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Abstract 

Interval censored data arises when individuals can be subjected to periodic inspection at random 

moments, and their status (e.g. failed or functioning) is ascertained at e�ch inspection. We exploit

the order theoretic properties of interval orders to develop a new language describing interval cen­

sored data. We propose a method by which the set of linear extensions of an interval order may be 

partitioned into sets of linear extensions of weak orders, using so-called marked configurations of the 

interval order. The technique relies heavily on the natural linear ordering of maximal antichains in 

interval orders. We also propose a method whereby sets from this partition can be generated with 

known probability so as to permit efficient cluster or staged sampling. These techniques, among 

other uses, may be applied to generate sampling estimates of average rank score statistics for in­

terval censored data similar in construction to that proposed by Prentice (1978) for right-censored 

data. In order to address the above problem we must determine all sets which form minimal covers 

of maximal antichains for interval orders. Finding minimal covers generalizes the minimum clique 

cover problem. We produce an algorithm enumerating all minimal covers using the minimal elements 

of the interval order and also characterize maximal removable sets, which are the complements of 

minimal covers We use this characterization to provide bounds on the maximum number of mini­

mal covers for an interval order with a given number of maximal antichains. Finally, we determine 

nonparametric maximum likelihood estimators (NPMLE) of the cumulative distribution function

(CDF) on the set of maximal antichains M of the data rather than the real line, extending the rea­

soning of Peto (1973) and Turnbull (1976) . We discuss some properties of self-consistent estimators 

of the CDF in light of the structure of M. We show the identity between self-consistency augmented

by Kuhn-Tucker conditions and Fenchel duality, which characterize the NPMLE on M. We port

to M recently developed isotonic regression techniques to estimate the NPMLE. We correct some

misapprehensions which have gained currency in recent literature on interval censored data. 

Keywords: interval censored data; survival analysis; interval order; nonparametric maximum likelihood; 

maximal antichains; self-consistency; isotonic regression; linear extensions; order partition. 
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Introduction 

Both in medical resear:ch and in industry, the analysis of failure time data lies at the heart of 

decisions of great importance. Unsurprisingly, statisticians and other practitioners in these fields 

go to great lengths to avoid unwarranted assumptions about the data with which they work. Given 

that frequentist models still hold great sway in scientific and technological fields, such efforts are 

worthwhile practically as they leave conclusions to the data rather than to analytical convenience, 

and foundationally as they avoid the informal mechanism of hidden assumptions which so often 

underlies - and undermines - frequentist data analysis. 

As a result, nonparametric techniques are the most common techniques used in survival analysis. 

Survival analysis concerns primarily CDF (or survival function) estimation, rank-based statistics

and hazard modelling. Data censoring often prevents the translation of conceptually simple survival 

models into simple analysis techniques. Censoring causes information loss by replacing exact data 

with intervals, bounded or not, known to contain the exact times of failure. Broadly speaking, it 

is this type of censoring which we call "interval censoring". Censored data generally represents 

imperfect knowledge about the times at which events have occurred, and as such will be described 

by intervals on the non-negative real half-line. 

Different types of observed intervals may arise from different conditions on the observational 

process. Medical follow-up is a typical process by which data may be interval censored: a patient 

is monitored at preset periodic intervals for the development of a condition. The patient may miss 

some visits. The resulting data consists only of a time interval during which the condition has 

developed. If the patient has not developed the condition by the time of the last inspection, the

condition is presumed to develop in a time interval unbounded above and bounded below by the time 

of the last inspection: this is the case of right-censoring. The patient may already have developed 

the condition by the time of the first inspection, in which case the condition is presumed to have 
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developed between some plausible origin zero (e.g. birth) and the time of the first inspection: this 

is the case of left-censoring. Interval censored data includes as particular cases: exact data; right­

censored data, where data consists of exact observations and intervals unbounded above; current 

status data, consisting of interv:als either bounded below by zero or unbounded above; and doubly 

censored data, consisting of either exact observations, intervals bounded, below by zero or intervals 

unbounded above. There are of course many cases of interval censored data which belong to none 

of these categories. 

The loss of information caused by censoring prevents the use of plug-in estimators to perform 

analysis on the data. Plug-in estimators are the natural nonparametric estimators for exact data. 

What information is left in the observations by censoring must be coaxed, using different techniques, 

to yield statistics somehow similar to plug-in estimators while introducing a minimal number of 

assumptions. 

We will show in this work that rank tests and nonparametric CDF estimation on interval censored 

data can be performed on an important invariant of the data: the underlying interval order. An 

interval order (Chapter 1, Definition 1.1) is a partially ordered set, members of which can be 

identified with intervals on the real line of the form (li ,  ui), with the order relation -< given by 

(li ,ui) -< (lj ,Uj) whenever Ui < lj· Interval orders already have a long history in the study of 

scheduling and preference models, but we believe this work represents the first instance of interval 

order theory being applied to the study of interval censored data. 

Order theory arises as an important player in interval censored data analysis as a result of the 

following question: what is left of the data after censoring? Nonparametric techniques on exact data 

typically rely on the ordering of the data. Rank-based statistics are an obvious example, seeing as 

they rely strictly on the ranks of the observations. Order is a less obvious but important invariant as 

far as CDF estimation on exact data is concerned. To see this, note that we can separate the form 

of an empirical distribution function from the actual location of its jumps on the real line. So long 

as we know how many observations belong to each tie group and how these tie groups are ordered, 

we can safely predict how high and in what order jumps must occur in the estimate; porting the 

estimate to the real line is quite a separate activity. The information concerning the tie groups is 

exactly the partial order structure of the data, in the sense explained in Chapter 1. In much the 
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same way, ordering properties are fundamental for both rank-based tests and nonparametric CDF 

estimation with interval censored data. 

A general discussion of some fundamental assumptions of nonparametric statistical analysis for 

censored data is perhaps in order. Rank-based statistics are conceptually simple and provide a good 

illustration for this discussion. Let us assume initially that we are dealing with a two-sample setting 

X = { x1, . . . , Xn1} and Y = {y1, . . . , Yn2} with no two observations tied. We consider all pairs of

observations of the form (x, y) , x E X, y E Y, and assign a score to each of them. For definiteness,

let us assume that we are dealing with the score U (x, y) , which takes on the value 1 if x < y and -1

otherwise. We call these U(x, y) 's U-scores. Other scoring schemes are of course possible and well

documented; however the simple U-score will serve our expository purposes. The Wilcoxon statistic 

is defined as the sum of the U-scores over all the pairs of observations as described above; under a 

null hypothesis of identical distributions for samples X and Y, its distribution does not depend on

that of the data, and has an expected value of zero and a readily computable variance. It can be

used to test against appropriate alternatives, which typically involve the location of the underlying 

unknown distributions. Lehmann (1975) , Chapter 1, provides a survey of the Wilcoxon and related

tests. 

Ties in exact data may occur when the underlying distribution for failure times has atoms, 

but can also be viewed as a simple case of censoring of observations from a continuous distribu­

tion, where limited precision makes discrimination between close measurements impossible. Such 

precision-dependent censoring occurs within small intervals which overlap with one other only within 

equivalence classes, each such class consisting in a set of tied observations. The Wilcoxon statistic 

can be adapted for the case of exact data with ties by allowing U(x, y) = 0 if x = y. Generalizing

from this technique, Gehan (1965b) proposed a generalized Wilcoxon statistic for right-censored

data, almost immediately generalized further in Gehan (1965a) to deal with doubly censored data.

The rationale he implemented was that if two observations x E X and y E Y overlap, then they are 

incomparable and should be assigned a U-score of zero. Such overlap is opposed to comparability, 

where two observations, censored or not, are known to be ordered in some definite way. Compara­

bility occurs when the intersection of the intervals or points which form the observation is empty. 

We then have complete knowledge about the ordering of the event times. For the right-censored 
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and doubly censored cases, Gehan (1965a,1965b) provided expressions for the expected value and

variance of his generalized· Wilcoxon statistic and showed its asymptotic normality under certain

regularity conditions, conditionally on the observed pattern of censoring. The essential purpose 

of these conditions is to allow randomized assignment of observations to one sample or the other 

under the null hypothesis and the observed pattern of censoring, thus allowing the use of permu­

tation arguments to determine the null distribution of the statistic. Such permutation arguments 

do not always hold, and in particular may be inapplicable when censoring patterns differ between 

the samples (Mantel, 1967) . The basic idea of assigning a non-zero score only to comparable pairs

of observations made the further generalization of the Wilcoxon statistic to interval censored data 

rather straightforward. This task was completed by, among others, Schemper (1984,1991) and Abel

(1986) .

Prentice (1978) approached rank tests for censored data from a different angle. Dealing with

right-censored data, he considered all possible complete orderings of the data which are compatible 

with the observations. Prentice's basic assumption was that every rank vector compatible with·the 

data has an equal probability of being the true rank vector of the data. Under this assumption, he 

proposed a general linear rank statistic consisting of the unweighted average of a rank score. statistic 

(such as the Wilcoxon statistic) over the set of all rank vectors compatible with the data. Some

amenable features of right-censored data allowed Prentice to produce closed form expressions for 

the expected value and variance of such statistics. 

Gehan and his successors took the view of that incomparable observations can be ordered ar­

bitrarily and that no other information concerning that ordering is available. Hence, for instance, 

an incomparable pair gets assigned a score of zero. We call this the pure incomparability assump­

tion. By contrast, Prentice posited that every linear ordering consistent with the data had an equal

chance of correctly representing the data's true ordering. We call this assumption the underlying 

order assumption. Both assumptions have merit as nonparametric foundations: simplicity of im­

plementation for pure incomparability, and ease of interpretation for underlying order. In the case 

of exact data, with or without ties, the assumptions are in fact equivalent: a tied (incomparable) 

group of observations will contribute an equal number of compatible rank vectors for each possible 
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pairwise ordering of its members. In more complex censored cases, these assumptions cease to be 

equivalent. 

It is not our purpose in this work to critique or compare these assumptions in any definitive 

way. This reticence is attributable to the absence of a generally applicable methodology based on 

the underlying order assumption. Closed form expressions for expectation and variance of rank­

based statistics, for instance, are unavailable in the more general case of interval censored data. 

Another problem exists in that the set of linear orderings compatible with the data gets very 

large very quickly with the number of observations, making enumeration impracticable. Self & 

Grossman (1986) pursued Prentice's reasoning and proposed to produce sample estimates of rank 

score statistics for interval censored data. Sample estimation requires, within this scheme, uniform 

random generation of rank vectors from the population of rank vectors compatible with the data. 

Though Self & Grossman (1986) proposed several algorithms to generate rank vectors uniformly, 

their algorithms do not achieve uniformity. 

Thus our first goal in this work will be to propose a general methodology to deal with statistics 

on the set of linear orderings compatible with the data. From a combinatorial point of view, this 

is a larger problem than that of finding sampling estimates for rank-based statistics. Our second 

goal will be to uncover how current nonparametric estimation paradigms for censored data, namely 

self-consistency and maximum likelihood, extend the view on the CDF plug-in estimator which we 

described above. 

In order to deal with both of these problems, we had to borrow terminology and tools from 

order theory, a particular flavour of combinatorial mathematics. We not only avoided unnecessary 

bushwhacking in doing so, but also rode on the crest of some striking mathematical constructions. 

The aspects of order theory we refer to in this work have been grouped in § 1 of Chapter 1. The 

notion of partial order is basic to our investigation; in particular, interval orders will serve to abstract 

interval censored data from the real line and identify important properties which are independent 

of their real representation. Linear extensions (§ 1.2) and maximal antichains (§ 1 .3) and their 

structures are the first and possibly most important objects to be borne out of order theory for our 

purposes. It could be argued that the fundamental nonparametric assumption chosen to perform 

a statistical analysis will dictate which of these two objects will provide the entry point to the 
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analysis: linear extensions for the underlying order assumption, and maximal antichains for the 

pure incomparability assumption. 

Chapter 1 also includes a few original extensions of interval order theory, such as duals and double 

duals (Definition 1 .7) ; minimal elements (Definition 1 .8) a simple proof that the Petrie matrix of an 

interval order has full row-rank (Lemma 1 .5) ;  the notions of cover and minimal cover of maximal 

antichains (§ 1 .5) ;  and an extension of the characteristic matrix of interval orders (§ 1 .7) . Interval 

censored data is defined in § 2 of the same Chapter, along with a primordial motivation for the 

abstract interval order as a tool for statistical analysis. The central result of § 2 is Theorem 1 .10, 

which couches a result of Peto (1973) and Turnbull (1976) identifying the form and location of CDF 

nonparametric maximum likelihood estimates in order theoretic terms. 

As we have mentioned, there is currently no practical method to uniformly generate linear 

orderings compatible with an observed interval censored data set, which we will simply call linear 

extensions for the remainder of this Introduction. A general methodology to do so for any partially 

ordered set was proposed by Matthews (1991) ; it has not been implemented as computer software 

and is, in the words of the author "probably too slow for practical implementation" . We had to

delve into the structure of interval orders as defined by Fishburn (1973) , and ultimately had to 

produce a small body of theory concerning covers and minimal covers of maximal antichains for 

interval orders. This theory is expounded in Chapter 2. Chapter 3 is devoted to the construction of 

a partition of the set of linear extensions into simple sets for which linear extensions or statistics on 

them are simple to generate. A pseudo-random generation method for this partition which relies on 

the theory of Chapter 2 is also proposed. Together, partition and generation method make sampling 

estimates based on the set of linear extensions easy to produce. These estimates include, but are 

not limited to, rank-based statistics. 

Chapter 4 veers away from the heavily combinatorial topics of Chapters 2 and 3, and extends 

the work initiated in § 2 of Chapter 1 on estimation of the CDF for interval censored data. We 

consider self-consistency and nonparametric likelihood approaches to estimation. The fundamental 

nonparametric assumption behind these approaches is the pure incomparability assumption. Our 

first task in Chapter 4 is to define precisely what we mean by a CDF on the set of maximal 

antichains, and to show how it relates to the equivalence class of distribution functions which are 



Introduction 7 

covered by the NPMLE of the CDF. Uniqueness of the estimate on the maximal antichains ensues 

from properties of the maximal antichain structure of interval orders. In § 2 ,  we revisit the notion of 

self-consistency in the light of the order structure of interval censored data. A relationship between 

covers of maximal antichains, self-consistency and nonparametric maximum likelihood estimation is 

expounded. Bounds on self-consistent estimates depending only on the maximal antichain structure 

of the data are also produced. Finally, we review statements from two works in the recent literature 

on interval censored data in the light of our analysis, and show how the order theoretic viewpoint 

helps in clarifying some issues. Section 3 in Chapter 4 aims at carrying over recently developed 

isotonic regression techniques for nonparametric estimation to the space of maximal antichains. 

Isotonic regression techniques are also known as convex minorant techniques. The application of 

isotonic regression on maximal antichains is explained for some cases of interval censored data. 

Finally, this work closes with a brief discussion of research perspectives in the field of order 

theory and nonparametric analysis of interval censored data. 

A note on the numbering system throughout this work: within a chapter, sections are identified 

by a single number and subsections by a numbet preceded by the section number. Equations, 

theorems, examples, figures and such, however, are referenced using the chapter number and an 

ordinal, to account for the fairly high frequency of inter-chapter references to these headings. This 

hybridized system was settled upon to avoid triple nesting while maintaining ease of reference. A 

section or subsection number not accompanied by a chapter number is a reference within the current 

chapter. 



Chapter 1 

Interval orders and interval censored data

Before describing interval censored data in § 2 and the problems we propose to address in this work, 

we will expose some aspects of order theory in § l. Order theory is an active branch of combinatorial 

mathematics, which traces its theoretical foundations to the works of Szpilrajn (1930) and Dushnik 

& Miller (1941) .  Statisticians are rarely exposed to order theoretic concepts; nevertheless, we have 

decided to introduce material relevant to order theory at the outset of this work to mark clearly 

the break with classical interval censored data analysis, to hint at the richness of the approach 

and to provide the reader with a convenient reference to some definitions and theorems. The main 

connection between interval orders and interval censored data will be made explicit in § 2. 

The reader is encouraged to refer to Appendix A, where some notational conventions are exposed, 

before proceeding. 

1 Interval orders

The main object .of our attention will be interval orders. Interval orders are partially ordered sets 

defined in such a way as to embody the natural ordering properties of sets of intervals on the real line. 

The abstract definition of interval orders will enable us to move beyond the real line to conceptually 

separate the ordering properties of the data from their real-valued representation. Some groundwork 

from the theory of partially ordered sets needs to be laid out before we can motivate the abstract 

representation exposed in Theorem 1.1. Definitions and discussions of linear extensions and maximal 

antichains will follow in § 1.2 and § 1.3. These two objects are basic to our approach. 

The material in this section is partly adapted and extended from Fishburn (1985) . Some of 

8 
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the statements taken from this source have been simplified inasmuch as we only deal with finite 

non-empty sets of real-valued intervals, and therefore with finite non-trivial interval orders. The 

theory of infinite interval orders is of obvious interest to the study of consistency of estimators for 

the CDF; however, we do not deal with the issue of consistency in the present study. Readers may 

wish to refer to Figures 1.4 and 4.1 to test the concepts of Chapter 1. 

1.1 Partially ordered sets 

Let X = (X, -<) denote a partially ordered set, or poset. That is, there is a binary relation-< C Xx X

which is both 

• irreflexive: if(x, y) E-< then (y,x) lt-<; and

• transitive: if(x, y) E-< and (y,z) E-<, .then (x,z) E-<.

We call -< a precedence or ordering relation. In the sequel, we will denote (x, y) E-< by x-< y, which

is read "x precedes y". 

We shall use "' to denote the incomparability relation for poset (X, -<) defined by

x "' y if and only if not( x -< y) and not(y -< x) .

The incomparability relation is the symmetric complement of -< with respect to X x X. To indicate 

the relationship between -< and "', we will sometimes write rv= sc(-<) . 

The graph (X, rv) is called the interval graph of X.  Under our definition, x "' x is always true.

The term "incomparability relation" is sometimes reserved to denote the relation between distinct 

unordered elements. 

In a real interval mapping of an interval order, as described later in Theorem 1 .1 ,  the relation"' 

can be thought of as relating two overlapping intervals, while the relation -< indicates the direction 

of the precedence relationship between two intervals which do not overlap. 

We will be concerned with three types of partial orders. 

Definition 1.1 A linear or complete order is an ordered set (X, <) such that x f y for all x, y E X

with x :f. y.
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A weak order is an ordered set (X, -<o) such that x -<o y implies that either x -<o z or z -<o y for 

all x, y, z EX . 

An interval order is an ordered set (X, -<) such that

(a-< x, b-< y) => (a-< y or b-< x) , for all a, b ,x, y EX.

For completeness, it is worth setting down the definition of a fourth partial order. 

Definition 1.2 A semi-order is an interval order -< on X with the added property that whenever 

a -< b -< c, then either a -< x or x -< b for all a, b, c, x E X.  

Definition 1 .1  is more easily interprete
,
d in terms of forbidden suborders. The Hasse diagrams 

of Figure 1.1 display the forbidden suborders for the above three orders. Hasse diagrams indicate 

precedence relationships x-< y by linking x to y with an arc or a path, with y appearing above x. 

Elements of ordered sets are indicated by circles. 

0 0 0 

(a) (b) (c) 

Figure 1 .1 :  Forbidden suborders in (a) linear orders (ties not allowed), (b) weak orders (ties allowed 

only under transitive incomparability) and (c) interval orders. 

Though we are primarily concerned with interval orders, linear and weak orders play an important 

role throughout our study. Linear orders induce a distinct rank on each of their elements, while 

weak orders induce a ranking with ties on their elements. That is to say, weak orders consist of 

linearly ordered subsets of X, each subset containing only mutually incomparable elements. 

In a weak order, incomparability is an equivalence relation, and will consequently often be

denoted by � instead of"'· If (X, -<) is a weak order, we will denote by (X/�, -<) the linear order
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induced on its equivalence classes. It should be noted that weak orders are a special case of interval 

orders, as linear orders are a special case of weak orders. 

Unless otherwise specified, X = (X, �) will denote an interval order from this point on, and we 

will let n = IXI (the cardinality of X) and X = {x1 , ... , Xn}, with arbitrarily ordered subscripts.

Interval orders embody the ordering properties of sets of intervals on the real line equipped with 

the usual linear order relation <, indeed of sets of intervals in any linear order. The following

theorem, adapted from Theorems 2.6 and 2.8 in Fishburn (1985) , will be sufficient for our purposes. 

Theorem 1.1 (X, �) is an interval order if and only if there is a mapping H from X into open

intervals in JR such that x � y ¢=>- sup H ( x) :::; inf H (y) .

Theorem 1.1 provides a simple interpretation for precedence in a real representation. The equiv-

alent interpretation for incomparability is: 

x "'y � supH(x) > inf H(y)andsupH(y) > inf H(x). 

Alternatively, we can write: x "' y ¢=>- H(x) n H(y) f= 0. So long as the interval order is finite, the

open intervals of Theorem 1.1 may be replaced by semi-open or closed intervals. These may include 

points, that is, intervals of the form [a, a]. Order theoretic results can therefore be applied to sets

consisting of real intervals and real numbers, and thus in particular to interval censored data, as we 

will see in § 2. 

The mapping H can be represented using the pair (h, p), where h : X -+ JR is the location

function and p: X-+ JR+ U {O} is the length function. We can then set H(x) = (h(x), h(x) + p(x)). 

Theorem 1.2 below shows that the interval order representation of a given set of real-valued intervals 

is invariant under a set of transformations which is larger than that of monotonic transformations. 

Theorem 1.2 (Fishburn, 1985, Chapter 7) Let (X, �) be a finite interval ordered set. Define 

the relation C on non-empty, disjoint subsets of X by 

A CB if L p(a) < L p(b) 
aEA bEB 

for all real-valued interval representations ( h, p) of X. Then for every p* : X -+ JR+ there is a

function h* : X -+ JR such that (h*, p.) is a representation of (X, �) if and only if L p*(a) <

LP•(b) for all A,B C X such that AC B. 
bEB 

aEA 
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The invariant set of transformations of the real-valued intervals,  however, depends upon the 

interval order being considered. An open question is whether the invariant set of transformations is 

in fact larger than that of monotonic transformations across all finite interval orders. 

The representation theorem for semi-orders (Fishburn, 1973) characterizes them as having a real 

interval representation where all intervals are of the same length. 

1.2 Linear extensions 

Definition 1.3 A linear extension of a partially ordered set (X, -<) consists of (X, <,x), where <>. 
is a linear order relation on X and -<C<,x. 

We will often treat linear extensions as ordered lists >. of a set rather than as an order relation 

<>.· The two views are equivalent, with >. = (xi1 , Xi2 , • • •  , Xin) {:} Xi1 <>. xi2 <>. · · · <>. Xin .

Definition 1.4 Let (X, -<) be a poset. We denote by C (X, -<) the set of linear extensions given by

>. E .C (X, -<) {:} -< C <>., 

where <>. is the linear order relation induced by linear extension >.. 

Linear extension sets and partial orders thus form a simple concept lattice in the sense of Wille 

(1981) . In a convenient abuse of terminology, we will say that >.belongs to, or is in, a partial order 

if >. belongs to its set of linear extensions. 

Szpilrajn (1930) laid an early cornerstone of order theory: 

Theorem 1.3 (Szpilrajn) Every poset has a linear extension. 

Dushnik & Miller (1941) built on this foundation to show the deep relation between posets and their 

linear extension. Theorem 1.4 paraphrases their result. 

Theorem 1.4 (Dushnik and Miller) If X = (X, -<) is a poset, then

(-<) = n (<,x) .
.\E.C(.K) 

Rank vectors are objects which are equivalent to linear extensions but hold greater currency in 

statistics than in combinatorial mathematics. Given an arbitrary linear order of the elements of 
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X (e.g. subscript ordering from some index set) , the rank of an element x in linear extension .>. 

will consist in j{z; z <Ax }I + 1 .  Though our focus will be on linear extensions, in keeping with the

terminology of order theory, the reader should bear in mind that linear extensions and rank vectors 

embody the same ordering information. 

In general, one can talk of extensions of a poset other than linear.. We have mentioned the 

underlying order assumption in the Introduction as an assumption that places equal weight a priori 

on each linear extension, in a modern version of the principle of insufficient reason. Though we will 

not address the matter in this study, a weak as opposed to linear order may underlie the interval 

order and would certainly represent a more general model. In this case, determining weak extensions 

may be more appropriate. 

We will reserve further discussion of the set of linear extensions of interval orders until Chapter 3, 

where we deal with sampling statistics over this set. 

1.3 Maximal antichains 

Chains in partially ordered sets play only an ancillary role in the present study. They are often the 

starting point from which combinatorists approach partially ordered sets, and we therefore set down 

their definition for completeness. 

Definition 1.5 A chain in a partially ordered set (X, -<) is a subset K C  X such that (K,-< n(K x K))

is a linear order. 

A maximal chain is a chain not properly contained in any other chain. 

A maximum chain is a maximal chain of largest possible cardinality. 

Maximal antichains, by contrast, are the most convenient tool to describe the ordering properties 

of interval order elements as they lend themselves to statistical analysis. 

Definition 1.6 An antichain in a partially ordered set (X, -<) is a subset M C  X such that x ,...., y 

for all x , y  E M. 

A maximal antichain is an antichain not properly contained in any other antichain. 

A maximum antichain is a maximal antichain of largest possible cardinality. 
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The set of maximal antichains of a partial order X is usually denoted MA ( X), but we will 

express it by M to lighten the notation. 

A crucial characterization of interval orders is that there exists a natural linear ordering on 

their set of maximal antichains (see Behrendt, 1988, and Fishburn, 1985, § 3·3). Specifically, if 

Ma, Mb EM and we define the relation< over M by 

where the relation -< is extended to subsets of X, then (M, <) is a linear order. It will therefore make 

sense to use terminology such as the largest or smallest element in a set of maximal antichains. A 

fact of note which follows from definitions is that the maximal antichains of X are also the maximal 

cliques of the interval graph (X, rv). A clique in a graph is a complete subgraph, that is, a subgraph 

where every pair of nodes is linked by an arc. 

Setting m = IMI, called the magnitude of X, we will assign subscripts i = 1, . . .  , m to the 

elements of M according to their linear ordering, that is with Mi < Mj ¢:? i < j. Minima and 

maxima are thus well-defined elements over subsets of M. 

It is useful to consider ordering properties of a partial order from the point of view of maximal 

antichains. To do so, consider, for a partial order (X, -<) ,  the equivalence relation � induced by 

rv= sc(-<): 

x � y¢:? { z; x ,...., z} = { z; y ,...., z} .

The corresponding equivalence classes are denoted X/,...., (Fishburn, 1985, Chapter 1) .  It is a trivial 

observation that if x �yin a partial order, then x and y must belong to exactly the same maximal 

antichains. This observation yields alternative characterizations of weak and linear orders. A weak 

order on X is such that �=,....,, so that its maximal antichains are precisely the equivalence classes 

X/ rv= X/ �, while a linear order is such that the equivalence classes X/,...., are all singletons. 

1.4 Petrie representation

The Petrie matrix of an interval order is an indicator matrix relating the elements of X to the 

maximal antichains of M. Specifically, the Petrie matrix of X is given by A= [aij] E {O, l}mxn,
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where 

(1.1) 

See Example 1.1. This defi�ition along with our ordered subscripting convention on M imply 

that the rows of A are ordered similarly to the elements of M. Under this _ordering, all interval orders 

will have a unique Petrie matrix representation up to the subscript ordering of X or, equivalently, 

up to ordering of the columns of A. In the order theoretic representations of interval censored

data seen in Theorem 1 .10, our aii notation is the transpose of the one which is more usual in the 

statistical literature. 

Elements of X have properties which depend on the maximal antichains of X and are most easily 

assessed via the Petrie matrix of X. The basis of these properties is the element's dual. 

Definition 1. 7 The dual of x E X is given by 

x* = { M E M; x E M} . 

The cardinality of x* is called the length of x. 

The double dual of a maximal antichain M E M is given by 

M** = LJ x* .
xEM 

The linear ordering of M causes the maximal antichains forming the dual of any given element to 

be consecutive. This property is commonly called the consecutive-1 's property when applied to the 

columns of matrix A (Golumbic, 1980, Chapter 8) , whence the name of Petrie matrix (Fishburn,

1985, § 3.3). The Petrie matrix is also known as the clique matrix of the interval graph (X, "') 

(Golumbic, 1980, Chapter 3) ,  with the proviso that we require the rows of the clique matrix to be

ordered according to the maximal antichain or clique linear ordering, thus explicitly preserving the 

consecutive-1 's property. 

The propositions x E M and M E x* equivalently express the fact that x is covered by or 

contained within maximal antichain M. The dual of an element - and therefore the element itself -

is isomorphic to its corresponding column in the Petrie matrix of X. The consecutive-l's property 

of the Petrie matrix allows an alternative compact representation for the elements of X in terms 
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of the first and last maximal antichains in their duals. Specifically, we can say that, under known 

m, xj is isomorphic to the integer pair (lj , Uj) ,  j = 1 ,  . . . , n, where lj = argmini [aij = 1] and

Uj = argmaxi [aii = 1] . We will sometimes call this sequence of integer pairs the Petrie pairs of X. 

Under the linear ordering of the maximal antichains of an interval order, we will write for 

simplicity M < x* for M < minx* and x* < M for max x* < M.

The structure of an element's dual determines some of its fundamental properties. 

Definition 1.8 An element of X is called simplicial if it belongs to a single maximal antichain, i. e. 

if Ix* I = l . A maximal antichain containing a simplicial element is called essential. 

An element of X is called universal if it belongs to every maximal antichain, i. e. if Jx* J = m .  

An element of X is called minimal if its dual properly contains the dual of no element in X. 

The term "simplicial" derives from the fact that, in the interval graph (X, "') , the neighborhood of 

a simplicial element is complete (Fishburn, 1985, Chapter 3). 

Universal elements are incomparable with every element of X. Minimal elements are discussed 

in greater detail in Chapter 2. 

Example 1.1 Consider the following real open intervals on an arbitrary scale: 

X1 = (0.50, 2.00) , X2 = (1.50, 4.50) , X3 = (1.75, 3.50) ,

X4 = (2.75, 7.00) , X5 = (5.50, 8.00) , X5 = (4.00, 6.50) . 

( ) 
c 2 
0 ( ) 
·� ( ) � 3 Q) "' .c ( ) 0 4 

5 ( ) 
6 ( ) 

0 2 4 6 8 

Time 

Figure 1 .2 : Example intervals and Hasse diagram of corresponding interval order. 
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There are 4 maximal antichains in the interval order induced by these intervals: Mi = {xi , x2 , x3} ,  

The Petrie matrix for these intervals is given by l 1 1 1 

A= 0 1 1 
0 1 0 
0 0 0 

0 0 0 l
1 0 0 
1 . 0 1 ' 
1 1 1 

where row i corresponds to maximal antichain Mi, i = 1 , 2, 3, 4, and column j corresponds to Xj,

j = 1, . . . , 6. The only minimal elements in this set of intervals are xi and X5 . Note that minimality 

does not relate to the length of the interval in the real representation. 

The definition of maximal antichains and their linear ordering cause every maximal antichain 

to be the smallest member of some dual and the largest member of some (possibly different) dual. 

We will refer to this property as the starting/ending property of interval orders. As a result of 

this property, the Petrie matrix of an interval order will have at least one sequence of ones start 

on every row, and at least one sequence of ones .end on every row. If a single sequence is involved,

then its corresponding element must be first and last of its sequence: it is therefore simplicial and 

its maximal antichain is essential. 

The starting/ending property forces the existence of at least two simplicial elements in the 

interval order, with respective duals {Mi }  and {Mm} ,  making Mi and Mm essential in any interval 

order of magnitude m. This observation leads in turn to the following Lemma, to which we will 

return in the context of nonparametric maximum likelihood theory. 

Lemma 1.5 If A E {O, l}mxn is the Petrie matrix of an interval order with cardinality n and

magnitude m, then rank (A) = m. 

Proof. Consider the equation 

A'(3 = 0, (1 .2) 

where (3 = [(31 , . . .  , f3m] . There are columns of A which correspond to the simplicial elements in 

Mm, say r of them, with r � 1. Each of these columns is equal to [O, 0, . . .  , 0, 1]' , and therefore

f3m = 0. Assume, since the ordering of the columns of A can be arbitrary, that the columns of A 
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described above correspond to elements Xn-r+i , Xn-r+2 , . . . , xn of X and occur in that same order

in A. Then we can rewrite (1.2) as 

[ A� an-r ] [ f3o ] 
------+-

e
-
r

- -0
- = Om {:::} A�f3o = Om-1

O(n-r) x (m-1)

for some arbitrary �-r E {O, l}n-r
, and where e is a vector consisting all of one's. Putting

X X \ { } · ' h A . {O l}(m-l) x (n-r) · th P t ' o = Xn-r+1 , Xn-r+2 ,  . . .  , xn , it is easy to see t at o E , is e e ne 

matrix of interval order (X0, -< n [X0 x X0]) .  It retains the consecutive-ones property, the linear

ordering of its rows, and the essentiality of its last maximal antichain Mo,m-l i since the dual of 

some element of X must start at Mm-l by the starting/ending property.

Repeating the above process m - 1 more times on the Petrie matrices of successively reduced 

interval orders shows that f3m = f3m-l = · · · = {31 = 
0, which in turn shows A to be of full row-rank.

1.5 Covers of maximal antichains 

D 

We will often refer in this work to covers of maximal antichains, or simply covers. They are an 

important concept, both in the context of rank score tests and related statistics and in that of 

nonparametric CDF estimation. 

Definition 1.9 For X = (X, -<) an interval order, we call W C  M a cover of X if X = UMEW M.

We will call W a minimal cover of X if no proper subset of W is a cover of X. A minimal cover is

a minimum cover if it has lowest possible cardinality. 

For a given interval order, an essential maximal antichain has an alternative definition as a maximal 

antichain which belongs to every cover. Equivalently, it can be characterized as belonging to every 

minimal cover. 

Covers of maximal antichains for interval orders possess an important property of invariance 

with respect to interval ordering. 

Lemma 1.6 Let (X, -<) be an interval order. Then if W C MA (X) (properly) is a cover for X, 

there exists -<w such that 

• (-<) C (-<w) properly,
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• (X, -<w) is an interval order and

• W = MA (X, -<w) .

Proof. It is enough to construct -<w for W = MA (X) \ {M}, for some non-essential M E

MA (X) .  Essential maximal antichains can evidently not be  removed, since the resulting set would 

not be a cover. Every cover of X can be generated by repeating the process of removing appropriately 

chosen non-essential maximal antichains. 

Define then o = {(x, y) E X  x X; maxx* = M and min y* = M}, and set -<w=-< U o. It is 

easily verified that -<w satisfies the statement of the Lemma. D 

Lemma 1.6 states that covers induce interval orders by creating new precedence relations where 

maximal antichains forced incomparability in the original interval order. A simple corollary to 

Lemma 1.6 is that in an interval order induced by a minimal cover, every maximal antichain is 

essential. This result will be used in discussions in Chapters 2 and 4. Referring to the proof of

Lemma 1 .5, we note that removing an essential maximal antichain also induces an interval order, 

though on a proper subset of X. 

The general theory of minimal covers forms the substance of Chapter 2 .  

1 .6 Endpoint ordering of interval orders 

Define the composition of two binary relations o1 and o2 by

(01) (02) = {(a, b); a 01 z and z o2 b for some z} .

Fishburn (1985) (§ 2.2) uses composition of relations to construct a weak order on the abstract 

version of interval endpoints in an interval order. 

For (X, -<) an interval order and ,...., the symmetric complement of -<, let -<-= (rv) (-<) and

-<+ = (-<) (,....,) .  In an open real representation of an interval order, -<- and -<+ are weak orderings on

the left and right endpoints respectively (Fishburn, 1985, § 2.2) . In this weak ordering, left (right) 

endpoints belonging to the same equivalence class are incomparable, even though a precedence 

relation may exist between them in a real-valued representation. 
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Example 1.2 Consider the open intervals of Example 1 . 1. The real endpoints of these intervals 

are linearly ordered. Specifically, let <- and <+ denote these linear orders, and i represent interval 

Xi , i = 1, . . .  , 6 .  Then 1 <- 2 <- 3 <- 4 <- 6 <- 5 and 1 <+ 3 <+ 2 <+ 6 <+ 4 <+ 5 .

However, the -<- and -<+ orderings are the weak orderings illustrated in Figure 1 .3.

® 
(a) (b) (c) 

Figure 1.3: Hasse diagrams for (a) interval ordering -<,  (b) left-endpoint equivalence class weak 

ordering - C =  (......,) (-<) and (c) right-endpoint equivalence class weak ordering -<+= (-<)(......,) .  

We write x - and x+ to distinguish the elements of X as they are associated with their left 

or their right endpoint respectively. We distinguish elements of these two sets using the same 

superscripts. 

We can now define a weak order on x- LJ x+, denoted -<o, and called the conjoint weak order

(Fishburn 1985, § 2.2) . This relation orders both the left and the right endpoints of the intervals in 

a natural way, namely, for x, y E X, 

1 . x- -<o y- {:} x -<- y

2. x+ -<o y+ {:} x -<+ y

3. x+ -<o y- {:} x -< y

4. x- -<o y+ {:} x -<  y or x ,..., y

We let :::::: a=......, a be the incomparability relations for (X, -<a) ,  a = - , +, 0. Theorem 1.7 spells out

the structure of (X- LJ X+)j::::::O as it relates to x- /:::::::- and X+ /:::::::+ . 
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Theorem 1 .  7 (Fishburn, 1985, § 2.3) Suppose (X, -<) is  a finite interval order of magnitude 

m. Then x-/ �- and x+ / �+ both have cardinality m. Moreover if we let (x-/ �-, -<0)

{ L1 -<0 L2 -<0
• • · -<0 L;_} and (X+ /�+, -<0) = {Rt -<0 Rt -<0

· · • -<0 R;tJ, then

We put Li = {x; x- E Li } and Ri = {x; x+ E Rt} ; for i  = l ,  . . .  , m. The fact that l (x-1�-) I = 

l (X+ /�+) I = m can be deduced from { j j-1 }M = 
i
ld Li \ 1d Ri; j = 1, . . . , m  (1.3) 

In applications, it is useful to recognize that (1 .3) embodies a method for computing the set 

of maximal antichains of an interval ordered set. The reader familiar with Turnbull's treatment of 

nonparametric maximum likelihood estimation for interval censored data may wish, at this point, 

to compare Theorems 1.9 and 1.10 with (1.3). 

1. 7 Characteristic matrix of an interval order

Using the equivalence classes Li, Ri, i = 1, . . .  , m derived from Theorem 1.7, we define the m x m

characteristic matrix x of (X, -<) in the following manner:

(1.4) 

Since the Li and Ri both partition X, matrix x will have at least one non-zero entry in every

row and column. This requirement can be shown to be equivalent to the starting/ending property 

of maximal antichains in an interval order. Theorem 1.7 guarantees that x will be upper-triangular.

Our definition of the characteristic matrix differs from Fishburn (1985, § 2.3) , where it is defined 

as the indicator matrix 1 [Li n Ri =f. 0] .  This simpler version of the characteristic matrix plays a role

in extremization problems involving the cardinality of the interval order and the number of distinct 

interval lengths required in its real-valued representations (Fishburn, 1985, Chapter 8). It plays no 

obvious role in the analysis of interval censored data. 

The characteristic matrix of an interval order is easily related to its Petrie matrix. 

Lemma 1.8 Let K = [cik] = [1 (i � k)] , i, k = 1, . . .  , m, (the cumulative sum transformation} so 

that K-1 = 1 [i = k] - 1 [i - 1 = k] (the backward difference transformation). 
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Then the characteristic matrix of an interval order with Petrie matrix A is given by 

x = K' o K-1 AA'K-1 (1.5) 

that is, the upper triangular part of K-1 AA'K-1 . 

Moreover, the characteristic and Petrie matrices of an interval order are in 1-1 correspondence. 

Proof. Let nik = (AA')ik • and define also nok = ni,m+l = no,m+1 = 0, i, k = 1 ,  . . .  , m.

Obviously, nik = # (Mi n Mk) ,  i , k = 1, . . . , m.

Using the definition of maximal antichains provided in (1.3) , it is a simple matter to verify that, 

for i :::; k, Li nRk = (Mi n Mk) \  [(Mi-1 n Mk) LJ (Mi n Mk+1 )] .  Since the subtracted set is a subset

(1.6) 

for i, k = 1, . . .  , m. Equation (1.5) is now easily verified. 

To show that A and x are in 1-1 correspondence, first note that, since A has full row-rank by 

Lemma 1.5, a simple application of the singular v'alue decomposition (see, for instance, Horn &

Johnson, 1985, § 7.3) shows that A is fully determined by AA'. Then it is enough, heuristically, to 

recognize that the information contained in x* = K-1 AA'K-1 is also contained in x, since K is

nonsingular. To see this, note that if j = i - 1, the expression for Xii given by (1.6) corresponds to

the negative of the cardinality of the symmetric difference of Mj and Mj+1 , while if i > j + 1, the

same expression once again corresponds to IMi n Mi l ·  Hence the lower left-hand (m - 1) x (m - 1) 

submatrix of x* is symmetric about the subdiagonal of x* '  with the subdiagonal itself given by 

for i = 2, . . . , m, wholly defined in terms of elements of X·

More formally, simple manipulations show that with vector k = [(I - K-1 ) -1 x + (I - K-1) x'] e,

then we have AA' = x + (I - K-1) (Dk + x') (I - K-1) .  0 

A simple interpretation of the characteristic matrix brought to light by the proof of Lemma 1.8 

is that, for i :::; k,

Xik = I {  x E X; x* = {Mi, MH1 , . . .  , Mk} } I · (1.7) 
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The characteristic matrix is an invariant of the interval order under all its real-valued interval 

representations. 

Example 1.3 The characteristic matrix of the interval order in Example 1.1 is 

[
1 

� � � ix = 0 1 . 

1 

2 Interval censored data and interval orders

We show in this section how the main features of interval censored data are captured by its order 

theoretic representation. We first state the form of the data in § 2 . 1. In § 2.2, we briefly introduce the 

nonparametric likelihood function for the CDF of interval censored data. Our only purpose in doing 

so is to motivate the order theoretic approach by showing that the classical result of Peto (1973) 

and Turnbull (1976) concerning the support of the CDF NPMLE in fact shows that estimation 

of the CDF can be performed on the set of maximal antichains of the data. A fuller discussion 

of nonparametric estimates of the CDF is reserved for Chapter 4. We also describe some special,

well-studied cases of interval censored data in terms of their maximal antichain structure. 

2.1  The data model

We are interested in a random event time T from a distribution F having support on [O, +oo). A

realization of event time ti is observed exactly with probability 'Yi , 0 :::; 'Yi :::; 1, for j = 1, . . .  , n, cor-

responding to a continuous inspection process. Otherwise the event time realization is not observed 

exactly; under inspection point process Qi, the observed data will consist of the last inspection time 

prior to the event and the first inspection time after the event. The process Qi consists of inspection 

times qi,k ,  k = 1, . . .  , Ki , to which initial and final inspection times qi,O = 0 and qi,K;+l = +oo are

added for convenience. With probability 1 - 'Yi , the observation for individual j will therefore be 

the open interval Xi = (lj , ri)  = (qi,ko , qi,ko+i ) ,  for some k0 depending on j .  

An exact observation can be viewed as a very small open interval, and indeed usually is, since 

so-called exact measurements are in fact of finite precision. Intervals themselves do not need to be 

open for Theorem 1 .1  to apply. The data description remains similar on an order theoretic level, 

and cumbersome notation is avoided. 
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We make two important assumptions which ensure that the censoring remains uninformative. 

Assumption I The inspection processes Qj are all independent of F.

Assumption II No event occurs with positive probability at an atom in any of the inspection pro-

cesses. 

Interval censoring as described above includes several common data models as special cases: 

• Exact data;

• Right-censored data (see, e.g. , Kaplan & Meier (1958) , consisting of exact data points along

with intervals of the form (lj , +oo).

• Current status data, also called interval censored data case I (see, e.g., Groeneboom & Wellner

(1992), consisting entirely of intervals of the form (0, rj) and (lj , +oo).

• Doubly censored data (see, e.g., Turnbull, 1974, Gu & Zhang, 1993, Mykland & Ren, 1996,

Wellner & Zhan, 1997, consisting of exact data points along with intervals of the form (0, ri)

and (lj ,  +oo) . Readers familiar with the above authors will recognize that our approach to

doubly censored data differs from that usually used in the literature.

2.2 Order theoretic representation of interval censored data

Assumptions I and II above ensure that estimation and inference can be conditioned on the inspec-

tion times at no cost in terms of information. The censoring information and the observed data will 

be split into two components: the ordering structure, on which most of the estimation and inference 

can be done; and the mapping HM defined in Theorem 1 .10, which enables us to port our results 

to the real line. 

We can specify the likelihood function for the CDF F as follows: 

n 
L (F) = IT  [F (rj) - F (lj)] .

j=l 

Let {bs}��+i) denote the ordered elements of O, {lj }j=1 , {ri}j=1 and +oo. Peto (1973) and

Turnbull (1976) both showed the following result. 
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Theorem 1.9 Let (lj , rj ) ,  j = 1 ,  . . . , n, be an interval data set, and consider the subset {ba}!:1 of 

these points such that 

{lj }  ?=1 LJ {O} if a is odd, and 

{ rj } ?=l U { +oo} if a is even, 
(1 .8) 

and there are no other elements of {O, {lj}j=1 , {ri}j=i } 

between ba and ba+l for any other a.

Then outside of the intervals (b2a_1 ,  b2a) ,  a = 1, . . .  , m, the NPMLE of F must remain constant 

and within these intervals, it is unidentifiable. 

The following theorem shows how the Petrie representation captures the combinatorial structure 

of interval censored data which is relevant to nonparametric likelihood estimation. The link between 

the maximal antichain structure of interval orders and the support of the NPMLE of F shows how 

the estimation problem, conditioned on the censoring pattern, can be viewed as the estimation of a 

probability measure on a discrete set. 

Theorem 1.10 Let { (lj , rj) ; j  = l, . . .  , n} be a set of positive real valued open intervals, and let 

X = (X, -<) be its interval order representation, putting H(xj) = (lj , rj) as in Theorem 1.1 .  Define 

the mapping HM from M to positive real-valued open intervals by 

HM (M) = n H(x) (1.9) 
xEM 

Then HM is one-to-one, that is, the set of intervals identified in Theorem 1.8 and M are in one-

to-one correspondence. 

Proof. (The following argument relies implicitly on Theorem 1 .1 and the short discussion which 

accompanies it. ) We first show that to every maximal antichain of X there corresponds an interval of 

the form (1 .8) in Theorem 1.9. Let M E  M be a maximal antichain. Let u = argmaxi {li : Xj E M} 

and v = argminj {rj : Xj E M} . Since Xu rv Xv , we have lu < rv and lv < ru, and therefore

lv :::; lu < rv :::; ru. Suppose some element Xw has a corresponding left or right endpoint lying 

strictly between lu and rv . If lu :::; lw :::; rv , then Xw -< Xu by definition of u, so ru < lw . But then

rv :::; ru < lw,  a contradiction. Similarly, no right endpoint may lie between lu and rv . Hence for 

every maximal antichain there is an interval of the form (1 .8) . 
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We next show the converse statement. Consider an interval (b2i-1 , b2i) of the form (1.8) and let 

K be the set of observations such that x j E K if and only if ( l j , r j) n ( b2i-l , b2i) I- 0. Since there are 

no endpoints between b.2i-1 and b2i , it must be that (b2i-1 , b2i) C (lj , r3) for every Xj E K; hence

all (l3 , rj) overlap, so that K is an antichain. Suppose that K is not a maximal antichain. Then

there exists a maximal antichain, M, such that K is a proper subset of M. Let x* E M \ K, with

corresponding real representation (l* , r* ) .  Since x* fl K, (l* , r*)  n (b2i_1 , b2i) = 0. Let Xu denote

the element of K with left endpoint equal to b2i-l and let Xv denote the element of K with right 

endpoint equal to b2i· Then either x* < Xu or x* > Xvi but all three must be in M, and therefore

all pairwise incomparable. Therefore there is no x* E M \ K, so that K is in fact maximal. D 

It is customary, when dealing with the product-limit estimator of the survival function derived 

by Kaplan & Meier (1958) ,  to state that the estimate is undefined on the right of the last observation 

if that observation is (right-)censored. Theorems 1.9 and 1.10 show that this is a particular case of

the unidentifiability of the CDF within the intervals which compose HM (M). 

Example 1.4 Let the intervals of Example 1 . 1  represent interval censored data. Each observation 

is an open interval, on an arbitrary time scale, within which the event of interest is known to have 

occurred. The 4 maximal antichains in the interval order induced by these intervals are illustrated 

in Figure 1.4 by the shaded boxes. The maximal overlap between the intervals in a single maximal 

antichain is the mapping of that maximal antichain to a real interval via HM, viz. 

HM (M1 )  = (1.75, 2) HM (M2) = (2.75, 3.5)

HM (Ma) = ( 4.0, 4.5) HM (M4) = (5.5, 6.5) 

The linear ordering of the maximal antichains as well as the result of Theorem 1 .10 are evident 

. in Figure 1.4. The set HM (M) consists in the intervals where the NPMLE can put mass (see 

Chapter 4). 



Chapter 1. Interval orders and interval censored data 27 

( 
2 ( 

§ ·rl 3 .µ "' � OJ 4 "' .0 0 

5 

6 

0 2 3 4 5 6 7 8 
Time 

Figure 1.4: Real representation of interval censored data and box representation of HM (M) .  

Referring back to the two competing fundamental assumptions of nonparametric analysis for 

censored data mentioned on page 4, it is clear that the likelihood function does not involve the 

linear extensions compatible with the data, depends on the cardinality and order of the maximal 

antichains, and is determined wholly by the partial order relationships of the interval order. In that 

sense, nonparametric maximum likelihood and self-consistent estimates, as we shall see in Chapter 4, 

participate of the pure incomparability assumption. 

We can now describe special cases of interval censored data in terms of the maximal antichain 

structure of their underlying interval order. All statements below are made with probability one; 

we also assume that no element is universal in our description of the double duals. 

Exact data. The interval order underlying exact data is linearly ordered under continuous F 

and weakly ordered if F has atoms. Every maximal antichain is essential and contains exactly one 

simplicial element under the continuous model, possibly more otherwise. The Petrie matrix is the 

n x n identity matrix under the continuous model. Under an F with atoms, the Petrie matrix is

constrained to have a single 1 in every column. The characteristic matrix of such data is non-zero 

everywhere on the diagonal and only on the diagonal, i.e. Xii > 0 if and only if i = j ,  i ,  j = 1, . . .  , m. 

In terms of double duals, Mt* = {Mi} for i = 1, . . .  , m.
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Right-censored data. Every maximal antichain in an interval order representing right-censored 

data is essential, as maximal antichains are mapped onto the (small) intervals of the exact data 

points, except possibly for Mm, which may be unbounded above if the last observation is censored. 

This i. corresponds to the first maximal antichain of the right-censored element with the longest

dual. The characteristic matrix of such data is non-zero everywhere on,the diagonal and can have 

non-zero values in the last column only on and after some row i. > 1 ,  i .e. Xii > 0 for all i = 1 ,  . . .  , m,

and Xij > 0 only if j = m and i � i_. In terms of double duals, Mt* = {Mi} for 1 � i < i., and

Mt* = {Mi_, . . .  , Mm}  for i. � i � m.

Current status data. Only M1 and Mm are essential. For all i = 2, . . . , m - 1, UxEM;Xi = M.

Moreover, Xii > 0 if and only if i = 1 or i = m, and Xii > 0 only if either i = 1 or j = m .  In terms

of double duals, Mt* = {M1 , . . .  , Mm-d, M:;,,* = {M2 , • • •  , Mm},  and Mt* = M for i = 2, . . .  , m.  

Doubly censored data. Doubly censored data has a more complex structure than the previous 

examples. As happens with exact and right-censored data, the exact observations induce essential 

maximal antichains; however, some non-essential maximal antichains may be created by the overlap 

of left- and right-censored data, similarly to current status data. It is a simple matter to show that, 

as for current status data, if M E M is not essential, then U:cEMx* = M; however some essential 

maximal antichains may lie in {M2 , • • •  , Mm-1} .  In doubly censored data, Xii > 0 only if either

i = j,  i = 1 or j = m. The double dual structure can be generalized from right-censored data. There

exist i. and ?: with 1 < i. � ?: < m such that Mt* = {M1 ,  . . .  , Mr} for 1 � i < i., Mt* = {Mi., . . . , Mm}

for ?: < i � m, and Mt* = M for i. � i � ?:.

There seems to have been a trend in recent years to treat the above cases as being distinct from 

interval censored data. In the case of exact and right-censored data, the existence of a closed form for 

the NPMLE (see § 3.2) and the general tractability of the problem probably warrant the distinction. 

In general, however, the above special cases as well as the general case of interval censored data 

benefit greatly from the simplification afforded by the order theoretic approach. In particular, this 

approach shows that the ordering structure of some data sets can be that of one of the above special 

cases without the data nominally adhering to traditional real-line-based definitions. Example 1.4, 

for instance, is structurally a case of current status data since the only essential maximal antichains 
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are Mi and Mm, and since every dual extends to either Mi or Mm. The techniques described in

Chapter 4, § 3.2 can therefore be applied to nonparametric likelihood estimation of the CDF for 

these data in spite of the fact that they are not nominally current status data. 



Chapter 2 

Minimal covers of maximal antichains for 

interval orders 

Having hinted at the relevance of an order theoretic representation for interval censored data, we 

now turn away from statistics for the space of this chapter and, largely, of the next, and describe in 

some detail the structure of minimal covers of maximal anti chains for interval orders (Definition 1. 9) .

Aside from being an interesting extension of the classical clique covering problem, minimal covers 

are a crucial cornerstone of weak order partitioning of interval orders. This generic method for 

pseudo-random generation of linear rank statistics on the set of linear extensions of an interval 

order is elaborated in Chapter 3.  . 

In this chapter, we characterize minimal covers and present two main algorithms to enumerate 

these sets. The problem of covering the vertices of incomparability graphs, including interval graphs, 

by maximal cliques has been well investigated by such as Fulkerson & Gross (1965), Bertossi & 

Bonucelli (1987) , Rhee & Liang (1996) and Felsner, Miiller & Wernisch (1997). Because the maximal

antichains of (X, -<) are also the maximal cliques of (X, ""') (Chapter 1, § 1.3) , the minimal cover

problem translates to an extension of the minimum clique cover problem for i�terval orders (see

Golumbic, 1980, Chapter 4) : that of finding sets of maximal cliques no subset of which forms a 

cover for an interval graph. To our knowledge, this question has not been considered before. For 

our purposes, discussions of minimal covers are essential, as they underlie the methods of Chapter 3 .  

The special structure and pliability of interval orders have led us to adopt the point of view of the 

precedence relation (X, -<) dual to the interval graph (X, "'), which leads us to consider maximal 

antichains instead of maximal cliques. 

30 
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We consider minimal covers from two points of view. The first, discussed in § 1,  i s  a backtracking 

algorithm which constructs all minimal covers of an interval order. We show that this algorithm is a 

generalization of a simpler one which generates one maximum chain along with one minimum cover 

from an interval order. The second perspective is that of a characterization of the complements 

of minimal covers, termed maximal removable sets. We provide properties and algorithmic details

concerning maximal removable sets. These, while of perhaps less immediate applicability than the 

generating algorithm of § 1, are valuable for the insight they provide on the structure of minimal 

covers and ultimately supply us with an upper bound on the maximum number of minimal covers 

achievable with a given number of maximal antichains. In § 3, we present the derivation of this 

upper bound, as well as some simulation results and a short discussion of some research avenues 

concerning minimal covers of interval orders. 

1 Finding minimal covers

In this section, we first present a simple algorithm in Construction 2.2 which enables us to find a 

single minimum cover. This procedure is similar to that found in Gavril (1972) ; its expression is 

couched in the language of comparability rather than incomparability, and serves to introduce its 

generalization to Construction 2.3. These latter algorithms produce all minimal covers of an interval 

order. 

The following result, found in Felsner (1992) , Chapter 1 ,  and closely related to Dilworth's De­

composition Theorem (Dilworth, 1950) , concerns the cardinality of minimum covers, also called the 

clique cover number (Golumbic, 1980, Chapter 1).

Theorem 2.1 Let (X, -<) be a partially ordered set. The height {length of the longest chain} of 

(X, -<) equals the minimum number of antichains required to cover the elements of X.  

Since the minimum number of antichains can be  no smaller than the minimum number of maximal 

antichains which cover a poset, the theorem tells us that a minimum cover has cardinality equal to 

the length of the longest chain in the poset. 

This result can be shown constructively for interval orders, with the added bonus that we produce 

a minimum cover and a maximum chain in the process. In essence, the following Construction and 
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Theorem state that there exists a minimum cover consisting of a set of maximal antichains, each 

of which uniquely contains a certain element. The set of these elements forms a maximum chain in 

the interval order. 

Construction 2.2 Let {Mi , . .  ·. , Mm} be the linearly ordered set of maximal antichains of interval 

order X = (X, -<). Let Y1 be a simplicial element of X belonging to the fi�st maximal antichain Mi , 

and let µi = Mi . Form the sets Y{ = {yi} and W{ = {µ1 } .  Then form the sets Y/ and WI for 

i > 1 as follows: 

While i is such that {y ;  µi-i < y*} =/. 0, let Y/ = Y/_1 LJ {yi} , where Yi is any selection of the set

and let Wi = Wi-i U {µi}, where 

{y; y minimizes max w* } , 
µ;- 1 <w* 

Theorem 2.2 Under Construction 2.2, there exists I such that {y; µJ < y*} = 0 and W' = W[ is

a minimum cover for X.  

Proof. The proofs of coverage and minimality for W' are specializations of the proofs of Claims 1 

and 2 in Theorem 2.3, possible since Construction 2.2 is a special case of Construction 2.3. Proof 

that W' is of minimal cardinality is simple viewed from the context of Theorem 2.3. See also Gavril 

(1972) . D 

The initial inclusion of {Mi} in the sequence of Wi's in Construction 2.2 is legitimate and

necessary since Mi is always essential, and therefore required in any cover. We note without proof

that Y' = Y1 is a maximum chain in X. 

Example 2.1 (In the following example as in subsequent ones, elements of X [columns] are iden-

tified by regular subscripts and maximal antichains of X [rows] by bolded subscripts.) Consider the 
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Petrie matrix 

1 2 3 4 5 6 7 8 9 10 11 i2 i3 i4 i5 i6 i7 is 19 20 2i 22 23 24 
1 l l 1 l l l l l l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
3 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
4 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

A =  5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
6 0 0 0 0 1 1 1 0 1 l 1 1 l l l l l l 0 0 0 0 0 0
7 0 0 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
8 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 . 1 1 1 1 1 1 0 0 0 
9 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1 1 1 l 1 l l 0 0
10 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 1 

Construction 2.2 yields W' {µi , µ6 , µg , µ10}, with I = 4. Members of these maximal an-

tichains which do not belong to maximal antichains previously chosen in the construction have 

their Petrie matrix entries underlined above. Y' could be any one of the sets {xi , x11 , x20 , X23}, 

{x1 , x11 , x20 , X24}, {xi , xi2 , x20 , X23 } or {xi , xi2 , x20 , x24} .  The occurrences of the y 's in the maxi-

mal antichains for which they cause inclusion in the minimum cover are balded in the matrix. 

Construction 2.2 will yield a single minimum cover. The natural generalizat�on from this setting 

is to broaden the choice for µi without changing the property that no two elements of Y are covered

by the same maximal antichain. This generalization leads to Construction 2.3. The < precedence

relation between maximal antichains is explained on page 16. 

Construction 2.3 Let Yi be a simplicial element of X belonging to the first maximal antichain 

Mi , and let µ1 = Mi .  Form the sets Yi = {yi} and Wi = {µi } . Then form the sets Yi and Wi for 

i > 1 as follows: 

While i is such that {y; µi-l < y*} =P 0, let Yi = Yi-1 LJ {yi}, where Yi is any selection of 

and let Wi = Wi-1 U {µi}, where 

is a particular selection of µi . 

{y; y minimizes max y*} , /J,i-1 <y* 

Theorem 2.3 For every sequence of pairs (Wi ,  Yi) , i = 1, . . .  formed in Construction 2.3, there

exists I ::;  m such that {y; µr < y*} = 0 . Defining (W, Y) = (Wr, YI), the class of minimal covers

of X is exactly the class of sets W which can be produced by Construction 2.3. 
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Proof of Theorem 2. 3. First we must show that I is well-defined for any selection of Yi, µi , i = 

1, . . . , I compatible with Construction 2.3. Since µi-1 < Yi and since µi E Yi , it must be that

µi-1 < µi . Thus in at most m steps we will reach µ1 = Mm. Since Mm = max M we obtain

{y; µ1 < y*} = 0, and the construction terminates.

We now show the theorem's statement in three steps: 

1 .  Every W produced by Construction 2.3 is a cover for X. 

2. Every cover W produced by Construction 2.3 is minimal for X.

3. Every minimal cover for X is a set W compatible with the selection method of Construction 2.3.

• Claim 1: Every W is a cover for X.

Let Y = Y1 and W = W1 be particular realizations of Construction 2.3, and let x E X be 

arbitrary. We must show that µ E x* for some µ E W. If x E Y, x is covered by construction, so

assume x E X \ Y. Since µ1 = Mi < . x* < Mm = µ1, there must be some i such that µi < x*

but µi+l � x* . Also, since we know Yi+l minimizes max y* and since µi < x* , we deduce that
µ; <y• 

max Yi+1 ::; max x* .

We can now show that µi+l E x*. Assume not; then we need max x* < µi+l · But then

maxx* < µi+i ::; maxyi+i ::; maxx* ,  a contradiction. Therefore x is contained in µi+l • so W is a

cover. 

• Claim 2: Every cover W is minimal for X.

Let Y and W be particular realizations of Construction 2.3 as before, and let W(i) = W \ {µi}

for some i E {2, . . .  , I - 1 }, since neither µi = Mi nor µ1 = Mm can be removed. We show that

W(i) is not a cover.

Since µi-1 < Yi , we know that µi-1 </. Yi , which implies that {µ1 , . . .  , µi-1}  n Yi = 0, by the

linear ordering of the maximal antichains. By construction, µi+1 ¢ Yi , which again implies that

{µi+l , . . .  , JLt} n Yi = 0. Hence W( i) does not cover Yi, and thus W is a minimal cover.

• Claim 3: Every minimal cover for X is produced by the algorithm of the theorem.



Chapter 2. Minimal covers 35 

Let V = {vi = Mi , v2 , . . .  , Vt-i , Vt = Mm} be a minimal cover. We need to supply a set Y = 

{yi ,  . . . , yt} such that V and Y satisfy Construction 2.3. For this it is enough to show that

if Yi E ·{y ;  argmin max y*} for i = 1, . . .  , I, then vi E y; \ Y1-i · 
y Vi -1 <y• 

(2.1)

Apply Construction 2.2 to V, which by Lemma 1.6 is the maximal an�ichain set of some interval

order. Since V is minimal, it is its own minimum cover. The set Y' produced in the construction 

satisfies requirement 2.1 .  

0 

Though Construction 2.3 involves an arbitrary selection from a set, the available set from which 

to select µi does not depend on the particular choices of Yi-1 and Yi, since only max y;_1 and 

max Yi play a role in the determination of that set. Algorithm 2.4 ListMinCovers below explicitly 

recognizes this fact by retaining only this information from the elements of Y. On the other hand, 

the choice of µi-1 does affect the set of available Yi's at every step. 

The elements of the sets Y produced by Construction 2.3 can be circumscribed. 

Definition 2.1 An element of X is called a minimal element if its dual properly contains the dual

of no other element of X.  

All sets Y compatible with Construction 2.3 will be  subsets of the set of all minimal elements of 

X. This characterization of the elements of all sets Y from Theorem 2.3 means that the original

set X may be reduced to just its minimal elements to solve the minimal cover problem. In view

of this observation, we can translate Theorem 2.3 into the following algorithm, which returns the 

set of all minimal covers of X when called with arguments (Xmin , 0), with Xmin the set of minimal

elements of X. The second argument is 0 only on the first call, with the convention that 0 < M for

all M E  M; otherwise it is a maximal antichain, µJ , which corresponds to maxyi_1 and contributes

to defining the set Yi \ Yi-1 of Construction 2.3. 
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Algorithm 2 .4 

ListMinCovers(Y, µ J ) 

Arguments: Y, a set of minimal elements of an interval order; 

µ J , equal to 0 on the first call, or to µ J , a maximal antichain, in any subsequent call.

If Y = 0 

else 

Return {0} 

M := 0 

. * Yo := argmmmaxy 
y yEY 

For each µo E {M; M E y0 , µJ < M} 
Mo := ListMinCovers( {y ; µ0 < y*} , maxy(j) 

·For each Wo E Mo

M := M LJ {{µo} U Wo} 

Return M 

The following example is accompanied by a sample recursion tree for the ListMinCovers algo-

rithm at all stages of the recursion from each branch after the leaves are reached: 

Example 2.2 Consider the Petrie matrix 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
2 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
3 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 

A = 4 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 
5 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 
6 0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 
7 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

If we identify once again elements and maximal antichains by their subscripts, we can form the set of 

minimal X-elements Ymin = {1 ,  7, 10, 13, 16}, corresponding to Petrie pairs {(1 , 1) , (2, 4) , (3,  5) , (6, 7) ,

(8 , 8)} .  The first tree {Figure 2. 1} shows the arguments to each of the calls to ListMinCovers, 

unfurled to the first returning call for each branch. The edges are labelled with the values of µ0 and 

Yo in the calling procedure. 

Figures 2.2 to 2. 6 show how covers are built up upon returning from recursion. 
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Figure 2.1: Argument tree for the recursive calls of ListMinCovers 

( {7, 10, 13, 16} '  1) 

µo=2,yo=1 

( {10, 13, 16} ' 4) 

,..-+-rn 

( {13, 16} ' 4) ... -.. A .. -., 

( { 13, 16} ' 4) ...... ·A·-" 
( { 13, 16} ' 5) ... -·A-.. ,��:r:::, :::�:-�, :::�::, ,.��+-�· 

:.�:f::, ,.��:t:::, (0, 8) (0, 8) (0, 8) (0 , 8) 

(0, 8) (0, 8) 
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Figure 2.2: Returned values for ListMinCovers, 5th level calls 

L�tMinCov::�1�::: 10, 13, 16} ,  0) 

µo=2,yo=1 
( { 10, 13, 16} ' 4) 

µo�+�rn 
( { 13, 16} ' 4) 

,.,=<.A·�" 
( {13, 16} ' 4) 

,.,=0.A .. �13 
( { 13, 16} ' 5) 

µ0=<1,Avo=l3 µ��:(:
::, ��:�:::. �::(:::, �::�:=�'

{{8}} {{8}} (0, 8) (0, 8) (0, 8) (0, 8) 

Figure 2.3: Returned values for ListMinCovers, 4th level calls 

ListMinCov::'.j:::: 10, 13, 16} , 0) 

µo=2,yo=1 
( {10, 13, 16} '  4) 

""�+�rn 
{{6, 8} ,  {7, 8}} 

( {13, 16} ' 4) """'·A'"=" 
{{8}} {{8}} {{8}} {{8}} 

38 
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Figure 2.4: Returned values for ListMinCovers, 3rd level calls

ListMinCovers(ll ,  7, 10, 13, 16} ,  0)

µo=l yo=l 

{{5, 6, 8} , {5, 7, 8}} {{6, 8} ' {7, 8}} {{6, 8} ' {7, 8}} 

Figure 2.5: Returned values for ListMinCovers, 2nd level calls 

LffitMinCov::�1:::: 10, 13, 16} ,  0)

{{2, 5, 6, 8} , {2, 5, 7, 8} , {3, 6, 8} , {3, 7, 8} , {4, 6, 8} , {4, 7, 8}} 

Figure 2.6: Returned values for ListMinCovers, initial call 

{{1, 2, 5, 6, 8} , {1 , 2, 5, 7, 8} , {l, 3, 6, 8} , {l, 3 , 7, 8} , {1, 4, 6, 8} , {1 , 4, 7, 8}} 

Apart from the reduction of the original X to its minimal elements, several other simplifications

can be applied to the minimal cover enumeration procedure of Construction 2.3. These simplifica-

tions may provide substantial gain in practice, in particular if we modify Algorithm 2.5 to count, 

as opposed to list, minimal covers. 

• Further reduction is accomplished by the prior inclusion of every essential maximal antichain

in the minimal cover W and by correspondingly restricting the minimal element set Xmin

to non-simplicial elements, as these elements can only generate their own essential maximal

antichain in Construction 2.3.

• If we order Xmin according to the order of the initial maximal antichain of their dual, we need
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only find minimal covers for each series of consecutively overlapping minimal elements, and 

combine them at the end of the procedure. 

• Finally, maximal antichains which overlap exactly the same minimal elements will be mutually

exclusive and interchangeable in any minimal cover produced by Construction 2.3. The classes

of such elements can be kept track of and all but one element from �ach class deleted from the

problem, to be reinstated after the covers are listed.

Example 2.3 Consider Figure 2.1; the above simplifications and reductions take on the following 

forms: 

• The first and last maximal antichains can be removed from the problem, and simply added to

the sets produced at the end of the procedure.

• Once the leaves corresponding to the last essential maximal antichains are removed, we notice

that a subtree of height 2 is repeated at every termination of the tree. This occurs because

element 13 and the closest element above, 10, share no maximal antichain in common.

• Lastly, we see that the two right subtrees at the second level are identical, reflecting the fact

that maximal antichains 2 and 3 overlap the same elements in the minimal cover.

The above considerations yield the following algorithm from Construction 2.3: 

Algorithm 2.5 

SimplifiedListMinCovers(X) 

Arguments: X = (X, --{) , an interval order. 

1. Determine the set Y' of all non-simplicial minimal elements of X.

2. Determine sets Ki, . . . , Kr of maximal antichains which overlap exactly the same elements in Y'.

3. For 
·
each set Kj = { K.j,1 , . . . , K.j,r; } , j = 1, . . . , r 

For each y E Y'

Let y* := y* \ { K.j,2 , . . .  , Kj,r; } 
4. Form the disjoint subsets Y{, . . .  , Y; of pairwise overlapping elements of Y'.

5. For each set Yk , k = 1 ,  . . .  , p, label its elements Yk = {Y1c,1 , . . .  , Yk,t,.}
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so that ji < h {::} min Yi.,;i < min Yk ,h , ji , h = 1, . . .  , tk .  

6. For each set Yk

Let Mk := ListMinCovers(Yk , 0) 

7. Let M = {W; W = LJ�=l WA: , Wk E Mk, k = 1, . . . ,p}

8. Augment M by all combinations of its covers

replacing element "';,1 by an element of K; \ {"';,i} , j = 1, . . .  , r.  

9. Add all essential maximal antichains to every cover in M.

Return M
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Example 2.4 Using Algorithm 2.5 applied to the interval order of Example 2.2, we would get the 

following sequence of steps: 

1. Y' := {7, 10, 13}

2. Ki := {2} , K2 := {3, 4} , K3 := {5} , K4 := {6, 7}

3. Yr := {2, 3} , Yio := {3, 5} , yi3 := {6} (notice that this instruction reduces the number of steps

which need to be performed by ListMinCovers)

4. Y{ = {7, 10} , Yd = {13}

5. As in preceding step.

6. M1 := ListMinCovers( {7, 10} , 0) = { {2, 5} , {3} }, M2 = ListMinCovers( {13} , 0) = { {6}}

7. M := {{2, 5, 6} , {3, 6}}

8. M := {{2, 5, 6} , {2, 5, 7} , {3, 6} , {3, 7} , {4, 6} , {4, 7}}

9. M := { {1, 2, 5, 6, 8} , {1, 2, 5, 7, 8} , {1, 3, 6, 8} , {1, 3, 7, 8} , {1, 4, 6, 8} , {1 , 4, 7, 8}}

2 Maximal removable sets

We now turn our attention to the generation of maximal removable sets. A set of maximal antichains 

is removable if no sequence of maximal antichains in the set is equal to x* for any x E X, i.e. if its

complement is a cover. A removable set is maximal if adding any maximal antichain creates such a 

sequence. An alternative characterization of a maximal removable set is that it is a set of maximal 

antichains such that its complement with respect to M is a minimal cover. Hence, a maximal 

removable set is a removable set t}J.at is not a proper subset of any other removable set. 
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The algorithm discussed in this section is solely for exposition. It is much more efficient to use

Algorithm 2.5 and in fact attempts to improve or analyze Algorithm 2.7 lead to consideration of 

minimal elements and a variant of Algorithm 2.5. 

2 . 1  Simplifying Assumptions

For any minimal cover or maximal removable set problem, we can assume that the only essential 

maximal antiehains are Mi and Mm· If any other maximal antichain, say Mr, is essential, the

problem can be split into two subproblems: one dealing with Mi through Mr and the other with

maximal antichains Mr through Mm. The solution to the large problem is simply the union of the

solutions to the two subproblems. 

For a minimal cover this statement would be negated if there existed a maximal antichain which 

belonged to the minimal cover of one subproblem but which could be removed once the union were 

formed. This would imply that the element covered by this maximal antichain had now been covered 

by a maximal antichain from the other subproblem. However, by the consecutive-1 's property of the 

dual any such maximal antichain would be covered by Mr, and hence a contradiction would arise.

Since every MRS is the complement of a minimal cover, the problems are equivalent and the same 

simplification obtains. 

We also assume that any x such that x* contains an essential maximal antichain has been 

removed from the problem, since it is covered by the essential maximal antichain. In other words, 

since the essential maximal antichain must be retained the element x imposes no other restrictions 

on the MRS. 

2.2 MRS generation algorithm
' 

Once the simplifying assumptions of § 2.1 have been applied we may assume that we are dealing with 

maximal antichains M2 through Mm-i and that none of these maximal antichains are essential.

The following observation can be proven under these assumptions. 

Observation 2.6 For any i such that 2 � i � m - 3 both Mi and Mi+2 can be removed together. 

Proof. Suppose not. Then there must exist an x such that x* includes Mi and MH2 but
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not Mi+l · For all interval orders x* must have the consecutive-l's property; hence no such x can 

exist. D 

The basis of our MRS generating algorithm is the two following properties. 

Property I If Mi is the largest maximal antichain in a removable set, then Mi+2 can be removed 

for i < m - 2. 

Property II .  There can exist MRS 's containing both Mi and Mi+a and neither Mi+1 nor Mi+2 for 

i < m - 2. 

The proof of these properties follows. Property I is simply a special case of Observation 2.6 and 

hence holds. Property II can hold when there are x, y E X  such that x* = {Ma, . . . , Mi, Mi+i} ,  

a �  i ,  and y* = {MH2 , Mi+3 , . . . , Mb} ,  i + 3  � b .  In this case, if {Ma, . .  . , Mi} LJ {Mi+a , . . . , Mb} is

removable and removed then neither Mi+l nor Mi+2 can be removed. 

In principle, our algorithm consists of enumerating all removable sets and then deleting from 

. the enumeration those that are proper subsets of any other removable set. The efficiency of the 

algorithm can be maintained by performing the deletions while enumeration is taking place. 

We first note the form of removable sets. We maintain the subscript ordering described in § 1.3. 

Consider the subscripts of any two adjacent elements of an MRS. They must follow one of three 

patterns: (Mj ,  Mj+1) ,  (Mj ,  Mj+2) ,  or (Mj ,  Mj+3) . It is not possible for (Mj ,  MH4) to occur in

sequence in an MRS because, by a variant of Property I, it is possible to remove Mj+2 for any 

removable set which includes (Mj ,  MH4) ,  and hence the removable set is not maximal. 

This points to a further important property of MRS 's. Consider constructing an MRS starting 

with either M2 or Ma and subsequently adding maximal antichains with larger indices. The partially 

constructed list will be termed a candidate set. Define the tail of a candidate set as the set of maximal

antichains with subscripts contiguous with the largest maximal antichain in that candidate set. Any 

two candidate sets with the same tail will evolve in exactly the same manner. A gap in the sequence 

of maximal antichains making up a removable set provides a kind of independence: the future 

evolution of a candidate set does not depend on those maximal antichains preceding the gap. 

For example, suppose two candidate sets are {M2, M3 , M5} and {Ma, M5} ,  both with tail 

{M5}.  There is no point in pursuing {M3, M5}  since its evolution can be no different from that 
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of {M2, M3 , M5} and therefore it cannot be maximal. On the other hand if one candidate is 

{M2, M3 , M4} and a second is {M3, M4} then such elimination is not possible. While the smaller is 

a proper subset of the larger, they do not share the same tail. 

From the preceding argument we can deduce that there are at most 3m-2 sequences to be

examined. However, the number is actually much smaller. One needs to,consider (Mj,  Mj+3) only 

if (Mj ,Mj+i ) is not possible. Hence the true upper bound is 2m-2 • A further substantial saving

comes from identifying and deleting candidates that will become proper subsets of other candidates. 

Algorithm 2.7 

ListMaxRemovableSets(S) 

Arguments: S a  list of candidates. 

Begin 

If S = 0 then

Else 

Return ListMaxRemovableSets({{M2, M\M2}} , {M3 , M \ {M2, M3} }) 

Begin 

S* = 0 

For each w = {s, M} in S 

Begin 

End 

If isCovered (s, S* , S) Break

S* = append ( S* , { (s U M2) , M\ {M1 , M2}}) 

If isRemovable (s U M1)

S* = append (" S* , { (s, M1) , M\Mi}) 

Else If isRemovable (s U M3)

S* = append (S* , { (s, M3) , M\ {M1 , M2 , M3}}) 

If Finished ( S*)

Return (S*) 

Else 
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End 

Return ListMaxRemovableSets(S*) 

End 
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Our algorithm grows candidate lists starting at the left end. By Property I either M2 or M3 must

be the first element of the MRS. From this point elements are added sequentially to the candidate 

lists according to Properties I and II and the observations made above. 

Any candidate which is a proper subset of another candidate can be deleted if both have the 

same tail ; this is detected by the function isCovered. The function isRemovable determines 

whether a given candidate can be removed. Finally the function Finished determines whether all 

candidates have been pursued to Mm. 

Consider the output of Algorithm 4.2 applied to the data of Example 2.2. In that example only 

M1 and Ms· are essential. 

Step 1 So = {M1 , M2} 

T1 = {M2 , M3} 

T2 = {M2 , M4} 

T3 = {M3 , M4} 

removable 

removable 

removable 

T4 = {M3 , M5} removable 

Step 2 S1 = {{M2 , M3}, {M2, M4} , {M3, M4}, {M3 , M5}}

T1 = {M2 , M3 , M4} not removable x7 C T1 

T{ = {M2 , M3, M5} removable

T2 = {M2, M3 , M5} removable 

T3 = {M2 , M4, Ms} removable 

T4 = {M2 , M4, M5} removable 

Ts =  {M3, M4, M5}  not removable Xio* = Ts 

T� = {M3 , M4, M1} removable

T5 = {M3 ,  M4, M5} removable 

{M3,  Ms} is not considered because it has the same tail as T2 . 

Step 3 S2 = {{M2, M3, M5}, {M2, , M3 , Ms}, {M2 , M4, Ms} ,
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{.l'v.12 , .l'v.14, l\16}, {l\13, l\14, l\17}, {1113 , l\14, l\15}} 

T1 = {ll12 , ll13, l\15, ll17} not removable xis C T1 

T{ = {1112 , .l'v.13, l\15 , l\15}  removable

T2 = {ll12 , ll13 , l\15 , l\17} removable 

Ta = {1112 , l\14, l\15, l\15}  removable 

T4 = {1112 , l\14, l\15 , l\17 }  removable

n = {ll12 , ll14, ll16 , ll11} not removable xis c T5 

T� = { l\13 , l\14, 1116} removable 

T6 = {1113 , l\14, 1111} removable

Done S = {{  1112 ,  l\13 , l\15, 1116} , { 1112 ,  l\13, l\15 , 1111 } , { 1112 ,  l\14, l\15 , 1116} , 

{ll12 , ll14, ll15 , ll17} , {ll13, l\14, l\16} , {ll13, l\14, l\17}} 

3 The number of minimal covers of an interval order
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How many minimal covers does X ·have? The question is not only of theoretical interest. In

applications, if this number grows too large with the size of X, we might opt for random generation

of minimal covers instead of enumeration. 

The number of minimal covers will depend on four characteristics of the interval order: 

• the number of maximal antichains;

• the number of minimal elements;

• the length of each minimal element;

• the degree of overlap between the minimal elements.

The problem of determining the number of minimal covers for a general interval order is thus 

fairly complex. The last item, degree of overlap, can be more formally described as the size of the 

intersection of the duals of minimal elements. Overlap between minimal elements can either increase 

or decrease the number of minimal covers for an interval order, as the next example shows. 



Chapter 2. Minimal covers 47 

Example 2.5 In the following examples, partial Petrie matrices of elements which do not overlap

with simplicial elements are displayed on the left of each table; minimal covers, one per column to 

the right, are denoted by dots ( •) which indicate maximal antichain membership in the cover.

The first pair of examples illustrates a case where overlap decreases the number of minimal 

covers: 

1 0 Mi • • 1 0 Mi • • 

1 0 Mi+1 • • 1 1 Mi+1 • 

0 1 Mi+2 • • 0 1 Mi+2 • 

0 1 Mi+3 • • 0 1 Mi+3 • 

4 minimal covers 3 minimal covers 

The second pair of examples illustrates a situation where overlap increases the number of minimal 

covers: 

1 0 0 0 Mi • • 1 0 0 0 Mi • • 

1 1 0 0 Mi+i • • 1 1 0 0 Mi+1 • • • 

0 1 0 0 Mi+2 • • 0 1 1 0 Mi+2 • • • 

0 0 1 0 Mi+3 • • 0 0 1 0 Mi+3 • 

0 0 1 1 Mi+4 • • 0 0 1 1 Mi+4 • • 

0 0 0 1 Mi+5 • • 0 0 0 1 Mi+5 • • • 

4 minimal covers 5 minimal covers

We aim at bounding the maximal number of minimal covers Nmax(m) for an interval order

with m maximal antichains, and at establishing whether enumeration of the minimal covers is a

useful approach for realistic interval data sets. With these views in mind, § 3 .1  provides lower and 

upper bounds on Nmax, while § 3.2 following provides some simulation results designed to supply

an empirical approximation for this number and to determine the applicability of Algorithm 2.5 in 

a realistic situation. 

3 . 1  Bounds on Nmax (m) 
Theorem 2.8 For m � 2,

(2.2) 
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where 

f\;i = \J 19 + 3v'33, f\;2 = \J 19 - 3y'33 

Proof. An immediate lower bound on the maximum number of minimal covers Nmax(m) for

a given m can be determined if we assume no overlap between minimal elements. The number of 

minimal covers no Nmax in the case of no overlap is then simply the product of the lengths of the

minimal elements. Since Mi and Mm are essential and both contain a minimal element of length 1 ,

we need to  partition m - 2 elements into consecutive sequences such that the product of the lengths 

of these sequences is maximized. The problem can be reformulated as that of maximizing TI�=i ak 
subject to 'E�=i ak = m - 2 for K and ai , . . .  , ak , for which a solution is exposed in Saaty (1970,

Theorem 4-6) . For all values of m 2::: 2, no Nmax 2::: 3 "'32 • 

For the upper bound, we bound the number of MRS 's compatible with m maximal antichains 

by using the properties of MRS 's described in § 2.2. Specifically, we determine the number Bm of

ways in which a sequence of m - 1  (ordered) items can be partitioned exactly in consecutive groups 

of 1, 2 or 3 items, such that a group of 3 items occurs neither at the beginning nor at the end

of the sequence. If we take the items to be the linearly ordered maximal antichains of an interval 

order beginning at M2, then a set formed by the final maximal antichain of each group, bar the last

group, will form a set of maximal antichain of the requisite structure for an MRS. The number of 

such partitions thus forms an upper bound on the number of MRS 's achievable with m maximal

antichains. 

The reason for starting the sequence at M2 and omitting to include the final maximal antichain

from the last group is that Mi and Mm are essential, and thus cannot be removed. The requirement

that a group of 3 neither start nor end a sequence of groups formed in this manner ensures that at

least one of maximal antichains M2 and M3, and at least one of Mm-2 and Mm-1 , will be included

in the candidate set, the necessity of which is stated in § 2 .2 .  

To determine the number of groupings of m - 1 items in sequence which satisfy the above 

conditions, we start with the determination of the number Gm of general groupings in 1,  2 or 3

of m - 1 items which do not necessarily satisfy the condition on the first and last group. Since 
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each such sequence must start with a group of length i = 1, 2 or 3, and since the remainder of 

the sequence of m - i - 1 elements must satisfy the grouping requirements as well, it is clear that

Gm = Gm-1 + Gm-2 + Gm-3 for m > 4. To determine the number Bm of group sequences of m - 1

items which satisfy the requirement of not starting or ending with a group of length 3, we simply 

subtract the number of unconstrained group sequences which start or .end with a grouping of 3.  

There are 2Gm-3 - Gm-6 such groupings, so that Bm = Gm - 2Gm-3 + Gm-6 for m > 4. A simple

algebraic verification shows that Bm = Bm-1 + Bm-2 + Bm-3 for m > 4. Values for 2 � m � 4 are 

depicted in the following diagrams. Only the endpoint of each group is identified by a circle ( o ) . 

M2 0 0 

M3 0 0 

M4 0 0 0 

m = 2, B2 = 1 m = 3, B3 = 2 m = 4, B4 = 3 

Since B2 = 1, Ba = 2, B4 = 3, and Bm = Bm-1 + Bm-2 + Bm-3 for m >  4, Bm = Tm-1 1 

where Tm is the mth Tribonacci number (Feinberg, 1963) : Spickerman (1982) showed that Tm = 

r apm + 0.51 , where a and p are as above, which completes the proof. 

3.2 Simulations and simulation results 

D 

Theorem 2.8 shows that the maximal number of minimal covers grows exponentially with m, lying 

somewhere between the curves y = (0.48) 1.44m and y = (0.33)1 .84m for m > 1. Having in mind

practical applications for minimal covers, we wish to determine whether, in practice, the number 

of minimal covers tends to reach these large values. We adopted a simulation approach with this 

purpose in mind, with the specific objectives of assessing the bounds mentioned above and of deter-

mining whether it is feasible to enumerate the minimal covers of an interval order likely to occur as 

a real data set. The simulation results we present are based on two pseudo-random interval order 

generation mechanisms designed to provide answers to both of these questions. 

The generation mechanisms we present warrant a preliminary explanation. Recall from Chap-

ter 1, § 1.1 that all interval orders X can be represented as sets of intervals on the real line 

{[h(x) ,  h(x) + p(x)J ; x  E X, h : X t-+ IR, p : X t-+ IR+} ,
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characterized by left endpoint function h and non-negative length function p, and such that for

x, y  E X, x -<  y if and only if h(x) + p(x) < f (y). Thus, to generate random finite interval orders,

it is enough to generate left and right endpoints defining real intervals. 

In simulation series A, we systematically varied the number n of elements in X between 10 and

115, and the ratio of expected left-endpoint placement to interval length in the real representation. 

We produced real representations of interval orders by generating left endpoints according to an 

Exponential distribution with mean 1 ,  then generating lengths according to an Exponential distri-

· bution with mean µ = 1/  >., where >. took on the values 0.4, 0.6, . . .  , 3.0. A simple calculation shows

that the probability of overlap between any two intervals in such a setup is 1/(1 + >.) , and so varied

between 0.25 and 0.72 in the course of our simulation. By way of comparison, the proportion of

pairs of overlapping intervals in the breast cosmesis data presented in Finkelstein & Wolfe (1985) ,

was approximately 0.45. For each pair (n, >.) , 50 interval orders were generated, thus yielding 14,300

interval orders in total. Simulation series A was designed to produce a large variety of overlapping

patterns which would help assess the bounds of Equation (2.2) (see Figure 2.7).
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0 2 3 

Time 

Figure 2. 7: Series A sample interval set; n = 20, >. = 0.5.
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For simulation series B ,  we generated intervals by setting potential inspection times at t 

0, 1, 2, . . .  , 30. For each interval , the inspection times were retained with a probability of 1 for 

t =:= 0, a probability of 0.4 for t =  2, . . .  , 6, and a probability of 0.1 for t =  7, . . .  , 30. A number n of 

event times were generated according to an Exponential distribution with mean µ, µ = 2, 2 x (1 .25) = 

3.5, 2 x (1 .25)2 = 3.125, . . .  , 2 x (1.25)15 = 56.8, for values of n = 10, 20, . . .  , 150. Intervals were

formed by using the largest inspection time smaller than the event time as the left endpoint, and 

the smallest inspection time larger than the event time as the right endpoint. This setup mimics a 

long-term prospective study in which a condition is monitored at fixed inspection times which may 

be missed; event time corresponds to the moment of change in condition. This simulation setup can 

produce right-censored cases (i.e. intervals without a finite right endpoint) with a probability of 

exp(-30/ µ) . This probability ranged over 0.0667, 0.0833, . . .  , 0.53. Sixty simulations were run for 

each pair (n, µ) , thus yielding a total of 13,500 simulated interval orders. Simulation series B was 

designed to mimic typical data from a long term prospective study where a condition is periodically 

monitored for change (see Figure 2.8) . 
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Figure 2.8: Series B sample interval set; n = 20, µ = 15. (Intervals 1, 4, 11, 17 and 20 are right censored) 
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Simulation results are illustrated graphically using boxplots. The conventions we adhered to in 

the use of boxplots correspond to the standard S-Plus software conventions (Becker et al. ,  1988) . 

The range represented by the inner shaded box corresponds to values of N lying between the first 

and third quartile of the data, with the line within this box indicating the median of the values. 

The results of simulation series A are shown in Figures 2.9 and 2 .10. The exponential growth of 

the number of minimal covers N with the cardinality n of X is manifest in both the average case 

and the maximal case, placing an exponential lower bound on this growth for the general interval 

order. An approximate value of A Nmax(m), the maximum number of minimal covers in terms of 

m for simulation series A, can be determined by a Poisson regression of m on n with identity 

link. Such a regression yields m � 0.366n + 0.805, from which we can derive the approximation

ANmax(m) � (0.485)1 .023m. Figure 2.10 shows, as was expected, that this growth is more strongly

associated with the increase in the number k of minimal elements in X rather than with the increase 

in n, though both quantities are positively correlated. Because simulations were not run an equal 

number of times for each value of k, the range of values of N as a function of k should not be 

interpreted as meaningful on the boxplots. 
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Figure 2.9: N as a function of n for simulation series A. Lower solid line is a least-squares regression 

line of log N on n; upper solid line is a least-squares regression line of log maxn N on n. 
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Figure 2.10: N as a function of k for simulation series A.
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By contrast, simulation series B shows that the rate of increase of N with respect to n diminishes 

with increasing n in the average case, while the maximum value of N itself remains more or less 

constant for n ;:::: 80 (Figure 2.11).  These results are explained by the fact that the simulation series

B setup creates an expected proportion of right censored values which increases with µ; this increase 

causes the number of maximal antichains to converge in probability to 1 as µ grows larger. In the 

limit, all intervals overlap, forming a single maximal antichain and a single minimal cover. Thus N 

tends to 1 in probability. Figure 2.12, however, shows that the relationship between the number of 

minimal elements and the number of minimal covers remains roughly exponential, which indicates 

that right-censoring curbs the number of minimal covers by preventing the creation of large numbers 

of minimal elements. 
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Figure 2.11 :  N as a function of n for simulation series B. Smooth curves were computed using local 

regression ( loess) .
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Figure 2.12: N as a function of k for simulation series B.

The results of simulation series A confirm a rapid exponential growth in the number of minimal 

covers, which could preclude their enumeration even for modestly sized interval orders. However, 
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simulation series B provides an indication that we can expect the number of minimal covers in 

a realistic data set to remain manageable. The censoring mechanism itself, based as it is on fixed 

inspection times, forces the number of maximal antichains, and thus the number of minimal elements,

to be at most the number of inspection times. We can expect this phenomenon to keep N manageable

in applications. 

Refining the bound on Nmax(m) remains an open problem of theoretical intere�t .  Of immediate

practical interest is the determination of the expected number of minimal covers under a specific 

interval generation mechanism. Embedded semi-orders may provide an avenue of research for both 

of these questions, since minimal elements in an interval order form an embedded semi-order in the 

interval order. See Fishburn (1985) , Chapter 6 for a discussion of maximal embedded semi-orders. 

This embedded semi-order need not be of maximal cardinality, since minimality of elements is a 

stronger constraint than semi-orderedness. Determining Nmax(m) and the expected value of N 
under a given generation mechanism is likely to require knowledge about the attainable cardinality 

of such an embedded semi-order, but also about the patterns of maximal antichain membership in 

these embedded semi-orders. 
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Weak. order partition of interval orders

One form of nonparametric inference on interval censored data involves rank-score statistics. In the 

simplest case of rank scoring, a selected group of individuals are assigned to a "control" category 

while the remainder are assigned to a "treatment" category prior to any measurement being made. 

In the presence of complete information about the ordering of all individuals according to some 

measured quantity, we can assign a rank to every one of them. A function of this rank, usually but 

not necessarily monotonic, is then summed over the treatment individuals, and the resulting rank 

score statistic is usually assessed on the basis of its exact or asymptotic distribution under the null 

hypothesis of no difference between treatment and control. 

However, information about the measured quantity is often only available as interval censored 

data. Prentice (1978) introduced a closed-form rank score statistic for right-censored data which 

consists of the average rank score statistic over all linear extensions of the partial order induced by 

censoring, or, equivalently, over all rank vectors compatible with the data. The basic nonparametric 

assumption underlying this technique is that every possible ordering of the underlying data is of 

equal weight a priori. Attempting to apply this principle to interval censored data is complicated 

by the fact that in this case there is no closed form for average rank score statistics. 

To produce such statistics, it is therefore necessary to enumerate all linear extensions. However, 

enumeration is rarely feasible for actual data sets. Consider Example 1 .1  from Chapter 1 viewed 

as interval censored data. It consists of 6 observations and has 57 linear extensions, as ascertained 

through a backtracking enumeration algorithm (see § 1), while the breast cosmesis data analyzed in 

Finkelstein & Wolfe (1985),  with 93 observations, have approximately 2 .4 x 1092 linear extensions,

as estimated using the techniques described in § 3. The available alternative to enumeration is 

56 
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to produce a sampling estimate of the rank score statistic, based on uniformly generated linear 

extensions of the underlying interval order. 

Self & Grossman (1986) offer several algorithms to perform uniform generation of linear exten­

sions; unfortunately, none of these algorithms actually achieves uniform generation. In this chapter, 

we propose a structuring view of the set of linear extensions of interval orders through what we call 

weak order partitioning. In essence, we will construct a scheme whereby this set can be partitioned

into disjoint sets, each of which consists of the linear extensions of a weak order. This partition 

greatly simplifies the task of both uniform generation of linear ex_tensions and sampling estimation 

of various rank-based statistics of interval orders. 

In § 1, we provide some detail about backtracking algorithms as they can be used to generate

linear extensions; our purpose there is to provide insight into the problem, as backtracking-based 

generation algorithms are not up to the task of generating the linear extensions of an interval order 

uniformly. We construct the weak order partition in § 2. This is accomplished in Theorem 3.4, 

the main result of this chapter. The construction involves a number of definitions, most important 

among which is that of marked configurations of the interval order. By partitioning the linear 

extensions into simple sets, Theorem 3.4 yields a straightforward technique not only to generate 

linear extensions uniformly, but also to estimate linear rank statistics without generating the linear 

extensions directly. We provide a brief description of a general sampling application based on this 

partition in § 3, as well as describe a few typical questions concerning interval orders which may be 

addressed with the aid of standard sampling techniques. 

1 Backtracking algorithms

Backtracking is a general method to count or enumerate linear extensions of a poset in constant 

linear time. Kalvin & Varol (1983) provide a review of backtracking algorithms applied to the 

enumeration of linear extensions. Even for small posets, the number of compatible linear extensions 

is large enough so as to make the method unusable in practice. However, for the insight it provides 

on the nature and complexity of the problem, we will describe backtracking using the precedence 

matrix as a starting point. 



Chapter 3. Weak order partition

1 .1  Counting the linear extensions of a poset 
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We illustrate how backtracking methods can be used to perform the conceptually simple task of 

counting the number of linear extensions of a partially ordered set. To do so, we introduce the 

precedence matrix of a partially ordered set.

Definition 3.1 Let (X, -<) be a poset, with X = {x1 , x2 , • • .  , xn}· Then we can define the n x n 

precedence matrix P of (X, -<) as follows: 

Pij = 1 [xi -< XJ] , i , j  = 1, . . .  , n. 

Our convention that -< be irreflexive causes P to be zero-diagonal. Moreover, for transitive

relations such as partial orders, it is always possible to reorder the labels in X so as to make P 

strictly upper triangular. 

For P E  {O, l}nxn a (square) precedence matrix of size n, denote by pi the jth column of P, and

by P� the sum of the elements of pi . We denote by P (j1, . . .  ,j�) the matrix P with rows ji , . . .  , ik and

columns i1 , . . .  , jk deleted, but with remaining rows and columns retaining their original labeling. 

The latter convention simplifies notation. 

The idea behind backtracking enumeration is to recursively apply the following principle: only 

elements of X which have no predecessor can head a linear extension of (X, -<). These are easily

identifiable in terms of the precedence matrix as elements with index j such that P� = 0. Once

initial element Xj has been chosen to head the linear extension, the problem is reduced to finding a 

linear extension for the poset with precedence matrix P (j) , and to let Xj head it.

We introduce further notation. For P as above:

• with j in the index set of rows and columns of P, let Vj (P) = 1 [P� = 0] ;

• let N (P) be the number of linear extensions consistent with precedence matrix P, with

N ([OJ) = 1.

Then N (P) can be expressed as 

nN (P) = L Vj (P) N (P (j) ) • (3.1) 
j=l
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Repeatedly expanding the right-hand side of 3.1 yields 

n n 

N (P) = I: Vji (P) I: 
i1=l h=l 

h#j1 

so that 

n 

vi2 (P(Ji) )  I: 
ja=l 

frfii 

fr#h 

n 

v · (Pc . >) . . · J2 J1 ,J2 

N (P) = I:  IT Vu; (P(u1 , . . . ,u;-i)) , 
O' j=l 

n 

I: 
in=l' 

in"fii 

v · (P( · · · > ) Jn Jl ,J2 , .. . ,3,. 
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where the sum is taken over all permutations a of {1, . . .  , n }. We note that the factors in the

summed products can be expressed in terms of the original P ij , since

1 . 2  Enumeration and random generation 

The recurrence formula (3 .1) can be transformed into an algorithm which will enumerate the linear 

extensions themselves. Such an algorithm is equivalent to the algorithm proposed by Knuth & 

Szwarcfiter (1974) when indices are kept track of. 

The enumeration algorithm, in turn, can easily be adapted as a pseudo-random generation 

algorithm: at every turn, choose the element to head the remaining sublist uniformly randomly 

among available candidates, until a linear extension is produced. Such a method does not produce 

linear extensions with uniform generation probability, as the following example demonstrates. 

Example 3.1 Consider the interval order X { x1 , x2 , X3 , X4 } endowed with the following real 

representation: 

X1 

X3 

Under the natural subscript ordering 1, 2, 3, 4 of X, the precedence matrix of -< is 
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Representing linear extensions by their index sequence, the set of linear extensions .C (X) compatible

with interval order X = ( X, --<) is

C (X) = {(1 , 2, 3, 4) , (1, 2, 4, 3) , (2, 1 , 3, 4) , (2, 1 , 4, 3) , (2, 3, 1 , 4)} 

The event that an element has been chosen to belong to the linear extension being generated 

is represented by the precedence matrix having the appropriate row and column struck out, and by 

leaving out the unchosen indices in the linear extension. 

We can compute the probability of generation Pa for, say, extensions (1, 2, 3, 4) and (2, 1 , 3, 4), 

as follows. 

Pa[(l, 2, 3, 4)] 

Pa[(2, 1 , 3, 4)] 

1 1 
= - x l x - x l

2 2 

= 

= 

= 

1 
4 

Pc [(2, ?, ?, ?)) Pc [(2, 1, ?, ?) 

1 1 1 - x - x - x l
2 2 2 

1 
8 

1 3 � ] Pc [(2, 1 , 3, ?) : ] Pc [(2, 1 , 3, 4) I : ]3 0 0 
0 0 0 0 0 0 

A generator with uniform generation probability across all linear extensions in L(--<) can be based 

on the backtracking random generator in the following manner: 

Algorithm 3.1 

Backtrack WithRejection(X) 

Arguments: X, a partially ordered set; 

N, size of the sample to generate. 

l. Find a quantity a s  min.>.E.C(.2£) Pa [A] .
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2. Generate a linear extension A through backtracking; include it in the sample with probability a/ Pa [A

3. Repeat step 2. until a sample of size N is generated.

Return sample. 

Such an algorithm would generate any linear extensions in C (X) with equal probability. This al­

gorithm stands in slight contrast with the closely related rejection scheme which generates a primary 

sample S, then resamples it by culling each of its members A with probability min.>.oES Pa[Ao]/Pa[.X] , 

to create a secondary sample. Sample sizes are difficult to control with such an approach, since sec­

ondary samples issued from different primary samples cannot be merged without knowledge of the 

primary sample. On the other hand, finding an appropriate quantity a in Algorithm 3.1 may be 

costly. 

In practice, we have found that neither approach is practicable because of the unacceptably high 

rejection rates. Attempts at uniform generation of linear extensions of the breast cosmesis data from 

Finkelstein & Wolfe (1985) (n = 93) using backtracking-based generation have led to acceptance

rates of about 2.3 x 10-29• This crippling acceptance rate has led us to consider alternative methods.

Generation methods based on simple Markovian transitions, usually dubbed Monte Carlo Markov 

Chain methods, are attractive in many ways, not least of which is the simplicity with which some 

may be implemented. The difficulty in measuring the association between successively generated 

linear extensions using simple transitions, as well as the usual doubts concerning the convergence of 

simulated Markov chain to stationarity and the possibility of transitional bottlenecks in the set of 

linear extensions, have led us to consider a new apJ?roach. 

2 Weak order partitioning of interval orders

The solution we settled on is expounded in the remainder of this Chapter. So-called weak order 

partitioning of interval orders holds the particular attraction of avoiding the generation of linear

extensions altogether when linear statistics on the ranks of the data are desired. This property 

arises because a certain set of weak, rather than linear, extensions are produced by the method. 

Linear rank statistics on the linear extensions of a weak order can be computed directly by appealing 

to the average such rank statistic over each equivalence class of the weak order. 
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2.1 The marked configuration-induced weak order 

We first formalize what we mean by partitioning a set of linear extensions using partial orders. 
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Definition 3.2 For X = (X, �) a poset, an order partition of C (X) is a collection {C (X, R); R E R}

such that 

1 . R C  (X x X) is a set of partial order relations on X,

2. C (X) = LJ C (X, R), and
RE'R 

Because a partial order is the intersection of all the linear orders induced by its linear extensions 

(Theorem 1.4), we could also write dually that R is an order partition of �' in the above definition.

We will qualify the term "order" in "order partition" using the specific type of order contained 

in R, viz. weak order partition in the current investigation.

By way of heuristics, we now construct a first weak order based on the maximal antichain 

structure of an interval ordered set. Recall that M = MA (X) denotes the set of maximal antichains

of an interval order X 

Definition 3.3 A configuration of an interval order X is a mapping C :  X -+  M where C(x) = M 

only if x E M. 

A configuration is simply an assignment of each element of X to a single maximal antichain of X. 

We will represent a configuration C by the matrix of indicators C = [cij ; i = 1 ,  . . .  , m; j = 1 ,  . . . , n] , 

with Cij = 1 [C(xj ) = Mi] · Such a matrix will have a zero entry wherever the Petrie matrix of the

interval order has a zero entry, and will contain a single 1 in every column. Configurations can also 

be represented by the sequence of integers Sj = argi [Cij = 1] , j = 1, . . .  , n, which we will call the

maximal antichain sequence of C. We will use the same bolded letter to represent both the matrix

and maximal antichain sequence of a configuration, relying on the obvious isomorphism between the 

representations. 

We will also denote C(X) = {C; C is a configuration of X}. 
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Example 3.2 Consider the interval order X = (X, -<) corresponding to the data in Example 1.4,

which has Petrie matrix A shown below. Then a configuration C of X could be represented by matrix 

C: . [ 1  1 1 o o o l [ 10 1 1 1 0 0  0 A = 0 1 0 1 0 1 ' 
C =  0 0 0 0 1 1 1  0 

Equivalently, using maximal antichain sequence, we could put 

c = (1, 3, 1 , 4, 4, 4) . 
Each configuration C of X induces a weak order on X in a simple way, as indicated in the next 

Lemma, the simple proof of which is again omitted. 

Lemma 3.2 Let X = (X, -<) be an interval order. Let C be a configuration of X be represented by

the maximal antichain sequence C = (s1 , . . .  , sn) , and define the relation <c by

Then <c is a weak order on X, -< C <c and �c="'c is given by Xa �c Xb ¢::> Sa = Sb .

We can conclude from Definition 1.4 and Lemma 3.2 that two configurations C and C' of an inter-

val order given respectively by maximal antichain sequences C = (s1 , . . .  , sn) and C' = (s� , . . . , s�)

will induce weak orderings with linear extensions in common, in the sense that £, (X, <c) n £, (X, <er) f:. 

0) whenever Sa � Sb {:} s� � s;, for all a, b E 1, . . .  , n. 

Example 3.3 Using the interval order from Example 3.2 above, we consider the two configurations 

C and C' represented by matrices [ 1 0 1 0 
C = 0 0 0 0 0 1 0 0 0 0 0 1 

0 0 l 0 0 0 0 and 1 1 
[ 1 1 1 0 0 0 ] 

C' = 0 0 0 1 0 0 0 0 0 0 0 1 .0 0 0 0 1 0 
Indicating equivalence classes by curly braces {·}, the induced weak orders of Lemma 3.2 are 

and 
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It is easy to see that 

Thus {.C (X, <c) ;  C E  C(X)} is not in general a weak order partition for .C (X, -<) .  The fact that

it does form a cover for .C (X, -<) will be shown in the course of proving Theorem 3.4. Configurations, 

however, form the first of two main building blocks which we will use to construct such a partition. 

Before proceeding, we introduce further notation: 

Definition 3.4 For C a configuration of interval order X, let Mi(C) = {xj E Mi; C(xj)  = Mi},

i = 1, . . . , m, and let Mm+i (C) = 0. We call Mi(C) a configuration maximal antichain of C. 

We define now the concept of marker, the second building block in the construction of a weak 

order partition of .C (X, -<): 

Definition 3.5 For C a configuration of interval order X and i = 1, . . .  , m, we say that Mi ( C) , 

can be marked or is markable if there exists x E Mi(C) with x <f. Mi+l · 
Such an x (including therefore any x E Mm) will then be called a marker for maximal antichain 

A configuration can be marked or is markable if all of its configuration maximal antichains are 

markable. 

A marker, in a particular configuration, is thus simply an element which appears in the config­

uration maximal antichain corresponding to the maximal antichain in which it last occurs in the 

original interval order; "last occurs" is here, as usual, used in the sense of the maximal antichain

linear ordering. Every element of X is a marker for exactly one maximal antichain in an interval 

ordering of X,  in the sense of Chapter 1 ,  § 1.3. 

It must be noted that not every configuration can be marked; specifically, if, for some i ,  Mi(G) 

is non-empty but does not contain a marker, then d cannot be marked (see Example 3.4 below) .

Definition 3.6 A marked configuration of an interval order is a mapping C* = (Gi , Ci) : X -t 

M x {O, l}m 
where Ci is a markable configuration of X and c; is such that for every M E  Gi (X)

there is exactly one marker x E M with c; ( x) = 1 .  
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One useful way to represent a marked configuration of X is as a matrix-vector pair (or maximal 

antichain sequence-vector pair) (C, w) ,  where 

l .  C is the matrix or maximal antichain sequence of a markable configuration of X;  

2. w is a vector [wi] , i = 1 ,  . . . , m, where Wi is undefined if Mi(C) = 0, and is  a marker for Mi(C)

otherwise.

Again, we will use C* to denote either the mapping (Ci , 02) and the bold version C* to denote

the matrix-vector pair representation (C, w) .  

The example below should help to clarify our definitions. 

Example 3.4 Using the interval order and configuration from Example 3.3, and identifying w only 

through element subscripts, we could have a marked configuration C* with matrix-vector represen-

tation 

C* = (C, w) = ( [ H H H ] [ : ] ) ' 

0 0 0 1 1 1  5 

where the - indicates that the marker is undefined, an allowable state since M3(C) = 0. 

We note that configuration C' in Example 3.3 cannot be marked, since M2 (C') = {x2 } ,  and x2 

cannot be a marker for M2 since it last occurs in M3 •

Marked configurations may be used to induce weak order relations on X in the following manner. 

Lemma 3.3 Let X be an interval order. Let C* be a marked configuration of X with maximal an-

tichain sequence-vector representation C* = [ ( s1 , . . . , Sn) , w], and define the relation <c• as follows

for all Xa, Xb E X: 

Then <c• is a weak order on  X, -< C <c• , and �c· , for Xa =j:. X b  is given by X a  �c· X b  {::} [sa = sb

Example 3.5 The marked configuration of Example 3.4 above yields the following weak order, in 

the sense of Lemma 3.3: 
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Elements identified as markers occur immediately after all the elements of the configuration maximal 

antichain to which they are mapped. 

The construction of <a• shows that (<a) C (<a•) for any markable configuration C and 

compatible vector of markers w. The following Theorem shows that this tightening of configuration­

induced weak orders is enough for us to meet our goal of partitioning the linear extensions of an 

interval order in simple subsets. 

Theorem 3.4 Let X be an interval order. Let C* (X) = { C* ; C* is a marked configuration of X}. 

Then the weak orderings induced by C* (X) by the construction of Lemma 9. 9 form a weak order 

partition of .C (X, �). 

Proof. We first show that the weak orders <a• cover the set of linear extensions, by constructing

a marked configuration for each linear extension in [, (X, �).

Let .A = (Xj1 , xh ,  . . . , Xjn ) E C (X) . For convenience, we let Yk = Xj,, , k = 1, . . .  , n. The linear

ordering of the subscripts k = 1 ,  . . .  , n will then correspond exactly to the ordering of the y's in .A. 

We construct a configuration C by completely dete:rmining its dual sets Mi(·) ,  i = 1, . . . , m. As we 

construct the dual sets, we identify markers by entering them in a marker vector w. The procedure 

is effected in such a way that .A belongs to the induced weak order. The induced ordering will be

denoted <c,w during the course of this proof. 

Place Yn in Mm(C) , which can always be done since the last element of a linear extension of 

X must belong to the last maximal antichain, by the linear ordering of the maximal antichains 

and the essentiality of Mm. Let Wm = Yn· Also assign Yn-1 , Yn-2, . . .  , Ykm to Mm(C) , where km is 

chosen so that Ykm E Mm but Ykm-l ¢ Mm. Thereafter, assign Ykr-1 , Ykr-2 , . . .  , Ykr-l to Mir-l (C) ,

where Mir-l is the largest maximal antichain to which Ykr-l belongs, and where ki--l = 1 or is 

chosen so that Ykr-l E M4_1 but Ykr_1-1 ¢ Mir-t .  Put Wir-l = Ykr-1 ' which is possible since 

Ykr-1 ¢ Mir-t+l by construction. Since all y 's belong to at least one maximal antichain, they will

all be assigned to a configuration maximal antichain after a finite number of steps, say s steps, 

yielding Mi. ( C) = {Ykr , . . . , Ykr+1-d , Wir = Ykr+1-l • r = m - s, . . .  , m, where kr+l = m + 1.

If Ya <c,w Yb , then a < b, for either Mc(Ya) < Mc(yb) , in which case a < b by construction,

or Yb E Mc(ya) and Yb is the selected marker for Mc(Ya) in which case a < b obtains again 
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by construction. Hence the weak order induced by ( G, w) has precedence relations only where the 

subscripts k = 1, . . . , n also have precedence in the integer ordering; therefore <c,w C <>.. Extending 

the construction to every A E .C (X, -<) shows that

.C (X, -<) c u .C (X, <c,w) ·
(C,w)EC* (X.) 

But since 

(-<) C ( <c) C ( <c,w) =? .C (X, <c,w) C .C (X, <c) C .C (X, -<) for all (G, w) E C*(X) ,

this shows that 

.C (X, -<) = u .C (X, <c,w) ·
(C,w)EC* (X.) 

We must now show that .C (X, <c,w) n .C (X, <c' ,w' ) = 0 for all (C, w) =I (G' , w') , with (G, w) , (G' , w') E

C* (X) . 

If G = G' , then there is an i such that Wi =I w� . Thus w� <c,w Wi , but Wi <c',w' w�, so

Ift C =I G' but w = w', then there exists x E Mi(G) with x E Mj(G') for some i =I j. Without

loss of generality, assume that j < i; then wj <c,w x but x <c1 ,w' wj .

If G =I G' and w =I w' , consider for some i the configuration maximal antichain Mj(G') which

contains Wi· Then either Mj = Mi or Mj < Mi, since Mi is the last maximal antichain where Wi 

can occur, by definition of markers. 

If Mi = Mi, then Wi <c' ,w' wj , but since wj last occurs in maximal antichain Mi = Mi, it must

be that wj <c,w wi. 

If Mj < Mi,  then Wi <c' ,w' wj by construction. But since wj occurs before Mi(C) , wj <c,w Wi .

In all cases, .C (X, <c,w) n .C (X, <c',w' ) = 0. D 

3 Sampling marked configurations

Marked configurations partition the space of linear extensions of an interval order, and it is therefore 

natural to use them to construct a sampling plan on that space. The most obvious applications of 

Theorem 3.4 will require pseudo-random generation of marked configurations according to a known 
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probability measure. In 3.1 ,  we provide a general scheme whereby marked configurations can be 

randomly generated. We describe some of the applications in 3.2. 

3 .1  Generating marked configurations 

Our objective will be to describe a procedure to generate marked configurations with preset proba­

bilities, and to sample appropriately from the marked configurations. A few more concepts related 

to covers of maximal antichains are necessary before we can make this procedure explicit. 

Definition 3.7 For X a partial order, we call W C  M a cover of X if X = UMEW M.

Covers will ultimately provide us with a practical method for generating marked configurations . 

The technique is described below, for interval order X with IMI  = m.

I. Generate a cover W for X with known probability p(W). 

II. Select a marker for each M E W.

III. Select a maximal antichain from W for each x E X which is not a marker.

Whereas II. and III. are straightforward and even suggest natural uniform probabilities of selec­

tion, viz. I {markers of M} 1-1 for marker selection and I {M E W; x E M} 1-1 for maximal antichain

selection, generating a set of maximal antichains W which covers X is a more difficult task. To 

resolve this difficulty, we appeal to minimal covers. 

To generate a cover with known probability, the following procedure may be used: 

Step 1 .  Generate a minimal cover Wo uniformly. Put b = IWo l ·  

Step 2. Generate a value a ,  0 � a �  m - b, according to predetermined probability Pb (a) . 

Step 3 .  Select a set W1 of a maximal antichains from M \ Wo uniformly and set W = Wo U W1 to be

the generated cover. 

Step 4. Determine the number and cardinality of all minimal covers which are subsets of W, and thus

determine the probability p(W) of generating W. 

A few notes on each of the steps: 
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• Step 1. Generate a minimal cover uniformly.

The uniform generation techniques for minimal covers are based on Algorithm RandomMin-

Cover, a non-uniform pseudo-random minimal cover generator based on Algorithm 2.4. 

Algorithm 3.5 

RandomMinCover(Y) 

Argument: Y, the set of minimal elements of an interval order; 

W t-- 0 

p +-- 1 

While Y = 0 

Begin 

Yo := argminmaxy*
y yEY 

µ0 +-- ChooseRandom (T) 
p p +-- jTf 

W +- W U  {µo} 

Y +-- {y E Y; max y0 < y*} 

End 

Return (W, p) 

· The function ChooseRandom called with a set of maximal antichains of size k returns a 

uniformly randomly selected maximal antichain from the set, that is, every maximal antichain 

has probability 1/k of being returned. The values returned by Algorithm RandomMinCover 

are a pseudo-randomly generated minimal cover W along with its probability of generation p. 

Generating a minimal cover uniformly can be done using one of the following two methods. 

1. Finding the number of minimal covers is a less onerous task than enumerating them; if

this number is small enough, minimal covers can be listed using Algorithm SimplifiedList-
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MinCovers, and uniform generation of a minimal cover reduces to random selection from 

the list. 

2. If the number of minimal covers is too large for enumeration, a Monte Carlo Markov

Chain may be set using the Metropolis-Hastings algorithm described in Hastings (1970) .

Transitions are then based on proposals generated independently from the previous state,

which provides the chain with a geometric rate of convergence to its stationary distribu­

tion (Smith & Tierney (1996)) .  A proposal is obtained by generating a minimal cover for 

the interval order using Algorithm RandomMinCover, with known probability of gener­

ation.

• Step 2. Generate a number a of maximal antichains to add to the minimal cover.

Known probabilities of generation do not guarantee efficient sampling. Since, at least concep­

tually, our ultimate sampling units are linear extensions, the most efficient generation scheme

would have probability of generation proportional to the number of linear extensions belonging

to the marked configuration-induced weak order, a set-up known as sampling with probability .

proportional to size Thompson (1992, Chapter 6).

It is dubious whether this ideal may be reached at all in our setting; however, a probability

of generation which roughly increases with the weight of the marked configuration will ensure

acceptable efficiency. We first note that weak orders containing large equivalences classes will

have large sets of linear extensions. Larger equivalence classes occur in weak orders with fewer 

equivalence classes. A positive association between the probability of generating a weak order

and the size of its linear extension set can therefore be achieved by setting Pb(a) so as to

place greater probability mass on smaller values of a. A discretized truncated exponential

distribution probability function provided empirically good results (see Figure 3.1) .  Data­

driven schemes are also possible, but have not been explored by us.

The cover generation procedure was designed specifically to include Step 2. as a device to

achieve approximate positive relationship between probability of generation and size of the

linear extension set. Other generation schemes were unsuccessful in that they were not efficient.
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Figure 3.1: Boxplots on log-log scale relating the number of linear extensions in a marked 

configuration-induced weak order to the probability of generating the marked configuration, for a 

sample of 100,000 marked configurations of the interval order underlying the breast cosmesis data 

(93 observations) analyzed in (3] . The straight line is a least-squares fit of the original data, and 

has slope � 0.83. 

• Step 3. Select a subset of a maximal antichains uniformly to add to the minimal

cover.

Uniformity is trivially achieved when the number of maximal antichains to add has been fixed 

beforehand. 

• Step 4. Determine the probability of generation of W.

Because there may be more than one way of generating W using the method we are describing,

the probability of its generation cannot be computed on the fly. In order to determine this

probability, all possible pathways to the generation of W must be considered. A few features

of interval orders and of our cover generation scheme conspire to make this task relatively

simple.

- Any cover of an interval order represents the full set of maximal antichains of another 
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interval order; any minimal cover for this new interval order is also a minimal cover for 

the original interval order. 

- Algorithm ListMinCover can be modified to list the number of minimal covers of an 

interval order according to the number of maximal antichains they contain. 

- A non-zero probability of generating a cover from a given minimal cover depends only on 

the difference in cardinalities. 

- Minimal covers are generated uniformly. 

These observations can be brought together as follows: 

Let W be a cover for interval order X. Let r = r(W) be the number of distinct cardinalities 

for minimal covers which are subsets of W. Let bk = bk (W), k = l ,  . . . , r, be the distinct

cardinalities of minimal cover of W, and let ck = Ck (W) be the number of minimal covers of 

W bearing the corresponding cardinality bk . We can write down the probability of generating 

W as 
r 

p(W) = L C<kPbi. ( IW I - bk) 
k=l 

3 . 2  Applications

The weak order partition of interval orders has strong potential for a variety of tasks involving 

interval orders, including uniform generation of linear extensions and estimation of various statistics 

of the linear extension set. We give four examples. 

Linear extensions. To generate linear extensions uniformly, two-stage sampling (see Cochran

(1977, Chapter 11) , for instance) may be used. Marked configurations are sampled with replacement

at the first stage, and their probability of generation is determined after they have been generated. 

Then an appropriate number of linear extensions are generated with replacement from the induced 

weak orders at the second stage. Generating linear extensions from a weak order is a very simple 

task, requiring only unconstrained shuffling of the weak order's equivalence classes while the order 

between equivalence classes is maintained. Basic sampling techniques allow the generation of linear 

extensions to be uniform. 
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Number of linear extensions. The number of linear extensions of an interval order may be 

estimated using marked configurations. A given weak order has a number of linear extensions

which is simply computed: if Ei, i = 1, . . .  , r are the equivalence classes of weak order Y, then

l.C (Y) I = n;=1 IEi l ! .  If c: , s = l, . . .  , s are a sample of marked configurations of interval order x,
each sampled with replacement with probability p8 , then the Hansen-Hurwitz estimator (see, e.g. 

Thompson, 1992, Chapter 3) is an unbiased estimator for l.C (X) I and is given by

i.c(X)i = _.!:_ t I C  (x, -<c; ) 1 .
S s=l Ps 

An unbiased estimate of its variance is given by 

Var (1Z(X}1) = 
1 t ( 1.c (X, -<c:) I - 1Z(X}1) 2 

S(S - 1) s=l Ps 

Rank score statistics. Rank score statistics, which can be based on the average rank score 

of elements of X in the set of linear extensions, are simple to deal with at the level of weak or-

ders. If, in a given weak order -<o , an element x belongs to an equivalence class E such that

k = I { x E X; x -<o E} I and k = I { x E X; E -<o x}, then x will take on ranks k + 1 ,  k + 2, . . . ,  k - 1 

an equal number of times amongst the linear extensions of (X, -<o). If c : X --t IR is a rank score

function which depends only on the rank of x in a linear order (x(l) > . . . , X(n) ) of X and on a covariate

Z(x) of the observation, then the value of the rank score of x over all linear extensions of (X, -<o)

will simply be (s - §. - 1)-1 L:;:::+l c (x(i) , Z(x(iJ )) . Summing these average rank scores over all

relevant rank and covariate values yields an average rank score statistic Ps for the weak order.

This simple property of weak orders along with the ease with which linear extensions are counted 

within them makes single-stage cluster sampling estimates of rank score statistics simple and readily 

available. A slightly biased but efficient estimate for the average rank score statistic over all linear 

extensions is given by 

See Siirndal et al. (1992, Chapter 4) . 

Precedence proportions. Given two elements x, y of a partial order X = (X, -<), we define

the precedence proportion of x over y as I {A E .C (X) ; x <.x y} / l.C (X) I ,  the proi;iortion of linear
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extensions of X where x precedes y. Precedence proportion has been studied in the related settings of 

correlation inequality (e.g. Winkler, 1986) and linear extension majority (e.g. Brightwell, Fishburn 

& Winkler, 1993) . Precedence proportions in a weak order are always 0, 0.5 or 1 ,  and sampling 

estimates of precedence proportions in an interval order using marked configuration-induced weak 

orders are thus simple to compute. The sampling estimate for precedence proportions takes on the 

same form as for rank score statistics. 



Chapter 4 

Nonparametric estimation of the CDF 

In this chapter, we pursue the work initiated in Chapter 1 concerning nonparametric estimation of 

the CDF for interval censored data. In particular, we will endeavour to reconcile two perspectives

on nonparametric maximum likelihood estimation for interval censored data which have gained wide 

currency during the past twenty-five years or so. 

The first of these perspectives is the point of view represented in works such as Peto (1973) , 

Turnbull (1976) and Gentleman & Geyer (1994), to name a few. It models the probability density

function (PDF) observed under the censoring pattern as a discrete probability function on a set 

of disjoint intervals determined by the data. The CDF is undefined within these intervals and 

remains unvarying outside of them. The basic tool in this perspective is self-consistency and its 

natural implementation, the EM algorithm. Convergence of the EM algorithm to the nonparametric 

maximum likelihood estimate (NPMLE) of the PDF is guaranteed when the Kuhn-Tucker conditions 

are satisfied. Bohning, Schlattmann & Dietz (1996) propose, with the same view on the form of the

NPMLE and again using the Kuhn-Tucker conditions, algorithms based on the Vertex Exchange 

Method and the Vertex Displacement Method which appear to be much more efficient than the EM 

algorithm. 

The second point of view is based mostly on the work of Groeneboom (1991) and Groeneboom 

& Wellner (1992) , as well as Jongbloed (1998) and Wellner & Zhan (1997) . In this case, the NPMLE

of the CDF is assumed to have jumps on the positive real line only at the endpoints of the intervals 

forming the data. Isotonic regression is used for estimation of the CDF in this setting, with the 

Iterative Convex Minorant algorithm and some variants thereof as its main implementations. The 

assumed form of the CDF and Fenchel duality conditions on the estimate (see § 3) guarantee the 
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convergence of the modified Iterative Convex Minorant algorithm proposed by Jongbloed (1998) to 

the NPMLE. 

Our aim within this Chapter is to show that apparently disparate perspectives on nonparametric 

likelihood estimation can actually share a single descriptive language rooted in order theory. This 

bridge is based on the discretization of Turnbull (1976) , formalized in ,Theorem 1 .10. An added 

value to the language of order theory is that some of its objects are easily expressed in matrix/vector 

notation, with a few extensions introduced in Appendix A. The simplicity of the notation and of the 

underlying computations may contribute to a more widespread use of correct methods to analyze 

interval censored data. 

The main order theoretic concepts we will call upon are the linear ordering of maximal antichains 

in an interval order, and the structure of the data's duals with respect to their maximal antichains, 

embodied in the characteristic matrix. In § 2, we state the nonparametric likelihood of the event 

time CDF and revisit real-valued intervals in accordance with order theoretic concepts. One of 

the results which ensues naturally is the uniqueness of the CDF NPMLE on the set of maximal 

antichains of the interval order. In § 2, we discuss the non-uniqueness and the effective support 

of self-consistent estimates, and relate them to covers of maximal antiChains. We also show how 

the simple distinction between essential and non-essential maximal antichains yields bounds on 

self-consistent estimates, and discuss recent work by Mykland & Ren (1996) and Wellner & Zhan 

(1997) in the light of our observations. In § 3, we apply the approach of Groeneboom & Wellner 

(1992) to our discrete setting. We show the similarity of the Fenchel duality conditions proposed by 

Groeneboom & Wellner (1992) and of self-consistency augmented by the Kuhn-Tucker conditions, 

as proposed by Gentleman & Geyer (1994) . We then apply the Iterative Convex Minorant algorithm 

to the set of maximal antichains of the interval order represented by the data. 

1 The likelihood and M 

The explicit mapping HM of Theorem 1 .10 determines the support of the NPMLE of F. We can 

carry out estimation strictly on the interval order and its maximal antichains, knowing that the 

results can be assigned to a real setting after we are done. An important aspect of the linear 
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ordering of maximal antichains in interval orders is that we will remain justified in dealing with a 

cumulative distribution function on M. 

To see what is being estimated when we maximize the nonparametric likelihood, consider the 

image distribution of F restricted in its support to HM (M) and unidentifiable within this sup­

port. To simplify notation, we extend the domain of the inverse mapping Hj} to real values

in HM (M) ,  setting H;\}(x) = M if x E HM (M) . We then obtain, with t ¢ HM (M) and

M(t) = argmaxMEM [sup HM (M) � t] ,

F (t l T  E HM (M))) = Prob [T � t J T  E HM (M)] 

Prob [T � sup M(t)) J T  E HM (M)] 

= Prob [H.A} (T) � M(t) I T  E HM (M)]

FM (M(t)) 

where FM is the distribution function of maximal antichains, uniquely identified for every equiva­

lence class of distribution functions which are unidentifiable on HM (M) and only on that set. The 

passage from sup M(t) to M(t) in the second and third lines is justified by the right continuity of 

distribution functions. 

Writing Xn for X and Mn for M,  the NPMLE of the event time CDF conditional on the 

censoring pattern with a sample size of n is then just 

Otherwise, we leave Fn undefined. In this setting, we will put Pi = FM (Mi) - FM (Mi_i ) 

ProbM [Mi] , with Mo := 0 and FM (0) = 0. 

The indicator notation introduced in § 1 .1  can be defined in terms of maximal antichain mem­

bership 

aij = 1 [(b2i-1 , b2i) E Xj] = 1 [xj E Mi] , i = 1, . . .  , m,j = 1, . . . , n. (4.1) 

This notation is just the transposed version of the the one used by Turnbull (1976) and Gentleman 

& Geyer (1994) . 
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The likelihood can be written as 

(4.2) 

subject to 0 ::; p ::; e and e'p =. 1, where A = [aii] is the Petrie matrix of the data. See A for the

notational conventions, an explanation of matrix/vector exponentiation �nd the definition of em.

Equation (4.2) can be reparametrized in terms of a discrete CDF vector on M .  Letting fl. =

[cr1 , . . . , crm]' = Kp, where K = 1 [i � j] E {O, 1} mxm is the cumulative sum operator matrix

previously described in Lemma 1 .8, we can define W = K'-1 A E {-1, 0, 1} mxn and redefine the

likelihood function by 

subject to the constraint 

L (fl.) = (W' fl.) em 

0 < cr1 ::; · · · ::; CTm-1 < CTm = 1 . (4.3) 

The strict inequalities in this constraint are justified later by the application of Lemma 4.2 to 

the essential maximal antichains M1 and Mm. The reparametrization from p to er is not merely 

cosmetic: . as we will see in § 3, the constraint that er lie in a bounded region of isotonicity allows 

the application of isotonic regression techniques to determine the MLE of er.

There is another useful form for the likelihood which is justified by the interpretation of the 

characteristic matrix seen in § 1.7: 

L (er) = IT (erk - cri)x;+1,1c
O�i<k�m 

subject to (4.3), where we define cr0 = 0 and crm = 1.

(4.4) 

As one would expect, universal elements are superfluous to the likelihood as they merely con-

tribute a factor of one to it. We will assume in the sequel that no element of X is universal. In 

terms of the characteristic matrix, this will mean that xi,m = 0. 

In Turnbull (1976) and Gentleman & Geyer (1994) , the authors caution against cases where 

(in our transposed notation) there are maximal antichains Mi and Mk such that O!ij = O!kj for 

all j, as such a situation can lead to non-uniqueness of the NPMLE. However, Lemma 1.5 and 

Theorem 1.10 show together that this situation can never occur, since A must have full row-rank, 
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or since, equivalently, no two maximal antichains can have the same membership without violating 

the starting/ending property described in § 1 .4. 

We can extend this observation to the following Theorem. 

Theorem 4.1 With M = {Mi; i = 1 ,  . . .  , m} and Pi = ProbM [Mi] ,  the NPMLE of p is unique. 

Proof. As noted in Gentleman & Geyer (1994) , the NPMLE f> is unique if H = AD'A_;i>A1 is

positive definite. But H is certainly non-ne�ative definite since H = ( ADA.7i>) ( ADA.7i>) 1 •  Also,

A1f> -::fi 0 elementwise, since otherwise the likelihood is 0. Therefore DA.7i> has full rank n. Since by

Lemma 1.5, A has full row rank m � n, H must have rank m and so is positive definite. D 

Theorem 4.1 applies to all cases of interval censored data (for example all those listed on p. 11) .

This can be compared with the proof of Wellner & Zhan (1997) which is specific to doubly censored 

data. 

Theorem 1 .10 opens a number of avenues concerning the interpretation of consistency for esti-

mators of p viewed from an order theoretic point of view. The dimensionality of the estimand and 

the mapping HM both depend on the censoring pattern. Depending on this pattern, the number 

of maximal antichains may or may not increase as n increases. If it does increase, HM (M) may or 

may not converge to a dense set in JR. Whatever conditions apply, the results of Redner (1981) can 

be used to show consistency of the NPMLE up to the identifiability of the underlying distribution. 

Asymptotic distributional results, in such a case, may depend on the mechanism which gives rise

to the censoring pattern. Alternatively, by selecting a particular member of the equivalence class 

as the estimate and assuming so-called strong separation of interval endpoints, Groeneboom (1996) 

obtains explicit asymptotic results. 

2 Self-consistency

Our interpretation of interval censored data in terms of their order theoretic structure shows that 

the estimation problem conditioned on the censoring pattern is essentially discrete. 

We will first apply the language of order theory to investigate self-consistent estimates of the 

CDF. The product limit estimator for right-censored data, first proposed by Kaplan & Meier (1958) 

[see also (4.19)] was later shown by Efron (1967) to be self-consistent. Turnbull (1974,1976) then 
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used self-consistency as the basis for an estimation algorithm, later shown in Dempster, Laird & 

Rubin (1977) to be a partic�lar application of the EM algorithm. 

Self-consistent estimates of the CDF exhibit two closely related properties of particular interest, 

on which order theory casts a new light . The first is non-uniqueness, and the second is the fact 

that such estimates can assign a mass of zero to some maximal antichains. We will call effective 

support of an estimate the set of maximal antichains on which it puts positive mass. The quest for a 

simple a priori characterization of the effective support of the NPMLE will motivate discussions in 

this section and the next. To date, a simple set of necessary and sufficient conditions for a maximal 

antichain to receive no mass at the NPMLE is still eluding us, and may in fact not exist. 

We discuss the relationship of self-consistency with covers of maximal antichains and propose 

some bounds on self-consistent estimates originating from the maximal antichain structure of the 

data. We then discuss two examples involving self-consistency from the recent literature on interval 

censored data, and show how apparently complex problems can be greatly simplified by the use of 

order theoretic language. 

2.1 Self-consistent estimates and maximal antichain covers 

The self-consistency condition of Turnbull (1976) can be expressed compactly as follows: f> is a 

self-consistent of p if and only if 

(4.5) 

Turnbull showed that the NPMLE is self-consistent in that it satisfies (4.5) ; however, it is now 

a well recognized fact (see Groeneboom & Wellner, 1992; Gentleman & Geyer, 1994; Wellner & 

Zhan, 1997) that in general there exist several distinct values of p which are self-consistent but do 

not maximize the likelihood. In order to be the NPMLE, a self-consistent estimate must satisfy 

the Kuhn-Tucker conditions listed in Gentleman & Geyer (1994). We return to these conditions in 

§ 3.1.

Starting from some initial estimate p(o) ,  ( 4.5) can be transformed into an expression of the EM 

algorithm where p(r), r = 1, 2, . . .  , converges to a self-consistent estimate p, viz. 

(4.6) 



Chapter 4. Nonparametric estimation of the CDF 81 

The convergence properties of the EM algorithm are formally demonstrated in Dempster, Laird & 

Rubin (1977) and Wu (1983) . In particular, the conditions expressed in Wu (1983) show that the

EM algorithm will converge to the NPMLE if the initial seed puts mass on every maximal antichain, 

that is, if p(o) > 0. It is easy to generate self-consistent estimates with negative entries in f>. We 

will tacitly assume that only non-negative entries in any self-consistent estimate f> are allowed. This 

condition will always be satisfied for self-consistent estimates generated by the EM algorithm seeded 

with p(O) > 0.

Though the effective support of a self-consistent estimate may possibly not include all maximal 

antichains, the collection of maximal antichains on which a self-consistent estimate does put mass 

must form a cover for X. We formalize this observation in the following Lemma. 

Lemma 4.2 If f> is any self-consistent estimate of p, then 

LJ Mi = X.
i:ji;>O 

In particular, if Mi E M is essential, then Pi > 0.

Proof. The elementwise version of self-consistency reads 

1 n -- '"" CXijPi Pi = - � -- -n j=l 'f/j 
(4.7) 

where TJj = �:,1 aiiPi , for i = 1, . . . , m. If {Mi E M;pi > O} does not form a cover for X, then

there is a jo such that 'r/io = �:,1 aiioPi = 0. For all i such that aiio = 1 ,  the self-consistency

equation above must then fail as the left-hand side Pi is equal to zero while the right-hand side is 

undefined. 0 

To appreciate the consequence of assigning a value of 0 to one or more of the Pi, we appeal to 

Lemma 1 .6. Letting Pi = 0 for some i is equivalent to removing a non-essential maximal antichain. 

In a real interval representation, this could be achieved by shortening the intervals represented in

Ri-1 and Li (the endpoint equivalence classes defined in Theorem 1.7) until they cease to overlap.

Observation 4.3 Let f> be a self-consistent estimate of p for interval order (X, -<) . Let I(f>) = 

{i; 1 :::; i :::; m,pi > O}, and let -<o be the interval order induced by Mo = {Mi E M; i E I(f>)} .  Then 

Po = [ih]iEI(:P) is the NPMLE of t�e probability function vector Po on Mo = MA (X, -<o)·



Chapter 4. Nonparametric estimation of the CDF 82 

We can thus view any self-consistent estimate consistent with the data as the NPMLE of a 

similar data set with added precedence relations. 

Example 4.1 Consider the interval censored data of Figure 4 .1, on an arbitrary time scale. 
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Figure 4.1: Example data, interval representation of their maximal antichains, Hasse diagram and 

Petrie matrix. 

The NPMLE of p is f> = (3/10, 1/5, 1/10, 0, 2/5)' , which corresponds to maximal antichain cover

{M1 , M2 , M3 , Ms} .  Another self-consistent estimate for the data is f> � (0.4026, 0, 0.2436, 0, 0.3538)',

with cover {M1 , M3 , Ms} .  We can conclude immediately that f>0 � (0.4026, 0.2436, 0.3538)' maxi-

mizes the likelihood of the interval censored data displayed in Figure 4.2. The Hasse diagrams shows 

that the interval order of Figure 4 .2 corresponds to that of Figure 4 .1 augmented by precedence 

relations (2, 6) , (3, 6) and ( 4, 5) .
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Figure 4.2: A similar representation for a data set with NP MLE p0 :::::! (0.4026, 0.2436, 0.3538)1• 

The other self-consistent estimate for the data of Figure 4 .1  is (5/18, 5/18, O, O, 4/9)1, correspond-

ing to the interval order induced by the cover {M1 , M2, M5} .

The case of current status data provides another illustration. For this type of data, there always 

exists a self-consistent estimate p with p1 = (1/n) E�,:i_1 X1,k ,  Pm = (1/n) E:2 Xi,m = 1 - P1 , and

Pi = 0 for i = 2, . . .  , m - 1. This self-consistent estimate is the NPMLE for (X, -<0) where x -<0 y if

and only if x is left-censored and y is right-censored. All overlaps are ignored, and mass is assigned 

only to the minimal cover {M1 , Mm} ·

In the interval order on X induced by a minimal cover, every maximal antichain must be essential. 

Otherwise some maximal antichain may be removed from the set without affecting its covering 

property, and thus the cover could not have been minimal in the first place. Lemma 4.2 shows 

that every minimal cover will be the effective support of some self-consistent estimate. In other 

words, if W is a minimal cover of X, then there exists a self-consistent estimate p (W) such that 

W = {Mi E M; Pi (W) > 0} . Of course, some self-consistent estimates will correspond to non-

minimal covers. 

A consequence of this observation is that it provides us in principle with lower and upper bounds 

on the number of self-consistent estimates for a particular data set, corresponding respectively to 

the number of minimal covers and the number of covers for the data. Though we are not aware 

of a practical method for determining the number of covers for an interval order, the number of 
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minimal covers can be determined using a slight modification of Algorithms 2.4 and 2 .5  presented 

in Chapter 2, thereby providing us with a lower bound on the number of self-consistent estimates 

for a particular data set. For example, the breast cosmesis data presented in Finkelstein & Wolfe 

(1985) , with n = 93 and m = 30, correspond to an interval order with 2646 minimal covers, a lower 

bound on the number of self-consistent estimates for these data. 

2 . 2  Bounds on self-consistent estimates 

Although the isotonic regression approach of § 3 may be better suited to explain the tendency of 

the NPMLE and other self-consistent estimates to assign no mass to some maximal antichains, this 

phenomenon can be addressed partly from the point of view of self-consistency. 

Theorem 4.5 and Corollary 4.6 below provide some simple bounds on the entries of self-consistent 

estimates of p. These bounds are derived from Turnbull's self-consistency condition and from the 

maximal antichain structure of interval orders. The proof and constructions used to derive these 

results are instructive in their own way, in spite of being slightly technical. 

Let X = (X, �) with X = {x1 , . . .  , xn} be ?-n interval order. Recall the definition of the

characteristic matrix x (Chapter 1, § 1. 7) . We let Ji = {j; xi E Mi} be the index set of Mi E M

and write ni = I Mil = l::i=l Xk,i + I:;:i=i+l Xi,k ,  for i = 1 ,  . . . , m. For every maximal antichain Mi, 

recall that Xii is the number of simplicial elements it contains. With A the Petrie matrix of X, we 

put fj = A'p. 

Denote ,B� = 1 [Mk E Mt*] ,  (see Definition 1. 7) and ,Bi 
= (,Bf , . . . , .B:n)', the double dual indicator

vector of Mi, i = 1 ,  . . . , m. The following are elementary facts: 

• fi; > 0 for all j = 1, . . .  , n; and 

• fii '?::. Pi for all j E Ji.

If p is any self-consistent estimate of p, then /3i'p '?::_ fii for all j E Ji. We also assume that there

are no universal elements, since they have no bearing on the estimation of p. This corresponds to 

the assumption that x1 ,m = 0. These observations along with Lemma 4.2 establish the following 

Lemma. 
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Lemma 4.4 Let x be an interval order with m = IM I· If p E (0, 1 r is such that e'p = 1 and if 

Mi E M, then 

and 

0 < T/j < 1

for all j E .11,, i = 1,  . . .  , m. 

Theorem 4.5 Let X be an interval order, Mi E M, i = 1 ,  . . .  , m, and p be a self-consistent 

estimate of p. Let ni = IMi l  and let Xii denote the number of simplicial elements in Mi . 

Then 
Xii < -. < 

ni 
+ _ Pi _ · n - ni Xii n 

The left inequality is strict if and only if 0 < Xii < ni. The left and right hand sides are equal if 

and only if ni = Xii , that is, i1 and only if all members of Mi are simplicial.

Proof. For clarity, we omit the - sign within the proof, which applies to all i = 1,  . . .  , m.

Self-consistency equation ( 4.  7) is equivalent to the statement that 

'""' 1 -n = L.J -=-: or Pi = 0 
jE.7; T/3 

for i = 1 ,  . . . , m. 

We first show that Pi � ni/n. Since Pi � T/j for all j E .:h, we obtain 

ni '""' 1 - 2: L.J - = n  Pi jE.7; T/j 

(4.8) 

from which the result is immediate. If Xii = ni, equality occurs since then T/j = Pi for all j E Ji. 

Assume now that 0 < Xii < ni, so that Pi > 0 by Lemma 4.2.

To show that Xii 
< Pi, we use Lemma 4.4. Put Si = {j E .11, ; Xj is simplicial} =F 0.n - ni + Xii 

Then 

n 2: .!
jE.7; T/j 

> 

Xii + L .!:_
Pi 

jE:Ti \S; T/j 

Xii 
- + ni - XiiPi (4.9) 
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whence the result follows. 

If Pi = 0, then Xii = 0 by Lemma 4.2, and the result is immediate. If Xii = 0, then there exists a

self-consistent estimate which assigns a mass of zero to Mi , by the discussion in § 2.1. Constraining 

self-consistent estimates of p to have non-negative entries makes zero the lowest achievable bound 

for Pi· Lastly, we note that ni = Xii if and only if Xii/(n - ni + Xii) = nifn .

D 

The lower bound on Pi for non-essential maximal antichains (for which Xii = 0) is zero and 

cannot be improved. By contrast , the bounds on essential maximal antichains may be tightened 

somewhat. 

Corollary 4.6 Under the setting of Theorem 4. 5, let

e;** = {k; Mk is essential and Mk fj. Mt*} .

Suppose Mi is an essential maximal antichain. Let 

and define for r � 1 

lo) = Xii 
• n - ni + Xii

(r) _ Xii (1 - :EkE€j" f�r-l)) 
fi - ( (r-1)) n 1 - :Ek Ee;- f k - ni + Xii

(4.10) 

Then fi(r) converges to some value fi E [O, 1] which is a fixed point of (4.10) as r --t +oo, for

i = 1, . . . , m; if p is any self-consistent estimate of p, then 

Ii '.5. Pi '.5. min (ni , 1 - L fk) n kEe�·. 
Proof. As with the proof of Theorem 4.5, the - sign is omitted in the following, which applies 

to i = l ,  . . . , m. 

First note that we can tighten the bound shown in (4.9) using Lemma 4.4 at the cost of the 

strictness of the inequality: 

> Xii + ni - Xii n . .
- Pi fJ"p 

For any Ci � ,B�p, we will have, by ( 4.11) ,

n > Xii 
+ 

ni - Xii
- Pi Ci 

(4.11) 
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whence 

Xii 
----- <_pi ni - Xii 
n - ---

Equation (4.12) must apply with Ci = 1 - L Jj0> 2'.: ,B�p.
jE£j* 
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(4.12) 

Si�ple induction arguments show both that the fi(r} are all bounded above by the corresponding

Pi, i = 1 ,  . . .  , m, and are non-decreasing in r; hence it must be that ft> -+ fi for some fi which still

bounds Pi below. D 

In the case of current status data, Corollary 4.6 provides an interesting analysis of self-consistent 

estimates. Simple calculations show that if XnXmm 2'.: (n1 - x11) (nm - Xmm) , then Ji = ni/n and

fm = nm/n. In this case, the only self-consistent estimate, and therefore the NPMLE, is given by 

f> = (nifn, 0, . . .  , 0, nmfn). If X11Xmm < (n1 - Xu) (nm - Xmm) , then Ji = Xn/(nm - Xmm + X11)

and f m = Xmm/(n1 - X11 + Xmm) · 

In the case of right-censored data, long-winded but straightforward calculations show that upper 

and lower bounds are equal for every maximal antichain, and correspond to the expression given in 

(4.19) . This is to be expected, as right-censored data only supports one self-consistent estimate, but 

shows that the bounds may be tight in some cases. Whether they are tight in general, i.e. whether

there always exists a self-consistent estimate with some entry equal to its lower or upper bound in 

Corollary 4.6, is an open problem. 

Theorems 4.5 and Corollary 4.6 are interesting practically in that they can provide good initial 

estimates in iterative estimation procedures to determine the NPMLE, and theoretically as they flesh 

out the basic result of Lemma 4.2 by appealing strictly to the maximal antichain structure of the 

underlying interval order. Their application is limited first in that they provide bounds on all self-

consistent estimates, and secondly in that they take an unweighted view of the maximal antichain 

double duals. For these reasons, no refinement of the lower and upper bounds of Corollary 4.6 can 

be expected to converge to a single value. 

2.3 Two examples

We consider two examples taken from the recent literature on interval censored data to motivate 

the use of our language. 
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Our first example concerns the results of Mykland & Ren (1996) on doubly censored data. In

Theorem 2, they characterize the NPMLE of the survival function (equivalently, of the CDF) as a

self-consistent estimator satisfying Kuhn-Tucker-type conditions. In Corollary 3, they provide an 

equality which must be satisfied at a particular self-consistent estimate of the survival function. The 

EM algorithm is used to determine the estimate satisfying this equation. This estimate has jumps 

precisely at the exact observations, apart possibly from the right endpoint of the first occurrence 

of left censoring and the left endpoint of the last occurrence of right censoring. They propose a 

condition under which this self-consistent estimator is also the NPMLE in Corollary 4 and indicate 

where jumps might occur if it is not in Corollary 5 .  

In the language of order theory, their Theorem 2 is equivalent to the Kuhn-Tucker conditions

satisfied at a self-consistent estimate proposed by Gentleman & Geyer (1994) , to which we will

return in § 3.1. The version they propose is the particular form these conditions take in the cases 

of doubly censored and current status data. Corollary 3 states that there exists a self-consistent 

estimate which puts mass only at essential maximal antichains, which we know to be true since 

the essential maximal antichains form a cover for the data in the doubly censored case. Corollary

4 indicates that this self-consistent estimator is the NPMLE whenever all maximal antichains in 

the data are essential , which must be true since every maximal antichain then has positive mass 

by Theorem 4.5; Corollary 5 identifies non-essential maximal antichains as being the only other 

locations on which the NPMLE can put mass if their estimate does not maximize the likelihood. 

These results are more easily expressed and interpreted within an order theoretic framework than 

in the rather elaborate notation usually employed to distinguish between various types of censoring.

A statement by Mykland & Ren (1996) to the effect that several authors have shown "the strong

consistency and weak convergence of any self-consistent estimator of [the survival function]" ,  is not 

quite correct. Consistency as shown in Gu & Zhang (1993) , for instance, requires a regularity con­

dition to be satisfied. This condition is that if q is a random interval endpoint or exact observation, 

then 

Prob[q is an exact observationlq = t] > 0 for all t > 0. (4. 13) 

Current status data, a special case of doubly censored data, are patently excluded by this condition. 
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Given that there always exists a self-consistent estimate for doubly censored data with P1 = 1 - Pm, 

we should not expect consistency to be provable in this case. Other obvious cases of doubly censored 

data may be excluded by this condition, such as those with mixed continuous and point inspection 

processes along the time line. By contrast, consistency of the NPMLE is well-documented for 

the general case of interval censored data. Since determining the NPMLE requires no more work 

than evaluating the self-consistent estimator of Mykland and Ren, the NPMLE should remain the 

estimator of choice unless or until a better estimator is proposed. 

Secondly, we discuss a simple example used by Wellner & Zhan (1997) to show that the EM

algorithm does not necessarily converge to the NPMLE, which leads them to deem it "ambiguous" . 

In fact the EM algorithm will always converge to the NPMLE if its initial seed puts mass on all

maximal antichains. Their Example 5.1 of doubly censored data is composed of the exact data and 

intervals 1, (2, +oo) , (0, 3) and (0, 4). 

c 
0 +:> 
� 
Q) "' .c 
0 

2 
3 
4 

0 2 4 6 

Time 

Figure 4.3: Data and Petrie matrix for Wellner and Zhan's Example 5.1  

The data contain two universal points, which can essentially be discarded, except inasmuch as 

they determine the mapping HM of Theorem 1 . 10. We can immediately deduce from the Petrie

matrix that the NPMLE vector is (1/2, 1/2) . Any p(o) > 0 used to seed the EM algorithm (4.6)

will converge to the NPMLE. 

Wellner & Zhan (1997) , however, use the estimator of Groeneboom & Wellner (1992) , which

models the CDF as having a possible jump at every interval endpoint, namely at t = 1, 2, 3 

and 4. They suggest two different seeds to estimate the CDF using the EM algorithm: a{0> = 
(0. 1, 0.1, 0.1, 0.2) and u�o) = (0.1 ,  0.1, 0.15, 0.2) . While the latter leads the EM algorithm to the

NPMLE (1/2, 1/2, 1 ,  1 ) ,  the former causes it to converge to (2/3, 2/3, 2/3, 1) . 
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The wrong convergence value is easy to understand when considered from the point of view of 

maximal antichains. By placing mass only at t = 1 and t = 4, the seed reinvents, as it were, the 

combinatorial properties of the data. Figure 4.3 shows clearly that intervals (0, 3) and (0, 4) are in

fact equivalent in terms of their duals, and should therefore be assigned the same mass. Since the

EM algorithm cannot create mass where none is assigned, a{0> imposes ,on the data the structure

depicted in Figure 4.4. 

c: 

I 
\ / 

0 I � � 2 Cl> I Ill 3 ..Cl > 0 4 \ 

\ 
I 

0 2 4 6 

Time 

Figure 4.4: Wrong maximal antichain structure imposed by a1°) on the data and corresponding

Petrie matrix. 

Again the nonparametric likelihood estimate (2/3, 1/3) can be read off directly from the Petrie 

matrix. The estimate is correct; the data are wrong. In fact (2/3, 1/3) is not even a self-consistent 

estimate for the original data set. 

The second seed a�o) is also instructive, in that it places mass at t = 1, t = 3 and t = 4. Both

maximal anti chains of the original data are here given mass (at their right endpoint) ,  but extra

mass is assigned at t = 4. 
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Figure 4.5: Wrong maximal antichain structure imposed by a�o) on the data and corresponding

Petrie matrix. 
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In this case, the mass at t = 4 corresponds to an antichain which is not maximal, a fact made 

obvious by the row rank deficiency of A2 . The EM algorithm ignores the extra antichain, since mass 

must be assigned in such a way that both (0, 3) and (0, 4) receive the same probability.

This example illustrates the importance of assigning mass to endpoint equivalence classes, as 

defined in Theorem 1.7, rather than to the endpoints themselves. 

3 Isotonic regression

In this section, we discuss isotonic regression methods for estimating CDF under interval censoring 

proposed by Groeneboom (1991) and Groeneboom & Wellner (1992) . We will first consider the 

Fenchel duality conditions of Groeneboom & Wellner (1992) . These conditions characterize the 

NPMLE and guarantee its uniqueness, but the artificial requirement of allowing the estimate to have 

jumps only at interval endpoints may have masked their generality. We will show these conditions 

to be equivalent on M to self-consistency augmented by the Kuhn-Tucker conditions as proposed 

by Gentleman & Geyer (1994) . Our second concern is to reformulate isotonic regression methods to 

make them applicable on the set of maximal antichains. 

3 . 1  Fenchel duality and Kuhn-Tucker conditions

Recalling that m = IM I ,  we define the matrix Km as in Lemma 1.8 by Km = [1 (i � j)] , i , j  = 

1 ,  . . .  , m. We recall that Km is the cumulative sum transformation, K� is the reverse cumulative 

sum transformation, and K;;;,1 = 1 [i = j] - 1  [i - 1 = j] is the backward difference transformation.

We can then denote the CDF on M by !l � [ : ] � KmP unde' the constrnint e'p � 1. It follows 

that o- E (0, 1r-1 . We also set W = K�1 A. Using the notational convention of (4.5) , we _can 

describe a log-likelihood partial derivative vector evaluated at o- by 

where the value of a at a self-consistent estimate will be made explicit below. Groeneboom and

Wellner's Fenchel duality conditions on the existence and uniqueness of the CDF NPMLE can be 

translated on the discrete space M as follows. 
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Theorem 4.7 (Groeneboom &. Wellner, 1992, Proposition 11.1.3) Jf q_ = (u1 , . . .  , um-1 , l) 

is the GDF on M for so�e interval order X = (X, --<), then §:._ maximizes the likelihood (W'q_)0

over 0 < cr1 :::; CT2 :::; · · · :::; CTm-1 < 1 if and only if 

K�_1 wa- :::; 0 elementwise (4.14) 

and 

&'wa- = 0 (4.15) 

One of the Kuhn-Tucker conditions (Gentleman & Geyer, 1994) corresponds directly to (4.15) 

the other to the requirement that the Lagrange multipliers ne - A  (A':P)-1 be non-negative, that is

A (A,p_ )_1 < 1 t . th tne e emen wise, so a 

K� W (W' Q:)-1 < ne, i.e.

l ��-1 em-l ] [�] 
< ne. 

om-1 1 n 

This expression is satisfied at an estimate if and only if the first of the Fenchel duality conditions 

( 4.14) is satisfied. 

Since it is well-known that there are self-consistent estimates that are not NPMLEs, we next 

examine why self-consistency alone is not sufficient to guarantee maximization of the likelihood. 

Premultiplying self-consistency equation ( 4.5) by Km and expressing it in terms of q_ yields 

The structure of the matrix premultiplying w is as follows: 

CTm-1 CTm-1 

CTm-1 1 

( 4.16) 
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Equating the last two elements of the vectors in (4.16) , we obtain 

n 

ni7m-1

[ � l 1 l [ w: l =d 

[ •· I •m-• l [ :· ] 
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for a a self-consistent estimate of a. Hence a =  n at a self-consistent estimate of a, whence (4.16)

reduces to 

( 4. 17) 

We are now in a position to compare self-consistency to the Fenchel duality conditions. Consid-

ering the first and last rows of the matrix premultiplying Wu in ( 4.17) ,  we get that, at self-consistent 

estimate i7, 

e'wu = 0 and i71wu = 0. 

Although ( 4.17) forces a complex constraint to be respected by an estimate for it to be self-

consistent, the crucial missing condition for a self-consistent estimate to uniquely maximize the 

likelihood is therefore ( 4.14) . 

3.2 Isotonic regression on M 

Given that we can apply Fenchel duality conditions on an estimate of the CDF on M ,  the use of iso-

tonic regression methods can be justified in a manner which parallels the discussion in Groeneboom 

& Wellner (1992) . Our goal here will be to reexpress the convex minorant approach introduced by

them in terms of a maximum likelihood estimation technique on M. This reinterpretation, in our 

view, grounds isotonic regression techniques on more intuitive and more easily applicable bases. It 

also applies a preliminary data reduction which improves the performance of the algorithms involved. 

We use likelihood equation (4.4) subject to the isotonicity constraint (4.3) . The form of the 

likelihood will guarantee that ab > aa-i whenever Xab > 0. In particular, it will cause all estimates

to lie strictly between 0 and 1 ,  since the factors (ai - ak1 ) and (ak2 - ai) must appear in the

likelihood for all i and some ki , k2 , by the starting/ending property mentioned in § 1.4. In general, 
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the ordering thus induced is only partial and the isotonic constraint ( 4.3) remains necessary unless 

all maximal antichains are essential. 

In this section, we deal with the more convenient log-likelihood function 

log L (u) �};, [ Xlk logu; + X>-r1,m log (1 - uk) + � Xi+l,k log

,
(u, - u;)] ,

which we must maximize subject to (4.3) . 

(4.18) 

The main. idea now lies in isotonic regression, by which the estimate is made to satisfy the 

constraint (4.3) . References on isotonic regression are Barlow et al. (1972) and, more recently, 

Robertson et al. (1988) . 

The case of right-censored data 

Our first case of interest is right-censored data. Every maximal antichain is essential in such data; 

Lemma 4.2 indicates that the unconstrained NPMLE of the CDF will be strictly increasing over 

M since all Pi > 0, thus satisfying (4.3). We can express the nonparametric maximum likelihood

estimate in terms of the entries of the characteristic matrix. 

putting ao = 0.

A 
Xii + (EJ:i+i Xjj + EJ:i�1 Xjm) Ui-1

ai = 
�m �m-l for i = l, . . . , m - 1
wj=i XJJ + wj=i+l Xim 

(4.19) 

We derive explicitly (4.19) from first principles, but starting with the interval order structure of 

the data. Right-censored data consists only of simplicial elements (Xii > 0 for i = 1 ,  . . . , m) and 

right-censored elements (XiJ > 0 for i < j only if j = m) . Bearing in mind that the unconstrained

NPMLE of a will already be isotonic, we obtain a reduction of the log-likelihood (4.18) to

m-1 m-2 
log L (a) = xn log (a1 ) + Xmm log (1 - am-1 ) + L Xii log (ai - O"i-1) + L Xi+l ,m log (1 - O"i)

i=2 i=l 

(4.20) 

Taking the derivative of each ak , k = 1, . . .  , m - 1 in turn yields estimating equations

(4.21) 

0 (4.22) 

Xm-1,m-1 - (Xm-1,m-1 + Xm,m) Um-1 + Xm,mUm-2 0 (4.23) 
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Claim 1 For k =  1, . . . , m - 1, with 0-o �! 0, (4. 19) provides the NPMLE of u .  

Proof. We first proceed by induction on k = m - 1, m - 2, . . . , 2. First note that (4.19) is a 

reexpression of (4.23) , showing the expression is true for k =  m - 1. 

Assume then that the expression is true with k replaced by k + 1, 2 � k � m - 2. Use (4.22)

and replace 0-k+l by the appropriately modified expression given by induction hypothesis (4.19) . 

Multiply through by E}:k+l X33 + E}:"k�2 XJm> and factor out (1 - 0-k) Xk+i,k+1 ; then solve the

remaining linear equation for 0-k in terms of 0-k-l to obtain the induction hypothesis for k. 

To show the induction hypothesis holds for k = 1 ,  use (4.19) to substitute for 0-2 in (4.21), 

multiply through by E}:2 XJj + E}:-;1 XJm, simplify and factor out (1 - 0-1) .  The remaining linear

equation is (4.19) with k = 1. D 

These estimators for Uk correspond to the Kaplan-Meier estimators, as becomes clear if we 

rewrite (4.19) as 

= 
A ("°"'m "°"'m-1 ) A Xkk - XkkUk-1 + Llj=k Xjj + Llj=k+l Xjm Uk-1

"°"'m "°"'m-1 Lij=k Xjj + LIJ=k+l Xjm
A Xkk (1 - 0-1:-1 ) 
Uk-1 + m m-1 Lj=k Xjj + Lj=k+l Xjm 

1 - (1 - 0-k-t) (1 - Xkk ) m m-1 ' 
Lj=k XJj + LJ=k+l Xjm 

(4.24) 

(4.25) 

( 4.26) 

or one less the product limit NPMLE for survival function S(t) = 1 - F(t) introduced by Kaplan &

Meier (1958) . 

The right-censored data case has been somewhat of a misguiding tyrant since the product-

limit estimator (4.24) was first derived by Kaplan & Meier (1958) . The first cause of confusion is 

the fact that all maximal antichains in right-censored data are essential. Consequently, M is the 

only minimal cover and induces the only self-consistent estimator, which must of course also be the 

NPMLE. Since Efron (1967) showed the equivalence of self-consistency and nonparametric likelihood 

maximization for right-censored data, self-consistency has been considered an attractive feature in 

an estimator, stifling research in non-self-consistent or asymptotically self-consistent estimators. We 

have seen in § 2.3 that self-consistent estimators can be badly behaved. In particular, self-consistent

estimators have been shown [see (4.13)) to be consistent only by positing a positive probability 

for an observed endpoint to be an ·exact observation everywhere on the support of F, a stringent 
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requirement which cannot be weakened. A second cause of confusion arises because HM maps M

to points, rather than intervals on the real line. In order to mimic the consequent jump behaviour 

of the CDF estimates, statisticians have placed strong requirements on the placement of mass by 

their estimates and have made the tacit assumption that the only acceptable CDF estimates are 

uniquely defined step functions. We hope that by separating estimation on M from the mapping 

to the real line HM , we have made it clear that right-censored data have an exceptional structure

which cannot" be expected to apply to the general case of interval censored data. 

The case of current status data 

Our second example is current status data. In this case, only terms of the form <Ti or 1 - <Ti occur

in the log-likelihood, so that (4.18) can be rewritten as 

m-1 
log L (a) = L [x1,j log <Ti + Xi+l,m log (1 - ai)] (4.27) 

i=l 

Because each term of the log-likelihood only involves one entry of a, we can solve for unconstrained 

ai and then isotonize the estimates, in a manner similar to the one illustrated in Theorem 1 .10 of

Barlow et al. (1972) or Theorem 1.5.1 of Robertson et al. (1988) . 

Setting the partial derivative of the log-likelihood with respect to <Tk equal to zero for each 

k = 1, . . . , m - 1, yields the following (non-isotonized) estimates:

� ni Xl,k <Tk = X1,k + Xk+l,m 
(4.28)

each associated with a weight of x1,k + Xk+1 ,m representing the number of elements of X in maximal

antichain k. 

Before isotonizing this estimate, it is instructive to couch the derivation of the NPMLE for current 

status data found in Groeneboom & Wellner (1992) in terms of the maximal antichain structure

of the data, or, in effect, to consider the translation process of the problem from the real line to 

M. Their data model is of the form (xj , t5j) E JR+ x {O, 1} ,  j = 1, . . .  , n, each observed pair being

associated with an unobserved event time tj , with t5j = l [tj < Xj]· Let (xu) , t5(j) ) denote the data

set ordered according to the linear ordering on the x/s. Then Proposition 1 .2 of Groeneboom & 

Wellner (1992) characterizes the NPMLE of the event time CDF at X(k) as being the left derivative 
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of the greatest convex minorant of the cumulative sum diagram ( CSD) , 

(k, L 8u>) at k. 
js_k 

97 

(4.29) 

The greatest convex minorant of a CSD is the graph of the supremum of all convex functions which 

do not exceed the CSD (Barlow et al., 1972, Chapter 1) .  Example 4.2 il�ustrates the concept. 

The nature of current status data is that the dual of each element of X over M extends either 

to Mi or to Mm, as previously noted. The endpoint equivalence classes of Theorem 1.7 are thus

structured not only according to the maximal antichains of X, but also according to the censoring 

pattern of the elements. Specifically, all elements belong either to L1 or Rm. In the CSD given

by (4.29), right-endpoint equivalence class Rk corresponds to a vertical rise of Xlk over an equal

number of horizontal units for k = 1 ,  . . .  , m - 1; left-endpoint equivalence class Lk corresponds to

no rise over Xk,m units for k = 2, . . .  , m. Thus ( 4.29) can serve as a representation of the conjoint

weak order of Theorem 1 .7, where the precedence relation between any pair of successive classes is 

indicated by a bend or elbow in the curve. 

An equivalent representation of this cumulative sum diagram is 

(t, [�1,k + X1:+1 ,m) , t, X1,k) · (4.30) 

By "equivalent" , we mean that the greatest convex minorant of (4.30) must be equal to that of 

(4.29) . 

A basic result of isotonic regression theory is that the left derivative of the greatest convex 

minorant of cumuiative sum diagram ( L.:�1 Wi, L.:;=l Wi9i) is the regression of 9i on i with weights

Wi , i = 1, . . .  , m, subject to 91 � 92 � · · · � gm, otherwise known as the isotonic regression of Yi · 

The cumulative sum diagram given by (4.30) corresponds to 9i = x1 ,i/ (x1,i + Xi+i,m) 'Yith weights

Wi = X1,i + Xi+l,m· Thus the NPMLE of u is just the isotonic regression of the unconstrained

likelihood estimator given by (4.28). 

Example 4.2 Consider the example of current status data shown in Figure 4. 6. 
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Figure 4.6: Real representation of current status data. 

The corresponding interval order X = (X, -{) is given by Petrie and characteristic matrices

A = [ � i i � : n H � l j x = [ 1 q ! l 
0 0 0 0 0 1 1 1 1 1 1 

The NPMLE of a, constrained to lie between 0 and 1 but not constrained to be isotonic is given 

by 

a-ri x1,i/ (x1 ,1 + x2,4) 1/(1 + 2) 1/3 

&�i = x1,2/ (x1 ,2 + xa,4) 3/(3 + 1) = 3/4 

&3i x1,a/ (x1 ,a + X4,4) = 1/(1 + 2) 1/3

The cumulative sum diagrams (4.29} and (4.30), in this case, have representations given in Fig-

ure 4. 7. 
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The isotonic regression of at on k with weights w1 = 3, w2 = 4 and w3 = 3 can be read off 

as the left derivative of the greatest convex minorant _at the appropriate cumulative weight values. 

Alternatively, the Pool-Adjacent Violator Algorithm or any other algorithm used to perform isotonic 

regression (see, e.g., Barlow et al. , 1972, Chapter 2) can be used to find the isotonic regression of 

o-;:i . In this example, isotonization will be achieved by letting

1/3 

X1,2 + Xl ,3 = 4/7
X1,2 + Xs,4 + X1,s + X4,4 

which yields probability mass estimates on the maximal antichains of f>1 = 1/3, f>2 = 5/21, p3 = 0 

and p4 = 3/7.

The general case: the iterative convex minorant algorithm 

For the general case of interval censored data, isotonic regression is used in the same spirit as for 

current status data. A complication arises, however,  in that the terms of the log-likelihood generally 

involve more than one entry from the vector a. In contrast to the case of current status data, the

second derivative of log L (a) is not a diagonal matrix. However, consider the general expression for
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the partial derivative of ( 4 .18) with respect to ai , i = 1 ,  . . . , m - 1 :· �1 m 
� log L (u) = Xl,i _ Xi+l ,m + '°' Xk+i,i _ '°' Xi+l,k 

= Wi (a) .8ui Ui 1 - Ui L...,; Ui - Uk � Uk - Ui k=l k=i+l 
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(4.31) 

Now assume, within an iterative process, that all ak are fixed for k # i ,  and that we wish to

solve for Ui in Wi (u) = 0, without regards to the isotonic constraint. Positing some starting value 

uf1d for Ui, we could use Fisher scoring to obtain an approximate solution u�new) ,ni via the equation

O'!new),ni = u!old) - (a2 
2 log L (u)) -1 1 (� logL (u)) Iaui (old) aui O'·=u�old) IJ'i=O'; • ' 

The "ni" superscript above emphasizes the fact that this second-order approximation based on 

a fixed a(old) is not isotonized.

We can isotonize this approximation, realizing that an approximate weight for· u�new) ,ni will be

the information value at uJ01d) , still assuming all other aiold) to be fixed.

Putting 

( ) 21 ( I ) -21 [ g (a) l � u  = W W q_  = 
. a 

for some a, we can reexpress these weights as a vector, replacing the "old" and "new" superscripts

by an iteration superscript (r) : 

a2 I a 2 log L (u) = g(uCr) )ui u=u<r) 
Determining an isotonic u(r+l) from the approximation u(r+l) ,ni can be done by finding the slope

of the greatest convex minorant of the CSD 

which is precisely the process of the Iterative Convex Minorant (ICM) algorithm of Groeneboom 

and Wellner. 

The "upwards" and "downwards" jumps described by Groeneboom & Wellner (1992) in § 3, Part

2] as determining blocks of constant values for the CDF correspond in fact to the left- and right-

endpoint equivalence classes described in § 1.6 ,  which themselves identify the boundaries between 

maximal antichains. 

While the ICM algorithm does not always converge, a modified algorithm which maximizes the 

likelihood along the line >.u(r) + (1 - >.)uCr+l) for O ::; >. ::; 1 was shown by Jongbloed (1998) to
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converge globally. A constant value of >. = 0 was observed to tal<:e the ICM algorithm to convergence 

in all the examples we surveyed. The hybrid EM/ICM algorithm introduced by Wellner & Zhan 

(1997) was shown by way of simulation to converge much more rapidly than either the EM or ICM 

algorithm. In this case, an extra step of the nature of ( 4.6) is taken after the isotonization step. 

Preliminary trials suggest that the rate of convergence is improved by concentrating on the maximal 

antichains and that the hybrid EM/ICM algorithm provides substantial improvement in this case 

as well. 



Perspectiv;es 

The work on minimal covers and weak order partitioning, though combinatorial in nature, was mo­

tivated by the need to provide a basic methodology to perform nonparametric analysis on interval 

censored data under the assumption of underlying order (page 4) . A comparative assessment be­

tween this assumption and the assumption of pure incomparability still needs to be done, at least 

empirically. Theorem 3.4 established a strong connection between the maximal antichain structure 

and the linear extension set of an interval order, by way of marked configurations. This connection 

may· be a promising starting point to compare the two assumptions for interval censored data. 

In the case of CDF estimation, the language of order theory has identified new equivalent invari­

ants which are central to the estimation process, namely the Petrie matrix and the characteristic 

matrix. The importance of dealing with endpoint equivalence classes rather than real-valued end­

points has led to a simple proof of uniqueness of the NPMLE of p, considered as an estimate on 

M. The language has also removed some confusion about the structure of self-consistent estimates, 

and provided a simple expression for some important results concerning them. The simple alge­

braic language of order theory has made the identity between the Kuhn-Tucker and Fenchel duality 

conditions obvious. It has also enabled a painless simplification of the isotonic regression methods 

of Groeneboom & Wellner (1992). Order theory has demonstrated itself to be an efficient data

reduction tool and a help rather than a hindrance in applications. 

Self-consistency and nonparametric maximum likelihood lie under the umbrella of the assump­

tion of pure incomparability (page 4) , relying as they do on the maximal antichain structure and 

disregarding the linear extension set. Estimates obtained through these methods routinely remove 

maximal antichains by assigning zero mass to them, thereby creating precedence between observa­

tions where none existed in the data, as illustrated in Example 4.1. When new precedence relations 

are created by a CDF estimate, the estimate becomes incompatible with some linear extensions 
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of the interval order. We can consider these maximal antichain removals as the end result of the 

pooling of maximal antichains necessary to force the CDF estimate to be isotoni�. This pooling can 

potentially create many new and spurious ordering relations, especially for small sample sizes. An 

important and useful research task could be to determine a CDF estimate based on the assump­

tion of underlying order. It may be possible, for instance, to construct a hybrid estimate designed 

both to put mass on the maximal antichains (to be mapped onto the real line by HM (M)) and 

to approximate as closely as possible the pairwise precedence proportions found in the set of linear 

extensions. The optimal properties of alternative estimates based on the set of linear extensions 

would likely differ from those of the classical nonparametric estimates. For instance, such estimates 

would not need to be self-consistent, a requirement which may have intuitive appeal but often forces 

estimates into unnatural contortions. Consistency and asymptotic self-consistency may be sufficient 

targets for which to aim, in the context of a precedence proportion-optimal estimator. 

In light of the above comments, a closer investigation of the properties of rank tests based on the 

NPMLE of the CDF, such as those described in Petroni & Wolfe (1994) and Fay (1996) , should be 

undertaken. The robustness of such rank tests to incomparability misspecification by CDF estimates 

must be determined. 

Another application of our approach concerns bivariate interval censored data. Such data can 

be visualized in the plane as a set of points, line segments, half-lines and variously bounded aiid 

unbounded squares, which we will all group under the name of "boxes" . By extending the arguments 

of Peto (1973) and Turnbull (1976), we can easily identify the only areas in the plane where the 

bivariate NPMLE of the probability function can put mass. We must first determine the maximal 

cliques of the intersection graph of the boxes (see Golumbic, 1980, Chapters 1 and 2) ,  that is, of the 

graph (X, rv) , where X stands for the set of boxes (i.e. the bivariate data) and a ,...., b for a, b E X  only

if the boxes represented by a and b have non-null intersection. Box intersection graphs, however,

are not triangulated, and as a consequence the fast algorithms for determining the maximal cliques 

of perfect graphs (Golumbic, 1980, Chapter 2) are not available. However, algorithms based on the

product of the univariate maximal antichain sets can alleviate this problem. A maximal clique can 

be identified with the intersection of the boxes it contains on the plane. It is then a simple matter 

to show that the NPMLE of the probability function can only put mass within these intersections. 
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Self-consistency via a properly seeded EM algorithm can then be used to determine the probability 

function estimate. This approach has been taken before for the case of right-censored data, but 

identifiability problems have caused a flurry of competing estimators to be devised, some very 

closely related to the NPMLE. The CDF estimate for bivariate will be subject to a partial ordering 

called ·a trapezoid order (see Dagan, Golumbic & Pinter, 1988, and Felsner, Muller & Wernisch, 

1997, among others) . It may be that isotonic regressfon techniques can be applied to this estimation 

problem using this partial ordering rather than the linear ordering which obtains in the univariate 

case. 

Closely related to the question of characterizing a priori the effective support of the probability 

function NPMLE is that of determining whether HM (M) is always the best we can do in terms of 

predicting the support of this NPMLE. To couch the problem more formally, consider the m x m 

characteristic matrix x of an interval order. The question is then: is there always an interval order

with m x m characteristic matrix r such that rij = 0 if and only if Xii = 0, and such that its 

probability function NPMLE has no entry equal to zero? 

Another problem of interest is to refine the relationship between covers and self-consistent esti­

mates. Why do some covers not correspond to a self-consistent estimate? The question is in fact 

a generalization of the NPMLE effective support characterization problem mentioned above. The 

advantage of dealing with the potentially large array of all self-consistent estimates is that we may 

find a clue in the lattice-like structure of covers as to why self-consistency requires the removal of 

some maximal antichains and how it can do so while maximizing the likelihood. 

One of the main limitations of our approach lies in the necessity for permutation arguments to 

apply under null hypotheses. This necessity is best illustrated with the simple case of rank tests, 

where bias can be introduced if the inspection processes Q3 described in Chapter 1, § 2 .1  are not 

permutable between different samples (see Mantel, 1967, for a description of the source of this bias 

for doubly censored data) . It may be that the need for permutation arguments can be obviated 

with more research. 

Another limitation, likely to be correctable, is that no proper toolbox of order theoretic methods 

seems to exist for consistency analysis. It seems likely, however, that the theory of infinite interval 

orders and of random graphs can be brought to bear on this question. Consistency of the NPMLE 



Perspectives 105 

has been well-established, as we mentioned in Chapter 4, § 1 ,  using approaches different from order 

theory. Alternative estimators may eventually require some asymptotic firepower from our approach 

in order to be shown consistent. 

The looming absence in our study is that of nonparametric hazards models. We have not

considered them at all for reasons of focus, and a full order theoretic study of them is still needed. 

In spite of these few shortcomings, this work has introduced concepts and a language based

on order theory that have helped to clarify several outstanding issues in the analysis of interval 

censored data. The mathematical nature of such data is profoundly combinatorial; combinatorial 

mathematics, specifically order theory, has much to say about its structure and analysis. This 

language has the potential to draw together the methodologies associated with different types of 

censored data. 



Appendix A 

Matrix notation and Hadamard

exponentiation

We first briefly expose a shorthand notation and a few conventions used to simplify the expression 

of several constructs and equations occuring in this work. Boldface capital letters represent complex 

matrices or vectors, boldface lowercase letters will represent complex vectors, and normal lowercase 

letters will represent complex numbers. C refers to the set of complex numbers. A matrix A E cmxn

will have i, jth element aij , i = 1 ,  . . .  , m,j = 1, . . . , n, and a vector v E cmxl will have ith element

• For v, w E 1Rn define v1 < V2 to mean Vi < Wi for i = 1 ,  . . . , n, and similarly for >, � and � -

• Define the identity matrix Im = [Dijkj=l, . . .  ,m ' where 8ii = 1 and Dij = 0 whenever i f.  j.

• Define the column vector e� = [8ik] ,  the kth column of Im.

• Define the column vector em = [l]mxl , having all entries equal to 1 .

• For a vector v E cmxl , define Dv E cmxm by (Dv )iJ = DijVi , i , j  = 1 ,  . . .  , m, the diagonal

matrix with diagonal v.

• Denote transposition by ' , that is, if B = A', then bij = aji ·

• For A, B E cmxn, define the Hadamard (or elementwise) product o by (A o B)ij = aijbij ·

• Define o0 = 1, and any empty product I1aE0 a = 1.
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Definition A.I Let A = [ksj] E cmxn and B = [msi] E cmxr Then define AB = [(AB)ij] E crxn

by 

if asj -:fi 0 or bsj E JR+ U 0 for all s = 1, . . .  , m 

otherwise. 

We call the operator h(A, B) = AB Hadamard exponentiation.

Example A.2 Let q E lRmxl ,  and let v E lRmxl be such that Vf< > 0 whenever qk < 0. Then

. Example A.3 Let v E lRmxl be such that Vk -:fi 0 for k =  1 ,  . . .  , m. Then v-Im = [v11 , . . .  , v;;;,1] ' .

Example A.4 Let a E C \ {0} and v E cmxl .  Then av' = [av1 , • • • , av,,. J ' .

Hadamard exponentiation is a generalization of matrix-matrix exponentiation as defined in Bar-

radas & Cohen (1994) . 

Theorem A.1 is not used in this work, but is included for completeness. 

1. A1m = A.
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Proof of 5. [fr a�j'] L · 
s=l i=l , . . . ,r;j=l, . . . ,n 

[!! (!1 a!;;) m]M, . . . ,q;M,. ,n [!! (!! •!;;';') l kl, ,q;J�l, :.
asj 

[nm Ei=t bai Cikl s=l k=l, . . .  ,q;j=l, . . .  ,n [nm (BG).kl asj s=l k=l, . . .  ,q;j=l, . . .  ,n 

ABC 
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