software features, and everything in between. These discussions,

emails, documents, and videos provided a very large repository of documents that I downloaded

and cross-referenced for use in my document analysis, outlined below.

In this way I maintained an active tension between participant and non-participant

observation, yet all throughout I sought to capture informal and overheard conversations using field

notes (Emerson, Fretz, & Shaw, 1995). My strategy was to I look for significant interactions that

revealed tension around meaning or emic terms that indicated important discourses and systems of

meaning (Carbaugh & Hastings, 1992), as well as other moments of insight and clarity or,

conversely, points at which I felt confused, curious, excluded, and even doubtful. I tended to write

these notes on my MacBook, which turned out be highly convenient because of the cultural norm

43 This terminology comes from Agile Software development (ASD), an influential way of managing software

development, which includes a variety of special terms and practices. CloudDoc followed a popular version of ASD

called Scrum (Schwaber & Beedle, 2002; Schwaber & Sutherland, 2012).
44 Again, a pseudonym.

90

at CloudDoc to take your laptop absolutely everywhere. Fortunately, it wasn’t strange in the least

to sit tapping away on my keyboard throughout a meeting since this was a commonplace practice.

However, despite the availability of my laptop, I still found that conversations moved too fast for

me to capture verbatim, and hence my notes often tended towards summaries and key quotes that

stood out to me.45 This presented a minor hurdle to my research because of the centrality my

theoretical framework clearly puts on language. For this reason, I considered my fieldwork

observations as a solid grounding in the discursive terrain of my context, but one in need of

supplementation with verbatim recordings. This brings me to interviews.

Interviews

In addition to observations, I also conducted 53 semi-structured interviews, which are a

well-utilized and important form of data collection (Alvesson, 2003; Cassell, 2009). Interviews

were usually 60 minutes long, however a few interviewees were too busy and requested shorter (30

< 45min) and a few lasted longer. 47 of these were fully transcribed; those that were not transcribed

resulted from a recording failure, four other interviewees declining to be recorded but agreeing to

be interviewed, and an occasion that I deemed inappropriate to record46—however, notes were

taken during these during the interviews, and elaborated on in my fieldnotes after. In terms of

transcription, I aimed to faithfully transcribe sentences as close as possible at the level of the sign,

not sound. I did not therefore transcribe every sound uttered including, for example, stuttering or

false starts. As I will explain below, these fine-grained details are more relevant to micro-level

discourse analyses, whereas my research is orientated towards a middle (meso) level analysis and

thus the level of the sign is sufficient. Where it was clearly audible and demonstrated a pronounced

display of uncertainty, filler words such as ‘um’ were transcribed while natural gap fillers and

45 I did not feel comfortable recording meetings. This was partly because many of these meetings occurred with people

from throughout the company who were not acquainted with my research or had agreed to be audio recorded—I did,

of course, always make it clear that I was a researcher according to the principles of informed consent, but it was not

practical to ask for consent to audio record from people I had only just met and wouldn’t meet again. Some of these

were, fortunately, recorded by the company and placed on CloudTV, seemingly just because of their obsessive desire

for self-documentation and I subsequently referred to these recordings in my analysis.
46 This person had just been made redundant with less than 48 hours’ notice and our conversation ended up being much

more personal than normal.

91

verbal ticks were ignored. I also captured laughs and pauses, indicating these within a ‘[laughs]’

and ‘[pause]’ respectively, but I did not note the exact duration of these pauses because this was

not relevant to my analysis. Grammar was added to indicate distinctions made between ‘sentences’

(as complete thought statements) for the sake of readability, so commas were added to show slight

pauses between clauses and full stops to show longer pauses between sentences.

Typically, I positioned these interviews at the tail end of my time with each team, allowing

for the possibility of raising specific questions around things I was puzzled or struck by during my

observation. However, in the course of my observations I often met interesting people throughout

the company and who were equally interested in my research. I also often asked to interview these

people and thus was able to learn about and sample teams beyond those I observed. Towards the

end of my fieldwork, I sought interviews with various other people that I had heard of but not

chanced to meet, particularly heads of significant lines of businesses or senior management

positions. A breakdown of my interviews is outlined below.

Table 3.1: Interview Breakdown

Department # (%) Male Female

HR 5 9% 20% 80%

Marketing & Comms 3 6% 67% 33%

Sales 5 9% 60% 40%

Services 4 8% 50% 50%

Product Specialists 8 15% 50% 50%

R&D 4 8% 100% 0%

Dev 14 26% 100% 0%

Hospital Staff 6 11% 50% 50%

Senior Management 4 8% 100% 0%

Total 53 66% 34%

Note that the gender diversity (or specifically the lack of it) was typical of each of these

departments.

Early on in my fieldwork my interviews were structured around things that I found

interesting (e.g. surprising, puzzling, politically charged) during my observations with that

particular team. Questions were often exploratory in nature and aimed at figuring out ‘how things

92

work’ (Van Maanen, 2011, p. 220) at CloudDoc. For instance, in the HR team, I asked questions

around what qualities might these recruiters emphasise and why, what helped a person fit into the

culture, and general questions about things I found surprising (e.g. the generally chaotic and

capricious rate of change that I observed and the staggering amount of staff turnover with very

short average lengths of employment). As my fieldwork progressed, I began to settle on certain

questions that directed the conversation towards my key themes of analysis. In general, the

conversation moved through questions about:

• The interviewee’s specific role.

• The products (especially a specific highly confused product for reasons explained

in Chapter Five).

• The point of the products—what does it promise?

• The nature of software itself—how is it that software is able to deliver these

promises?

• Finally, reflections on the future direction of health software.

As is typical of semi-structured interviews, questions were not rigidly adhered to but were allowed

to emerge organically with minimal steering (Cassell, 2009; Silverman, 2016). Wherever the

interviewee used a term that was unclear, ambiguous (e.g. ‘value’), or politically loaded, I delved

deeper. Occasionally the conversation ventured into territory that I hadn’t anticipated, and which

therefore required steering back on topic, though at other times this proved to be valuable and

interesting.

Document analysis

While interviews formed the key textual data in this research, I also employed document

analysis as a method in order to supplement and enrich my sources of possible discourse analysis.

Documents provide additional ways to track discourse (Glasson, 2012; Spicer & Fleming, 2007;

Van Bommel & Spicer, 2011) which can be a particularly useful way of observing contrasts in

different kinds of discourse, such as informal documents (e.g. internal working memos) vs public-

93

official discourse (e.g. board reports, PR releases) (see e.g. Glynos & Speed, 2012; Glynos et al.,

2015). To this end, I analysed the following kinds of documents:

• Publicly available documents that paint the picture of how CloudDoc is constructed

externally, consisting of:

o external media stories

o CloudDoc’s own PR releases and communications itself through documents

released publicly (e.g. shareholder annual reports, CloudDoc’s website).

• Technical documents explaining their software products for a variety of audiences

(e.g. internal representations to colleagues in different teams; documents for client

administrators and support staff; sales documents outlining specific product

proposals to potential clients).

• Case studies (sales collateral that tell client success stories).

• Internal network (WOKI) pages.

• Internal reports (e.g. reviewing projects, proposals for future projects).

• Corporate emails and work social media discussions.

• Video recordings of meetings and/or accompanying PowerPoint presentations.

• Pictures and posters displayed throughout the company.

Each of these kinds of documents were used to build a complex mosaic of the discourses that

constitute, sustain, and contest software within CloudDoc and which are produced by CloudDoc

for various reasons, aimed both internally and externally. However, as I argued at the beginning of

this chapter, ethnography is only one piece of this puzzle insofar as it provided the means to

immerse myself in this intriguing context and begin to get a sense of its discursive contours. I turn

now to discourse analysis to further characterise how I approached the task of critically examining

and explaining these data in light of my research questions and theoretical framework.

Discourse Analysis

Discourse analysis is a common analytical method employed within organisation studies

(Grant & Hardy, 2004; Grant, Keenoy, & Oswick, 2001; Grant, Oswick, Hardy, Putnam, &

Phillips, 2004; Reed, 2004). My approach to discourse analysis is best characterised as

94

problematisation, meaning the iterative construction and resolution of mystery (Alvesson &

Kärreman, 2007). The emphasis here is on working iteratively between theoretical assumptions

based on the literature and points where empirical data clashes, surprises, strikes, confuses the

researcher. Such points present strong opportunities for theory building. As I will illustrate in

Chapter Five, the main findings of this thesis arose out the experience of confusion and surprise,

through which a progressive iteration of various theoretical frameworks47 were considered in order

to best understand, and theorise from, this experience of breakdown. I began, in fact, from the

perspective of Practice theory (Bourdieu, 1977, 1990; Gherardi, 2015; Nicolini, 2012; Reckwitz,

2002; Rouse, 2007; Sandberg & Tsoukas, 2011; Schatzki, 1997, 2001, 2006), especially

sociomateriality (Introna & Hayes, 2011; Orlikowski, 2007, 2009, 2016; Orlikowski & Scott, 2015)

since this seemed most promising. However, for the reasons outlined in the previous chapters and

as the findings chapters to follow shall demonstrate, I found it difficult to explain the absence,

failure, and fantasy that struck me in my data, and this led me to move to a poststructuralist

theoretical framework and the arguments as they are developed herein. However, my task in this

section is not to rehash those points but rather to provide details of the actual analysis undertaken.

I do so by first positioning my form of discourse analysis (DA) within the relevant organisational

studies frameworks and offer examples of other similar approaches within the literature. I then

describe the process of this analysis with reference to these examples.

Organisational Discourse Analysis

The most common framework for positioning the varieties of discourse analysis within OS

comes by way of Alvesson and Kärreman (2000). These authors offer a matrix by which discourse

analysis can be categorised along two dimensions: 1) the degree to which meaning is strictly

47 It should be noted that not all frameworks were considered viable. Given my social constructionist ontological

starting point, only frameworks that could address issues of the construction of social reality were considered, which

led me through an iterative analysis of my data in terms of practice theory (Schatzki, 2001, 2002), Communication as

Constitutive of Organisations (CCO) (Cooren, 2004; Cooren, Kuhn, Cornelissen, & Clark, 2011), Foucault (1978,

1979, 2008), and various strands of the Essex school of discourse analysis (Glynos, 2011; Glynos & Howarth, 2007;

Glynos et al., 2009; Laclau, 2015[1996]; Laclau & Mouffe, 2001[1985]), which is, of course, the approach taken.

95

determined by Discourses (i.e. broader discursive formations); and 2) the focal point of analysis.

The first dimension directs our attention to the coupling of meaning to discourse. It asks: is the

source of all meaning, whether actual words or otherwise, derived from discourse, or is discourse

one among many influencing factors (other examples might be social practices, culture, universal

human traits, evolution)? Another way of looking at this question is whether discourse refers to a

large-scale ordering system that structures social reality or whether discourse has a more limited

and localised meaning in the sense of referring to specific, enduring patterns of thought/speech. It

should be clear from the previous chapter that, for me, discourse is more the former than latter. As

I have argued, all identity (i.e. meaning) is strictly derived from discursive formations and it is

impossible to speak of the meaning a thing, person, or practice has without reference to its

differential relations within an ordered system. This positions me close to what Alvesson and

Kärreman call the ‘muscular’ end of this dimension. However, I would not position my approach

as completely muscular (and hence take up what the authors call a ‘tightly coupled’ approach).

This is due to two reasons outlined in the previous section: surplus meaning and dislocation.

Although all meaning must be located within discourse, PDT denies the assertion that discourse

can ever fully contain and fix meaning completely. Because of this, subjects frequently experience

dislocation, in which the contingency of discourse is recognised and its coupling to meaning breaks

down. These provide the subject an opportunity to rework meaning into new discourses through

articulatory practices. In this way new subject positions may be formed and thus agency finds its

way back into what would otherwise be an overly structuralist position (Laclau, 1996a).

Accordingly, I position myself as leaning towards muscular but always maintaining the possibilty

of creative autonomy.

Alvesson and Kärreman’s other dimension can be thought of as the focal point of analysis—

a discursive version of unit of analysis48—and it refers to whether the analyst is focused on the

48 My unit of analysis, in accordance with the poststructuralist social ontology outlined previously, is actually discourse

itself rather than a distinct entity such as individuals, teams, or organisations. I focus on the production, contestation,

and effects of specific discourses. This implies analysis of a variety of different levels such as the contribution of

specific individuals to production of these discourses, the relationship between organisational power and the discourses

96

characteristics of actual language in interactions or the broader social structuring by discourse.

They mark this distinction by refering to discourse vs Discourse and picture this as an escalating

ladder of levels ranging through: micro (interactions); meso (connecting actual language use to

broader discursive patterns); grand (looking for macro-level discourses and their relation to other

discourses as a framework); and Mega (universal standardising discourses that colour a social

context with a particular ethos, e.g. governmentality). I have taken a meso approach in my analysis.

Unlike a micro approach, my analysis aims to connect observed language with a conception of

discourse that carries beyond the context of its instantiation. The significance of software as an

empty signifier is precisely located in the ideological effects this discourse (e.g. for hospitals,

workers, and the public). My approach is neither Grand nor Mega, however, because I essentially

reverse the directionality implicit in the latter two approaches: grounded in ethnography, I’m

interested in how actual articulatory practices actively construct software discourses; not, in

contrast, how these macro-level Discourses structure a diverse range of practices across multiple

contexts.

Both of Alvesson and Kärreman’s dimensions and my positions within them (moderately

coupled, meso analysis) suggest an approach that is ethnographically grounded, interested in actual

language use and, importantly, its resulting power-effects. This is the approach I have taken in my

analysis of CloudDoc. In order to further characterise my analysis, I move now to an overview of

other similar studies within the literature. Note that while my emphasis is on PDT analyses within

Organisation Studies, some of the examples given below come from other disciplines (especially

Political Studies) because of the paucity of similar research.

they sustain, and the subjectivities and practices produced by this. All of these focal points are implicated in the single

unit of analysis: discourse.

97

Laclauian Discourse Examples49

While discourse analysis is common within organisation studies, including those within a

broad poststructuralist position, it is less common for these analyses to draw directly on Laclau and

Mouffe (2001[1985]). This may be because Laclau and Mouffe provide little in the way of concrete

empirical analysis, preferring instead to make use of abstract illustrations. This doesn’t mean that

it can’t be used empirically; rather, as Jørgensen and Phillips put it, ‘it just takes a little imagination’

(2002, p. 49). Without a relevant step-by-step guide to follow,50 I instead compare my approach

with a brief overview of other similar studies—whereby similar I mean those that either use

Laclauian discourse analysis in organisation studies or for the analysis of software irrespective of

field (unfortunately scant studies do both). It can be concluded from this literature review that,

though few are those studies that use Laclauian discourse analysis, far fewer still use it on first-

hand empirical data such as interviews, and none combines it with an ethnography. As will be seen,

most undertake an analysis of highly formalised textual sources such as government policies, media

releases, and academic literature. While these sources are important to reconstruct the widespread

currency of certain discourses or their change over time, they miss the opportunity to analyse their

contexts of production and their first-hand use among people whose working worlds are actively

shaped by, and shaping of, these discourses. Thus, this study contributes to literature in terms of

providing a methodological example of an ethnographically informed, meso-level Laclauian

discourse analysis.

These examples can be broadly split into two strategies: those starting with conflict and

using DA to explain it and those beginning with discourse, which then leads to a consideration of

antagonisms, hegemony, and conflict. Of the former strategy, Walton and Boon (2014) are the most

relevant because their study aims to serve as a methodological guide for undertaking a Laclauian

DA. They draw on the concept of empty signifiers to analyse a conflict between an environmental

49 I use the phrase Laclauian discourse analysis and equivalents to indicate a Laclau inspired PDT approach in contrast

to other loosely poststructuralist approaches to discourse analysis.
50 Walton and Boon (2014) do, in fact, provide a step by step guide to a Laclau DA but this was not directly relevant

for reasons that will be explained below.

98

group and a forestry company, and the eventual victory of the former. Methodologically, they

reconstruct a historical case study using a variety of sources (public news stories, policies and

documents, and interviews with key stakeholders) and outline a method of reconstructing the key

empty signifiers and their chains of equivalences involved in this struggle. This approach, which I

will summarise as a retrospective reconstruction of conflict through the lens of empty signifier

construction, was commonly found in the literature and was used to examine, for example, nano-

technology (Wullweber, 2015), bioenergy (Kuchler & Hedrén, 2015), globalisation (Spicer &

Fleming, 2007), and the Slow Food movement (Van Bommel & Spicer, 2011). The primary source

of data for these studies are public documents and historical reports, though Walton and Boon

(2014) also included interviews with key stakeholders as part of their case study. While useful for

the analysis of overt conflict, this approach was less applicable to this research because conflict

could not be assumed a priori.

In contrast, the other evident strategy deconstructs a specific discourse as an articulatory

practice, looking for key signifiers and nodal points, chains of equivalences, and relationships with

other discourses (interdiscursivity). This strategy is especially useful for analysing hegemonic

discourses, which, by virtue of their hegemony, appear decontested and non-conflictual. A common

approach here was to track a key discourse through textual sources, especially government-official

discourse or media content, and deconstruct it into its component parts and rhetorical moves. For

instance, Volkmann, Fitchett, and De Cock (2003) examined newspaper advertisements over a 1-

year period to show how the ‘new economy’ functions as an empty signifier to construct a narrative

of opportunity and threat. Similarly Glasson (2012) examined the way anti-intellectualist discourse

in Australian media functions by constructing ‘academics’ as an empty signifier which is then

positioned as the great Other, while Contu, Grey, and Örtenblad (2003) deconstructed

‘organisational learning’ through both academic literature and government-official discourse.

Likewise, Kenny and Scriver (2012) studied the discourse of entrepreneurship in Irish government-

99

official discourse (and its counter-discourses) through a range of public documents, speeches,

academic literature, media reports, and community pressure groups.

 Closer to my topic of inquiry, Barassi (2016) argued that digital discourses are hegemonic

political constructions, taking the concepts of ‘network’ and ‘big data’ as exemplars of empty

signifiers. Bridgman and Willmott (2006) also provided an analysis of the discursive construction

of technology as a political accomplishment within a government ICT restructuring. Other similar

studies include Haarstad’s (2017) analysis of ‘smart’ cities, Deseriis’ (2017) analysis of ‘network’

as an empty signifier, and, of course, Jones and Spicer’s (2005) analysis of entrepreneurship and

Kelly’s (2014) analysis of leadership, both of which were discussed in the previous two chapters.

Studies of this ilk were not always limited to analysis of formal documents, as some also

included interview analysis. Bridgman and Willmott (2006) are an example of the combination of

both, as is Bridgman’s (2007) research into the socio-political effects of the discourse of enterprise

in attempting to rearticulate academic identities. Furthermore, Kosmala (2012) showed

‘competence’ to function as an empty signifier through interviews (drawing especially on the

Lacanian slant to PDT), as did Hoedemaekers and Keegan (2010) in their analysis of

‘performance’. Common to this second, discourse deconstruction approach is a detailed analysis

of a range of sources, which are taken as whole to build a picture the grand-level discourse under

examination. Those few that include interview data tend to add to this picture to show how this

discourse ‘plays out’ through individuals, often noting the socio-political effects in terms of

subjectivities, interpolation, and related Lacanian categories such as the trauma of the Real.

It is the second method of deconstructing the key discourse that I have followed generally

in my analysis. I turn now to actual process of analysis I took, while bearing in mind the fact since

that no study had yet attempted what I have done, I aimed to approximate a combination of the

discourse analysis outlined in this section with the more ‘classic’ organisational ethnographic texts

(e.g. Casey, 1995; Kunda, 1992).

100

Practical Details

In terms of the specific details and in light of the foregoing examples, I analysed my data

in two distinct phases. I first read through all the interviews, key documents, and my fieldnotes

with an open inquiry into recurring themes, tensions, contradictions, and elements that puzzled me.

The data was at this stage broadly coded into emergent constructs (nodes) and this gave me a sense

of the themes that were most prominent and interesting as I worked my way through my data. All

codes were made using Nvivo software, though I note that I did not draw on its quantitative features

and used only those that enabled me to build cross-referenced indexes of my analytical constructs.

These nodes were then disaggregated and were all read again for the purpose of simplifying

and becoming more specific about certain nodes of interest. Thus, quotes from overlapping or

related categories were often recoded into more dominant themes where this was relevant. At this

point I was struck by two observations: first, the extraordinary claims made about the benefits and

the future promise of health software (mostly in terms of their own products); and second,

somewhat conversely, the surprising levels of confusion and contradiction about CloudDoc’s core

products, their benefits, and precisely how their software delivered these benefits. I then consulted

the literature for theoretical lenses into elements of myth, fantasy, and emptiness in order to

consider alternative and better ways of making sense of my data. At this point I then engaged in a

second phase of analysis in which I began again from scratch and re-read and re-coded all my data.

This time I tracked what I understood to be a fantastic and visionary discourse of optimised

healthcare and I therefore aimed to deconstruct and chart out the contours of this discourse. I looked

at the specifics of the claims and coded the discourse in terms of being optimised how, why, and

for whom, as well as what exactly was being optimised. I also tracked and coded all quotes that

described CloudDoc’s products in order to build a discursive picture of how these were constructed,

and this enabled me to analyse the chains of equivalences and contradictions present in their

product discourse. Lastly, I also tracked and coded a sense of the broader fantasy of CloudDoc’s

101

software, capturing all the ways in which they discursively constructed this picture of fully

optimised healthcare.

As a counter point to this fantastic discourse, I also coded anti-fantasy discourses, which

were broadly classified into two camps: those that ‘demystified’ the fantasy by, for example,

offering utterly mundane alternative discourses or speaking directly to a sense of ‘hype’ or ‘gap’

between reality and this fantasy. The second camp collated discourse that spoke to a sense of doubt

or demur about the fantasy and included, for example, text that spoke directly to the real-world

failure of this vision (in terms of optimisation, errors, efficiency, etc) or ethical concerns with its

future direction. At this point I was satisfied that I had a detailed discursive ‘map’ of my key

discourse of interest, the discourse that I shall come to describe (in the following chapters) as the

discourse of Healthcare Perfected. I then undertook a process of reading through my disaggregated

quotes once again and refining my selection of texts that were most vivid and theoretically

interesting. Ultimately this selection was coded against the tables as they appear in my findings

chapters.

A final word is warranted on the distinctively ‘negative’ part of this analysis. The analysis

as I have described will be broadly familiar to those within the organisational discourse analysis

camp—and so it should be. Partly what is unique about the negative ontological approach is the

theoretical orientation that I bring to my analytical sensemaking in this process. So, for example,

this orientation gives me language to describe and a framework to make sense of the significance

and connections between key elements of the Healthcare Perfected discourse. Objects, practices,

and subjectivities are all important elements that are involved in mapping the contours of this

discourse and their relations to one another are a key feature of this discourse. However, a negative

ontological approach also goes further than this in the way that it is especially interested in

discursive markers of emptiness, breakdown, failure, gaps, and absences. Indeed, this is its key

difference. So, whereas a positive ontological approach (including many types of organisational

discourse analysis) would look only at how some element is constructed, a negative approach seeks

102

out the failure of construction as an analytically interesting feature in itself. The fact that there are

wildly different and frustratingly vague descriptions about CloudDoc’s product demonstrates a

failure that is itself important because it demonstrates an emptiness that may be strategically useful.

The way that this discourse tends to construct a vague sense of something missing is itself important

because it demonstrates the absence which this discourse seeks to fill. The way that this discourse

tends to jump to a future tense in discussions about the here and now is itself interesting because it

demonstrates a downgrading and dismissal of the present as something lacking. All these features

might otherwise have been overlooked as confusion, contradiction, and nothing more than a lack

of clarity; yet from a negative ontological perspective it is precisely these features that evince the

powerful ideological force that makes the discourse of Healthcare Perfected compelling and

dominant. This is why a negative ontological approach presents a unique opportunity for the

analysis of software.

Epistemological Reflexivity

Ontics, Ontologies, and Epistemologies

This chapter and that which precedes it have, I think, sufficiently characterised my

ontological and theoretical premises. In this section, I want to briefly explicate the epistemological

convictions that are implicit in the foregoing argument. The central epistemological point I wish to

argue is that my ontological commitment precludes the view that research ‘discovers’ objective

truths about the world. The fundamental point that the foregoing chapters have sought to make is

that what a thing is—its ontological identity—is constituted by discursive formations. Since realist

objectivism is plainly incompatible with this view, I will waste no time in rehearsing hackneyed

arguments from the well-worn paradigm wars. That said, there is a highly relevant and legitimate

potential criticism that I do wish to address here on the relation between objective reality and

discourse. This criticism can be found much closer to ‘home’ in OS and takes the general form of

an accusation that a poststructuralist perspective has gone too far in essentially treating everything

103

as text or, relatedly, treating reality as if the only thing that matters is text. This criticism was, of

course, one of the fundamental drivers towards the sociomateriality perspective as outlined in

Chapter Two (Orlikowski, 2007, 2009, 2010; Orlikowski & Iacono, 2001; Orlikowski & Scott,

2015) and it is therefore of vital importance that the approach I advocate for in this thesis avoids

falling once again into this pitfall.

However, this criticism has roots much deeper than the sociomateriality critique and is

indicative of a more lively debate within organisation studies as a whole (Alvesson & Kärreman,

2011b; Bargiela-Chiappini, 2011; Editors, 2015; Hardy & Grant, 2012; Hardy & Thomas, 2015;

Iedema, 2011; Mumby, 2011). For instance, Alvesson and Kärreman (2011a) excoriate what they

see as an unproblematised use of discourse that has colonised the literature and elsewhere argue

for a moderate constructionist position in contrast (2007). From a Marxist perspective, Cloud

(1994) similarly laments the loss of materiality in discourse studies. But perhaps its most vocal

opponent comes by way of critical realists (Fairclough, 2005; Laclau & Bhaskar, 1998; Reed, 2000,

2004). The view that everything is discourse is an example of what Roy Bhaskar has called the

Epistemic Fallacy (1975), by which he means the mistaken conflation of how we know things about

the world (i.e. epistemology) with what the world actually is (which is what Bhaskar understands

ontology to mean).

These valid and important criticisms of discourse notwithstanding, the PDT perspective I

advance in this thesis does not commit the epistemic fallacy nor does it proclaim a view of discourse

that neglects or elides material reality. Bridgman and Willmott (2006) argue precisely this point

when they assert that for PDT, discourse is a material practice. This is an important difference,

especially compared to other discourse approaches which emphasise discourse as something

textual or spoken about materiality (e.g. Fairclough, 2005). In Laclau’s words, ‘It is not that

discourse produces some kind of material effect, but that the material act of producing it is what

discourse is’ (Laclau & Bhaskar, 1998, p. 13, quoted in Bridgman & Willmott, 2006, p. 114). Put

differently, PDT argues that objects are only constituted as objects once they take a position within

104

discourse. This means that technology doesn’t exist ‘in the wild’. Technology, and the material

properties it effects, are only made possible through discourse, which is a view that Orlikowski

similarly holds (e.g. 2000, see fn. 4 & 7). But this in no way implies that these material effects are

‘made up’, simply words, or, conversely, something other than discourse. Material effects are very

real, and they will undoubtedly constitutively shape the social world of which they are apart. For

example, the discursive formation constituting fire fighters includes not just its subject positions

(fire fighter) but also artefacts (trucks, hoses, axes, etc). These artefacts constitute fire fighters as

fire fighters as much as vice versa. All these elements together define what a discourse is: the

objects it constitutes, the positions these objects take up in practices, the effects they produce, the

meanings given to all these elements by people—or in other words, what Wittgenstein called ‘the

whole hurly-burly’ (Wittgenstein, Anscombe, & Wright, 1981 no. 567).

Laclau and Mouffe avoid collapsing reality into text and are, in fact, very explicit in this

regard. Though they note that their analysis ‘rejects the distinction between discursive and non-

discursive practices’ (2001[1985], p. 107).51 Although this suggests a potentially similar discursive

implosion, they nevertheless proceed to outline exactly how every object can be constituted in

discourse without collapsing its ontological being into mere text. As this is the ontological position

taken in this thesis, I will here quote the argument at length:

if the so-called non-discursive complexes — institutions, techniques, productive organization, and so

on — are analysed, we will only find more or less complex forms of differential positions among

objects, which do not arise from a necessity external to the system structuring them and which can only

therefore be conceived as discursive articulations (2001[1985], p. 107).

However:

The fact that every object is constituted as an object of discourse has nothing to do with whether there

is a world external to thought, or with the realism/idealism opposition. An earthquake or the falling of

a brick is an event that certainly exists, in the sense that it occurs here and now, independently of my

will. But whether their specificity as objects is constructed in terms of ‘natural phenomena’ or

‘expressions of the wrath of God’, depends upon the structuring of a discursive field. What is denied is

not that such objects exist externally to thought, but the rather different assertion that they could

constitute themselves as objects outside any discursive condition of emergence (2001[1985], p. 108).

51 This comment is aimed to criticise a distinction they see in Foucault’s thinking.

105

It is clear then that this ontological position does not subsume the being of all objects into text;

instead it argues that what a given object is for us is constituted via discourse and no alternative

access to reality is possible.

Furthermore, this does not commit the Epistemic Fallacy, contra Bhaskar (1975), because

it maintains a distinction between what is and what we know of it; although a further distinction is

necessary to secure this point. Glynos and Howarth (2007), who are part of the Essex School of

Discourse Analysis, fill in a supressed premise in the argument above. They show that it follows

Heidegger in making a distinction between ontic and ontological, where ontic refers to the actual

entities that comprise reality and ontological refers to the conditions under which the ontic comes

to be categorised as an object at all. These terms help to clarify the fact that the distinct social

ontology advanced in this thesis is able to use discourse theory as a theoretically incisive framework

without making the erroneous non-sequitur assumption that everything is text.

Reflexivity

It follows from the premises explicated above that research itself is in fact yet another kind

of discourse attempting to fix the meaning of objects in a particular formation, my own included.

It does not follow, however, that ‘anything goes’. This is because discourses cannot simply be

articulated at leisure, as if meaning were nothing other someone’s fanciful whim. Discourses are

shared, public things, and hence in order to fix meaning through articulatory practice other

discourses must be drawn on and meaning must be shared rather than individual. Articulation is

thus limited by context (Kenny & Scriver, 2012) and research proceeds in exactly the same way: it

articulates new differences and relations out of a bricolage of common discourses (which we call

‘the literature’). Research quality, on this view, must be judged by its ability to construct

compelling explanations of social facts, a judgement that must be made ultimately by the

community of experts (Glynos et al., 2009) rather than via an appeal to have accurately represented

objective reality (see also Rorty, 1979, 2009).

106

Moreover, this epistemological stance is shared with the ethnographic tradition more

broadly. While ethnography does not deny the existence of a real world, it makes no claims to

exhaustively or perfectly describe it either. Rather, as Hastrup (2004) makes explicit, ethnography

aims to produce organised empirical knowledge about the world, which is therefore necessarily

reductive in its attempts to simplify messiness and selective in that any frame on knowledge

simultaneously disregards some information in favour of others. Consequently, reflexivity is an

important element of ethnography, given that the researcher is fundamentally, fully, and even

bodily involved in the process of constructing knowledge (Hastrup, 2004, 2005). Ethnography is,

therefore, ‘situational, co-constructed through interactions with others in organizational settings,

reflective of researchers’ and others’ positionality with respect to subjects and settings’ (Ybema et

al., 2009, p. 9). This leads me to consider, therefore, the related topic of reflexivity: what elements

of my own positionality might be relevant here?

One key point worth considering is the fact that in some respects this study focuses on a

kind of worker that I strongly identify with, and thus I needed to be careful to attempt to disentangle

myself from the discursive formations I wished to analyse. For instance, I am a novice computer

programmer and at one stage I had hoped to move into IT as a career. I had to laugh when I read

one software developer’s interview quote exclaiming that ‘most people watch TV, I programme’

(Bergvall-Kåreborn & Howcroft, 2013, p. 976). I too have often been completely enrapt with some

little computer script or database far too late into the evening. Moreover, there are some intriguing

parallels between academia and software development: both are clear examples of knowledge

work, and both are experiencing significant restructuring towards project work, commercialisation,

and the idealisation of entrepreneurship (Case & Piñeiro, 2006, 2009; Gorz, 2010; Kenway, Bullen,

& Robb, 2004; Olssen & Peters, 2005; Shore & McLauchlan, 2012).

The experience of similarity is a feature of organisational ethnography in general where the

organisation in question is far less likely to be radically different to the researcher’s own

experiences than may have been the case in traditional anthropological ethnography of foreign

107

cultures. This is significant because it may be hard for the researcher to notice important elements

because s/he shares these features and therefore is likely to (also) take them for granted. This leads

to a risk of over-identification with research participants and can lead to a lop-sided representation

of multiple perspectives missed nuances (Hammersley & Atkinson, 2010). However, despite our

many similarities I found that I was still struck by a sense of bewildering strangeness in my

fieldwork. As I will demonstrate in the subsequent chapters, one of the most interesting features of

this context was the production of discourse that was, in fact, disconnected to the simple practices

of coding. Thus, while I may have shared something in common with my research participants in

terms of the general experience of knowledge work and an interest in writing computer programs,

I nevertheless found my context to be richly surprising and vastly different to any of my previous

experiences.

Ethical Considerations

I close this chapter with a final reflection on the relevant ethical considerations. This

research followed the guidelines outlined by the University of Auckland Human Participants Ethic

Committee (Ref 018536, approved on 05/01/2017). The major ethical consideration was around

ensuring the confidentiality of my participants’ identity, and the identity of the company itself. In

terms of the former, I have taken steps to disguise names, other identifying attributes (such as

gender), and idiosyncrasies when describing participants, their actions, or their words. Please note

that I have generally used masculine pseudonyms and pronouns. This is because the IT industry is

notoriously male dominant (Crump, Logan, & McIlroy, 2007; Guerrier, Evans, Glover, & Wilson,

2009) and thus gender is a conspicuous marker that could easily betray identities or at least give

the impression that I have (for instance if there is only one female in a certain role type, any

feminine pseudonym could be misconstrued as having come from that particular female). I have

occasionally used feminine names to keep things varied, but on the whole this has been avoided.

108

I have also been deliberately less specific about job titles than might be desirable for

perspicuity and have instead opted for general roles (e.g. developer, sales). This is an unfortunate

trade-off, but I believe that enough information is still provided for the analysis to hold. There is

always a risk that participants may be identified by those that know them (or were present), and

this was outlined in the Participant Information Sheet (PIS). I have also needed to be somewhat

vague about the organisational specifics such as its exact location and history. There are relatively

few companies in the world that produce health software at a global level and hence any specific

details carry a high risk of exposure. I have made the organisation aware of these points and, rather

than being perturbed by them, they actually suggested I simply name them—they seemed to see

this as an opportunity to join the ranks of other tech elites, about which case studies are often

written. Notwithstanding their surprising confidence, I have chosen to continue under the auspices

of confidentiality because it affords me greater academic freedom to report what I find, and indeed

I doubt they would be entirely comfortable with the claim, as argued in this thesis, that discourse

about their products has a certain emptiness to it. This is one of the great difficulties of conducting

critical research but considering the function of academia is to be a critic and conscience of society,

as mandated in New Zealand law (Education Act, 1989), I believe that the argument in this thesis

should remain undiluted while taking every reasonable step taken to ensure confidentiality.

In accordance with UAHPEC guidelines, this research also proceeded under conditions of

informed consent. All participants were given a copy of the PIS and asked to sign a Consent Form

to proceed. Those that refused to give consent were left out entirely of any reporting, while a more

moderate position was to give consent to be part of the study in terms of my observation fieldwork

but decline consent to be audio recorded, and again these wishes were respected. Participants were

also made aware of their right to withdraw from the study in the PIS. In addition, those who wished

were offered a copy of their interview transcript, and the right to edit these as they see fit, though

no one took up this opportunity. Other than these few ethical considerations, UAHPEC agreed that

109

the study presented little to no risk to participants and I am confident it was conducted according

to the highest ethical standards.

110

5. Emptiness

In this chapter, I draw on empirical examples to deepen this sense of a problematic vacuity

that prowls around the cracks and edges of software discourse. This is a key chapter in this thesis

because it is intended to recreate my ethnographic experience inside CloudDoc as I suddenly

realised the ‘constructedness’ of their software products—including even their most prized flagship

product. This experience is best understood as dislocatory (Laclau, 1990, 1996a, 2015[1996]),

which, as I explained in Chapter Three, refers to moments in which we come to appreciate the

limits and inadequacies of our normally taken-for-granted discursive formations. In this case, I

want to draw the reader’s eye to the constructedness of software. This is an important, if difficult,

task precisely because software is so commonplace within modern society and it increasingly

permeates almost every aspect of our lives in some way or another. Given this familiarity, its

objective ‘thingness’ seems self-evident: it may be immaterial, but surely most would agree that

software is a clearly definable and delineated object. It is my hope that this chapter will begin to

unseat this assumption empirically in the way that the previous chapters did with respect to the

literature.

To accomplish this, I begin this chapter with the following excerpt, taken from my field

notes approximately half way through fieldwork.52 At the time I was shadowing a middle manager

of a support services team, whose role was to work on getting projects ‘live’ after the completion

of the sales process. Note that this process typically took between 6 – 36 months to progress through

successive rounds of negotiation with sales, to agreeing upon the product to be delivered, to

defining the specifics of the requirements, to a lengthy process of installing and customising the

product for compatibility on site. Because of the length and complexity of this process, the services

team were situated adjacent to the sales team in a large open plan area. Now, it was common within

CloudDoc to see incomprehensible diagrams almost everywhere I looked. This was facilitated by

52 My field notes contained some shorthand and various incomplete sentences as a way of writing quickly. These were

subsequently edited for readability, usually each night after observations.

111

whiteboards arranged haphazardly at the end of rows of desks and in little meeting ‘dugouts’

(unique spaces with funky chairs, benches, and couches scattered throughout the buildings), and

also with post-it notes arranged in neat patterns amidst drawings and comments made directly onto

windows. It so happened that behind me was just such a whiteboard and so it was that, while I was

shadowing my services manager, an impromptu meeting began between Arnav, the Asia-Pacific

(APAC) sales manager and his direct report, Lillie, a sales manager for New Zealand. As my

fieldnotes report:

Over my shoulder, I catch a conversation between Arnav and Lillie. They’re talking specifics about the

deployment of a suite of products in one of Lillie’s regions. This is a major project she has been working

on which links together 3 hospitals. Arnav draws the complex system out on a whiteboard behind me.

It’s full of boxes, some shaped like a cloud, others just regular rectangles, and there are arrows sprouting

off these in all directions to show how data moves around. There is a dotted line drawn loosely around

a large portion of the diagram, separating most of one side from the other, trying to show the potential

system with SuperSmart and an API layer.53 Arnav is patiently trying to explain the products to Lillie,

describing each separate product and what it does. Suddenly Lillie asks, ‘Can you help me differentiate

which part of this is SuperSmart?’

Arnav replies, ‘What you need to understand is SuperSmart isn't actually anything. It's just the way

these things form a package. What it is is just this’ [he makes a wide, arcing hand gesture that indicates

the entire side of the diagram grouped to the left of the dotted vertical line.]

Lillie looks like she still doesn’t understand; or is she maybe even annoyed by this? I’m not sure. But

she says nothing, and they move on.

I am definitely confused though. This makes me reflect on what exactly software is. In what sense is it

actually a product? What kind of product is it? How can SuperSmart not exist? It’s their flagship product

at the moment!? I’ve sat in their waiting room at the reception and watched glitzy animated videos

playing on loop that tell me how SuperSmart is this amazing AI system that can understand medical

notes and make personalised predictions beyond anything doctors have been able to do before. I’ve met

people who work in the SuperSmart dev teams!54 And it doesn’t even exist? What on earth are they

building then?

Fieldnotes, Friday July 21, 2017

After this experience, I began to puzzle over a question that had hitherto seemed so basic

that it failed to feature at all, namely: what actually is software? This is, of course, a fundamentally

ontological question. Moreover, the fact that it shifted from fundamentally obvious to questionable

is the defining feature of dislocation. Laclau (1990, pp. 34-35) calls this movement reactivation in

which antagonisms are reactivated and the negative and contingent nature of identity is revealed

against what had been a sedimented form of hegemonic ‘objectivity’. From this point onwards, I

53 APIs, or Application Programming Interface, is a feature that enables programs to interact with each other. They

make it possible for one program to ‘call’ another and transmit or request information.
54 ‘dev’ is the emic term for a software developer.

112

began to ask people as often as I could, but especially in interviews, what SuperSmart was. I also

asked them this most basic question: what is software? Despite this being their ‘bread and butter’

as a software development company, I was surprised to see how difficult this question was even

for those who spent their working lives breathing life, word by word, into this mysterious entity,

software. In order to demonstrate this puzzling and problematic confusion, I turn now to a mini

case study of SuperSmart and a selection of interview quotes on this topic.

What is SuperSmart?

According to a key press release announcing the launch of SuperSmart, it is a ‘world

leading’ ‘precision medicine big data platform’ (MR_NS23:1). SuperSmart is featured

prominently on CloudDoc’s website and promises to ‘identify and prioritise your patients’ needs

at a population and individual level’ and ‘proactively drive wellness across the community through

prevention and early intervention’ (WC_MP1:1). This is achieved by delivering

a comprehensive approach to acquiring, enriching, analyzing, and presenting actionable

clinical and claims data, as well as non-traditional data. The scalable and open platform

supports population health management initiatives, value-based care models, and provides

healthcare professionals with real-time cognitive support at the point of care (WC_PP12:1).

What stands out in these quotes is the distinct sense that SuperSmart is much more than a mere

tool. Instead we are struck by a sense of agency about SuperSmart as it takes on an active presence

in these promises. SuperSmart does not merely make it possible to do wonderful things in

healthcare, SuperSmart is proactive, and performs a number of impressive verbs, such as identify,

drive, acquiring, enriching, analysing and presenting. SuperSmart provides us with real-time

cognitive support, leaving us with the resounding impression of a thinking, intelligent something

who is able to do all these impressive things. Another page, devoted to SuperSmart Intelligence,

tells us that SuperSmart’s key benefits are: ‘Empowering clinicians’ with ‘greater precision’ to

‘transform the way clinicians work at the point of care’ (WC_PP12:2). SuperSmart is able to

‘create insights’ and ‘improve decision making’, which ‘can be used to predict patient costs,

analyse clinical and financial outliers, and predict avoidable readmission risks’ (WC_PP12:2).

113

Note here the repetition of the word ‘predict’, which goes well beyond ordinary human abilities

and positions SuperSmart as possessing the means of prescient knowledge. We are invited by the

website to download a whitepaper report on SuperSmart intelligence entitled, ‘DISRUPTION OF

HEALTH WITH MACHINE LEARNING IS THE FUTURE’ (WC_PP12:2).

These are some very bold promises. These are not, however, promises made with a wilful

duplicity in the hopes of beguiling hapless would-be customers either. As, I will demonstrate, these

beliefs went much deeper than mere sales rhetoric. It was very common to hear employees talk

about ‘buying into the vision’ of CloudDoc, a theme that came through frequently in my interviews

and informal conversations. In my very first meeting at CloudDoc, the COO launched into a 15-

minute monologue explaining that the company was ‘at the crest of a breaking wave’ about to

capitalise on a monumental step-change in healthcare, a revolution. And, as I recorded in my

fieldnotes from that meeting, like most people I met at CloudDoc, the COO seemed so rapt with

this grand vision that the possibility of skeptism appeared never even to enter his mind:

He tells me that they are on the cusp of greatness, that medical costs are the number one growing market

in developed countries. He tells me that we are on the eve of the complete digitalisation of all medical

data; from cradle to grave everything known about me by any kind of medical practitioner will be stored

online ‘in the cloud’. He tells me also that other kinds of data about me, e.g. my education, financial

details, my social circles, my habits and interests and so on are also useful as health predictors and that

all of this will be stored together, generating the most complete digital profile ever seen of a person. I’m

reminded of the movie Gattaca and I suppress a shudder. I’m not sure I would actually want this kind

of profiling, yet John55 seems to be completely unaware of the fact that many people might find this

disturbing. Is he so immersed in this vision that other perspectives are lost on him?

Fieldnotes, Wednesday October 26, 2016

 In the first team I worked with, the recruiters there told me that belief in the vision was one

of the key characteristics they looked for; I even saw one recruiter coach an applicant for a senior

role, advising him to ‘keep talking about his vision for healthcare’ during upcoming interview with

the CEO. As she explained to me, ‘Blair [The CEO] just loves that shit, he laps it up’ (and she

herself shared openly about her passion for the vision). Put simply, Clouders really believed the

vision of SuperSmart. Indeed, subsequent to my fieldwork, CloudDoc sold the only profitable part

of their business (ConnectSmart) and kept SuperSmart, which was frequently contrasted to me as

55 A pseudonym.

114

the interesting, innovative part of the business vs their boring, cash-cow product, ConnectSmart.

The company clearly believed these bold promises as much as or more than their customers and

were willing to put their money where their mouths were, so to speak. And it wasn’t just the

company, either. After a particularly disastrous financial performance required the company to

update their advice to the market and a subsequently dramatic loss of share value, a company-wide

presentation was aired live on the internal TV network. Incredibly, however, at the end of 30

minutes of a detailed exposition of the company’s alarming financial position, the very first

question was: ‘where can we buy more shares?’

 It was therefore highly disconcerting to hear a senior sales manager say that actually,

‘SuperSmart isn’t anything’. But perhaps he was simply wrong. Or maybe it was just hyperbole,

intended to be funny or overemphasise a point? It turned out though that his opinion was generally

shared by the majority of employees outside of the development teams. Developers themselves

found it harder to maintain that SuperSmart wasn’t anything since they knew that their colleagues

beside them were working on it. But even within the development teams—including, most

surprisingly, those teams actually working on it—overwhelming confusion and contradiction

pockmarked the conversations I had with my participants. To illustrate this remarkable point, I turn

now to a selection of interview quotes.

Interview Data56

I begin this section with one particularly illuminating conversation I had with a key

salesperson whom I will call Henry. This conversation (which was audio recorded) will set up some

of the themes that I will then further elucidate with a wider set of quotes. Henry was part of the

sales team and one of the people I shadowed during my time with his team. Though only in his

56 Note that I use ‘[…]’ to indicate places where I have made an omission (in the interests of brevity); whereas I use

‘…’ to indicate a brief pause in which the speaker has ‘tailed off’, i.e. ending a sentence prematurely due to losing

one’s train of thought or simply not knowing how to end it. I use ‘[pause]’ to indicate places where a speaker has

stopped speaking but their non-verbal body language indicated to me as the interviewer that they were thinking about

how to answer the question (and so I did not interject). Occasionally, I use ‘[long pause]’ to indicate pauses greater

than 4 seconds in duration.

115

early thirties, Henry showed signs of immense weariness and openly expressed his frustration to a

close colleague who sat next to him, and to me at times. Henry was part of a team responsible for

writing proposals for contract bids across the globe.57 His work involved trying to articulate

CloudDoc’s products in these proposals and included responsibility for drawing diagrams to

explain the products and their relationships to one another.

One of the things that struck me about his work was the astonishing difficulty of this task,

astonishing in the sense that it should be difficult at all. The Woki (intranet) was already

overflowing with diagrams and explanations created by teams of ‘tech writers’,58 the marketing

team, and of course all the other previous bids. Despite this, however, Henry and the others in his

team still felt that they needed to draw most diagrams from scratch and regularly complained that

they couldn’t find relevant descriptions for the products. Thus they spent long hours trying to get

information out of product experts59 to then rearticulate the products.

When I asked Henry about this, he told me the issue was that (a) the task involved trying to

express the products in a way that moulded to the RFPs; and (b), the products kept changing so that

descriptions and diagrams quickly became obsolete. This second fact could also be seen in the four

years’ worth of annual reports that I analysed, in which I was surprised to see frequent changes in

the product names, roadmaps,60 and even the divisions and relationships between products—the

latter being accompanied by often drastic changes in lines of reporting and job titles. (This also

occurred twice in the 12-month period of my fieldwork, and it was common to hear people exclaim

that they can’t remember what so-and-so’s job title is now, or who reported to whom anymore, or

even to which ‘line of business’61 a product belonged). It seemed to me that the task of articulating

what software is, where it belongs, and to what it is related (all the defining characteristics of a

57 e.g. Requests for Proposals (RFPs) from government and state service providers, insurance companies, new and

existing hospitals.
58 Tech writers write explanations of software products, which can be used for internal and external documentation.
59 I.e. the developers themselves and the ‘product owners’, which is a Scrum term for a manager responsible for the

interface between the customer’s requirements and the development team(s).
60 i.e. the forecasted feature list to be developed.
61 The broadest category of product organisation which linked together many products into a bundle and had a single

executive ultimately as manager.

116

discursive formation) was never complete but required incessant (re)production through constant

(re)articulation. Interestingly, this also allowed for considerable pliability to fit with other

discourses (like an RFP). Hence the difficulty of Henry’s job.

These issues notwithstanding, pitching the SuperSmart product was a key task among

Henry’s duties, and given his practice at it, I expected to find that here, at least, was some clarity—

even if this might be only a temporary accomplishment until the next big shift in roadmap or

product division. However, when I asked him what SuperSmart was, he replied, ‘What it is?

[laughs] Ah shit. [laughs] Um [pause].’ Unable to articulate what SuperSmart was in terms of its

presence—in both the sense of time (the present) and ontology (positive presence)—he began

instead to tell me about what SuperSmart will become.

So the SuperSmart platform and its ability to ingest future data streams so that’s, that’s kinda the thing

were trying to sell cos once you have those components you can essentially build anything on top of it

and leverage all that new data when its layered on when its aligned with other data sets and do all the

cool stuff. […] So for example what we’re doing now on this project, were not gonna essentially selling

you this platform now, but were selling you the means to go onto that platform so that down the track

you'll have what we call a future-proof platform so you can um so you can have cancer data alongside

ah genetic data and you can do that sorta um genetic screening […]

So it’s like that vision of being able to have that information, being able to do something cool with it.

So we don’t [sighs] we sell it, we say well SuperSmart. But it’s not what it necessarily can currently do,

but what it will be able to do [rising pitch]. So, it’s kind of a weird one.

Note the language of future promise throughout (‘future data’, ‘once you have those

components…’, ‘new data when…’, ‘so that down the track you’ll…’, ‘future-proof’, ‘vision’,

‘what it will be able to do’). It is interesting to observe how what SuperSmart is is immediately

redirected into an ontology of promise. By promise, I refer to its the dual meanings of: (a) future

temporality (A declaration or assurance that one will do something or that a particular thing will

happen—Oxford Dictionaries online); and also (b) a sense of something that will be exciting (The

quality of potential excellence—Oxford Dictionaries online). This latter sense especially was

common at CloudDoc and is signalled through shorthand words such as ‘vision’ and ‘all that cool

stuff’, both being phrases that recurred throughout conversations, interviews, videos, and speeches

that I observed. The CEO himself often would interject on his own speeches to stop and say things

like ‘Analytics is really, really sexy aye, it’s really cool. It’s gorgeous’. Promise infused this

117

product so much that Henry states (immediately preceding the above quote) that ‘we tend to sell

more of a like a vision story’.

However, Henry as continued his definition I encountered once again that troublesome

phrase, articulated almost identically to Arnav’s comment that I had overheard.

SuperSmart isn't actually anything. It's like the just the deployment model for a number of

components and how they stick together.

Researcher: How do you sell something that isn't actually anything?

Very difficultly. We’ve had major problems thinking about how to actually sell this

[Henry hastily draws me a diagram similar to the one I saw on the whiteboard with boxes,

arrows, and big circles around elements to show bundles. There is also a ‘layered’ dimension

that attempts to show SuperSmart as the base platform upon which the rest sits.]

How do we say that’s on top of that but this [ConnectSmart] and [StoreSmart]62 are here but

they're also down here so why do we, why do they need this? [sighs] and so, again, we're

trying to sell them this evolution of a product cos they wanna platform that will last and will

be able to do cool things in the future […]

It’s [pause] it’s tricky and we- every time we put in a bid we go through this process of what

is it? What are we trying to sell them? What's important to them? And what does it actually

do?

Researcher: Right and then SuperSmart becomes something different each time?

Yeah that’s probably one way of putting it [laughs]. Um, [pause] yes. [pause]. In a way. And

you can talk to like different people in the company and they’ve got a completely different spiel

on it like what it means to them.

It is interesting to observe the many distancing words Henry utilises so as to hold back from

a definitive position on SuperSmart (e.g. ‘essentially’, ‘sorta’, ‘kind of’, ‘like’). Markers of

discursive breakdown also litter his responses, evinced by moments of pause fillers (e.g. ‘um’), in

which Henry struggles to find words for SuperSmart. Driver (2009) argues that such points of pause

and breakdown indicate dislocatory experiences.63 These markers are accompanied by non-verbal

expressions of discomfort and disappointment (e.g. sighs). Note also the switch in pronoun as

Henry begins to say ‘why do we… [need this?]’ However, ‘we’ is amended to ‘why do they need

this?’ indicating both a sense of personal dislocation and lack, but also the desire to hide this by

projecting this lack onto the Other (customers). His comments are also marked by nervous laughter

62 The pseudonyms for other products that CloudDoc sell. Henry is referring to the fact that these products, and the

bundles they form, are also regularly sold without it being called the SuperSmart product. Hence the issue of what they

are actually selling if clients may already have, or can get in other ways, the same products.
63 Driver draws upon the Lacanian notion of Lack in her analysis. However, as I argued in Chapters Two and Three,

these concepts are interrelated, and Laclau himself frequently draws on Lacan, or gives a Lacanian version of the same

concept simultaneously.

118

which may indicate a sense of transgression (Plester & Carrol, 2014) in acknowledging Henry’s

experience of dislocation and lack. These features provide discursive cues that belie a problematic

and disquieting absence lurking behind the impressive discourse of promise attached to

SuperSmart.

Henry was not alone in this experience either. Table 5.1 highlights the typical responses I

received to the question ‘What is SuperSmart?’ across the entire organisation.

Table 5.1—Questions and Confusion

[long pause] That's a good question. [laughs] I was going to say, ‘fucked if I know!’ [laughs]

(Yukiko, Management/Dev)64

You'd think I'd know, wouldn't you? Yeah, that's a fascinating question. And actually, what's

even more fascinating is that it is a question… And so what is [SuperSmart]? So [SuperSmart]

is a number of things (Ernest, Management/Dev)

Yeah, I still don't know. Whenever somebody says what is [SuperSmart] to me when I'm out in

the fields talking to a customer, I'm like, ‘Oh, it's a health platform, and it may or may not sit

in your cloud depending on where you are.’ And it's supposed to be more or less a repository

of all the information that you want and need. But what's true, and I'm not actually sure, and

I'd love... and in amongst all the work that I'm doing as well, I'm trying to get across what our

products are and what they are meant to be doing versus what they are actually doing. […] I'm

trying to find the right person to speak with about can you tell me what it does and how it

works? And I've been trying for the last six months, and I keep getting told oh, that person

know, that person knows, that person knows. And then I keep getting handballed around, and

it sounds like nobody knows (Rhys, Product Specialist)

The big question is what is [SuperSmart]? It's always the million-dollar question, right? The

more you ask people you found out how confused people were, but then so many people, so

many of those old traditional people invested in the name, they couldn't let it go. It's got some,

don't get me wrong, it's got enough brainwashing in [a particular region of the world] that

people are gonna understand what it is now, and the customers get what it is. I think we just

made it a bit messier than it used to be (Khloe, Senior Management)

[SuperSmart] is again that's another one that [CloudDoc] have made up … [Researcher asks

why] I don't actually understand. I don't know. I think [SuperSmart] is actually it's a marketing

term that we came out with to sort of all singing, all dancing, this is what we do (Khalid,

Innovation)

What is SuperSmart? That is a very, very good question (Steven, Product Specialist)

It’s important to note that this response was the same throughout the organisation, so this

was not simply due to ignorance. In fact, three of the above quotes come from very senior managers

directly responsible for the technical and product leadership of SuperSmart itself (hence the phrase

64 Note that I use ‘Management/Dev’ to indicate that this person works on the development side of the business but in

a management capacity rather than coder.

119

‘You'd think I'd know, wouldn't you?’). Again, we see markers of discursive breakdown and

transgressive humour. In addition, a significant theme throughout these responses is that of

questioning, where this question is described as ‘good’, ‘very, very good’, ‘fascinating’, and ‘the

million-dollar question’. Rhys tells of a 6-month journey around the company asking this question

but has not yet found a satisfactory answer. These signs of dislocation are scattered throughout the

company, indicating a niggling sense of doubt, a hint of fissures in façade of the hype (‘all singing,

all dancing’) and promises we glimpsed above. This sense of questioning directs attention to an

intriguing, and problematic, separation between discourse about SuperSmart and a vague notion of

what it really is, which is marked here by its absence in the form of a question. Thus the suggestion

that SuperSmart might just be ‘made up’ is contrasted with what it ‘actually’ is, echoed by Rhys’s

unfinished question, ‘But what's true, and I'm not actually sure, and I'd love...’ There’s a sense of

duplicity about it, suggesting it might just be a ‘marketing term’, ‘brainwashing’, or just a ‘name’.

However, we see also that this doubt has a sense of secrecy about it, just as it did for Henry. Despite

the fact that Rhys feels he doesn’t know what SuperSmart actually is, he finds himself covering up

‘out in the fields talking to a customer’ and fudging an answer by drawing on, and hence continuing

to reproduce, this privately unsatisfying discourse.

Despite this question regularly revealing doubt and confusion, most interviewees went on

to at least try to define SuperSmart for me—again, perhaps due to a sense that this absence needs

to be covered up and fudged. This suggests the hegemonic sedimentation of discourse about

SuperSmart because participants seemed to respond to a sense of expectation and surprise (‘what's

even more fascinating is that it is a question’) at their inability to articulate such a core product

within their suite. Despite this inability, they appear to feel that SuperSmart must be something

because it has been constituted as an ‘objectivity’ in the Laclauian sense. Thus interviewees cover

over this absence with the following explanation attempts.

120

Table 5.2—Contrasting Definitions

[Drawing a diagram on a whiteboard for me] Here is the [CloudDoc] solution. Let's call it

[SuperSmart] cos you know that's what it's called, at least that's the new thing irrespective of

all of the other stuff that exists kind of prior, which even though it kind of can look a bit

different, under the hood they’re fundamentally the same. So we're using the same kind of tech,

same kind of components and so on. [SuperSmart] is the rebranded, standardised, we can ship

it out the door (Clayton, Dev).

[SuperSmart] is kind of foundation so we have all these little groups of... what would we call

them, like GP's, hospitals, all that sort of stuff and they feed us patient data, so we get the

information about the patient and it comes in various cryptic forms, what we call HR7

messages, documents etc and we have the ability to process that information, store it in

something and then when called upon exposes it in a user-friendly way to a clinician so that it

makes sense to them (Yousesef, Management/Dev)

For me, [SuperSmart] is a combination of the components, the toolings, and the technology, as

well as just the processes around, regular or release. Some of the governance around if you

take [SuperSmart] and you want to change, you need to come back and ask, ‘Is this change

going to be in the product?’ (Yukiko, Management/Dev)

Well, that is kind of what [SuperSmart] is. So you try and get information from ... like I said,

it's all about the payer data, right? You've got a population of people that you need to know

information about, so you put all that information in SuperSmart (Ernest, Management/Dev)

So [SuperSmart], we now refer to it as ‘the platform’ (Kelsey, Dev)

Because [SuperSmart] itself doesn't do a huge amount and it just collects, it just receives data

that you send it (Calvin, Dev)

[SuperSmart] was the vision of how we would build a pre-configured base that would scale

and deliver […] But we also then decided that we had to do it in the cloud. Now, no one actually

asked us to put it in the cloud […] The reality is, very few customers cared. So the [SuperSmart]

in the cloud, which is actually where we made a huge investment, sounds like a great idea.

And we've made a huge investment building [SuperSmart] on [a cloud provider]. And it's pretty

cool. What we have built is really cool. The problem is the whole putting it in the cloud was not

solving the customer's problem. It was a technology for technology's sake decision. It looked

really cool and sexy (Donte, Senior Management)

I would describe it as purely, it's a composition of a number of different components of the

[CloudDoc] stack. In its pure form, it's [ConnectSmart], database, a view portal, and

technology service, and a whole lot of other components. Aggregate all these components

together, you put them into the cloud in a nice, easy to release managed bundle, and then

change it out at a subscription rate. That's kind of SuperSmart (Khloe, Senior Management)

My view of [SuperSmart] is... and there are different opinions of what this is within the

business, but I guess a simplified definition. I mean, [SuperSmart] is a... People refer to it as a

pipeline, but essentially, I see [SuperSmart] as a tool that brings in a lot of different data

sources, with medical healthcare, health information for patients and people. It integrates all

of these different data sources so you can have a single patient record […] But yeah, other

people will give you a less of a business type explanation of what [SuperSmart] is, and other

people will give you the explanation that [SuperSmart] is a platform that brings in all of these

different products and packages as a solution for our customers (Valerie, Product Specialist)

[SuperSmart] is the population health management platform for CloudDoc, which is a big set

of words but it's also a program of business transformation as well […] [SuperSmart] is also

the program of work around the deployment automation as an example (Steven, Product

Specialist)

[SuperSmart] is basically just the view platform (Steven, Product Specialist)

121

So what [SuperSmart] is, is the latest incarnation of our idea that we should build, not just the

components, but a product that, out of the box, if you install this product, you've got a working

ecosystem (Rogan, Dev)

For the most part, the things that are in core [SuperSmart] pretty much only let you look at a

patient record. They don't let you create new content in it (Rogan, Dev)

It is immediately striking how varied and, in many respects, contradictory these responses

are. SuperSmart, it seems, is regularly defined as a: ‘solution’, ‘platform’, ‘rebranding and

standardisation’, ‘collection of little groups’, ‘pipeline’, ‘place to store payer data’ (or conversely)

‘health information for patients’, ‘vision’, ‘portal’, ‘technology service’, ‘managed bundle’,

‘program of business transformation’, ‘program of work around deployment automation’,

‘working ecosystem’, and ‘a combination of the components, the toolings, and the technology, as

well as just the processes around, regular or release’. This bewildering panoply lacks even the

most basic elements of commonality, apart from sharing a sense of exiting, transformative

positivity (‘really cool and sexy’). For instance, is SuperSmart’s primary effect (where it works

and what it achieves) located at the client’s site or at CloudDoc? Constructs like a working

ecosystem, a bundle of tools and components, and a portal to access data conjure images of a

software system used by clients, though it’s unclear whether its primarily aimed at healthcare

practitioners or payer administrators. On the other hand, rebranding, standardisation, and

improving deployment automation and product releases imply that SuperSmart is primarily

oriented towards transforming CloudDoc itself. This is so ambiguous that it is not even clear whom

a ‘program of business transformation’ is meant to transform: a hospital, payer (insurance

company), or CloudDoc?

Note also the bottom four rows containing quotes from Steven and Rogan. These quotes

demonstrate that contradictions were not merely a contrast between various different people’s

perspectives but often, and as seen here, each contradicts himself. Both men pitch SuperSmart as

providing various functions (e.g. business transformation, automation, and a working ecosystem),

yet both later go on to declare that SuperSmart is a view-only product incapable of even editing a

patient’s record let alone any of these other claims. Significantly, both of them state this with a

122

degree of distancing and tentativeness (‘basically’, ‘pretty much’) indicating once again a

fundamental ambiguity about what SuperSmart actually is (ontologically). This distancing seems

to hold the dual function of prohibiting certainty (about the limits of SuperSmart) and thus

maintaining the discursive possibility of promise.

Such an eclectic and contradictory farrago could be summarised in terms of the ‘everything

and nothing at all’ cliché, and indeed, I found this to be a resounding motif. Table 5.3 highlights

some of the more overt comments on this theme.

Table 5.3—Everything and Nothing

I think they're trying to make [SuperSmart] the everything of everything where they're kind of,

‘It's a platform. It's an API platform. It's a precision health thing,’ it's a this thing. It's a that

thing. It's a this thing and I'm like, it feels like it's doing everything. But at the same time I'm

not sure if it's doing all these things or doing a very minor bit of everything. And at the same

time it's also, if I look at the solution itself, it's just all our components in one place. Which is

why I think they're saying it does everything, because it's just everything at the same place

(Mohsin, Dev)

Then we've got things like [SuperSmart], which is exactly those same products but just all

wrapped up together (Khalid, Innovation)

But you've also got a whole bunch of other people installing almost the same kind of sets of

components through [Support Services]. So they, yeah…

Researcher: And that's not called [SuperSmart]?

No, that is [SuperSmart]. Well, it depends.

Researcher: So it's everything’s just [SuperSmart]?

Everything, all the things are [SuperSmart]. Yeah. Everything is [SuperSmart] […] So even

though it's [pause] it's different, but in theory it's the same. But it is unquestionably different

(Ernest, Management/Dev)

One problem with [SuperSmart] is the name [SuperSmart] has a history of being used for

different things […] I kind of view it as [SuperSmart] is now a- it is a platform (Yukiko,

Management/Dev)

And some people don't believe in [SuperSmart] either […] If you have someone who's slightly

more senior leader from a position that'll tell you I don't believe in the product that you believe

is [pause] interesting (Yukiko, Management/Dev)

Here we find frank recognition of the emptiness of SuperSmart as a signifier. It is revealed

to have emptied itself of its differences to the extent that it can mean absolutely everything (‘the

everything of everything’, ‘it does everything, because it's just everything’, ‘Everything, all the

things are SuperSmart’). Evident also is a sense that SuperSmart has not always been a vague word

without meaning but has progressively been emptied over time. Thus we hear of a sense of ‘a

history’ of SuperSmart ‘being used for different things’ (see also ‘SuperSmart was the vision of

123

how we would build a pre-configured base that would scale and deliver’ in Table 5.2). This is a

prime example of what I outlined in Chapter Three as the duality of the sign: Signs are at once

differentiated from all other signs in the discourse and also equivalent to all other signs in the

discourse insofar as this discourse is distinct from all other possible discourses. This duality enables

a sign to empty itself and thus come to emphasise its equivalential nature (Laclau, 2015[1996]).

Thus we see SuperSmart’s progressive emptying of difference so that it can come to signify a chain

of equivalences such as that heterogeneous list exemplified in Table 5.2.

Notice too that this chain of equivalences includes much more than other software

components; it’s precisely the function of empty signifiers to take on ideological components that

organise and mobilise, and this explains how SuperSmart can make things like APIs and data

portals equivalent to programmes of business transformation. It is also for this reason that the

ontological status of SuperSmart provokes questioning and doubt as these participants ‘bump up’

against its hegemonic ideological character (dislocation); hence—as expressed by the final quote—

SuperSmart becomes something that you can ‘believe in’.

SuperSmart as an Empty Signifier

The argument that SuperSmart is an empty signifier is, I think, rather compelling. But it

may be objected that the examples so far do not necessarily extend to software in general as this

may be a unique feature of this product. This is a conclusion I certainly endorse with respect to the

data so far presented. However, this thesis does, in fact, aim to argue that this phenomenon is more

general than this particular product. As I see it there are three potential positions that can be taken

up at this juncture, which I shall characterise as the weak, strong, and radical forms of this

argument.

1. Weak Form: Certain software products can become empty signifiers in

order to bundle together other software elements and also ideological

functions (such as the reorganisation of work processes of either the

development organisation or its intended users) in a chain of equivalence.

124

2. Strong Form: Software in general possesses a tendency to loosen its

coupling to its actual code execution and become an empty signifier that

performs ideological functions.

3. Radical Form: All software is empty of any concrete signified and always

incorporates ideological functions.

Note that each form implicitly subsumes its weaker arguments such that the radical form includes

both, while the strong form also includes the weak form. I aim to defend the strong form of this

argument in this thesis. I do not claim that all software is an empty signifier (radical form) because

there are many examples of software that are not empty signifiers. For instance, my dishwasher

and alarm clock are both written in Java to perform basic tasks such as respond to my button

presses, turn on water pumps, and audibly assault my sleeping ears. These objects and actions are

undoubtedly constituted in discursive formations which will include elements of hegemony and

various ideological orderings of my world. But this does not necessarily mean that these particular

pieces of software are empty signifiers.

On the other hand, I do want to claim something stronger than the argument that a few

software products are empty signifiers because I suspect there is something more general about

software that makes this especially possible. It seems significant, for instance, that so few of us

really understand how software works—and this says nothing of the fact that, even if we are code-

literate, much of the software we use is hidden behind commercial intellectual property rights. It

seems significant also that software is ontologically problematic, as the literature review

demonstrated. Moreover software is increasingly complex and integrated into digital ecosystems

that overlap multiple social domains such that it is often difficult to comprehend the boundaries

and functions of any single software application—indeed the point so far argued in this thesis is

precisely that software on the whole is ontologically problematic. I suspect therefore that it is

relatively easy for software to shed its coupling to concreteness and this produces a tendency for it

empty itself, thus becoming attached to much more ideological functions, which is what I have

called the strong form of this argument. This is precisely what I hope to establish in the remainder

of this chapter and the thesis as a whole. In what follows, I move out from a discussion of

125

SuperSmart in particular and provide empirical examples of a similar emptiness across all of

CloudDoc’s products, generally. Following this I move one further step outwards and argue that

this feature characterises software, generally. Note however that at this point I will refrain from

presenting the chains of equivalences and ideological functions that this enables; this I shall pursue

in the following chapters.

What are Software Products?

Table 5.4—Fluid and Confusing Products

We are all intelligent people here, we're all you know, lots of smart people here. Why the hell

is it so hard for all of us to describe how everything fits together? Something is not right.

Honestly! (Lillie, Sales)

I feel like there's constantly hang on, what are we doing? And we're renaming the product,

and what's the scope of the product? And we can't even communicate that to our customers

when we're selling it sometimes. And even internally just trying to align and talk to people

about what can it do, what can't it do? It's very unclear, even to me as a product specialist. I'm

still learning about what we can and can't do, and sometimes it's a surprise. Sometimes it's an

unexpected assumption that completely changes the way I think, and there's lots of different

interpretations of what the products can do, which I think is dangerous. (Rhys, Product

Specialist)

Researcher: Well you have definitely succeeded with being the clearest so far in explaining

them.

[laughs] I only went for the simple products. There's a lot of variation, the clinical app we are

now building is complex and people- ah in the last two years we've changed from like I said

doing that individually to box, so we have 4 boxes, [SuperSmart], [TalkSmart], [AllSmart] and

[ShareSmart], and even in product themselves they don't know what the boxes mean.

Researcher: Why not?

Because they like the box to mean everything for each client they have. It's very complex for

someone in product to explain what that box means. The developers have no idea what they're

working on. (Harrison, Support Services)

[the products are] very fluid, very fluid [laughs]. Sorta like week to week you don’t know where

you stand with a product or which ones been superseded or which functionalities still in place

[…] Um cos I always get a little bit um apprehensive if I haven’t had that level of engagement

with the product teams [pause] cos you don't know if you’re selling stuff we don’t have? And

I’ve been in a situation before where we sold something [pause] that I was under the

impression we had, and we DEFINITELY didn't have it, and then the customer wanted it and

we didn’t have it. So everyone was like well who the hell put this in the bid? And I was like

well [pause] I did but when I did it was fine it was something [laughs] we'd had (Henry, Sales)

it's very complex [whispered]. (Youssef, Management/Dev)

So the terminology, just using that terminology and those different contexts made it really

confusing, so I think it depends on the person you talk to. (Kelsey, Dev)

And one of the criticisms of our client's is that we change names of our products - I don't know

if you've heard this before (Daniel, Support Services)

126

I feel like sometimes when I'm here, I have some form of bipolar because you feel like oh, cool,

what we're doing's really good, and it's on the right track. And we have so much opportunity

to solve all these problems. And then the next week, I have one or two meetings that make me

realize shit, nobody know what's going on. (Rhys, Product Specialist)

And this is the most complex product I have ever worked on in my career. It is scary

complicated. (Steven, Management/Dev)

I'm guessing you've probably asked a few people that question from [CloudDoc] and they've

quite likely all given you different answers. Which is concerning. But I feel like I know broadly

what [our product] does. But, I'd say if you asked the customers, they'd probably be seeing it

differently themselves as well. I feel like the company has gone through an interesting few

years in trying to find where it stands (Richie, Dev)

Just as we saw for SuperSmart, we glimpse here a sentiment common throughout CloudDoc

that their products in general were complex, fluid, scary complicated and, in short, constantly

changing in meaning. Most significant is the prominent sense that ‘something is not right’ here,

again clearly evocative of dislocation, marked by a frequently affective quality to these responses

(‘why the hell… honestly!’,’ I feel like… what are we doing?’, ‘a little bit, um, apprehensive’, ‘shit,

nobody knows what’s going on’, ‘which is concerning’ and ‘dangerous’). This sense of anomie

has, again, an underlying sense of questioning, doubt, and surprise that is both directed at others

(‘The developers have no idea what they're working on’) and at oneself (‘It's very unclear, even to

me as a product specialist’). We see once again hints of the transgressive, almost confessional,

nature of this recognition. For example, Youssef feels compelled to whisper the fact that he finds

their products complex, despite the fact that we were alone, while Rhys describes a sense of

‘bipolar’ (a pejorative term) as he oscillates between the excitement and promise of the vision to

‘solve all these problems’ and the depression of dislocation.

Again it is important to stress that many of these responses came from highly skilled

developers. But despite their technical competence, many devs—as they are affectionately

known—told me, often with some degree of reticence and secrecy, that they frequently didn’t

understand even what was spoken about at product meetings and considered them to be a waste of

time. Indeed, more than one of the research team experts in machine learning (ML) told me that

they didn’t actually understand the functions they were working with every day. The following is

127

taken from my fieldnotes, while I shadowed a ML expert as he was creating a presentation that

would later be delivered to the rest of the organisation. The presentation aimed to explain ML to

the rest of CloudDoc.

[Wayne inserts a bunch of really complex mathematical equations into his PowerPoint]. As he does so,

he tells me that he doesn’t actually know how to code these equations since the package has already

been written and is open source. He tells me he could look into it of course, but most people just trust

that they’re correct. I am struck by the feeling of being totally overwhelmed by the complexity of this

and just how much I completely fail to understand how this works. I tell that to Wayne, and he tells me

that overwhelmed is a key word for him at the moment. He says that when he joined the research team,

he wanted to understand machine learning even better but now feels like there is just so much to it and

every couple of weeks some new, massive development comes through. He has had to coach himself to

let it go because ‘you will burn out if you try to understand it all and keep up with everything’. Suddenly,

Wayne discovers that equations don’t match the diagrams (though both are from the same Wikipedia

page that he is copying from). He tells me that he’s not trying to be a perfectionist in an offhand way ,

trying perhaps to convince himself it doesn’t matter. But it bugs him too much, so he re-reads Wikipedia

however, and hesitantly updates it with a second set and moves to a new slide with a long sigh.

Fieldnotes, Tuesday August 8, 2017

Naively I assumed that if a dev didn’t understand how something worked s/he could always

go and read the code behind the functionality, thinking that there, at least, was specificity and clarity

even if people failed to explain it. I was disabused of this notion when my team and I met with an

ex-employee who had come in specially to explain how a crucial feature of SuperSmart worked—

this measure, it should be noted, was taken because no one in the organisation had been able to get

it to work, much less understand it. Despite having left the company 6 months ago, Gavin was

apparently the only person who understood it since he had been its designer. I turn here to my

fieldnotes once again to give the reader a sense of what I observed:

Gavin begins by apologising for not having the code (his computer hard drive has died) but then Rogan

brings it up on his screen (and projector) and Gavin sets about trying to decipher his own code.

Amazingly, this turns out to be seriously hard. The meeting then turns into long awkward pauses while

he apologises for having forgotten how it works. After about 5 minutes with no fruit, we move to another

of the devs (Zeek) he had been working with, who will be bringing up the environment it had been

working in.

 At this point Rogan begins to critique Gavin's his work now - ‘I don't know why you used the Ip

addresses [laughs] you have to jump through hoops every time it changes ... [tells him how to do it

better] then says ‘but anyway'....’ a few mins later, Rogan checks ‘activity monitor’ to see if his ‘memory

pressure’ is too high (ram usage) Gavin derides him for this being unnecessary: ‘When would you ever

need to close something when you've got 16gb of ram?’ He asks, mockingly, Rogan laughs back ‘When

you're running two eclipses’. Still no progress on deciphering the code, the conversation between these

two grows ever more acrimonious while the 15 or so others in the room simply sit and watch.

 The meeting has now deteriorated into Gavin fiddling with the code on Rogan's machine. Everyone

else has completely switched off. Another 10 minutes pass and it becomes apparent that they won't get

it running, they begin to switch into a more abstracted discussion about the product (as if it was working)

128

and the meeting is about to move on—But actually, no we don’t move on. Another 10 min passes with

him trying to work it, while we sit in silence. He seems to believe that it will suddenly click for him,

but it doesn’t. Eventually we admit defeat and the rest of the meeting continues at a conceptual level.

…

 Afterwards, I ask the guys what they made of the session and they politely told me that it was basically

a waste of time. Not only was it over their heads in terms of technical details, it lacked ‘context’. Context

here means not some objectively useful application or relevancy, but rather a personal sense of feeling

currently stuck in the tech, trying to work it out. I asked them whether it would have been more useful

to simply read the code themselves - and here my assumption betrayed a rather academic concept of

written knowledge: if these guys are essentially writing out knowledge then surely such knowledge is

there to be easily read again by a human. I was surprised to find that actually the guys thought this too

would be a waste of time. Instead they just wanted to get in a tinker with it. ‘It would be more useful to

actually try and get it to work’. How weird. We spend all this time trying to be as explicit as possible in

converting real world knowledge into code only to find that this makes it harder to read rather than

easier. What kind of a thing is software then?

Fieldnotes, Tuesday November 14, 2017

Astonishingly, software seems to slip out of sight among even those who are closest to its

production to the extent that even the code itself is not enough to identify what it is. If even these

developers struggle to comprehend their own products, then surely this should give pause to our

easy assumptions that software products are simple entities like any other. Regardless of the level

of analysis, CloudDoc’s software products constantly defied attempts to couple them to specific

functions and things. This seemed to give license to a fluidity, changeability, and tendency towards

conceptual abstraction rather than specificity all throughout CloudDoc. Consequently, their

products in general displayed a tendency to function as empty signifiers in the same way that their

flagship product SuperSmart did.

But it may be objected that this feature could be the result of poor senior management in

failing to clearly and consistently define their products or lazy standards of coding and

documentation, and hence this does not necessarily generalise to other software. Indeed it seems a

fair assessment of the situation to say that management at CloudDoc had failed to communicate

clear and stable meanings of their products. Yet at the same time, this fluidity of identity seems

especially possible precisely because of the special characteristics of software itself as a product

that is immaterial and ontologically problematic, and one who’s apparently literal being—lines of

code—is just as enigmatic as the concepts used to explain it. One can hardly imagine a car

company, for example, redefining what its products are or redrawing the boundaries around its

129

categories at leisure, multiple times a year. Hence my argument is that this feature arises out of the

fundamentally problematic ontology of software itself and my data indicate a confusion far more

widespread than simply the specifics of SuperSmart, affecting all of CloudDoc’s products. The

following tables move us to consider the extent to which software itself lends itself to this

decoupling and emptying.

What is Software?

Table 5.4.1 is intended to deliberately recall the reactions to the question, ‘What is

SuperSmart?’ (see Table 5.1) and offers examples of extremely common responses to the more

general question, ‘What is software?’.

Table 5.5—Questions and confusion

Software. Oh God. Um. [pause] That is a tough question actually. [pause] Um. Let me think.

What is software? [pause] Oh God. That is a tough question. (Mohsin, Dev)

Oh, no. No, no, no, no.[pause] I am not going to have a good answer for that. [pause] What

is software? Crikey! (Jenson, Product Specialist)

Oh my gosh. What is software? Interesting [very long pause] (Youssef, Management/Dev)

That is a good question. My word! Yeah, I guess we make some assumptions when we talk

about software [pause] it's a really good question. (Ernest, Management/Dev)

That's a very tricky question. (Kelsey, Dev)

These reactions were typical across the organisation and almost everyone commented that

it was difficult to answer. Note that I have included three quotes from the development side (coding

or management) to demonstrate that this difficulty was not limited to non-technical areas of the

business. Once again, we see acknowledgement of this question as ‘tough’, ‘interesting’, ‘good’¸

and ‘tricky’. As was common across respondents, discursive breakdown in the form of pauses and

filler words signalled the limitations of discourse around this answer. Here ‘um’ is a typical filler

but note also the tendency to simply repeat the question ‘What is software?’, almost as if

momentarily stunned by how deceptively difficult it is; a fact which they appear not to have really

noticed before. These, once again, indicate elements of dislocation and are exemplified further by

a moment of recognition that ‘we make some assumptions when we talk about software’. It is

especially interesting to note an almost visceral quality to these reactions, marked by exclamations

130

(‘oh God’, ‘oh no. no, no, no, no.’, ‘Crikey!’, ‘Oh my gosh.’, and ‘My word!’). All of these features

suggest that talk about software in general appears to take for granted a sense of natural

‘objectivity’. However when participants are ‘thrown’ by this question, this objectivity is called

into question and revealed to be far from self-evident. What is being challenged here, moreover, is

the very ‘thingness’ of software—that is, its positive presence.

However, just as with the question of SuperSmart, respondents quickly set aside their

misgivings and tried to define software regardless. Their responses are outlined in Table 5.6.

Table 5.6—Contrasting Definitions

Um [pause] that’s [pause] that’s difficult. I was going to say it’s an intangible tool that helps

you do something electronically? And it’s a way of, it changes a way of how you work I guess.

Does that make sense? Like the easiest analogy would be to say converting something like a

paper-based task or a process or a physical process into an electronic process so [pause]

yeah. [laughs]. And the thought, and the processes and the workflow and everything that goes

into that physical process is translated into an electronic process (Henry, Sales)

I think it's the whole intelligence, it's the whole cutting edge technology, it's the ability to do

things real time to take advantage of the skill sets, the technology, the things that are coming

in, the ability to store data, to do things with information (Youssef, Management/Dev)

It's like your brain. It can process information. It can filter information. It can help you make

decisions very fast, but even much faster than your brain when it comes to a large amount of

data. So that's a very sure thing (Will, Dev)

I guess I would say that soft ... Yeah, I'd probably start by positioning computers as data

processing machines, and then if I could talk about data more, then I would break that down,

I guess, into the ability to store and manipulate representations of numbers (Ernest,

Management/Dev)

So I guess I would explain to them the fact that we have those devices that take inputs and give

us outputs, and the inputs that we give them are processed in some way through software, and

that software, it goes through a whole bunch of logic to do something with the input that we

give it to give us our results (Kelsey, Dev)

I would probably say that it is essentially another human who does one thing very well (Calvin,

Dev)

I actually tend to think of it as in terms of ... you know the hardware we give, we get a bunch

of gates that you're passing electricity through and you've got a lot of logic in there, and so

what we're doing is we're creating software at a slightly higher level to basically control those

gates as it's passing through the chips. At a slightly higher level above that, I'd say it's about

representing a concept (Clark, Dev)

[It’s] a structure of information that can be used in a way to make intangible things more

efficient through rules, processes, and algorithms. For example, I'm trying to automate things

that are very simple human tasks like processing numbers, categorizing things, and sequencing

things in order that's more efficient than doing it on a piece of paper or in a book or in an

auditing system and so a structure of rules in workflow (Rhys, Product Specialist)

I would say that, at the very basic level software does, it doesn't do any additional tasks that

humans can't. It's optimized for very ... Actually I'm going to start from a different tract,

software is essentially a set of instructions, and those instructions are incredibly specific, the

131

way that software is written, if you follow a given ... If you set up those instructions more than

one time, you're still going to get the same result (Richie, Dev)

Software… so like, it's machine that can't touch, you can't see. But it's doing literal work in

some sort of space that's making it easier for things to happen (Mohsin, Dev)

Um...Okay so it's a tool that helps you perform your job, but what is your job, so...your job is

to-just trying to think this through. So you're trying to achieve a goal and that goal is a real-

world goal, that thing is tangible, and software is a tool that you can use to be more efficient

at achieving that goal. It can give you guidance in how to achieve your goal... and it keeps

track of what you've done to achieve your goal (Jose, Product Specialist)

[Software] started with semiconductors. It's hard to explain. It was hard to explain to anyone,

but you do start with the interaction between Gallium and something else you're going to...

certain chemicals that you put together and they form transistors and transistors are able to

store states and we decided the most efficient state is just between two Gallium zeros and ones

and then you build it on top of that. (Oliver, Dev)

Of salience here is the recurrent pattern of metaphor. For instance, software is defined as:

the ‘translation’ or ‘conversion’ of ‘a paper-based task or [a] physical process’; ‘like your brain’;

‘essentially another human’; as ‘intelligence’, ‘cutting edge technology’, ‘a set of instructions’, as

‘representing a concept’ and a ‘tool.’ Note the addition of vague hedging strategies that distance

the speaker from claiming literality and certainty: (‘I was going to say’, ‘I guess’, ‘the easiest

analogy would be to say’, ‘I think it’s’, it’s like’, ‘I guess I would say’, ‘I would probably say’, ‘the

inputs that we give them are processed in some way’, ‘literal work in some sort of space’). Even

those definitions resorting to very technical explanations of the inner workings of hardware are still

metaphorical. Hence Clark sets up this technical definition of gates and electricity with the phrase

‘I actually tend to think of it as in terms of ...’ indicating the following as one (potentially surprising)

way to imagine software. Similarly, Oliver lurches from images of chemicals at the very foundation

of how states work in the machine to suddenly assert ‘and then you build it on top of that’. Of

course, this doesn’t define software at all. It merely avoids the question with the vain hope that an

appeal to scientific discourse has grounded the question on a sufficiently robust materiality and

ergo the rest must somehow be equally solid.

One may ask, ‘Well how else can you answer this question?’ But this is precisely the point.

Even the academic literature struggles to define software, as demonstrated in Chapter Two, because

of the problematic fact that there is far more to software than its actual words of code. These

132

‘uniquely designed, highly structured set of assertions, instructions and decisions’ (Weber, 1997,

p. 37) are nothing more than instructions if they are not brought to life through their incorporation

into practices. They are simply words until they are executed by a machine and begin to perform

some action. This is why these respondents must enlist metaphors to define software. What

software is—the question of its ontology— is recognised as a question that cannot be easily

answered without recourse to metaphors that evoke a presence that is more than mere assertions

and instructions.

Furthermore, this fact is relevant for an even more important reason. Laclau and Mouffe

(2001[1985]) argue that metaphor, the act of defining one thing by symbolically representing it

with another, is a distinctly discursive ontological relation, since metaphor involves diminishing

the differences between things so as to make them share an essence. In other words, they show that

metaphor establishes a relation of equivalence. Furthermore, the strong tendency towards (diverse)

metaphors indicates discursive emptying at work. We can thus interpret these responses through

PDT to argue that software is ontologically problematic to the extent that its identity in any clear

positive sense has a habit of slipping out of sight. What we find instead is an emptiness lurking just

below the surface of software discourse and, consequently, chains of equivalences (as metaphors)

that fill this void. It is for this reason that what software is becomes equated with such diverse

objects as we see in Table 5.5. At one end of this range we have a stock of thick, tangible entities

like transistors and states, which are combined to become tools; at the other end, we have the

inclusion of workflows, intelligence, logic, speed, concepts, guidance, and ‘everything that goes

into that physical process’. Crucially, moreover, the point is not simply that these things are made

equivalent in a metaphorical sense in language alone, but that in being articulated in this way

software comes to be constituted as these things and that this constitution has real effects in the

world. In Laclau and Mouffe’s words, ‘Synonymy, metonymy, metaphor are not forms of thought

that add a second sense to a primary, constitutive literality of social relations; instead, they are part

of the primary terrain itself in which the social is constituted’ (2001[1985], p. 110). Denial of this

133

fact is to reassert that dualism between thought/materiality that the discourse ontology outlined in

Chapter Three sought to denude.

What Software isn’t

In this chapter I have argued that there is an empty, fluid, absence lurking behind

SuperSmart, behind CloudDoc’s products as a whole, and even software itself. My argument has

proceeded inductively to move in a successively wider direction until landing, finally, with a

statement about the characteristics of software itself. Having arrived at this point, we are now in a

position to appreciate the argument in full. I have thus sought to demonstrate overall that software

lacks a clear positive identity (or presence) and is ontologically problematic. I have shown that

when software, or specific software products at CloudDoc, are asked to give an account of

themselves, even highly technical developers and product specialists are ‘thrown’ into dislocatory

experiences that indicate the edges and cracks of software discourse. Despite this, software has a

sedimented ‘objectivity’ that attempts to paper over these cracks and naturalise a false sense of

concreteness. The key way this is achieved is through chains of equivalences incorporating a series

of diverse things that replace this emptiness of software. These equivalences are doubtless often

unremarkable. What interests me, however, is the issues that arise when elements like workflows,

guidance, process transformations, and intelligence are incorporated into these signifying chains.

Granted no idea is politically neutral, but these elements are especially susceptible to politically

charged overdeterminations of meaning. What counts as intelligence? Whose guidance and to what

end? How are processes being transformed? How are workflows being ‘translated’ into software?

What gets lost in translation?

These questions deserve critical scrutiny, particularly in the context of work organisations.

However the mistaken search for the concrete essence of software—a positive ontology of software

in other words—may easily obscure these important ideological processes and effects precisely

because what is crucial here is what software isn’t. On this view, what is most salient about software

134

is what it lacks (a clear signified) and how it fills this lack. It is therefore my argument that a critical

analysis of software needs to move towards a negative ontology of software, and this offers an

example of the first step in such an analysis by demonstrating the pervasive emptiness haunting the

positive essence of software. But this alone is not enough. We must also explore how this emptiness

works within this discourse to perform important ideological effects. We must seek to understand

the role that software as an empty signifier plays in securing the hegemonic dominance of this

particular discursive formation. In order to accomplish this task, we must therefore examine the

discourse itself in more detail.

135

6 Fantasy

It’s Friday morning and I begin the day with the QCM [Quarterly Company Meeting], which is being

held in the cafeteria since this is the largest room there is. The vibe here is easy-going, everyone seems

to be light-hearted in the knowledge that Christmas and the summer break are just around the corner. A

staff band is warming up while people linger about—no one wants to take a seat until exactly 9am for

some reason. The word strident comes to mind: the band should probably not give up their day jobs

here at CloudDoc…

Suddenly, the meeting comes to life as Clouders shuffle in en masse and take their seats in the rows of

plastic chairs that have been wheeled in for this occasion. I sit near the back with a few friends from the

Research team whom I’ve not seen since I moved to dev. Donte kicks off the meeting… he is actually

wearing an unbelievably loud short sleeved Hawaiian shirt and dark bogan sunglasses and looks more

suited to the shores of Waikiki than standing here in front of a projector in front of the entire company

(the meeting is broadcasted live throughout the world, though of course due to the time zone difference,

very few people will actually be watching it right now and will instead defer to the recording uploaded

to CloudTV).

First up on the agenda is a presentation from a few of the JDB [junior development board], including

Richie and Cally who are part of my team and work on SuperSmart. They’re launching their new project,

an ‘AI’ HR assistant named Rob Bot—it’s not real AI though, and I remember Martin [from the ML

Research team] mocking them when they started building it. This should be interesting… Earlier in the

year I was part of a testing group where we were given endless pizza and the task of trying to break Rob

Bot by asking him questions he couldn’t cope with…. He broke a lot though… I wonder whether they’ll

do a live demo?

Nope. No live demo. Instead we are shown an incredibly slick video introducing him to the world. This

video is actually unbelievably good, it looks like an extremely professional TV commercial, except I

recognise these people so they really are Clouders. The video shows beautiful, young Clouders sitting

at their desks wondering about basic HR questions: ‘How can I apply for leave?’ appears above one of

their heads in an iMessage bubble. With a smile beaming from ear to ear, she opens a new IM chat

through MS Teams – that’s the software they forced us all to move to a few months ago. She types in

Rob Bot and he immediately replies with a warm greeting and a smiley emoticon, shown by a cute

iMessage bubble pinging onto the screen. And so it goes, with employees asking all sorts of questions

(‘where’s a meeting room available right now?’) and Rob Bot bouncing back with easy answers. It

finishes with a voice over that tells us that Rob Bot is ‘a revolutionary new AI bot’ that will save us

time, be constantly available to answer any question we have, and make our lives amazingly easy. The

guys then give a short, highly polished speech about the cool, sexy tech that’s working behind the scenes

on AWS [Amazon Web Services] and the presentation ends with thunderous applause.

I can’t help thinking that this is classic CloudDoc. These guys have clearly learnt a thing or two from

the SuperSmart marketing strategy!

Fieldnotes, Friday 15 December 2017

* * *

In the previous chapter we saw a pervasive emptiness lurking behind software in general

and the specific products at CloudDoc. What emerged in that chapter was the tendency for these

products to shed their concrete referents (i.e. actual code functions) and instead begin to signify

chains of equivalences that included some notably ideological constructs such as business

transformations, intelligence, guidance, and so on. In the previous chapter then, we found that

software had a certain penchant for emptiness; we did not however explore the ideological effects

136

that are made possible by this emptiness. That task falls to this chapter and the next. In this I take

my cue from Kenny and Scriver (2012) who argue that negative ontological research must go

further than merely positing emptiness and instead needs to show how this works and what its

effects are. This is particularly crucial for the broader aims of my thesis (to show the critical insights

made possible by a negative ontology). I want to critically analyse the ideological effects made

possible by this pervasive emptiness and which are not visible through other perspectives, including

sociomateriality.

I began this chapter therefore with a vignette from my fieldnotes that captures a sense of

the hype and grandeur that permeated CloudDoc to the extent that even their internal presentations

within company were infused with a sense that their software was revolutionary and world

changing. This is but one example of how a sense of fantasy seemed to saturate CloudDoc’s

discourse about who they are, what they build, and what its effects are, even when the software in

question wasn’t even part of their product suite and was intended only for internal use. However in

this chapter I seek to pursue this notion of fantasy in more depth. Following a negative ontological

approach, I want to understand the contours of the fantasmatic narrative that is being articulated by

CloudDoc. Since my goal ultimately is to examine the socio-political effects at work behind their

software as an empty signifier, I must first outline the aspects of this discourse that ordered my

participants’ understanding of what it is they were building. If their software products tend to move

from specificity to an abstracted vision of reality, what is this vision? How does it seek to constitute

the ontological identity of CloudDoc’s software? What kinds of subjectivities does it articulate?

How does it seek to order the world?

Moreover, in outlining and deconstructing this fantasmatic narrative, a negative ontology

needs also to be highly attuned to the presence of absence. As we saw in Chapter Three, a key

premise underpinning PDT is the deep impossibility at the heart of discourse. This impossibility

speaks to our inability to ever fully articulate reality and hence one of the most important drivers

of fantasy is the desire to smooth over, to disguise this fundamental rupture. Consequently, this

137

chapter seeks to do more than simply chart out the features of this discourse; it seeks also to identify

the deep sense of absence that this fantasy constructs and how it positions itself as the promised

fulfilment of this.

To achieve these aims, this chapter offers a series of key nodal points65 that recurred

prominently throughout my data in response to questions about what CloudDoc’s software does

and how it works. Because of the characteristic emptiness of their products within their software

discourse, these conversations tended to freely move beyond specifics and instead construct stories

of a healthcare system in desperate need of software, offering what were often quite grandiose

descriptions of how their software met this need. Overall, I found that these kinds of responses

constructed a discourse of what I call Healthcare Perfected. This picture was one of healthcare

made finally perfect through software, characterised by superhuman, almost god-like, clinicians,

who combined with software to intervene on patients, even, ideally, before they were sick.

Healthcare practice was generally constructed as being perfected through software in every way

possible for maximum efficiency, effectiveness, accuracy, and control. Importantly, this picture of

Healthcare Perfected was actively constructed against a sense of lack and absence—the latter being

a healthcare system without CloudDoc’s software and hence devoid of the sublime perfection this

fantasy promises.

In the following chapter, I will explore the socio-political effects of this discourse in a much

more critical fashion. In this chapter, however, my aim is to flesh out this discursive formation as

it appears in my findings. I have structured this chapter around three central nodal points, those

being its key privileged subjectivity the Uber-Clinician, its core rearticulation of what a patient is,

and the way it seeks to shape and structure healthcare practice itself. Throughout this chapter and

the next, I will demonstrate that, while the effects of this discourse are most certainly positive in

65 As outlined in Chapter Three, nodal points are key words or ideas around which the discourse is constructed. Nodal

points may be key objects, specific subjectivities, or central practices that play a privileged role in this particular

fantasmatic narrative (Walton & Boon, 2014).

138

an ontological sense,66 they are achieved because of the failure (rather than success) of CloudDoc’s

software to fully achieve the identity it claims for itself. This will be a key point of difference that

will emerge throughout these chapters since my findings reveal an ideological power at work

discursively beyond its literal code functions; hence the fantasy itself and its inevitable failure are

actually its most salient features.

Accordingly, my analysis is focused on the discourse of Healthcare Perfected, not strictly

on the actual effects of working software. The data I present below is therefore mostly drawn from

interview conversations or overheard and informal conversations; however in keeping with the

spirit of ethnography I also draw frequently on my own fieldnotes and observations to demonstrate

that, while there is a certain amount of identity work at play in all interviews (Alvesson, 2003), this

fantasy thoroughly saturated the lifeworld of CloudDoc. It ran through my experience in general

as well as all of their forms of articulation (formal and informal documents, media and external

discourse, internal branding), and even, as I shall explain, right down to the choice of magazines at

their reception.

The Uber-Clinician

I begin with a selection of excerpts that demonstrate the most important nodal point in this

discursive formation, that being the clinician. In truth, CloudDoc’s software offers a very wide

range of healthcare related features and products, much of which is not directly tied to, or used by,

a clinician (such as software that translates messages from disparate software, or the extensive

administrative software enabling scheduling, form construction, and reporting). However, almost

without exception, when I asked participants what their software is and does, the picture they gave

me was one of clinicians empowered by their software to become significantly enhanced. This

impression percolated throughout the organisation and came through especially in their visual

66 That is to say that the effects are certainly real and present where this discourse is hegemonic, not that these effects

are positive in the sense of being beneficial.

139

representations of their products.67 Even in my very first encounters with CloudDoc I would find

myself sitting on a funky couch in their reception area watching a glitzy monitor of stunning young

men and women in pristine lab coats, stethoscopes draped conspicuously about their necks and

iPads in their hands. These images of smart, sexy doctors were typical of the marketing collateral

produced in print and online about their products and were even reproduced in cute avatars of

doctors with iPads in the diagrams that Henry and the other sales employees designed. In one

conversation I had around nine months into my observations, someone started telling me about

their enterprise products that run basic hospital administration and I pointed out that this was the

first time I’d even heard about it in all my conversations with Clouders about their products. For

most people, this aspect of their products simply didn’t come to mind. Even the dev teams for this

product were situated in a southeast Asian country and had very little to do with the rest of the

company, such was the prevalence of identifying their software with clinicians. For this reason, the

most important nodal point in the discourse of Healthcare Perfected through software is what I will

call the uber-clinician.68

The uber-clinician is an important figure in this fantasy because s/he holds out the promise

a highly desirable, almost godlike subjectivity who reaches unprecedented heights of knowledge,

power, accuracy, and efficiency. The uber-clinician was constructed through three key discourses

strands,69 which I will call omniscience, infallibility, and efficiency. In Tables 6.1, 6.2, and 6.3 I

67 Unfortunately, due to my ethics agreement with the company and their own stipulations regarding intellectual

property, I was prohibited from reproducing any of their visual artefacts in my thesis.
68 This name is intended to recall Nietzche’s (1917) ubermench insofar as the ubermench was a project of becoming

worthy of the death of God. I chose this because there are some intriguingly god-like qualities attributed to the clinician

in this discourse, suggesting that, perhaps, this subject calls upon a human obsession with the divine. Equally the

discourse of Healthcare Perfected is reminiscent of an eschatological fantasy in which humans, aided by software,

finally shed themselves of their fallible humanity and become gods of a world of our creation.
69 I use the word discourse in two different senses throughout this chapter. Discourse within poststructuralist theory,

and specifically the Laclau and Mouffe inspired version utilised by this research, refers generally to a broad system of

differential positions (as explicated in Chapter 3). It is therefore much broader than just what people say. To indicate

this, I will typically use the more clumbsy term ‘discursive formation’, though occasionally I will simply call it a

discourse. However, at a much lower level of analytical focus, I use the term discourse to refer to common constructs

that formed a pattern or motif across much or most of my data. These patterns of speaking are an integral component

of the articulatory practice that continues to reproduce the broader discursive formation. I sometimes call these strands

of discourses to indicate the notion of being woven together. It will be nonetheless clear from context which I mean

since in this chapter the discursive formation is that of Healthcare Perfected, while the quotes illustrate various strands

of discourse that together construct this formation.

140

offer a selection of key examples of these and show how these problematise a sense of a lack and

absence, which they seek to fill.

The Uber-Clinician as Omniscient

Table 6.1—The Uber-Clinician as Omniscient

software enables the ability to make processes more efficient, not only by capturing the

information, but more importantly by being able to visualize […] and then aggregate that

information in a way that a human is unable to ... well no it's not that they're unable to ... well

no it is, we are unable to cope with 30 such different things and recall what are those, well the

average person anyway (Neil, Services)

without great clinical software the clinician can't ever see the complete picture of the patient

because the patient themselves doesn't know what has happened to them. They're an unreliable

source of information, our memories change um people don't understand health the healthcare

that's been given to them so there's simply no way for them to see a complete picture of the

patient without a fantastic you know patient record (Ralph, Services)

to analyse your body and your genomics and then be able to predict what would work better

for you as opposed to something else, is something that our brain can't process, it's limited

processing, or we only use ten percent of our brain, but that information if it could be fed to

software and we tell it that, 'You learn', and it can give us some outputs which can help in

improving the healthcare of people in general (Will, Dev)

health software stores the intelligence, mechanises the intelligence of millions of doctors and

generations of healthcare people to provide more and better health outcomes (Ralph, Services)

the machine is able to do what would take a clinician hours of reading through a patient's

historical data and actually suggest something (Wayne, Research)

whatever the case may be you've gotta better wholistic view of that person and can make a lot

better judgement about you know not necessarily about what medication they should be taking

but what care they need from other specialists. So you can coordinate and do all these other

things once you have that key set of information, that demographic um historic encounter, all

those different bits of the puzzle and then you can really deliver a whole ‘nother level care

(Clayton, Dev)

to make patient care a bit more effective and efficient, to give the clinician best of information

when they're with their patient, to get real-time information, to provide the best healthcare

possible in the 15, 20 minute window, to have everything in front of them, to make

comprehensive decisions with this intelligence stuff that's done all the work for you (Youssef,

Mgmt/Dev)

software provides you insights and to crunch a whole lot of data that a human just couldn't

possibly crunch in that amount of time (Yukiko, Mgmt/Dev)

we rely very heavily on the research community to be able to kind of indicate what risk factors

lead to certain conditions. But then if you know that ... And then this is where you ... if you can

start to kind of ... God, I'm sounding like a salesperson now. If you can kind of drill down into

the risk factors that the particular person has, then you can look at quite specific preventions

for a person early on rather than saying, "In the population of Auckland, we've got this level

of exposure to sun. We would expect this level of skin cancer for that population 30 years down

the track." Like if you can actually say, "Well, yes, but ... " I don't know. Whatever. Like if you

141

can really tie it, be specific, then maybe you can start having interventions earlier on (Ernest,

Mgmt/Dev)

there's probably some really smart and knowledgeable doctors out there who can kind of

perform the same analysis, given the time and resource. But a lot of that task is knowing

statistical correlations between different things and whatnot. Which is something that

computers are really good at (Richie, Dev)

the docs get observations in real time, and assessments that they can review remotely. So if

you're a consultant and you're doing surgery in the elective surgical unit, you could do some,

ring up at night and said, "I'm really worried about Mrs. X." You could review her charts from

home (Marshall, Hospital IT)

I can login and I can see their complete medical history and record, which means I can provide

better care (Valerie, Product)

I think the value for the clinician is to be able to look at the record using our product and just

say OK now I really understand what's going on with our patients (Harrison, Services)

This discourse, which was extremely common among participants, is well summed up by

Valerie’s claim that ultimately the uber-clinician will be able to provide better care (or ‘a whole

‘nother level of care’) as direct result of being able to now see with complete knowledge. This

discourse repeatedly evinces a sense of going beyond normal human limits (‘in a way that a human

is unable’, ‘our brain can’t process’, ‘we only use ten percent of our brain’, ‘that a human just

couldn’t possibly crunch’). Software is further understood as providing the means of a kind of

prescient knowledge, where a clinician can ‘start having interventions earlier on’ because of their

ability to predict illness before it occurs (and well beyond the ability of the ‘research

community’)—a theme that was reiterated strongly throughout the data. In this sense, it portrays

this key nodal point—this pivotal subjectivity within the Healthcare Perfected discourse—as

superhuman: the uber-clinician appears to have perfect, complete knowledge of both a patient’s

history and potentially their future, a trait that has classically been described as omniscience and

typically associated with divinity.

On closer inspection, however, it is not strictly clear whether these superhuman abilities are

being performed by the clinician her/himself aided by the software, or by the software, with which

the clinician is merely a grateful, if subservient, participant. This tension around just how assertive

and directive software should be was an ongoing point of contention at CloudDoc. For example,

during my time with the research team I witnessed a deep contradiction at the core of their work

142

that spilled over into heated debates (or as ‘heated’ as was possible in the muted tones typical of

developer-types). These guys (literally all guys) would work for weeks on algorithms that would

generate predictions about things like stroke recovery chances or the likelihood of post-surgery

mortality. Their clear mandate was to analyse the data well beyond what was considered to be

humanly possible and provide predictions that were superior, and yet they would also pull back

from saying that these predictions should be used to change a clinician’s mind, because ultimately

the clinician is responsible. But what was the point then? Indeed, this was exactly the first question

after a 45 minute, extremely technical presentation by the research team to the rest of the company.

After ending with a demonstration of a new feature that used ML to provide a mortality prediction,

a developer called out, ‘OK cool. But then what?’ What is the role of the clinician when the

judgement ML produces is believed to be superior and yet beyond our ability to understand how it

arrived at this decision? To what extent should a prediction about mortality affect a clinician’s

decisions? The answer was a long, awkward silence.

Table 6.1 exhibits both sides of this debate, for on the one hand, we have a strong image of

a clinician who now has access to almost perfect knowledge (omniscience): (‘able to look at the

record using our product and just say OK now I really understand’, ‘you've gotta better holistic

view of that person and can make a lot better judgement’) and this affords her/him superior powers

of medical care. There is also the suggestion, repeated elsewhere that this uber-clinician is able to

perform healthcare wherever s/he might be (‘You could review her charts from home’) and thus

her/his knowledge, judgment, and capacity for action are seemingly no longer bound even by the

limits of time and space. Most interestingly, this knowledge is perfected even beyond the patient’s

knowledge of themselves, who are deemed to be ‘an unreliable source of information’, subject to

failing memories and a lack of understanding.

On the other hand, however, it is recognised that even with access to this perfect knowledge,

the clinician is still limited by her/his slow and ineffectual processing power (‘a human just couldn't

possibly crunch in that amount of time’). And while ‘some really smart and knowledgeable doctors

143

out there’ may be able to perform the same analysis, there is a tendency to see software as playing

the decisive role in understanding, selecting for relevance, and providing judgments (‘software

provides you insights’, ‘mechanises the intelligence of millions of doctors’, ‘the machine is able

to… actually suggest something’, ‘to make comprehensive decisions with this intelligence stuff

that's done all the work for you’). Has the clinician been perfected then? Or are they still mere

mortals, obedient to the superiority of software?

This paradox is not fatal to the construction of the uber-clinician but rather is exactly what

we might expect from software which has slipped its signified and has come instead to signify the

presence of absence. Instead of concrete claims we are instead offered a vague and contradictory

sense of something missing which the software promises to fulfil. In this case, the Healthcare

Perfected discourse constructs a sense of absence and lack inherent to human beings who are

limited by their inferior brain power and operating on incomplete knowledge, ultimately delivering

a sub-par level of care. Against this stark sense of absence and lack, software is offered as the

promise of omniscient, perfect knowledge and the capacity to understand and process it all. This is

the first strand of discourse that builds up the fantasy of the uber-clinician as a key node. To this,

moreover, is added a sense of infallibility, outlined in the Table 6.2.

The Uber-Clinician as Infallible

Table 6.2—The Uber-Clinician as Infallible

it's doing the same thing faster. And more reliably. You can trust it (Neil, Services)

humans can do it. It's just humans are very slow and humans make mistakes (Calvin, Dev)

as a clinician, you don't need to sit there and decide on looking at your past, present, and

make human errors, where the computer would come in and tell you, "Hey, if you do this, it

would likely be a good outcome for your patient.” (Zeek, Dev)

with those things the completeness, the accuracy, and then you know essentially what to do

(Ralph, Services)

what we are doing is taking those existing ideas and making them better, faster, and less

error-prone (Kelsey, Dev)

the other ways that we've kind of sold it to them is the risk that the paper poses (Sanjeev,

Hospital IT)

we're creating a really rich and rewarding place for a clinician to work because they know

they can deliver safe care at the right time to the right patient and not make mistakes and do

the best they possibly can enabled by our tech (Bill, Snr Mgmt)

144

it's just removing all those potential areas where you could have mistakes or errors or slow-

downs. And yeah, basically trying to make it so that things are accurate, things are

unambiguous, and then you end up with, you can also have work flows that ensure that things

are reviewed appropriately […] Instead of relying on people who are, you know, who tend

to forget, or their minds are busy with something else, they might miss a check box or think

something's a little irrelevant in this case, when you alternate that, sometimes you can get it

wrong and that's okay, you learn and improve. But if you make it so that it's black and white,

and you say if this doesn't happen then now this other thing can't happen, or if this happens

then now this other thing can happen. Then yeah you remove that human error aspect of it.

(Kelsey, Dev)

Table 6.2 demonstrates a further aspect of the uber-clinician subject within this fantasy,

which complements perfect knowledge with a sense of promised infallibility (which is again a

classical attribute of divinity). This was a very common response, often delivered in a quick chain

of equivalence linking together efficiency (discussed next), accuracy or safety, and a sense of

simply ‘better’ care (‘better, faster, and less error-prone’, ‘faster. And more reliably’). This strand

is underpinned by a threatening sense of human error and mistakes (‘all those potential areas where

you could have mistakes’), a sense, in other words, of the absence of perfection. The picture here

is highly emotive, where clinicians are made able to ‘deliver safe care’ and ‘do the best they

possibly can’ because we can ‘trust’ in software. However, these promises are made pertinent

chiefly by contrasts against clinicians as ordinary humans without software, who are feeble and

pitiful creatures (‘humans are very slow and humans make mistakes’, ‘Instead of relying on people

who are, you know, who tend to forget, or their minds are busy with something else, they might

miss a check box’).

The fact that humans without software cannot be relied on furthers a sense of dependence

upon the decisive role of software in the accomplishment of the uber-clinician, adding further

tension to the paradox mentioned above. The decisive role of software is framed as helpful and

labour saving (‘you don’t need to sit there and decide’), leading to ‘rich and rewarding’ places to

work; though we see hints that this is a story that needs to be ‘sold’ to ‘them’ (the clinicians).

Equally though it is clear that in order to become the uber-clinician, autonomy must be sacrificed.

The uber-clinician is thus revealed to be one who must heed the instructions of the computer (‘the

145

computer would come in and tell you’) and, as Kelsey details at length in the final quote, this

infallibility is achieved by a corollary increase in the inflexibility of the machine’s control over

workflows (about which more anon). We have therefore a picture of the uber-clinician acting with

almost omniscience and whose very fallibility as a human has been overcome. To this we may add

a third and final strand of the uber-clinician, that of her/his efficiency.

The Uber-Clinician as Super-Efficient

Table 6.3—The Uber-Clinician as Super-Efficient

replicated the process, and reduced the inaccuracies, and the redundant time (Neil, Services)

its making those people who look after you have more time to actually do the analysis and do

the actual decision making because all the more manual tasks have been replicated in the

system so they can spend more time with a human face and actually looking at your symptoms

and converting that into an electronic thing that helps them make better decisions at the end

of it. Or something like that. (Henry, Sales)

instead of spending five out of your 15 minutes looking at the patient record, you can now

spend that doing something a little more useful (Calvin, Dev)

the software that we build is trying to make that easier, less error-prone, and more efficient

(Kelsey, Dev)

if you look at some field in your medical record and the amount of logic that goes into that

field, if you had a human do it, you would be hiring a person for every patient to just comb

through records and tidy up stuff and collect stuff together. I guess you get scale and speed

and because you have the speed you can embed a lot of smarts into it. And most of these smarts

are things that people could possibly do. I guess most of the stuff we currently do is the stuff

that people could possibly do, with a lot of time and a lot of effort. It’s just not practical. (Cally,

Dev)

if we want to give clinicians a more comprehensive view of a patient's condition, somehow we

need to be able to store their information and aggregate it. We could do that with paper, and

that is how things were done for a long time. But that was found to be slow and inefficient

(Ernest, Mgmt/Dev)

it's like 30% or some really massive number of healthcare spending is actually just waste

(Wayne, Research)

instead of having to go down to the dungeon to get someone's history, their medical history,

you now can get it from a screen on your computer. So we're not necessarily inventing new

things. What we are doing is taking those existing ideas and making them better, faster, and

less error prone. (Kelsey, Dev)

Table 6.3 offers examples of discourse about efficiency, which was a very common theme

throughout the organisation. The healthcare system was generally characterised as woefully

inefficient and this absence (of efficiency) was one of the key voids CloudDoc believed their

146

software was filling. Wayne tells us that ‘some really massive number of healthcare spending is

actually just waste’ and the figure of 30% that he quotes was repeated widely, originating in a

presentation given by the CEO to the organisation during my fieldwork. While Clouders believed

that their software delivered efficiency in a variety of ways (e.g. scheduling and administration

applications, predictive modelling of costs, and more logical workflows), the most common version

tended to draw on a sense of lack rather than solid claims. For example, ‘waste’ spending featured

often when people explained the value of their products, yet waste was typically not defined or,

when probed further, people would say things like running tests that weren’t needed—though how

a clinician could know a test is not needed in advance of its results is not explained.

A prominent emotive metaphor at CloudDoc was the characterisation of paper-based

systems as a throwback to the dark ages (e.g. ‘that is how things were done for a long time. But

that was found to be slow and inefficient’), which seemed, in this discourse, to imply lack by

default. Indeed, paper was absolutely abhorred at CloudDoc and this was actually quite an

entertaining facet of CloudDoc culture. I once heard someone exclaim in shock when a printer

suddenly started to print out a document (sent remotely from an employee), saying ‘Oh god,

someone’s killing trees’. This was, in fact, the only time I ever saw someone print something. On

the dev side of the business there was a corner of the room near a printer in which reems of paper

formed a small mountain—its peak nearly tickled the ceiling and unused reems flowed downwards

like an untouched ski slope. The most common use for paper, as far as I could tell, was as a monitor

stand, where developers regularly stacked a few reems to get their monitors up to eye level. Against

this depiction of the wasteful dark ages of paper, software is seen as enabling far more information

to be pulled together in one place because people don’t need to ‘go down to the dungeon to get

someone’s history’. Having all the information available, of course, offers the promise of complete

knowledge (omniscience), hence promoting greater accuracy and safety (infallibility), and now, as

we see in Table 6.3, facilitates efficiency—note once again how these claims are frequently linked

together in a series.

147

The direct result, according to these participants, is that the uber-clinician is able to operate

much more efficiently. The uber-clinician can singularly accomplish the work of what would

otherwise require an extreme number of people (‘you would be hiring a person for every patient’).

Most importantly, the uber-clinician is freed up to both achieve more with her/his time (‘you get

scale and speed’, ‘reduced… the redundant time’) and focus on the things that are ‘a little more

useful’. Once again however, we encounter that paradox at the heart of the uber-clinician. For what

is it exactly that the uber-clinician can now do that is more useful? Perhaps it is speaking to the

patient? Yet we saw that the uber-clinician has no need of patient knowledge since it is unreliable

and inferior to the complete picture of the electronic record. They can apparently spend less time

looking at the patient record (only 5 out of 15 minutes we are told), but the problem is that the

clinician now has much more information to assess thanks to the ‘more comprehensive view’

afforded by health software. This suggests that reading all this knowledge should, in fact, take more

time not less. We must thus assume that this heightened efficiency depends even more so on the

ability of software (not inferior human minds) to understand, perform analysis, and provide

judgements for the uber-clinician. This is revealed most fascinatingly in Henry’s elaboration on

what, exactly, it is that a uber-clinician has more time to do. They appear to be given more time to

‘do the analysis’ and ‘do the actual decision making’ yet these actions culminate, for Henry, in the

act of converting symptoms back into ‘an electronic thing that makes better decisions.’ This

appears to suggest that the most important thing a clinician has been freed up to do is simply to

convert knowledge into digital format to feed the machine. Thus clinical work is reduced to data

entry in the last instance; the uber-clinician is perhaps nothing more than a bodily interface for the

machine.

Overall then, the uber-clinician is a highly paradoxical creature. Many details about

precisely how software enables the accomplishment of these almost god-like abilities remain

frustratingly elusive, which is perhaps precisely the reason Henry follows up his explanation with

the phrase ‘Or something like that’. It is interesting to note that in this fantasy, software doesn’t

148

appear by itself as a particular thing. The uber-clinician is not a picture of a clinician using a

specified and discrete software artefact to accomplish her/his goals. In fact, the key point is that

software is not present as a specific entity but rather it has merged into the very identity of the uber-

clinician such that software has, though this chain of equivalence, become an integral part of the

uber-clinician, just as the uber-clinician has become, perhaps subserviently, part software (and

hence our paradox). In this discursive formation then, software is deeply intertwined with this key

subjectivity, rather than appearing object-like.

Figure 6.1: The Uber-Clinician as constructed by three discourses

Despite these tensions, the uber-clinician (summarised in Figure 6.1) appears as an

impressive and desirable subjectivity that is pivotal for the accomplishment of this promised

discourse of Healthcare Perfected. It is almost impossible to argue against such a figure because

who wouldn’t want their clinician to know every relevant fact about their health, including even

before such facts become relevant? Who wouldn’t want a clinician that could move at superhuman

speed without making a mistake? At the same time, however, we see hints that the actual

achievement of this subjectivity is fraught with difficulty and grounded on what appears to be a

paradoxical understanding of who should make clinical decisions, how these decisions are made,

and what clinical work should be. But it may be that the inevitable failure to fully achieve this

Omniscient

• Perfect knowledge

• Prescient knowledge

Infallible

• Safer

•Reliable

•Decisions are guided

Super-Efficient

• Faster

•Digital

• Knowledge
processed for
relevance

149

identity is precisely what gives it is ideological power. I will return to this discussion in the next

chapter. At this point, however, I move to consider another key nodal point in the discourse of

Healthcare Perfected—that being the other central figure in healthcare, patients.

Pre-emptive Patients

In the fantasy of Healthcare Perfected, patients mostly ‘showed up’ as objects: a kind of

entity that exists to be modelled, stored in databases, presented to clinicians to be ‘read’, or the

target of software-led interventions. This is not to deny that patients are people, nor do I mean to

imply that people at CloudDoc were generally apathetic. The vision of perfect care is ultimately

intended to be for the benefit of patients after all, but CloudDoc saw this as more of an indirect end

goal. As Neil put it, ‘I don't care about the patient, I care about the staff because if the staff are

able to have time, and if the staff have information, they are good people and they will naturally

do the right thing for the patient’. Thus for an organisation who produce software primarily for use

by clinicians, managers, and hospital administrators, patients were represented as a key object from

their perspective. However, despite not being a key user of the software, this fantasy nevertheless

involves a significant rearticulation of what a patient is, which is to say that patients become a new

kind of entity in this discursive formation. In this section, I offer two strands of discourse which

collectively construct this key nodal point, which will demonstrate two important shifts in what

patients are in this discourse, in comparison once more with the bleak absent presence of healthcare

without software. Overall, this section aims to portray a sense of a new perfected patient who is at

once a digital data mine and proactively responsive to the predictive interventions of software. I

begin with the former strand since it is a necessary condition for the latter.

150

Pre-emptive Patients as Digital Data Mines

Table 6.4—Pre-emptive Patients as Digital Data Mines

the problem historically is, and healthcare has been that doctors haven’t had access to all the

clinical information when they made decisions so they are prescribing drugs or suggesting

treatments with only partial information and the information has been a relatively small part

of the possible information that you might gather on your on your body actually. I figure there's

roughly two terabytes of data in my body, made up of my genome, my microbe, my… what else,

device data, I mentioned metabolome, there's proteomics, actually also my exposome which is

where I all the environmental factors around me. So massive amounts of data and we're going

from a situation where doctors have had incomplete data to now having massive amounts of

data. (Blair, CEO)

we'll have your information, all the details about you. Like that's precision medicine, so we'll

have your DNA, we'll have your social aspects, like if you drink, how many cigarettes do you

smoke, all those things. And they'll be able to come up with a way to improve your health

because you have analytics (Cody, Product)

the thing that's getting me really excited about health is that it's becoming a mathematical

science. I used to be quite good at maths many years ago not anymore, but just applying

mathematics and machine learning and logic to the sort of tsunami of data that's starting to

get produced in health care what do we do with it? (Blair, CEO)

not only the things that have been reported of you, but to analyse your body and your genomics

and then be able to predict what would work better for you as opposed to something else (Will,

Dev)

your DNA and all your genetic information and the other social information, everything

together, environmental data, everything put together might say you might be prone to get

cancer at the age of, say, 50. Then it'll also tell you taking this medication in a small dose will

reduce the possibility or the probability of getting the cancer down to, say, 10% rather than

80% chance, which means you can live longer, you can be stronger, and you don't need to go

to visit your doctor often (Zeek, Dev)

there's a number of governments and countries which are trying to, and again it's probably

more for analytics purposes, trying to actually have visibility of their social data information

at hand, and clinical, more medical records, and basically run with other rules on top to see

vulnerable people, etc (Khloe, Snr Mgmt)

one of the projects that we're involved with soon, which is trying to match social data with

health data and kind of having a long-term view on a person's life course and seeing how those

things interact (Ernest, Mgmt/Dev)

Data. It's all about the data. You need ... data and then the ability to draw insights from that

data. You need the data in order to draw insights from it, but the data in itself doesn't tell you

anything. You need the ability to draw insights. (Steven, Product)

I need to be able to model a thing called a patient. And I need to understand the relationships

between the patient and the entities or the parties that are involved in their care (Clayton,

Dev)

The uber-clinician’s claim to perfect knowledge in the previous section begins to make

more sense when it is coupled with rearticulation of patients. Here we begin to see a richer picture

of this perfect knowledge upon which the uber-clinician operates, but it depends on a key

151

rearticulation of patients as digital data mines (‘Data. It's all about the data’). The salient shift here

is in the way that patients are recast in terms of bits and bytes (‘roughly two terabytes of data’), as

we see especially in the quotes from Blair, the CEO—these comments were made in a public

address that sought to articulate the vision of healthcare perfected through CloudDoc’s software.

Note, however, that most of this data is, in fact, only potential, rather than currently available: later

in this address, Blair goes on to state that the limited amount of medical information we currently

possess amounts to little more than a person’s big toe. This reconfiguration of patients as massive

repositories of potential data therefore points more to what is not (yet) present than the current, real

functions of their software. Despite this failure to actually do this now, current medicine is

nevertheless recast as a ‘historical’, past-tense problem: ‘The problem historically is, and

healthcare has been, that doctors haven’t had access to all the clinical information’. The present

has been turned into a place of absence, a lacking for something we didn’t know we needed, namely

a recognition of patients as digital data mines. Now that today has been relegated to history, we a

left with an absent presence, the void left by the wake of the future that is yet to take its place.

One of the most important moves in this rhetoric is the significance placed on the idea of

‘social data’, which stands for massive amounts of data that was not formerly considered part of

the medical domain. We see emphasis on having ‘all the details about you’, such as ‘your social

aspects’, ‘your exposome’,70 and generally all the other ‘social information, everything together,

environmental data, everything put together’. In this move, the Healthcare Perfected discourse

appears to colonise and subsume whole discursive fields that were ‘historically’ disparate terrains

with their own relative sovereignty. This raises important questions about just who the ‘they’ are,

in phrases such as ‘And they'll be able to come up with a way to improve your health’. The

assumption espoused generally by Clouders held that it would be the uber-clinicians with their

incredible new powers over perfect knowledge. Yet it is no surprise to see that, when pressed about

who actually is or would be using these systems, the conversation quickly escalated to the level of

70 Defined as (only!) the totality of environmental factors that have affected a person throughout their entire life.

152

government (‘a number of governments and countries’). The project to which Ernest refers

(merging social data and health data) was precisely a project combing data held across two different

government departments; indeed, when I worked with one of the key engineers involved in this

project, the implications of this expanding bailiwick were blatant: he explained to me that one of

the key advantages would be the ability of social welfare to identify recidivist benefit fraudsters

whose ‘sickness’ was really a cover story for alcoholism and laziness. But perhaps the key

accomplishment of this radical widening of scope is to once again construct a sense of absence and

lack, for the sheer complexity and scale of this task (amassing all possible data on a patient) surely

transcends the limits of possibility. However much data we have on a patient, presumably there

can always be more, there can always be some aspect of life that has been missed. It is perhaps for

this reason that participants slip readily into the future tense when they discussed this idea of

patients: it is a project that seems to be something we are forever striving for, plaguing us with a

nagging sense of absence that constantly recasts our present into the ‘historical’ dark ages, the

shadowy, soon-to-be-forgotten recesses of a bright future to come.

But there is more to this conception of patients than simply data for data’s sake. There is a

clear promised end goal that all this data leads to and this is the ultimate vision of patients who,

through quantifying the minutia of their two-terabyte-selves, become transformed into proactively

optimised citizens rather than patients.

Pre-emptive Patients as Proactive Responders

Table 6.5—Pre-emptive Patients as Proactive Responders

moving away from the notion of patient almost to actual citizen. I think in the next year or two

we’ll stop talking about patients and start talking about citizens.

Researcher: Why do you see that shift? That’s a really interesting idea.

Basically because a patient implies I’m already sick. I’m already ... it also implies ... it’s a

health-centric, or a medical-centric kind of term in that when I, if I’m at home and if I was

able to work out why it was that I’ve got this bloody virus that I’ve got right now, if I knew

what that factor was and was able to avoid that factor, I wouldn’t have had a doctor’s

appointment, I wouldn’t have had time off work, I wouldn’t have had a few things that I would

have had to skip and had to waste bloody flights to [another state] last week. So it’s that ... I

153

would consider myself a patient once I’m sick, but before then I don’t consider myself a patient.

I’m just a human, a citizen of the country (Steven, Product)

I've just discovered that I have 2.3 pounds of internal organ fat. So okay that's all great. I've

just discovered that it should be 2 pounds actually. I'm sure some advice I would get is go to

the gym and stop that stop drinking all the coffee and drink less—pretty standard advice really.

But the problem is we often don't do what we should. That's because many people don't want

to change, we don't have the resources to change, or health's just not a top priority. So

something we need to put back into our medical record is beliefs, motivations, ability, etc and

this is fed to our circle of care who can help us with our health care. So this is a new model of

health. The question we need to answer is when I wake up in the morning what should my

mobile device tell me? (Blair, CEO)

they’ll be able to come up with a way to improve your health because you have analytics. You

can say, “You have 10% chance of having cardiac arrest.” Or like, “Or you have 10% so

maybe I should start giving you, you know, this medicine that will help you.” Or whatever and

then maybe like, if you have Fitbit like, “Okay, we’ll try to make you walk for 6,000 steps a

day.” And I will go through your, I don’t know, data. Your record and say, “Okay, you’re

having this problem because you’re not exercising enough.” (Cody, Product)

there is technology which is growing, that is happening, which is more of a proactive one,

where science would look into your DNA, your hereditary, all these aspects, and then your

doctor ... Or there could be something that you might wear in the future, when you grow old,

which will tell you, “If you take this medication with a small amount of time ...” (Zeek, Dev)

I see big regional platforms, data platforms, with machine learning sitting on top of it that is

feeding insights to individuals. You know, saying "Hey look, if you carry on the path that you're

on right now you're going to get diabetes" and things like that. In a way that is somehow not

confronting and not smack you in the face, tell you because you're being naughty kind of thing.

Spinning it in a positive kind of way (Steven, Product)

I think that we need to be a bit more proactive in health. Even though we're moving towards

value-based care, it's still our kind of opt-in. I'm not well. Go to hospital. I need help. I'm in

the community. If you look to the future with genomics, when we're able to put the genomic

data and analyse it, we'll be able to say, "Hey, [Ashton] maybe you should come and have a

check-up. There seems to be a history in your family for whatever cancer and you seem to have

the gene that sort of predetermines your likelihood for this” (Ashton, Product)

[PatientSmart] is really trying to be proactive and managing them at home and preventing

acute episodes […] I think that patients are going to take more ownership and then also, make

giving the patient access to information so that they can do more to improve their health […]

With [PatientSmart], you're really introducing the doing piece. So it's how, you know, you

collecting information in the platform, you're trying to influence their behaviour (Jose,

Product)

This table begins with the striking assertion that within the next year or two (i.e. 2017/8)71

we will ‘stop talking about patients and start talking about citizens’. The problem Steven has with

the notion of a patient is, in essence, that they are sick. Astonishingly, the key object in the discourse

71 The fact that this obviously didn’t happen in no way vitiates the ideological power of this belief. As I shall argue in

Chapter Seven, the inevitability of failure is built into this fantasy and is part of what drives its socio-political effects.

154

of Healthcare Perfected—the patient—has been so optimised that they do not actually need

healthcare. This of course reiterates the expansion of the medical purview into the domain of the

social: patients (now ‘citizens’) must become repositories of data across all aspects of their life, not

merely medical, and in so doing healthcare gains access to and responsibility over our lives not just

as patients but as social citizens of the state.

Pivotal in this claim is the idea of pre-emptive intervention, facilitated by software. The

incredible amount of data is understood unproblematically to lead to ‘insights’. Although there is

some talk of human agents providing these interventions, it is not especially clear who these people

are with vague notions of ‘they’ (‘they’ll be able to…’). In several places the strange implication is

made that CloudDoc themselves might be doing this (‘we’ll be able to say’, ‘I will go through your,

I don’t know, data.’). Far more common, however, is talk about software, machines, or devices

directly analysing and intervening (‘with machine learning sitting on top of it that is feeding

insights’), and software repeatedly ‘telling’ or ‘saying’ to patients certain things they need to do

(‘which will tell you’, ‘…device tell me’, ‘it’ll also tell you’, ‘You know, saying’). Zeek even

switches mid-sentence from a doctor to a device (‘then your doctor ... Or there could be something

that you might wear in the future’). This culminates in a sense of almost marital intimacy with

suggestions of a deep relationship with software, evinced especially in Blair’s chilling question:

‘when I wake up in the morning what should my mobile device tell me?’; this is software, moreover,

which somehow understands our ‘beliefs, motivations, ability, etc’ and which feeds directly into

our ‘circle of care’.

A key assumption underpinning this transformation is that patients must become proactive

and responsible for their own health (‘I think that patients are going to take more ownership’, ‘I

think that we need to be a bit more proactive’). Data here enables recognition of patients’ own role

in causing their illnesses (‘you’re having this problem because you’re not exercising enough’).

Thus Blair reaches the conclusion that he needs to change his lifestyle after a period of analysing

his own data (‘I've just discovered’) and the key goal of this software-led navel gazing is that the

155

patient will modify their behaviour in advance (‘if I knew what that factor was and was able to

avoid that factor’), ideally avoiding doctors altogether (‘I wouldn’t have had a doctor’s

appointment’, ‘you don’t need to go to visit your doctor often’). Again, this rearticulation of what

a patient is appears to be constructing an important subjectivity which patents are intended to adopt;

yet it is also clearly characterising patients as a kind of passive object whose most important

attribute is the ability to follow software-led instructions and interventions.

Figure 6.2 Pre-emptive Patients Become Proactive Data Repositories

As with the other sections, absence and lack lurk here as well. In fact, it is perhaps most

striking here since by projecting the ultimate vision of social citizens rather than patients, every

real instance of healthcare being delivered must be in one sense a failure: failure to have prevented

this through perfect data and responsibilised patients. This is quite a claim from a company

producing software for hospitals and clinicians. Of course, these participants are often describing

where they hope health software is going, as indicated once again by the many uses of the future

tense. As with the preceding section, this invocation of vision has the effect of casting the present

in terms of lack: the present is now inferior because it isn’t (absence) what it could one day be. But

it is also important to point out that these participants are also largely explaining two of the products

that CloudDoc currently produce, namely SuperSmart (which we met in the previous chapter) and

Digital Data
Mines

• Two terrabytes of
data

• 'Social' data
encompasses all
aspects of 'the
citizen'

Proactive
Responders

• 'Citizens' act
responsibly and
pre-emptively to
follow software
for perfect health

156

PatientSmart, which is the only patient-focused product they produce (and is an additional

component of SuperSmart).72 It is therefore significant that participants so readily jump into grand

visions of the future while trying to explain their current products, indicating once more the

pervasive emptiness of their products as signifiers and, as we see here, the ideological projects and

absence they come to signify instead.

Perfected Workflows

The final key nodal point in the discourse of Healthcare Perfected shifts to an emphasis on

the actual practices of healthcare. There are many specific practices that this discursive formation

surely implicates, prominent among which would be changing the way clinicians access patient

records (electronic rather than paper) and the many jobs which are made redundant or transformed

by the move to intangible data available across multiple sites, changing processes of storage,

transmission, and retrieval. The analysis of these shifting practices is an important area of research,

and one that remains largely unexplored. In this thesis, however, I will not offer this analysis for

two important reasons. The first and most practical is that my research was mostly focused on the

software development organisation, hence I did not have access to enough data on how CloudDoc’s

software is used in practice in hospital, government, or insurance settings.73 The second reason is

perhaps more important: such an analysis would tend to be positive in its ontology, suited perhaps

to a sociomaterial approach given that it is looking at the effects of actual software functions.

Important though these insights may be, this kind of research would nevertheless struggle to capture

the ideological force of this discourse precisely because CloudDoc’s software often fails to do what

it says it does. In failing, then, the effects of their purported software features as articulated in this

fantasy may be invisible on account of, well, not actually existing. But this doesn’t mean that this

discourse fails to produce any effects. Many significant socio-political effects flow out from this

72 PatientSmart is actually an additional component of SuperSmart that is primarily intended to coordinate care outside

of hospital settings, such as physios, home care, etc. Its key role is to coordinate the care pathways of various clinicians,

but its users would largely be administrators overseeing this care. As such it has very limited patient usage.
73 This is most certainly an important area of future research that I hope to undertake.

157

discursive formation precisely because of this failure—however from a purely positive ontological

perspective, these effects will be hard to spot and harder still to theorise, because the significance

of negative ontology has been precluded. In contrast, this chapter and the next aim to deconstruct

and theorise the effects of this discourse irrespective of whether their software does what it claims

to do.

With that in mind, in this section I examine how healthcare practice is constructed within

this fantasy—not what it presently is, in practice. I will return to the significance of this gap

between discourse and practice in the next chapter; here I proffer two discourses that combine to

explain what CloudDoc’s software is and does at the level of practice, according to the discursive

fantasy of Healthcare Perfected.

Perfected Practices as Standardised and Streamlined for Efficiency

Table 6.6—Perfected Practices as Standardised and Streamlined for Efficiency

we're not only trying to model the world, we're trying to find the best way to improve the

process (Clark, Dev)

it's how we change a person's workflow and the efficiencies we create that's the tangible

thing for me […] it's about understanding clinical workflow and getting them as efficient as

possible, recognizing there are humans still in the mix, and making the human as efficient as

possible (Donte, Snr Mgmt)

I guess a system that you want to model, or a procedure or the way something's done, you

want to be able to model that so that perhaps instead of having manual processes, which

might be a little be informal, everybody does it slightly different, if you can bring that into

software you've got a way of, I guess governing the process, but also maybe, making the

process a little bit more efficient. So it's about, I guess, improving our processes, making

them more efficient, and focusing on the tasks that we're trying to solve […] And it's about,

I guess for their particular job, role, and whatever the function is that they have to do,

identifying how they can go about that process and then just stick to it. That way if we get

any issues that are coming up, then we know everybody's following the process pretty much

the same way. If not, maybe our software is a little bit too flexible, or maybe it just needs to

be, I guess altered to streamline the process (Clark, Dev)

then developers have the ability to-what's the word...factorize that. So they kind of see

common patterns and they might end up taking something that's twenty steps down to twelve

steps. You know, so they-just because of their analytical minds, they can actually look at

something and recognize the patterns and simplify it and come up with something that's

easier for them to implement and actually just works better (Jose, Product)

I guess the other thing is, well, less waste. You hear in healthcare at the moment, there's a

lot of money that's lost because of inefficiencies. You get to think, well rather than that money

being consumed inefficiently, that it's actually being used for more research, and that money

158

is better deployed to actually providing real healthcare rather than wasteful use of money

(Valerie, Product)

the whole idea was to streamline that process (Marshall, Hospital IT)

we eliminate paper and make that process a bit more streamlined so people get visibility

across the different points (Sanjeev, Hospital IT)

In many respects these quotes are intertwined with the efficiency boasts made of uber-

clinicians above. Indeed, it seems obvious that any optimisation of healthcare practices must

necessarily include making clinicians more efficient, given their centrality. Yet these quotes also

go beyond those examined above in that their emphasis is not merely on clinicians, but on the

whole workflow, processes, and practices that comprise healthcare in its entirety. Clark states that

simply to model ‘the world’ is not enough; the point is to improve or streamline the process. The

ability to optimise a practice for efficiency was generally seen as the foremost expertise and value

offered by developers. Jose expresses this sentiment well (‘developers have the ability to-what's

the word...factorize that. So they kind of see common patterns and they might end up taking

something that's twenty steps down to twelve steps’) and this sense of unique value was shared

throughout the organisation from management through to developers themselves. The developers

even ‘optimised’ the large café-style coffee machine in the office, setting the grinder just-so and

then posting menacing signs on the machine threatening oblivion to anyone who further fiddled

with it. The hospital staff I interviewed also believed that this was a key strength of software (and

its developers), citing efficiency as the key goal in moving from a paper system to electronic (‘the

whole idea was to streamline’, ‘eliminate paper and make that process a bit more streamlined’).

As I shall highlight in the following chapter however, they disputed the fact that CloudDoc

achieved this in practice.

Intriguingly, developers often thought of their software as firmly tangible, locating this

sense of tangibility in its effect in shaping workflows and practices (‘It's how we change a person's

workflow and the efficiencies we create that's the tangible thing for me’). This was a common

sentiment among developers and it once again demonstrates the easy equivalence of software with

its ability to organise, shape, and control practice. Interestingly, efficiency seems to be defined here

159

as the removal of elements of practice (‘taking something that's twenty steps down to twelve steps’)

and this is also evident in the notion of making a practice ‘streamlined’, which creates a visual

picture of removing excesses and trimming down. In this way then, the tangibility of software

appears to be identified with what is not present, that is, that which has been removed.

Paradoxically then, the tangible presence of software is found in the absences it creates. Presumably

then the less a practice contains the more software is seen to be tangible, where value is literally,

and rather surprisingly, proportional to the presence of absence.

On the other hand, not all steps in a process can be eliminated, nor can humans be removed

entirely (‘recognizing there are humans still in the mix’) and this paves the way for a related

transformation that software creates in practices, namely standardisation. Humans are understood

thus as inherently inefficient and must be brought into line (‘making the human as efficient as

possible’), a feat achieved by reducing flexibility, informality, and heterogeneity (‘everybody does

it slightly different’). This was a frequent assumption that I observed in my fieldwork with the

development side of the business, and Clark is appreciably forthcoming about this aspect. He

directly links efficiency with the ability to ‘govern the process’, which involves developers

cementing a single approach a given process and then forcing users to ‘just stick to it’, ensuring

that the software isn’t ‘too flexible’ that it hinders streamlining. This mindset is remarkably redolent

of the Taylorist scientific management ideal of discovering the single best way to perform a given

task and then, through the idealised separation of planning (management) and execution (labour),

enforcing that one best way for all.74 In the next section, we shall see further examples of this

striking return of Taylorism through what might be considered its least likely proponent, given that

software is often hailed as progressive, modern, decentralised, and upskilling.

Like the other key nodes examined in this chapter, the construction of practices as perfected

within this fantasy sharply problematises a sense of lack in healthcare without software. The sorry

state of healthcare is something that ‘you hear’ about, the issue being that ‘there’s a lot of money

74 The ideal of separating planning and execution recalls Suchman’s (2007) critique of the fallacious assumption

underpinning software, namely that practice can be mapped out and planned for by the minds of engineers.

160

that’s lost because of inefficiencies’, which clearly demonstrates a sense of loss (money) and lack

(inefficiency). This sense of what is missing in healthcare ‘at the moment’ is contrasted with the

‘real healthcare’ that would be, or is, made possible through CloudDoc’s software. Once again,

we see how the present is redrawn through a sense of absence and lack, and how this leads to the

positioning of CloudDoc’s software as the key to unlocking Healthcare Perfected, here with the

promise of standardising and streamlining healthcare practice.

Perfected Practices as Made Visible, Auditable, and Controlled

Table 6.7—Perfected Practices as Made Visible, Auditable, and Controlled

every patient should have a discharge summary created within 24 hours of discharge. You see

you can't do that if you don't have an electronic system—well I mean you can do it, but how

do you monitor it? And how do you tell someone that they've got a task to create, you know, so

I think from a quality and safety perspective there's higher value. There's also benefits in terms

of finance, you know, if you were running a hospital and you want to make it easier to prescribe

meds that are funded. Um so you know, we present the information to people in a way that

makes it easy to select the correct drugs (Daniel, Services)

we had sort of done a ... created visibility over the completeness of all mandatory assessments

or not, like a checkbox, it's either done or it's not done. We completed that so it's visible to the

charge nurse, so the charge nurse could make sure her nurses were complying with the KPIs.

In the same way for the out-patient outcome form we created the visibility over ... had the

consultant actually done their out-patient outcome form he would know. First of all it gives

the doctor a list of patients that they're still got to do, but at the same time it can also be used

to say, "Hey, you haven't done this, you need to do these." And stepping the process through

you could tell the delay between ... we could measure the delay between the doctor completing

it and the booking clerk finishing their job (Neil, Services)

one of the key selling things of [CloudDoc’s] software is everything's audited, so you can tell

when things are being done and when things aren't being done. So I guess got that, you got

better control, better visibility, and less chance of error hopefully if everything is followed

appropriately (Kelsey, Dev)

you're modelling the real-world workflow. So you understand that, you know, this is what

needs to happen. And then as a user I kind of start off the process. And the solution gives me

guidance to say okay, this is what you need to do next you know, if this happens then that needs

to happen. So I still have control. But it just shows me which way to go […] It's just simpler.

So if you think about...you can do everything that's in a computer, you can do with a flow

diagram. But for a human...and maybe someone that's not very analytical to understand the

complexity of that would not be manageable. So it's really simplifying quite complex, I don't

know if you want to call it algorithm, but pathways, and when work flows, and just you know,

for end user instead of you know, trying to figure out the maze, you just know like oh I did this

and now I can choose between three things (Jose, Product)

the whole idea is that everything that's recorded is reportable […] We are completely honest

now, transparent (Marshall, Hospital IT)

161

it's supposed to be more readily available, but I don't know exactly ... I find that paper is quite

... It's probably more accessible than having to log into a computer. Then you do have controls

over who can see that information (Calvin, Dev)

that was kind of a benefit for the charge nurse. The charge nurse could know at any one time

what has been done, what wasn't been done. And go and chase the people, or their colleagues

can help them out or whatever. Because if it's just a pen and a paper you don't go around the

charts in a second and figure out if something's been done or not. It's just not feasible, we can't

do it. But with this you can (Neil, Services)

we can mandate fields. And I think that's really where, in a way, the compliance has to improve,

because we're saying when you do the admissions check list, if you don't do all the questions,

you can't submit. […] Nurses used to say, "This is my decision. These are my decisions. I make

these decisions." Now you could argue that it's taken away some of the thinking. […] What we

actually found was that [nurses] don’t do that. […] We're actually very happy for some of the

mundane elements of life to be taken off our hands, and that's again where [developers are]

really good. "Why does a nurse need to make that decision? We'll just make it happen. If you

want it to happen, then let's make it happen." (Marshall, Hospital IT)

people get very quickly used to the forms. They know the tricky questions. They know if I tick

that one yes, that's going to open form. That's going to give me some work, I'll just tick no. And

that's human nature. And so what we've actually found is there's a couple of things that we

actually have to mandate now that have to be done (Marshall, Hospital IT)

Table 6.7 adds yet another dimension to the transformation of practice within the discourse

of Healthcare Perfected. For in addition to the efficiencies claimed above, we see that another key

source of ‘higher value’ comes from the increases in managerial visibility, accountability, and

auditability that software provides. In boasting about the benefits of software, Daniel asserts

confidently that ‘you can't do that’ without software, only to realise immediately that the task

(creating a discharge summary) can and has been done for years without their software. This leads

him to promptly reconsider and conclude that the real source of value is actually monitoring (‘but

how do you monitor it?’) and managerial control (‘how do you tell someone that they've got a task

to create’, ‘we present the information to people in a way that makes it easy to select the correct

drugs’). Calvin likewise has doubts that software really is more efficient and available than paper,

although he seems hesitant to admit it (‘but I don't know exactly ... I find that paper is quite ...’). It

is clear to these participants, however, that what software definitely delivers is control (‘[But] Then

you do have controls over…’). While it is often unclear who the ‘you’ refers to, the impression is

that these benefits are for management and administrators (‘a benefit for the charge nurse’, ‘also

benefits in terms of finance’). It is perhaps for this reason that this was not simply the vision of

162

developers; rather hospital management and administrators seem to have bought into this as well.

Marshall, who was both a leader of a hospital IT project and a senior nurse manager, saw the ability

to ‘mandate’ compliance in form completion as the key point of value from health software because

it (ostensibly) gave management final and complete control (‘We'll just make it happen. If you want

it to happen, then let's make it happen’).

Nurses themselves were, unsurprisingly, less positive about these increasing powers of

managerial control. During my fieldwork at the hospital, one nurse explained to me that the fact

that forms cannot be submitted without completing mandated sections (as Marshall boasts) led to

significant problems for nurses. For example, one section required that they weigh a patient to

automatically generate some key metrics, yet the patient was often not in a condition on admission

where taking a weight was possible and this meant that nurses would need to forego the entire

admission form. With paper forms, nurses would simply fill out the rest and then wait until a time

when weighing was appropriate—their temporary noncompliance was rendered invisible by a kind

of ‘darkness’ found in paper. But like a creation myth, software cuts through this darkness with its

brilliant light, rendering suddenly visible the real-time levels of compliance across a practice (‘We

[…] created visibility over the completeness of all mandatory assessments’, ‘it's visible to the

charge nurse’, ‘we created the visibility’, ‘you got better control, better visibility’). Now, Neil tells

us, ‘The charge nurse could know at any one time what has been done, what wasn't been done’ and

this new state of heightened auditability and monitoring is celebrated with laudable plaudits of

honest transparency (‘completely honest’, ‘transparent’).

But this discourse doesn’t merely assert that the benefit is for management alone. Rather

we are left with the impression that clinicians, at least in this discourse, are grateful to have their

work simplified. Jose puts himself in the metaphorical shoes of a clinician who is pleased that the

complex thinking has been done for them (‘like oh I did this and now I can choose between three

things’). Marshall thinks likewise, stating that ‘We're [by which he means nurses] actually very

happy for some of the mundane elements of life to be taken off our hand’. Human nature is seen as

163

something inherently inefficient, indecisive, and also lazy, as indicated by Marshall’s assertion that

‘human nature’ results in workers trying to navigate a path of least possible work in software forms;

this, for Marshall, further justifies the use of managerial force in the form of mandated fields. Such

sentiments reveal assumptions about human nature that are strikingly similar, once again, to those

made by Taylorist scientific management. In fact, these assumptions have been something of a

motif woven right throughout this fantasy, where humans are constantly portrayed as limited,

forgetful, unreliable, slow, and unmotivated to change their own behaviour without coaxing. To

this litany of ineptitude we now add a sense of people struggling with the complexities of their own

work practice (‘But for a human...and maybe someone that's not very analytical to understand the

complexity of that would not be manageable’, ‘trying to figure out the maze’) and who are therefore

happy to have their decisions simplified (‘It’s just simpler’) or even outright made for them (‘Why

does a nurse need to make that decision? We'll just make it happen’).

Such a framing of human nature plays an important part in the discursive fantasy of

Healthcare Perfected because it constructs humans in terms of profound lack. Thus, software

repeatedly sheds its concrete referents and comes instead to signify the fulfilment of this lack, the

promise of something that is missing. Human beings are articulated as lacking the ability to be

knowledgeable, accurate, efficient, motivated, stay on task, order their work, and make decisions.

Ultimately it seems that humans are missing the perfection that software brings to every element

of what they do. It is in this sense then that healthcare itself, encompassing all the diverse and

quotidian practices it comprises, is in need of being perfected, and it is these perfected practices

that software comes to signify in the fantasy of Healthcare Perfected.

164

Figure 6.3 Perfected Workflows through Standardisation,

Optimisation, Transparency & Control

Bringing it All Together

In this chapter I have sought to go beyond the finding that software is as an empty signifier

at CloudDoc and demonstrate how this emptiness functions to construct a fantasmatic narrative of

Healthcare Perfected. Furthermore, I have sought to demonstrate the way in which this fantasy is

constructed around the paradoxical presence of absence, which is represented in the many ways

outlined above that CloudDoc’s software attempts to articulate itself as the fulfilment of a gnawing

lack in healthcare presently. Figure 6.4 summarises the key nodal points in this fantasy (uber-

clinicians, pre-emptive patients, and perfected workflows) and is to be contrasted with Figure 6.5

which highlights the resounding motif of deficit underpinning this narrative.

Figure 6.4 The Fantasy of Healthcare Perfected

Standardised &
Streamlined

•Software becomes
tangible through
reducing steps

•Heterogeneaity
replaced by the
'one best way'

Transparency &
Control

•Darkness of paper
replaced by the
light of software

•Centralised
authority to
mandate
compliance

Clinicians

•Omniscient

•Infallible

•Super-Efficient

Patients

•Complete Data

•Perfectly
Proactive

Workflows

•Standardised

•Streamlined

•Transparent

•Controllable

165

The discourses offered in this chapter construct an evocative sense of absence and lack in

healthcare as it currently is and even a tendency to recast our present as if it were a historical past

fraught with limitations and ignorance. It is important to recapitulate that these discourses construct

the shared, common way of understanding what CloudDoc’s software is and does, the value that it

offers customers, and how it delivers it. As such the key nodal points highlighted above

demonstrate a central chain of equivalence that has come, within this discursive formation, to

constitute what CloudDoc’s software is.

Figure 6.5 Constructing the Presence of Absence in Healthcare

Yet this is also problematic because, as these claims have made clear, much of what appears

in this fantasy is grandiose, visionary, and if not outright impossible then exceedingly difficult to

achieve in practice. For this reason, had our analysis had been confined to a positive ontology, such

as a sociomaterial or technology-in-practice approach, then we would have likely dismissed the

idea that CloudDoc’s software was in any meaningful sense creating uber-clinicians, pre-emptive

patients, and perfected practices. Table 6.8 illustrates the key differences between a positive and

negative ontology with respect to CloudDoc’s software.

As this table demonstrates, the key difference is that a negative ontology is freed from the

shackles of focusing only on questions related to the present, actual functioning of CloudDoc’s

Healthcare
as Lacking

Humans as Lacking

•Slow

•Inefficient

•Fallible

•Lazy

Data as Lacking

•Incomplete

•Narrowly Focused on
Health Alone

Work Practices as
Lacking

•Invisible

•Uncontrollable

•Bloated & Wasteful

•Too Flexible

166

software. While research into the concrete effects of specific elements of CloudDoc’s software in

practice is indeed important, this would overlook the fact that CloudDoc really does seem to think

that they are creating Healthcare Perfected in these ways. A negative ontological approach, in

contrast, is open to the possibility that there may be a significant gap between the discursive

construction of their products and the actual observable effects of real code execution. Furthermore,

this gap is not merely speculative or illustrative of mere words because, as argued in Chapter Three,

the ontological identity of software is, in fact, precisely located in the discourse that constitutes it

as it as an object of interest. It therefore really matters how people discursively construct the

identity and functions of their products.

Table 8.6 The Differences Between a Negative and Positive Ontology

Positive Ontology Negative Ontology

What software products do CloudDoc actually
produce?

What do people believe CloudDoc’s products
are?

How do their products really work in practice? What do people think/say their products do?

How do users understand their products and
how do they constitute what they are in

practice?

What is the broader narrative into which its
products fit?

How do these products constitute social
actors through their use?

What role do their products, whether
symbolically or actual, play in constructing this

narrative?
How do they transform the identities of its

users?
What subjectivities does this narrative

construct?
How do its users transform what they are? How do people construct this narrative?

How closely coupled is the discourse of
Healthcare Perfected to the actual observable

effects of their software products?
What is the fantasy Healthcare Perfected
offers, and what is the absence which this

fantasy seeks to cover over?
How does Healthcare Perfected fail to achieve

the fantasy it offers?
How do people fail to achieve the

subjectivities it offers?

What are the effects of these failures?
How does this fantasy sustain itself despite

these inevitable failures?
How does power operate through Healthcare

Perfected and who does it
privilege/marginalise?

167

This fantasy is not some marketing collateral that has overstepped its bounds; rather it is

the assertion of a specific way of ordering healthcare, including the objects within it (such as

software), the practices it entails, and especially the subjectivities (e.g. doctors, nurses, payers,

patients) it engenders. This is a vision that is attempting to become the hegemonic force within

healthcare. The key insight made possible by the negative ontological perspective taken in this

research is the way in which CloudDoc’s software products themselves function to make this

discourse compelling by emptying themselves of their clear referents. What comes through in this

chapter, therefore, is the surprising finding that their software presents itself as such a compelling

force to the extent that the software itself has disappeared from the discourse and instead works to

construct a sense of absence and lack. It seems then that what is most significant about CloudDoc’s

software is what it is not, rather than what it is, and such a finding is not visible through a positive

ontological lens.

That said, it’s also clear that not everyone believed this hype, and many experienced

moments of doubt and confusion, as the dislocation apparent in the previous chapter demonstrated.

But here again the insights of a negative ontological perspective come to the fore since this lens

makes possible the analysis of how this failure is itself ideologically significant. These kinds of

questions take us even further into the landscape of a negative ontology and, crucially, they lead us

to examine the most important question of all, namely: how can ‘mere words’, and especially words

that bear little resemblance to apparent reality, have real effects in the world? To make visible these

important socio-political effects brings us to our next chapter, in which I will directly take up the

task of critiquing the fantasy-discourse of Healthcare Perfected.

168

7. Failure

I’m sitting at reception waiting to meet the COO. The room is lined with bright purple leather loungers

on both sides while its central feature is a large reception desk immediately opposite the door. The desk,

and the panelling behind it, feature wood lines echoing the Scandinavian modern functionalist flat line,

but these are dotted with bright purple inlays giving the impression of both modern functionalism and

something a little bit edgy. On the left is very large flat screen displaying an animated story of their

products in detail. The central motif here is problems and solutions. The only characters in it are sexy,

fit young people who recur frequently to bring home the message that [CloudDoc] is about healthy

lifestyles lived by trendy young people with amazing technology that can predict health outcomes before

they happen and link directly my smart phone. The vibe here is energetic. I’m excited.

Beside me is a small trendy side table with three magazines neatly splayed out in a fan as if I’m in a

Home and Garden staged house. I note that the magazine selection seems to speak directly to the sense

I have of this company: a CEO magazine symbolises elite business prowess; next is a magazine on

healthy lifestyles, and another named ‘Verve’ (I didn’t recognise this magazine but took from its name

that it meant an upbeat and spirited attitude to life. Later I discovered that it is a magazine devoted to

being trendy in just about anything). A nice combo then: trendy, business savvy, and devoted to health

and wellbeing. No tech magazines in sight here… how interesting. More interesting still is the fact that

the magazines are all about 4-5 months old. Clearly these magazines are for show rather than info.

[… later, in my meeting with the COO…] John goes on to tell me that CloudDoc aims not only to

facilitate the vast Gattaca-like storage of medical data (and everything else), but to capitalise on it by

developing the software to read, use, and make predictions from it. I jump in at this point, half in an

attempt to show that I have read up on CloudDoc (in the media) and appear knowledgeable. So I point

out that I’ve heard of their award-winning machine learning research projects that are being applied to

this big data. (I had, of course, also just been hearing about this on their big monitor in the waiting

room). But John just chuckles, and says ‘Well there’s no machine learning, yet. Don’t believe the PR.’

Apparently that’s the endpoint, not the starting place—but you wouldn’t know it from the media or the

monitor…

Fieldnotes, Wednesday October 26, 2016

* * *

In the previous chapter, we met the fantasy of Healthcare Perfected, the great eschatological

vision that is made possible by the emptiness of CloudDoc’s software products. Through several

key nodal points in this discourse, we saw how CloudDoc’s software constructs a problematic sense

of lack and absence in healthcare, and further, how it constructs itself as the fulfilment of this

absence. We saw that this fantasy held up the promise of perfection through its software, the

promise of a healthcare that has overcome all human limitations and reached the transcendent

heights of an omniscient, infallible, pre-emptive, and parsimonious governance over social citizens.

However, in that chapter we also saw the seeds of doubt, paradox, and impossibility, which is why

it may seem easy to simply scoff at these claims as nothing more than pretentious fantasy. Maybe

we should simply ignore such vain grandiosity and just focus on what their software actually does

169

in the real world. Perhaps. But to do so would overlook several questions that are sorely in need of

answers. How is it, for instance, that fantasies like this could come to be so prevalent throughout

CloudDoc, apparently gripping even no-nonsense software engineers? How has this discourse

about their software become so uncoupled from the rational, emotionless code in which it is

written? More importantly, how does this discourse continue to sustain itself in the face of what

must surely be an inevitable failure to deliver on such bold promises? And what are the

consequences of this fantasy, and indeed its failure, for those who appear to have been so

thoroughly gripped by it?

These are the sorts of questions this chapter aims to explore. In short, I am interested in the

socio-political effects of this discourse. I want to understand what the real effects are of a discourse

that fails to signify the real functions of its code and how this discourse continues to prevail despite

its failure. But in order to examine the effects of this discursive formation, a point of clarification

is needed concerning who might be affected by this discourse and where these effects might take

place. For a positive ontological approach, this question is mostly obvious: the effects of software

will be borne out by those that use it and upon those practices it transforms. For example, these

effects may include reworking the subjectivities in a given practice. This is what we see in the case

of Uber, where many taxi drivers continue to do much the same work but have shifted from being

employees of a taxi company to independent contractors, hence this software has changed their

subject position within its discursive formation. Transformations in practice may also occur, such

as shifts in the way a practice is performed (e.g. fare payment by smart phone instead of cash) and,

less obviously, these shifts can affect people who do not use the software because their role in a

practice is now redundant (e.g. former radio coordinators for taxi companies).

For a negative ontological approach, however, the question of effects is much less

straightforward. Such an approach would in no way deny that CloudDoc’s software has effects on

its users and the practices it transforms, much like Uber. But a negative ontology goes beyond this

and focuses instead on the effects of the discursive formation itself. What happens when people

170

begin to see themselves interpolated by this discourse? What are the consequences, for instance, of

clinicians beginning to see themselves as becoming uber-clinicians through software, or even just

wanting to? What happens when hospitals begin to see their patients as data objects within the

discourse of Healthcare Perfected? What happens when administrators and managers begin to

desire a shift in work practices towards the perfect standardisation and heightened visibility that

this fantasy prizes as the perfection of healthcare? And what are the effects of the failure—the

impossibility—of these desires to be fulfilled? Put differently, these questions all ultimately seek

to examine the effects of this discourse as or if it hegemonizes healthcare. How does this hegemonic

rearticulation shape the very ‘objectivity’ of the medical, and indeed social, field itself, including

all the identities of subjects, artefacts, institutions, and practices it comprises? And how is this

related to what seems to be its inevitable failure? These, it will be seen, are quite a different

questions to that of the functional effects of working software, and they admit of inquiries into the

workings of discourse itself in shaping social fields; fields, moreover, that do not necessarily

overlap with the ‘who’ and ‘where’ that form the focal point of a positive ontology.

To answer these questions, I offer a selection of data that tells the story of fantasy, failure,

blame, and recommitment. I begin by illustrating a latent awareness of a kind of ‘gap’ between the

fantasy we encountered in the previous chapter and the mundanity of CloudDoc’s actual working

software. As the excerpt that begins this chapter illustrates, this gap was in many respects central

to the experience of being at CloudDoc, beginning with my very first impressions. Moreover, some

people were quite plainly aware of this and took care to refrain from the kind of hype that we have

seen, though such people were rare. Most people, however, associated their software with these

grand promises with impressive alacrity. Nevertheless, when I pressed them to provide more

specific information about how their software delivered on these claims to value, some participants

would seem to come back to ‘reality’ and describe their software as far more mundane than these

claims suggested, leading to intriguing post-hoc rationalisations for this gap. Interestingly, I also

encountered wildly different accounts for who was responsible, with every department resolute in

171

their belief that the blame lay elsewhere. Thus, the first selection of data offers examples of a

lurking, hidden mundanity and its accompanying explanations of blame—these include, moreover,

some reflections offered by the hospital staff I interviewed and observed, whose perspective helps

deepen this counterpoint to the lofty heights of Healthcare Perfected. To this I then add evidence

of this fantasy’s failure, which goes further than simply acknowledging a gap between mundanity

and vision and reflects, often painfully, on the outright failure of CloudDoc’s software to achieve

anything like perfect healthcare.

Having established these counterpoints against the hegemonizing efforts of the Healthcare

Perfected discourse, I then begin to tackle in earnest the central questions of this chapter, namely

analysis of the effects of this fantasy and the puzzle of how it is able to sustain itself despite these

stark admissions of failure. These two questions are, in fact, related and this is a central finding that

emerges in this chapter. Overall, I demonstrate that this discursive formation relies on the

impossibility of its fantasy to sustain itself. Paradoxically, the fact that subjects endlessly

experience failure serves only to reinforce their commitment to this discourse. The remaining data

sections will therefore demonstrate how both the affective force of this fantasy and its logic of

inevitability function to deflect responsibility for its failure onto subjects themselves. CloudDoc’s

software, by virtue of its emptiness, remains impervious to blame and transcendent as a sublime

object of desire. Thus this discourse is able to maintain its hegemonic hold even in spite of its

blatant failure to deliver.

172

Mundanity and Gaps

Figure 7.1 A Meme Shared by the Research Team

In the above meme about Deep Learning (another term for Machine Learning or AI), ‘from

theano import *’ is a line of code (written in the programming language Python) that essentially

imports ready-made scripts to be used by the Data Scientist. The point is that these Data Scientists

(their own preferred term) don’t write (or even understand, typically) the code that performs their

complex machine learning operations. This is not to downplay their considerable skill and expertise

in grooming and mining data with these tools. Yet this meme nevertheless speaks to the heart of a

sense of a gap between reality and fantasy. Here Data Scientists acknowledge how the mundanity

of their real work differs wildly from the way their work is typically constructed; note that this gap

exists even in the way that the Data Scientist perceives her/himself (What I think I Do and What I

actually do). While this meme was only shared, and not created, by the research team, it captures

a prevalent sense I found everywhere I looked at CloudDoc of a nagging and uncomfortable gap

173

between the mundane details of their real work compared with the way that the company perceived

itself.

Even in my first few weeks at CloudDoc I encountered this gap in the most surprising

places. At this point I was still being mistakenly framed as ‘the innovation guy’ due to a

misunderstanding of what my research was about, and I remember being told by a senior

management that if I was interested in innovation I needed to forget about ‘these people’ (where

these people were around 95% of the employees we were talking about) and focus on the people

developing SuperSmart because ‘that’s where the really cool innovation is happening’. Recall,

however, that SuperSmart was also the product that these same people repeatedly told me didn’t

exist!

I was also involved on the CloudDoc Graduate Committee, which aimed to recruit fresh

software engineering grad students from the local university and this led me to be involved in a

discussion on how to build an online test that grad students could complete in an effort to weed out

incompetent applicants:

There was some debate around whether this should be in Java,75 which was the original suggestion by

Lauren (given that CloudDoc mostly uses Java). One young dev was horrified (and the sentiment was

shared by most of the others). He said that he didn’t think they even taught Java at the uni anymore, and

that they had ‘pushed on’ to newer languages like python. He was scared that if people learn that we’re

using Java they’ll think that ‘CloudDoc is 10-year-old tech’ and won’t be interested. And also, they

wouldn’t be able to compete anyway since they don’t know Java.

Fieldnotes, Wednesday March 22, 2017

Thus it was decided that even in the presentation of their competence tests they needed to hide the

reality of their ‘tech’ and promote a fantasy.

Of course, this led to a predictable disillusionment for new hires, however. I saw several

examples of this, such as one employee I met who had recently finished a PhD and came to

CloudDoc with the expectation of doing ‘cool things’ with their massive sets of health data.

CloudDoc regularly boast that they have over 100 million electronic health records (a figure

repeated often by the CEO at all staff ‘vision’ meetings). Unfortunately, this new hire was deeply

75 Java is one of the most commonly used programming languages in the world.

174

disappointed to learn that because of the complexities of privacy laws for health data, almost none

of those records was in any way visible to Clouders.76 Compare this with the claims made by John

in the opening excerpt.

In Table 7.1 I offer further examples of the ways in which people acknowledged this gap.

These quotes are taken from interviews and reveal moments when my probing about how their

products actually work right now would throw participants into the dislocatory acknowledgement

of this gap.

Table 7.1—Mundanity

I feel as though that's where there's a lot of misunderstanding, because we like to believe we're

doing more than what we're doing. And I think all we're doing is receiving, transforming, and

displaying data, effectively. If you actually just characterize it that way, it's awfully boring and

not very interesting. And doesn't sound very inspiring, so let's just ... If we embellish it and

think we're doing more than that. […] There's a huge disconnect with what the message is.

And what the reality is, the reality is really dry […] It's pretty uninspiring (Jenson, Product)

I think, at the moment, the projects we're tackling within our team, which is using machine

learning and these problems are far less ambitious in what I've just described (Wayne,

Research)

it's very much part of our sales pitch, which is to say that this is what our platform is aimed at

now. We don't actually have these data models right now, but we're positioned to be able to

build these data models (Steven, Product)

if you just take a step back and look at all the conversations happening in the world, all the

ones I'm involved in, people are still at that 101 level, plugging shit together (Khloe, Snr

Mgmt)

when you boil it down to basics, what it is, it's a bunch of data transformations (Cally, Dev)

the way that we handle those is really quite basic. I was quite surprised when I first saw it. It

seemed really simplistic for such an important task (Richie, Dev)

we've been the clinical workstation for [20>] years. We're trying to say, "Actually now we're

a big data company." Actually, no you're not. You're a clinical work station (Bill, Snr Mgmt)

These examples demonstrate moments of realisation that there seems to be a gap between

the fantasy discourse that is constantly being produced about CloudDoc’s products and the

mundane reality of what they actually do. Recognition of this fact seemed to span a continuum

between almost confessional accounts at one end and confused, paradoxical accounts at the other.

Steven offers a glimpse of the latter: somehow SuperSmart (the product he is talking about here)

76 The only exception to this was where research partnerships had been established and specific, very small datasets

were granted and even these were usually de-identified to the extend that their predictive value was vastly diminished.

175

both doesn’t have these data models ‘right now’ and yet is nevertheless still ‘aimed at’ them ‘now’,

giving a sense of the promise of the future fusing into the immediate present. Conversely, Jenson’s

perspective into the gap between fantasy and mundanity was by far the most lucid. Jenson’s role

meant that he spent a good deal of his daily work attempting to articulate what CloudDoc’s products

were and how they fitted together. He bemoaned a widespread ‘misunderstanding’ about the

specific functions of their software, which is, according to Jenson, ‘awfully boring and not very

interesting’. In almost shocking contrast to the common conceptions, both in people’s everyday

discourse about their products and in the public-official material released through marketing and

presentations, Jenson states that really, all their software is doing is ‘receiving, transforming, and

displaying data, effectively’. Cally agrees, noting that when ‘you boil it down to basics’ their

software is nothing more than ‘data transformations’.

I was also struck by this as I travelled through the organisation. I could have included many

different quotes that, aside from being long and fraught with technical jargon, were utterly boring.

Even the SuperSmart developer teams I worked with spent weeks working on features that were

underwhelming to say the least, and this led to a surprising amount of time spent trying to make

mundane scripts seem more interesting. For example, every two weeks the developer teams met

for what they called a ‘show and tell’ in which teams were tasked with presenting working

examples of their latest efforts. Except that many of these teams were working on features that

were ‘back end’; that is, these features did things in the background but didn’t have a ‘UI’ (User

Interface). So how did they show their efforts? They went to work designing little UIs that, as was

explained to me, were meant to look cool and show their functionality (but would never be used

again and were essentially pointless). Such was the effort that went into masking mundanity, even

internally, to themselves.

The quotes in Table 7.1 evince a kind of layering of discourse at CloudDoc where much of

the fantasy and promise that we’ve seen so far appears to sit at a higher level in the minds of

Clouders. Thus there is sense in which participants ‘step back’ or ‘boil it down’ in order to come

176

‘down’ to a more quotidian level of specifics. Wayne suddenly pulls back from ‘what I’ve just

described’ to ground the conversation on ‘far less ambitious’ features. Yet this lower level appears

to be accompanied with a sense of negativity, surprise, and discomfort. Richie, a SuperSmart

developer, describes feeling ‘surprised’ at how ‘simplistic’ the code was, in contrast to a sense of

importance that the non-specific (higher) discourse appears to carry. This lower level is described

as ‘basic’, ‘dry’, and a ‘101 level’ where people are just ‘plugging shit together’. To be clear, when

developers talked to each other about the functionality they were working on, conversations were

heavily technical and specific, and this was a mode of being that was comfortable and natural, as

we would expect. But such conversations were necessarily technical because they were tied to

specific functionality, tiny fragments of the overall picture. However, whenever conversations were

about their software at the level of products, that emptiness that we witnessed in the previous

chapters began to creep in and the ‘boring’ specificity was quickly dropped.

As Jenson points out, this escalatory urge to ‘embellish’ their products was widespread (‘A

lot of misunderstanding’, ‘there’s a huge disconnect’) and visible across all departments as the

previous chapters demonstrate. Subjects appeared to move easily into this mode, perhaps precisely

because ‘receiving, transforming, and displaying data’ isn’t nearly as flattering. Indeed Jenson

explicitly sees this grand discourse as motivated by the desire to ‘believe we’re doing more than

what we’re doing’. Hence we see a pattern of unfavourable comparisons between what the ‘reality’

is (‘dry’, ‘basic’, ‘boring’, ‘simplistic’, ‘awfully’) and grandiosity, which is indicated by

oppositions (e.g. ‘important’) and negations (‘far less ambitious, ‘uninspiring’, ’not very

interesting’, ‘not very inspiring’). There is an intriguing parallel here with the leadership literature,

once again. Sveningsson and Larsson (2006), for instance, found a disturbing tendency for

completely mundane managerial work to be escalated into the language of leadership because it

fed a fantasy of how so-called ‘leaders’ perceived themselves. Thus ordinary actions like

remembering someone’s name became charismatic leadership because of the capacity of the

fantasy of leadership add a symbolic gloss to ordinary actions. As I have argued in Chapter Two,

177

leadership is an example of an empty signifier whose main function is to produce ideological effects

through fantasy (Kelly, 2014). It appears that a similar phenomenon is at work at CloudDoc in the

way that the fantasy of Healthcare Perfected is able to reframe the mundanity of data conversions

into something that inspires.

Who is to Blame?

Coming face to face with this dislocatory gap was bound to motivate explanations and in

my conversations and interviews, the revelation of this apparent gap between mundanity and

fantasy often generated spontaneous attempts to explain this apparent discrepancy. Table 7.2 offers

exemplifies the common responses I witnessed.

Table 7.2—Blame

Sales and Marketing are at fault…

there were a couple of particular features that were sold to the client but actually we couldn’t

provide. And that makes it really difficult for [SERVICES] cos you know you've got a contract

signed and [SERVICES] are trying to deliver something and actually the product doesn't do it

(Daniel, Services)

I don't want to dog people but I think there's a huge gap between what Sales and Marketing

do versus what R&D is actually ready to put out there. It hasn't changed in the five years I've

been here, it's every time it's the same thing, as soon as we sign a new client or sign a new deal

it's like oh crap, now we've got two years of building stuff that we don't have. Why can't we

just sell what we have? It would be so much easier (Youssef, Mgmt/Dev)

Product/Development is to blame…

we're being asked to do this strategic upsell. Why can't you sell the new thing? It's because

they don't want the new thing at the moment. They're struggling with the fact that we haven't

gotten full value out of what they've paid for. It's very hard to get them to think about the brand

new shiny thing when you haven't even quite got them thrilled to bits about the thing that

they've already paid for (Bill, Snr Mgmt)

the problem is [SuperSmart], to a point, is technology for technology's sake rather than a real

robust business problem that needs to be solved. We just got a little bit ahead of ourselves with

[SuperSmart]. It was more about the technology than what was the need of our customer.

(Donte, Snr Mgmt)

when you get [sigh] a senior leader that, that um sets us off in that one direction and still wants

us to go in that direction but then looks over to the side and goes ooooh that looks pretty cool

too, and goes oooh I like that. The impact of that although it's am innocent thing to do means

the entire company goes oooooh look at that [Laughing] (Deepak, Services)

Researcher: I talked to a bunch of people who are saying this is a problem for Machine

Learning, for something that can read and understand what's most relevant. Does that-?

178

[Makes an obscene gesture] Oh god. The next upgrade. It's just like, give it up! Bring your

head out of the cloud. Really!?[Laughing] (Jian, Hospital IT)

Healthcare is at fault…

we're constantly selling the future but we're still very much limited by the present. There's a

slow, healthcare particularly is a very slow moving industry. We, we can sell a product and it

can take years to install (Victor, Marketing)

some of the stuff that [Product Development] is doing is very exciting, but that's not what our

customers are doing today. Our customers want operational reporting […] We kinda

leapfrogged where our customers were and what they were looking for to say, "We can build

a data lake and all this really cool stuff. We'll have machine learning. We'll have AI." And they

weren't ready for it. They're still not ready for it. (Donte, Snr Mgmt)

It is immediately striking that every department seems to believe that the blame lies

elsewhere. The view that Sales and Marketing are to blame for their apparently overzealous

promises is perhaps the most natural explanation. Youssef (who works in Product development)

sees a ‘huge gap’ between ‘between what Sales and Marketing do versus what R&D is actually

ready to put out there’. Likewise, Daniel (who works in Services) tells of being tasked with the

delivery of contractually agreed functionality that ‘actually the product doesn’t do’. This was

surprisingly common with many people telling me similar tales throughout my fieldwork. Here

Daniel is blaming Sales for erroneous contractual agreements; yet his story is in many ways

contradicted by the mirrored image offered in Henry’s experience (recounted in Chapter 5); but

Henry, of course, works in Sales. This muddies this explanation considerably because Henry

believed that he was being misled by Product Development, leading to a bizarrely circular

attribution of blame.

This tension was present even at the highest levels of CloudDoc. In one all-staff meeting, I

observed both the CEO and then one of the most senior managers in the company talking about the

importance of selling SuperSmart as the product that would make a difference to the company’s

financial situation. After this a third senior manager took the stage and completely contradicted this

by advising everyone to focus on selling ConnectSmart because ‘this is the product we can actually

sell right now to be profitable’. Hence even at the most prominent company meetings from the

most prominent company managers it was unclear what products were real and ready and what

179

were still promissory. This tension was not addressed at any point in this meeting. Similarly, we

see in these quotes that Bill (a senior management in Sales) substantiates Henry’s account,

describing pressure to ‘do this strategic upsell’ to the ‘brand new shiny thing’ (by which he means

SuperSmart). Contrary to the idea that sales and marketing are to blame, here we have Sales

lamenting the gap between shiny fantasies and the old and forgotten mundane functionality that

clients have paid for. Indeed it was common throughout CloudDoc to feel that the organisation was

being led by its fascination with ‘shiny’ new tech, leading to ‘technology for technology’s sake’.

Donte, a commercially orientated senior manager feels that this problem lies deep within Product

Development; Deepak, on the other hand, blames senior management, describing them as having

a kind of technological ADHD (‘but then looks over to the side and goes ooooh that looks pretty

cool too, and goes oooh I like that’).

Meanwhile, Jian (who worked in IT at the hospital) offered an outsider’s perspective by

collapsing into derisive hysterics when (after a year of immersion at CloudDoc) I was surprised

that Machine Learning didn’t remotely feature in his explanations of their software needs. That

‘shiny’ fantasy is apparently indicative of the need to ‘Bring your head out of the cloud’ (no pun

intended, or at least I think). According to Jian, the real needs of software were far more

fundamental. However, in yet another turn in this bewildering circularity, many at CloudDoc

blamed healthcare for this gap. Victor, who was partly responsible for the marketing strategy of

SuperSmart, believed that the problem was that healthcare is too slow—in other words, the

mundanity is actually located squarely within healthcare rather than CloudDoc. This view, itself

commonly articulated to me, believes that CloudDoc is ‘still very much limited by the present’, and

prevented from doing ‘all this really cool stuff’ because healthcare simply isn’t ‘ready for it’, and

which is still bogged down in trivialities like ‘operational reporting’.

180

Figure 7.1 Tautologies of Blame at CloudDoc

It is worth recalling at this point the previous two chapters. Much to the contrary of the

tautological and contradictory mudslinging on show in Table 7.3, the data revealed participation

from all departments, the hospital included, in the production of the fantasy of Healthcare

Perfected. The one conclusion that can therefore be taken from this with any certainty is that

participants seemed generally unaware of their own complicity in perpetuating this discourse, even

when they acknowledged its tendency to shed the bonds of its concrete mundanity. But a gap is

one thing, what happens when participants come face to face with outright failure?

Inevitable Failure

Today I’m shadowing Henry from sales. He’s a good sort and he seems to have a really good

relationship with Jim, also from sales who sits next to him. Henry tells me that he’s been with the

company for over 3 years which ‘feels like a really long time’. He tells me he joined in the good old

days when sales meant spending thousands on liquor with clients, getting them really drunk, selling

them everything and not delivering on it. I laugh but I’m not sure how much of it is a joke. Later I ask

them what percentage of their bids are won. They don’t know exactly but tell me it’s not great. Jim says

that the stats would be much higher for ConnectSmart, and then that the win rate would also be higher

for other products where the customer already has ConnectSmart ‘because they would expect that the

next product would be as good as [ConnectSmart]’. They both laugh. ‘Oh did my cynicism come

through there?’ he says, mockingly.

They’re great to shadow because they both talk through what they’re working on and provide an

excellent running commentary. Henry says aloud ‘we’ll have this feature soon’ as he types it into a bid.

Jim: ‘oh so soon’. Henry: ‘it just reeks of legitimacy’ he says sarcastically. I note that today these two

are almost the only people from sales in the office and I ask them about it. Henry tells me they’re out

Sales
blames Product
& Marketting

Healthcare
blames Product

& Sales

Product
blames Sales,
Marketing, &
Healthcare

Marketing
blames

Product &
Healthcare

181

‘spreading the gospel of [SuperSmart]’ and Jim tells me that he makes sure he says SuperSmart 3 times

every night before bed. Henry laughs and tells me that CloudDoc is actually a cult devoted to the secret

scriptures of SuperSmart.

Henry returns to his work and then comments to me that it’s worrying when you don’t know how to

answer the question “why choose our main product”. He asks Jim for help. Jim tells him to write that

‘it’s probably better than average’. They try to dig up an old email that has a pitch they can use. The

email says: ‘Clients love to hear about our roadmap’. The roadmap doesn’t exist.

Fieldnotes, Wednesday May 24, 2017

The above excerpt from my fieldnotes illustrates a particularly humorous day shadowing

people who could see the lighter side of their frequent encounters with CloudDoc’s many failures.

However, not all employees could see the funny side of failure. Table 7.3 offers a selection of

stories of failure, or the recognition that, for all the promises and hype around CloudDoc’s software,

it not only tends to be far more boring but often actually completely fails to deliver anything like

its claimed benefits.

Table 7.3—Failure

the funniest thing was when we were in with the doctor. Doctor had [SuperSmart] on their

computer. And he just logs in and it crashes and he's like, "oh this happens all the time." And

I was like, oh God. I was kind of like, at the time, feeling quite proud, "oh yeah, this is our

software," in my head. Didn't say anything at the time. He's like, logged in "oh this happens

all the time," and I was like, not saying anything. I am not saying anything (Ben, Dev)

that's a pretty cool thing for people to say if you're in the doctor's office here or hospital and

pretty much everybody here does this. They'll go over and just see what software they're using

and if they're using one of our products, they're about six years behind unfortunately. Then we

can go, "Oh, how's that working for you?" The answer's not always fantastic but it's cool but

you're actually connecting with real world outcomes for real people (Ashton, Product)

when you go to actually manage for our customers, and for us, you go to actually manage

these applications there's bits all over the place […] we end up with a mess (Deepak, Services)

paper is very mobile. You can move around a hospital with an end of bed chart very easily.

You can go and pick up the patient's notes and put them on a trolley and move around the

hospital. We, for some reason, in digitizing the clinician's world have made them log into five

different systems with five different usernames and five different passwords, and then that data

is all siloed in those five different systems. They need five different registrars all logged into

an iPad at the same time when they're at the end of the bed with the patient. We have completely

complicated their workflow, made it more complicated, more dangerous. That is inexcusable

really. Whilst you can say that going electronic has improved patient safety, not when we do

that sort of nonsense (Bill, Snr Mgmt)

our new products that you have [on the website], they're nice but they're not as useful as the

old crap they had. Because the old stuff they had is still more functionally advanced, so they

can do more things with the old than they can with the new stuff […] The answer is always oh

take the new one, take the new one, but the answer is never take the new one from the customer

point of view. There is a cost associated with it, with change management which is always

overlooked, I mean by developers (Harrison, Services)

182

here is such a huge volume of data coming in right now that it is very, very hard for clinician

staff to keep up to date with all the latest data that helps you make the right decisions. There's

so much data coming in now that how could they possibly keep up to date with all the

knowledge that's coming in? I think they're also starting to get quite scared about the fact that

everything is recorded but and there's this sort of thought that they would have seen everything.

And so they're getting scared that they may miss something […]and somebody could look

through the record and find, hidden away somewhere, that there was some piece of information

that would have made a difference. (Daniel, Services)

there was a time when it wasn't much electronic information so you can just shift through it

and it was quite easy to find. Then as more systems were introducing more information, it was

like Jesus! […] So, what clinicians have been complaining is that, "God! We need faster

computers. It's too slow." What they're actually complaining about is to get an understanding

of the patient you've got to click, wait, view. Click, wait, view (Jian, Hospital IT)

the process from the actual software getting to what the specialist wanted it took somewhere I

don't know maybe a minute in a half to what they used to like a few seconds to have done

(Sanjeev, Hospital IT)

while we're trying to make it easier to access information or have more information, it does

complicate the workflow for some people because there is too much (Winnie, Product)

even things as simple as bedside assessments of patients are hard today because you can't take

an iPad from one ward into the next ward […] you have to either wipe them down or leave

them there and log onto another one in another ward. These are some of the challenges of

delivering software in environments where the actual device can carry germs (Ashton,

Product)

[CloudDoc] despite what they say, they just don't have that product. One instance, where we

were trying to use it, the process was so slow and convoluted that clinicians just couldn't stand

it (Jian, Hospital IT)

from the nurses' perspective, they really just want to do anything to get their job done faster if

they could from just like streamline just get things done. And their argument for it would be

they're not in front of the computer all the time and that's always the thing that comes through

and that a lot of our solutions are kind of to them they're almost they see it as well it's all good

and well if you're in front of the computer all day […] no one is going to go sit in the back

office just to type something and then come back out (Sanjeev, Hospital IT)

A lot of what I've seen as AI and its very, very specific; very, very specific domains. And a lot

of the demos that I have seen are very specific demos that run on nice golden parts, and when

you deviate from those golden parts everything falls apart (Cally, Dev)

what [RESEARCH] took was that free text, and tried to make sense of it without understanding

what it even meant. So it came up with things like, a variable of, “Unwell Adult is a predictor”.

Unwell Adult in ED is what they call just a whole lot, because they've got nothing else. That

means, “Unknown” […] here's another piece of that. “Giving physiotherapy after a stroke is

as predictive variable against death”. No it isn't. Because the clinician knows the patient is

more likely to live, they will prescribe physiotherapy (Allan, Hospital IT)

they do something we can't do, and that is the complex modelling, you know, the complex

machine learning. So that's great. The problem is, it's a black box [Clinicians are saying…]

"No, I actually don't want you to use the complex machine learning modelling. I want you to

use only these variables and create a logistic regression model, because I can understand it

and I can explain it to my patients." Really interesting, isn't it? (Allan, Hospital IT)

183

These accounts exemplify the doubts, contradictions, and impossibilities raised in the

previous chapter with a palpable sense of disappointment, frustration, and even embarrassment.

Ben plummets from ‘feeling quite proud’ to ‘oh god’ when he learns first-hand that ‘our software’

crashes all the time. Ashton similarly struggles with the tension between the ‘pretty cool’

experience of seeing CloudDoc’s software in action, contrasted with real world feedback that

actually its ‘not always fantastic’—note how even here the blame is shifted subtly onto healthcare,

whose systems are ‘about six years behind’. Deepak also describes encountering their software

beyond the walls of CloudDoc (‘when you go to actually manage for our customers’) and is

disappointed to find that it’s a ‘mess’. It’s worth pointing out several senior managers explained to

me that most of their developers have never seen their software working, due to the restrictions on

private health information and the complexity of their software, much of which works behind the

scenes. Even when a new feature finally goes ‘live’ it is understood as going into a different virtual

space they call ‘production’ after having worked through a series of other virtual spaces (dev,

testing, and stage). The production stage is also the point at which it becomes inaccessible to

developers. This perhaps exacerbates the ease with which their products can take on elements of

fantasy in their discourse since production ends up being a kind of untouchable virtual space

somewhere ‘out there’. It also explains the manifest surprise at its failures in the ‘real world’.

 Some of these quotes are targeted at what might be considered the wilder aspects of the

discourse of Healthcare Perfected, namely those that boast of the exploits of machine learning

(ML). Cally represents a minority voice within CloudDoc, who seems to take special pains to

circumscribe its prowess to ‘very, very specific; very, very specific domains’ which is contrasted

again against a sense of the ‘shiny’, here described as ‘golden’ parts. From an external perspective,

Allan offers two important failures of his experience with CloudDoc’s ML. The first is what he

described to me as a failure to understand domain knowledge (‘without understanding what it even

meant’), evinced here by two nonsense predictions. It should be said that despite this, Allan was a

strong believer in the vision of ML and he saw domain knowledge as a surmountable problem. It

184

is in this spirit that he still thinks it’s ‘great’ that CloudDoc can bring complex modelling through

ML. However, it fails on a second front because clinicians can’t understand how it has arrived at

its conclusions and hence it was a ‘black box’. Again, this is not simply because clinicians lack the

statistical expertise, as may be presumed. This is, in fact, a feature inherent to ML: not even its

developers (who prefer to call themselves Data Scientists) understand how it has arrived at a given

algorithm. This is because ML operates on a complicated, iterative process through random trial

and error to arrive at a series of ‘weightings’ through nodal gates—if that doesn’t make sense to

the reader, don’t worry: even the experts I worked with struggled with the exact mechanisms of it.

Yet the majority of these accounts of failure are not directed at ML. Rather they rebut even

those claims which seemed the most plausible, such as efficiency and complete knowledge. A

recurring theme here is that CloudDoc’s software often adds complexity (‘made them log into five

different systems with five different usernames and five different passwords’, ‘completely

complicated their workflow’) and inefficiencies (‘There is a cost associated with it … which is

always overlooked … by developers’, ‘click, wait, view. Click, wait, view’, ‘slow and convoluted’,

‘a minute in a half to what they used to [do in] seconds’). Such claims surely strike deep at the

notions of simplicity and efficiency that are so central to this discourse. Furthermore, rather than

infallibility, CloudDoc appears to have potentially made healthcare ‘more dangerous’, directly

contradicting this key promise (‘you can say that going electronic has improved patient safety’),

which is ‘inexcusable’.

Ironically, CloudDoc themselves were a perfect example of the consistent failure of

software to improve efficiency. CloudDoc firmly believed their own discourse about the superiority

of software and aimed to digitise and automate almost anything that moved. During one meeting I

observed with the research team, a fellow Clouder from another department gave a presentation

about his project to completely automate a major portion of the services work carried out by the

company. We were, in fact, sitting in a glass bubble of a meeting room directly next to the rows

and rows of fellow colleagues whose work, we were being told, was a waste of time and in need of

185

complete automation. Yet at the end of his presentation, the research team showed their

appreciation by bursting into spontaneous applause—something which they told me after had never

happened before. This is ironic for more than just the callous eagerness to make one’s own

colleagues redundant: in fact, services was the only section of the company whose work was

actually billable time and hence reasonably profitable; therefore the efforts to automate their work

would ultimately lead to a loss of revenue for the company at a time when it was most in need of

it.

Indeed, CloudDoc pursued automation to surprising extremes: one of the developer teams

I observed spent many weeks building a feature that could automatically monitor the extensive

auditing trails produced by SuperSmart and ‘kick people out’ for ‘naughty’ behaviour—these are

actual quotes taken from an audio recorded ‘Show and Tell’ meeting. But even that wasn’t enough.

They then spent several more weeks developing a second automatic monitoring service which

monitored the monitoring service. That sounds like a bad joke, and the recursivity wasn’t lost on

the developers. What was lost on them was the fundamental assumption that software is always

superior and more efficient, when, in the case of CloudDoc, it plainly wasn’t. They had systems

upon systems of automation and electronic records for everything, with the result that developers

had to literally document their daily work in four different systems. Most ironically, the one system

that they actually relied on was a paper system which saw them using post-it notes on a large shared

whiteboard. Meanwhile, their automation displayed all the annoying quirks of a system that lacks

basic human understanding. For example, I was continually pestered by an automated time logging

‘bot’ called Replicon which demanded that I log my hours every day—but I wasn’t even being

paid. When I complained that this seemed a little over the top, my first team leader shrugged it off

as ‘not really something we can change’ and in any case it would be useful ‘if like you ever wanted

to know how many hours you worked’. Meanwhile, recruiters were hamstrung by the electronic

mandating of three layers of bureaucracy to sign off on job offers. This meant that even when they

were meeting face to face with the most senior manager responsible for the offer, the deal couldn’t

186

be confirmed because the lower levels hadn’t yet signed off. In one case, this exact situation

occurred with the complication that when, finally, the lower levels had signed off the executive had

since hopped on a plane and wasn’t available for a further 24 hours. In marketing, one employee

told me with pride that their third-party mass email communication application cost over $20,000

because it was able to provide amazingly detailed analytics about who opened what when. These,

incidentally, were fed ‘live’ along with website data onto a series of monitors poised over their

heads and which broadcasted how each employee was doing so that they could ‘prove their worth’.

Except the issue was that the email system didn’t work properly. Yet.

In the Healthcare Perfected discourse, paper is mocked as a throwback to dungeons and

dark ages. In contrast, software is hailed as superior because it makes knowledge instantly available

everywhere. This is due to a purported, though implicit, assumption that software makes knowledge

completely immaterial. In fact, knowledge is always immaterial;77 the access of knowledge is

where it clings to this mortal coil. But the fantasy makes the claim that paper is a material (thus

inferior) way of accessing knowledge, while it presents software as liberating us from this

materiality. Yet this is precisely the assumption that is repeatedly challenged here as these quotes

foreground once more the materiality of (accessing) knowledge, software notwithstanding. For

example, the act of logging in is highlighted (‘five different registrars all logged into an iPad at

the same time’, ‘he just logs in and it crashes’), computers are re-located as existing in a physical

space (‘not in front of the computer’, ‘sit in the back office just to type something’), which takes

real time (not ‘real-time’,78 e.g. ‘going to go sit … then come back out’). And, once again contrary

to notions of increased safety, we are reminded that iPads are an ‘actual device [that] can carry

germs’. Software, it turns out, is accessed materially in much the same way as paper, perhaps even

being sometimes surprisingly less efficient.

77 Granted knowledge could be argued to exist only in actual material forms, such as paper, computer states, and—

most importantly—neural pathways in human brains. The point is clarified by considering the qualities of information

rather than the more human-centric notion of knowledge. Information is better understood as a pattern emergent from,

but not reducible to, the matter in which it is temporarily stored. In any case, the fact that information/knowledge

always implies matter on proves the point here even more so.
78 As in instantaneous, as quotes suggested in the previous chapter.

187

I am reminded of a nurse who told me during my hospital observations that they had simply

switched from searching for paper files all day to trying to find an iPad that was actually charged.

Moreover, when I observed a nursing shift changeover at the hospital, it was conducted under the

glow of a monitor displaying live information about patients in the ward. There were a series of

computers around the perimeter of the room and, after the nurses had discussed their patients with

the incoming shift, each nurse sat in front of a computer and looked at their tasks as laid out by

CloudDoc’s software. But then I realised what they were really doing: they were writing down

these tasks onto small paper notebooks which then they carried around with them. The nurse I was

shadowing at the time looked rather embarrassed by this given that I was studying health software

but told me that it was just quicker this way. Later in the day, she did indeed take an iPad into the

ward to input some observations into it. However, when she tried to use it at the patient’s bedside,

the Apple pay feature was accidentally activated, and this led to half her screen dropping down out

of sight. She didn’t understand what had happened and, in the interest of trying to focus on what

the patient was saying to her, she tossed the iPad aside and proceeded to scribble the observations

into her notebook, which she later had to re-write into a computer. Moments such as these add to

the quotes above to challenge the purported overcoming of materiality in this fantasy.

Equally, the claim of perfectly complete knowledge is similarly impugned without mercy.

Instead of the ‘rich and rewarding’ workplaces we heard of in the previous chapter, the ‘huge

volume of data coming in right now’ is recast as a curse. Clinicians have now ‘too much’

information, making healthcare much more complicated, ultimately leading to clinicians feeling

‘scared’. Yet despite all these profound failures to live up to the promise of Healthcare Perfected,

woven throughout these quotes is a remarkable reluctance to disregard the fantasy itself. All

throughout is the assumption that software can and should be faster, safer, efficient, and smarter.

This is most obvious in the context of the now overwhelming and scary levels of knowledge.

Implicit here is the assumption that complete knowledge is possible and infallibility is potentially

available, indicated both by the belief that ‘some piece of information’ might have ‘made a

188

difference’, and the suggestion that software audits everyone (‘everything is recorded’) and catches

us in our mistakes (if only retrospectively). Indeed, omitted in the Table 7.3 is the resolution Daniel

himself offers (which directly follows the above quote):

So what we need to do is surface up those really relevant pieces of information, or in fact that the system can

identify that this piece of information links to this piece of information

What then is the resolution to this failure? It is nothing other than the reaffirmation of its promise

and the absence that justifies it. It is the belief that we must lean ever more on the ability of software

to make up for our deficiencies; we must recommit ourselves anew to software that we might

become the uber-clinician. How can we explain the incredible persistence of this discourse despite

its egregious inability to be what it says it is?

The Affective Force of Fantasy

The crux of a negative ontological perspective is its recognition of the ideological power of

failure, specifically the failure to be the identity that is desired. Poststructuralist discourse theory

asserts that, no matter how hard we try, a gap will always remain between discourse and reality;

identity can never be fully claimed. In its extreme, this gap—or absence—can produce the

paradoxical effect of making us try even harder, rather than questioning the fantasy itself (Jones &

Spicer, 2005). This appears to be the surprising finding emerging with the discourse of Healthcare

Perfected. In the remaining sections of this chapter I move now to demonstrate the way in which

this fantasy manages to persist despite, and even because of, its failure and the effects this produces.

Table 7.4--Fantasy

it's very inspirational knowing that you work for a company that has the potential to change

the world (Victor, Marketing)

those products are saving the health system money, making people's lives better, and making

people's lives better outside of the health system as well. And to be honest, that's why I'm still

here (Steven, Product)

[some people] love technology for technology's sake. I'm very much about what are we gonna

do with it that makes a difference, and that gets me out of bed. And it also stops my sister

yelling at me every time she sees me because of our crap software (Donte, Snr Mgmt)

if we can answer this question precision medicine has the potential to totally transform health

care in much the same way that antibiotics have hygiene and vaccinations have also. So this

is a once-in-a-generational change (Blair, CEO)

189

my time in [CloudDoc] hasn't been really smooth sailing but the thing that keeps me here is

that I think that I'm doing something good. So even if I'm not really developing software, I'm

just trying to enable ... the people who are trying to enable the hospitals to make peoples' lives

better. I'm still part of it. So it's just like, being part of something good and that's the best part

of being part of, like [CloudDoc]. Wow, it’s kind of corny (Cody, Product)

we build the software that makes people better (Ashton, Product)

we've just started saving lives, because data that was once not accessible to a person when

they transferred from one hospital to another is sitting right in front of them when they go into

that person's timeline or into [SuperSmart] [Bill, Snr Mgmt)

we are going to build a product, which is beneficial for millions of patients, and we help

improve health care for all mankind (Francis, Dev)

I'd like to think that everyone that ... I'm surrounded by really smart people. They're just really

supersmart people (Youssef, Mgmt/Dev)

Table 7.4 exemplifies the single fact I found most intriguing at CloudDoc, namely the

almost constant and unanimous affirmation of the world-changing, revolutionising power of their

software. This reminds me of the historical timeline I saw in my induction, which positioned

CloudDoc as one of the key revolutionary moments in the history of healthcare. Blair, the CEO,

calls this a ‘once-in-a-generational change’ and his highly epic and energetic language (‘potential

to totally transform’) is echoed throughout the organisation as we see above (‘inspirational’,

‘change the world’, ‘saving lives’, ‘millions of patients’, ‘for all mankind’). These phrases were

ubiquitous at CloudDoc and tap directly into a powerfully affective dimension of human goodwill

and our desire to do something worthwhile and meaningful with our lives. These claims, I believe,

are the lifeblood of the fantasy of Healthcare Perfected. They connect directly with our deepest

desires (to be valued, to find meaning, to be ‘good’) and allay our deepest fears (that life, us, or our

actions are ultimately meaningless and worthless).

Moreover, it’s clear that these quotes evince a movement well beyond merely attempting

to make mundane work more interesting. Here we glimpse the way this fantasy of world revolution

provides a potent resource upon which this discourse can draw in the face of failure. Indeed,

CloudDoc was by all accounts a tumultuous place work, beset by complexity and caprice in equal

measure. But this powerful fantasy sustains people (‘gets me out of bed’, ‘why I’m still here’) even

when work isn’t ‘smooth sailing’ or they are confronted with their ‘crap software’. Even the

190

recognition that this fantasy is ‘kind of corny’ in no way invalidates it—rather it simply

acknowledges the emotional and moral nature of these motives (‘make people’s lives better’ and

‘be part of something good’), which lie well beyond the stereotypical rational and antisocial

software developer caricatures.

In fact, it may be that this fantasy not only ‘embellishes’ mundanity, but it could also offer

a compelling narrative that papers over some of the more cynical reflections on their software. For

instance, developers infamously despise corporate culture and bureaucracy (Himanen, 2001) yet

notions of efficiency, managerial control, and even scientific management featured prominently in

constructing the discourse of Healthcare Perfected. Perhaps this is why this fantasy seems to

articulate developers, and Clouders in general as becoming quite literally lifesavers, so as to

reframe these elements into something more savoury. This software is directly equated to ‘making

people better’ and ‘saving lives’. Moreover, the final quote also emphasises the extremely common

statement that Clouders were ‘super-smart people’79 and people regularly told me that what they

loved about CloudDoc was that everyone was really smart (themselves included). The fantasy thus

presents a highly desirable identity for Clouders as a bunch of super-smart people, making history

by changing the world, and saving millions of lives.

There is, therefore, a powerful affective force behind this fantasy and this is true not only

of the ‘super-smart’ people building the software that is changing the world, but also of the vision

for healthcare more generally. The idea of perfect healthcare is undeniably alluring, and it seems

poised to please everyone: clinicians transcend humanity to become gods; managers gain oversight

and control over the most minute aspects of employee practice; administrators gorge themselves

on endless data, audit trails, and reports; and even patients may relax in the knowledge that god

once again watches over them and keeps them from harm. This is why the failure of the product

does not amount to a failure of the fantasy.

79 This phrase was so common that it resulted in my choice of pseudonym for their flagship product.

191

Indeed, as the previous chapter demonstrated, the defining discursive strategy repeated over

and again by Healthcare Perfected was to construct a sense of profound lack and absence in the

idea of healthcare without it. This is the key point: the story of this discourse is that healthcare has

already failed. Therefore, the experiences of failure and mundanity offered in this chapter do

precious little to challenge the hegemony of this fantasy. Failure does not diminish CloudDoc’s

software; rather, and somewhat perversely, it merely reiterates the absence to which it points and

therefore further reinforces its desirability. The discourse itself appears blameless, and failure is

reinterpreted as evidence of its own necessity.

Figure 7.3 The Hegemony of Healthcare Perfected

Figure 7.3 depicts a culmination of the three findings chapters which demonstrate overall

the way in which the discourse of Healthcare Perfected is able to sustain its desirability despite its

consistent failure. As Chapter Five demonstrated, the key point that makes this cycle possible is

the break between software as a signifier and its specific referent, in this case the actual code

functions it produces. This is the significance of software as an empty signifier: in shedding itself

Software

as Signifier

Actual
Software

Code Functions

Absence
creates desire
for software as

fulfilment

Failure
Software

inevitably fails
to deliver

Reinforcement
Failure is

interpreted as
evidence of

absence

Fantasy
depicts

healthcare as
an absence

The Hegemony
of HealthCare

Perfected

192

of specificity it is therefore able to shift discourse about what it is and what it does into the domain

of fantasy. But key to the function of empty signifiers is the way in which they are able to signify

a sense of something lacking, the presence of absence. Chapter Six therefore highlighted the way

in which this fantasy of perfect healthcare is built on a carefully constructed void—a continual

framing of healthcare as broken and inefficient, people as inept, data as missing and so on. Finally,

in the present chapter, we see that even the recognition of failure and mundanity is continually

reinterpreted as, in fact, evidence of the very lack that this fantasy presupposes. Consequently,

instead of a very specific conversation about specific code functions that do or do not work, we

have an abstract fantasy that fuels itself by producing the need to work even harder to overcome its

own failure with more and better software. This is therefore one of the significant effects of

software as an empty signifier: it is able to sustain its hegemonic desirability despite or even

because of its failure; and this, moreover, is uniquely visible through a negative ontological

perspective.

Hegemonic Effects

In the remainder of this chapter I explore two important ways the discourse of Healthcare Perfected

overcomes potential resistance that springs up from its repeated failure and in this way asserts its

hegemony. The quotes offered below demonstrate an antagonistic frontier in which points of

resistance and conflict emerge, and in so doing we see the discursive strategies in force that vie to

reinterpret resistance back into the discourse. Figure 7.4 outlines visually the way in which

potentially derailing resistance is pulled back into the cycle of reinforcement through the strategies

of deflection and inevitability.

193

Figure 7.4 Discursive Strategies for Suppressing Resistance

Deflection

Table 7.5--Deflection

some clinicians do find our electronic records confronting. There is a lot of discourse around

‘the electronic record gets in the way of my interaction with the patient’ and we have to pivot

them more toward the ‘It enables you to be more effective, it enables you to not have to do the

donkey work. You can actually be more creative as a clinician, you can deal with the really

esoteric stuff and leave just the donkey work to the machine. And that works for some people

and it doesn't work for other people, and it's interesting about the people who it doesn't work

for, the people who are happy to be the drones doing the same thing over and over again and

that's what gets them out of bed each day. What happens to them? I don't know (Steven,

Product)

it doesn't matter what software I've worked on, you generally do get the users agreeing that,

that has improved the process. Kind of. You'll still get the complaining about it as well, I guess

Potential

Resistance

Deflecting

Responsibility

Construct Sense

of Inevitability

Absence
creates desire
for software as

fulfilment

Failure
Software

inevitably fails
to deliver

Reinforcement
Failure is

interpreted as
evidence of

absence

Fantasy
depicts

healthcare as
an absence

194

that's because you're changing the process. Whenever you change the process, there's people

... particularly if it's something that they've been working in robot mode the last 4 years, the

same thing day in and day out (Clark, Dev)

the older folk in organisations are the ones that are more rigid and don't enjoy or like

change at all. But I'm quite open to change [rising pitch]? […] I do think it's an innate thing

and it needs to be screened for (Lauren, HR)

it was the younger generation that picked it up and could see, “Actually, this is really super

easy to use” (Donna, Nurse)

I guess you got that, you got better control, better visibility, and less chance of error hopefully

if everything is followed appropriately (Kelsey, Dev)

you remove any human error, unless the input at the start's wrong (Henry, Sales)

there may be some other history, which may not be in the data. […] that data, they should be

in that medical record, but they often aren't. How complete is your data set is probably the big

thing, because the information is only as good as the data that's there in the first place. I'm not

confident that our medical records have every single medical data. It has good lab results and

things like that, but I don't know how comprehensive it is at the moment. (Khloe, Snr Mgmt)

certain clinicians might be protective about their data and whatever else. I personally don't

have a problem. Unless we'll see it all but it's people’s perspectives. Because they might feel

like their performance is being judged by the amount of patients they have and haven't seen

(Sanjeev, Hospital IT)

because you can now real time see where we're failing. Good, bad? Yeah, I think it's good. It

keeps us honest. But what we found is our audit results have gone down.

[Researcher: What do you mean by that?]

That we've got worse results than we had on paper. Because we're honest (Marshall, Hospital

IT)

some people don't like necessarily being exposed. My personal view is that transparent

practice keeps us all honest and working at our highest level. There has been a lot of

resistance, and I think that's just because some people don't necessarily like vulnerabilities

being exposed, or areas where they may need to improve, where they feel they're doing okay.

I guess that may be an insight issue.

I think that comes down to the mindset. I personally like the idea of being able to get access to

information that's going to govern practice or guide practice so much easier. Huge fan of it.

That's my accountability (Donna, Nurse)

The quotes in Table 7.5 all evince a specific technique that quells the resistance of counter-

discourses against the fantasy discourse of Healthcare Perfected. Each of these quotes in their own

way deflects failure away from software and on to humans thus reinforcing the sense of humans as

pitiful, lacking creatures that characterises this fantasy. For instance, Steven dismisses out of hand

the idea that their software might be hindering clinicians. At base here is a difference in the

conception of care between antagonistic discursive formations. But from the perspective of

Healthcare Perfected, software is intimately bound up in what it means to deliver ‘good’ care and

thus this counter-discourse is inconceivable and ‘confronting’. Steven is explicit about the way in

195

which such dissidents need to be ‘pivoted’ towards the uber-clinician who is ‘more effective’ and

‘creative’. In contrast, those who resist are characterised as ‘drones’ who love to do ‘the same thing

over and over again’. Their idea of care is made equivalent to ‘donkey work’, and they, presumably,

are donkeys. Clark makes a similar move in characterising anyone who disagrees that they have

improved the process (i.e. failure as we’ve seen above) as the people who love ‘robot mode’, which

is (echoing Steven) ‘the same thing day in and day out’. What a startling reversal this represents:

people are made equivalent to robots, while software becomes somehow more humanising.

 A very much related move tended to equate resistance with being old. Younger people

could pick it up and immediately ‘see’ its benefits; while ‘older folk’ are characterised as ‘rigid’

and ‘don’t enjoy or like change’. Yet these all-too-easy generational stereotypes are belied by

Lauren’s uncertainty about her own identity (‘I'm quite open to change [rising pitch]?’) and her,

quite contradictory, assertion that acceptance and fluidity is an innate quality (thus not seemingly

not age related at all) and ‘needs to be screened for’. Indeed, CloudDoc pushed this expectation of

accepting change to its limits in their own practice. I have already described the way in which lines

of business, product names, and job titles were frequently completely revised, and this happened

multiple times just in the 12 months of my fieldwork. Also during my fieldwork there was a

company-wide email that ordered staff to stop using Skype as their main communication platform

and switch instead to MS Teams. The clear expectation was that staff ought to be flexible enough

that they can fit in with the organisation’s highly inflexible demands over their autonomy. Those

that resisted this—and there were many because MS Teams didn’t offer the same functionality they

had been using—were derided as being ‘old-school’ and other similar negative age-related

accusations. It seems that such people have no place in the world of software (‘What happens to

them? I don't know’). But, more importantly, this move deflects failures onto its users and away

from the software itself. While the software (whether MS Teams or CloudDoc’s own products)

remains without fault, those who resist or demur are regarded as the ‘donkeys’, ‘robots’, ‘drones’,

and ‘old people’ who should be screened out.

196

This deflection is also evident more subtly in statements that do not explicitly identify

scapegoats but nevertheless imply that any failure is due to the ineptitude of its users. For example,

Kelsey offers a now-familiar series of superlatives with the caveat that this will be accomplished

only ‘if everything is followed appropriately’. Failure, therefore, belongs once again to humans,

and specifically the degree to which we are subservient at that! Henry thinks likewise: ‘unless the

input at the start’s wrong’. Note that this implies then that the process itself is, once again, perfect

and it is user input that fails. Strangely this assertion only works if it is assumed that software

developers are either not human or not bound by the same human fallibility that diminishes

software users, since the code was itself the ‘input’ of human developers. More subtly still is the

recognition that even assuming user competence, the electronic record itself may be patchy or

errant. Ultimately, of course, this is still the fault of its users who have failed to accurately and

completely maintain the record. And not only does this deflect failure away from the discourse

itself, it reasserts that lurking absence once again. Khloe admits her lack of confidence about the

comprehensiveness of the record, but adds the phrase ‘at the moment’, giving both a sense of the

present as awaiting the promise of the future and the concomitant assumption that this needs to be

remedied by working even harder towards Healthcare Perfected, by converting more patients into

data.

In addition to human ineptitude and our appetites for donkey work, resistance is further

rearticulated as evidence of dishonesty and a lack of personal integrity. What is perhaps most

striking is these quotes came from those at the hospital, showing a degree of discursive

internalisation beyond CloudDoc. Indeed, Donna is adamant that this technology, which she calls

‘transparent practice’, aids her in her efforts to work at her ‘highest level’ with full

‘accountability’. Marshall boasts that one of the key strengths of software is that it can show ‘where

we’re failing’, and even though audit results are worse, this is good ‘because we’re honest’. This

contrasts noticeably with the complications nurses are now facing as a result of having fields (such

as weight) mandated, other technical issues, and even just the fact that paper is often more efficient.

197

Yet this new honesty includes the ability to specify exactly who is lowering their audit results and

there is recognition that this leads to ‘vulnerabilities being exposed’ and the feeling, most likely

accurately, that ‘their performance is being judged’.

The pressure to not be seen as dishonest is likely to promote the adoption of technology by

clinicians even if it doesn’t work as promised. During my observations at the hospital I witnessed

a debate on exactly this issue: a charge nurse of a resuscitation unit was first delighted at the way

this software would reduce the amount of time she would need to spend generating audit reports

each month. But then she realised that this feature also meant that those ‘real time’ records of

failure would be available to all for comparison and rankings. Being aggrieved by this fact, she

tried to no avail to convince staff from the hospital IT that this data was highly sensitive and

required contextualisation. Instead she seemed only to earn aspersions on her honesty,

accountability, and commitment to transparent practice, owing to the kind of mindset Donna

considers ‘an insight issue’. While I didn’t witness a resolution of this issue, it’s clear that the

discursive framing of resistance as dishonesty presents a powerful force to perpetuate its use even,

once again, in spite of patent failure.

Overall this strategy demonstrates subtle ways in which the failure of software, or even

simply resistance to it, is rearticulated within this discursive formation as the failure of humans.

This move promotes and extends the way that humans—be they clinicians, patients, workers, users,

or dissenters—show up generally within this discourse as limited, inferior, and subservient to a

software that perfects us. Such a discourse appears to have no place for those who resist or those

whose ‘mindless’ work is replaced by the mind of the machine. Indeed we have here an example

of the ways in which this discourse attempts to subjectify even those who refuse or resist using

software, and, in this way, we see how the socio-political effects can extend beyond the actual use

of software. Ultimately, the grand fantasy of Healthcare Perfected remains unblemished and its

shortcomings are deflected onto a pejorative sense of human lack. And all the while software retains

the impression of its rightness, necessity, and as the final section will show, its inevitability.

198

Inevitability

Table 7.6--Inevitability

I mean it's the way it's going, they haven't really got a lot of choice […] I mean, three years

ago I really didn't like it at all. But, I kinda realised that it's, that it's going to go there anyway.

Just about everything is being connected and there's really not a lot you can do about it. You

kinda almost just have to embrace it (Clark, Dev)

t's happening across other sectors as well, you know. This is ... Google and the AI stuff […]

Google has monitored my routes and my travel times to measure what those averages are, but

the benefit to me of knowing what that travel time is outweighs my concern about privacy

(Steven, Product)

[it] always makes me laugh. “I don't want a work phone because you'll track what I'm doing”,

says the man walking around with an Apple phone in his back pocket. You know? On

Facebook, using his Instagram, with the GPS enabled, you know? (Marshall, Hospital IT)

even when we do eye surgery people will, we have a laser machine that does it and it scans

watching your retina to see if it moves it stops, which humans can't do that as well. So I mean

it's already kind of happening (Kian, Dev)

No, I think the charge nurses have found it really, really difficult, the fact that we open the

reports up to the senior teams and we've actually created specific reports so they can click on

and look at each ward, and that's been quite challenging for the charge nurses because they

can be compared with each other. "Why is ward 2 doing it so well and you're doing it so

badly?" Or "How come we got this ..." and those sort of things. But that's the digital age

(Marshall, Hospital IT)

that's probably the only way things are going to go in terms of processes. We're going to

become more software driven. […] It's gonna become more and more automated, as we collect

more and more data and I guess, the machines will start most of the analysis eventually (Clark,

Dev)

you'll never replace ... well, not never, but it's not foreseeable that we'll ever replace humans.

That’s a while off. At least for the next couple of decades. Could be wrong, everyone seems to

get these predictions wrong about computers. (Wayne, Research)

The problem is, it's a black box […] Really interesting, isn't it? That we think that the way to

go is more complex because we've got that at our fingertips now, but perhaps we can't leap

straight into that (Allan, Hospital IT)

Table 7.6 demonstrates the second way that the discourse of Healthcare Perfected maintains

itself in spite of resistance and failure. In these quotes we are struck by an overwhelming sense of

inevitability. As the previous chapters have alluded to, this sense of inevitable momentum was a

fundamental, taken-for-granted hegemonic truth at CloudDoc. I met it at my very first meeting

when the COO pitched CloudDoc as being on the crest of breaking wave, which is striking for the

way the company is positioned as riding rather than leading, while waves themselves create a sense

of momentum and energy. I met it again in my induction in which CloudDoc was positioned along

199

a timeline among the greatest medical inventions: time rolls on ceaselessly and CloudDoc is just

one among many inevitable transformations in the onward march of progress.

More technically, this sense of inevitability is a direct consequence of this discourse’s

ability to both persistently characterise the present in terms of absence and lack, and the sense of

historical, world-changing revolution it constructs through fantasy. Both of these elements paint

the present almost as if it is a vacuum, an empty void, that begs to be filled by the promise of

perfection. Astonishingly, even developers themselves seem to have resigned all sense of agency

(‘it's going to go there anyway’, ‘the only way things are going to go’) and there is even the

suggestion that the machines will begin to ‘start most of the analysis’ themselves eventually.

Wayne seems to want to leave something for humans but cannot bring himself to commit to the

claim that software will never replace humans (‘you’ll never replace… well, not never’). This leads

Clarks to the conclusion that he just has to ‘embrace it’, which suggests once more an affective

orientation (vs, say, accept), though his many hedging words (‘I mean’, ‘haven’t really’, ‘I kinda

realised’, ‘you kinda’) suggest a lack of certainty and the need to constantly reaffirm this. Perhaps

this is why Clark adopts the second person almost as if he is telling himself to believe it (‘not a lot

you can do’, ‘you kinda almost’).

Another version of inevitability manifests through a sense that it not only will happen, it is

already happening. Steven appeals to other sectors and, predictably, the masters of eschatological

fantasy and near omnipresent mass surveillance, Google,80 while Marshall makes an analogous

argument with Facebook and Apple. This argument seems to have two distinct forms: the rosy

version of it is simply that we have already accepted this discourse about software because of the

benefits and superiority it can provide (‘the benefit to me … outweighs my concern about privacy’,

‘we have a laser machine [for eye surgery because] humans can’t do that’). This argument amounts

to a straightforward acceptance of the fantastic promise of software’s perfection. Accordingly,

resistance and indeed failure will be interpreted as nothing more than ruts on the road towards

80 For an insightful, if scary, overview of these points see Lanier (2019) and Rushkoff (2017).

200

eventual perfection. On the other hand, there is a darker version of the argument, which seems to

assert that failures and problems may well be ‘really, really difficult’ and confronting, and even if

we really don’t like it, ‘that’s the digital age’. Both these views reduce to the same effect: human

agency is denied, resistance is invalidated, and those caught within its hegemonic grip are given a

choice between accepting it as the path to indisputable, if only eventual, perfection or the alternative

choice is to become one of the drones, donkeys, robots, or old persons who have no place in this

regime.

However, the conclusion that this vision of Healthcare Perfected is inevitable is one that

needs to be regarded with deep suspicion. Clearly it plays into old arguments of technological

determinism and that great modern sentiment of the inevitability of progress. But this discourse

needs to be recognised as merely one possible way of defining what healthcare means, who it

involves, and where it is going. Furthermore, nothing I have written is intended to convey the idea

that resistance is futile; on the contrary, a key premise of discourse analysis is to reveal the ways

in which a discourse forecloses alternatives by imposing itself as the only, natural way to

understand the world. This is the very definition of ideological hegemony according to PDT

(Laclau, 1996a) and hence it has been the task of this chapter to expose these ideological effects

and their mechanisms through the use of a negative ontological analysis. These effects are made

possible precisely insofar as CloudDoc’s software is able to empty itself of its concrete meaning

and so come to signify this broad and compelling fantasy of perfect healthcare through software.

Through the construction of absence and, paradoxically, the impossibility of actually attaining this

fantasy, this discourse manages to reinforce itself in spite of, and even because of, its failures. This

results in the surprising finding that the gap between the grandiose promises of software and its

inevitable failure to deliver may, in fact, produce a mutually reinforcing cycle that propels its

ideology and subsumes dissidence. In short, then, it may be precisely what software is not that

substantiates its hegemonic hold over healthcare and, perhaps, society more generally.

201

8. Discussion

This thesis has so far made the case that software in general is ontologically problematic,

and it has elucidated this claim through three empirical chapters that progressively demonstrate

both the specific examples of this problematic and its consequences. In particular, the empirical

data has revealed a tendency towards emptiness lurking behind the products at CloudDoc and,

furthermore, the way in which this emptiness opens up the discursive space to create a powerful,

self-reinforcing fantasy about healthcare perfected through software. Interesting as this may be, it

leads us to the most important question of all: so what? Why does it matter if the programmers at

CloudDoc are apparently duped by their marketing teams (or by their own technical leadership,

depending on whose story you believe) into thinking that they’re saving the world one line of code

at a time? Why does it matter if a bunch of IT managers at the hospital are a little overzealous about

the prospects of their software projects? Isn’t it even somewhat endearing that these people seem

to believe so strongly in the vision of what healthcare could be?

In this chapter, I argue that this does indeed matter. I argue that ultimately what this research

reveals is a prolific example of what Alvesson and Spicer (2012) call functional stupidity. My

argument is that when software is able to shed itself of concreteness and take on this powerful

ideological emptiness, it promotes a kind of stupidity that ironically occurs within organisations

devoted to being ‘super smart’. Consequently, there are several destructive ideas circulating within

the fantasy of software discourse in healthcare that are being unreflexively accepted precisely

because this discourse is so decoupled from the specifics of its functions. In this chapter, I offer

three such ideas that are being unreflexively accepted. These are:

1. The functionally stupid reinforcement of Taylorist scientific management under the

guise of purportedly postbureaucratic new technologies;

2. The functionally stupid automatic equation of software with efficiency;

3. The functionally stupid dismissal of human autonomy and expertise.

These three corrosive ideas are in sore need of a critical re-examination and an analysis that

contributes directly to challenging the hegemonic hold that this powerful discourse asserts. To

202

achieve this, I therefore tie my discussion back into the PDT framework that made these effects

visible in the first place. I thus link Alvesson and Spicer’s (2012) call for communicative action to

Laclau’s (1990) concept of reactivating sedimented discourses. The idea here is to rekindle agency

by utilising dislocation to unravel the ostensible objectivity of dominant discourses. There are two

resistances that have been highlighted by this research, which were resistance against claims made

about human nature and the inevitability of software. Whereas Chapter Seven highlighted the ways

in which these resistances are thwarted and co-opted back into the discourse of Healthcare

Perfected, in the present chapter I argue for ways in which these resistances could succeed in their

efforts. The key contribution I offer here is to show that when software can be re-grounded in

specificity, its power can be nullified. This is because, as this negative ontological project has

demonstrated, the power of this discourse is tied directly to what software is not, namely specific.

In its emptiness, software can take on a powerful ideological force that is difficult to counter; when

it is grounded, however, conversation about specific functions, actual authors, and real effects

becomes possible once more and, in this way, communicative action is restored.

This last point regarding the specificity of software brings us full circle to consider once

again the relationship between the negative ontological approach proposed in this thesis and the

sociomaterial perspective with which this thesis began. I therefore close out my discussion by

arguing that sociomateriality and a negative ontology of software are, in many respects,

complementary perspectives, each in need of the other. I have sought to show the utility of the latter

approach in this thesis by showing how software discourse can itself be powerfully ideological in

ways that far exceed its actual code functions. This is something that cannot be seen if our focus

remains singularly on positive ontology, as is the case with sociomateriality (and the other

approaches surveyed in the literature review). However, once these effects are identified in terms

of their discursive contours and mechanisms of production, we find ourselves needing to re-ground

the conversation back in the actual specifics of working software in practice. Ultimately, therefore,

I will argue that the sociomaterial call to fore-ground the materiality of humans and technology in

203

practice can be seen as a kind of ‘end goal’: while it may be blind to the critical analysis

demonstrated throughout this thesis, it does provide an antidote to the emptiness of software and

thus a pathway to restore communicate action.

This then is the argument of this discussion chapter in outline. To make this case in full, we

move now to consider in more detail the crux of this climax, functional stupidity.

Functional Stupidity

Alvesson and Spicer (2012, p. 1196) define functional stupidity as an ‘organizationally-

supported lack of reflexivity, substantive reasoning, and justification’. This is a form of

organisationally sanctioned stupidity ‘characterized by an unwillingness or inability to mobilize

three aspects of cognitive capacity: reflexivity, justification, and substantive reasoning’ (ibid). That

said, this stupidity is also in some senses functional because it is able to offer certainty and cohesion

within organisations precisely by the way in which it silences reflexivity and questioning. To

illustrate this, Alvesson and Spicer (2012, p. 1201) offer the example of the commitment to

knowledge in organisations, by which they describe an unquestioned obsession with having as

much information as possible (consider our current fascination with big data and analytics).

Organisations everywhere assert that information/knowledge/data is unquestionably good and the

more the better. On the other hand, we are inundated with the now massive volume of information

that endlessly fills our inboxes, desks, and to-do lists to the extent that we don’t have enough time

or interest to use it. This example is, of course, highly redolent of the software discourse

demonstrated in the preceding chapters particularly in terms of its obsession with perfect

knowledge to the point of making clinicians more overwhelmed rather than less. Both Alvesson

and Spicer’s more general example and the situation described in this thesis are clear examples of

functional stupidity because they demonstrate an avowed commitment to an idea (or discourse)

that suppresses effective counter conversations, thereby perpetuating undesirable effects.

204

 According to Alvesson and Spicer, the necessary condition for functional stupidity is an

economy of persuasion. This is an environment that ‘emphasizes symbolic rather than substantive

aspects of organizational life’ (2012, p. 1202). Such environments focus heavily on symbolic

manipulation, for which they give the examples of charismatic leadership or an emphasis on strong

corporate cultures, branding, and identities. This leads to what they call ‘stupidity management’

which ‘involves the crafting of images and the engineering of fantasies’ (2012, p. 1202). Their

explanation of this is fairly critical of what could be described as intentional strategies to ‘persuade

and seduce employees into believing in something that improves the image of their organizations,

their work and, ultimately, themselves’ (2012, p. 1203), using, for example, corporate culture

initiatives or organisational identity workshops. All of this secures a compelling criticism of the

ways in which symbolism can be used to foster control and complicity in organisations, and it has

clear links to other similarly critical perspectives on, for example, identity regulation (Alvesson,

Lee Ashcraft, & Thomas, 2008; Alvesson & Willmott, 2002) or the use of metaphors like ‘family’

to increase commitment and control (Casey, 1999).

In this thesis, however, I seek to extend their analysis by linking this further and explicitly

with empty signifiers. What is significant about this extension is that it demonstrates at least one

way in which functional stupidity can result from less intentional means. This is because PDT tends

to see discourses as somewhat authorless systems of meaning, as the framework outlined in Chapter

Three explained. Indeed, I believe that the data analysed in this thesis show that the discourse of

Healthcare Perfected is bigger than the efforts of any one group, whether that be senior

management, sales, marketing, product development, or whoever else. It is certainly true that this

vision has the effect of improving the image of the organisation and employees themselves, and

there is no doubt that management approve and perpetuate this. But the degree of internalisation

and the dispersed and varied production of this discourse throughout the organisation suggests that

discourse itself can be implicated in sustaining functional stupidity beyond any purely agentic or

205

intentional efforts; and, furthermore, this suggests that discourse may achieve a kind of runaway

functional stupidity effect that is itself interesting to critical management scholars.

As this thesis has sought to illustrate through empirical data, the primary mechanism for

this runaway discursive functional stupidity is empty signifiers. In this case, it was the tendency of

software to shed itself of its concrete referents that made possible the production of a powerful—

and as I shall argue shortly, functionally stupid—discourse. My argument here is that software

presents highly fertile ground for the blossoming of Alvesson and Spicer’s economy of persuasion

precisely because of the inherently problematic ontology of software that plagues both its study (as

demonstrated in the literature) and practice (as demonstrated empirically). Software is

fundamentally intangible and incorrigibly complex. Because of this it seems to largely inhabit the

world of symbolic discourse, i.e. an economy of persuasion. This is why CloudDoc’s products can

change on a whim, why the work of articulating them is both endless and difficult, and how it is

able to effortlessly forge chains of equivalence between software products and surprisingly

ideological organisational effects. In being so readily emptied, therefore, software promotes the

kind of economy of persuasion that engenders the proliferation of functional stupidity in

organisations.

Now functional stupidity is not necessarily negative. In particular, Alvesson and Spicer

(2012) argue that it can help construct positive work identities (Alvesson et al., 2008) through

offering

 ‘individuals with a positive sense of certainty about who they are, what they want, and the steps they

might need to take in order to get it. In this sense it helps to support feelings of coherence,

distinctiveness, positive value, and direction with regard to who one is, what one stands for, and one’s

trajectory’ (2012, p. 1210).

This sense of certainty extends beyond individual identity and can also facilitate cohesion,

harmony, and a common purpose within an organisation, which ultimately may lead to an enhanced

ability to achieve common goals. It might in this sense be similar to Weick’s (1995) infamous

soldier’s map, which was able to unite a common purpose among lost soldiers and help lead them

back to camp despite (unknowingly) not being the correct map. In this way, we could argue that

206

even if the discourse of Healthcare Perfected isn’t accurately coupled to actually working software,

it nevertheless presents a compelling vision of a healthcare system that is vastly better than our

current one and thus it unites a variety of different sectors and organisations towards the common

purpose of improving healthcare. Furthermore, there is certainly no reason why employees at

CloudDoc or elsewhere shouldn’t be encouraged to connect the minutia of their work to the bigger

picture of achieving something worthwhile. I take no issue in general against positive benefits such

as these. But Alvesson and Spicer are quick to point out that these benefits come with important

trade-offs.

The first and most obvious negative effect is that, by definition, functional stupidity silences

reflexivity and questioning. Contrary to a common discomfort with conflict, reflexivity and

questioning play an important part in healthy organisational processes, including learning (Argyris,

1977), promoting innovation (Schippers, West, & Dawson, 2015), fostering leadership (Sutherland,

2013), supporting creative thinking particularly in the context of wicked problems (Carmeli,

Sheaffer, Binyamin, Reiter‐Palmon, & Shimoni, 2014; Levin, Cashore, Bernstein, & Auld, 2012),

and generally as an antidote to the group think phenomena (Harvey, 1974). Consequently,

functional stupidity can lead to the perpetuation of dominant goals, logics, and methods that are

misguided and/or ineffectual (Alvesson & Spicer, 2012). In the next section, I will illustrate several

examples of exactly this kind of perpetuation of ideas through the discourse of Healthcare

Perfected, which deserves much greater reflexivity and questioning.

Before this, one further negative effect of functional stupidity is worth mentioning, and this

regards the way functional stupidity can become self-reinforcing. It’s worth quoting the authors at

length here:

When this sense of certainty […] is threatened by difficult questions or contradictions, organizational

members often seek to protect it by retreating into deeper functional stupidity. In other words, the

individual learns gradually not to think in certain dimensions and domains. Such a move can entail

reinforcing one’s faith in managerially sponsored discourses. […] This can create a self-reinforcing loop

of more functional stupidity leading to more (illusory) certainty and smooth operations. A kind of

reflexive laziness or incapacity follows. (Alvesson & Spicer, 2012, p. 1211)

207

Of salience here is the way that the problem of functional stupidity builds a kind of momentum that

leads ultimately to the deepening of a lack of reflexivity. In PDT terms, this can be linked to the

hegemony of functionally stupid discourses. This is redolent of one of the key findings to emerge

in the previous chapter, which sought to demonstrate how the discourse of Healthcare Perfected

reinforces itself by silencing questioning and resistance. The problem with the software discourse

identified in this research is that through its use of empty signifiers it has made itself highly resistant

to counter-discourses and even outright failure. It thus perpetuates a powerful functional stupidity

that has the effect of further silencing dissonance. In the second half of this chapter, therefore, we

will return to the self-reinforcement of this functional stupidity and consider in contrast how we

might open up communicative action once again and break this cycle. First, however, we turn now

to consider three functionally stupid beliefs that have become accepted within this discourse

without adequate questioning or reflexivity.

Three Kinds of Functional Stupidity in Healthcare Perfected

The Surprising Return of Taylorism in Sheep’s Clothing

The first functionally stupid belief underpinned by the discourse of Healthcare Perfected is

the surprising finding that Taylorist assumptions underpin much of the justification for software in

healthcare. This is surprising because Taylorist scientific management is usually depicted as having

been superseded by more modern forms of organising work and, furthermore, where it is

acknowledged to still influence organisations it is typically associated with low-skill, simple

service work (such as McDonalds) or the few remaining vestiges of human labour in production

systems. Yet could it be that here in software, which surely occupies some of the most exalted

heights of the knowledge economy, we find such a pronounced redux of Taylorist principles? And,

more intriguingly, does this imply that as the discourse of Healthcare Perfected increasingly

hegemonizes healthcare, we should expect to see the encroachment of ostensibly discredited,

century-old management principles being applied to highly skilled clinical professionals?

208

One of the defining features of Taylorist Scientific Management is the belief that there is

one best way for a given work task to be achieved (Kanigel, 2005; Waring, 2016). Taylor famously

conducted time in motion studies to break down a work task into its smallest components. He then

advocated for the systematic reassembly of these tasks into the most optimal arrangement for

efficiency, ensuring that any redundant actions or movements were removed. Furthermore, the

principles of scientific management asserted the importance of a distinct separation between

planning and execution, which followed from the premise of the one best way. Taylor believed that

there were sharp differences in the quality of men [sic] which led to the increase in status and pre-

eminence of managers, those few who were trusted with the task of optimising and organising the

work of lesser task-executors (E. A. Locke, 1982). Among the latter, gradations of quality were

also distinguished, with physical stamina and strength being prized in a world of much manual

labour (Kanigel, 2005). But so too was the characteristic of obedience and subservience a desired

trait since this ensured that workers acquiesced to this central principle of the separation of planning

and execution.

Remarkably, this ethnography revealed these same tenets thriving in what may be one of

the least expected places to find them. The discourse of Healthcare Perfected clearly asserts a logic

of finding and ensuring the one best way for the practices it subsumes. This was particularly evident

in the discourses described in Chapter Six, but it was present throughout. For instance, developers

(and the organisation more generally) believed that one of their greatest contributions to healthcare

was their ability to reduce waste, increase efficiency, and ensure inerrancy. The way this was

believed to be achieved was through developer’s ability to ‘factorise’ workflows, to ‘model the

world’ and ‘streamline’ healthcare practice. Indeed, CloudDoc even employed UX specialists81

who would conduct literal time in motion studies (though under a different name) to observe how

a given practice was conducted. They would diligently describe this practice in fieldnotes and

comment on all the wasted movements in a thoroughly Taylorist fashion. Software would then be

81 UX stands for User eXperience. A UX specialist studies the use of software (or workflows, pre software) to optimise

it in terms of experience and efficiency.

209

developed to reduce the ‘redundant’ movements, and this in turn would be further analysed to

continue to find areas that could be streamlined yet more.

Additionally, one of the recurring themes in the data was the idea that healthcare is being

perfected by the ability of software to ‘mandate’ and ‘standardise’ the way clinical work is

performed, in order to ensure that there isn’t too much flexibility. Here again we meet scientific

management principles. These are not only alive and well, they’re now expressed in a way that

Taylor himself could have scarcely dreamed of. For Taylor, it was the job of management to design

the one best way, carefully planning out the processes for the upcoming day’s work. But even with

this careful planning, there was always a battle to find ways to ensure that the execution side of the

equation, i.e. labour, followed the instructions correctly so as to ensure that these efficiency gains

were realised. This is why there is an emphasis on obedience and subservience as well as outright

control in the early scientific management principles (Kanigel, 2005).

With software, however, control itself is being perfected. For it is no longer management,

but software which takes on the responsibility of enforcing this. Recall the example given in

Chapter Seven of the developers who built a second automated monitoring service to monitor the

first automated monitoring service. This is the ideal of software: control over the way a practice

can be performed down to mandating minutia and then fully automated auditing that utilises rules,

prompts, and ‘transparency’ to ensure the effective enforcement of the separation of planning and

execution. Through software, these Taylorist principles are able to be extended beyond the

traditional realms of production lines and routinised low-skill service work; the discourse of

Healthcare Perfected promises to usher in an age of Taylorised medical work as the clear logic

behind its method of perfecting clinician practice and clinicians themselves.

This belief, however, is an example of functional stupidity. First, it is clearly closing down

reflexivity and substantive reasoning around the claims so often touted about software as

progressive, upskilling, post-bureaucratic, flexible, decentralised, and so on. Even within this

discourse itself we see evidence that software is positioned as liberating people from having to go

210

into ‘robot mode’ and do the ‘donkey work´. Software is repeatedly claimed as freeing us from the

boring, repetitive work so that we can focus on what really matters. Yet as this research also

revealed, these claims are highly paradoxical, with software also being idealised as standardising

and controlling workflows, limiting clinical decision making so as to improve efficiency and errors,

and even reducing highly skilled clinical work to effectively little more than data entry. Likewise,

rather than post-bureaucratic and decentralised, we see software as centralising authority (e.g.

mandating forms, or specific software to use like MS Teams) and strictly enforcing hierarchical

reporting and approvals (e.g. heightening managerial visibility over task execution and controlling

layers of approvals for recruitment processes). Unfortunately, this discourse and its strategies for

dealing with resistance mean that there is very little critical reflection on these paradoxes and

contradictions, thereby demonstrating functional stupidity.

The other reason that this is functionally stupid is that, quite simply, CloudDoc’s software

very often completely failed to deliver on these promises, as the data showed. This line of reasoning

leads us to a second, related functionally stupid belief uncovered in this research.

The Unreflective Acceptance that Software is Automatically More Efficient

Chief among the claims made about software in the discourse of Healthcare Perfected is the

idea that software is undoubtedly more efficient than slow, ineffective human beings or paper

processes. Humans were repeatedly characterised as no match for the speed and perfection offered

by software, while paper-based systems were dismissed as a relic of the historical dark ages. But

perhaps what is most central to these claims about efficiency, however, was the ideal of

immateriality. This is what makes paper so apparently ridiculous, since paper is kept ‘down in the

dungeons’ and is limited by the bounds of space and time such that it can only be in one place at

once, while software makes knowledge instantly available anywhere, anytime.

There is, of course, a lot of truth to these claims. I doubt anyone would seriously favour a

paper-based healthcare system over a fully functional digital one, and indeed I have no desire to

211

argue against paperless systems. What I do want to argue against though is the unreflective

acceptance that software is always and automatically more efficient because this is, in fact, an

example of functional stupidity made possible by the emptiness of software. The data gave clear

examples of the many failures of CloudDoc to deliver on these promises precisely because they

repeatedly and uncritically accepted this assumption.

This failure stems from one key point that has been repressed out of sight by the discourse

of Healthcare perfected, namely that software may be immaterial, but its usage never is. Software

must always be used somewhere, somehow, by someone to do something. It’s only when our

discourse about software ignores this specificity that we can begin to make the grand promises that

we saw in the foregoing chapters. It’s these kinds of omissions that lead to the failures witnessed

when real clinicians have iPad malfunctions, can’t find a charged device, can’t fill in a form without

weighing a patient, and can’t log into the same device at the same time—as we saw—ultimately

leading to clinicians preferring a paper notepad in their pocket over the perfection of software.

These kinds of issues should be discussed more than they are, but they seem to find little momentum

against the juggernaut discourse of Healthcare Perfected. Its lack of specificity and therefore its

emptiness is what makes it possible forget about the materiality of software.

This is a functionally stupid belief because, although it brings less resistance and lowers the

need for difficult self-reflection, it does so at the cost of a less effective and less efficient use of

software than what otherwise could have been. The discourse of Healthcare Perfected has no place

within it for questioning the superiority of software, but in reality, some of its failures might be

avoided if we allow for more active reflexivity on this point. Healthcare is by nature messy in

practice, with many complexities and unknowns—the patient can’t always be weighed, for

instance. Rather than blindly following the vague and empty discourse of Healthcare Perfected and

its assumption that software is always, automatically better, we would do well to foster

communicative action on this point. Doing so would allow questions that begin by asking if, when,

and how software can be more efficient, which bring us back into the terrain of specificity. For

212

example, we may find that actually an iPad is not the most useful instrument for nurses, and we’d

do better investing in handwriting recognition from scanned paper notepads. This may or may not

be true, but the point is that we’ve moved from empty stupidity to specific conversations that are

grounded in real practice.

Unfortunately, this research reveals that such conversations are largely blocked by the

discourse of Healthcare Perfected by the way it reinforces itself. As we saw, one of the key ways

it does this is to shift the blame for its failures onto its users, which helps to shelter it from effective

criticism and closes down communicative action. This is an example of one final aspect of

functional stupidity.

The Unreflective Dismissal of Human Expertise and Autonomy

The final functionally stupid belief manifests in its insistence that humans are highly

deficient beings, inherently error-prone, lazy, misguided, slow, and—in short—fundamentally

lacking. This claim is, of course, highly interrelated with the other two, as each reinforces the

others: Taylorism rests on this basic assumption about human nature, and we tout the superiority

of software for this same reason. Moreover, this assumption was central in the discourse of

Healthcare Perfected in creating a sense of lack which both justifies the necessity of the discourse

and deflects resistance and criticisms back on the users themselves. As we saw, where there was a

failure of the discourse to match reality, the blame was shifted onto people such that resisters where

characterised as inept, whose incompetency led to poor inputs or failure to follow guidance

correctly; or else those that demurred this grand vision were simply seen as old people who can’t

cope with change or the ‘drones’ who prefer the ‘donkey work’. These are blatant attempts to close

down communicate action and kill reflexivity and questioning.

The issue with this is that there is still a great deal that really needs reflexivity and critical

questions on the subject of health software. There is, in fact, no clear consensus that AI or

algorithms consistently perform better than humans in medical decision making. There are good

213

examples where algorithms do indeed out-perform people, as in the case of IBM’s Watson

diagnosing skin cancer (Batstone, 2017); yet conversely there’s much debate around the idea that

expertise that can be easily replicated by machines (G. Klein, Shneiderman, Hoffman, & Ford,

2017). Clinical work is complex, as is its data. This leads to a deep need for domain knowledge

(i.e. human expertise) in order to make meaning out of the data, without which we run the risk of

nonsense predictions like physiotherapy as indicative of stroke recovery (see Chapter Seven).

Additionally, there are significant concerns over the ability of humans to respond quickly enough

to atypical cases when responsibility is suddenly switched to them from AI (Funkhouser & Drews,

2016). There is also strong evidence that AI and Machine Learning is prone to significant biases,

leading to unethical outcomes (Howard & Borenstein, 2018). All of these issues require much

ongoing conversation about the implications of software in healthcare.

Yet the discourse of Healthcare Perfected closes down these kinds of conversations in the

way that it constructs humans as fundamentally inferior while posing, in contrast, only a vague and

empty notion of “AI” or some grand software product like SuperSmart to solve this lack. So few

of us really understand how AI and Machine Learning really works, which, as the data show, is

surprisingly true of even highly technical people. Moreover, the actual details of how it works

involves equations so complex that even Data Scientists outsource this knowledge through the use

of special programming functions, further complicating effective conversation on the subject. As I

briefly described in the preceding chapters, I attended a presentation by the research team to the

whole company that attempted to explain and demonstrate their work in AI. For days afterwards,

many people I spoke with commented on the obscurity of this presentation, noting how it had sailed

way above their heads—and these were senior programmers with 20+ years in the industry. It’s

little wonder then how easy it is for discourse about AI to shift into vagaries and abstraction, but

this is nothing other than the functionally stupid acceptance of an easy explanation for the sake of

comfort when reflection and criticality is called for.

214

Instead of the comfort of abstraction, we need to be having conversations about if, when,

why and how AI or software algorithms should be used to supplement or replace human decision

making. These were the big questions that hovered on the fringes in my observations of the research

team, and it was the gist of the explicit question asked—though not answered—during their

presentation. Yes, we can come up with highly sophisticated machine learning algorithms to tell us

what the mortality expectation is for a given surgery (to use the actual example); but to what end?

How should a surgeon use this information? If they don’t understand how the algorithm came to

this conclusion (nor does anyone else), how do they explain it? How do they judge whether the

person’s specific circumstances are adequately reflected in the averages represented by it? How do

they judge whether their own intuitions about whether a patient should or shouldn’t proceed are

correct against this? What aspects of clinical expertise and judgement should we hold on to and

how do we balance that with the judgements of AI? And, perhaps most importantly, what happens

to clinician expertise if we project out to 20-30 years’ time when the new generation of surgeons

have never had the experience of making their own judgements, as our current experts do? These

are just a few examples of the kinds of questions that need to be asked; yet the allure of Healthcare

Perfected and the mechanisms of its hegemony preclude such open and reflective conversations for

so long as they present this vision as the inevitable succession of superior software over the abject

poverty of human expertise and autonomy.

Communicative Action and Ideology

The kind of conversations that are missing are what Alvesson and Spicer (2012), drawing

on Habermas (1984), call communicative action. Communicative action emphasises ‘dialogue that

creates views and norms that are well-grounded in arguments’ (Alvesson & Spicer, 2012, p. 1200)

and this is the natural antidote to the closing down of reflexivity and a lack of justification that we

see in functionally stupid discourses like Healthcare Perfected. What this research shows is that the

way this discourse constructs a sense of lack and absence in healthcare serves to reinforce its

215

hegemony and block communicative action. This is also partly achieved by the affective force of

the discourse, as outlined in Chapter Seven. Alvesson and Spicer (2012, p. 1208) note that ‘the

wealth of positive representations offered by economies of persuasion may influence the internal

conversation’ leading to what they call stupidity self-management, a process of silencing one’s

own reflexivity and critical thinking. Since software discourse is drenched in imagery of saving the

world and leading a revolution, there is a strong pull towards this imagery; and especially for

avoiding being the ‘luddite’ who sees problems instead of opportunities. There is, therefore, a series

of mechanisms built into the production of this discourse that sustain its hegemony.

From the perspective of PDT, moreover, there are important theoretical links between the

lack of communicative action in functional stupidity and the concept of ideology (Laclau, 1996a,

2015[1996]; Laclau & Mouffe, 2001[1985]). This is because the fundamental presupposition for

communicative action to be possible is that there are multiple ways of understanding a claim about

reality, hence the need for critical examination and argumentation. This same presupposition is

assumed in PDT and exemplified in the concept of antagonisms—it is presumed, in other words,

that since no discourse can ever fully capture the surplus meaning of reality, there are always

multiple ways of speaking to what is, hence antagonist frontiers. However, the key function of

ideology, for PDT, is to disguise, misrecognise, or ignore the radically contingent nature of

discourse. As Howarth (2000, p. 123) puts it, ‘an “ideological” discourse fails or refuses to

recognize its dependency on a “constitutive outside”, and does not acknowledge its own contingent

status’. In this way, where it becomes hegemonic, a discourse becomes naturalised as the ‘objective

reality’ of the field.

This objectivity leads to what Glynos and Howarth (2007) describe as the ‘grip of ideology’

in which ‘the subject becomes complicit in covering over the radical contingency of social relations

by identifying with a particular discourse’ (p. 117). This ideological grip has much in common with

Alvesson and Spicer’s notion of ‘stupidity self-management’, since it involves silencing self-

reflection; the purpose of this, moreover is that it ‘inures or insulates the subject from the vagaries

216

of the structural dislocation that always threaten to disrupt it’ (p. 117). When these two theoretical

perspectives are combined, we find an incisive lens for explaining the allure of this grand software

discourse. What we see is that, by constructing a powerful sense of itself as the fulfilment of lack

and absence, Healthcare Perfected offers a narrative that gives meaning, identity, and cohesion to

a sector beset by many complex issues and dysfunctionalities. Overall, this leads to the functionally

stupid acceptance of the ideology of Healthcare Perfected such that it becomes naturalised,

objective, and unquestionable.

Hegemony, however, is never a permanent state of affairs (Walton & Boon, 2014) and it

must constantly be produced and maintained against the ever present threat of destabilisation from

antagonistic discourses. As we have seen, discourses can never fully describe reality. Moreover,

particularly grand discourses like Healthcare Perfected are powerful by virtue of their positive

affective force, but—as Alvesson and Spicer (2012, p. 1208) also note—such positive narratives

will tend to often clash with the realities of work, as we saw in Chapter Seven especially, and this

creates a strong sense of dissonance. I have argued that, from a PDT perspective, these clashes can

be best understood as experiences of dislocation, in which the contingency of a discourse is

exposed, if only momentarily. However, as I explained in Chapter Three, dislocation also presents

the subject with a source of freedom (Laclau, 1990, p. 60) which has the potential to spark a new

political re-engagement with ideology. In these moments, power can become visible again as

objectivities are questioned and revealed to be the function of articulatory practice rather than the

natural state of affairs. In so doing, new subject positions and alternative discourses have the

potential to be reactivated and communicative action can be restored.

Reactivation

It is precisely this kind of reactivation that has informed the ultimate ‘so what’ for this

research. Throughout this thesis I have sought to show that a powerfully hegemonic and

functionally stupid discourse grips the contexts I observed in my research. Furthermore, I suspect

217

that this discourse extends much further than the hospital and software company I observed, given

that—as I argued in my introduction—grand eschatological fantasies about the revolutionary

power of software seem to be commonplace in organisations and societies everywhere. I have also

argued that this is due to the way that software is ontologically problematic, leading to its ability

to shed itself of concrete meaning and become an empty signifier. In what remains of this chapter,

I turn my attention to the question of how this tendency might be countered. In so doing, I follow

in the spirit of critical theory and seek to disrupt the ideological power effects this discourse exerts

and offer my research as, at the very least, a counterpoint that poses the possibility of new

conversations about software.

The goal in the following efforts is to re-ground the conversation in specifics. This is a

strategy that has emerged directly out of the findings of this thesis, because, as I have demonstrated

throughout, the key issue, the key element that makes this discourse so powerful is its ability to

escalate into fantasmatic vagaries rather than stick to the concrete, specific realities of its software.

This is the power of empty signifiers; and it is therefore logical that in order to combat this, bringing

the conversation back to specifics can be a way of dispelling this effect, leading to the possibility

of different conversations and an increase in communicative action. Here, therefore, I want to

demonstrate this possibility through the example of inevitability. The reader will recall from

Chapter Seven that inevitability was one of the mechanisms the discourse of Healthcare Perfected

utilised to nullify resistance: where people wanted to question the superiority of software or create

a conversation around the ethics and trade-offs that are being sacrificed in its name, this was

commonly quelled through asserting the inevitability of this discourse. This led to the surprising

result that even developers, who are themselves directly implicated in the manufacture of these

software products, considered themselves to be merely passengers with neither responsibility nor

control for its momentum.

Such a view is, however, only possible because of the emptiness of software in Healthcare

Perfected. It is, in fact, exactly what we should expect of developers who are producing only small

218

and seemingly mundane components of this larger vision. The teams that I observed were without

exception building features that were underwhelming, most often related to things like API

interfaces enabling one script to share data with another or creating better audit trail monitoring.

As the data revealed, participants frequently expressed surprise at how mundane and basic their

actual day-to-day work was. It is little wonder then that they should feel like they are powerless in

regard to the grand heights of Healthcare Perfected. They can all articulate this vision and have

been inculcated with a sense of the absence which their products are somehow filling, yet when

they look at their own work, they don’t see the connection. Predictably, this leads to a sense of

authorlessness about this discourse, even from those who might most plausibly be held accountable

as its authors.

Equally the discourse itself is extremely vague about just how, precisely, the promises it

makes will be achieved. The example of the uber-clinician makes this especially clear, with

incredible boasts about the omniscience and infallibility of the clinician. Yet software in this vision

is not clear at best and is at worst quite paradoxical. Just how exactly the clinician will be able to

process the ever-increasing amounts of data is unclear, with conflicting accounts of what exactly

the role of the clinician is in reading, analysing, and deciding on clinical care. Moreover, and once

again, since people generally don’t understand what AI/Machine Learning actually is or how it

works, the conversation is allowed to sit at a level of abstraction that makes such promises about

the uber-clinician possible. Put differently, we don’t have a clue how AI works so it is plausible to

us that somehow, inevitably, software will be able to perfect clinical knowledge and judgement.

From the point of view of the inevitability of technology, this vagueness is perfect. When

the discourse can ‘get away with’ constructing clinicians, patients, and healthcare itself as a space

of absence without being called to specificity, it’s considerably easier to characterise this discourse

as inevitable. We all want good healthcare and despite criticisms of metanarratives in general

(Lyotard, 2010), our experience in developed nations tends to be one of ongoing technological

progress. Both act as social resources to draw on. But the most important aspect in sustaining this

219

sense of inevitability is the sheer abstract grandiosity of the discourse, which constructs a sense of

scale and momentum that exceeds our human capacity to understand and naturally makes us feel

powerless. Notice that the discourse of Healthcare Perfected is never constructed as a localised

phenomenon; it is always a world-changing revolution, a global-historical landmark event, a

breaking wave, etc. It is therefore depicted as happening simultaneously around the world, led by

a change in simply what is now possible. Why is it inevitable that we will become digital data

mines? Simply because it’s possible to collect two terabytes of data on a patient. But what about

who, how, when, where, and why is this data being collected? Where are the authors of this? Where

are the decision makers? They are nowhere to be seen in the discourse of Healthcare Perfected.

In contrast, what happens to this picture when it is forced to be re-grounded in specificity?

The answer is that resistance, agency, and accountability come back into the picture, which

ultimately creates the possibility for renewed communicative action against the ideology of the

discourse. An excellent example of this comes by way of technology expert Jaron Lanier (Harris,

2018), who critically discussed the impact of language translation software on professional

translators. Lanier argues that translators used to be a highly valuable and highly skilled profession,

but this field has now become increasingly worthless due to advances in translation software such

as Google Translate. He argues that the common perception of this software is that Google’s AI is

able to simply understand language now to the extent that human translators are no longer needed.

As a result, translation is less valued in terms of remuneration and security and there are much

fewer jobs in this field. However, this is an example of where a lack of specificity and

understanding elides a critical explanation of the facts. As Lanier explains, translators are just as

needed as before it’s just that their labour has now largely become unpaid. This is because Machine

Learning algorithms like Google Translate still very much depend on the labour of skilled

translators; indeed, the way they function is to constantly scan the internet for examples of where

bilingual translators have done this work online. The algorithm then uses their work to constantly

maintain its mapping of these two languages. Additionally, this work is never finished both because

220

languages themselves are living things which constantly change, and because machine learning

algorithms need to be constantly validated against examples with known answers to ensure their

validity. In short then, translation work continues to be done by skilled humans; however, without

the specifics of how these algorithms function society at large has mistakenly devalued this skilled

profession, believing them to have been made redundant.

Importantly, to the extent that clinical work increasingly incorporates AI/Machine

Learning, it will also follow this same trend of appearing to devalue skilled human expertise while

also continuing to depend on it. The difference here is that the consequences for getting clinical

judgements correct are far more serious than making a grammatical blunder. It is therefore

imperative that we are vigilant in our efforts to re-ground health software discourse in specifics. In

so doing, we push back against its vague claims against superiority over humans and

unquestionable inevitability by challenging it to explain how a specific software feature is

inevitable and/or superior to humans. It is significantly more difficult to construct a specific

function as inevitable and impossible to construct it as authorless. It may be valid to argue that it is

superior to humans, but when the conversation is specific, we can challenge the explanation to

provide details of how in particular it is better, in what ways and which circumstances, and most

importantly, we are better placed to increase dialogue that fosters communicative action and

counters functional stupidity.

In the concluding chapter to follow I will address in more detail some specific

recommendations that follow from this more general discussion for management and workers alike.

In the final part of this discussion chapter, however, I want to conclude by coming full-circle and

considering the relationship between the argument I have made in this thesis concerning negative

ontology and sociomateriality. For in posing the importance of specificity as I have done, I have

therefore claimed a position that is, overall, complementary with sociomateriality rather than

antagonistic to it.

221

Sociomateriality

I began this thesis with a literature review that demonstrated that the literature has generally

failed to account for the problematic ontology of software. I argued that despite the apparent

dissimilarity of all of the common approaches, they were nevertheless united in their emphasis on

a positive ontological search to locate and fix the identity of software in what it is. In contrast, I

argued that this ontological problematic was itself significant and that, like leadership and

entrepreneurship, there might be interesting ideological effects made possible by what software is

not, namely specific. I then demonstrated the emptiness of software, the fantasy that is made

possible by this emptiness, and then the way in which this as a whole is able to sustain a powerful,

self-reinforcing and functionally stupid ideology. In this final chapter, however, I have begun to

close out this circle by arguing that the antidote to this ideology is, in fact, to return to the search

for the positive ontology of software, since this has the power to denude the hegemony of this

discourse and embolden resistance once more. Am I therefore contradicting myself in the final

instance?

This position is not contradictory, but rather it asserts the complementary nature of these

two theoretical positions. Indeed, I have maintained throughout this thesis that research into the

real and specific effects of health software is necessary and useful, and I’ve frequently offered

sociomateriality as a worthy example of such research. In terms of its deficiencies, however, my

argument has been that sociomateriality is blind to the ideological effects of the failure of software

to clearly be identified, due to its tendency to function as an empty signifier. This research has, I

believe, well demonstrated the potential for what I have characterised as a negative ontological

perspective in highlighting specifically these effects that sociomateriality (and other positive

perspectives) miss. What I have shown is that a PDT perspective identifies the ideological power

of discourse about software even when this discourse doesn’t accurately describe the real working

effects of this software—indeed, perhaps even more so when it doesn’t. I have therefore shown

222

discourse about software itself to be an object worthy of analytical investigation and capable of

producing interesting and important ideological effects. This is a key contribution of this thesis.

Ultimately, however, I see the sociomateriality perspective and the perspective advanced

herein as complementary. This is because the primary antidote to the abstraction of software

discourse is to re-ground it in specifics, and sociomateriality is exceptionally well-equipped for this

task. Sociomateriality calls for close attention to the actual way software comes to take on meaning

in a specific context and is unequivocal in its insistence on a real and specific account of the

material features of technology (Orlikowski, 2007). This therefore helps inure it to the tendency of

software discourse to escalate into abstracted explanations about its functions. I therefore see the

methods and theoretical orientation of sociomateriality-minded researchers as exemplifying

exactly the kind of questioning that will help counter the ideology of software discourse. In this

sense, the sociomaterial perspective on technology appears as a kind of ideal end-goal state in this

research. A negative ontological approach will always be essential for its ability to analyse the

ideological effects of software discourse particularly due to software’s impressive ability to so

easily shed its concrete referents. But at a practice level, a sociomateriality-minded enquiry is ideal

for critically engaging with the power-effects that a negative analysis makes visible.

It is important to stress that neither approach has finally found the answer to the question

of the ontological identity of software and thus the criticisms I made earlier in this chapter are in

no way contradicted. The point is that the identity of software is fundamentally difficult to locate

for several reasons, many of which have been outlined in this thesis. Certainly, I make no claims

that a negative ontological approach has found it, or that ultimately sociomateriality is needed for

this. In fact, the argument is the opposite: neither can achieve this, which is why both must work

together. Being inherently problematic, software will continue to evade our best attempts to ground

it, and this is likely to only worsen as we increasingly move to a world that features complex

networks of software interacting largely independently of human intervention, such as that

promised by the Internet of Things. We will therefore likely continue to need to engage in a

223

negative ontological enquiry into the ideological effects of software discourse in many arenas of

society.

Healthcare is only one of a vast number of terrains that are being radically transformed by

software, or the promise of software. One can scarcely find an organisational context that is not

currently witnessing an explosion in the quantities of data available and the grand promises of

algorithmic efficiency and perfection. Thus, there is a strong need for critically minded

organisational scholars to engage in research that uncovers the absences and areas of lack that are

being constructed by these various software discourses, so that the ideological effects performed

in their name can be called to account. It has been the argument of this thesis that a negative

ontological approach is uniquely equipped to expose the powerful effect of the failure of software

discourse to accurately reflect its functions in reality. Thus, I maintain that this approach is of vital

importance for critical organisation scholars in today’s world of ubiquitous computing.

Yet as I have argued, this position is ultimately complementary to the sociomateriality

approach, whose work will continue to be just as necessary for the analysis of the effects of

software’s real functions in organisations. These effects are just as important, though as I have

hoped to demonstrate, they are only one side of the equation. As I have shown, software has real

effects not only through what it really does, but also, surprisingly, through what it fails to do. Yet

when a sociomateriality approach and a negative ontology are able to work together, they have the

potential to complement one another powerfully. My hope is that this combined approach is able

to both uncover and also counter the otherwise unchecked ability of software discourse to

hegemonize not only healthcare, but organisations everywhere. In identifying the importance of

these two complementary methods, it is my hope that this research contributes to providing a

coherent strategy of critically analysing and engaging with the impact of software in society.

Finally, it remains only for me to finish with a discussion of the specific contributions to the

literature this thesis has made, and to offer some closing comments on recommendations for

managers, clinicians, and future research. This brings me at last to the conclusion.

224

9. Conclusion

In this final chapter I seek to accomplish three tasks. First, I outline the key theoretical

contributions this thesis has made, recapitulating the gaps identified in the literature that this thesis

has filled. Following this, I then outline some practical recommendations which flow out from

these insights. The majority of these recommendations are orientated towards managers given this

argument’s implications for the changing nature of management and expertise in the world of

pervasive software. However, I also consider some implications for clinicians themselves since this

thesis has highlighted how this group, perhaps more than any other, is most disadvantaged by both

the failure of software to live up to its promises and the way in which software prevents resistance

to, and conversation about, this fact. Having offered these recommendations for practice, I move

thirdly to address the limits of this research that both reduce my scope for recommendations as well

as highlight the need for future research that extends the questions raised herein. Finally, I end this

chapter with a closing statement.

Contributions to the Literature

There are several unique contributions this thesis makes. At a very high level, this thesis

has offered an answer to an intriguing question in the modern world, namely how it is that software

is able to sustain such impressive levels of hype whilst also notoriously failing to deliver on these

promises. Whilst this failure has been identified in the literature (e.g. Charette, 2005; El Emam &

Koru, 2008; Livschitz, 2005), to the best of my knowledge, no one has yet linked this issue to the

problematic ontology of software. This latter point that marks the most important and distinctive

contribution of this research. For as my literature review chapters have pointed out, software has a

long history of being very difficult to pin down precisely. This has resulted in a range of diverse

attempts to locate the essence of software, yet none has really satisfied this search. On the one hand,

we have models that simplistically viewed software as little more than a tool whose properties

could be easily determined and were assumed to remain stable. In such models, the complexity of

225

software was relegated to the realm of the social, instigating a dualistic understanding of the

relationship between humans and technology. This model has been the subject of heavy critiques

(Orlikowski, 1992; Orlikowski & Iacono, 2001) due to its inability to account for the way in which

the meaning—or what I have termed the ontological identity—of software/technology changes in

the context of its usage. Recognition of this dualism led to a series of different models of this

relationship, with each seeking to abandon it, such as structuration models, constructionist theories,

practice theory, and of course sociomateriality.

The most important contribution this thesis has made is to identify the fact that, diverse

though they may be, all of these approaches to software share in common an emphasis on only the

positive side of ontology; they focus only on the way in which software tries to assert its ontological

identity. In so doing, they have overlooked a significant feature of software, namely the fact that

its ontology is thoroughly problematic and perennially difficult to define. I’m not the first to point

out that the failure of identity can be significant—I highlighted two such examples in the fields of

entrepreneurship (Jones & Spicer, 2005) and leadership (Kelly, 2014), noting how their subjects

share some striking similarities with software. But despite these similarities, I am indeed the first

to explicitly make the same argument for software.

I believe this is an important contribution. Sociomateriality, and the practice perspective

more generally, is currently enjoying a good deal of respect as a theoretical lens counterposed to

the dualism that had plagued the field since its inception. I mean to take nothing away from this

well-deserved respect insofar as sociomateriality seeks to highlight the social dimensions of

software/technology. As I have noted, there is much conceptual overlap between PDT and

sociomateriality on this front. What I have offered, however, is an important contribution regarding

a key blind spot in software studies, which no perspective so far, sociomateriality included, has

acknowledged much less redressed. This blind spot regards the ideological significance of

software’s ability to shed itself of concrete meaning due to its problematic ontology. Whilst other

perspectives have responded to this difficulty by trying even harder to pin it down, I argued that

226

this heralds instead the need for research into the ideological effects of this failure itself. This then

marks my first key contribution: a critique of the oversight present within the field of Organisation

Studies regarding the significance of the problematic ontology of software.

Furthermore, I noted early on in making this critique that whether this oversight was

important or not would be a matter in need of empirical evidence. It is simply not enough to suggest

that failure might be important; it needs also to be demonstrated why and how this failure leads to

effects of interest in organisations (Kelly, 2014; Kenny & Scriver, 2012). It is, after all, a fairly big

claim to state that the absence of something can lead to real effects in the world. Put differently,

this is a claim about the utility of a negative ontological perspective for critical research in

organisation studies more generally. This is a second, key contribution of this research, for I have

sought to demonstrate the utility of negative ontology to reveal important ideological effects

through my criticism of the literature and my empirical findings. Throughout this thesis, I have

consistently returned to the argument that the findings it reveals are simply not visible through any

other perspective orientated towards positive ontology alone. Not even the sociomateriality

perspective is able to show how the specific failure of CloudDoc to deliver on its promises could

itself drive the compelling allure of these promises. Indeed, the findings in this thesis are

surprisingly paradoxical and difficult to have guessed at intuitively without undertaking a negative

ontological analysis. Our general experience in life, and the assumptions we expect of ‘smart’

people everywhere, is that we learn from our mistakes so as to not repeat our failures. Yet this

thesis makes an important contribution by showing how failure and absence are specifically

implicated in sustaining the allure of software discourse, which overall demonstrates the critical

utility of a negative ontological perspective, especially for studies of software.

I did not, however, completely rule out the sociomaterial perspective nor offer negative

ontology as the only valid method for studying the impact of software on the world of work. Rather,

my distinctive contribution on this front was to suggest the complementary nature of both these

approaches in tandem. This argument reached its climax in the preceding chapter in which I showed

227

how neither approach alone was sufficient to both expose and address the ideological power of

software discourse. Instead I argued that a negative ontology was necessary to render visible the

powerful effects made possible by what software is not, something which is strictly invisible to

positive approaches. I then argued that a sociomateriality approach was necessary to help counter

the hegemony produced by this absence by offering a robust method of re-grounding software in

the specifics of materiality and practice. This is, once again, a unique contribution (to the best of

my knowledge) in identifying the limits of each approach and observing how these limits are, in

fact, complemented by each other. In making this argument it is my hope that this leads to fruitful

research that addresses both aspects—criticality and practical resistance.

Moreover, in highlighting the more critical effects of the discourse of Healthcare Perfected,

I have shown how this leads to a significant degree of functional stupidity (Alvesson & Spicer,

2012), thereby resulting in a lack of reflexivity, questioning, and communicative action in the

context of health software. This link between negative ontology and functional stupidity is itself a

contribution to the literature in the sense that Alvesson & Spicer’s (2012) original framing of

functional stupidity leans towards intentionality by emphasising the active orchestration of

corporate initiatives intended to close down communicative action. While their model allows for a

degree of self-reinforcement through a process of ‘stupidity self-management’ which further closes

down reflexivity, the authors did not here consider how the role of absence and failure might itself

breed and reinforce functional stupidity. In linking these two, I provide the first example that I am

aware of a connection between PDT and the concept of functional stupidity. This link was made

especially possible by the concepts of ideology and reactivation found in Laclau (1990, 1996a),

which explains from a discursive perspective how hegemonic discourse itself can come to block

communicative action, and further, how moments of dislocation may serve to reactivate

antagonisms and foster better communicative action.

Ultimately, I intend this critique, made possible by this negative ontological perspective, to

contribute to a rich tradition of work in the critical management studies (CMS) stream of

228

organisation theory (Fournier & Grey, 2000; Grey & Willmott, 2005). Various threads that I pick

up in this thesis have a storied history within CMS, especially criticisms of Taylorist scientific

management. This thesis offers an important continuation of the conversation around the

dehumanisation and deprofessionalisation of skilled labour that has long been carried out under

this banner. However, here I have aimed to make a non-intuitive contribution to this discussion by

showing how it is that software may present the most compelling attempt so far at achieving what

Taylor set out to do so many years ago. Of salience in my contribution on this front is the role that

the construction of absence in software discourse plays in this assault on human dignity and

autonomy. I have shown how this construction of absence is able to reinforce itself and redirect

blame for its failures onto its users (as drones, donkeys, and old people) and even onto the present

itself (as powerless to be filled by the inevitability of perfection). In so doing I hope to have

contributed to the CMS aims more generally in terms of emancipation from unquestioned and

‘functionally stupid’ managerial efforts to control and exploit labour in organisations everywhere.

It is my intention that this research will foster more reflection at a practical level and research at a

scholarly level on the power of negative ontology to reveal the surprising role of software in

extending the reach of Taylorism in the modern world of work.

The final contribution to the literature I make is related to methodology. Here I offer the

modest contribution of an example of a Laclauian-inspired, negative ontological approach to

ethnography. As I noted in my literature review, there are very few examples of empirical work

following Laclau. In this, therefore, my thesis offers a point of originality in its combination of

PDT discourse analysis with organisational ethnography. Moreover, it is important to stress that

rather than setting out to do a negative ontological ethnography, I landed on this position after first

struggling to reconcile the vast gulf between the dominant discourse I encountered in my fieldwork

and my ethnographic observations of practice. Following a resolution of mystery approach to

research generally (Alvesson & Kärreman, 2007), I found that PDT was able to make sense of this

gap and the resulting analysis ensued. This is really the point of my contribution on this front: it

229

may be useful for future organisational ethnographers to consider not only the points of

corroboration between discourse and observations, but also to seek out points of contradiction,

confusion, and especially failure, which may offer important insights when combined with a

negative ontological perspective. I offer this thesis as an example of a way to work empirically

with elements such as these, ultimately weaving together a critical analysis that ties observations

of failure together with discourse through the lens of negative ontology.

In summary then, there are six contributions I make in this thesis. I offer first an interesting

resolution to the question of how software sustains itself despite its persistent inability to deliver

on its promises. Second, I challenge the software/technology literature generally (which spans

wider than Organisation Studies and includes also the STS and IS literatures) to consider that the

difficulty of precisely locating the ontological identity of software may be itself highly significant.

I argue that it indicates a subject that possesses an ideological power in excess of its obvious,

positive (from an ontological point of view) effects. If this is true then software is in need of a

negative ontological analysis, and I make an initial effort to this end. The third contribution I make

is to show the complementary nature of both a sociomaterial and PDT inspired, negative

ontological perspective for researching software/technology. In this I hope to stimulate new

conversations and fresh research directions in Organisation Studies in particular, where the

sociomaterial perspective is currently in vogue. At the very least it is my intention to promote

constructive dialogue around how sociomateriality can continue to be extended, particularly in

terms of being better equipped to engage critically with the ideological effects of software.

My fourth contribution was to make a link between PDT and functional stupidity,

suggesting an extension here by observing how hegemonic discourses may reinforce functional

stupidity in less agentic ways. There is an important link here between the Laclauian concept of

ideology and its remedy, reactivation through dislocation, which offers potentially generative

future avenues of exploration in the literature on functional stupidity. Fifth, this thesis offers an

example of how Taylorism is alive and well in the modern world of work, which I critique as an

230

example of functional stupidity. I show how software discourse blocks communicative action

around multiple areas of outright failure, such as achieving the efficiency gains that justify the

efforts in the first place and the blocking of extremely relevant and necessary ethical conversations

on the implications of AI in healthcare; all of which, I argue, are examples of functional stupidity.

My sixth and final contribution was far less ambitious, though it may prove no less useful to future

researchers who are seeking an example of how to tie together a Laclauian PDT analysis with

ethnography. In particular, I have provided a methodological example of how dissonance and

failure in ethnography can lead to generative insights through a negative ontological framework.

Practical Recommendations

In addition to these six theoretical contributions, I seek also to make some practical

recommendations as a result of the insights stemming from this research. In this section I first

consider the implications for managers before returning to the same question from the perspective

of employees, by which I mean in this case, chiefly clinicians.

Recommendations for Managers

Lest I give the impression that my research has provided a nice and clean set of easy

recommendations, I want to begin by noting that this thesis raises at least as many questions as it

answers in terms of practicalities. This is partly because one of the primary practical implications

arising from this work is the suggestion that software should be regarded with some degree of

suspicion. This thesis shows that software discourse has a strong tendency to slip away from

specificity, which means that managers should expect that what they hear about software is not

necessarily what they will see in practice. Interestingly, the software development industry itself is

already aware of this notorious difficulty in meeting the expectations of customers/managers

(Charette, 2005; El Emam & Koru, 2008) and there has been a resulting shift away from long

development cycles (known as the waterfall method) to very short timeframes delivering

incremental slices of value (known as Agile Software Development, Schwaber & Beedle, 2002).

231

This agile way of thinking about software development is already the industry norm, which raises

the question as to why this problem of the gap between hype and reality has persisted. It suggests

that the issue is deeper than the methodology of development.

In response to this question, my argument in this thesis is that the piece of this puzzle that

deserves extra scrutiny is not methodology but rather the narrative that joins up the small bits of

incremental value to the bigger picture of what this software is and does. Because software is

complex, the effects it achieves are often delivered via the interplay between different components

of a product suite, not merely one small piece of software—this is true of my context, healthcare,

at the very least. Therefore, while agile methodology may ensure that the requirements of some

small piece of that software suite is delivered according to expectations of time and budget, there

remains some uncertainty around the interactions between the parts and the bigger vision for what

any given small element is meant to achieve in context. It’s here at this level of narrative that I

believe more suspicion and specificity is warranted. It’s here that the grandiosity and tendency of

software to function as an empty signifier is most likely to decouple itself from function and lean

towards ideology. And, accordingly, it’s here that managers need to develop a habit of actively

questioning, seeking justifications, and demanding specificity.

This level of increased intentional reflexivity (or communicative action) is my first key

recommendation. In practice, there are several ways this could be achieved. First, managers should

be encouraged to not feel embarrassed if they feel that software discourse is vague, or they don’t

understand it. Feelings like this may tend to lead to a ‘stupidity self-management’ through which

managers silence their own reflexivity, which ironically is intended to avoid looking stupid. In fact,

software is often vague and poorly understood even by those who are responsible for making it.

Yet we have been inculcated into the erroneous ideology that if you admit you don’t understand

how software works and demand a better explanation, then you must be an old person or a drone,

etc. These kinds of stereotypes need to be resisted, especially from those in managerial positions

who may have the positional power to challenge such norms and set an example of reflexivity for

232

the rest of the organisation. At the very least, though, managers should not hold back from

demanding specific and detailed explanations that cut through the hype. They may find in doing so

that it is developers and software marketers who find themselves embarrassed by their inability to

explain, as my own interviews often revealed.

On the other hand, it may also be helpful for managers to ensure that they do meet a

minimum level of technical understanding. My argument here is that software is often allowed to

offer extremely vague and hyperbolic explanations because the majority of people don’t understand

the basics and are therefore happy trading off precision for the sake of ease. As I have argued, this

leads to functional stupidity. Machine learning is the best example of this kind of error, but there

are emerging technologies on the very near horizon which will follow the same trend, especially

blockchain and the Internet of Things. Remedies to this are easily forthcoming, however. It may

be beneficial for organisations to invest in micro-credentials around digital literacy, and there are

already Private Tertiary Enterprises ready to meet this need such as The Mind Lab’s Certificate of

Digital Skills for the Workplace.82 A foundational understanding of how these technologies work

would provide a good base from which to ask better questions and be less susceptible to grandiose

vagaries. It’s likely that in the modern world of work a much higher level of digital literacy is a

requisite for strong management. Moreover, this would also indicate that business schools have a

responsibility to include specific courses in their degrees that prepare future managers for a

workplace beset by software hype. Currently the traditional disciplinary boundaries of academia

seem to preclude the possibility of studying emerging technologies without undertaking a conjoint

degree. This is not in the best interest of our management graduates, nor business or society itself

and thus this forms a further recommendation I see arising from this research: include technology

as an explicit focus in management degrees.

Of course, it may not always be possible to have a good understanding of emerging

technologies especially when managers are busy, and technologies are rapidly evolving. A final

82 https://themindlab.com/digital-skills-for-the-workplace

233

strategy to deal with this issue then would be using teams for decision making on software rather

than individuals. Teams are, in fact, already common in organisations for precisely this reason

(Brahm & Kleiner, 1996) and it would be common sense to include technical experts in such teams

if they are not already. What I would suggest, however, that may not already be the norm is that

organisations consider formally assigning a devil’s advocate role to technology decision making

teams. Software discourse has a powerful ability to close down conversation and reflexivity, partly

through the way that it constructs counter-discourses negatively (e.g. as old, dumb, change-

resistant, or futile due to inevitability). This discursive positioning makes it difficult for people to

raise objections even when they do think of them, including within teams. This can be countered

by promoting a role whose function is to do precisely this. A person could avoid being tarnished

with these attributions if they were seen to be simply objecting in fulfilment of their role as devil’s

advocate rather than because they’re a drone, for example. Such a role could help by providing

vital questions that run counter to the hype. For example, they could ask how a given software

might fail to deliver on its promises or what the unintended or unforeseen consequences might be

(such as not completing forms when a patient can’t be weighed). The role of a devil’s advocate is

therefore one further recommendation I would make to managers so as to deliberately and pre-

emptively promote communicative action in the context of software discussions.

There is also another line of questioning raised by this research that is of interest to

managers. For as the findings revealed, the driving idea behind the discourse of Healthcare

Perfected is to optimise clinicians, patients, and healthcare practices themselves as much as

possible. The whole discourse pivots on the notion that knowledge (e.g. patient data, decision

making, the structure of practices) should be codified into software, the means by which these

promises are meant to be delivered. Now it is also clear that we are a long way off actually

achieving this perfection in practice. Nevertheless, it’s worth thinking about the implications of

this for management. In particular, how might the dynamics of management change if the expertise

and knowledge that underpins their organisation has shifted from being internal to the workplace

234

to externally located in algorithms? What are the implications of this shift if this knowledge moves

into private intellectual property, which is owned by development organisations and no longer

under direct control by management? Even when it is not private IP, we have seen in this research

that it is often nonetheless obscured simply by the fact that developers themselves can’t read their

own code well, much less understand it when the author of a function leaves the organisation.

Furthermore, many of the benefits boasted by health software companies like CloudDoc are

Machine Learning based, which means that no one understands how it comes up with its decisions.

This again raises serious implications for understanding and preserving knowledge and expertise

as the logic and authority for decisions is increasingly shifted out to these algorithms rather than

held by practitioners. There is a very real risk here that we are moving into an age when

management have increasingly less visibility, understanding, and control of the knowledge that

defines and underpins their organisation. This shift signals a profound need for managers (and

management research, which I’ll come to shortly) to have a strategy in place to deliberately

safeguard their organisational knowledge and expertise from the obscurity of externalisation

through software. It is a mistake to think that the conversion of implicit practical knowledge into

software makes this knowledge more explicit and clearer. In fact, the opposite trend is clearly

visible, in which knowledge becomes both harder to understand on the one hand, and less likely to

be actually located within the organisation on the other.

This shift is not immediately obvious because currently practitioners—in this case

clinicians—still possess considerable practical expertise during and after the transition to software.

This is important because it prevents mistakes when the software is wrong as clinicians can override

it and use their own better judgement to ensure good quality care. But a prudent manager needs to

look beyond the immediate transition to software and consider the implications for organisational

expertise over the next decade or two, when their workforce is gradually replaced by people who’ve

never known the role before software—just as the software development organisation will also lose

the majority of those who wrote and understood the code that now controls a given task. It is by no

235

means easy to offer a recommendation that can counter this trend towards software that is taking

place everywhere, but the key counter-argument made in this thesis holds true: software must

continually be re-grounded in specificity so that organisational knowledge and expertise is not

permitted to disappear into the abyss of grandiose and ultimately meaningless abstraction. This

final point completes my recommendations for managers and will be picked up again in a

subsequent section on calls for future research.

Recommendations for Clinicians

The other key party of interest in this research is, of course, clinicians. It should be

immediately stated that this thesis reveals a rather difficult situation for clinicians, given how easy

it is for acts of resistance to be reinterpreted as essentially a personal deficiency. In the precarious

world of frequent restructurings and heightened insecurity for employees (Standing, 2011), it’s

understandable that clinicians might feel pressured to avoid being seen as an old luddite. More than

this, and as I witnessed in my observations, the characterisation of resisters as dishonest and lacking

transparency is a particularly damaging aspersion bound to drive compliance even when software

is clearly failing to deliver on its promises and creating more work rather than reducing it (such as

the case at CloudDoc itself, with their multiple different reporting systems for the same jobs). It’s

easy to say that clinicians should be bold in standing up to their managers or IT project leads and

demand specificity or in vigorously document software failures, but this is much harder and more

dangerous to achieve in practice.

For me, this leads to the conclusion that unionised collective action is key for clinicians in

this rapidly shifting landscape of health software. Fortunately, healthcare tends to be strongly

unionised (Stats NZ, 2016) in comparison to other industries so the means is already in place to

band together and raise communicative action as a collective. Specificity is still likely the best

strategy to counter the abstraction of this discourse, as the previous chapter has argued. In this sense

I see my research as explaining the mechanisms behind the compelling force of software discourse

236

and justifying the need for these collective bodies to put pressure on management, IT departments,

and software organisations to be grounded and specific in their explanations and project plans.

These unions also have an important part to play in ensuring that software discourse is not

allowed to become uncoupled to the materiality of delivering care. Clinicians are the ones who are

best able to remind us that, as immaterial as software may be, it still needs to be accessed through

an iPad that needs to be charged, working, and not have multiple, complicated access methods that

slow down rather than speed up care (for example). These real stories from clinicians need to be

collated as a whole and used to promote effective dialogue between the relevant parties so that

conversation remains firmly grounded in the reality of care. This is ultimately my main

recommendation for clinicians. However, I readily admit that my ideals here are themselves

speculative and not grounded in the reality of observations, which draws attention both to the limits

of this present research and the need for future research to address these questions.

Limits & Future Research

The most obvious limit of this study is that it is focused on one specific software company.

Technically this research was not limited to a single site since it also included observations and

interviews from a related hospital site; however, it’s true that this second site was chosen for its

relationship with CloudDoc and my observations and interviews were orientated towards the use

of their software products. Where the thrust of this limitation is most forceful is in the charge that

the emptiness observed in this research may be a unique feature of CloudDoc—perhaps this

organisation had especially weak technical direction and/or an unusual tendency to promote self-

aggrandising but ultimately empty hype. Yet it should be objected at this point that this limitation

in no way invalidates the findings of this research, only the extent to which they can be generalised.

It may indeed be the case that this company was unusually poorly managed. If so, we still have a

model of how this company was able to (perhaps quite unintentionally) mobilise the emptiness of

its products for the surprising and paradoxical reinforcement of their desirability despite patent

237

failure. And while this may not be generalisable to software everywhere, the study still bears

exploration as an example which may be in effect in other similarly vague software products.

More importantly, whether or not this is a feature of software generally is a point that is

subject to empirical verification, remedied by further study into different but similar sites, such as

another health software company. In this way, this limitation is linked closely with a call for future

research to continue this exploration in other software companies. Moreover, I have argued in this

thesis that software itself has a tendency towards ontological opacity. For this reason, I would

extend this call for future research to examine not only health software, but other industry products

as well. My suspicion is that wherever one finds complex software packages, one will also find the

same tendency toward emptiness, and therefore empty signifiers and ideological effects. This is

because these software packages depend on a not insignificant amount of narrative to construct

their identities since their ‘existence’ as a functional product is characterised by a virtual and highly

abstract interdependency between multiple parts. Further research from a negative ontological

perspective would be important in the quest to understand just how deep this tendency runs in

software. It would also be interesting to explore the related question of at which point—assuming

there is one—does software cease to depend on narrative for its identity and become just a simple

script, app, or program that is not subject to these same tendencies. Do smaller or niche software

products exhibit the same features? Conversely, are there examples of large and complex software

products that incorporate high degrees of narrative for their coherence and which nevertheless do

not seem to mobilize this emptiness for the same kinds of ideological effect? If so, what is the

difference?

This latter question may well offer some interesting insights into what makes resistance to

software as an empty signifier more effective, for if we could find examples where this is not the

case it could well be due to effective resistance efforts. This highlights what I believe is really the

most pressing limit of this research, namely the lack of evidence to credibly establish a process of

resistance to the ideological effects it highlighted. I am well aware that the nature of my study

238

design limited the extent to which I could seriously offer recommendations. I have mostly observed

the production of this discourse of HealthCare Perfected and explored the largely self-reported

effects of this ideology. As such, my argument regarding resistance to these effects is speculative

and based on logic rather than solid empirical evidence. This is the key fact of this research that I

find regrettable, but owing to constraints on time, scope, and budget, it was not feasible to extend

this study to the extent that it deserved.

In addition to calling for future research into other similar software companies, therefore, I

note also that there is a strong need for research into the contexts of use for these and other similar

software products. Within healthcare, future research is needed to explore different resistance

strategies at multiple levels in user organisations as well as how indeed these sites also contribute

to the production and exacerbation of the discourse itself. My own research highlights the way in

which staff at the hospital participated in producing this discourse; but this would be worth

exploring further—in what ways are clinicians complicit in this compared with IT managers? But

equally it would be important to understand where and how managers and/or clinicians are able to

succeed at resisting this powerful narrative and re-grounding software discourse in specifics. Which

techniques and strategies effectively mitigate the self-reinforcing tendencies of this discourse and

how is communicative action restored by this?

As I indicated earlier in this chapter, there is also a less obvious but equally salient need to

understand the consequences of this potentially vast migratory shift of knowledge out from the

traditional bounds of the organisation and into the domains of software companies and their

algorithms. One of the striking points revealed in this research is that software code is surprisingly

obscure even to its developers, a point which is severely exacerbated by the inevitable personnel

changes in development organisations over time. Eventually it’s highly probable that the original

developers responsible for coding a feature of software will move on, with the risk that the rules

that govern this code are all but lost to time. As I came to understand in my time at CloudDoc, this

problem is made worse by two features of modern software: First the power of modern computers

239

means they are able to run processes in parallel, which means that the most efficient way to code

software is increasingly shifting towards programs that run many different things at once. This

increases processing speed but makes it significantly harder for the developer to visualise and

understand the process, compared to the older stepwise model of programming.

Secondly, and even more importantly, we are increasingly using ever larger datasets,

accompanied by a shift to machine learning algorithms in order to extract meaning from these.

While the predictive power of these algorithms is impressive, there is a trade-off being made in

terms of the understandability of these models. Once again, this is not simply because of the

advanced mathematics they utilise but is an inherent property of the way in which they work. All

these factors (parallel processing, machine learning, and the fact of the externality of software IP)

lead to a convergence in a process of external knowledge migration away from the organisation

and away from clarity. What’s most intriguing about this shift is when it is juxtaposed with the

recognition that knowledge is the defining feature of a firm’s value (Nonaka, Takeuchi, &

Umemoto, 1996), within a knowledge economy. In such a context, the fact that we are so willingly

converting organisational knowledge into obscured, if not outright obfuscated, algorithms is

alarming. This is done because of the allure of perfection through software, but there are real risks

here that call for future research.

I see in particular a need to better understand the implications for the role of manager in a

world where increasingly large portions of this work have been effectively outsourced to

developers and business analysts at a software company on the one hand, and automated monitoring

programs on the other. Does this herald a shift in what it will mean to be a manager in the future?

And if so, what does this mean for the critique of management, which has traditionally been

underpinned by the assumption that management means managers? More research is needed to

think through the implications of a CMS that takes as its target algorithms and the discourse that

sustains them, not to mention the developers and sundry others involved in their creation who have

to date remained largely out of sight in these discussions.

240

Similarly, there is a need for research into the practical implications of the loss of expertise

this shift implies, which would again need to be located on a user-site and would benefit from a

longitudinal approach especially. What happens to practical expertise in contexts where the scope

for autonomy is repeatedly reduced through software that ‘perfects’ a practice? There are likely

many implications in terms of the skill make-up of the workforce as software replaces expertise,

and this has already been the subject of research (e.g. Susskind & Susskind, 2017). But it would be

also worth exploring how users resist and hold on to expertise despite software’s intrusion, and

how they navigate the issues created by its failure to work as intended. All such lines of inquiry

reinforce the need to extend this research with further ethnographic explorations of user-sites,

building on the insight of the emptiness of software as argued in this thesis.

From a more theoretical point of view, another potential limit of this study is that it drew

on the Laclauian side of PDT rather than the recently more common Lacanian slant. I found Laclau

more useful in terms of understanding the mechanisms of this discourse and its ideological effects,

which is more Laclau’s bailiwick than Lacan. However, a Lacanian perspective offers a much

richer analytical lens into the personal subjectivity aspects of this research. Due to my limitations

in scope it would have been unwieldly to try to incorporate both lenses to an adequate degree. Thus

it remains a limitation of this study in terms of under-examining the subjectivity effects of the

failure of this discourse. Again, drawing on more of a user-focused ethnography, future research is

needed to understand the subjective implications of the discourse of Healthcare Perfected. How do

clinical identities change as they come to understand themselves as god-like? How do they navigate

the tensions inherent in the hybrid role this discourse creates for them as they are both empowered

by software whilst simultaneously subservient to it? And how are they affected by the failure of

this identity? Equally a further set of questions arises in the context of patients who are being

interpolated as datasets rather than people. How do our own identities change, for example, as we

come to understand ourselves as needing ever-more datafication in order to achieve the holy grail

of perfect wellness? From a PDT perspective, I suggest that these kinds of questions would be

241

better served by a more Lacanian focus than I was able to offer in this thesis, marking this as both

a present limitation and a future research trajectory.

One final limitation needs to be addressed regarding the interpretive nature of the empirical

analysis in this research. As is fairly standard of constructionist research, it could be said that this

research is in no way objective given that its narrative has been woven together by me, the

researcher, throughout all stages of data gathering and analysis. This is entirely accurate. Another

researcher in the same organisation would likely have met different people, focused on different

aspects, asked different questions, got different answers, and ultimately come to a very different

set of conclusions than I have. This is a fact of ethnographic research and, while that may appear

to invalidate this research to those of more objectivist leanings, this fact has been accepted for

decades by ethnographic researchers (Hammersley & Atkinson, 2010; Hastrup, 2004) with some

going so far as to argue that it is a necessary condition of a proper understanding of the deep

contextual features of a research problem (Hastrup, 2004; Watson, 2011). The quality of this

research, therefore, must be assessed not on its claims to have captured objective reality but rather

by its ability to (a) offer a compelling explanation of a social fact through weaving together theory

and evidence (Glynos et al., 2009); and (b) it’s ability to provoke new, useful, and interesting

questions. I humbly submit that this thesis has achieved both and therefore conclude this section

by noting that, while this study has its limits, these are primarily indicative of the need for further

ongoing research into an interesting and important area of organisation studies.

Closing Statement

I draw this thesis to a close with a final reflection on the position we as researchers,

managers, workers, clinicians, patients, and as a society as a whole find ourselves in. We are today

in a world which delivers news daily about new advances in technology that any previous

generation would have considered outright magic. Software may be accompanied by a fair amount

of hype and grandeur, but in terms of the capabilities now available to me with the smart phone I

242

carry in my pocket, some might say it has earned the right to boast a little. The iPhone was launched

in 2007, meaning that most of the those alive today are old enough to remember the time, not so

long ago, when our phones couldn’t understand us when we spoke to them nor reply to tell us things

like how long it will take us to get home if we leave now because of extra traffic. The progress

from that initial launch of the iPhone to what an average smart phone can do today, just over a

decade later, is truly astonishing. It’s little wonder we are so easily caught up in a fantasy about the

inevitable perfection of life itself through software.

Yet the speed of this transition also signals the immensely important task of understanding

the effects of these changes in our society and our workplace. In this respect, I find myself agreeing

with the Clouders I met in my research: we are indeed witnessing a global revolution through

software. I don’t agree, however, that this revolution is inevitable, or that it is linked to the

irrefutable superiority of software over human beings. Rather this research has revealed the ways

in which humans actively contribute to this transformation at every stage, from the smallest levels

of component parts through to the macro level discourses we construct to give meaning and

ideological force to these movements. It is for this reason that the task of understanding the

ontological identity of software has never been more important.

Moreover, as I have belaboured throughout this thesis, this question of understanding

software is trickier than it first appears because software is ontologically problematic. It continually

evades attempts to pin it down and, because this fact has gone unrecognised, we continually try

harder instead of shifting our attention to the ideological effects that are made possible by software

as an empty signifier. In this thesis overall, I hope to have offered a counterpoint to this

phenomenon. This thesis should therefore be read as a call to stop and reflect on the taken for

granted assumptions we hold about software. The world is changing; there’s no doubt about that.

But if we reflect more on the narratives of software discourse in our societies and workplaces, we

will be in a better position to reflexively choose what kind of software-enabled world we want to

243

live in. This is the end goal of this thesis then: through it I hope we will be able to re-ground and

take control of the deus ex machina, the ghost in the machine that is the fantasy of software.

244

10. References

Adler, P. S. (2005). The Evolving Object of Software Development. Organization, 12(3), 401-435.

AI Forum. (2019). Towards Our Intelligent Future: Te Ara mō tātou Atamai o Āpōpō. Retrieved

from https://aiforum.org.nz/towards-our-intelligent-future/

Akemu, O., & Abdelnour, S. (2018). Confronting the digital: Doing ethnography in modern

organizational settings. Organizational Research Methods, 1094428118791018.

Althusser, L. (2006). Ideology and ideological state apparatuses (notes towards an investigation).

In A. Sharma & A. Gupta (Eds.), The anthropology of the state: A reader (Vol. 9, pp. 86-

98): Blackwell Malden, MA.

Alvesson, M. (2003). Beyond neopositivists, romantics, and localists: A reflexive approach to

interviews in organizational research. Academy of management review, 28(1), 13-33.

Alvesson, M., & Kärreman, D. (2000). Varieties of discourse: On the study of organizations

through discourse analysis. Human Relations, 53(9), 1125-1149.

Alvesson, M., & Kärreman, D. (2007). Constructing mystery: Empirical matters in theory

development. Academy of management review, 32(4), 1265-1281.

Alvesson, M., & Kärreman, D. (2011a). Decolonializing discourse: Critical reflections on

organizational discourse analysis. Human Relations, 64(9), 1121-1146.

doi:10.1177/0018726711408629

Alvesson, M., & Kärreman, D. (2011b). Organizational discourse analysis - well done or too rare?

A reply to our critics. Human Relations, 64(9), 1193-1202.

doi:10.1177/0018726711408630

Alvesson, M., Lee Ashcraft, K., & Thomas, R. (2008). Identity matters: Reflections on the

construction of identity scholarship in organization studies. Organization, 15(1), 5-28.

Alvesson, M., & Spicer, A. (2012). A stupidity‐based theory of organizations. Journal of

Management Studies, 49(7), 1194-1220.

Alvesson, M., & Willmott, H. (2002). Identity regulation as organizational control: Producing the

appropriate individual. Journal of Management Studies, 39(5), 619-644.

Applegate, L. M., Cash, J. I., & Mills, D. Q. (1988). Information Technology and tomorrows

manager. Harvard Business Review, 66(6), 128-136.

Argyris, C. (1977). Double loop learning in organizations. Harvard Business Review, 55(5), 115-

125.

Ball, T. (1975). Models of power: past and present. Journal of the History of the Behavioral

Sciences, 11(3), 211-222.

Barad, K. (2003). Posthumanist performativity: Toward an understanding of how matter comes to

matter. Signs: Journal of women in culture and society, 28(3), 801-831.

Barad, K. (2007). Meeting the universe halfway: Quantum physics and the entanglement of matter

and meaning. Durham: Duke University Press.

Barassi, V. (2016). Contested visions: Digital discourses as empty signifiers from the ‘network’ to

‘big data’. Communication and the Public, 1(4), 423-435. doi:10.1177/2057047316680220

Bargiela-Chiappini, F. (2011). Discourse(s), social construction and language practices: In

conversation with Alvesson and Kärreman. Human Relations, 64(9), 1177-1191.

doi:10.1177/0018726711408366

Barrett, R. (2001). Labouring under an illusion? The labour process of software development in

the Australian information industry. New Technology, Work and Employment, 16(1), 18-

34.

Bate, S. P. (1997). Whatever happened to organizational anthropology? A review of the field of

organizational ethnography and anthropological studies. Human Relations, 50(9), 1147-

1175.

Batstone, J. (2017). Bondi Skin checks help Train Watson. Retrieved from

https://www.ibm.com/blogs/ibm-anz/tackling-cancer-with-data/

245

Bell, D. (1973). The coming of post-industrial society; a venture in social forecasting. New York:

Basic Books.

Berger, P. L., & Luckmann, T. (1966). The social construction of reality : a treatise in the sociology

of knowledge. Garden City: Double Day.

Bergvall-Kåreborn, B., & Howcroft, D. (2013). ‘The future’s bright, the future’s mobile’: a study

of Apple and Google mobile application developers. Work, Employment & Society, 27(6),

964-981. doi:10.1177/0950017012474709

Bhaskar, R. (1975). A realist theory of science. Leeds: Leeds Books.

Boden, A., Müller, C., & Nett, B. (2011). Conducting a Business Ethnography in Global Software

Development projects of small German enterprises. Information and Software Technology,

53(9), 1012.

Boland Jr, R. J., & Day, W. F. (1989). The experience of system design: a hermeneutic of

organizational action. Scandinavian Journal of Management, 5(2), 87-104.

Bostrom, N. (2016). Superintelligence. Oxford: Oxford University Press.

Bourdieu, P. (1977). Outline of a theory of practice. Cambridge, U.K.; New York: Cambridge

University Press.

Bourdieu, P. (1990). The logic of practice. Stanford, Calif.: Stanford University Press.

Brahm, C., & Kleiner, B. H. (1996). Advantages and disadvantages of group decision‐making

approaches. Team Performance Management: An International Journal, 2(1), 30-35.

Branstetter, L. G., Drev, M., & Kwon, N. (2019). Get with the Program: Software-Driven

Innovation in Traditional Manufacturing. Management science, 65(2), 541-558.

doi:10.1287/mnsc.2017.2960

Braverman, H. (1974). Labor and monopoly capital : the degradation of work in the twentieth

century. New York: Monthly Review Press.

Bridgman, T. (2007). Freedom and autonomy in the university enterprise. Journal of

Organizational Change Management, 20(4), 478-490.

Bridgman, T., & Willmott, H. (2006). Institutions and technology: Frameworks for understanding

organizational change—The case of a major ICT outsourcing contract. The Journal of

Applied Behavioral Science, 42(1), 110-126.

Brown, A. D. (2015). Identities and identity work in organizations. International Journal of

Management Reviews, 17(1), 20-40.

Buchanan, D. (2012). Case studies in organizational research. In G. Symon & C. Cassell (Eds.),

Qualitative organizational research : core methods and current challenges (pp. 351-370).

London: SAGE.

Butler, J., Laclau, E., & Zizek, S. (2000). Contingency, hegemony, universality : contemporary

dialogues on the left. London; New York: Verso.

Callon, M. (1986). Some elements of a sociology of translation: Domestication of the scallops and

the fishermen of Saint Brieuc Bay. In J. Law (Ed.), Power, action, and belief : a new

sociology of knowledge? (pp. 196-233). London; Boston: Routledge & Kegan Paul.

Carbaugh, D., & Hastings, S. O. (1992). A role for communication theory in ethnography and

cultural analysis. Communication Theory, 2(2), 156-165.

Carmeli, A., Sheaffer, Z., Binyamin, G., Reiter‐Palmon, R., & Shimoni, T. (2014).

Transformational leadership and creative problem‐solving: The mediating role of

psychological safety and reflexivity. The Journal of Creative Behavior, 48(2), 115-135.

Carroll, B. (2016). Leadership as Identity: A Practice based exploration. In J. A. Raelin (Ed.),

Leadership-as-Practice (pp. 91-109): Routledge.

Carter, N. M. (1984). Computerization as a predominate technology: Its influence on the structure

of newspaper organizations. Academy of management journal, 27(2), 247-270.

Case, P., & Piñeiro, E. (2006). Aesthetics, performativity and resistance in the narratives of a

computer programming community. Human Relations, 59(6), 753-782.

Case, P., & Piñeiro, E. (2009). Stop whining, start doing! Identity conflict in project managed

software environments. ephemera, 9(2), 93-112.

246

Casey, C. (1995). Work, self and society: After industrialism. London: Routledge.

Casey, C. (1999). “Come, join our family”: Discipline and integration in corporate organizational

culture. Human Relations, 52(2), 155-178.

Cassell, C. (2009). Interviews in Organizational Research. In D. Buchanan & A. Bryman (Eds.),

The Sage handbook of organizational research methods: Sage Publications Ltd.

Castells, M. (2000). Materials for an exploratory theory of the network society1. The British

journal of sociology, 51(1), 5-24.

Castells, M. (2009). The information age. economy, society and culture : the rise of the network

society. Chichester: John Wiley & Sons.

Cetina, K. K. (1997). Sociality with objects: Social relations in postsocial knowledge societies.

Theory, culture & society, 14(4), 1-30.

Charette, R. N. (2005). Why software fails [software failure]. IEEE spectrum, 42(9), 42-49.

Chia, R. (2000). Discourse analysis organizational analysis. Organization, 7(3), 513-518.

Chia, R. (2004). Strategy‐as‐practice: Reflections on the research agenda. European Management

Review, 1(1), 29-34.

Chia, R., & Holt, R. (2006). Strategy as practical coping: A Heideggerian perspective.

Organization studies, 27(5), 635-655.

Child, J. (1972). Organizational structure, environment and performance: The role of strategic

choice. sociology, 6(1), 1-22.

Cloud, D. L. (1994). The materiality of discourse as oxymoron: A challenge to critical rhetoric.

Western Journal of Communication (includes Communication Reports), 58(3), 141-163.

Contu, A., Grey, C., & Örtenblad, A. (2003). Against learning. Human Relations, 56(8), 931-952.

Contu, A., & Willmott, H. (2006). Studying practice: Situating talking about machines.

Organization studies, 27(12), 1769-1782.

Cooren, F. (2004). Textual agency: How texts do things in organizational settings. Organization,

11(3), 373-393.

Cooren, F., Kuhn, T., Cornelissen, J. P., & Clark, T. (2011). Communication, organizing and

organization: An overview and introduction to the special issue. Organization studies,

32(9), 1149-1170.

Cooren, F., Taylor, J. R., & Van Every, E. J. (2006). Communication as organizing : empirical and

theoretical approaches into the dynamic of text and conversation. Mahwah, NJ: Lawrence

Erlbaum.

Corradi, G., Gherardi, S., & Verzelloni, L. (2010). Through the practice lens: where is the

bandwagon of practice-based studies heading? Management learning, 41(3), 265-283.

Crump, B. J., Logan, K. A., & McIlroy, A. (2007). Does gender still matter? A study of the views

of women in the ICT industry in New Zealand. Gender, Work & Organization, 14(4), 349-

370.

Czarniawska-Joerges, B. (1992). Exploring complex organizations : a cultural perspective.

Newbury Park, Calif.: Sage Publications.

Czarniawska-Joerges, B. (2014). Social science research : from field to desk. Thousand Oaks,

California: Sage Publications.

Derrida, J. (1972). Margins of philosophy (A. Bass, Trans.). Chicago: University of Chicago Press.

Derrida, J. (1997). Of grammatology (G. C. Spivak, Trans.). Baltimore, Md.: Johns Hopkins

University Press.

Dery, K., Hall, R., & Wailes, N. (2006). ERPs as ‘technologies‐in‐practice’: social construction,

materiality and the role of organisational factors. New Technology, Work and Employment,

21(3), 229-241.

DeSanctis, G., & Poole, M. S. (1994). Capturing the complexity in advanced technology use:

Adaptive structuration theory. Organization science, 5(2), 121-147.

Deseriis, M. (2017). Technopopulism: The Emergence of a Discursive Formation. tripleC:

Communication, Capitalism & Critique. Open Access Journal for a Global Sustainable

Information Society, 15(2), 441-458.

247

Despa, M. L. (2013). THE ADAPTIVE NATURE OF MANAGING SOFTWARE

INNOVATION. Journal of Information Systems & Operations Management, 1-8.

Dreyfus, H. L. (1991). Being-in-the-world : a commentary on Heidegger's "Being and time",

division 1. Cambridge (Mass.): MIT Press.

Driver, M. (2009). From loss to lack: Stories of organizational change as encounters with failed

fantasies of self, work and organization. Organization, 16(3), 353-369.

Drucker, P. F. (1959). Landmarks of tomorrow. New York: Harper.

Drucker, P. F. (1969). The age of discontinuity; guidelines to our changing society. New York:

Harper & Row.

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in

the era of Big Data–evolution, challenges and research agenda. International Journal of

Information Management, 48, 63-71.

Dumas, J. A., Dietz, E. O., & Connolly, P. M. (2001). Nurse practitioner use of computer

technologies in practice. Computers in Nursing, 19(1), 34-40.

Editors. (2015). New Directions in Studying Discourse and Materiality. Journal of Management

Studies, 52(5), 678-679. doi:10.1111/joms.12117

Edwards, R. (1979). Contested Terrain: The Transformation of the Workplace in the Twentieth

Century. New York: Basic Books.

Eisenhardt, K. M., & Graebner, M. E. (2007). Theory building from cases: Opportunities and

challenges. Academy of management journal, 50(1), 25-32.

El Emam, K., & Koru, A. G. (2008). A replicated survey of IT software project failures. IEEE

software, 25(5), 84-90.

Emerson, R. M., Fretz, R. I., & Shaw, L. L. (1995). Writing ethnographic fieldnotes. Chicago:

University of Chicago Press.

Fairclough, N. (2005). Peripheral vision discourse analysis in organization studies: The case for

critical realism. Organization studies, 26(6), 915-939.

Faraj, S., & Azad, B. (2012). The Materiality of Technology: An Affordance Perspective. In P. M.

Leonardi, B. A. Nardi, & J. Kallinikos (Eds.), Materiality and organizing: Social

interaction in a technological world. Oxford: Oxford University Press.

Financial Times. (2020). Why big pharma sees a remedy in data and AI. Financial Times. Retrieved

from https://www.ft.com/content/4743d76c-af9b-11e9-8030-530adfa879c2

Foster, L. W., & Flynn, D. M. (1984). Management information technology: Its effects on

organizational form and function. MIS quarterly, 8(4), 229-236.

Foucault, M. (1972). Archaeology of knowledge (A. Sheridan, Trans.). New York: Pantheon Books.

Foucault, M. (1978). The history of sexuality, Vol. 1. New York: Pantheon Books.

Foucault, M. (1979). Discipline and punish : the birth of the prison (A. Sheridan, Trans.). New

York: Vintage Books.

Foucault, M. (1981). The Order of Discourse. In R. Young (Ed.), Untying the text: A post-

structuralist reader (pp. 48-78). Boston, MA: Routledge & Kegan Paul.

Foucault, M. (2008). The birth of biopolitics : lectures at the Collège de France, 1978-79.

Basingstoke [England]; New York: Palgrave Macmillan.

Fournier, V., & Grey, C. (2000). At the critical moment: Conditions and prospects for critical

management studies. Human Relations, 53(1), 7-32.

Freeman, R. B. (2008). The new global labor market. Focus, 26(1), 1-6.

Funkhouser, K., & Drews, F. (2016). Reaction times when switching from autonomous to manual

driving control: A pilot investigation. Paper presented at the Proceedings of the Human

Factors and Ergonomics Society Annual Meeting.

Gabriel, Y. (1995). The unmanaged organization: Stories, fantasies and subjectivity. Organization

studies, 16(3), 477-501.

Garbuio, M., & Lin, N. (2019). Artificial intelligence as a growth engine for health care startups:

Emerging business models. California Management Review, 61(2), 59-83.

248

Geertz, C. (1973). Thick Description: Toward an Interpretive Theory of Culture. In C. Geertz (Ed.),

The Interpretation of Cultures (pp. 3-32). New York, NY: Basic Books.

George, J. F., Easton, G. K., Nunamaker Jr, J. F., & Northcraft, G. B. (1990). A study of

collaborative group work with and without computer-based support. Information systems

research, 1(4), 394-415.

Gherardi, S. (2015). To start practice theorizing anew: The contribution of the concepts of

agencement and formativeness. Organization, 23(5), 680-698.

Gillingham, P. (2012). The development of electronic information systems for the future:

practitioners,‘embodied structures’ and ‘technologies-in-practice’. British Journal of Social

Work, 43(3), 430-445.

Glasson, B. J. (2012). The intellectual outside: Anti-intellectualism and the subject of populist

discourses in Australian newspapers. Continuum, 26(1), 101-114.

Glynos, J. (2011). On the ideological and political significance of fantasy in the organization of

work. Psychoanalysis, Culture & Society, 16(4), 373-393.

Glynos, J., & Howarth, D. (2007). Logics of critical explanation in social and political theory. New

York, N.Y.: Routledge.

Glynos, J., Howarth, D., Norval, A., & Speed, E. (2009). Discourse analysis: Varieties and

methods. National Centre for Research Methods. Retrieved from

http://eprints.ncrm.ac.uk/796/

Glynos, J., & Speed, E. (2012). Varieties of co-production in public services: time banks in a UK

health policy context. Critical Policy Studies, 6(4), 402-433.

Glynos, J., Speed, E., & West, K. (2015). Logics of marginalisation in health and social care

reform: Integration, choice, and provider-blind provision. Critical social policy, 35(1), 45-

68.

Gorz, A. (2010). The immaterial : knowledge, value and capital (C. Turner, Trans.). London; New

York: Seagull Books.

Grant, D., & Hardy, C. (2004). Introduction: Struggles with organizational discourse. Organization

studies, 25(1), 5-13.

Grant, D., Keenoy, T., & Oswick, C. (2001). Organizational discourse: Key contributions and

challenges. International Studies of Management & Organization, 31(3), 5-24.

Grant, D., Oswick, C., Hardy, C., Putnam, L. L., & Phillips, N. (2004). The Sage handbook of

organizational discourse. London: Sage.

Gregory, K. L. (1983). Native-view paradigms: Multiple cultures and culture conflicts in

organizations. Administrative science quarterly, 28(3), 359-376.

Grey, C., & Willmott, H. (2005). Critical management studies: A Reader. Oxford: Oxford

University Press.

Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. Handbook of

qualitative research, 2(163-194), 105.

Guerrier, Y., Evans, C., Glover, J., & Wilson, C. (2009). ‘Technical, but not very….’: constructing

gendered identities in IT-related employment. Work, Employment & Society, 23(3), 494-

511.

Haarstad, H. (2017). Constructing the sustainable city: examining the role of sustainability in the

‘smart city’ discourse. Journal of Environmental Policy & Planning, 19(4), 423-437.

doi:10.1080/1523908X.2016.1245610

Habermas, J. (1984). The theory of communicative action. Lifeworld and system : a critique of

functionalist reason. Cambridge; Boston: Polity : Beacon Press.

Hacking, I. (1999). The social construction of what? Cambridge, Mass: Harvard University Press.

Haenlein, M., Kaplan, A., Tan, C.-W., & Zhang, P. (2019). Artificial intelligence (AI) and

management analytics. Journal of Management Analytics, 6(4), 341-343.

Hammersley, M., & Atkinson, P. (2010). Ethnography : principles in practice. London: Routledge.

Hardy, C., & Grant, D. (2012). Readers beware: Provocation, problematization and… problems.

Human Relations, 65(5), 547-566.

249

Hardy, C., & Thomas, R. (2015). Discourse in a Material World. Journal of Management Studies,

52(5), 680-696. doi:10.1111/joms.12113

Harris, S. (Producer). (2018, August 30, 2018). Waking Up Podcast 136: Digital Humanism with

Jaron Lanier. Digital Humanism. [Audio Podcast]

Harvey, J. B. (1974). The Abilene paradox: the management of agreement. Organizational

dynamics, 3(1), 63-80.

Hastrup, K. (2004). Getting it right Knowledge and evidence in anthropology. Anthropological

Theory, 4(4), 455-472.

Hastrup, K. (2005). Social anthropology. Towards pragmatic enlightenment? Social Anthropology,

13(2), 133-149.

Hawkins, B. (2015). Ship-shape: materializing leadership in the British Royal Navy. Human

Relations, 68(6), 951-971.

Hiltz, S. R., & Johnson, K. (1990). User satisfaction with computer-mediated communication

systems. Management science, 36(6), 739-764.

Himanen, P. (2001). The hacker ethic, and the spirit of the information age. New York: Random

House.

Hine, C. (2008). Virtual ethnography: Modes, varieties, affordances. The SAGE handbook of online

research methods, 257-270.

Hodgson, D., & Briand, L. (2013). Controlling the uncontrollable:‘Agile’teams and illusions of

autonomy in creative work. Work, Employment & Society, 27(2), 308-325.

Hoedemaekers, C., & Keegan, A. (2010). Performance Pinned Down: Studying Subjectivity and

the Language of Performance. Organization studies, 31(8), 1021-1044.

Howard, A., & Borenstein, J. (2018). The ugly truth about ourselves and our robot creations: The

problem of bias and social inequity. Science and engineering ethics, 24(5), 1521-1536.

Howarth, D. (2000). Discourse. Milton Keynes: Open University Press.

Iedema, R. (2011). Discourse studies in the 21st century: A response to Mats Alvesson and Dan

Kärreman’s ‘Decolonializing discourse’. Human Relations, 64(9), 1163-1176.

Introna, L. D. (2016). Algorithms, governance, and governmentality: On governing academic

writing. Science, Technology, & Human Values, 41(1), 17-49.

Introna, L. D., & Hayes, N. (2011). On sociomaterial imbrications: What plagiarism detection

systems reveal and why it matters. Information and Organization, 21(2), 107-122.

Jemielniak, D. (2010). Software engineers or artists? Programmers’ identity choices. Tamara

Journal for Critical Organization Inquiry, 7(1).

Jones, C., & Spicer, A. (2005). The Sublime Object of Entrepreneurship. Organization, 12(2), 223-

246.

Jørgensen, M., & Phillips, L. (2002). Discourse Analysis as Theory and Method. London: SAGE

Publications Ltd.

Kanigel, R. (2005). The one best way : Frederick Winslow Taylor and the enigma of efficiency.

Cambridge, Mass: MIT Press.

Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities

of artificial intelligence. Business Horizons, 63(1), 37-50.

Kelly, S. (2014). Towards a negative ontology of leadership. Human Relations, 67(8), 905-922.

Kenny, K., & Scriver, S. (2012). Dangerously empty? Hegemony and the construction of the Irish

entrepreneur. Organization, 19(5), 615-633.

Kenway, J., Bullen, E., & Robb, S. (2004). The knowledge economy, the techno-preneur and the

problematic future of the university. Policy futures in education, 2(2), 330-349.

Khalid, T. A., & Eng-Thiam, Y. (2018). TOWARDS INCORPORATING HUMAN FACTORS

IN THE SOFTWARE PROJECT COST CONTROL MODELS. Journal of Modern Project

Management, 54-71.

Klein, G., Shneiderman, B., Hoffman, R. R., & Ford, K. M. (2017). Why expertise matters: A

response to the challenges. IEEE Intelligent Systems, 32(6), 67-73.

250

Klein, H., & Hirschheim, R. (1983). Issues and Approaches to Appraising Technological Change

in the Office: A Consequentialist Perspective. Office technology and people, 2(1), 15-42.

Kling, R. (1987). Defining the boundaries of computing across complex organizations. In R. J.

Boland & R. A. Hirshheim (Eds.), Critical issues in information systems research.

Chichester: Wiley.

Kling, R., & Iacono, S. (1984). Computing as an occasion for social control. Journal of Social

Issues, 40(3), 77-96.

Kosmala, K. (2012). Scripting shifts in the regulatory structures: professional competence

constructed as a lack. Organization, 20(4), 577-595.

Kraft, P. (1979). The industrialization of computer programming: From programming to "software

production". In A. Zimbalist (Ed.), Case Studies on the Labour Process (pp. 1-17). London:

Monthly Review Press.

Kuchler, M., & Hedrén, J. (2015). Bioenergy as an Empty Signifier. Review of Radical Political

Economics, 48(2), 235-251.

Kunda, G. (1992). Engineering culture : control and commitment in a high-tech corporation.

Philadelphia, PA: Temple University Press.

Lacan, J. (2014). The mirror stage as formative of the function of the I as revealed in psychoanalytic

experience (1949). In Reading French Psychoanalysis (pp. 119-126): Routledge.

Laclau, E. (1990). New reflections on the revolution of our time. London: Verso.

Laclau, E. (1996a). The death and resurrection of the theory of ideology. Journal of political

ideologies, 1(3), 201-220.

Laclau, E. (1996b). Emancipation(s). London: Verso.

Laclau, E. (2015[1996]). Why do empty signifiers matter to politics? In D. Howarth (Ed.), Ernesto

Laclau post-marxism, populism and critique (pp. 66-74). London: Routledge.

Laclau, E., & Bhaskar, R. (1998). Discourse theory vs critical realism. Alethia, 1(2), 9-14.

Laclau, E., & Mouffe, C. (2001[1985]). Hegemony and socialist strategy : towards a radical

democratic politics. London; New York: Verso.

Lanier, J. (2019). Ten arguments for deleting your social media accounts right now. New York:

PICADOR.

Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford:

Oxford university press.

Latour, B., & Woolgar, S. (1979). Laboratory Life : the Construction of Scientific Facts. Princeton:

Princeton University Press.

Leavitt, H. J., & Whisler, T. L. (1958). Management in the 1980’s. Harvard Business Review.

Leclercq-Vandelannoitte, A. (2011). Organizations as discursive constructions: A Foucauldian

approach. Organization studies, 32(9), 1247-1271.

Lee, H. K., Lee, J. S., & Keil, M. (2018). Using Perspective-Taking to De-escalate Launch Date

Commitment for Products with Known Software Defects. Journal of Management

Information Systems, 35(4), 1251-1276. doi:10.1080/07421222.2018.1523604

Leonardi, P. M., & Barley, S. R. (2010). What’s under construction here? Social action, materiality,

and power in constructivist studies of technology and organizing. The Academy of

Management Annals, 4(1), 1-51.

Levin, K., Cashore, B., Bernstein, S., & Auld, G. (2012). Overcoming the tragedy of super wicked

problems: constraining our future selves to ameliorate global climate change. Policy

sciences, 45(2), 123-152.

Livschitz, V. (2005). Conquering the crisis in software engineering. Paper presented at the 29th

Annual International Computer Software and Applications Conference (COMPSAC'05).

Locke, E. A. (1982). The ideas of Frederick W. Taylor: an evaluation. Academy of management

review, 7(1), 14-24.

Locke, J. (1959). An Essay Concerning Human Understanding (A. C. Fraser Ed.). New York:

Dover Editions.

251

Lyotard, J.-F. (2010). The postmodern condition : a report on knowledge. Minneapolis, Minn:

Univ. of Minnesota Press.

Marks, A., & Baldry, C. (2009). Stuck in the middle with who? The class identity of knowledge

workers. Work, Employment & Society, 23(1), 49-65.

Marks, A., & Huzzard, T. (2010). Employability and the ICT worker: a study of employees in

Scottish small businesses. New Technology, Work and Employment, 25(2), 167-181.

Marks, A., & Scholarios, D. (2007). Revisiting technical workers: professional and organisational

identities in the software industry. New Technology, Work and Employment, 22(2), 98-117.

Markus, M. L. (1983). Power, politics, and MIS implementation. Communications of the ACM,

26(6), 430-444.

MBIE, & AI Forum. (2018). Artificial Intelligence: Shaping a Future New Zealand. Retrieved from

https://www.mbie.govt.nz/dmsdocument/5754-artificial-intelligence-shaping-a-future-

new-zealand-pdf

McBride, N. (2008). Using performance ethnography to explore the human aspects of software

quality. Information Technology & People, 21(1), 91-111.

Miettinen, R., Samra-Fredericks, D., & Yanow, D. (2009). Re-turn to practice: an introductory

essay. Organization studies, 30(12), 1309-1327.

Montecchi, M., Plangger, K., & Etter, M. (2019). It’s real, trust me! Establishing supply chain

provenance using blockchain. Business Horizons, 62(3), 283-293.

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of

adopting an information technology innovation. Information systems research, 2(3), 192-

222.

Mumby, D. K. (2011). What’s cooking in organizational discourse studies? A response to Alvesson

and Kärreman. Human Relations, 64(9), 1147-1161. doi:10.1177/0018726711408367

Newman, M., & Rosenberg, D. (1985). Systems analysts and the politics of organizational control.

International Journal of Management Science, 13(5), 393-406.

Nicolini, D. (2009). Zooming In and Out: Studying Practices by Switching Theoretical Lenses and

Trailing Connections. Organization studies, 30(12), 1391-1418.

doi:10.1177/0170840609349875

Nicolini, D. (2012). Practice theory, work & organization. Oxford: Oxford University Press.

Nietzsche, F. W. (1917). Thus spoke Zarathustra (T. Common & E. Förster-Nietzsche Eds.). New

York: Modern Library.

Nonaka, l., Takeuchi, H., & Umemoto, K. (1996). A theory of organizational knowledge creation.

International Journal of Technology Management, 11(7-8), 833-845.

Norval, A. J. (2000). The things we do with words–contemporary approaches to the analysis of

ideology. British Journal of Political Science, 30(2), 313-346.

Norval, A. J. (2004). Hegemony after deconstruction: the consequences of undecidability. Journal

of political ideologies, 9(2), 139-157.

Nyberg, D., & Delaney, H. (2014). Critical Ethnographic Research: Negotiations, Influences, and

Interests. In E. Jeanes & T. Huzzard (Eds.), Critical management research : reflections

from the field. London: SAGE.

NZ Herald. (2020). Google CEO thinks AI will be more profound change than electricity. NZ

Herald. Retrieved from

https://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=12303296

O’Doherty, D., & Neyland, D. (2019). The developments in ethnographic studies of organising:

Towards objects of ignorance and objects of concern. Organization, 26(4), 449–469.

Oborn, E., Barrett, M., & Dawson, S. (2013). Distributed leadership in policy formulation: A

sociomaterial perspective. Organization studies, 34(2), 253-276.

Obschonka, M., & Audretsch, D. B. (2019). Artificial intelligence and big data in entrepreneurship:

a new era has begun. Small Business Economics, 1-11.

Olssen, M., & Peters, M. A. (2005). Neoliberalism, higher education and the knowledge economy:

From the free market to knowledge capitalism. Journal of education policy, 20(3), 313-345.

252

Omerovic, M., Islam, N., & Buxmann, P. (2020). Unlashing the Next Wave of Business Models in

the Internet of Things Era: New Directions for a Research Agenda based on a Systematic

Literature Review. Paper presented at the Proceedings of the 53rd Hawaii International

Conference on System Sciences.

Orlikowski, W. (1992). The duality of technology: Rethinking the concept of technology in

organizations. Organization science, 3(3), 398-427.

Orlikowski, W. (2000). Using technology and constituting structures: A practice lens for studying

technology in organizations. Organization science, 11(4), 404-428.

Orlikowski, W. (2007). Sociomaterial practices: Exploring technology at work. Organization

studies, 28(9), 1435-1448.

Orlikowski, W. (2009). The sociomateriality of organisational life: considering technology in

management research. Cambridge journal of economics, 34(1), 125-141.

Orlikowski, W. (2010). Practice in Research: Phenomenon, Perspective and Philosophy. In D.

Golsorkhi, L. Rouleau, D. Seidl, & E. Vaara (Eds.), Cambridge Handbook of Strategy as

Practice (pp. 23-33). Cambridge: Cambridge University Press.

Orlikowski, W. (2016). Digital work: a research agenda. In B. Czarniawska (Ed.), A Research

Agenda for Management and Organization Studies (pp. 88-96). Northampton, MA: Edward

Elgar Publishing.

Orlikowski, W., & Barley, S. R. (2001). Technology and institutions: What can research on

information technology and research on organizations learn from each other? MIS

quarterly, 25(2), 145-165.

Orlikowski, W., & Iacono, C. S. (2001). Research commentary: Desperately seeking the “IT” in IT

research—A call to theorizing the IT artifact. Information systems research, 12(2), 121-

134.

Orlikowski, W., & Scott, S. V. (2012). Great Expectations: The Materiality of Commensurability

in Social Media. In P. M. Leonardi, B. A. Nardi, & J. Kallinikos (Eds.), Materiality and

organizing: Social interaction in a technological world. Oxford: Oxford University Press.

Orlikowski, W., & Scott, S. V. (2013). What happens when evaluation goes online? Exploring

apparatuses of valuation in the travel sector. Organization science, 25(3), 868-891.

Orlikowski, W., & Scott, S. V. (2015). Exploring Material‐Discursive Practices. Journal of

Management Studies, 52(5), 697-705.

Orr, J. E. (1996). Talking about machines : an ethnography of a modern job. Ithaca, N.Y.: ILR

Press.

Ortner, S. B. (1984). Theory in Anthropology since the Sixties. Comparative studies in society and

history, 26(1), 126-166.

Parkins, D. (2017). The world’s most valuable resource is no longer oil, but data. The Economist.

Retrieved from https://www.economist.com/leaders/2017/05/06/the-worlds-most-

valuable-resource-is-no-longer-oil-but-data

Paukstadt, U., & Becker, J. (2019). Uncovering the business value of the internet of things in the

energy domain–a review of smart energy business models. Electronic Markets. Retrieved

from https://doi.org/10.1007/s12525-019-00381-8

Perrow, C. (1967). A framework for the comparative analysis of organizations. American

sociological review, 32(2), 194-208.

Perry, J. C., & Vandenhouten, C. L. (2019). Drug diversion detection: Software offers real-time

data for prompt identification and assistance. Nursing Management, 50(2), 16-21.

doi:10.1097/01.NUMA.0000552735.56577.4b

Pfeffer, J., & Leblebici, H. (1977). Information technology and organizational structure. Pacific

Sociological Review, 20(2), 241-261.

Pickering, A. (2010). The Mangle of Practice : Time, Agency, and Science. Chicago: University of

Chicago Press.

Plester, B., & Carrol, B. (2014). Laugh lines: Transgressing the organization. Paper presented at

the International Society for Humour Scholars Conference, Utrecht, The Netherlands.

253

Reckwitz, A. (2002). Toward a Theory of Social Practices A development in culturalist theorizing.

European journal of social theory, 5(2), 243-263.

Reed, M. (2000). The Limits of Discourse Analysis in Organizational Analysis. Organization, 7(3),

524-530. doi:10.1177/135050840073011

Reed, M. (2004). Getting Real about Organizational Discourse. In D. Grant, C. Hardy, C. Oswick,

& L. Putnam (Eds.), Sage Handbook of Organizational Discourse (pp. 413-420). London;

Thousand Oaks, Calif.: SAGE Publications.

Reisinger, M., Ressner, L., Schmidtke, R., & Thomes, T. P. (2014). Crowding-in of complementary

contributions to public goods: Firm investment into open source software. Journal of

Economic Behavior & Organization, 106, 78-94. doi:10.1016/j.jebo.2014.06.005

Robey, D., Raymond, B., & Anderson, C. (2012). Theorising Information Technology as a Material

Artifact in Information Systems Research. In P. M. Leonardi, B. A. Nardi, & J. Kallinikos

(Eds.), Materiality and organizing: Social interaction in a technological world. Oxford:

Oxford University Press.

Rogers, E. M. (1983). Diffusion of innovations. New York: Free Press.

Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, N.J: Princeton University Press.

Rorty, R. (2009). Contingency, irony, and solidarity. Cambridge: Cambridge Univ. Press.

Rouse, J. (2007). Practice theory. In S. Turner & M. Risjord (Eds.), Philosophy of Anthropology

and Sociology, 1st Edition: A Volume in the Handbook of the Philosophy of Science Series

(pp. 639-682). Amsterdam: North-Holland.

Rushkoff, D. (2017). Throwing rocks at the Google bus : how growth became the enemy of

prosperity. New York: Penguin.

Salminen-Karlsson, M. (2015). Expatriate paternalistic leadership and gender relations in small

European software firms in India. Culture & Organization, 21(5), 409-426.

doi:10.1080/14759551.2015.1068776

Sandberg, J., & Tsoukas, H. (2011). Grasping the logic of practice: Theorizing through practical

rationality. Academy of management review, 36(2), 338-360.

Saussure, F. d. (1983 [1916]). Course in General Linguistics (C. Bally, R. Harris, & A. Sechehaye,

Trans.). London: Duckworth.

Scarbrough, H. (1999). Knowledge as work: conflicts in the management of knowledge workers.

Technology analysis & strategic management, 11(1), 5-16.

Scarbrough, H., Panourgias, N. S., & Nandhakumar, J. (2015). Developing a Relational View of

the Organizing Role of Objects: A study of the innovation process in computer games.

Organization studies, 36(2), 197-220.

Schatzki, T. R. (1997). Practices and actions a Wittgensteinian critique of Bourdieu and Giddens.

Philosophy of the social sciences, 27(3), 283-308.

Schatzki, T. R. (2001). Introduction: Practice Theory. In T. Schatzki, K. Knorr-Cetina, & E. von

Savigny (Eds.), The practice turn in contemporary theory (pp. 10-23). [eBook]: Taylor &

Francis e-Library.

Schatzki, T. R. (2002). The site of the social : a philosophical account of the constitution of social

life and change. University Park: Pennsylvania State University Press.

Schatzki, T. R. (2006). On organizations as they happen. Organization studies, 27(12), 1863-1873.

Schippers, M. C., West, M. A., & Dawson, J. F. (2015). Team reflexivity and innovation: The

moderating role of team context. Journal of Management, 41(3), 769-788.

Schmeiss, J., Hoelzle, K., & Tech, R. P. (2019). Designing Governance Mechanisms in Platform

Ecosystems: Addressing the Paradox of Openness through Blockchain Technology.

California Management Review, 62(1), 121-143.

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Upper Saddle River,

NJ: Prentice Hall.

Schwaber, K., & Sutherland, J. V. (2012). Software in 30 days : how Agile managers beat the odds,

delight their customers, and leave competitors in the dust. Hoboken, N.J.: Wiley.

254

Scott, S. V., & Orlikowski, W. (2012). Reconfiguring relations of accountability: Materialization

of social media in the travel sector. Accounting, organizations and society, 37(1), 26-40.

Shaiken, H. (1985). Work transformed: Automation and labor in the computer age. New York:

Holt, Rinehart, and Winston.

Shore, C., & McLauchlan, L. (2012). ‘Third mission’activities, commercialisation and academic

entrepreneurs. Social Anthropology, 20(3), 267-286.

Shotter, J. (1993). Conversational realities : constructing life through language. London;

Thousand Oaks, Calif.: Sage Publications.

Shotter, J. (2006). Understanding process from within: An argument for ‘withness’-thinking.

Organization studies, 27(4), 585-604.

Shrestha, Y. R., Ben-Menahem, S. M., & Von Krogh, G. (2019). Organizational Decision-Making

Structures in the Age of Artificial Intelligence. California Management Review, 61(4), 66-

83.

Siegel, J., Dubrovsky, V., Kiesler, S., & McGuire, T. W. (1986). Group processes in computer-

mediated communication. Organizational behavior and human decision processes, 37(2),

157-187.

Silverman, D. (2016). Qualitative research. Los Angeles: Sage.

Spicer, A., & Fleming, P. (2007). Intervening in the inevitable: Contesting globalization in a public

sector organization. Organization, 14(4), 517-541.

Srikanth, K., & Puranam, P. (2014). The Firm as a Coordination System: Evidence from Software

Services Offshoring. Organization science, 25(4), 1253-1271. doi:10.1287/orsc.2013.0886

Standing, G. (2011). The precariat: the new dangerous class. London: Bloomsbury Academic.

Stats NZ. (2016). Union membership and employment agreements. Retrieved from

http://archive.stats.govt.nz/browse_for_stats/income-and-

work/employment_and_unemployment/improving-labour-market-statistics/union-

memship-emplymt-agmt.aspx

Stavrakakis, Y. (2002). Lacan and the Political. New York: Routledge.

Suchman, L. (2007). Human-machine reconfigurations: Plans and situated actions: Cambridge

University Press.

Susskind, R. E., & Susskind, D. (2017). The future of the professions : how technology will

transform the work of human experts. Oxford: Oxford University Press.

Sutherland, I. (2013). Arts-based methods in leadership development: Affording aesthetic

workspaces, reflexivity and memories with momentum. Management learning, 44(1), 25-

43.

Sveningsson, S., & Larsson, M. (2006). Fantasies of leadership: Identity work. Leadership, 2(2),

203-224.

The Economist. (2020). The new AI-ssembly line. The Economist(612/22/20).

Trafton, A. (2020, February 20, 2020). Artificial intelligence yields new antibiotic. MIT News.

Trice, A., & Davis, R. (1993). Heuristics for reconciling independent knowledge bases. Information

systems research, 4(3), 262-288.

Van Bommel, K., & Spicer, A. (2011). Hail the snail: hegemonic struggles in the slow food

movement. Organization studies, 32(12), 1717-1744.

Van Maanen, J. (2011). Ethnography as Work: Some Rules of Engagement. Journal of

Management Studies, 48(1), 218-234. doi:10.1111/j.1467-6486.2010.00980.x

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model:

Four longitudinal field studies. Management science, 46(2), 186-204.

Volkmann, C., Fitchett, J., & De Cock, C. (2003). Looking Back at the Future of the New Economy:

University of Exeter, Department of Management.

Walsh, T., Levy, N., Bell, G., Elliott, A., Maclaurin, J., Mareels, I., & Wood, F. (2019). The

effecfive and ethical development of arfificial intelligence: An opportunity to improve our

wellbeing. Report for the Australian Council of Learned Academies. Retrieved from

https://acola.org/hs4-artificial-intelligence-australia/

255

Walton, S., & Boon, B. (2014). Engaging with a Laclau & Mouffe informed discourse analysis: a

proposed framework. Qualitative Research in Organizations and Management: An

International Journal, 9(4), 351-370. doi:10.1108/QROM-10-2012-1106

Waring, S. P. (2016). Taylorism transformed: Scientific management theory since 1945: UNC

Press Books.

Wastell, D. G. (1999). Learning dysfunctions in information systems development: overcoming

the social defenses with transitional objects. MIS quarterly, 23(4), 581-600.

Watson, T. J. (2011). Ethnography, reality, and truth: The vital need for studies of ‘how things

work’in organizations and management. Journal of Management Studies, 48(1), 202-217.

Watson, T. J. (2012). Making organisational ethnography. Journal of Organizational Ethnography,

1(1), 15-22. doi:doi:10.1108/20466741211220615

Weber, H. (1997). The software factory challenge. Amsterdam; Washington, DC; Tokyo: IOS

Press ; Omsha.

Weick, K. E. (1995). Sensemaking in organizations (Vol. 3). London: Sage.

Willmott, H. (1993). Breaking the Paradigm Mentality. Organization studies, 14(5), 681-719.

doi:10.1177/017084069301400504

Wittgenstein, L. (1953). Philosophische Untersuchungen = Philosophical investigations (G. E. M.

Anscombe & R. Rhees, Trans.). New York: Macmillan.

Wittgenstein, L., Anscombe, G. E. M., & Wright, G. H. v. (1981). Zettel. Oxford: Blackwell.

Wullweber, J. (2015). Global politics and empty signifiers: the political construction of high

technology. Critical Policy Studies, 9(1), 78-96. doi:10.1080/19460171.2014.918899

Ybema, S., Yanow, D., Wels, H., & Kamsteeg, F. H. (2009). Studying everyday organizational

life. In S. Ybema, D. Yanow, H. Wels, & F. H. Kamsteeg (Eds.), Organizational

ethnography: Studying the complexity of everyday life. London: Sage.

Zhou, G., & Song, P. (2018). Third-party apps (TPAs) and software platform performance: The

moderating role of competitive entry. Information & Management, 55(7), 901-911.

doi:10.1016/j.im.2018.04.004

Zizek, S. (1989). The sublime object of ideology. London: Verso.

Zuboff, S. (1984). In the age of the smart machine : the future of work and power. New York, NY:

Basic Books.

