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Abstract

Planning and scheduling of resources is a crucial process within healthcare orga-
nisations. Careful planning allows limited resources, such as staff and operating
rooms, to be used efficiently. However this is often a difficult and time consuming
process, and not all elements are known with certainty. Mathematical modelling
can be applied to assist in rostering and scheduling. Further, historical data col-
lected by the healthcare organisations enables modelling of the uncertainty in
the planning processes.

This thesis considers two planning processes: rostering physicians; and schedu-
ling surgeries; and develops mathematical models for both situations. A model
for rostering physicians is proposed which incorporates the admission and dis-
charge of patients, and uses patient pathways to connect multiple rosters. In ad-
dition an objective function for scheduling surgeries is formed that utilises a risk
measure applied to the due dates of operations, and new methods for estimating
the probability that surgical sessions run overtime are developed. Further, both
models are applied to case studies in a practical setting. The rostering model has
been used to create a roster that was implemented in a hospital department,
while efforts are ongoing to promote the adoption of the surgery scheduling
methods in several surgical services.

Both uncertainty and risk are investigated in the two models. In the rostering
model the uncertainty considered is in the number of patients the physicians
are caring for, whereas in the surgery scheduling model the uncertainty lies in
the duration of the operations performed. In the rostering model risk directly
relating to the uncertainty modelled, which is in the admissions and discharges
of patients, is avoided. On the other hand, in the surgery scheduling model the
risk of operations being performed much after they are due is avoided, rather
than risk associated with the durations of operations.
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This research demonstrates the incorporation of historical data and the related
uncertainty into rostering and scheduling approaches in order to improve the
quality of the rosters and schedules produced.



Acknowledgements

I would first like to thank my supervisors, Mike O’Sullivan and Cameron Walker,
their advice and guidance made this work not only possible but a pleasure. I
would also like to thank my parents Marion and Matthew, my sister Henrietta
my brother Jack, and my girlfriend Nina, for their support and encouragement.
Finally I must thank all those who made this research possible through prior ef-
forts and collaboration. Thanks to Paul Muir, Jonathan Christiansen, and Ellen
Sumpter at Waitemata District Health Board for providing data and expertise
on the rosters at Waitakere Hospital. Thanks to Nicolas Szecket, Rupert Handy,
Andrew Peterson, Tim Denison, and Art Nahill at Auckland District Health Board
for presenting the difficulties they face rostering physicians to my supervisors.
Thanks to Hanieh Sanei, and Amelia White for their previous work describing
and modelling the rosters at Auckland City Hospital. Thanks to Precision Driven
Health for providing an opportunity to work on surgical scheduling, and thanks
to Kevin Ross, Kelly Atkinson, and in particular Luke Boyle for their efforts coor-
dinating my work with Counties Manukau District Health Board. Thanks to Bill
Lewis and Keming Wang at Counties Manukau District Health Board for provi-
ding data and guidance on scheduling surgeries.

v





Contents

List of Figures ix

List of Tables xiii

List of Physician Rostering Terms xvii

List of Surgery Scheduling Terms xxi

List of Acronyms xxiii

1 Introduction 1
1.1 New Zealand Health System . . . . . . . . . . . . . . . . . . 4
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7
2.1 Personnel Scheduling . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Surgery Scheduling . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Benders’ Decomposition . . . . . . . . . . . . . . . . . . . . 18

3 General Medicine Rostering Model 23
3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . 27
3.3 Benders’ Decomposition . . . . . . . . . . . . . . . . . . . . 41

4 General Medicine Rostering Case Studies 51
4.1 Waitakere Hospital . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Auckland City Hospital . . . . . . . . . . . . . . . . . . . . . 93

vii



viii Contents

5 Surgical Session Scheduling Model 103
5.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . 107
5.3 Rescheduling Problem . . . . . . . . . . . . . . . . . . . . . 117

6 Surgery Scheduling Case Study 121
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 Historical Data . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Concluding Discussion 169
7.1 General Medicine Rostering . . . . . . . . . . . . . . . . . . 169
7.2 Surgery Scheduling . . . . . . . . . . . . . . . . . . . . . . 171
7.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Appendices 179

A Benders’ Decomposition Results 181

B Surgery Scheduling Results Tables 185

C Surgery Scheduling Lateness and Overtime Box Plots 199

D Surgery Scheduling Smoothed Scatter Plots 209

E Scatter Plots of Efficient Solutions 215

F Surgery Scheduling Optimality Gaps 219

References 223



List of Figures

4.1 Patient Flow in General Medicine . . . . . . . . . . . . . . . . . 53
4.2 Admission Time Series . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Histograms of Admission Counts . . . . . . . . . . . . . . . . . . 72
4.4 Auto-Correlation of Admission Counts . . . . . . . . . . . . . . . 73
4.5 Length of Stay Time Series . . . . . . . . . . . . . . . . . . . . . 74
4.6 Histograms of Length of Stays . . . . . . . . . . . . . . . . . . . 75
4.7 Auto-Correlation of Length of Stay . . . . . . . . . . . . . . . . 76
4.8 Total Patients in 50 Scenarios and from Historical Data . . . . . . 77
4.9 Maximum, Minimum, and Range of Workloads . . . . . . . . . . 83
4.10 Scenario Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.11 Total Time Taken to Solve Each Problem . . . . . . . . . . . . . 88
4.12 Box Plots of Maximum, Minimum, and Range of Workloads . . . 91

5.1 Example Sample of Sessions for Empirical Constraint Methods . . 112
5.2 5 Realised Session Durations for Example Session Sample . . . . 113
5.3 Example Overtime Probability Function . . . . . . . . . . . . . . 114
5.4 Probability of Overtime Given Assigned Session Duration and Va-

riance for a 210 Minute Session . . . . . . . . . . . . . . . . . . 116
5.5 Example Constraints for duration variance empirical distribution

(DVED) and session normal distribution (SND) Methods for a 210
Minute Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Surgical Sessions Coloured by Specialty in February 15th–20th
2016; Each Block Represents a Session in a Theatre . . . . . . . 123

6.2 Histograms of Operation Duration for Each Specialty . . . . . . . 126
6.3 Actual Duration of Operations Grouped by Procedure Code . . . . 128
6.4 Number and Total Duration (mins) of OperationsWaiting Throug-

hout 2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

ix



x List of Figures

6.5 Histograms and Box Plots of the Earliness and Lateness of Opera-
tions Available for Scheduling in 2016 . . . . . . . . . . . . . . . 132

6.6 Histograms and Box Plots of the Simulated Probability of Over-
time of the Historical Sessions in 2016 . . . . . . . . . . . . . . 134

6.7 Historical Accuracy of Overtime Probability Estimation . . . . . . 138
6.8 Future Accuracy of Overtime Probability Estimation . . . . . . . 138
6.9 Mean Error of Overtime Probability Estimates on Historical Sample 140
6.10 Mean Error of Overtime Probability Estimates on Future Sample . 140
6.11 Mean Lateness Compared to Number of Operations Performed . . 141
6.12 Mean Lateness Compared to Total Duration of Operations Waiting 142
6.13 Mean Lateness Compared to CVaR at 0.95 Lateness . . . . . . . . 143
6.14 Mean Lateness Compared to Mean Probability of Overtime . . . . 143
6.15 Mean Lateness Compared to CVaR at 0.95 Probability of Overtime 144
6.16 Box Plots of Lateness for General Surgery with the Total Objective 145
6.17 Box Plots of Lateness for General Surgery with the conditional

value at risk (CVaR) Objective . . . . . . . . . . . . . . . . . . . 146
6.18 Box Plots of Overtime Probability for General Surgery with the

Total Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.19 Box Plots of Overtime Probability for General Surgery with the

CVaR Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.20 Smoothed Scatter Plots of Arrival Date and Lateness for the Total

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.21 Smoothed Scatter Plots of Arrival Date and Lateness for the CVaR

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.22 Distribution of Assigned Duration and Variance for Training and

Solution Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.23 Accuracy of Overtime Probability Estimation on Historical Sessions 159
6.24 Efficient Solutions for General Surgery . . . . . . . . . . . . . . 161
6.25 Scatter Plots of Arrival Date Against Lateness of Three General

Surgery Solutions and the Actual Schedule . . . . . . . . . . . . 163
6.26 Scatter Plots of Operation Duration Against Lateness of Three Ge-

neral Surgery Solutions and the Actual Schedule . . . . . . . . . 164
6.27 Upper and Lower Bounds of Three Problems with a Time Limit of

2 Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

C.1 Box Plots of Lateness for Ophthalmology with the Total Objective 200
C.2 Box Plots of Lateness for Ophthalmology with the CVaR Objective 201
C.3 Box Plots of Lateness for Urology with the Total Objective . . . . 202



List of Figures xi

C.4 Box Plots of Lateness for Urology with the CVaR Objective . . . . 203
C.5 Box Plots of Overtime Probability for Ophthalmology with the To-

tal Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.6 Box Plots of Overtime Probability for Ophthalmology with the

CVaR Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
C.7 Box Plots of Overtime Probability for Urology with the Total Ob-

jective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
C.8 Box Plots of Overtime Probability for Urology with the CVaR Ob-

jective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

D.1 Smoothed Scatter Plots of Arrival Date and Lateness for Ophthal-
mology and the Total Objective . . . . . . . . . . . . . . . . . . 210

D.2 Smoothed Scatter Plots of Arrival Date and Lateness for Ophthal-
mology and the CVaR Objective . . . . . . . . . . . . . . . . . . 211

D.3 Smoothed Scatter Plots of Arrival Date and Lateness for Urology
and the Total Objective . . . . . . . . . . . . . . . . . . . . . . 212

D.4 Smoothed Scatter Plots of Arrival Date and Lateness for Urology
and the CVaR Objective . . . . . . . . . . . . . . . . . . . . . . 213

E.1 Efficient Solutions for Ophthalmology . . . . . . . . . . . . . . . 216
E.2 Efficient Solutions for Urology . . . . . . . . . . . . . . . . . . . 217





List of Tables

2.1 Example Cyclic Roster . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Example Acyclic Roster . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Details for Roster Group 1 . . . . . . . . . . . . . . . . . . . . . 28
3.2 Details for Roster Group 2 . . . . . . . . . . . . . . . . . . . . . 28
3.3 General Sets and Parameters . . . . . . . . . . . . . . . . . . . 29
3.4 Parameters Dependent on Historical Data . . . . . . . . . . . . . 31
3.5 Sets Dependent on Hospital Rules . . . . . . . . . . . . . . . . . 33
3.6 General Functions . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Functions Dependent on Hospital Rules . . . . . . . . . . . . . . 34
3.8 Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Proposed Roster for 10 Inpatient Ward Teams . . . . . . . . . . . 55
4.2 Roster for assessment, diagnostic, and cardiology unit (ADCU)

Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Roster for ADCU Configuration 2 . . . . . . . . . . . . . . . . . 56
4.4 Roster for ADCU Configuration 3 . . . . . . . . . . . . . . . . . 56
4.5 Waitakere Hospital General Sets and Parameters . . . . . . . . . 58
4.6 Waitakere Hospital Sets and Parameters Dependent on Hospital

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Waitakere Hospital (WTH) Functions Dependent on Hospital Rules 62
4.8 Example Waitakere Hospital Patient Data . . . . . . . . . . . . . 63
4.9 Maximum and Mean Range of Potential Rosters . . . . . . . . . . 81
4.10 Roster Comparison Over Test Scenarios . . . . . . . . . . . . . . 85
4.11 Mean Objective Function Value Over Test Scenarios . . . . . . . . 86
4.12 CVaR @ 95% Objective Function Value for Each Roster Over 500

Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xiii



xiv List of Tables

4.13 Computational Performance by Problem Instance . . . . . . . . . 89
4.14 Computational Performance by Cut Frequency and Type . . . . . 90
4.15 Auckland City Hospital General Sets and Parameters . . . . . . . 97
4.16 Auckland City Hospital Sets and Parameters Dependent on Hos-

pital Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Number of Sessions and Operations in 2016 . . . . . . . . . . . 123
6.2 Proportion of Sessions that Run Overtime in 2016 . . . . . . . . 133
6.3 Mean Accuracy of Overtime Estimation Methods . . . . . . . . . 139
6.4 General Surgery Optimality Gap Results for Total Objective . . . 154
6.5 General Surgery Optimality Gap Results for CVaR Objective . . . 155
6.6 General Surgery First Fit Heuristic Gap Results for Total Objective 156
6.7 General Surgery First Fit Heuristic Gap Results for CVaR Objective 156

B.1 General Surgery Results for Total Objective and duration empiri-
cal distribution (DED) Method . . . . . . . . . . . . . . . . . . . 186

B.2 General Surgery Results for Total Objective and DVED Method . . 186
B.3 General Surgery Results for Total Objective and grand normal dis-

tribution (GND) Method . . . . . . . . . . . . . . . . . . . . . . 187
B.4 General Surgery Results for Total Objective and SND Method . . 187
B.5 General Surgery Results for CVaR Objective and DED Method . . 188
B.6 General Surgery Results for CVaR Objective and DVED Method . . 188
B.7 General Surgery Results for CVaR Objective and GND Method . . 189
B.8 General Surgery Results for CVaR Objective and SND Method . . 189
B.9 Ophthalmology Results for Total Objective and DED Method . . . 190
B.10 Ophthalmology Results for Total Objective and DVED Method . . 190
B.11 Ophthalmology Results for Total Objective and GND Method . . . 191
B.12 Ophthalmology Results for Total Objective and SND Method . . . 191
B.13 Ophthalmology Results for CVaR Objective and DED Method . . . 192
B.14 Ophthalmology Results for CVaR Objective and DVED Method . . 192
B.15 Ophthalmology Results for CVaR Objective and GND Method . . . 193
B.16 Ophthalmology Results for CVaR Objective and SND Method . . . 193
B.17 Urology Results for Total Objective and DED Method . . . . . . . 194
B.18 Urology Results for Total Objective and DVED Method . . . . . . 194
B.19 Urology Results for Total Objective and GND Method . . . . . . . 195
B.20 Urology Results for Total Objective and SND Method . . . . . . . 195
B.21 Urology Results for CVaR Objective and DED Method . . . . . . . 196
B.22 Urology Results for CVaR Objective and DVED Method . . . . . . 196
B.23 Urology Results for CVaR Objective and GND Method . . . . . . . 197



List of Tables xv

B.24 Urology Results for CVaR Objective and SND Method . . . . . . . 197

F.1 Ophthalmology Optimality Gap Results for Total Objective . . . . 220
F.2 Ophthalmology Optimality Gap Results for CVaR Objective . . . . 220
F.3 Urology Optimality Gap Results for Total Objective . . . . . . . . 221
F.4 Urology Optimality Gap Results for CVaR Objective . . . . . . . . 221
F.5 Ophthalmology First Fit Heuristic Gap Results for Total Objective 222
F.6 Ophthalmology First Fit Heuristic Gap Results for CVaR Objective 222
F.7 Urology First Fit Heuristic Gap Results for Total Objective . . . . 222
F.8 Urology First Fit Heuristic Gap Results for CVaR Objective . . . . 222





List of Physician Rostering Terms

$ Set of the groups of physicians to be rostered separately

'= Set of the physicians in roster group =, the set of integers
from 1 to |'= |

,= Set of the weeks in the roster of roster group =, the set
of integers from 1 to |,= |

(= Set of the possible shifts for the physicians in roster
group =

! Set of the groups towards which the workloads of the
physicians contribute

+=,@,: A binary indicator that physician @ in roster group = con-
tributes their patients to workload group :

� Set of all days in the planning horizon

� Set of the days of the week

% Set of the parts of the day

 Set of classes of patient

�9,2,> The number of patients admitted on day 2, in part >, of
class 9

*9,2,>,=,A Proportion of admissions of class 9 on day 2, part >, that
shift A of roster group = adds to their workload

&9,2,> Proportion of patients discharged on day 2, in part >,
of class 9, after taking into account patients that were
transfered

):,9,2,> Proportion of patients transferred from workload group
: on day 2, in part >, of class 9

xvii



xviii List of Physician Rostering Terms

�= ⊆ (= ×,= × � Set of shift, week, day tuples used to index which shifts
must be performed, and when, for roster group =

�= ⊆ (= ×,= × � Set of shift, week, day tuples for roster group =, used to
indicate the shifts that are banned on each day of each
week

L=,A,E,3 ⊆ (= ×
,= × �

Set of shift, week, day tuples which includes shifts that
are linked to future shifts, such that if registrar @ of
roster group = works shift A in week E, day 3 and
(A,E, 3) ∈ L= then they must also work shifts A1, . . . , A<
in weeks E1, . . . ,E< on days 31, . . . , 3<, and must not
work these shifts otherwise

�=,A,E,3 ⊆ (=×,=×
�

Set of shift, week, day tuples which includes shifts that
are linked to future shifts, such that if registrar @ of
roster group = works shift A in week E, day 3 and
(A,E, 3) ∈ �= then they must also work shifts A1, . . . , A<
in weeks E1, . . . ,E< on days 31, . . . , 3<, but may work
these shifts if they do not

�=,A,E,3 ⊆ (=×,=×
�

Set of shift, week, day tuples which includes shifts that
are linked to future shifts, such that if registrar @ of
roster group = works shift A in week E, day 3 and
(A,E, 3) ∈ �= then they must also work shifts A1, . . . , A<
in weeks E1, . . . ,E< on days 31, . . . , 3<, but may work
these shifts if they do not

R= ⊆ (= × � Set of shift, day pairs used to index the number of shifts
that need to be performed by roster group =

7=,A,3 The number of registrars in roster group = that must be
assigned shift A on day 3

G=,E,3 The number of shifts that registrars in roster group =

can be assigned on day 3 in week E

51 : $ × '= × � →
,=

A function that returns the week in a given roster
group’s cycle that a registrar is working, given the count
day

52 : � → � A function that returns the day of the week given the
count day

53 : Z × $→,= A function that returns the week in a given roster
group’s cycle given an integer number of weeks from
the start of the planning horizon



List of Physician Rostering Terms xix

8 :  × � × % →
P( × � × %)

A function that describes how a patients’ class changes
over time. Returns the set of class, week, part tuples that
transition directly to the given class, week, part tuple

F=,A,E,3 Whether shift A is performed on weekE, day 3, by roster
group = (1 if it is, 0 otherwise)

#:,9,2,> Number of patients of class 9, workload group : is at-
tending to at the end of part > on count day 2

"+2,> An upper bound on the workload of the workload group
with the largest workload in part > on count day 2

"−2,> A lower bound on the workload of the workload group
with the smallest workload in part > on count day 2

"̄ The largest difference in workloads between the wor-
kload groups over the entire planning horizon

/ Set of scenarios for admissions and discharges

V The percentage of scenarios which are excluded from
the conditional expectation when calcualting conditio-
nal value at risk, starting with the best scenarios and
going to the worst

U The V percentile

W(H) If the largest difference in workloads in the scenario H is
above U then W(H) is equal to the amount that the largest
difference in workloads is greater than U, otherwise it
is 0





List of Surgery Scheduling Terms

$ Set of operations to be performed

3= Due date of operation =

`= Mean duration of operation =

f= Standard deviation of the duration of operation =

( Set of surgical sessions

1A The start time of session A

:A The length of session A

B The turn around time between operations

2=,A The cost of performing operation = in session A

_ The exponent applied to the lateness of an operation in
the cost function

"A The sum of the expected durations of the operations
(and the turn around times between the operations) as-
signed to a session A

+A The sum of the variances of durations of the operations
assigned to a session A

!A A random variable that represents the time taken to per-
form all of the operations in the session, A, given that
the durations of each of the operations are themselves
random variables

h The maximum allowed probability that each session
goes overtime, in other words P(!A ≤ :A) ≤ h

F=,A Whether operation = is performed in session A (1 if it is,
0 otherwise)

xxi



xxii List of Surgery Scheduling Terms

5 (+A, :A, h) A function that takes the assigned session variance, ses-
sion length, and allowed overtime probability and re-
turn the allowed assigned session duration

V The percentage of operations which are excluded from
the conditional expectation when calcualting conditio-
nal value at risk, starting with the operations with the
lowest cost and going to the highest

U The V percentile

W= If cost of performing operation = is above U then W= is
equal to the amount that the cost is greater than U, ot-
herwise it is 0

¯̀ The mean duration of all the operations

f̄ The standard deviation of the duration of all the opera-
tions

�!A |"A The empirical conditional cumulative distribution
function of realised session duration !A, given assigned
session duration "A

ℎ:A("A) The probability that a session of length :A goes overtime
given that it has an assigned session duration "A



List of Acronyms

MoH Ministry of Health

DHB District Health Board

ADHB Auckland District Health Board

CMDHB Counties Manukau District Health Board

WDHB Waitemata District Health Board

ACH Auckland City Hospital

MSC Manukau Surgery Centre

MMH Middlemore Hospital

NSH North Shore Hospital

WTH Waitakere Hospital

ADCU assessment, diagnostic, and cardiology unit

ED emergency department

GM general medicine

GP general practitioner

OR operating room

MSS master surgery schedule

LP linear programme

xxiii



xxiv List of Acronyms

MIP mixed integer programme

RMP restricted master problem

MP master problem

SP sub-problem

ACCPM analytic centre cutting plane method

CVaR conditional value at risk

SAA sample average approximation

GND grand normal distribution

SND session normal distribution

DED duration empirical distribution

DVED duration variance empirical distribution

GLM generalised linear model







— Chapter 1 —

Introduction

Healthcare organisations in New Zealand face an increasing pressure to ope-
rate efficiently as the populations they serve grow and age (MacPherson 2016).
Significant effort is continuously spent by the management of these organisa-
tions scheduling medical personnel (also known as rostering) and scheduling
appointments and operations. Improvements to scheduling processes can result
in better outcomes for both patients and staff, and reduce the workload of the
management.

At the same time technological advances mean that more and more information
is being gathered about each patient’s interactions with these organisations. For
example during a typical visit to an emergency department the times that: the
patient arrives; is triaged by a nurse; is seen by a physician; moves from one
room to another; and finally leaves; are all recorded.

In this thesis we investigate whether patient data can be better utilised in sche-
duling models in healthcare, particularly when making decisions under uncer-
tainty. We develop two optimisation models, one that uses historical patient ad-
mission and discharge data to inform physicians’ schedules (a.k.a. rosters), and
one that uses empirical distributions derived from historical surgical operation
data to schedule surgical sessions. Both models incorporate elements of the un-
certainty present in their respective areas, and risk averse objective functions
that avoid the worst outcomes. In addition we demonstrate the application of
the models to case studies in hospitals in New Zealand and determine the value
of using the models and incorporating patient data into these decisions.
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2 1. Introduction

The two models address problems that were brought to our attention through
prior collaboration with healthcare facilities, and inspired further research into
areas believed to be both practically useful and scientifically valuable. We were
approached first by clinicians from Auckland City Hospital (ACH) and then from
Waitakere Hospital (WTH) in regards to rostering physicians in their general
medicine (GM) departments. Similarities in the objectives, balancing physicians
workloads, and roster requirements of the two problems spurred our interest in
developing a generic model for incorporating patient pathway data and multi-
ple groups of physicians. One of the rosters created, which was shown to reduce
the difference in physician workloads, has been validated and implemented by
WTH. Similarly, initial contracted research for Middlemore Hospital (MMH) to
identify whether their surgical service capacity was capable of reaching their
targets led to the identification of further opportunities to improve the service
explored in this thesis. Despite the scheduling models developed showing pro-
mise in reducing waiting times and the risk of performing overtime, clinicians at
MMH are reluctant to relinquish scheduling decisions to a mathematical model
and therefore the validation and implementation of these models is not possible
at present. We are, however, exploring opportunities to validate and implement
the models at other healthcare facilities.

Although the two models we present are from separate fields, personnel schedu-
ling and surgery scheduling do have some common features. Some similarities
are clear, such as an objective of minimising cost and that both problems can
be modelled using mixed integer programmes. Not as immediately apparent,
is that the two problems share a common overall process consisting of three
broad phases: demand modelling; block scheduling; and individual scheduling.
Although the boundaries between the phases (particularly block and individual
scheduling) are not always distinct and two phases are occasionally addressed
in a single model, most problems encountered can be classified into one of the
three phases. These phases are usually tackled separately because combining
them together often results in a problem that is too complex to solve (Ernst et
al. 2004), or because the inter-phase dependencies (i.e., dependencies between
the phases) cannot be modelled using the same framework that is used for the
intra-phase dependencies (i.e., dependencies within individual phases) that are,
for example, modelled using mixed integer programming.

For personnel scheduling the three step approach is described by both Wolfe
(1979) and Ernst et al. (2004), although the latter separates block scheduling
into days off scheduling, shift scheduling and line of work construction, and
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individual scheduling into task assignment and staff assignment. The demand
modelling phase involves determining the number of staff that are required at
different times over a planning period. This could be performed by analysing
historical data of demand and service rates over time and calculating the number
of staff required to meet the demand. Alternatively the advice of experts in the
relevant field, or one of many other methods could be used.

The block scheduling phase, sometimes called shift scheduling, deals with fin-
ding feasible shifts for staff to work that meet the demand that has been deter-
mined in the previous (demand modelling) phase. Rules governing the length of
shifts need to be considered in this phase.

The individual scheduling phase, referred to as shift allocation, assigns person-
nel to the shifts, subject to labour laws. This phase is often combined with the
block scheduling phase in personnel scheduling as the assignment of personnel to
shifts is highly dependent on the shifts considered, and there may be interaction
between the rules that govern feasible shifts and those that govern which shifts
personnel can work (Ernst et al. 2004).

For surgery scheduling the three phases are detailed by Zhu et al. (2018). The
demand modelling phase is usually called case-mix planning and determines
the amount of operating room (OR) time, or number of blocks, that each surgi-
cal specialty, or surgeon, requires to complete their operations. This allocation
may be based on forecasts of the number and duration of the surgeries for each
specialty or surgeon.

Given the required number of OR blocks for each specialty, the block scheduling
phase, referred to as master surgery scheduling, assigns blocks of time in ORs to
each specialty and penalises under supply. Many other considerations are often
taken into account such as the capacities of services before or after the ORs or
availability of staff (Zhu et al. 2018). Themaster surgery schedule (MSS) is often
cyclic and rotates on a weekly or monthly basis (Zhu et al. 2018).

The individual scheduling phase for surgery scheduling is usually split into two
problems called advance scheduling and allocation scheduling. Advance schedu-
ling assigns a date for each surgery, whereas allocation scheduling determines
the exact start time of the surgery. In either case the problems deal with assig-
ning individual surgeries to the blocks in the master surgery schedule. In contrast
to personnel scheduling, master surgery scheduling is not often combined with
advance or allocation scheduling (Cardoen, Demeulemeester, and Beliën 2010).
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The concept of a planning horizon also exists in both personnel and surgery
scheduling. The planning horizon is the time period into the future that is being
planned for. The planning horizon may be different in each of the three phases,
and typically it would decrease as planning moves from demand modelling to
block scheduling to individual scheduling. In personnel scheduling the planning
horizon may be on the scale of years for demand modelling, years or months
for block scheduling and months or even weeks for individual scheduling. For
surgery scheduling the planning horizons are typically shorter with demand mo-
delling on the scale of years or months, months or weeks for block scheduling
and weeks or days for individual scheduling.

This thesis considers both the block and individual scheduling phases for per-
sonnel scheduling, and the individual scheduling phase for surgery scheduling,
as well as incorporating uncertainty and risk aversion into the respective mo-
dels. Section 1.2 outlines the structure of the thesis after section 1.1 presents
background information about the New Zealand health system.

1.1 New Zealand Health System
Before proceeding with the rest of the thesis we first present a brief overview of
the New Zealand Health system. The aim of this outline is to provide the context
for the models we develop and the case studies we apply them to.

The Ministry of Health (MoH) is a public service department that is part of the
Government of New Zealand and oversees healthcare in New Zealand. The MoH
plans and funds public health services, monitors the performance of the health
system, and provides advice to the Minister of Health on improving health out-
comes.

The MoH manages its public funds, which in 2019/20 amount to almost $20
billion, through a programme called Vote Health (The New Zealand Ministry of
Health 2018a). Vote Health forms the majority of the funding for New Zealand’s
health system, however there are other important sources of funding such as: the
Accident Compensation Corporation, local government, and private insurance.

About 80% of the funding provided by Vote Health is allocated to District He-
alth Boards (DHBs). DHBs are local public organisations that are responsible
for providing health services in their region, and are governed by a board of up
to 11 members of which seven are publicly elected (The New Zealand Ministry
of Health 2018b). There are 20 DHBs throughout New Zealand and their main
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objective is to improve, promote, and protect the health of the people in their dis-
trict. In return for the funding from the MoH the DHBs negotiate accountability
arrangements with the MoH, in which they agree to provide health services to
their district’s population (The New Zealand Ministry of Health 2018c). DHBs
are particularly important to this work because they own and operate public
hospitals, which are where the solutions generated by the models developed in
this thesis would be implemented. The DHBs that operate hospitals would be-
nefit from the use of these models for personnel and surgery scheduling in their
hospitals.

1.2 Thesis Structure
The remainder of this thesis is structured as follows. First, in chapter 2, we review
both the personnel and surgery scheduling literature. For personnel scheduling
we focus mainly on physician rostering problems as they are most closely related
to our work. Of particular interest in the surgery scheduling literature are the
methods for dealing with both the due dates of operations and the uncertain
nature of their duration.

The next two chapters focus on a physician rostering problem. In chapter 3 a
mixed integer programming model is presented that generates a cyclic roster for
physicians with the objective of balancing the number of patients for which each
physician is caring. The model combines historical data on the patients admitted
to and discharged from the hospital, and the pathways that the patients follow
during their stay to determine the patient workloads of the physicians.

The model developed in chapter 3 is then applied to two case studies from New
Zealand hospitals in chapter 4. These case studies serve both as an illustration of
how the model can be applied to real problems and as an opportunity to assess
the value of using the model.

The focus then shifts to surgery scheduling and in chapter 5 another mixed inte-
ger programming model is presented that schedules a list of operations into sur-
gical sessions. The twomain features of the model are, first, an objective function
that focuses on the due dates of the operations, including a risk averse objective
that focuses on the latest operations. Second, several methods for modelling the
uncertainty of operation durations’ are considered, including approaches that
estimate the probability that a session runs overtime based on empirical distri-
butions from historical operation and session data. The due dates of operations



6 1. Introduction

and their uncertain durations are combined in this model, although they occur
on different time scales (the intermediate and short term respectively). Due da-
tes and uncertain durations are combined because the alternative is to solve two
separate problems: first selecting which operations should be performed within
a shorter time scale (one or two weeks) based on their due dates; second assign
the selected operations to surgical sessions while taking into account their un-
certain durations. The first step in this alternative process limits the possibilities
in the second step, and so a combined problem is used to avoid this limitation.

Chapter 6 applies the surgery scheduling model presented in chapter 5 to a case
study from another hospital in New Zealand. The effects of several model pa-
rameters on the surgical schedule are explored through computational experi-
ments using data from 2016.

Finally, chapter 7 summarises the main findings from the previous chapters and
compares and contrasts the approaches used in the optimisation models, parti-
cularly with regards to uncertainty and risk.



— Chapter 2 —

Literature Review

Personnel and surgery scheduling have both been studied extensively beginning
around 1970. Comprehensive reviews of the literature are available for both
areas: Ernst et al. (2004) and Van den Bergh et al. (2013) review personnel
scheduling; Cardoen, Demeulemeester, and Beliën (2010), and Zhu et al. (2018)
review surgery scheduling. Therefore we present here a review of only some of
the relevant literature in both fields. In addition we briefly review the literature
on Benders’ decomposition, since its use forms part of this thesis. A complete
review of Benders’ decomposition literature is provided in Rahmaniani et al.
(2017).

2.1 Personnel Scheduling
We first review personnel scheduling in general before narrowing the focus to
healthcare applications, and in particular those dealing with the continuity of
care of patients. We began by searching for review publications and found Ernst
et al. (2004) and Van den Bergh et al. (2013) and used the publications reviewed
as the basis of our review. Additionally we used Scopus to search for more recent
publications from the latest review paper in 2013 to the time of the search at the
beginning of 2016.We combined the terms healthcare, physician, and nurse with
either rostering or personnel scheduling, and limited the search to the following
journals: Annals Of Operations Research, Computers And Industrial Engineer-
ing, Computers And Operations Research, Decision Sciences, European Journal
Of Operational Research, Flexible Services And Manufacturing Journal, Health
Care Management Science, Human Resources For Health, International Journal

7
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Of Production Economics, Journal Of Scheduling, Operations Research For He-
alth Care, and Operations Research. This search returned 67 results, and after
reviewing the abstracts for relevance to patient pathways, continuity of care, and
uncertain admissions, 11 of the 67 publications were reviewed in full.

As mentioned in chapter 1 personnel scheduling is separated into three phases:
demand modelling, block scheduling, and individual scheduling. The personnel
scheduling model developed in chapter 3 includes elements of both block and
individual scheduling (also referred to as shift scheduling and shift allocation),
as it both determines the order of the shifts and the staff that they are assigned
to. We therefore focus on these two phases in the literature review.

An important concept in shift scheduling and allocation is the distinction bet-
ween cyclic and acyclic rosters. In a cyclic roster a single sequence of shifts is
made for all of the employees. Each employee starts at a different point in the
sequence and, when an employee works the last shift in the sequence, they go
back to the beginning and work the first shift again (see table 3.1 for an ex-
ample). Conversely, in an acyclic roster each employee has a sequence of shifts
that they work, which can be different from the sequence that other employees
work. Tables 2.1 and 2.2 show examples of cyclic and acyclic rosters respectively,
where A, P, O, and X represent different types of shifts that the employees can
work.

Table 2.1: Example Cyclic Roster

Employee Shifts
Week 1 Week 2 Week 3 Week 4 M T W T F S S

1 4 3 2 A P O O A P O
2 1 4 3 O O A P O X X
3 2 1 4 O A P O O A A
4 3 2 1 P O O A P X X

Table 2.2: Example Acyclic Roster

Employee Shifts–Week 1 Shifts–Week 2 Shifts–Week 3 Shifts–Week 4
M T W T F S S M T W T F S S M T W T F S S M T W T F S S

1 O O A P A P O O A P A P X X O A P O O A A P O O O O X X
2 A P O A P X X A P O O O A A P O O O O X X O O A P A P O
3 O A P O O A A P O A P O X X O O A P A P O O A P O O O O
4 P O O O O X X O O O O A P O A P O A P X X A P O A P A A

Bailey (1985) presents an approach for integrated days off and shift schedu-
ling, the combination of which is referred to as the tour construction problem.
The objective of the mixed integer programme (MIP) that they formulate is to
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minimise the cost of labour and under staffing. As the integrated problem is a
combination of two set covering problems a set of feasible patterns is required
for each day.

Balakrishnan and Wong (1990) solves the ‘rotating workforce scheduling pro-
blem’, which is equivalent to a cyclic scheduling problem, using a network flow
model. The beginning of the first day in the planning horizon is the source node,
and the end of the last day is the sink node. Arcs represent work or rest periods,
which are consecutive days on which the same shift is performed (work period)
or consecutive days off (rest period). By defining the costs on the arcs as the cost
of the corresponding work period, the shortest path from the source to the sink
gives the lowest cost cyclic roster.

Naudin et al. (2012) considers three mathematical models to solve a staff sche-
duling problem. The problem consists of a set of tasks that need to be performed
on each day of the planning horizon, and a set of employees, each of which can
perform a subset of the tasks. The first model uses binary assignment variables
for determining which personnel perform tasks. The second and third models
are both Dantzig-Wolfe decompositions of the first model, the difference being
that the second uses valid daily schedules as the columns whereas the third uses
weekly schedules. In both instances column generation is used within a branch
and bound framework to find valid schedules. Valid inequalities are also derived
that are shown to improve the performance of the models.

Rocha, Oliveira, and Carravilla (2013) proposes an integer programme for the
staff scheduling problem, with a novel formulation of sequence constraints. Two
case studies are used to demonstrate the flexibility of the model. It is also ap-
plied to a set of benchmark instances; however the MIP formulation does not
outperform a tabu search heuristic.

2.1.1 Healthcare

Within the personnel scheduling literature a large part has focused on the healt-
hcare setting. The interest in the healthcare sector is because both the size of the
workforce and the 24 hour nature of the services provided make the resulting
personnel scheduling problems challenging. In addition labour costs represent a
large part of most healthcare organisations total costs, providing an incentive to
improve their rostering methods.

The rostering of nurses in particular has received a lot of attention for several
reasons. First because the nursing workforce often has non-homogeneous skills,
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and can therefore perform different tasks. Second, since nurses are often paid
hourly, as opposed to via a salary, nurses working overtime is a major cost for he-
althcare organisations. Third labour laws and restrictions imposed by collective
agreements can make creating rosters for nurses more complex. These factors
combine to make nurse rostering both a time consuming and costly problem for
healthcare organisations and an interesting challenge for the academic commu-
nity.

Nurse rostering problems are categorised in De Causmaecker and Vanden Berghe
(2011) by introducing an U|V|W notation similar to that used in machine sche-
duling. The U category represents the personnel environment such as the avai-
lability and skills of staff, or constraints on individual workload. The V category
represents the services delivered and the time structure of the problem, for ex-
ample the number and type of shifts that need to be performed. The W category
represents the objective function, which could be soft versions of constraints in
the U and V categories, or any other desired characteristic. A ‘soft’ constraint
is when the amount that a constraint is violated by is included in the objective
function.

Millar and Kiragu (1998) rosters nurses on 12 hour cyclic shifts. All possible
‘stints’ (sequences of shifts and days off) are first defined. Using 12 hour shifts
means that there are fewer possible stints as there are only two shifts each day
(the day shift and the night shift). A graph is then formed using the stints as
nodes, which can be used to find both cyclic and acyclic rosters.

Burke and Curtois (2014) introduces new approaches to nurse rostering bench-
marks using branch and price. A method based on regular expressions is develo-
ped to model many of the rules defining patterns of shifts. Dual stabilisation and
bounding methods are used to improve the pricing problem, which is a resource
constrained shortest path problem that is solved using dynamic programming.
Constraint branching is also employed within the branch and bound tree.

Another set of benchmark instances has been created by the International Nurse
Rostering Competition, to facilitate the comparison of various solution methods.
Santos et al. (2014) present a compact MIP that models all of the constraints in
the competition instances. Clique and odd-hole cuts are shown to be effective in
improving the dual bound, in particular the inclusion of all cuts found, not just
the most violated one, is suggested. A MIP based heuristic is also presented that
uses a variable neighbourhood descent approach.
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Physicians, in contrast to nurses, have received less attention in the personnel
scheduling literature. Nevertheless since the rostering model presented here is
designed for a physician rostering problem a larger part of this section is dedi-
cated to physician rostering.

Many of the physician rostering problems in the literature consider rostering
physicians in the emergency department (ED). For example, Beaulieu et al.
(2000) use a set partitioning model to schedule physicians in the ED. Their
objective is to minimise the weighted sum of deviations from certain goal con-
straints. Since including all of the constraints renders the problem infeasible, an
initial solution is found by removing conflicting constraints. An iterative process
is then performed, where violated constraints are re-introduced and the problem
re-solved. This process terminates when a feasible solution cannot be found.

Another approach to rostering physicians in the ED is presented in Ferrand et al.
(2011). Binary variables are used to assign individual physicians to shifts and
three categories of constraints are considered: regulatory, work requirements,
and personal preferences. The objective function is to minimise the amount that
the constraints are violated.

Ganguly, Lawrence, and Prather (2014) aims to balance staffing costs with pa-
tient service levels. Both the demand modelling and block scheduling phases are
examined in a combined problem. The model determines the number of staff to
allocate to predetermined shift schedules, which account for labour laws and ot-
her work rules. A chance constraint is used to ensure a minimum level of service
in each time period, taking into account the different skill levels of the staff.

El-Rifai et al. (2015) attempts to find start times and durations for physicians’
shifts to minimise the time patients spend waiting in an emergency department.
A queuing network model of the department is used to form balance equations
that track each patient’s progress through the department. These equations are
incorporated into an integer programme, along with a patient arrival scenario
generated from historical data. Stochastic optimisation is then used to find the
shifts that minimise the average patient waiting time. Personnel are not assig-
ned to the shifts, and therefore the assignment of patients to personnel is not
modelled.

Uncertain demand is also addressed in Kim and Mehrotra (2015) where a two
stage stochastic program is developed to minimise the cost of over or understaf-
fing in future demand scenarios. Feasible staff schedules, and future adjustments
to these schedules, are pregenerated based on staffing and scheduling rules.
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Kortbeek et al. (2015) also considers uncertainty in the workloads of nurses and
uses a bed census prediction model to find the most cost effective numbers of
nurses to be allocated to various care units and to a flexible pool.

Outside of EDs, Bard, Shu, and Leykum (2014) presents an approach for schedu-
ling physicians in primary care clinics. The problem considered aims tomaximise
the number of trainees assigned to clinic duty each month. The constraints are
split into soft constraints, which represent other goals such as ensuring each
trainee is assigned one clinic session per week, and hard constraints, such as a
limit on the number of trainees from each team that are on clinic duty each day.
A complexity analysis is performed on the problem, which shows that a simpli-
fied version of the problem can be modelled as a minimum cost flow problem;
however the full problem is more complex.

Bruni and Detti (2014) proposes a flexible MIP formulation for a physician
scheduling problem. Shifts in the planning horizon are organised into regular
working days, regular nights, and Sundays. The physicians are partitioned into
groups which can work with different capabilities in different departments, each
department requires a certain number of doctors of a given competency at any
point in the day. Workload is balanced among the physicians by imposing a max-
imum either in the total number of shifts, or a weighted sum of the shifts based
on the difficulty or inconvenience of the shift.

Brunner and Edenharter (2011) also incorporates different experience levels of
physicians in a MIP formulation of a long term staffing problem. The objective
is to minimise the total number of staff, by deciding the start time and length of
shifts, while meeting a time-varying required number of physicians. Within the
planning horizon each week is independent, and can be solved separately. The
weekly problems are further decomposed in a column generation approach, with
the demand constraints kept in the master problem and the sub-problems (SPs)
used to generate feasible schedules.

Fairness, in terms of both total working hours and the distribution of specific
undesirable shifts, is integrated into a physician rostering model in Stolletz and
Brunner (2012). A tour scheduling problem is presented, which assigns phy-
sicians shifts and days off over a two week planning horizon, with the aim of
minimising the overtime hours required to meet the demand for physicians. A
shift matrix is generated in a preprocessing step instead of incorporating the
shift constraints into the problem.
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Previous work on improving patients’ continuity of care through physician sche-
duling has included several approaches. For example, Kazemian et al. (2014)
attempts to minimise the number of patient handoffs, where a handoff is de-
fined as when a patient is handed from one physician to another, typically at
the end of their shift. Using historical data the number of handoffs incurred by a
shift change at any time of the day is estimated. The starting and ending times of
physicians’ shifts that minimise the number of handoffs can then be found. Addi-
tionally, Smalley, Keskinocak, and Vats (2015) develops a handoff metric based
on how recently each physician has worked. A roster can then be formed which
minimises this metric, while meeting demand for physicians and complying with
regulatory constraints.

Continuity of care has also been a focus outside of hospitals, for example in
home care. The amount of overtime nurses perform while providing home care
is minimised in Lanzarone and Matta (2014) while ensuring that continuity of
care is maintained.

From this review we have identified the following areas that we believe are gaps
in the current physician rostering research:

• workloads of individual staff members being linked to patient admission
and discharge data within a MIP;

• taking into account uncertainty in admissions and discharges when assig-
ning physicians to shifts, as opposed to finding shift timings as in Ganguly,
Lawrence, and Prather (2014) and El-Rifai et al. (2015);

• using risk measures to create rosters that perform well in the worst case
scenarios; and

• considering multiple cyclic rosters with independent groups of physicians
and rules in the same framework.

2.2 Surgery Scheduling
The management of operating rooms (ORs) has been studied thoroughly and
several reviews of the literature are available such as Cardoen, Demeulemeester,
and Beliën (2010), and Zhu et al. (2018). Aside from publications found through
these reviews we once again used Scopus to search for more recent publications
from 2018 to the time of the search at the beginning of 2019. We combined
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the terms surgery and operating rooms with scheduling, and limited the search
to the same set of journals which is: Annals Of Operations Research, Compu-
ters And Industrial Engineering, Computers And Operations Research, Decision
Sciences, European Journal Of Operational Research, Flexible Services And Ma-
nufacturing Journal, Health Care Management Science, Human Resources For
Health, International Journal Of Production Economics, Journal Of Scheduling,
Operations Research For Health Care, and Operations Research. This search re-
turned 48 results, and after reviewing the abstracts for relevance to due date
based objectives, and approaches to chance constraints, 8 of the 48 publications
were reviewed in full.

We consider the three phases of the OR scheduling process to be: case mix plan-
ning (cf. demand modelling), master surgery scheduling (cf. block scheduling),
and patient scheduling (cf. individual scheduling). These three phases are not ri-
gorously defined and there is some disagreement about the boundaries between
the phases, in particular Cardoen, Demeulemeester, and Beliën (2010) propose
a more detailed ‘decision delineation’ both because of a lack of clarity between
the three phases, and to provide a structured approach to allow researchers to
detect contributions in their area of interest. We keep to the three phase model
as the disagreement between the phases is minor and we believe it better reflects
the process of managing ORs in practice.

This review focuses on patient scheduling, which addresses the problems of as-
signing an OR, day and time to each patient that requires an operation. These
problems are combined in various ways, for example ‘advance scheduling’ re-
fers to fixing a date for each patient’s operation, whereas ‘allocation scheduling’
refers to determining an OR and sequence for the patients’ operations.

We define a surgical session as a period with a specified start and end time, in a
particular OR, on a particular day. Using this definition master surgery schedu-
ling specifies the start and end times of the sessions, and possibly assigns them
to specialties. What we refer to as sessions are frequently called ‘blocks’ in the
literature.

Many different objectives have been studied for patient scheduling problems,
however by far the most common are those which relate to the utilisation and
(over-)usage of the ORs. Marques, Captivo, and Vaz Pato (2012) proposes an
integer programme to create a weekly schedule for elective operations from a
waiting list, with the goal of maximising the utilisation of the ORs. Pulido et al.
(2014) aims to minimise the sum of three costs: the underutilisation of the ORs;
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the overtime of the ORs; and the time that surgeons spend waiting. A MIP is
developed that schedules operations in ORs and assigns surgeons to each ope-
ration, and a simulation model is developed to evaluate solutions. Van Huele
and Vanhoucke (2014) tackles an integrated physician and surgery scheduling
problem using the most commonly encountered constraints from each problem,
and the objective is to minimise the overtime costs of the ORs.

The time that patients spend waiting for their operations, or the deviation of
the time the operation is started from when it is due (earliness/lateness) are
also used as objectives, although not as often as OR related costs. Addis et al.
(2016) present a scheduling and re-scheduling approach where the day and OR
block is assigned to operations on a waiting list for three weeks in advance. A
rolling horizon approach is used where the first week of the solution is fixed,
then after a realisation of that week, where some operations are cancelled be-
cause of random operation durations, the problem is stepped forward and sol-
ved again. The objective is to minimise a combination of the time that patients
spend waiting for their operation, and the lateness of the operations. Ballestín,
Pérez, and Quintanilla (2018) builds a schedule of elective operations using two
phases. First an initial schedule is determined for the next two weeks, and four
objectives are compared in this phase. Second a final schedule is made for the
next week, taking into account cancellations and unavailability of surgeons and
equipment. The four objectives that are compared all relate to the due dates of
the operations and aim to reduce the percentage of patients that breach their
due date.

Occasionally, objectives are combined in a multi-objective approach, for exam-
ple Cardoen, Demeulemeester, and Beliën (2009a), where the priority of each
operation, time taken to travel to the hospital, time spent recovering, and the
peak number of beds used are all considered as objectives. Rachuba andWerners
(2014) considers three objectives: the total waiting time of the patients; the total
OR overtime; and the number of patients deferred to the next planning period.
A MIP is then used to assign patients to sessions. Marques, Captivo, and Vaz Pato
(2015) maximises both the utilisation of the ORs and the number of operations
performed, and notes that because of the idle time between operations there is
a trade off between the two objectives. When maximising utilisation longer ope-
rations are preferred since there are fewer gaps, however shorter operations are
preferred when maximising the number of operations performed. They propose
a two phase heuristic to solve the bi-criteria problem.
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One method of differentiating surgical scheduling processes is whether ‘block’
or ‘open’ scheduling is used. In ‘block’ scheduling, blocks, which are equivalent
to what we defined earlier as sessions, are assigned to specialties or surgeons.
Surgeries can only be booked in a session that has been assigned to their speci-
alty or surgeon. For example, Shylo, Prokopyev, and Schaefer (2013), Rachuba
and Werners (2014), and Landa et al. (2016) use block scheduling. In contrast
‘open’ scheduling allows any operation to be booked in any session regardless
of specialty or surgeon such as in Fei, Chu, and Meskens (2009), and Y. Wang,
Tang, and Fung (2014).

Uncertainty, from sources such as the duration of operations or the arrival of
emergency cases, has been addressed frequently in the literature, using a vari-
ety of techniques. The duration of operations is most commonly addressed. For
example, Denton, Viapiano, and Vogl (2007) assigns the start time of operations
within a session and represents the operation durations using scenarios, in addi-
tion to proposing several heuristics to solve the start time assignment problem.
Using scenarios to represent uncertainty in operation durations is common as in
Jebali and Diabat (2015), where a two-stage stochastic programme is presented
that minimises patient-related costs and expected utilisation costs. The stochas-
tic programme is solved using sample average approximation (SAA). Landa et al.
(2016) also uses scenarios to represent the uncertainty in operation durations.

The arrival of emergency cases is another common source of uncertainty addres-
sed in the literature. Lamiri, Grimaud, and Xie (2009) formulates a stochastic
planning problem to determine how elective cases should be assigned to sessi-
ons, and the OR capacity that should be reserved for emergency operations in
order to minimise the sum of patient assignment and expected overtime costs.
Surgery duration and arrival uncertainty are also tackled simultaneously such as
in Min and Yih (2010) where a stochastic dynamic programme is developed to
determine the number of patients selected from a waiting list, while taking into
account the priorities of the patients. Kroer et al. (2018) also tackles uncertain
operation durations and emergency arrivals and aims to reduce the amount of
overtime worked. To take the uncertain durations and arrivals into account a
stochastic model is used, and two heuristics are proposed to solve it.

Another approach to the uncertainty of operation durations is taken by Hans et
al. (2008) which aims to free OR capacity by maximising the number of empty
ORs, while minimising the risk of overtime. To achieve this they allocate a fixed
amount of each session as ‘planned slack’, which is proportional to the square



Surgery Scheduling 17

root of the sum of the variances of the operations planned in that session. Con-
structive heuristics and local search methods are used to find solutions. Shylo,
Prokopyev, and Schaefer (2013) presents a similar approach where an approx-
imation of the sum of the durations of operations assigned to a session, and
the sum’s standard deviation, is included in an integer programme under the
assumption that the sum of the durations is normally distributed. A piecewise
linear approximation is used for the standard deviation of the sum and an itera-
tive procedure is proposed where the discretisation used for the approximation
is updated at each step.

A further approach to the uncertainty in operation scheduling is used by Addis et
al. (2016) and Marques and Captivo (2017). Both employ a ‘level of robustness’
approach that assumes a subset of the operations assigned to a session each
take their worst (longest) possible value, while the remaining operations all take
their expected duration. The solutions are made more robust by increasing the
size of this subset. Others such as Denton, Miller, et al. (2010), Sagnol et al.
(2018), and Vali-Siar, Gholami, and Ramezanian (2018) use a similar concept
termed a ‘budget of uncertainty’, which is founded on the idea that operations
durations must lie with an uncertainty set which gives lower and upper bounds
on how long an operation can take. The budget of uncertainty is an upper bound
on the number of operations that will take their longest possible duration on a
particular day. J. Wang et al. (2018) integrates this approach with a scenario
based approach.

Of particular interest are the constraints that ensure that sessions do not run
overtime. In the simplest case the sum of the durations of operations assigned to
the session must be less that the duration of the session. If the durations of the
operations are uncertain then this constraint will mean that the session will not
run overtime on average, but there may be realisations in which it does. Most
approaches enforce a soft constraint on the session duration, where the overtime
(or expected overtime) is penalised in the objective function, for example Lamiri,
Dreo, and Xie (2007), Cardoen, Demeulemeester, and Beliën (2009b), Fei, Chu,
and Meskens (2009), and Van Huele and Vanhoucke (2014). Others such as
Oostrum et al. (2008), Shylo, Prokopyev, and Schaefer (2013), Y. Wang, Tang,
and Fung (2014), Landa et al. (2016), and Kamran, Karimi, and Dellaert (2018)
use a ‘chance constraint’ that ensures that each session will not run overtimewith
some given probability.

Incorporating due dates for operations is often neglected as a factor when sche-
duling operations. Whether this is because of the focus on utilisation measures
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as objectives or because due dates are not well defined in many health systems is
unclear. Occasionally, a deadline is enforced for each operation, for example in
Fei, Chu, Meskens, and Artiba (2008), where operations are assigned to ORs to
minimise the total operating cost under the condition they are completed before
their deadline. They present a MIP, which they solve using a branch and price
approach, including node selection and branching strategies. Fei, Chu, and Me-
skens (2009), Marques, Captivo, and Vaz Pato (2012), Marques, Captivo, and
Vaz Pato (2015), and Molina-Pariente, Hans, and Framinan (2018) also use de-
adlines to enforce due dates for operations.

One drawback of using a fixed deadline for operations is that it is possible that
the model is infeasible if there are too many operations that must be performed
before a given time. This is common in practice when a surgical system is at or
over capacity and there are long waiting lists for elective operations. Instead the
earliness or lateness of each operation can be captured in the objective function.
As previously described, this approach is used in Addis et al. (2016) and Balle-
stín, Pérez, and Quintanilla (2018). Others such as Marques and Captivo (2017)
and Barrera et al. (2018) also penalise the lateness of operations using various
objective functions.

The gaps identified in the surgery scheduling literature are:

• using a chance constraint for session duration that is based on an empirical
distribution conditional on the operations assigned to the session; and

• using a risk measure, applied to the early and lateness of operations, as an
objective.

2.3 Benders’ Decomposition
Benders’ decomposition (Benders 1962) is a technique for solving MIPs by fix-
ing the integer variables and reducing the problem to a linear programme (LP).
Although this method can be applied to any MIP it is most useful when special
structures exist in the constraints of the MIP that mean the resulting LP is par-
ticularly easy to solve, for example if it can be modelled as a network problem,
or if the problem decomposes into many smaller problems.

The algorithm works by solving two types of problem: the restricted master pro-
blem (RMP), and the sub-problem (SP). The RMP is a relaxed version of the
original problem with only the integer variables and any constraints that only
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contain the integer variables. This problem is solved to obtain feasible values for
the integer variables and a lower bound for the problem. These values of the
integer variables are then used in the SP along with the continuous variables
and all the constraints from the original problem that are not in the RMP to ge-
nerate a cut which is added to the RMP, and provide an upper bound for the
problem. The algorithm alternates between solving the RMP and SP until the
bounds converge.

Many improvements to Benders’ decomposition have been developed since its
inception and Rahmaniani et al. (2017) provide a comprehensive review of the
literature. Enhancements are categorised as one of: solution procedure, solution
generation, cut generation, or decomposition strategy.

One of the first improvements, Magnanti and Wong (1981), considers the pro-
blem of choosing an optimal solution to the dual SP from many optimal soluti-
ons. The concept of Pareto-optimal cuts is introduced along with an LP to find
a Pareto-optimal cut, given a core point – a point in the relative interior of the
convex hull of the master problem (MP). Although finding a Pareto-optimal cut
requires an additional LP to be solved at each iteration, the quality of the cuts
generated results in a reduction of overall computation for the problems exami-
ned.

Birge and Louveaux (1988) proposes a multi-cut L-shaped algorithm for solving
two-stage stochastic programmes with recourse. They show that the multi-cut
method performs better in the worst case, which for Benders’ decomposition
suggests that if the SP is decomposable and disaggregated cuts are able to be
formed they are preferable to an aggregated cut.

The method for finding Pareto-optimal cuts introduced by Magnanti and Wong
(1981) was further improved by Papadakos (2008), which showed that only one
LP needs to be solved each iteration as long as a different core point is used at
each iteration. It is also shown that a new core point can be obtained by a convex
combination of the previous core point and the LP solution. However, obtaining
an initial core point is still difficult in some situations.

Fortz and Poss (2009) incorporates Benders’ cuts into a branch and cut frame-
work with Benders’ cuts being generated when a new incumbent solution is
found in the branch and bound tree. They also discuss initialising the branch
and bound tree with a pool of cuts generated by solving the LP relaxation of the
root node using a cutting plane algorithm.
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Fischetti, Salvagnin, and Zanette (2010) formulates an extended primal SP
which is infeasible if and only if a violated cut (either feasibility or optimality)
can be generated. An LP is then proposed that detects a ‘minimal source of in-
feasibility’, and generates a most-violated cut. This also allows feasibility and
optimality cuts to be generated in the same framework.

Naoum-Sawaya and Elhedhli (2013) also discusses Benders’ cuts implemented in
a branch and cut framework. They use the analytic centre cutting plane method
(ACCPM) to solve the master problem at each node and generate multiple cuts
at each node by repeatedly solving the linear relaxation using a cutting plane
algorithm. The cuts generated using ACCPM are shown to be Pareto-optimal and
a method for updating the analytic centre after adding cuts is provided.

Although the implementation of Benders’ decomposition we use is not novel, nor
the effectiveness of its use surprising, the review of the literature was useful in
determining techniques that were likely to be effective for our problem.

Conclusion
We have identified several gaps in both the physician rostering and surgery sche-
duling literature. The gaps identified in the physician rostering research are:

• workloads of individual staff members being linked to patient admission
and discharge data within a MIP;

• taking into account uncertainty in admissions and discharges when assig-
ning physicians to shifts;

• using risk measures to create rosters that perform well in the worst case
scenarios; and

• considering multiple cyclic rosters with independent groups of physicians
and rules in the same framework.

The rostering model presented in chapter 3 addresses these by:

• incorporating patient pathways into a MIP to enable the calculation of phy-
sician workloads, which allows workloads to be balanced and continuity
of care improved;
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• optimising a roster over many scenarios of admissions and discharges to
create rosters that are robust to this uncertainty;

• using risk a risk averse objective function to create rosters that perform
well in the worst scenarios; and

• linking rosters in different areas through patient pathways to prevent the
workloads of one group being improved at the expense of another.

The gaps identified in the surgery scheduling literature are:

• using a chance constraint for session duration that is based on an empirical
distribution conditional on the operations assigned to the session; and

• using a risk measure, applied to the early and lateness of operations, as an
objective.

In chapter 5 we present a surgery scheduling model that addresses these gaps
by:

• using historical surgery and session data to define conditional empirical
distributions of the probability that a session runs overtime given the ope-
rations assigned to the session, and using these empirical distributions in
chance constraints to improve the efficiency of scheduling operations; and

• introducing a risk averse objective function in terms of the early and la-
teness of operations, as compared to an exponent applied to the lateness,
in order to prevent operations with long durations having to wait longer
before being performed.





— Chapter 3 —

General Medicine Rostering Model

In most hospitals the general (or internal) medicine department is responsible
for diagnosing and treating patients that do not require surgery. Typically it is
staffed 24/7 and accepts admissions from both the emergency department (ED),
and referrals from external services such as general practitioners. When a patient
arrives at general medicine (GM) they are assigned to a ward team made up of
senior, junior, and trainee physicians. Generally they are assigned to the team of
the physician that admitted them. The patient is diagnosed and the admitting
physician determines whether they should remain in general medicine. If the
patient does remain in general medicine then the ward team will continue to
check up on the patient until they are discharged.

Unlike other departments that operate 24/7, such as the ED, patients can stay
in GM for many days, or even weeks. Having the same physician treat a patient
throughout their stay in hospital is termed continuous care. Continuity of care,
however, can be disrupted if a ward team is responsible for too many patients,
resulting in the transfer of some patients to another ward. When a patient’s care
is fragmented like this it hinders the formation of patient-doctor relationships,
which is undesirable as Hjortdahl and Laerum (1992) shows these relationships
improve patient satisfaction. Findings from Epstein et al. (2010) also suggest
that increased fragmentation may lead to increased length of stay for patients
with pneumonia or heart failure. In addition Epstein et al. (2010) suggests chan-
ges to personnel scheduling as a possible means of reducing fragmentation.

The negative impacts of fragmenting a patient’s care mean that the GM depart-
ment is concerned with balancing the workloads of the teams to improve the

23
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continuity of care of the patients. The continuity of care that patients experience
can be improved by changing the physicians’ rosters. The rosters dictate who is
working each day and therefore who is admitting new patients and which ward
teams they are assigned to. If the roster is unfavourable to one team they may
end up admitting and, hence, caring for many more patients than the other
teams. This imbalance in patient workload can be corrected by transferring pa-
tients from one team to another, however this fragments the patient’s care. Fewer
transfers need to be made if the workloads of the teams are kept balanced. Since
the roster determines how many patients each team is assigned it can be used
to balance the workloads of the teams.

Cyclic rosters are perceived as ‘fair’ to staff as all staff work the same shifts over
a complete cycle. In the long term this should mean that, on average, staff expe-
rience the sameworkloads. A possible exception to this is if there are longitudinal
effects on the workload that align with the cycles of the roster, for example if the
first weekend of the month often has a high number of admissions and the cy-
cle length of the roster is also one month. Seasonal fluctuations in demand also
cannot be accommodated by cyclic rosters, whereas an acyclic roster could plan
for an increase in demand in winter. In practice, however, rosters are often re-
planned every 3 or 6 months as junior physicians being trained rotate through
departments in the hospital. This offers opportunities to create separate cyclic
rosters for the summer and winter seasons that can service different levels of
demand.

Although cyclic rosters ensure that workloads are fair in the long term, at any
point in time a cyclic roster does not inherently balance the current workload of
the ward teams, since even short sequences of shifts can have a large short term
impact on the number of patients a ward team is caring for. Therefore to deter-
mine rosters that balance ward team workloads day-to-day, and avoid long term
effects that align with the roster’s cycles, the relationship between individual
shifts and team workload must be incorporated into the roster building process.
Cyclic rosters do, however, ensure a fair distribution of the different types of
shifts in the long term, and are used in our model for this reason.

There are many possible metrics that could be minimised in order to balance the
workloads of the teams. For example the sum of the differences in workloads or
the mean absolute deviation both measure the imbalance of workloads. In the
model presented, the single largest difference in workloads between two teams
at any point in time is minimised. This measure is extremely sensitive to outliers,
however, it is also useful for improving continuity of care.
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There are no hard and fast rules for when a patient will be transferred to another
team to balance the workloads, nevertheless the larger the difference in worklo-
ads the higher the likelihood that a patient is transferred. Therefore minimising
the largest difference in workloads will reduce the probability that patients are
transferred between teams, and improve continuity of care. Even so, there are
other objectives that would reduce the probability that patients are transferred
between teams such as the number of times the difference in workloads exceeds
a given threshold, however for the purposes of this model the objective is to
minimise the largest difference in workloads.

The rest of this chapter presents the physician rostering problem of interest,
and develops a mixed integer programme (MIP) model to solve it, and is ba-
sed in part on Adams, O’Sullivan, and Walker (2019). Further it is shown that
when Benders’ decomposition is applied to the model the sub-problems (SPs)
can be reduced from linear programmes (LPs) to simple calculations, both for
the traditional version and a version proposed by Fischetti, Salvagnin, and Za-
nette (2010).

3.1 Problem Description
The rostering of physicians is a particularly complex problem because of the
many regulations to which the rosters must adhere. For example, there are often
rules around the handling of night shifts or a night ‘run’ (where several night
shifts are worked consecutively), and how frequently physicians must have the
weekend off. In New Zealand the major restrictions from a national collective
agreement are: that physicians must have at least every second weekend off,
after night shifts are worked physicians must have three days off to recover, and
any shift that ends after 4 p.m. gets paid overtime.

In the GM departments we have investigated, physicians usually work in teams
of at least two, which include a senior consultant, a registrar, and possibly addi-
tional trainees (e.g., a house officer). Registrars are physicians that are training
to become specialists and perform placements in different departments. When
they are in GM one of their responsibilities is admitting new patients. Since re-
gistrars admit new patients their roster determines the workloads of the teams.
Therefore we focus on the problem of rostering registrars to balance workload.
Registrars also have the most restrictions on their roster which makes creating
rosters for them difficult to do by hand. The remaining physicians’ rosters can
be generated reasonably easily from the registrars’ rosters.



26 3. General Medicine Rostering Model

For the purposes of the model we assume that the following two statements are
true for every physician: 1) they are part of a group of physicians who share a
cyclic roster; and 2) they are part of a team which aggregates the patients they
admit together and care for them collectively. The team may be just themselves,
or themselves and a senior consultant, or themselves, a senior consultant, and
several other physicians.

Every day, each physician must be assigned to a shift or given a day off. Typically
there are several types of shifts either with different roles or varying durations. At
least one of these shifts includes the task of admitting new patients. The patient
pathway, that is the way in which patients move through the department from
first being seen by a physician to being discharged, is then taken into account
to determine the number of patients that each of the teams cares for. It is also
possible for a physician to be assigned more than one shift on a day. This only
occurs when the physician is working night shifts and their regular duties are
covered by another physician. In this case the physician can be assigned the night
shift and one other shift, which the covering physician performs.

Not all shifts that the physicians have to perform are relevant to the rostering
process. Those shifts that are relevant are either; related to admissions or the
patients’ pathways, or have rules associated with them that can influence those
shifts. The shifts related to the admissions and pathways are relevant as they
directly affect the workloads of the teams. A shift that has a rule associated with
it, for example ‘must be performed on the day after shift X’ or ‘must be performed
by X physicians each day’ can influence the workloads of the teams by restricting
the possible assignments of the shifts related to admissions.

We assume that a cyclic roster is being used and one physician is working each
week in the roster at any point in time. This means that assigning the shifts to
physicians is equivalent to assigning the shifts to days and weeks in the cyclic
roster – see section 3.2 for an example. Therefore, the problem description is:

For each group of physicians that share a cyclic roster, we wish to
assign the shifts required by that roster (and days off) to the days
and weeks in the roster in such a way that minimises the largest dif-
ference in the workloads of the teams at any point over the planning
horizon, subject to any restrictions on the rosters.
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3.2 Mathematical Formulation
In this section we present a mathematical formulation of the problem described
in section 3.1. The objective of the model is to balance patient workload across
the teams. The workloads are balanced by minimising the largest difference in
workloads among all of the teams throughout the entire planning period. The
model is characterised by a set of parameters (tables 3.3 to 3.5), a set of functions
(tables 3.6 and 3.7), and a set of decision variables (table 3.8). The parameters
are split into three categories: general; those that depend on historical data; and
those that depend on the particular rules of a hospital. The functions are also
split into general functions and functions that depend on the hospital’s rules.

The concepts of a roster group and a workload group are introduced. A ros-
ter group is a collection of personnel (in our case physicians) that are identical
in terms of the types of shifts they can work and can therefore all be rostered
on a cyclic roster. In hospitals these groups can be used to distinguish physi-
cians from different departments, or physicians from nurses. Workload groups
are groups towards which the personnel contribute their individual workload.
In some situations the workload groups may be individual personnel. Alternati-
vely, personnel’s workloads may be aggregated together and shared between the
personnel, such as when a group of physicians send all the patients they admit
to the same ward and are responsible for all of the patients in that ward as a
group. The problem then is to minimise the maximum difference in workloads
between the workload groups.

For example, in the hospital considered in section 4.1 two distinct groups of
physicians are rostered at the same time; those in the inpatient wards, and those
in the assessment, diagnostic, and cardiology unit (ADCU). Each of these groups
work different shifts in different locations and have separate rules to which their
rosters must adhere, and therefore have separate cyclic rosters. The rosters are
linked because of how admissions are split between the departments. In this
example each physician is only responsible for the patients that they admit and
there is no aggregation of workload. This means that each physician has their
own workload group, making this feature of the model largely irrelevant for
this case study. In the second case study, however, several physicians admit new
patients to the same ward and collectively take care of the patients in that ward
as a group.

An example of cyclic rosters for two roster groups, the physicians in the roster
groups and the workload groups, is given in tables 3.1 and 3.2. In the first week
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physician 1 will work the shifts listed in row 1 of table 3.1. In the second week
they will work the shifts listed in row 2 and so on. It should be noted that roster
group 1 will work a 6 week cyclic roster whereas roster group 2 will work a 4
week cyclic roster, but workload group ‘Green’ refers to the same workload group
in both roster group 1 and 2, i.e., registrars in both roster groups contribute to
the Green workload. In reference to the shifts; ‘A’ stands for admission, ‘P’ for
post-acute (following up with patients the day after they are admitted), ‘X’ for a
day off, and ‘O’ for other. These are explained in more detail in section 4.1.

Table 3.1: Details for Roster Group 1

Registrar Workload Shifts
Group Mon Tue Wed Thu Fri Sat Sun

1 Green O O A P O O O
2 Blue O O A P O X X
3 Green O A P O O A A
4 Blue P O O O O X X
5 Green A P O O O A A
6 Blue P O O O O X X

Table 3.2: Details for Roster Group 2

Registrar Workload Shifts
Group Mon Tue Wed Thu Fri Sat Sun

7 Green O O A P O O O
8 Blue O O A P O X X
9 Green O A P O O A A
10 Blue P O O O O X X

3.2.1 Parameters and Sets

We start by introducing a number of parameters and sets for the model. Alt-
hough our definition of roster and workload groups is applicable to any type of
personnel, for the remainder of this work we use these groups for physician ros-
ters only. The set $ represents the separate roster groups, each roster group has:
its own cyclic roster; a set of physicians as members; and a set of shifts. The set
of physicians in roster group = is denoted by '= (originally from R(egistrars)),
and,= is the set of weeks in a cycle of roster group =. Both '=, and,= are as-
sumed to be sets of ordered integers from 1 to |'= |, and |,= | respectively. This
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assumption is made to simplify the arithmetic required when dealing with cyclic
rosters. The set of possible shifts for roster group = is (=. Here a shift refers to
a set of duties and responsibilities to be performed between a start and an end
time. ! is the set of workload groups, and +=,@,: is a binary parameter that des-
cribes which physicians contribute to each workload group and is 1 if physician
@ in roster group = contributes their patients to workload group :.

The set � is a set of integers corresponding to the days in the planning horizon,
where each integer is the number of days since an arbitrary starting point, and
� is the set of the days of the week (Mon–Sun). Each count day is divided into
parts, defined by %, independently of the shifts. For example, the parts could
be: 12 a.m. to 8 a.m.; 8 a.m. to 4 p.m.; and 4 p.m. to 12 p.m. The parts can
correspond to operational periods such as shift durations or simply be one hour
blocks. Patients are divided into classes in the set  based on their diagnosis
and pathway through the hospital. Patients can transition between classes at the
beginning of each part of the day. A summary of the general sets and parameters
of the model is given in table 3.3.

Table 3.3: General Sets and Parameters

Symbol Usage

$ The groups of physicians to be rostered separately
'= The physicians in roster group =, the set of integers from 1

to |'= | ≡ {1, 2, . . . , |'= |}
,= Cycle weeks in the roster of roster group =, the set of integers

from 1 to |,= | ≡ {1, 2, . . . , |,= |}
(= Possible shifts for the physicians in the roster group =
! The groups towards which the workloads of the physicians

contribute
+=,@,: Binary indicator that physician @ in roster group = contribu-

tes their patients to workload group :
� Count of days in the planning horizon
� Days of the week
% Parts of the day
 Classes of patient

Four parameters are derived from the historical data: the actual number of pa-
tients �9,2,> of each class 9 that are admitted in each part > of each day 2; the
proportion of admissions *9,2,>,=,A from each class 9 that each roster group =’s
shift A is responsible for on a given part > of a given day 2; the proportion of
patients ):,9,2,> from each class 9 that is transferred from each workload group :
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out of the general medicine department in part > of day 2; and the proportion
of patients &9,2,> of each class 9 that are discharged in each part > of each day
2. Proportions are used for discharges instead of counts. If the assignment of
patients to workload groups is different in the model than it was when the data
was recorded (because the roster is different), then some workload groups may
be caring for fewer patients than they were historically. If the historical number
of discharges was subtracted from this new, lower, workload, then a team could
end up caring for a negative number of patients. Using proportions for discharges
removes that possibility.

The proportion of admissions assigned to each shift,*9,2,>,=,A, also depends on the
particular hospital’s rules regarding patient pathways. For example a particular
shift might be assigned certain classes of patient, or have a limit to the number
of patients it is assigned. As long as the rules for assigning patients to the shifts
do not depend on howmany patients the physician working the shift is currently
caring for, *9,2,>,=,A can be computed using knowledge of the hospital’s patient
pathways and the admissions and discharges.

Both &9,2,> and ):,9,2,> quantify the proportion of patients that are removed from
the physicians’ workloads in each part of each day. Discharges represent patients
that no longer need to be in hospital, whereas transfers represent patients that
still require care but are moved out of the general medicine department either
for a medical reason or because of hospital rules on the number of patients te-
ams can care for. Transfers are assumed to occur at the beginning of each part
of the day, just after discharges from the previous part are applied. A summary
of the parameters dependent on the historical data is given in table 3.4, in addi-
tion methods for calculating these parameters from historical data are given in
algorithms 4.1 to 4.3.

The particular rules for a roster define the parameters �=, �=,L=,A,E,3 , �=,A,E,3 ,
�=,A,E,3 , R=, and R: which represent fixed, banned, linked, following, exclusive
and required shifts respectively.

Fixed shifts are shifts that must be worked on a particular day of a particular
week. Banned shifts are shifts that cannot be worked on a particular day of a
particular week. Linked shifts are shifts that must be worked if the prior shift
they are linked to has been worked, and must not be worked otherwise. For
example if a physician works the admission shift they must work the post-acute
shift the next day, but they cannot work the post-acute shift otherwise. Following
shifts are shifts that must be worked if the prior shift they are associated with
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Table 3.4: Parameters Dependent on Historical Data

Symbol Usage

�9,2,> Number of patients admitted on count day 2, in part >, of class
9

*9,2,>,=,A Proportion of admissions of class 9 on day 2, part >, that shift
A of roster group = adds to their workload

&9,2,> Proportion of patients discharged on count day 2, in part >, of
class 9, after taking into account patients that were transfer-
red.

):,9,2,> Proportion of patients transferred from workload group : on
count day 2, in part >, of class 9.

has been worked, but can be worked otherwise. For example if a physician works
on a particular weekend they must have the next weekend off, but they can have
the second weekend off even if they did not work the first one.

Exclusive shifts are shifts cannot be worked if another shift is worked, for instance
in the second case study in chapter 4 two ‘Long’ shifts cannot be worked on con-
secutive days. In other words the shifts are mutually exclusive. �=, �=,L=,A,E,3 ,
and �=,A,E,3 are all subsets of the Cartesian product (= × ,= × �. In contrast
�=,A,E,3 is a subset of the power set of this Cartesian product. This is because a
shift may be mutually exclusive with a single other shift, a group of other shifts,
or both.

Required shifts are shifts that must be performed by an exact number of phy-
sicians on a particular day, either by physicians in the same roster group, R=,
or physicians in the same workload group, R:. R= and R: are sets of shift, day
tuples for which a required number of physicians, 7=,A,3 and 7:,A,3 , are defined.
To be able to define R:, the physicians in the workload group, :, must either all
come from the same roster group or the sets of shifts of roster groups that they
come from must have at least one shift in common.

The number of shifts that physicians can be assigned, G=,E,3 , is usually 1, with
the exception being when the physician is working night shifts. When a physi-
cian works night shifts their regular duties are sometimes covered by another
physician, so they can be assigned a second shift. Note that this method of using
a day and week dependent parameter only works if the conditions when physici-
ans can work more than one shift only occurs at a fixed point in the cyclic roster,
in the case of a physician covering night shifts this means that the night shifts
must be fixed in the cyclic roster. In the problems we study in chapter 4 there is
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only ever one night tour, which can be fixed in a given place in the cyclic roster
without loss of generality. However a more flexible approach would be to define
sets of shifts that could or could not be assigned on the same day, regardless of
their location in the cyclic roster. These sets could then be used to define exclu-
sive shifts. A summary of the sets and parameters dependent on the rules of the
hospital is given in table 3.5.

Note that Fixed, Banned, Linked, and Following shifts impose restrictions on a
single physician’s sequence of shifts, whereas Required shifts constrain the shifts
that are performed by the roster group as a whole. It is possible to extend the
definition of Fixed, Banned, Linked, and Following shifts to allow interactions
between physicians’ sequences of shifts. For example if physician 1 worked shift
A on Monday it could mean that physician 2 must work shift B on Tuesday. We
have not encountered any rules of this type and therefore do not include any in
the current formulation of the model. Also note that within this framework there
is not always a unique way of representing a set of rules, however generally a
rule lends itself to a particular type of restriction that we have defined here.
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Table 3.5: Sets Dependent on Hospital Rules

Symbol Usage

�= ⊆ (= ×,= × � A set of shift, week, day tuples used to index
which shifts must be performed, and when, for
roster group =

�= ⊆ (= ×,= × � A set of shift, week, day tuples for roster group
=, used to indicate the shifts that are banned on
each day of each week

L=,A,E,3 ⊆ (= ×,= × � A set of shift, week, day tuples which includes
shifts that are linked to future shifts, such that if
physician @ of roster group =works shift A in week
E, day 3 and L=,A,E,3 , ∅ then they must also
work the shift, week, day tuples linked to that
shift, (Â, Ê, 3̂) ∈ L=,A,E,3

�=,A,E,3 ⊆ (= ×,= × � A set of shift, week, day tuples which includes
shifts that are linked to future shifts, such that
if physician @ of roster group = works shift A in
week E, day 3 and �=,A,E,3 , � then they must
also work the shift, week, day tuples following
that shift, (Â, Ê, 3̂) ∈ �=,A,E,3 , but may work these
shifts even if they do not work shift A

�=,A,E,3 ⊆
P((= ×,= × �) A set of sets of shift, week, day tuples which in-

cludes shifts that are linked to other shifts, such
that if physician @ of roster group = works shift A
in week E, day 3 then for each set E ∈ �=,A,E,3
they cannot work any of the shift, week, day tu-
ples in the set, (Â, Ê, 3̂) ∈ E, but may work these
shifts if they do not work shift A

R= ⊆ (= × � A set of shift, day pairs used to index the num-
ber of shifts that need to be performed by roster
group =

7=,A,3 The number of physicians in roster group = that
must be assigned shift A on day 3

R: ⊆ (: × � A set of shift, day pairs used to index the number
of shifts that need to be performed by workload
group :, where (: is the intersection of the sets
of shifts of the roster groups of the physicians in
workload group :

7:,A,3 The number of physicians in workload group :
that must be assigned shift A on day 3

G=,E,3 The number of shifts that physicians in roster
group = can be assigned on day 3 in week E
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3.2.2 Functions

Three functions are defined which are used to map between the planning hori-
zon and the cycles of the roster groups. The first function, 51 : $×'=×� →,=,
returns the week in a given roster group’s cycle that a physician is working, gi-
ven the count day. The second, 52 : � → �, returns the day of the week given
the count day. The third, 53 : Z × $ → ,=, returns the week in a given roster
group’s cycle, given an integer number of weeks from the start of the planning
horizon. A summary of the general functions is given in table 3.6.

Table 3.6: General Functions

Symbol Usage

51 :
$×'=×� →,=

A function that returns the week in a given roster group’s
cycle that a physician is working, given the count day

52 : � → � A function that returns the day of the week given the
count day

53 : Z × $→
,=

A function that returns the week in a given roster group’s
cycle given an integer number of weeks from the start of
the planning horizon

The function, 8 :  ×�×% → P( ×�×%), returns the set of class, day, part tuples
(9̂, 2̂, >̂) that will transition into the given class in the given day and part (9, 2, >),
or in other words the predecessor class, day, part tuples of a given class, day,
part tuple. Note that only tuples (9̂, 2̂, >̂) where (2̂, >̂) is the direct chronological
predecessor of (2, >) can transition to (9, 2, >). This ensures that patients cannot
skip any parts of any days. In addition each (9̂, 2̂, >̂) is the predecessor of exactly
one (9, 2, >), in other words each (9̂, 2̂, >̂) has exactly one successor. This means
that all patients of a particular class in a given part of a given day transition to
the same class in the subsequent part, if they are not discharged or transferred. A
summary of the functions dependent on the hospital’s rules are given in table 3.7.

Table 3.7: Functions Dependent on Hospital Rules

Symbol Usage

8 :  × � × % →
P( × � × %) A function that describes how a patients’ class

changes over time. Returns the set of class,
week, part tuples that transition directly to the
given class, week, part tuple.
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3.2.3 Decision Variables

Binary decision variables, F=,A,E,3 , are used to determine whether the roster for
roster group = includes a particular shift on a given day of a given week. Given an
assignment of shifts and patient admission data the variable #:,9,2,> measures the
number of patients of each class each workload group is caring for in each part
of each count day. The variables "+2,>,"

−
2,> and "̄ are then used to determine

the largest difference in workloads between the workload groups at any point
in the planing horizon. A summary of the decision variables used in the model
is given in table 3.8.

Table 3.8: Decision Variables

Symbol Usage

F=,A,E,3 Whether shift A is performed on week E, day 3, by roster
group = (1 if it is, 0 otherwise), ∀= ∈ $, A ∈ (=,E ∈ ,=, 3 ∈
�

#:,9,2,> Number of patients of class 9, workload group : is attending
to at the end of part > on count day 2, ∀ : ∈ !, 9 ∈  , 2 ∈
�, > ∈ %

"+2,> An upper bound on the workload of the workload groupwith
the largest workload in part > on count day 2, ∀2 ∈ �, > ∈ %

"−2,> A lower bound on the workload of the workload group with
the smallest workload in part > on count day 2,∀2 ∈ �, > ∈ %

"̄ The largest difference in workloads between the workload
groups over the entire planning horizon

3.2.4 Objective Function

The objective function minimises the largest difference in workloads between
the workload groups over the planning horizon, and is shown below in (3.1):

min "̄. (3.1)

The workloads are not normalised by the number of physicians in the workload
groups, because in the instances we have encountered all of the workload groups
have had the same number of physicians making normalisation unnecessary. The
model could be generalised by using normalised workloads by changing the de-
finition of #:,9,2,> to be the number of patients per physician, and dividing the
corresponding constraints by the number of physicians in the workload group.
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3.2.5 Constraints

Constraints described in this section ensure that the roster obeys all of the rules.
The earlier definition of the appropriate sets and functions allows the constraints
to be expressed concisely. The constraints defined in (3.2) mean all fixed shifts
are worked and those in (3.3) prevent the banned shifts from being worked. The
constraints in (3.4) make sure shifts that are linked to the shift A on day 3, week
E are worked if and only if that shift is worked. The constraints in (3.5) make
sure shifts that must follow the shift A on day 3, week E are worked if that shift
is worked, but can also be worked if it is not. The constraints in (3.6) make sure
the sets of shifts that are mutually exclusive with the shift A on day 3, week E are
not worked if that shift is worked. The constraints in (3.7) and (3.8) make sure
that the correct number of the required shifts are worked for each roster and
workload group. Finally the constraints in (3.9) ensure that the number of shifts
assigned is less than or equal to the number allowed. Constraints (3.2)–(3.9) are
shown below:

F=,A,E,3 = 1 ∀= ∈ $, (A,E, 3) ∈ �=, (3.2)

F=,A,E,3 = 0 ∀= ∈ $, (A,E, 3) ∈ �=, (3.3)

F=,A,E,3 = F=,Â,Ê,3̂ ∀= ∈ $, (Â, Ê, 3̂) ∈ L=,A,E,3 , (3.4)

F=,A,E,3 ≤ F=,Â,Ê,3̂ ∀= ∈ $, (Â, Ê, 3̂) ∈ �=,A,E,3, (3.5)

F=,A,E,3 +
∑

(Â,Ê,3̂)∈E
F=,Â,Ê,3̂ ≤ 1 ∀= ∈ $, E ∈ �=,A,E,3, (3.6)∑

E∈,=

F=,A,E,3 = 7=,A,3 ∀= ∈ $, (A, 3) ∈ R=, (3.7)∑
=∈$,E∈,=

+=,E,:F=,A,E,3 = 7:,A,3 ∀: ∈ !, (A, 3) ∈ R:, (3.8)∑
A∈(=

F=,A,E,3 ≤ G=,E,3 ∀= ∈ $,E ∈ ,, 3 ∈ �. (3.9)

Constraint (3.10) is the patient balance equation, which ensures every patient
is assigned to a workload group. The number of patients each workload group is
caring for is made up of two parts. The first part is the sum of the patients they
were previously caring for multiplied by one minus the proportion transferred.
The function 8(9, 2, >) returns the classes, count days and parts of patients that
will become a patient of class 9 in part > on count day 2. This enables the model
to track patients through the parts of the day and from one day to the next.
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#:,9,2,> =
(
1 − &9,2,>

) ©«
∑

(9̂,2̂,>̂)∈ 8(9,2,>)

((
1 − ):,9̂,2̂,>̂

)
#:,9̂,2̂,>̂

)
︸                                       ︷︷                                       ︸

Previous patients retained

(3.10)

+
∑

=∈$,A∈(=,@∈'=

(
�9,2,>*9,2,>,=,AF=,A, 51(=,@,2), 52(2)+=,@,:

))
︸                                                       ︷︷                                                       ︸

New patients admitted

∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %.

The second part is the sum of patients that are admitted by physicians who con-
tribute to that workload group. The week index for the shift variable is calculated
by using 51, and the day is found using 52. Note that these functions assume a
fixed ordering of the physicians within each roster group.

The two parts are then multiplied by one minus the proportion of patients that
are discharged, to get the number of patients that remain. Note that ):,9,2,> is
only applied to patients that are carried over from previous parts, whereas &9,2,>

is also applied to patients that are received in that part.

Constraints (3.11) and (3.12) define an upper bound for the maximum and a
lower bound for the minimum workload for each part of each day respectively.
The largest difference in workloads is then defined by the constraints in (3.13).
Note that the minimisation objective will ensure that the constraints are binding
for the part where the largest difference in workloads occurs.

"+2,> ≥
∑
9∈ 

#:,9,2,> ∀2 ∈ �, > ∈ %, : ∈ !, (3.11)

"−2,> ≤
∑
9∈ 

#:,9,2,> ∀2 ∈ �, > ∈ %, : ∈ !, (3.12)

"̄ ≥ "+2,> − "−2,> ∀2 ∈ �, > ∈ %. (3.13)

3.2.6 Uncertain Admissions

Until this point it has been assumed that the number of patients admitted in
each part is certain and determined by �9,2,>. Likewise the other parameters
determined by the data *9,2,>,=,A, &9,2,>, and ):,9̂,2̂,>̂ have also been assumed to be
certain.
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In order to incorporate the uncertainty inherent in the system the number of pa-
tients admitted in each part can be estimated by modelling it using a parametric
distribution, such as the Poisson distribution, or using the empirical distribution.
The length of stays of each of the patients can also be estimated in a similar
manner. However, translating these processes into the number of patients that
each physician is caring for in each part of each day would require representing
the patients’ pathways as a type of queue system. This may be possible for simple
pathways, however in general this is not always possible.

We can instead assume a situation where there are a number of possible scena-
rios for each of �9,2,>, *9,2,>,=,A, &9,2,>, and ):,9̂,2̂,>̂. The scenarios could either be
proposed by the healthcare organisation, or generated from available historical
data, as we have done in section 4.1.4. The aim in this new situation is to find
a roster that takes into account all of the possible scenarios, rather than a sin-
gle realisation of admissions and discharges. Two methods for aggregating the
objective function across scenarios are presented later in this section. First, ho-
wever, the implications on the decision variables and constraints are discussed.

Suppose then that there is a set of scenarios /, and for each H ∈ / the values of
�(H)9,2,>, *

(H)
9,2,>,=,A, &

(H)
9,2,>, and )

(H)
:,9̂,2̂,>̂

are known. The decision variables that relate
to the number of patients being attended to by each workload group, and the
variables that measure the differences between groups, also need to be extended
to account for the scenarios, becoming # (H)

:,9̂,2̂,>̂
, "+ (H)2,> , "− (H)2,> , and "̄(H)2,>.

The constraints (3.10)–(3.13) are replaced with the following. Note that the
parameters and decision variables are now indexed by scenario, except for
F=,A, 51(=,@,2), 52(2), as we want one roster for all the scenarios, and +=,@,:, since the
physicians contribute to the same workload groups in all the scenarios.

# (H):,9,2,> =
(
1 − &(H)9,2,>

) ©«
∑

(9̂,2̂,>̂)∈ 8(9,2,>)

((
1 − ) (H)

:,9̂,2̂,>̂

)
# (H)
:,9̂,2̂,>̂

)
(3.10)

+
∑

=∈$,A∈(=,@∈'=

(
�(H)9,2,>*

(H)
9,2,>,=,AF=,A, 51(=,@,2), 52(2)+=,@,:

))
∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %, H ∈ /,
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"+ (H)2,> ≥
∑
9∈ 

# (H):,9,2,> ∀2 ∈ �, > ∈ %, : ∈ !, H ∈ /, (3.11)

"− (H)2,> ≤
∑
9∈ 

# (H):,9,2,> ∀2 ∈ �, > ∈ %, : ∈ !, H ∈ /, (3.12)

"̄(H) ≥ "+ (H)2,> − "− (H)2,> ∀2 ∈ �, > ∈ %, H ∈ /. (3.13)

In the case of a single scenario the objective function was to minimise the largest
difference in workloads in any part of the planning horizon. We consider two
ways of extending this objective to multiple scenarios. The first method, referred
to as the ‘Mean’ objective, is to minimise the mean of the largest difference in
workloads across all the scenarios, shown below:

min
1
|/ |

∑
H∈/

"̄(H). (3.14)

If, instead, we assume that the healthcare organisation is risk averse and is more
concerned with the outcomes in the worst scenarios, then we could minimise
the mean of the largest difference in workloads in the worst 5% of scenarios.
This particular type of risk aversion is called conditional value at risk (CVaR)
or expected shortfall. Rockafellar and Uryasev 2000 show how to express this
within a LP by introducing additional decision variables U, and W(H). If we assume
a minimisation objective which we want to minimise over the worst (largest)
(1−V)% of scenarios, then U represents the V percentile of the objective function
over the scenarios. The other additional variables, W(H), represent the amount
that the largest difference in workloads in scenario H, is above U. If the largest
difference in workloads in scenario H is less than U then W(H) is 0. The objective of
minimising the largest difference in workloads in the worst (1−V)% of scenarios,
referred to as the CVaR @ V% objective, can then be formulated as:

min U +
1

|/ |(1 − V)
∑
H∈/

W(H). (3.15)

With the following additional constraints to ensure the definitions of U, and W(H):

W(H) ≥ "̄(H) − U ∀H ∈ /. (3.16)

The new problem, where the uncertainty in admissions and discharges is repre-
sented in scenarios is similar to the sample average approximation (SAA) pro-
blem in stochastic programming, where the samples are replaced by scenarios.
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The SAA problem approximates a stochastic programme, where one or more
parameters are assumed to come from a known probability distribution(s) and
the objective is to optimise the expectation of a function of the decision vari-
ables and the random parameters, by taking a sample from the distribution(s)
and optimising the average of the objective function applied to this sample. If a
sampling procedure is used to generate the scenarios then algorithms for SAA
problems such as in Kleywegt, Shapiro, and Homem-de-Mello (2002), which in-
volves successively solving the problem with more and larger samples until a
convergence criteria is met, can be used.

For clarity the entire model is given in full below:

min
1
|/ |

∑
H∈/

"̄(H) (3.14)

s.t. F=,A,E,3 = 1 ∀= ∈ $, (A,E, 3) ∈ �=, (3.2)

F=,A,E,3 = 0 ∀= ∈ $, (A,E, 3) ∈ �=, (3.3)

F=,A,E,3 = F=,Â,Ê,3̂ ∀= ∈ $, (Â, Ê, 3̂) ∈ L=,A,E,3 , (3.4)

F=,A,E,3 ≤ F=,Â,Ê,3̂ ∀= ∈ $, (Â, Ê, 3̂) ∈ �=,A,E,3 , (3.5)

F=,A,E,3 +
∑

(Â,Ê,3̂)∈E
F=,Â,Ê,3̂ ≤ 1 ∀= ∈ $, E ∈ �=,A,E,3 , (3.6)∑

E∈,=

F=,A,E,3 = 7=,A,3 ∀= ∈ $, (A, 3) ∈ R=, (3.7)∑
=∈$,E∈,=

+=,E,:F=,A,E,3 = 7:,A,3 ∀: ∈ !, (A, 3) ∈ R:, (3.8)∑
A∈(=

F=,A,E,3 = 1 ∀= ∈ $,E ∈ ,, 3 ∈ �, (3.9)

# (H):,9,2,> =
(
1 − &(H)9,2,>

) ©«
∑

(9̂,2̂,>̂)∈ 8(9,2,>)

((
1 − ) (H)

:,9̂,2̂,>̂

)
# (H)
:,9̂,2̂,>̂

)
(3.10)

+
∑

=∈$,A∈(=,@∈'=

(
�(H)9,2,>*

(H)
9,2,>,=,AF=,A, 51(=,@,2), 52(2)+=,@,:

))
∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %, H ∈ /,
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"+ (H)2,> ≥
∑
9∈ 

# (H):,9,2,> ∀2 ∈ �, > ∈ %, : ∈ !, H ∈ /, (3.11)

"− (H)2,> ≤
∑
9∈ 

# (H):,9,2,> ∀2 ∈ �, > ∈ %, : ∈ !, H ∈ /, (3.12)

"̄(H) ≥ "+ (H)2,> − "− (H)2,> ∀2 ∈ �, > ∈ %, H ∈ /, (3.13)

# (H),"+ (H),"− (H), "̄ ≥ 0, (3.17)

F ∈ {0, 1}. (3.18)

3.3 Benders’ Decomposition
With the formulation of the optimisation problem defined in section 3.2 we apply
Benders’ decomposition with the aims of showing that the sub-problems (SPs)
can be solved by a simple calculation, and the solution to this calculation gives
cuts that are equivalent to those found by a LP proposed in Fischetti, Salvagnin,
and Zanette (2010). Benders’ decomposition (Benders 1962) breaks a problem
into a restricted master problem (RMP) and one or more SPs. The SPs are repre-
sented in the RMP by a set of constraints. This set of constraints usually starts
small, sometimes as the empty set, and more constraints are added as the result
of solving the SPs.

To simplify the notation in this sectionwe re-write constraints (3.2)–(3.9), which
ensure that the roster conforms to all of the rules, as AF = b. In addition the
patient balance equations in (3.10) are re-written as # (H):,9,2,> = B

(H)
:,9,2,>F, where

B(H):,9,2,> is a vector of length |$| |(| |, | |�| that incorporates the values of the para-
meters �(H)9,2,>,*

(H)
9,2,>,=,A, and +=,@,: directly, and &

(H)
9,2,>, and )

(H)
:,9̂,2̂,>̂

indirectly through

a substitution of # (H)
:,9̂,2̂,>̂

. It is also important to note here that it is assumed that

B(H):,9,2,>F is always positive as it models a patient workload, and therefore the
variables #,"+,"−, "̄ are all constrained to be non-negative.

The set - = {F |AF = b, F ∈ {0, 1}} represents the set of feasible rosters and
F̄ is a given value of the binary variables belonging to the set - , in other words
a given feasible roster. The problem in the previous section, defined by (3.1)–
(3.13), can then be re-expressed as:

min
F̄∈-

 min
#(H):,9,2,>,"

+ (H)
2,> ,"− (H)2,> ,"̄(H)

{Q(# (H):,9,2,>,"
+ (H)
2,> ,"− (H)2,> , "̄(H), F̄)}

 , (3.19)
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where Q(# (H):,9,2,>,"
+ (H)
2,> ,"− (H)2,> , "̄(H), F̄}) is the optimal value of the problem:

min
∑
H∈/
("̄(H)), (3.20)

s.t. # (H):,9,2,> = B
(H)
:,9,2,> F̄, ∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %, H ∈ /,

(3.10′)

"+ (H)2,> −
∑
9∈ 
(# (H):,9,2,>) ≥ 0, ∀: ∈ !, 2 ∈ �, > ∈ %, H ∈ /, (3.11)∑

9∈ 
(# (H):,9,2,>) − "

− (H)
2,> ≥ 0, ∀: ∈ !, 2 ∈ �, > ∈ %, H ∈ /, (3.12)

"̄(H) − ("+ (H)2,> − "− (H)2,> ) ≥ 0, ∀2 ∈ �, > ∈ %, H ∈ /, (3.13)

#,"+,"−, "̄ ≥ 0. (3.17)

Given dual variables c1,c2,c3,c4 that correspond to constraints (3.10′)–
(3.13), the dual of this problem is (a description of the dual transformation is
given in appendix A):

max
∑
H∈/

(
(c(1,H))ᵀ(B(H) F̄)

)
, (3.21)

s.t.
∑
9∈ 
(c(1,H):,9,2,>) − c

(2,H)
:,2,> + c

(3,H)
:,2,> ≤ 0, ∀: ∈ !, 2 ∈ �, > ∈ %, H ∈ /, (3.22)∑

:∈!
(c(2,H):,2,> ) − c

(4,H)
2,> ≤ 0, ∀2 ∈ �, > ∈ %, H ∈ /, (3.23)

c(4,H)2,> −
∑
:∈!
(c(3,H):,2,> ) ≤ 0, ∀2 ∈ �, > ∈ %, H ∈ /, (3.24)∑

2∈�,>∈%
(c(4,H)2,> ) ≤ 1, ∀H ∈ /, (3.25)

c1 free,c2,c3,c4 ≥ 0. (3.26)

The dual problem is always feasible and bounded (see appendix A). Therefore
given the set of vertices of the feasible polytope E, for the dual problem, there
is an optimal solution at one of these vertices ce , e ∈ E for each integer solution
F̄. The full problem in (3.19) can therefore be restated as:

min [, (3.27)

s.t. AF = b, (3.28)

[ ≥ (c1
e )ᵀ(BF), ∀e ∈ E, (3.29)

F ∈ {0, 1}. (3.30)
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It is usually not practical to include all of the constraints (3.29). Instead two
main approaches are used to solve the problem. The first, introduced by Benders
(1962), solves a relaxation of the problem that only includes a subset of the
constraints (3.29), the RMP. Then the solution to the RMP is passed to the SPs
and cuts are generated and added to the RMP. This process is repeated until an
optimal solution is found.

The second approach also begins with an RMP. However instead of solving the
RMP to optimality, solutions found during the branch and bound process (both
integer and fractional) are used to generate cuts which are added to the RMP
within a single branch and bound tree.

Both methods require optimality cuts of the form [ ≥ (c(1))ᵀ(BF), for which we
need the solution to the dual SP. This leads to the following proposition:

Proposition 3.1. GivenB and a solution to the RMP, F̄, the optimality cut required
for Benders’ decomposition can be expressed as:

[ ≥
∑
H∈/

(∑
9∈ 
(B(H)

:+ (H),9,2̄(H),>̄(H)
F) −

∑
9∈ 
(B(H)

:− (H),9,2̄(H),>̄(H)
F)

)
, (3.31)

where

2̄(H), >̄(H) = arg max
2∈�,>∈%

(
max
:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

)
−min

:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

))
, (3.32)

:+ (H) = arg max
:∈!

(∑
9∈ 
(B(H)

:,9,2̄(H),>̄(H)
F̄)

)
, (3.33)

:− (H) = arg min
:∈!

(∑
9∈ 
(B(H)

:,9,2̄(H),>̄(H)
F̄)

)
. (3.34)

Proof. We will prove this proposition by finding feasible solutions to both the
primal and the dual and showing that the objective function values are equal,
and therefore, by the Strong Duality Theorem, that the solutions are optimal.

We begin by noting that the primal SP can be further decomposed because there
is no interaction between any of the scenarios, giving the following problem for
a single scenario, with the (H) superscript dropped and rearranged slightly from
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earlier:

min "̄ (3.35)

s.t. #:,9,2,> = B:,9,2,> F̄, ∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %, (3.10′′)

"+2,> ≥
∑
9∈ 
(#:,9,2,>), ∀: ∈ !, 2 ∈ �, > ∈ %, (3.11′)∑

9∈ 
(#:,9,2,>) ≥ "−2,>, ∀: ∈ !, 2 ∈ �, > ∈ %, (3.12′)

"̄ ≥ "+2,> − "−2,>, ∀2 ∈ �, > ∈ %, (3.13′)

#,"+,"−, "̄ ≥ 0. (3.17)

The #:,9,2,> variables are specified exactly by #:,9,2,> = B:,9,2,> F̄, which can be
substituted into the remaining constraints:

min "̄ (3.35)

s.t. "+2,> ≥
∑
9∈ 
(B:,9,2,> F̄), ∀: ∈ !, 2 ∈ �, > ∈ %, (3.11′′)∑

9∈ 
(B:,9,2,> F̄) ≥ "−2,>, ∀: ∈ !, 2 ∈ �, > ∈ %, (3.12′′)

"̄ ≥ "+2,> − "−2,>, ∀2 ∈ �, > ∈ %, (3.13′′)

"+,"−, "̄ ≥ 0. (3.17)

The decomposed and substituted problem has a feasible solution of:

"̄ = max
2∈�,>∈%

(
max
:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

)
−min

:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

))
,

"+2,> = max
:∈!

(∑
9∈ 
(B(H)

:,9,2̄(H),>̄(H)
F̄)

)
∀2 ∈ �, > ∈ %,

"−2,> = min
:∈!

(∑
9∈ 
(B(H)

:,9,2̄(H),>̄(H)
F̄)

)
∀2 ∈ �, > ∈ %,

with an objective function value of

max
2∈�,>∈%

(
max
:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

)
−min

:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

))
.

The solution is feasible as"+2,> and"
−
2,> are equal to the maximum andminimum

values of the right hand sides of constraints (3.11′′) and (3.12′′) respectively. "̄
is then equal to the maximum value of the right hand side of constraint (3.13′′).
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This solution effectively computes the maximum difference in workloads for the
given roster by finding the part of the day on which the difference between the
maximum and minimum workloads is largest.

We now consider the dual problem, beginning with the scenario-decomposed
version of the original dual:

max (c(1))ᵀ(B F̄),
s.t.

∑
9∈ 
(c(1):,9,2,>) − c

(2)
:,2,> + c

(3)
:,2,> ≤ 0, ∀: ∈ !, 2 ∈ �, > ∈ %,∑

:∈!
(c(2):,2,>) − c

(4)
2,> ≤ 0, ∀2 ∈ �, > ∈ %,

c(4)2,> −
∑
:∈!
(c(3):,2,>) ≤ 0, ∀2 ∈ �, > ∈ %,∑

2∈�,>∈%
(c(4)2,>) ≤ 1,

c1 free,c2,c3,c4 ≥ 0.

Because of the maximisation objective, and the assumption that B F̄ is always
positive, the first constraint can be considered an equality constraint and the
following substitution can be made∑

9∈ 
(c(1):,9,2,>) = c

(2)
:,2,> − c

(3)
:,2,>.

Using this substitution the dual of the decomposed SP is given below, note that
because of the substitution the objective function now requires a sum over  ,
and the • subscript is used as a place holder to represent a vector when only one
of the subscripts is specified:

max (c2 − c3)ᵀ
(∑
9∈ 
(B•9•• F̄)

)
(3.21′)

s.t. c4
2,> ≥

∑
:∈!
(c2

:,2,>), ∀2 ∈ �, > ∈ %, (3.23′)

c4
2,> ≤

∑
:∈!
(c3

:,2,>), ∀2 ∈ �, > ∈ %, (3.24′)∑
2∈�,>∈%

(c4
2,>) ≤ 1, (3.25′)

c2,c3,c4 ≥ 0. (3.26′)
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The decomposed and substituted dual problem has a feasible solution

c2
:+,2̄,>̄ = 1,c3

:−,2̄,>̄ = 1,c4
2̄,>̄ = 1,

and all other variables are 0, and 2̄, >̄, :+, and :− are defined as in (3.32)–(3.34).
This solution also has an objective function value of

max
2∈�,>∈%

(
max
:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

)
−min

:∈!

(∑
9∈ 
(B(H):,9,2,> F̄)

))
.

Therefore we have feasible solutions to both the primal and the dual problems
with the same objective function value and by the Strong Duality Theorem the
two solutions solve the primal and dual SPs respectively. These solutions to the
decomposed dual SPs are multiplied by their objective coefficients and aggrega-
ted to obtain the optimality cut for Benders’ decomposition as follows:

[ ≥
∑
H∈/

(∑
9∈ 
(B(H)

:+ (H),9,2̄(H),>̄(H)
F) −

∑
9∈ 
(B(H)

:− (H),9,2̄(H),>̄(H)
F)

)
. (3.31)

�

Proposition 3.1 means that, instead of solving an LP for the dual SP, we can
compute 2̄, >̄, :+, and :− for each scenario, H, to get the indices of the non-zero
dual variables. The optimality cut can then be formed.

The cuts in (3.31) are known as aggregated cuts because of the sum of coeffi-
cients over all the scenarios. With a small reformulation of the RMP, given below,
one cut can be added for each scenario. These are known as disaggregated cuts,
and in situations where they can be applied they have been shown to be an im-
provement over aggregated cuts. Given that the set of vertices of the feasible
polytope for each scenario’s sub-problem are represented by E(H). Each vertex of
E(H) is represented by e(H), and the dual solution at each vertex is c(H)

e(H)
. Using the

decomposed and substituted version of the dual SP the master problem (MP) in
(3.27)–(3.30) can be restated as:

min [̄ (3.36)

s.t. AF = b, (3.37)

[̄ ≥
∑
H∈/

[(H), (3.38)

[(H) ≥ (c(2,H)
e(H)
)ᵀ(B(H)•9••F) − (c

(3,H)
e(H)
)ᵀ(B(H)•9••F), ∀e(H) ∈ E(H), H ∈ /, (3.39)

F ∈ {0, 1}. (3.40)
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To solve this problem constraint (3.39) is initially ignored and a value of F is
found that satisfies AF = b. This F is used to add cuts, to the MP, of the form:

[(H) ≥
∑
9∈ 
(B(H)

:+ (H),9,2̄(H),>̄(H)
F) −

∑
9∈ 
(B(H)

:− (H),9,2̄(H),>̄(H)
F), (3.41)

where 2̄, >̄, :+, and :− are are determined as before, using (3.32)–(3.33). The
RMP is then solved again with the new cuts added, and another F is found.
This is again used to add more cuts to the RMP. This process is repeated until
a solution of the RMP is found where the objective of the RMP is equal to (or
within a required tolerance of) the sum of the right hand sides of the cuts that
are generated from that solution.

In addition, Fischetti, Salvagnin, and Zanette (2010) proposes an LP (given be-
low) to find cuts for Benders’ decomposition. The LP selects a cut which cor-
responds to a minimal infeasible subsystem of an extended primal SP, given a
solution F̄, [ to the RMP.

max (c2 − c3)ᵀ
(∑
9∈ 
(B•9•• F̄)

)
− c0[ (3.42)

s.t. c4
2,> ≥

∑
:∈!
(c2

:,2,>), ∀2 ∈ �, > ∈ %,

(3.43)

c4
2,> ≤

∑
:∈!
(c3

:,2,>), ∀2 ∈ �, > ∈ %,

(3.44)∑
2∈�,>∈%

(c4
2,>) ≤ c0, (3.45)∑

:∈!,2∈�,>∈%

(
c2
:,2,> + c

3
:,2,>

)
+ l0c0 ≤ 1, (3.46)

c0,c2,c3,c4 ≥ 0. (3.47)

Proposition 3.2. If the LP proposed by Fischetti, Salvagnin, and Zanette (2010)
produces a cut, it is the same cut as that identified in proposition 3.1.

Proof. Suppose we start with the feasible solution c = 0. In order to improve
the objective function from this point we need to find 3, >, :1, and :2 such that
c2
:1,3,>

(∑
9∈ (B:1,9,3,> F̄)

) − c3
:2,3,>

(∑
9∈ (B:2,9,3,> F̄)

) − c0[ > 0.
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If no such 3, >, :1, and :2 exist the optimal solution is c = 0, or if [ is negative
then c0 = 1/l0, and no cut can be formed from the sub-problem.

If such 3, >, :1, and :2 exist then they are chosen such that
(∑

9∈ (B:+,9,2̄,>̄ F̄)
) −(∑

9∈ (B:−,9,2̄,>̄ F̄)
)
is maximised, in the same manner as in (3.32) – (3.34). If

we then increase both c2
:+,2̄,>̄ and c3

:−,2̄,>̄ by n, then c4
2̄,>̄ increases by n due to

constraint (3.43), and c0 therefore increases by n as well because of constraint
(3.45). This process has increased c2

:+,2̄,>̄, c
3
:−,2̄,>̄ and c

0 by n, therefore the left
hand side of (3.46) has increased by (2 + l0)n.
Since 2̄, >̄, :+, and :− are chosen to maximise(∑

9∈ 
(B:+,9,2̄,>̄ F̄)

)
−

(∑
9∈ 
(B:−,9,2̄,>̄ F̄)

)
increasing any c2 or c3 other than c2

:+,2̄,>̄ and c3
:−,2̄,>̄ will not result in as

much improvement of the objective function, in addition no other c3 should
be increased without increasing a corresponding c2 as B F̄ is always positive
and would therefore not improve the objective function. Therefore c2

:+,2̄,>̄ and
c3
:−,2̄,>̄ should be increased until (3.46) is binding, from where it is impossi-

ble to increase any c2
:+,2̄,>̄ or c3

:−,2̄,>̄ further, and therefore the solution is op-
timal. This occurs when n = 1

(2+l0) , and gives the following optimal solution
c0 = c2

:+,2̄,>̄ = c
3
:−,2̄,>̄ =

1
(2+l0) , and corresponding cut:

1
(2 + l0)

(∑
9∈ 
(B:+,9,2̄,>̄F)

)
− 1
(2 + l0)

(∑
9∈ 
(B:−,9,2̄,>̄F)

)
− 1
(2 + l0)[ ≤ 0.

(3.48)

The cut in (3.48) is equivalent to the earlier cut in (3.41). �

We have now shown that the optimisation problem formulated in section 3.2 can
be solved using Benders’ decomposition. The result that the cuts can be genera-
ted by direct computation is valuable as it makes the SPs easier to solve than if an
LP had to be solved. Further the equivalence of these cuts with those proposed by
Fischetti, Salvagnin, and Zanette (2010) is also of note as the cuts they propose
are the most-violated cuts. We also note that although proposition 3.2 relies on
the assumption that B F̄ is positive, it is possible to relax this assumption. This
would be achieved by first removing the non-negativity constraints on #,"+,
and "−, and following through the consequences of this change, most notably
that the constraints (3.22)–(3.24) in the dual SP become equality constraints.
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Conclusion
In this chapter we presented a rostering model for physicians in a GM depart-
ment. The objective of the model is to balance the workloads of the physicians,
in terms of the number of patients they are caring for, by minimising the largest
difference in workloads. Historical patient admission and discharge data is utili-
sed in the model by including a model of the patient pathways through the GM
department and linking this model to the rosters of the physicians.

The rostering model is extended to take into account uncertainty in the patient
admissions and discharges. Scenarios are used to represent the uncertainty in
these parameters, instead of parametric or empirical distributions, as they are
more easily translated into the patient workloads of the physicians. A risk averse
approach is also considered, where only the worst (1 − V)% of scenarios are
included in the objective function.

Finally, a Benders’ decomposition of the problem was introduced, in which it is
shown that instead of solving an LP for each SP, the solutions can be computed
from closed form expressions. In addition these closed form expressions for cuts
are shown to be the same as the cuts produced when using another approach
to find cuts for Benders’ decomposition proposed by Fischetti, Salvagnin, and
Zanette (2010).

In the next chapter we apply the model presented here to a case studies at Waite-
mata District Health Board (WDHB) and Auckland District Health Board (ADHB)
to both determine the value of the approach and demonstrate how the model can
be applied in different situations.





— Chapter 4 —

General Medicine Rostering Case
Studies

In chapter 3 we formulated an optimisation model that creates cyclic rosters for
physicians taking into account the number of patients that the physicians are
caring for. In order to define an instance of this optimisation model we require
knowledge of: the rules that govern the physicians’ rosters, the pathways that
patients follow, and historical patient data.

In this chapter we present case studies of two hospitals in Auckland, New Zea-
land, that have departments where the rostering model has been applied. The
first involves the expansion of the general medicine (GM) department at Waita-
kere Hospital (WTH), a large hospital in West Auckland. Section 4.1 describes
the pertinent details of this department and demonstrates how the inputs for
the optimisation model are derived from this description. In addition historical
patient data is used to compare a roster proposed by the hospital to ones created
by the optimisation model.

The second case study is the GM department at Auckland City Hospital (ACH).
This is presented in section 4.2 and serves only as an example of how the model
can be applied to different hospitals, rather than investigating the value that
using the model can provide.

4.1 Waitakere Hospital
The Waitemata District Health Board (WDHB) provides health services to the
North Shore, Rodney and West Auckland areas of the Auckland region in New

51
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Zealand. It serves the largest population of any District Health Board in New Ze-
aland, with a population of more than 600,000 people, and is expected to grow
by approximately 110,000 people (20%) in the next 10 years. WDHB operates
two hospitals, Waitakere Hospital (WTH) and North Shore Hospital (NSH), and
14 other clinics.

In each of the hospitals there is a GM department. These departments deal with
the diagnosis and treatment of patients that do not require surgery. The staff in
GM are split into teams. Each team consists of a consultant (a specialist general
physician), a registrar (a doctor training to be a specialist) and a house officer
(a more junior doctor also in training).

4.1.1 Background

At WTH the patients assigned to GM are cared for in two areas: the inpatient
wards; and the assessment, diagnostic, and cardiology unit (ADCU). The phy-
sicians who work in each area are divided into teams and the members of the
teams that need to be considered for rostering purposes are called registrars.
The registrars are unique because their shifts determine who cares for new ad-
missions to GM. The other physicians in the teams do not need to be considered
because their rosters can be determined from the rosters of the registrars.

In 2014 the GM department at WTH was undergoing an expansion up to a total
of 12 GM teams to be split between the inpatient wards and the ADCU. This
expansion was seen by the management team at WDHB as an opportunity to
improve the continuity of care of the patients in GM.

Two possibilities were considered for splitting the teams between the inpatient
wards and the ADCU. In the first, 10 teams would work in the inpatient wards
and 2 in the ADCU, and in the second 8 teams would work in the inpatient
wards and 4 in the ADCU. For the first split (10 inpatient, 2 ADCU), only one
configuration of the ADCU registrars was considered, whereas for the second
split (8 inpatient, 4 ADCU), two different configurations of the ADCU registrars
were considered.

Patients are admitted to GM either from the emergency department (ED) or via
referral from an external source, for example their general practitioner (GP).
Patients who arrive at the hospital requiring immediate care are first seen by
a physician in ED. The ED physician determines whether the patient has a GM
issue; in other words if they are sick and do not need surgery. If the patient has a
GM issue then the ED physician calls the GM registrar that is on call. The patient
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is then assessed by the GM registrar to determine how long they will remain in
hospital. If the patient is expected to stay in hospital for less than 48 hours they
are classified as short stay, otherwise they are classified as long stay.

Some patients are referred to the hospital directly from their GPs. These patients
first go to the ADCU, where again it is determined whether they have a GM issue
and whether they are short or long stay.

All patients that are considered to be long stay are split evenly between the
inpatient ward teams of the registrars that are working the admission shift that
day. Short stay patients are taken care of by the teams in the ADCU, up to a limit
of 6 new patients each day per ADCU registrar working the admission shift. Any
short stay patients above this limit are transferred to an inpatient ward before the
post-acute round the following day, and are split evenly between the admitting
inpatient ward registrars just like long stay patients. In addition if a patient that
was originally diagnosed as short stay ends up staying in the ADCU for more
than 24 hours they are transferred to an inpatient ward. Figure 4.1 gives a flow
diagram depicting an overview of the patient flow.

Patients
Referred
to Hospital

Patients
Needing

Urgent Care

Emergency
Department

Assessment
Diagnostic and
Cardiology Unit

Inpatient
Wards

Discharge

General Medicine

Figure 4.1: Patient Flow in General Medicine

There is also a limit of 15 on the total number of new patients that an inpatient
ward team can accept in a day. However instead of the excess patients being ta-
ken care of elsewhere inWaitakere Hospital (WTH), they remain in the inpatient
ward until the following morning when they are transferred to another hospital.

The registrars in GM can be assigned many different types of shifts, however
only some of them are relevant to the rostering problem. The relevant shifts are:
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• Admission shift (A). The registrar is on call during the day and new pa-
tients are shared between their team and any other teams with registrars
working this shift;

• Post-acute shift (P). This is performed the day after the A shift, to follow
up on patients;

• Night shift (N). The registrar is on call at night, however admissions are
still split between the teams of the registrars who were working the A shift
during the day. The admissions are given to the A shift teams because the
registrar working this shift will not be there to perform a post-acute shift
the following day, as they will be working the night shift again. In addition
if the registrar is scheduled to perform any admission shifts during their
night run then the admissions are given to their own workload group, as
a relief registrar will be covering their regular shifts;

• Sleep shift (Z). After working a week of night shifts registrars are given
time to catch up on sleep;

• No shift (X). Registrars are given some days off;

• Other (O). All other shifts are grouped together as they do not affect ad-
missions or have any rules or requirements associated with them.

The rosters for the registrars who work in the inpatient wards must obey the
following rules:

1. At least one registrar must perform the admission shift each day;

2. The admission shift on Saturday is followed by an admission shift on Sun-
day. The admission shift on all other days is followed by a post-acute shift
on the next day;

3. A night ‘tour’ consists of 7 days of night shifts, starting on a Friday, followed
by three rest days, or ‘sleep’ shifts;

4. Monday to Sunday of the night tour is covered by a relief registrar. During
this time the registrar on night shifts can be assigned a second shift which
will be performed by the relief registrar. The first three days of night shifts
(Friday–Sunday) are not covered by a relief registrar;

5. Registrars must have every second weekend off (no shift).
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6. If a registrar is not assigned one of the above shifts they are assigned an
other shift ‘O’, which represents all of the other possible shifts they can be
assigned which do not influence admissions or the rules of the described
shifts;

7. Registrars cannot be assigned the night shift outside of the night tour, can-
not be given an other (O) shift on weekends, and cannot be given a day
off during the week.

A 10 week cyclic roster for the inpatient ward teams for the 10 inpatient, 2 ADCU
split had already been proposed by the management at WDHB. This proposed
roster is shown in table 4.1.

Three configurations were considered for the registrars working in the ADCU.
In all configurations rule 2 for the inpatient ward registrars also applies to the
ADCU registrars, however none of the other rules do. Instead they are replaced
by the following: in configuration 1, two registrars alternate performing admissi-
ons from Monday to Friday; in configuration 2, four registrars share performing
admissions, with two registrars admitting each day, from Monday to Friday; in
configuration 3, four registrars share performing admissions (in no fixed order),
with one registrar admitting each day, from Monday to Sunday and all having
every second weekend off.

Configuration 1 represents the maximum possible coverage when there are only
two ADCU registrars, since the post-acute shift must be worked the day after the

Table 4.1: Proposed Roster for 10 Inpatient Ward Teams

Week Mon Tue Wed Thu Fri Sat Sun

1 A P O O N N N
2 N N, A N, P N Z Z, A Z, A
3 P O O A P X X
4 O O O O A P X
5 O O O A P X X
6 O O A P O X X
7 O O O O A P X
8 O A P O O X X
9 A P O O O A A
10 P O A P O X X
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Table 4.2: Roster for ADCU Configuration 1

Week Mon Tue Wed Thu Fri Sat Sun

1 A P A P A P X
2 X A P A P X X

Table 4.3: Roster for ADCU Configuration 2

Week Mon Tue Wed Thu Fri Sat Sun

1 A P A P A P X
2 O A P A P X X
3 A P A P A P X
4 O A P A P X X

Table 4.4: Roster for ADCU Configuration 3

Week Mon Tue Wed Thu Fri Sat Sun

1 A P O O O A A
2 P O O O O X X
3 O O A P A P X
4 O A P A P X X

admission shift, which prevents a registrar from admitting two days in a row. Ad-
mission shifts on the weekends cannot be covered with only two registrars. This
is because it takes two separate teams to cover the weekend, one to post-acute
on Saturday (after admitting on Friday) and the other to admit on Saturday and
Sunday. Combined with the fact that registrars must have every second weekend
off this means four registrars are needed to fully cover the weekend.

Configurations 2 and 3 represent different deployments of four registrars. Con-
figuration two is simply doubling configuration 1 by having two registrars admit
each weekday. Configuration 3 instead uses the extra registrars to perform ad-
mission shifts on the weekends, however only one registrar is admitting each
day. Tables 4.2 to 4.4 show possible rosters for the three ADCU configurations.

4.1.2 Parameters

The values of the parameters that define the model for Waitakere Hospital
(WTH) are given in this section, except for those that depend on the histori-
cal data and patient flow (�9,2,>, &9,2,>, *9,2,>,=,A, ):,9,2,>), which are described
separately in the following section. Only the parameters for when there are 10
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teams in the inpatient wards, and the ADCU is staffed using configuration 3
are presented here, as the changes to the parameters for a different number of
inpatient ward teams or a different ADCU scenario are minor. The general para-
meters are described first, before moving on to the parameters that depend on
the rostering rules.

There are two groups of physicians that need to be rostered: the registrars in
the inpatient wards, and the registrars in the ADCU. Therefore the set of roster
groups is defined as $ = {Inpat,ADCU}. The sets of physicians in each roster
group are simply defined as the set of integers from 1 to the number of physicians
in that roster group, so 'Inpat = {1, 2, 3, . . . , 10} and 'ADCU = {1, 2, 3, 4}. The
sets of weeks in each roster groups’ cyclic roster are equal to the sets of physicians
so,Inpat = 'Inpat and,ADCU = 'ADCU.

The shifts considered are: acute, post-acute, night, sleep, day-off, and other. The-
refore the set of shifts for the inpatient teams is defined as (Inpat = {A, P, N, Z,
X, O}. The registrars in the ADCU do not have to work any night shifts (and
therefore no sleep shifts), therefore their set of shifts is (ADCU = {A, P, X, O}.

Because, in both the inpatient wards and the ADCU, each team only ta-
kes care of their own patients, and there is one registrar per team, one
workload group is defined for each registrar. The set of workload groups
is then defined as ! = {Inpat1, . . . , Inpat10,ADCU1, . . . ,ADCU4}. The in-
dicator parameter that maps physicians to workload groups is +=,@,: =

1 if : is the concatenation of = and @, 0 otherwise.

Defining one workload group for each physician being rostered makes the dis-
tinction of workload groups redundant for this problem, as tracking workload
by group is equivalent to tracking workload by physician. In general, however,
there is a need to distinguish between physicians and workload groups, as is
demonstrated by the second case study in section 4.2.

One year, or 52 weeks, is used for the planning horizon. Therefore the set that
counts all of the days in the planning horizon is � = {1, 2, 3, . . . , 364}. The set
of days of the week is � = {Mon, Tue, Wed, Thu, Fri, Sat, Sun}. Each day is
divided into three parts: day (8 a.m.–4 p.m.), evening (4 p.m.–10 p.m.), and
night (10 p.m.–8 a.m.). These periods are chosen because they correspond to
the times that the shifts start (admission starts at 8 a.m., night at 4 p.m.). The
set of the parts of the day is then % = {D(ay), E(vening), N(ight)}.

The final general parameter is the set of patient classes. The general medicine
department distinguishes between patients that are expected to stay for less than
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Table 4.5: Waitakere Hospital General Sets and Parameters

Symbol Example

$ {Inpat, ADCU}
'Inpat {1, 2, 3, . . . , 10}
'ADCU {1, 2, 3, 4}
,Inpat {1, 2, 3, . . . , 10}
,ADCU {1, 2, 3, 4}
(Inpat {A, P, O, X, N, Z}
(ADCU {A, P, O, X, Z}
! {Inpat1, . . . , Inpat10, ADCU1, . . . , ADCU4}

+=,@,: 1 if : is the concatenation of = and @, 0 otherwise. For exam-
ple +Inpat,1,Inpat1 = 1

� {1, 2, 3, . . . , <�}
� {Mon, Tue, Wed, Thu, Fri, Sat, Sun}
% {D, E, N}
 {S/S New, S/L New, L/S New, L/L New, S/S Old, S/L Old,

L/S Old, L/L Old}, where ‘X/X’ refers first to the patient’s
actual duration (either short stay (S) or long stay (L)) and
second to the presented stay. In addition ‘New’ refers to pa-
tients that were admitted that day, and ‘Old’ to patients that
were admitted on a previous day.

48 hours, short stay, or more than 48 hours, long stay. In addition, the duration
that the patient actually stays for influences their path, as patients originally
thought to be short stay are moved to the inpatient wards if they actually stay
for more than 24 hours. Further, whether a patient was admitted on that day, or
on an earlier day is important, as there are limits on the number of new patients
teams can admit in a day. The set of patients classes can therefore be written as  
= {S/S New, S/L New, L/S New, L/L New, S/S Old, S/L Old, L/S Old, L/L Old},
where ‘X/X’ refers first to the patient’s actual length of stay (either short stay
(S) or long stay (L)) and second to the expected stay. In addition ‘New’ refers to
patients that were admitted that day, and ‘Old’ to patients that were admitted on
a previous day. The general parameters for the WTH problem are summarised
in table 4.5.

The rules described in the previous section define the parameters �=, �=,L=,
�=,R=, and 7=, which represent the fixed, banned, linked, following, and requi-
red shifts.

Note that here we begin to use ‘set-builder notation’, which is used to describe
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sets and their elements. In particular we make use of the logical ‘and’ operator
∧.
For the inpatient roster group the night ‘tour’ is fixed to start on the Friday night
in the first week, and finish on Thursday night in the second week. The night
tour can be fixed here without eliminating any possible solutions because any
solution with the night tour in a different place can be ‘rotated’ around the cyclic
roster so that the night tour once again starts in the first week.

Therefore �Inpat must contain all of the shift, week, day tuples that correspond
to that night tour, so �Inpat = {(N, 1, Fri), (N, 1, Sat), (N, 1, Sun), (N, 2, Mon),
(N, 2, Tue), (N, 2, Wed), (N, 2, Thu), (Z, 2, Fri), (Z, 2, Sat), (Z, 2, Sun)}. There
are no fixed shifts for the registrars in the ADCU so �ADCU = ∅.
Since the night tour starts on the Friday of the first week the days preceding this
must not be assigned a night shift, a sleep shift or a day off. Therefore the set
{(A, 1, 3) : A ∈ {X, N, Z} ∧ 3 ∈ {Mon, Tue, Wed, Thu}} must be a subset of the
set of banned shifts. As there is no relief registrar for the first three days of the
night tour, or the final three days of sleep shifts, no other shifts can be assigned
during this time and both {(A, 1, 3) : A ∈ {A, P, Z, X, O} ∧ 3 ∈ {Fri, Sat, Sun}}
and {(A, 2, 3) : A ∈ {A, P, N, X, O} ∧ 3 ∈ {Fri, Sat, Sun}} should be added to the
set of banned shifts. In all of the other weeks, days off, night shifts, and sleep
shifts should not be assigned during the week so {(A,E, 3) : A ∈ {O, N, Z} ∧E ∈
,Inpat\{1, 2}∧3 ∈ {Sat, Sun}} should be added to the set of banned shifts. Also,
on all of the other weekends, other shifts, night shifts, and sleep shifts should not
be assigned so {(A,E, 3) : A ∈ {O, N, Z} ∧ E ∈ ,Inpat \ {1, 2} ∧ 3 ∈ {Sat, Sun}}
should be added to the set of banned shifts. There are no banned shifts for the
registrars in the ADCU so �ADCU = ∅.
Linked shifts are used to make sure that when a registrar works the admission
shift on one day, they work the post-acute shift the following day, except for
on Saturdays where if they work the admission shift they must also work the
admission shift on Sunday and then the post-acute shift on Monday. Further
these post-acute and admission shifts can only ever be worked if the prior shifts
are also worked. This applies to both the registrars in the inpatient wards and
those in the ADCU. Therefore for each roster group =, for each week E in that
roster groups’ set of weeks,=, for each day of the week 3 other than Saturday
and Sunday, the value of L=,A,E,3 is {(P,E, 3̂)}, where 3̂ is the next day of the
week after 3. In addition the value of L=,A,E,Sat is {(A,E, Sun)}, and L=,A,E,Sun
is {(P, 53(E + 1, =),Mon)}, i.e., the post-acute shift on Monday of the following
week in the cyclic roster.
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Following shifts are defined so that if a registrar works in a weekend, then
they must have the following weekend off. They can have the following wee-
kend off even if they did not work the previous weekend, however. Note that
for the inpatient ward teams the night shift on a Friday also counts as wor-
king in a weekend. For both roster groups the following shifts for the admis-
sion and post-acute shifts, on Saturdays and Sundays in each week are given
as �=,A,E,3 = {(X, 53(E + 1, =), Sat), (X, 53(E + 1, =), Sun)},∀= ∈ $,E ∈ ,=, A ∈
{A, P}, 3 ∈ {Fri, Sat, Sun}. For just the inpatient wards roster group the fol-
lowing shifts for the night shift on Fridays, Saturdays, and Sundays are given
as �Inpat,N,E,3 = {(X, 53(E + 1, Inpat), Sat), (X, 53(E + 1, Inpat), Sun)},∀E ∈
,Inpat, 3 ∈ {Fri, Sat, Sun}.
The required shifts for the inpatient ward teams are the admission shift and the
night shift. For the ADCU teams the only required shift is the admission shift. For
the inpatient teams two admission shifts and one night shift must be performed
each day, and for the ADCU teams one admission shift must be performed each
day. Therefore the setR$, which defines the shifts and days of the week on which
have to be assigned to a required number of physicians, for the inpatient ward
teams is RInpat = {(A, 3) : A ∈ {A,N} ∧ 3 ∈ �}, and for the ADCU teams is
RADCU = {(A, 3) : 3 ∈ �}. For each of the shift, day tuples in R=, the number of
shifts of that type that must be performed on that day is given by 7=,A,3 . For the
inpatient ward teams 7=,A,3 = 2 ∀3 ∈ � and 7=,N,3 = 1 ∀3 ∈ �. For the ADCU
teams 7=,A,3 = 1 ∀3 ∈ �.
Finally the number of shifts that can be assigned to physicians in each roster
group on each day of each week in that roster group’s cyclic roster is given by
G=,E,3 . For the ADCU teams this is always 1, as they can only ever be assigned
one shift each day. The inpatient ward teams can be assigned two shifts on the
days of the night tour that are covered by another registrar, on all other days
they can only be assigned one shift. Therefore GADCU,E,3 = 1 for all days in all
weeks, and GInpat,E,3 = 2 for week 2, and is equal to 1 otherwise. No exclusive
shifts or required shifts for the workload groups are needed to model the rules
for either the inpatient ward or ADCU teams. These parameters are summarised
in table 4.6.

The final parameter for the optimisation model is the function, 8 :  × � × % →
P( ×�× %), which describes how the patients’ classes change throughout their
stay in the GM department. Recall that a patient’s class is made up of two parts:
the first part is a combination of their actual length of stay (either S or L) and
their expected length of stay (S or L), for example ‘L/S’ if a patient is actually
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Table 4.6: Waitakere Hospital Sets and Parameters Dependent on Hospital Rules

Parameter Value

�Inpat {(N, 1, Fri), (N, 1, Sat), (N, 1, Sun), (N, 2, Mon), (N, 2,
Tue), (N, 2, Wed), (N, 2, Thu), (Z, 2, Fri), (Z, 2, Sat), (Z, 2,
Sun)}

�ADCU ∅
�Inpat {(A, 1, 3) : A ∈ {X, N, Z} ∧ 3 ∈ {Mon, Tue, Wed, Thu}}∪

{(A, 1, Fri) : A ∈ {X, Z}}∪
{(A, 1, 3) : A ∈ {O, Z} ∧ 3 ∈ {Sat, Sun}}∪
{(A, 2, 3) : A ∈ {X, Z} ∧ 3 ∈ {Mon, Tue, Wed, Thu}}∪
{(A, 2, Fri) : A ∈ {X, N}}∪
{(A, 2, 3) : A ∈ {O, N} ∧ 3 ∈ {Sat, Sun}}∪
{(A,E, 3) : A ∈ {X, N, Z} ∧ E ∈ ,Inpat \ {1, 2} ∧ 3 ∈
{Mon, Tue, Wed, Thu, Fri}}∪
{(A,E, 3) : A ∈ {O, N, Z} ∧ E ∈ ,Inpat \ {1, 2} ∧ 3 ∈
{Sat, Sun}}

�ADCU ∅
L=,A,E,Mon {(P,E, Tue)},∀= ∈ $,E ∈ ,=

L=,A,E,Tue {(P,E,Wed)},∀= ∈ $,E ∈ ,=

L=,A,E,Wed {(P,E, Thu)},∀= ∈ $,E ∈ ,=

L=,A,E,Thu {(P,E, Fri)},∀= ∈ $,E ∈ ,=

L=,A,E,Fri {(P,E, Sat)},∀= ∈ $,E ∈ ,=

L=,A,E,Sat {(A,E, Sun)},∀= ∈ $,E ∈ ,=

L=,A,E,Sun {(P, 53(E + 1, =),Mon)},∀= ∈ $,E ∈ ,=

�Inpat,N,E,3 {(X, 53(E + 1, Inpat), Sat), (X, 53(E + 1, Inpat), Sun)},∀E ∈
,Inpat, 3 ∈ {Fri, Sat, Sun}

�=,A,E,3 {(X, 53(E + 1, =), Sat), (X, 53(E + 1, =), Sun)},∀= ∈ $,E ∈
,=, A ∈ {A, P}, 3 ∈ {Fri, Sat, Sun}

RInpat {(A, 3) : A ∈ {A,N} ∧ 3 ∈ �}
7Inpat,A,3 2 ∀3 ∈ �
7Inpat,N,3 1 ∀3 ∈ �
RADCU {(A, 3) : 3 ∈ �}
7ADCU,A,3 1 ∀3 ∈ �
GInpat,E,3 2 ∀3 ∈ �,E ∈ {2}

1 otherwise
GADCU,E,3 1 ∀3 ∈ �,E ∈ ,ADCU
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Table 4.7: WTH Functions Dependent on Hospital Rules

Parameter Value

8(9̂ + Old, 2,D) {(9̂ + Old, 2 − 1,N), (9̂ + New, 2 − 1,N)}
∀9̂ ∈  ̂, 2 ∈ �

8(9̂ + Old, 2, E) {(9̂ + Old, 2,D)} ∀9̂ ∈  ̂, 2 ∈ �
8(9̂ + Old, 2,N) {(9̂ + Old, 2, E)} ∀9̂ ∈  ̂, 2 ∈ �
8(9̂ + New, 2, E) {(9̂ + New, 2,D)} ∀9̂ ∈  ̂, 2 ∈ �
8(9̂ + New, 2,N) {(9̂ + New, 2, E)} ∀9̂ ∈  ̂, 2 ∈ �

a long stay, but was expected to be a short stay; the second part depends on
whether they were admitted that day (’New’) or earlier (’Old’). Therefore the
only time that a patient’s class changes is when they move from the ‘Night’ part
on the day they are admitted to the ‘Day’ part on the following day. In all other
transitions the patient’s class remains the same. The predecessor class, count
day, part tuples of a given class, count day, part tuple is therefore simply the
same class on the same day in the preceding part except for the ‘Old’ classes in
the ‘Day’ part. The predecessors of these classes are both the ‘New’ and ‘’Old’
classes on the preceding count day in the ‘Night’ part. If we first define the set
 ̂ = {S/S, S/L, L/S, L/L} as the possible combinations of the first part of the
patient classes, and abuse the notation of + slightly to include the concatenation
of strings, then the function 8 is defined as in table 4.7.

4.1.3 Data and Processing

We were provided with data from the GM department at Waitakere Hospi-
tal (WTH), although significant processing was required to transform it from
the state in which it was provided to the inputs required for the model. This
processing includes: aggregating the arrivals (and discharges) over the parts;
calculating the parameters �9,2,>, &9,2,>, *9,2,>,=,A, and ):,9,2,>; and calculating the
B matrix.

WTH provided data on the patients that were taken care of in the GM depart-
ment in 2014. During that year 9000 patients were admitted to and discharged
from GM. For each one of those patients the following data was available: the
date and time that they arrived at and were discharged from the hospital; the
date and time that they arrived at and were discharged from GM; the nature
of their discharge; and the location to which they were discharged. The type
of discharge is used to distinguish patients that went home from those that are
sent to another health care facility for clinical purposes. These clinical transfers
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Table 4.8: Example Waitakere Hospital Patient Data

Hospital Hospital GM GM Discharge Discharge
Arrival Departure Arrival Departure Type Location

01/01/14 9:10 01/01/14 13:49 01/01/14 9:39 01/01/14 13:49 Routine Home
05/01/14 22:13 06/01/14 2:31 05/01/14 23:25 06/01/14 2:31 Other HC NSH
07/01/14 12:43 07/01/14 17:21 07/01/14 12:43 07/01/14 17:21 Routine Home
10/01/14 16:27 11/01/14 11:15 10/01/14 16:27 11/01/14 11:15 Routine Home

are different than patients transferred because a team has admitted too many
patients. The patients transferred for clinical purposes are due to circumstances
such as improved medical care for their condition being available at another fa-
cility. Patients that are transferred to for clinical reasons are not included in the
model since they make up a very small fraction of the total number of patients,
and when they do occur they only stay for a short amount of time before being
transferred.

An example of the type of data provided is given in table 4.8. Note that the
actual data cannot be replicated here due to its sensitive nature, and instead
representative fictional data is presented.

Unfortunately there is no record of whether each patient was believed to be
short or long stay, only the length of time the patient actually stayed. Instead we
used estimates for the probability that a patient would be accurately classified
as either short or long stay depending on their actual length of stay. Patients that
actually stayed less than 24 hours are accurately classified as short stay 90% of
the time. Patients that stayed more than 24 hours but less than 48 hours are
accurately classified as short stay 75% of the time. Finally patients that stayed
more than 48 hours are accurately classified as long stay 66% of the time.

These percentages are used alongside the data provided to determine &9,2,>, and
the value of �9,2,> for all ‘New’ patient classes. The ‘New’ patient classes repre-
sent patients new to GM that day, which should be the case for all admissions.
The exception is when patients are transferred from ADCU teams to inpatient
teams at the beginning of the day; either because the patient has been in the
ADCU for more than 24 hours, or the number of short stay patients admitted to
the ADCU that day exceeded the limit of 6 new patients per ADCU team. These
patients were in GM on the previous day and are therefore not ‘New’. Instead
these transfers from the ADCU to the inpatient teams are counted as the admis-
sion of ‘Old’ patients, because once they are transferred to an inpatient team
they have the same pathway as conventional ‘Old’ patients. If the behaviour of
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the transferred patients was different from that of the other ‘Old’ patients then
new patient classes would have been created for the transferred patients.

These transfers, and therefore the values of both ):,9,2,>, and �9,2,> for ‘Old’ pa-
tient classes, depend on the number of teams working in the ADCU each day.
Likewise the proportion of patients that each shift admits,*9,2,>,=,A, also depends
on the number of both inpatient teams, and ADCU teams admitting. These in
turn depend on the total number of inpatient teams and the ADCU configura-
tion. Therefore these parameters cannot be determined directly from the data;
knowledge of the structure of the teams is also needed.

The value of �9,2,> for ‘New’ patient classes is calculated by taking the date and
time each patient was admitted and converting it into the corresponding count
day, part tuple, (2, >). The patients’ classes are one of ‘X/Y New’ where X and Y
are either S for short stay or L for long stay. Each patient’s class is determined by
examining their actual length of stay in GM, which determines X. X is S if their
actual length of stay is less than 48 hours, and L if it is more. Y is then determined
by generating a random number between 0 and 1; if this number is less than the
corresponding probability that the patient’s length of stay is accurately classified,
given their actual length of stay, then Y is equal to X, otherwise Y is the option
(of S or L) different to X. This process is summarised in algorithm 4.1.

Algorithm 4.1: Admission Numbers Calculation Algorithm

Step 1. Set �9,2,> = 0 ∀9 ∈  , 2 ∈ �, > ∈ %.
Step 2. For each patient for which there is data, as in table 4.8, perform:

Step 2.1. Convert the date and time that the patient arrived into the
corresponding count day and part tuple, (2, >).

Step 2.2. Calculate the patient’s actual length of stay. If it less than 48
hours then the first part of their patient class is ‘S’, otherwise it is ‘L’.

Step 2.3. Generate a random number between 0 and 1; if this is less
than the probability that the patient’s length of stay is correctly classi-
fied, then the second part of their patient class is the same as the first,
otherwise it is the other option.

Step 2.4. Combine these two parts with ‘New’ to get the full patient
class 9.

Step 2.5. Add 1 to the corresponding value of �9,2,>; �9,2,> = �9,2,> + 1.

Algorithm 4.1 is also used to calculate the number of patients discharged,D9,2,>,
in each part, in each day. Although the number of patients discharged is not
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required in the model, only the proportion &9,2,>, both the number of patients
discharged and the total number of patients of each class, N9,2,>, in each part,
in each day is required to calculate &9,2,>. The number of patients discharged is
calculated from the data by taking the date and time each patient was discharged
and converting it into the corresponding day, part tuple, in the same way as for
the number of admissions. The patients’ classes are determined by their length
of stay and their original class. If a patient is discharged on the same day that
they are admitted then they will still be a ‘New’ patient, otherwise they will have
become an ‘Old’ patient. The remaining part of the class, ‘S/L’ for example, is
always the same as when they were admitted.

To calculate the total number of patients of each class a running total of the
patients in GM is maintained from the beginning of the planning horizon. Star-
ting from the first part of the first day of the planning horizon the number of
admissions for each class is counted. The discharge proportions for that part are
calculated by dividing the number of discharges in that part by the counts for
each patient class. Then for every successive part the discharges from the pre-
vious part are subtracted from the patient counts, then the new admissions for
that part are added to the patients that remain from the previous part, taking
into account that patients transition between classes, for example from a ‘New’
to an ‘Old’ class at the end of the day. The discharge proportions for each pa-
tient class are once again calculated by dividing the number of discharges in the
part by the total number of patients currently in GM. The calculation of &9,2,> is
summarised in algorithm 4.2, where the number of patients discharged and the
running total of patients in each part of each day are represented respectively
by D9,2,>, and N9,2,>.

The next parameter that is calculated is *9,2,>,=,A, which is the proportion of ad-
missions of class 9, in part >, on day 2 that roster group = adds to their workload
when they work shift A. For this case study these proportions depend on the
number of inpatient and ADCU teams.

The ADCU admits all new patients that are initially classified as short stay, if there
are ADCU teams working the ‘A’ shift, and these admissions are split equally be-
tween all the ADCU teams that are working the ‘A’ shift. The number of ADCU
teams that work the ‘A’ shift each day depends on the ADCU configuration. In
configurations 1 and 3 there is one ADCU team working the ‘A’ shift each day.
In configuration 1 the ADCU teams can only cover Monday to Thursday, whe-
reas in configuration 3 the ADCU teams cover every day of the week. There-
fore for configuration 1, *9,2,>,ADCU,A = 1 ∀9 ∈ {S/S New, L/S New}, 2 ∈ {X ∈
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Algorithm 4.2: Discharge Proportion Calculation Algorithm

Step 1. Set N9,2,> = &9,2,> = 0 ∀9 ∈  , 2 ∈ �, > ∈ %.
Step 2. For each count day and part, in chronological order, and patient
class perform:

Step 2.1. Add the number of admissions in the class to the total number
of patients at the end of the previous part in the predecessor classes,

N9,2,> = �9,2,> +
∑

(9̂,2̂,>̂)∈ 8(9,2,>)

(
N9̂,2̂,>̂

)
.

Step 2.2. Calculate the proportion of patients discharged as the number
discharged divided by the total number

&9,2,> =
D9,2,>

N9,2,>
.

Step 2.3. Subtract the number of patients discharged from the total to
get the number of patients left at the end of the part

N9,2,> = N9,2,> − D9,2,>.

� : 52(X) ∈ {Mon, Tue,Wed, Thu}}, > ∈ %. For configuration 3, *9,2,>,ADCU,A =
1 ∀9 ∈ {S/S New, L/S New}, 2 ∈ �, > ∈ %.

In configuration 2 there are two ADCU teams admitting from Monday to Thurs-
day so *9,2,>,ADCU,A = 0.5 ∀9 ∈ {S/S New, L/S New}, 2 ∈ {X ∈ � | 52(X) ∈
{Mon, Tue,Wed, Thu}}, > ∈ %. For all other shifts and on Friday to Sunday for
configurations 1 and 2, *9,2,>,ADCU,A = 0.

The inpatient teams admit all patients that are initially classified as long stay,
and also admit short stay patients if there are no ADCU teams working the ‘A’
shift. Once again the admissions are split evenly between the teams that are
working the ‘A’ shift.

Finally the proportion of patients transferred, ):,9,2,> is calculated. In this case
study transfers only occur at the end of the ‘Night’ part for one of two reasons.
Either the patient has been in the ADCU for at least one whole day, and is trans-
ferred to the inpatient wards, or the limit on the number of new patients that a
team can receive in a day is reached. If the limit of new patients is reached for an
ADCU team the additional patients are transferred to the inpatient ward teams
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working the admission shift the next day, if the limit of new patients is reached
for an inpatient ward team then the patients are transferred to another healt-
hcare facility. The transfers from the ADCU to the inpatient teams are included
in the model in the �9,2,> parameter for ‘Old’ patient classes.

For a patient to have been in the ADCU for at least 24 hours, they must be an
‘Old’ patient class, as they will always transition to this at the end of their first
day. Therefore at the end of each day any patients that are of an ‘Old’ patient
class that are still in the ADCU should be transferred to the inpatient wards the
following morning. This means that ):,9,2,> = 1 for all ADCU workload groups
and ‘Old’ patient classes, in the ‘N’ parts on all days.

To calculate the proportion of patients transferred because the number of new
patients that a team can receive has been reached, a similar procedure is used
as that for calculating the proportion of patients discharged. On each day the
total number of new patients over the three parts of the classes that each roster
group is responsible for is calculated. If this is more than the number of new pa-
tients that can be admitted by that roster groups’ admitting teams the number
of patients above the limit must be transferred. A strict ordering of the patient
classes is used to determine which patients are transferred first. If there are not
enough patients of the highest priority class then the next class down is used,
until enough patients have been selected. The proportion of patients transferred
is then calculated by dividing the number of patients in each class that are trans-
ferred by the total number of patients that are in that class. The total number of
patients is calculated by keeping a running total of admissions minus discharges,
as in the calculation of the discharge proportions.

Algorithm 4.3 describes the calculation of the transfer proportions in detail.
To make the description of the algorithm easier we first define some new no-
tation. Since the workload groups contain either only inpatient ward regis-
trars or only ADCU registrars we define two subsets of the workload groups,
the inpatient groups, !Inpat = {Inpat1, . . . , Inpat10}, and the ADCU groups,
!ADCU = {ADCU1, . . . ,ADCU4}. We call these two subsets ‘admission groups’
and they are indexed by the roster groups, as they correspond to the two roster
groups, Inpat and ADCU. They are used in the algorithm because we need to
calculate the total number of patients admitted by these two types of workload
groups to determine whether any patients need to be transferred.

We also split the patient classes into two subsets, the ‘Old’ classes,
 (=) = {S/S Old, S/L Old, L/S Old, L/L Old}, and the ‘New’ classes,  (<) =
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{L/S New, L/L New, S/L New, S/S New}. This is done because only ‘New’ pa-
tients count towards the workload groups limits before patients need to be
transferred. The ordering in  (<) is also the order in which the patient classes
are chosen to be transferred from, when transfers are required.

Finally, within the algorithm T=,9,2,> is used to represent the number of patients
transferred (not the proportion) by an admission group, N=,9,2,> represents the
total number of patients an admission group is caring for,N (<)=,2 is the number of
‘New’ patients an admission group is caring for at the end of a day.

Once the number of admissions, and the proportion of discharges, admissions,
and transfers, �9,2,>, &9,2,>, *9,2,>,=,A, ):,9,2,>, have been calculated for a particular
configuration, they can be used to determine B. The matrix B maps the ros-
ter for a configuration to the workloads of each workload group in each part of
each day, given the admissions data and patient flow structure. It is used to re-
place the patient balance equations (3.10) in the sub-problems (SPs) of Benders’
decomposition. The patient balance equations are:

#:,9,2,> =
(
1 − &9,2,>

) ( ∑
(9̂,2̂,>̂)∈ 8(9,2,>)

((
1 − ):,9̂,2̂,>̂

)
#:,9̂,2̂,>̂

)
(3.10)

+
∑

=∈$,A∈(=,@∈'=

(
�9,2,>*9,2,>,=,AF=,A, 51(=,@,2), 52(2)+=,@,:

) )
∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %

We now have values for &9,2,>, ):,9,2,>, �9,2,>, *9,2,>,=,A, and +=,@,:. In addition we
know the set {(9̂, 2̂, >̂) ∈ 8(9, 2, >)}, and that every (2̂, >̂) in the set is the direct
predecessor of (2, >). Therefore we can rewrite these equations as # = BF,
where the values of B are calculated starting in the first part of the first day and
substituting the values of the parameters in the right hand side. Then for each
subsequent part the values of B already determined are used for #:,9̂,2̂,>̂ on the
right hand side.

4.1.4 Scenario generation

The steps to calculate �9,2,>, &9,2,>, *9,2,>,=,A, and ):,9,2,> described in the previous
section depended on the historical data provided. We now wish to substitute the
historical data with data that we have generated ourselves in order to represent
other plausible admission and discharge scenarios.
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Algorithm 4.3: Transfer Proportion Calculation Algorithm

Step 1. Set ):,9,2,> = T:,9,2,> = 0 ∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %.
Step 2. For each count day in chronological order perform:

Step 2.1. For each part, in chronological order, admission group, and
patient class perform:

Step 2.1.1. Calculate the number of patients that are being cared for
by the admission group as a whole by adding the new admissions the
admission group is responsible for to the number carried over from
the previous parts, multiplied by 1 − &9,2,>:

N=,9,2,> =
(
1 − &9,2,>

) ©«*9,2,>,=,A�9,2,> +
∑

(9̂,2̂,>̂)∈ 8(9,2,>)

(
N9̂,2̂,>̂

)ª®¬ .
Step 2.2. For each admission group perform:

Step 2.2.1. Calculate the number of ‘New’ patients, N (<)=,2 , that each
admission group has at the end of the day (in the ‘Night’ part):

N (<)=,2 =
∑
9∈ (<)

(N=,9,2,N
)
.

Step 2.2.2. If N (<)=,2 is greater than the limit of ‘New’ patients for that
admission group (15 for inpatient wards, 6 for ADCU) multiplied by
the number of teams admitting on the count day, then set the number
of patients that need to be removed,R as the difference betweenN (<)=,2
and the limit and go to Step 2.2.3, otherwise go to Step 2.2.4.

Step 2.2.3. For each ‘New’ patient class in the order given by  (<) per-
form:
Step 2.2.3.1. IfR > 0 go to Step 2.2.3.2, otherwise go to Step 2.2.4.
Step 2.2.3.2. IfR ≥ N=,9,2,N go to Step 2.2.3.3, otherwise go to Step
2.2.3.4.

Step 2.2.3.3. Set T=,9,2,N = N=,9,2,N, and set R = R − N=,9,2,N, skip
Step 2.2.3.4.

Step 2.2.3.4. Set T=,9,2,N = R, and set R = 0.
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Algorithm 4.3: Continued

Step 2.2.4. If the admission group is ADCU then all ‘Old’ patients get
transferred at the end of the day so set T=,9,2,N = N=,9,2,N ∀9 ∈  (=).
and add these transfers from the ADCU to the admissions to the in-
patient wards

�9,2+1,D =
∑

(9̂,2̂,>̂)∈ 8(9,2,>)

(
T=,9̂,2̂,>̂

)
∀9 ∈  (=).

Step 2.2.5. Calculate the proportion of patients transferred for the
workload groups that correspond to the admission group using

):,9,2,N =
T=,9,2,N
N=,9,2,N

∀: ∈ !=.

Each scenario is determined by: 1) the number of patients that are admitted
in each part (of a day); 2) the length of stay of each patient; and 3) the ini-
tial classification of each patient by the GM physicians. From this information
the discharges for parts (of a day) and patient classes can be determined, and
therefore all of the remaining input parameters.

In order to generate scenarios we wish to use the historical data to inform the
random generation of: 1) numbers of admissions; 2) lengths of stays; and 3)
initial classifications for each part in the planning horizon. We decided to use
random sampling from the historical data with replacement to determine both
the number of admissions in a part, and the lengths of stay of these admissi-
ons. Once the lengths of stay are known the patient class can be determined by
randomly allocating an initial classification based on the accuracy probabilities
provided by the hospital. Hence, all three components required for the scenario
data can be determined.

To perform the resampling procedure a pool of potential samples is needed for
each part of each day. To determine the appropriate pool the number of admis-
sions in each part of each day in the historical data was visualised in figure 4.2.

Figure 4.2 shows that there is a difference between the number of patients ad-
mitted in the day, evening, and night parts. In addition there is a clear seasonal
fluctuation in the number of admissions in the day parts, and small seasonal fluc-
tuation for the evening and night parts. This suggests that when sampling the
number of admissions for a part, both the type of part (day, evening, or night)
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Figure 4.2: Admission Time Series

and the time of year of the day need to be taken into account. To determine
whether the day of the week also needed to be accounted for, the distributions
of the number of admissions for each day of the week and part combination were
visualised in figure 4.3.

Figure 4.3 shows that the distribution of the number of admissions is different
for the weekdays compared to the weekend for both the day and evening parts,
where the weekend days have fewer admissions on average. The night part does
not appear to have as much variability in the number of admissions between the
days of the week.

Since the month of the year, the day of the week, and the part of the day have
all been shown to influence the number of admissions an appropriate pool to
draw samples from for a given part on a given day is the set of the number of
admissions in parts of the same type, on the same day of the week, in the same
month of the year. When the number of admissions in each part of each day is
determined in this way, by randomly resampling from a pool, it is assumed that
the number of admissions in any part is independent of the number in any other
part. To assess whether this is the case, the auto-correlation of the time series of
the number of admissions in each part was calculated and is shown in figure 4.4.

The auto-correlations shown in figure 4.4 are calculated by first removing the
seasonal and day of the week effects from the number of admissions in each part,
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Figure 4.4: Auto-Correlation of Admission Counts

resulting in adjusted admission numbers. The correlations displayed are deter-
mined by calculating the correlation between the vector of adjusted admissions
and itself with a lag applied, and then normalising resulting correlations. The
lags shift the elements in the vector around by a given number of positions (on
the x-axis in the graphs). This allows us to see if the number of admissions in a
part is correlated with the number of admissions in the parts on either side of it.

The only significant correlations that figure 4.4 reveals are; a slight negative
correlation between the number of patients admitted in a part, and the number
admitted in the preceding and following parts; and a slight positive correlation
with the part 17 parts before and after the given part. However both of these
correlations are small, with magnitudes of 0.08. A lack of correlation does not
guarantee independence between random variables, only linear independence,
however we believe that the assumption that the number of admissions in any
given part is independent of the number in any other part is appropriate in this
case.

The same analysis was performed for the length of stay of patients in GM. Fi-
gure 4.5 shows that both the seasonal variation and the differences between the
parts of the day are much smaller for length of stay than for the number of ad-
missions, however we decided to still take the month of admission into account
as there is still a small seasonal effect.
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Figure 4.6 shows that there are differences in the length of stay between the
days of the week, and the parts of the day. Length of stays that correspond to
patients being discharged during the weekend are much less likely; for example
between 5 and 7 days length of stay on Monday, or between 2 and 4 days on
Thursday. The pool of samples for the length of stay of a patient that arrives in a
given part on a given day was chosen to be the set of lengths of stays of patients
that arrived in the same part of the day, on the same day of the week, on days
in the same month.

Figure 4.7 shows the auto-correlation of the vector of seasonally-adjusted and
normalised length of stays. There is less correlation between neighbouring ad-
missions length of stays, than for neighbouring parts number of admissions. The-
refore we once again believe that the assumption that the length of stay of a
patient is independent of the length of stay of other patients, which is required
for the resampling procedure, is appropriate in this case.

Given the above assumptions the scenario generation process is described in
algorithm 4.4.

At the conclusion of algorithm 4.4 we have a new set of patient data that includes
the number and class of new admissions to GM, or in other words the value
of �9,2,> for all ‘New’ patient classes. This process was used to generate 2000
patient data scenarios for this case study. In addition the first 1500 scenarios
were averaged to create an ‘Expected Scenario’. The total number of patients
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Figure 4.7: Auto-Correlation of Length of Stay

Algorithm 4.4: Scenario Generation Algorithm

Step 1. For each part of each day randomly choose the number of patients
that arrive from the set of the number of patients that arrived in the same
part of the day, on the same day of the week, on days in the same month
of the year.

Step 2. For each of these patients randomly choose, with replacement, a
length of stay from the set of lengths of stay of patients that arrived in
the same part of the day, on the same day of the week, on days in the
same month of the year.

Step 3. For each patient determine the first part of their patient class in
‘X/X New’ by checking whether their length of stay is greater than (L)
or less than (S) 48 hours.

Step 4. For each patient determine the second part of their patient class
in ‘X/X New’ by randomly choosing if they are accurately classified or
not based on the classification probabilities given by WTH.
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in GM in each part of each day in the planning horizon is shown in figure 4.8,
for 50 scenarios, the expected scenario, and the historical data. Each scenario
is shown in light blue, the expected scenario in darker blue, and the historical
data in orange.

Once these scenarios are generated the data processing described in the previous
section can be applied to create the B matrix, for each inpatient and ADCU team
configuration.

First the number of admissions in each part of each day, �9,2,>, for all ‘New’
classes is calculated from the scenario data using algorithm 4.1. Second the pro-
portion of patients discharged in each part of each day, &9,2,>, is calculated using
algorithm 4.2. Third the proportion of patients that each shift admits, *9,2,>,=,A,
is determined from the number of inpatient ward and ADCU teams. Fourth the
proportion of patients transferred, ):,9,2,>, is calculated using algorithm 4.3. Fifth
and finally, the matrix B is determined by substituting the values of these para-
meters into equations (3.10). At the end of this process we now have, for each
configuration of the GM teams and for each scenario, a matrix B that links the
roster of the GM physicians to their workloads. This matrix can then be used in
the sub-problems of the Benders’ decomposition.
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4.1.5 Benders’ Decomposition Implementation

As discussed in the literature review, improving the performance of Benders’ de-
composition has been the subject of a considerable amount of research. One of
the most important factors influencing the decomposition’s performance is the
decision of where and when in the solution process Benders’ cuts are generated.
Here this decision is referred to as the ‘cut frequency’ of a particular implemen-
tation of Benders’ decomposition; we investigate five different cut frequencies.

Another decision that contributes to the performance of the decomposition is
whether to use a single cut aggregated over the sub-problems (SPs) or to dis-
aggregate the cut and add one cut for each SP. The use of both aggregated and
disaggregated cuts with each of the five frequencies is investigated.

The first frequency, called ‘Optimal’, is an implementation of the classical Ben-
ders’ algorithm where the restricted master problem (RMP) is solved to optima-
lity (hence ‘Optimal’) at each iteration and cuts (either aggregated or disaggre-
gated) are generated from this solution. These cuts are then added to the RMP
which is solved again in the next iteration.

The remaining four frequencies all solve a single branch and bound tree but
differ in where in the tree cuts are generated.

The second frequency, called ‘Integer’, begins with the RMP with no Benders’
optimality constraints as defined by (3.29). Cuts are then generated only when
an integer solution is found and are added to the problem as ‘lazy’ constraints
through a callback routine. ‘Lazy’ constraints are similar to traditional cutting
planes with the added ability to remove parts of the feasible region. However, due
to the dynamic nature of ‘lazy’ constraints, some reductions and transformations
performed by state-of-the-art mixed integer programme (MIP) solvers cannot be
used in conjunction with ‘lazy’ constraints.

The third frequency, called ‘RootInteger’, is the same as the second frequency
except instead of starting with no Benders’ optimality constraints an initial pool
of cuts is included. These cuts are generated by using the root relaxation as the
RMP in the first frequency, and recording the cuts that are required to solve this
linear relaxation. Subsequent cuts are added in the same way, only at integer
nodes.

The fourth frequency, called ‘100Nodes’, is the same as the third frequency except
cuts are generated not only at integer nodes but also at every 100th node, even
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if it is fractional. Every 100 nodes was chosen as a middle ground between just
the root node, and the next frequency which is at every node.

The fifth and final frequency, called ‘AllNodes’, is the same as the third frequency
except cuts are generated at all nodes in the branch and bound tree.

For each of these solution methods the Benders’ cuts are generated using the
methods described in section 3.3. For the methods that use aggregated cuts,
the cut described in (3.31) is used, and the cut described in (3.41) is used for
disaggregated cuts.

For both aggregated and disaggregated cuts each SP first requires the calculation
of the matrix multiplication B(H) F̄, which then provides the vector # (H):,9,3,>. For
each workload group, in each part of each day a sum over the patient classes
is then performed to calculate their total workload, which gives another vector
#̂ (H):,3,>.

Next, the part, day, and workload groups where the largest difference in worklo-
ads occurs are found by subtracting the minimum workload from the maximum
on each part of each day, as in (3.32)–(3.34). Once the part and day on which
the greatest workload difference occurs have been identified, and the workload
groups this difference occurs between have been determined, the Benders’ cuts
can be formed. The method for creating the disaggregated cuts is given in algo-
rithm 4.5.

Algorithm 4.5 requires the B matrix for each SP. For a problem with 12 wor-
kload groups, 10 patient classes, 3 parts in each day, and a planning horizon of
1 year (364 days), this matrix will have 12 × 10 × 3 × 364 = 131,040 rows.
If there is also a roster group with 12 physicians and 6 possible shifts on the 7
days of the week there would be 12 × 6 × 7 = 504 columns. However, because
the admission shift is the only shift that has non-zero values of *9,2,>,=,A – it is the
only shift that contributes to the physicians’ workloads – this can be reduced to
12×7 = 84 columns. This results in each matrix requiring approximately about
15 megabytes of data storage. If we wished to solve a problem with 100 scena-
rios then 1.5 gigabytes of memory would be required just to store the scenario
matrices. Instead of reading all of the matrices into memory at the beginning of
solving a problem, each matrix is only read in when it is needed to solve a SP.
Constantly reading the matrices does slow down the solution process, however
it enables problems with more scenarios to be solved as they do not all have to
be stored in memory while solving the problem.
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Algorithm 4.5: Benders’ Disaggregated Cut Algorithm

Step 1. Given a scenario, H, the matrix for the SP corresponding to that
scenario, B(H), and the current solution to the RMP, F̄, calculate # (H) =
B(H) F̄.

Step 2. Calculate the total workloads by summing the patient classes,
#̂ (H):,3,> =

∑
9∈ 

(
# (H)

)
.

Step 3. Find the day and part on which the maximum difference in wor-
kloads occurs using:

2̄(H), >̄(H) = arg max
2∈�,>∈%

(
max
:∈!

(
#̂ (H):,3,>

)
−min

:∈!

(
#̂ (H):,3,>

))
.

Step 4. Find the workload groups with the largest and smallest worklo-
ads using:

:+ (H) = arg max
:∈!

(
#̂ (H)
:,2̄(H),>̄(H)

)
,

:− (H) = arg min
:∈!

(
#̂ (H)
:,2̄(H),>̄(H)

)
.

Step 5. Add the following cut to the RMP:

[(H) ≥
∑
9∈ 
(B(H)

:+ (H),9,2̄(H),>̄(H)
F) −

∑
9∈ 
(B(H)

:− (H),9,2̄(H),>̄(H)
F).

All of the optimisation models are written in Python 2.7 using the ‘gurobipy’
package to interface with the Gurobi solver, version 7.0.1. Callbacks were used
to implement cut frequencies 2-5 which required cuts to be added during the
branch and bound process as lazy constraints. Since lazy constraints were used
in callbacks the lazy parameter is set to 1 for the MIP models when solving with
these frequencies. In addition, all of the problems were solved on a Windows
64-bit computer with an Intel Core i7-4790 CPU @ 3.60 GHz and 8 GB of RAM.
Initial attempts were made to solve these problems with Gurobi using the default
settings and no decomposition techniques. Standalone Gurobi performed much
worse than the techniques presented here taking 8, 48, and 93 seconds to solve
problemswith 6, 8, and 10 inpatient ward teams respectively and one admissions
scenario. In comparison the average of Benders’ decomposition based techniques
on the corresponding problems is 0.5, 4.5, and 3.1 seconds.
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Table 4.9: Maximum and Mean Range of Potential Rosters

Roster Maximum % Proposed Mean % Proposed
Range Range

Proposed: 10 Inpatient – 18.5 100 10.0 100
ADCU Configuration 1

Optimised: 10 Inpatient – 16.4 88 8.6 86
ADCU Configuration 1

Optimised: 8 Inpatient – 33.9 183 17.6 176
ADCU Configuration 2

Optimised: 8 Inpatient – 25.6 138 15.0 150
ADCU Configuration 3

4.1.6 Results

Three sets of experiments were conducted to evaluate the performance of the
rostering model. First rosters created using just the historical data were compa-
red to a proposed roster. Second rosters created using two objective functions
and scenarios of admission and discharge data were compared. Third the effecti-
veness of different solution approaches were compared.

Historical Data Rosters

The rosters created using the three staff configurations being considered byWTH
are compared to the proposed roster. Each of the optimised rosters are created
using a single scenario that contains the actual historical data. The planning
horizon used for this comparison was 6/01/2014–28/12/2014. The difference
between the maximum and minimum workloads in each segment of each day
in the planning horizon is referred to as the ‘range’ of the workloads in that
segment. The objective of the optimisation models is to minimise the largest
range of the workloads in any segment in the planning horizon. Table 4.9 shows
the maximum and mean range of the proposed roster and the optimised rosters,
and the percentage in relation to the proposed roster’s value.

The Optimised: 10 Inpatient – ADCU Configuration 1 roster performs 12% better
than the proposed in terms of the maximum workload range and 14% better in
terms of the mean workload range. The other two optimised rosters, which both
have 8 inpatient ward teams, performed worse than the proposed roster both in
terms of maximum and mean workload range.

Figure 4.9 shows the maximum, minimum, and range of workloads in each seg-
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ment of each day in the planning horizon for each of the four rosters. The two
rosters with 10 inpatient ward teams display much less variability in the max-
imum workload, which in turn causes less variability in the range of the wor-
kloads. There is no obvious time of the year at which the maximum range of
workloads occurs for all of the rosters, and each of the rosters have many points
in the planning horizon that are close to the maximum range of workloads, rat-
her than one obvious spike.

Scenario Rosters

The comparison using historical data is not entirely fair for the proposed roster.
This is because the optimised rosters use the historical data to find the minimum
possible largest range of workloads for that data. In other words the optimised
rosters are ‘trained’ on the historical data, and then compared against the propo-
sed roster on that same data. A fairer comparison could be made if the optimised
rosters were trained on a set of scenarios and then tested, along with the pro-
posed roster, on another set of scenarios. Utilising training and testing sets of
scenarios also allows us to estimate the improvement in objective function value
on the test scenarios that is obtained by using the training scenarios individually
rather than the expected scenario problem.

To perform the fairer comparison we generated 2000 scenarios using the met-
hod described in section 4.1.4. These scenarios were split into two groups: the
training group consisting of 1500 scenarios that were used when solving the
problems; and the testing group of 500 scenarios that were used to evaluate the
solutions found. The 1500 training scenarios were further split into a group of
1000 optimisation scenarios and a group 500 selection scenarios. The 1000 op-
timisation scenarios were again split into 10 samples of 100 and were used to
define 10 optimisation problemswith 100 scenarios in each problem. Figure 4.10
depicts how the 2000 scenarios that were generated were split up.

Each of the 10 problems was solved and the 10 optimal rosters were recorded.
The performance of each of the 10 rosters was then evaluated on the 500 se-
lection scenarios. The roster with smallest mean objective function value, out of
the 10 rosters, was deemed to be the best roster. The process of creating a roster
from the 1500 training scenarios is given in algorithm 4.6. Algorithm 4.6 also
includes the possibility of using the conditional value at risk (CVaR) objective
function at 95%, which means the objective is to minimise the expected value
of the largest difference in workloads in the worst 5% of scenarios. The two dif-
ferences in the process are the objective function in the optimisation problems
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2000 total scenarios were created, each circle
represents 100 scenarios

These are split into 1500 training scenarios and
500 testing scenarios

The training scenarios are further split into
1000 optimisation scenarios and 500 selection
scenarios

The optimisation scenarios are again split into
10 groups of 100 problem scenarios. Each
group of 100 problem scenarios is used in an
optimisation model to create a single roster

Figure 4.10: Scenario Usage

and, when choosing the best roster out of the 10 created, the roster with the
smallest maximum difference in workloads when considering only the worst 5%
of scenarios is chosen. This means that when solving the optimisation problems
only 5 scenarios contribute to the objective function (and 25 when evaluating
on the 500 selection scenarios).

We first used algorithm 4.6 to create rosters for the three problems for which
rosters were previously compared to the proposed roster, that is: 10 inpatient
ward teams and ADCU configuration 1, and 8 inpatient ward teams and ADCU
configurations 2 and 3. Both the Mean and CVaR objective were used to create
rosters for these three problems, resulting in six rosters. This means we have a
total of seven rosters to compare: the proposed roster, and two rosters for each
problem instance: the Mean roster, and the CVaR @ 95% roster. The worklo-
ads of the physicians for these seven rosters were calculated on the 500 testing
scenarios and the values of the two objective functions, Mean and CVaR @ 95%
were calculated. These results are given in table 4.10. A similar pattern is seen as
in table 4.9, where the rosters with 10 inpatient ward registrars perform better
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Algorithm 4.6: Roster Creation Algorithm

Step 1. Beginning with the 1500 training scenarios they are first split into
two groups: 1000 optimisation scenarios and 500 selection scenarios.

Step 2. The 1000 optimisation scenarios are further split into 10 groups
of 100 problem scenarios.

Step 3. Each group of 100 problem scenarios is used to define an optimi-
sation problem to create a roster, as formulated in section 3.2.

Step 4. Each of the 10 problems is solved to create 10 rosters, using either
the Mean or CVaR objective.

Step 5. The performance (largest difference in workloads) of the 10 ros-
ters is evaluated on the 500 selection scenarios.

Step 6. The roster with the best performance under the corresponding
objective function, either Mean or CVaR, that was used in the optimisa-
tion problems is selected as the best roster.

than those with 8. In addition, the rosters trained on 1500 scenarios using algo-
rithm 4.6 perform 8% better than the proposed roster using the Mean objective,
and 10% better using the CVaR objective.

Table 4.10: Roster Comparison Over Test Scenarios

Inpatient ADCU Roster Mean CVaR
Teams Configuration @ 95%

10 1 Proposed 20.31 23.28
Mean 18.67 21.14
CVaR @ 5% 18.67 21.03

8 2 Mean 37.17 41.97
CVaR @ 5% 37.28 41.91

8 3 Mean 29.88 34.55
CVaR @ 5% 29.88 34.55

To evaluate the performance of the model on a wider range of problem instances,
in addition to solving the problems that correspond to the staffing configurations
being considered byWDHB, problems with 6, 8, and 10 inpatient ward registrars
combined with each of the three ADCU configurations were also solved, resulting
in nine problem instances in total.
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Table 4.11: Mean Objective Function Value Over Test Scenarios

Inpatient Teams 6 8 10

ADCU Configuration 1 2 3 1 2 3 1 2 3

Mean 35.98 36.45 30.09 36.40 37.17 29.88 18.67 18.81 15.59
CVaR @ 95% 35.98 36.90 30.09 36.40 37.28 29.88 18.67 18.81 15.65
Expected Scenario 36.20 36.66 30.09 36.53 37.69 29.88 19.02 18.84 15.65
Historical Scenario 36.69 36.68 30.78 36.67 37.49 30.13 19.22 18.84 16.03

Table 4.12: CVaR @ 95% Objective Function Value for Each Roster Over 500
Scenarios

Inpatient Teams 6 8 10

ADCU Configuration 1 2 3 1 2 3 1 2 3

Mean 40.78 42.12 34.47 41.11 41.97 34.55 21.14 21.45 18.02
CVaR @ 95% 40.78 41.55 34.47 41.11 41.91 34.55 21.03 21.45 18.04
Expected Scenario 40.97 41.66 34.47 41.24 42.54 34.55 21.82 21.41 18.02
Historical Scenario 41.80 41.55 35.18 41.37 42.42 34.79 21.35 21.41 18.80

For each of these nine instances algorithm 4.6 was applied with both the Mean
and CVaR objective functions, which resulted in two rosters for each problem
instance, one with the objective to minimise the expectation over all of the sce-
narios, and the other to minimise the expectation in the worst 5% of scenarios.
In addition to these, two more rosters were also found for each of the twelve
problem instances. Both of these additional rosters are found by solving a single
scenario version of the problem. The first uses an ‘Expected Scenario’ which is
an average of all of the 1500 training scenarios. The second uses the historical
patient data directly in a ‘Historical Scenario’.

The performance of these rosters on the 500 testing scenarios is given in ta-
bles 4.11 and 4.12. For the problems considered there is very little value in sol-
ving the problems with many scenarios when compared to the equivalent with
an expected scenario. The rosters optimised in expectation over 1500 scenarios
only performed 0.60% better than the expected scenario rosters on average, and
the rosters optimised for the worst 5% of scenarios performed 0.44% better than
the expected scenario rosters in the worst 5% of scenarios. There is a small ad-
vantage in using the expected scenario approach rather than the historical data
directly, as the expected scenario performed 1% better on average.

Computational Experiments

To evaluate the performance of the cut frequencies and types of cut (aggregated
or disaggregated) each combination was used to solve each problem instance,
with the number of scenarios varying from 1 to 50. As the number of scenarios
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increases the same scenarios that were in the previous problem are used again,
with one new scenario added.

In addition to the nine problem instances considered in the previous section three
more instances were included which correspond to the three ADCU configura-
tions with 12 inpatient ward registrars. These problems were added to test the
performance of the methods on more difficult problems. A time limit of ten mi-
nutes was enforced for every solve. If a particular combination of cut frequency
and type reached the time limit for a given problem instance for five consecutive
numbers of scenarios then that combination was not used to solve that problem
instance for any larger number of scenarios.

The total time taken to solve each problem instance for each number of scenarios
is given in figure 4.11. For the problems with 6 inpatient teams there is little
difference between the techniques examined and nearly every technique solves
every problem in less than 200 seconds.

For the problems with both 8 and 10 inpatient teams the ‘AllNodes’ cut frequency
performs the worst overall, and disaggregated cuts performs better than aggre-
gated cuts.

For the problems with 12 inpatient teams, ‘Integer’ with disaggregated cuts is the
only combination that solved ADCU configurations 1 and 2 within the time limit
for all 50 scenarios, and the only combination that solves more than 1 scenario
for ADCU configuration 3 within the time limit.

In addition to the total time taken to solve each problem the following metrics
were recorded; the time spent solving the master problem (MP Time), the time
spent solving sub-problems (SP Time), the number of Benders’ cuts added, and
the number of nodes explored in the branch and bound tree(s).

Table 4.13 gives the performance on all twelve problem instances averaged over
the five solution techniques, and the number of scenarios. Only problems that
were solved to optimality are included, although this skews the averages towards
the better performing techniques as they are able to solve more of the problems.
As the number of inpatient teams increases so to does the total time to solve the
problem, the time spent solving the master problem, and the number of nodes
explored. In addition ADCU configuration 3 took longer to solve, andmore nodes
were explored, for all numbers of inpatient ward teams except 12.

With the exception of the 6 inpatient teams instances, however, as the number
of inpatient teams increases the time spent solving the sub-problems and the
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Figure 4.11: Total Time Taken to Solve Each Problem
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Table 4.13: Computational Performance by Problem Instance

Inpatient ADCU Total MP SP Benders’ Nodes
Teams Configuration Time Time Time Cuts Explored

6 1 16 2 14 700 1000
2 18 2 16 700 1000
3 37 9 27 600 4000
Mean 24 5 19 700 2000

8 1 127 44 83 2700 66000
2 152 69 83 1900 75000
3 192 113 79 1900 76000
Mean 155 73 82 2200 72000

10 1 137 50 87 2300 140000
2 129 31 98 1200 71000
3 200 150 50 2100 273000
Mean 143 56 87 1800 127000

12 1 248 199 49 2600 477000
2 212 163 48 2300 321000
3 155 131 25 1300 169000
Mean 225 177 48 2400 383000

Grand Mean 105 47 58 1500 74000

number of Benders’ cuts does not increase and the time spent solving the SPs
decreases for 12 inpatient teams.

Table 4.14 gives the performance of the solution techniques averaged over the
12 problems and the number of scenarios. Using disaggregated cuts reduces the
total time by a factor of 1.5, and the number of nodes explored by a factor of 2.1
on average when compared to aggregated cuts. On the other hand it increases
the number of Benders’ cuts added by a factor of 3.8. Using disaggregated cuts
with the ‘Integer’ cut frequency has the smallest average total time, however
both ‘RootInteger’ and ‘Optimal’ spend significantly less time solving SPs and
add fewer Benders’ cuts.

4.1.7 Discussion

The results of the experiments that were conducted are now discussed, and we
once again distinguish between the three sets of experiments that were perfor-
med to: compare rosters created with the historical data; compare rosters crea-
ted with scenarios; compare solution techniques in computational experiments.
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Table 4.14: Computational Performance by Cut Frequency and Type

Cut Type Cut Total MP SP Benders’ Nodes
Frequency Time Time Time Cuts Explored

Aggregated 100Nodes 156 61 95 400 146000
AllNodes 143 30 113 900 76000
Integer 105 3 102 300 8000
RootInteger 149 60 90 400 145000
Optimal 110 55 55 200 167000
Mean 130 41 89 400 107000

Disaggregated 100Nodes 87 70 16 700 62000
AllNodes 155 32 123 10600 20000
Integer 51 25 26 1900 8000
RootInteger 85 71 13 400 67000
Optimal 75 66 9 40 95000
Mean 86 52 34 2400 50000

Grand Mean 105 47 58 1500 74000

Historical Data Rosters

When comparing the maximum, minimum, and range of workloads for the pro-
posed roster and three rosters optimised on the historical data, figure 4.9 showed
that the maximum workload fluctuated much more for the rosters with 8 inpa-
tient teams than those with 10. Figure 4.12 explores this further, showing box
plots of the distribution of the maximum, minimum, and range of workloads over
the planning horizon for each of the four rosters. The box plots in figure 4.12
are slightly modified from standard box plots so that more box plots can fit side
by side in a plot, and colouring of the box plots is more obvious. The same in-
formation is still presented as in a standard box plot: the top of the top line (or
whisker) represents the maximum value, the bottom of the top line the upper
quartile, the dot between the two lines the median, the top of the bottom line
the lower quartile, and the bottom of the bottom line the minimum value. This
altered version of a box plot is used throughout this thesis and is referred to as
a box plot.

The two rosters with 10 inpatient teams have much lower maximums of both
workload range, and maximum workload than the two rosters with 8 inpatient
teams. In addition the interquartile range of both of these measures is much
smaller. This difference is mainly due to the 10 inpatient team rosters having two
registrars performing the admitting shift each day, rather than just one each day
for the 8 inpatient team rosters. The 8 inpatient team rosters cannot have two
teams admitting each day as there are not enough teams to cover two admission
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Figure 4.12: Box Plots of Maximum, Minimum, and Range of Workloads

shifts and two post-acute shifts on the weekend, as well as the night shift and
having every second weekend off, however the 10 inpatient ward team rosters
do.

Having two teams admitting each day means that the patients are split more
evenly between the teams, and in particular the workload of the team with max-
imum workload is reduced on average, and in addition the variability is also re-
duced as seen by the smaller interquartile ranges, and total ranges. This means
that the maximum of the workload range is smaller for the rosters with 10 inpa-
tient teams, which is the objective of the optimisation models. Furthermore the
mean and median of the workload range is also smaller for these rosters, and
for the optimised 10 inpatient roster in comparison to the proposed roster.

The fact that the mean and median of the workload range is smaller for the
optimised 10 inpatient roster than the proposed roster is a side effect, as the
optimisation model minimises the maximumworkload range. Other measures of
the workload range may be of greater importance than the maximum workload
range in other situations, and even in the case of addressing continuity of care
concerns the maximum workload range is not the only possible objective, as
discussed at the beginning of chapter 3. In particular when equity of patient
workload between the teams is a priority a measure that is less influenced by
extreme values than the maximum, such as the mean or median, or even a risk
measure such as CVaR, may be more appropriate.
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The three rosters created using the historical data were presented to themanage-
ment of the GM department at WTH alongside our analysis of the performance of
the rosters compared to the proposed roster, the rosters created using generated
scenarios were not developed in time to be offered. The rosters were validated
by clinicians as being feasible to be implemented in the GM department, and the
optimised 10 inpatient roster was selected and put in place by the department.

Scenario Rosters

The results using 2000 scenarios generated from the historical data showed that
there is little value in the stochastic solution, and the additional effort required
to solve the stochastic problem is probably not worthwhile in these instances.
One possible reason for the lack of value in the stochastic solution is that any
roster that performs well on a single scenario is likely to perform well on any
scenario. This type of behaviour could be because the constraints on the roster
do not allow the rosters to be tailored specifically to one scenario, for example all
of these rosters are cyclic which limits the ability of the roster to be adjusted to
high workload stretches. Another possibility is that the uncertainty represented
in the scenarios does not result in large differences between the rosters that
are optimal for each scenario, so a roster that is optimal for one scenario is
close to optimal for many other scenarios. Further, because the objective is to
minimise the largest difference in patient workloads in any of the segments,
only the worst segment contributes to the objective function. This means that
many of the differences between scenarios do not affect the objective function.

To investigate whether there is a single (or at least a small number) of rosters
that are optimal for many of the scenarios the problem with 10 inpatient teams
and ADCU configuration 1 was solved using the group of 1000 optimisation sce-
narios and the Mean objective. However, instead of splitting the scenarios into
10 groups of 100, each scenario was used individually to produce 1000 rosters,
of these there were 450 unique rosters. This means that there is not one roster
that is best for all scenarios, but some rosters are best in more than one scenario,
and the constraints on the roster are, in general, not preventing the roster from
being tailored to a specific scenario.

The performance of the 450 unique rosters on the 500 test scenarios was then
measured. The best roster had a mean objective value of 18.67 which is the same
as the roster that was optimised in expectation. The worst roster had a mean of
25.27, and the average of all the rosters was 19.50. This shows that it is possible
to find a roster using just a single scenario that performs well in many other
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scenarios. Therefore a better approach may be to find many rosters using small
samples of scenarios (perhaps up to 10) and then evaluate the performance of
these rosters on a much larger number of scenarios (100s if not 1000s), as this
is less computationally expensive and leads to rosters of similar quality.

Computational Experiments

The computational experiments using different variations of Benders’ decompo-
sition showed that the problems become more difficult to solve as the number
of inpatient ward teams and scenarios increases. This is to be expected as in-
creasing the number of inpatient teams increases the number of variables and
constraints in the master problem, and increasing the number of scenarios in-
creases the number of sub-problems that need to be solved.

The ‘Integer’ technique had the smallest average time over all of the problems
considered, and solved by far the most 12 inpatient team problems out of all
of the techniques. However both ‘RootInteger’ and ‘Optimal’ spent less time sol-
ving sub-problems and added fewer Benders’ cuts than ‘Integer’. This suggests
that if an improved method of solving the master problem was developed these
techniques would benefit the most and may become competitive with ‘Integer’.

The slight decrease in time spent solving sub-problems for 12 inpatient teams
is likely because most of those problems reached the time limit and if they had
been allowed to solve to optimality would have spent more time solving sub-
problems.

Nevertheless the results for 8 and 10 inpatient teams suggest that even as the
problems become more difficult, about the same number of sub-problems need
to be solved, and Benders’ cuts need to be added. Therefore to improve perfor-
mance on even more difficult problems the focus should be on solving the master
problem more quickly, for example using a column generation approach.

4.2 Auckland City Hospital
The Auckland District Health Board (ADHB) provides health services to the Cen-
tral Auckland area. ADHB operates Auckland City Hospital (ACH), which is New
Zealand’s largest hospital. Just as at Waitakere Hospital (WTH) there is a GM
department which diagnoses and treats patients that do not require surgery. Un-
fortunately the rules for the roster of the physicians in the GM department at
ACH constrain the roster in a way that makes minimising the difference in wor-
kloads almost redundant.
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This is mainly because there is always the same number of physicians taking new
admissions from each workload group during the week, and it is only during
weekends where there is a difference in patients admitted to each workload
group. Even then the weekend duties are completely constrained by the rules
and the structure of a cyclic roster.

Therefore the purpose of this section is to provide an additional example of the
rostering model applied to a real world hospital department, by describing the
rules that govern the roster and deriving the values of the corresponding model
parameters. The details of the patient pathways are not included as they do not
influence which rosters are possible, only the workloads of the teams.

4.2.1 Problem Description

Unlike at WTH, the patients assigned to GM at ACH are all cared for in the inpa-
tient wards. The structure of the teams is the same as at WTH with the rosters
of the registrars once again determining the rosters of the other team members.
The physicians who work in GM are divided into teams, the members of the
teams that need to be considered for rostering purposes are called registrars.
There are 16 registrars working in the GM department, and these registrars are
divided into four groups of four. Each of the groups, called White, Gold, Black,
and Red, share a single ward in GM and share responsibility for all of the patients
that any of the registrars in that group admit.

During the day (8 a.m.–4 p.m.) on weekdays all of the registrars perform their
normal duties such as treating, ordering tests for, admitting, and discharging
patients. It is only during the evening and night on weekdays, and on weekends,
that these duties are assigned to a specific registrar, or registrars. The details of
these shifts are given below:

• Long shift (L). The registrar works a long day finishing at 10 p.m. instead
of 4 p.m.;

• Night shift (N). The registrar works the night shift 10 p.m.–8 am;

• Sleep shift (Z). After working a week of night shifts registrars are given
time to catch up on sleep;

• Weekend One (W1). The registrar works 8 a.m.–4 p.m. on Saturday, and
12 p.m.–10 p.m. on Sunday;



Auckland City Hospital 95

• Weekend Two (W2). The registrar works 12 p.m.–8 p.m. on Saturday, and
8 a.m.–8 p.m. on Sunday;

• Weekend Three (W3). The registrar works 8 a.m.–10 p.m. on Saturday,
and 8 a.m.–4 p.m. on Sunday;

• Weekend Four (W4). The registrar works 12 p.m.–12 a.m. on Saturday,
and 12 p.m.–10 p.m. on Sunday;

• No shift (X). The registrar is given the day off.

In addition to being a 16 week cyclic roster, the roster of the above shifts for the
physicians in GM at ACH must adhere to the following rules:

1. Each weekday one registrar from each of the four colour groups works a
long shift;

2. Two long shifts cannot be worked in a row, a long shift also cannot be
worked on the Monday after a weekend that has been worked;

3. A night run consists of 5 consecutive night shifts from Sunday to Thursday,
followed by three days off.

4. FromMonday to Friday of the night run (and one day off) registrars can be
assigned two shifts since a relief registrar from another department covers
their other duties;

5. One of each of the four types of weekend shifts must be performed each
weekend;

6. One registrar of each colour must be working every weekend.

7. Registrars can only work one in every four weekends, this does not include
doing the night shift on Sunday.

4.2.2 Parameter Values

We now define the values of the parameters of the rostering model that relate
to the roster’s rules, which do not include the parameters that come from the
patient data, and other parameters required for the patient pathways such as
the set of count days, classes of patients and the class transition function.
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There is only one group of physicians that need to be rostered, the registrars in
the inpatient wards. Therefore the set of roster groups is defined as$ = {Inpat}.
The sets of physicians in the roster group is defined as the set of integers from
1 to 16, so 'Inpat = {1, 2, 3, . . . , 16} and the set of weeks in the roster groups’
cyclic roster is equal to the sets of physicians so,Inpat = 'Inpat.

The shifts considered are: long shift, night, sleep, weekend one, weekend two,
weekend three, weekend four, and a day off. Therefore the set of shifts for the
inpatient teams is defined as (Inpat = {L, N, Z, W1, W2, W3, W4, X}.
Because all of the registrars in each of the colour groups share responsibility for
the patients in their ward, there are four workload groups, one for each colour.
The set of workload groups is then defined as ! = {White,Gold, Black,Red}.
In the previous case study each registrar had their own workload group, so the
order of assigning the registrars to the workload groups did not matter. In this
case, however, the order is important because each registrar belongs to one of
four workload groups and there are rules that apply over the workload groups.

Since each registrar can only work one in every four weekends, and there must
be one registrar from each workload group working each weekend, the feasible
orderings are restricted, but there are still several possibilities (4 basic structures
are possible). Here we assume that the first four registrars are in the White wor-
kload group, the next four Gold, then Black, then Red. Therefore the indicator
parameter, +Inpat,@,:, that maps physicians to workload groups is one if 1 ≤ @ ≤ 4
and : = White, or if 5 ≤ @ ≤ 8 and : = Gold, or if 9 ≤ @ ≤ 12 and : = Black, or
if 13 ≤ @ ≤ 16 and : = Red. Otherwise it is zero.

Alternatively, the order that registrars are assigned to workload groups are as-
signed can be modelled explicitly and the indicator parameter replaced by an
additional index for the workload group on the shift assignment variable so it
becomes F=,:,A,E,3 , and is 1 if shift A is assigned to day 3 in week E in the cy-
clic roster of roster group =, and week E is worked by a registrar in workload
group : on the first week of the planning horizon. Hence, the workload group
of each registrar in the roster is determined as the roster is created. The general
parameters for the ACH problem are summarised in table 4.15.

The values of the parameters �, �,L,�, �,R, and 7, which represent the fixed,
banned, linked, following, exclusive, and required shifts, are derived from the
rules described in the previous section.

The night run is fixed to start on the Sunday night in the first week, and finish
on Thursday night in the second week. The night tour can be fixed here without
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Table 4.15: Auckland City Hospital General Sets and Parameters

Symbol Example

$ {Inpat}
'Inpat {1, 2, 3, . . . , 16}
,Inpat {1, 2, 3, . . . , 16}
(Inpat {L, N, Z, W1, W2, W3, W4, X}
! {White, Gold, Black, Red}
+Inpat,@,: 1 if 1 ≤ @ ≤ 4 and : = White or if 5 ≤ @ ≤ 8 and : = Gold

or if 9 ≤ @ ≤ 12 and : = Black of if 13 ≤ @ ≤ 16 and
: = Red and 0 otherwise

� {Mon, Tue, Wed, Thu, Fri, Sat, Sun}

eliminating any possible solutions, because any solution with the night tour in
a different place can be ‘rotated’ around the cyclic roster so that the night tour
once again starts in the first week. Therefore �Inpat must contain all of the shift,
week, day tuples that correspond to that night tour, so �Inpat = {(N, 1, Sun),
(N, 2, Mon), (N, 2, Tue), (N, 2, Wed), (N, 2, Thu), (Z, 2, Fri), (Z, 2, Sat), (Z, 2,
Sun)}.

For the banned shifts it is more convenient to define subsets 11 . . . 1< for the
roster group ‘Inpat’, and then let �Inpat =

⋃<
7=1 1

7. The night and sleep shifts
are only used during and after the night run. This means that they are ban-
ned at all other times in the roster so, recalling that ∧ is a logical “and”,
11 = {(A, 1, 3) : A ∈ {N, Z} ∧ 3 ∈ {Mon, Tue, Wed, Thu, Fri, Sat}}, 12 =

{(Z, 2, 3) : 3 ∈ {Mon, Tue, Wed, Thu}}, 13 = {(N, 2, 3) : 3 ∈ {Fri, Sat, Sun}},
and 14 = {(A,E, 3) : A ∈ {N, Z} ∧ E ∈ ,Inpat \ {1, 2} ∧ 3 ∈ �}. In addition
the L shift cannot be worked on weekends, and the W1, W2, W3, W4, and X
shifts cannot be assigned during the week so 15 = {(L,E, 3) : E ∈ ,Inpat ∧ 3 ∈
{Sat, Sun}}, and 16 = {(A,E, 3) : A ∈ {W1, W2, W3, W4, X} ∧E ∈ ,Inpat ∧ 3 ∈
{Mon, Tue, Wed, Thu, Fri}}.

Linked shifts are used to make sure that when a registrar works a weekend shift
on Saturday they work the same numbered weekend shift on Sunday. Therefore
LInpat,A,E,Sat = {(A,E, Sun)}∀A ∈ {W1, W2, W3, W4},E ∈ ,Inpat.

Following shifts are defined so that if a registrar works in a weekend (not in-
cluding the night shift on Sunday), then they must have the following three
weekends off. They can have the following weekends off even if they did not
work the that weekend, however. The following shifts are therefore defined as
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�Inpat,A,E,Sat = {(X, 53(E+X, Inpat), Sat), (X, 53(E+X, =), Sun) : X ∈ {1, 2, 3}}∀A ∈
{W1, W2, W3, W4},E ∈ ,Inpat.

The exclusive shifts prevent two long shifts from being worked two days
in a row, or after a weekend. If a long shift (or a weekend shift on
a Sunday) is worked then the long shift on the next day is the only
element of the only subset of the set of exclusive shifts for that long
shift. Therefore �Inpat,L,E,31 = {{(L,E, 32)}}∀E ∈ ,Inpat, (31, 32) ∈
{(Mon, Tue), (Tue, Wed), (Wed, Thu), (Thu, Fri)}, and �Inpat,A,E,Sun =

{{(L, 53(E + 1, Inpat),Mon)}}∀E ∈ ,Inpat, A ∈ {W1, W2, W3, W4}.

Required shifts are used for the inpatient roster group to ensure that one of each
weekend shift is worked each weekend, and they are used for the workload
groups to ensure that one long shift is worked each day, and a weekend shift
is worked each weekend by a member of the workload group. Therefore RInpat

is {(A, 3) : A ∈ {W1, W2, W3, W4} ∧ 3 ∈ {Sat, Sun}}, and 7Inpat,A,3 = 1∀A ∈
{W1, W2, W3, W4}, 3 ∈ {Sat, Sun}. In addition the required shifts for the wor-
kload groups are defined as R: = {(L, 3) : 3 ∈ {Mon, Tue, Wed, Thu, Fri}} ∪
{(A, 3) : A ∈ {W1, W2, W3, W4} ∧ 3 ∈ {Sat, Sun}}∀: ∈ !, and 7:,L,3 = 1∀3 ∈
{Mon, Tue, Wed, Thu, Fri}: ∈ !, and 7:,A,3 = 1∀A ∈ {W1, W2, W3, W4}, 3 ∈
{Sat, Sun}: ∈ !.

Finally because Monday to Friday of the night run is covered by a relief registrar
two shifts are able to be assigned to the registrars during this period, for the
remainder of the roster only one shift can be assigned to each registrar on each
day. Therefore GInpat,2,3 = 2,∀3 ∈ {Mon, Tue, Wed, Thu, Fri}, and 11 otherwise.
The values of these parameters that are dependent on the hospital’s rules are
summarised in table 4.16.

This section has presented a second case study for rostering GM physicians,
which acts as an example of deriving the parameters required to define the ros-
ter’s rules given a written description. In particular the use of exclusive shifts and
required shifts over workloads groups distinguishes the rules in this case study
from those in section 4.1.
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Table 4.16: Auckland City Hospital Sets and Parameters Dependent on Hospital
Rules

Parameter Value

�Inpat {(N, 1, Sun), (N, 2, Mon), (N, 2, Tue), (N, 2, Wed), (N, 2,
Thu), (Z, 2, Fri), (Z, 2, Sat), (Z, 2, Sun)}

11 {(A, 1, 3) : A ∈ {N, Z}∧3 ∈ {Mon, Tue, Wed, Thu, Fri, Sat}}
12 {(Z, 2, 3) : 3 ∈ {Mon, Tue, Wed, Thu}}
13 {(N, 2, 3) : 3 ∈ {Fri, Sat, Sun}}
14 {(A,E, 3) : A ∈ {N, Z} ∧ E ∈ ,Inpat \ {1, 2} ∧ 3 ∈ �}
15 {(L,E, 3) : E ∈ ,Inpat ∧ 3 ∈ {Sat, Sun}}
16 {(A,E, 3) : A ∈ {W1, W2, W3, W4, X} ∧ E ∈ ,Inpat ∧ 3 ∈

{Mon, Tue, Wed, Thu, Fri}}
�Inpat

⋃6
7=1 1

7

LInpat,A,E,Sat {(A,E, Sun)}∀A ∈ {W1, W2, W3, W4},E ∈ ,Inpat

�Inpat,A,E,Sat {(X, 53(E + X, Inpat), Sat), (X, 53(E + X, Inpat), Sun) : X ∈
{1, 2, 3}}∀A ∈ {W1, W2, W3, W4},E ∈ ,Inpat

�Inpat,L,E,31 {{(L,E, 32)}}∀E ∈ ,Inpat, (31, 32) ∈
{(Mon, Tue), (Tue, Wed), (Wed, Thu), (Thu, Fri)}

�Inpat,A,E,Sun {{(L, 53(E + 1, Inpat),Mon)}}∀E ∈ ,Inpat, A ∈
{W1, W2, W3, W4}

RInpat {(A, 3) : A ∈ {W1, W2, W3, W4} ∧ 3 ∈ {Sat, Sun}}
7Inpat,A,3 1∀A ∈ {W1, W2, W3, W4}, 3 ∈ {Sat, Sun}
R: {(L, 3) : 3 ∈ {Mon, Tue, Wed, Thu, Fri}} ∪ {(A, 3) : A ∈

{W1, W2, W3, W4} ∧ 3 ∈ {Sat, Sun}} ∀: ∈ !
7:,L,3 1∀3 ∈ {Mon, Tue, Wed, Thu, Fri}, : ∈ !
7:,A,3 1∀A ∈ {W1, W2, W3, W4}, 3 ∈ {Sat, Sun}, : ∈ !
GInpat,E,3 2 ∀E ∈ {2}, 3 ∈ {Mon, Tue, Wed, Thu, Fri}

1 otherwise
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Conclusion
Two case studies of rostering GM have been presented in this chapter, both to
assess the value of using historical data in the rostering process, and demonstrate
the application of the rostering model to different real world problems.

The first case study described the staff structure and patient pathways in the
GM department at Waitakere Hospital (WTH). These descriptions were used, al-
ongside historical patient data, to determine the values of the input parameters
required for the rostering optimisation model described in chapter 3. The com-
plete and accurate definition of these parameters is a tedious process, however
it enables a simpler formulation of the mathematical model.

The historical data provided by WTH in relation to the number and time of
admissions and discharges of patients was also analysed and techniques were
developed to generate possible admission scenarios for the optimisation problem
from the historical data.

Comparing the rosters created using the optimisation model with one propo-
sed by the hospital showed that the rosters optimised using the historical data
performed 12% better than the proposed roster on the historical data. When ros-
ters trained on scenarios we generated from the historical data were compared
to the proposed roster on a separate set of scenarios the optimised rosters still
performed 8% better using the Mean objective, and 10% better using the CVaR
objective. This shows that there is value in using historical data when creating
rosters for physicians, at least in this application.

On the other hand, including the uncertainty in admissions into the roster buil-
ding process using scenarios was not significantly better than using an average
of the scenarios. The roster created using a 1500 scenarios performed only 0.6%
better than a roster created using an average of those scenarios, and the expected
scenario problem in turn only performed 1% better than using the historical data
directly.

The Benders’ decomposition developed in section 3.3 was shown to solve the
optimisation models efficiently. In particular a method was presented that solves
the restricted master problem (RMP) in a single branch and bound tree, with no
optimality cuts initially included. When integer solutions are encountered in the
branch and bound procedure disaggregated optimality cuts are found by solving
a sub-problem (SP) for each scenario and are then added to RMP.
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The second case study considered a separate rostering problem at Auckland City
Hospital (ACH), and defined the parameters for the optimisation model related
to the rules of the roster. Unlike the first case study, which investigated the va-
lue of utilising historical data and accounting for uncertainty in the rostering
process, this case study served to highlight features of the rostering model that
were not required in the first case study. We have now completed our discus-
sion of physician rostering and turn our attention in the next chapters to surgery
scheduling.





— Chapter 5 —

Surgical Session Scheduling Model

The scheduling of surgical sessions, that is assigning surgical operations to sessi-
ons in which they are performed, is a very important process in most hospitals.
Scheduling sessions, where a session, as defined in section 2.2, refers to a pe-
riod with a specified start and end time, in a particular operating room (OR),
on a particular day and is sometimes referred to as a ’block’ in the literature,
is critical both for the welfare of the patients and the finances of the hospital.
Inefficient scheduling can lead to patients waiting longer for their operations,
potentially leading to further complications, and it also causes under-utilisation
of the surgeons and OR suites, which is costly for the hospital. On the other hand
overbooking sessions leads to some operations being cancelled if earlier opera-
tions run long, and surgical staff working overtime causes additional expenses.
Within the New Zealand health systemmost hospitals are publicly operated and,
although cost still plays a large part in their decision making, more weight is pla-
ced on the patient-related outcomes. In addition, the New Zealand Ministry of
Health has set a target to improve access to elective surgery by increasing the
number of operations performed by 4,000 per year (The New Zealand Ministry
of Health 2011).

New Zealand OR managers would therefore like to schedule their surgical ses-
sions in such a way that: patients do not wait too long for their operations; the
number of operations that are cancelled or moved due to sessions running over-
time is reduced; more operations are performed in total; and sessions do not run
overtime too often or by too much.

In general, performing more operations in total and preventing patients from
waiting too long for their operation go hand-in-hand. If more operations are per-
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formed in total over a year then the hospital is able to get through their waiting
list more quickly, which reduces the average time that patients wait. However, if
maximising the number of operations performed in a given time frame is the sole
criteria for scheduling operations then it will always be preferable to complete
two short operations over a single long operation. This can lead to unacceptable
wait times for long operations. If, instead, the average lateness of all the opera-
tions is minimised, shorter operations may still be preferred (depending on the
relative cost of delaying the operations), but there is now a penalty for making
a long operation wait for a longer time. Another option is to consider the due
dates of operations as constraints, however this often leads to infeasibility, where
all of the operations cannot be performed before their due date. This is particu-
larly likely to be the case in health systems that are over capacity and have long
waiting lists, as is the case in New Zealand.

The approach taken by most OR suite managers, and most of the OR scheduling
literature, to address the issue of sessions running overtime is to constrain the
duration of operations assigned to a session. At the most basic level this involves
constraining the sum of the durations of the operations to be less than or equal
to the duration of the session. However this approach does not take into account
the uncertainty in the operations’ durations and does not afford the manage-
ment any control over the proportion of sessions that run overtime. We consider
four methods to prevent sessions from running overtime, each of which utilises
historical patient data in a different way.

Many models proposed in the literature assume, for their scheduling problems, a
very limited window in which to schedule the operations – for example the next
week or perhaps month. In addition it is assumed that a subset of operations
from the total set of operations on the waiting list is selected to be scheduled in
that time window. These assumptions are attractive from a computational point
of view as they reduce the number of operations and sessions to be considered,
and therefore the combinatorial complexity of scheduling the operations. Furt-
her it often accurately reflects how the OR management actually performs their
scheduling. However these assumptions also raise two questions. First, how are
the operations to be performed in the next period chosen from the list of all
waiting operations? Second, what if considering more sessions and operations
allowed the determination of a better assignment of operations to sessions? We
address these issues by considering all operations currently waiting and all fu-
ture sessions (up to a point far enough in the future that we are confident the
session will not be utilised), even if the OR management does not actually plan



Problem Description 105

that far into the future. Considering all operations and sessions provides the
added benefit of seeing exactly how long it will take to get through the entire
current waiting list. If this is determined regularly it provides the OR manage-
ment insight regarding whether demand for operations is exceeding resources.

We only consider the scheduling of elective surgeries, which are part of what
the New Zealand Ministry of Health calls ‘Planned Care services’. These services
are defined as ‘health care that is provided more than 24 hours after a decision
to proceed with treatment’ (The New Zealand Ministry of Health 2019a). Emer-
gency and more urgent operations are assumed to be taken care of by dedicated
emergency ORs, or even at another medical facility. In addition we assume that
the only factor that restricts the sessions that an operation can be assigned to is
that the specialty assigned to the session is the same as the specialty of the opera-
tion. Other factors, such as the availability of a surgeon to perform an operation,
are assumed to not limit the assignment of operations to sessions.

5.1 Problem Description
We assume that there is a set $ of operations that need to be performed. Each
operation, =, has a related due date 3=, mean duration `=, and standard deviation
of the duration f=.

There is also a set ( of sessions in which the operations can be performed. Each
session, A, has a start date-time 1A, and length :A. There is also assumed to be a
constant amount of time B between operations within a session, called the turn
around time.

There is a cost, 2=,A, of assigning operation = to session A. The cost is a function
of how early or late an operation would be in relation to its due date, if it were
performed in a given session. We assume the function is of the form given below:

2=,A = min(1A − 3=, 0) + (max(1A − 3=, 0))_. (5.1)

These costs, referred to as the assignment cost of operation = to session A, can be
pre-calculated for every operation-session pair. The exponent on the lateness of
an assignment, _, is a parameter of the model, and can be increased to penalise
later assignments even more.

We wish to assign all of the operations to a session in a way that minimises
the above costs, while ensuring that the operations assigned to a session do not
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cause the session to run overtime more often that desired. Initially the sum of
all of the costs is considered, however we also propose (in section 5.2.1) a risk
averse objective where the expected value of costs above a given quantile of cost
is minimised.

The sum of the expected durations of the operations (and the turn around times
between the operations) assigned to a session is referred to as the ‘assigned
session duration’ and denoted by "A. Similarly the sum of the variances of the
durations of the operations assigned to a session is referred to as the ‘assigned
session variance’ and denoted by +A. We note that a distinction is made between
the aforementioned assigned session duration, the realised session duration, and
the session length. The realised session duration, !A, is a random variable that
represents the time taken to perform all of the operations in the session, given
that the durations of each of the operations are themselves random variables.
The session length, :A, is the planned amount of time that is allocated to that
session.

Constraints are required to prevent too many operations being assigned to a ses-
sion, and creating sessions that run overtime too frequently. We consider con-
straints of the form "A ≤ 5 (+A, :A, h), where the assigned session duration must
be less than a function of the assigned session variance, the session length, and
the maximum allowed probability of overtime, h. We propose four methods to
restrict the assigned session duration, which are discussed in section 5.2.2. Each
method has a corresponding function 5 .

Constraints such as those proposed in section 5.2.2 are known as ‘chance con-
straints’, because they constrain the probability of an event occurring, in this
case a session running overtime. Utilisation of chance constraints in a mathe-
matical programme requires the definition of cumulative distribution functions,
which in the case of surgery scheduling take into account the uncertainty in
the durations of the operations. Scenarios of operation duration can instead be
used to account for this uncertainty, however it would require the addition of a
constraint on the duration of a session for each scenario. Since cumulative distri-
bution functions that link the operations assigned to a session to the probability
that the session runs overtime can be estimated in a straightforward manner, the
use of scenarios in surgery scheduling is unnecessary.
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5.2 Mathematical Formulation
Given the definitions in the previous section the decision variables of the problem
are:

F=,A =


1, if operation = is assigned to session A

0, otherwise
.

The problem, which we refer to as ‘SurSched’, can be expressed as the following
mixed integer programme (MIP):

(SurSched)min
∑

=∈$,A∈(
2=,AF=,A, (5.2)

s.t.
∑
A∈(

F=,A = 1, ∀= ∈ $, (5.3)

∑
=∈$
((`= + B)F=,A) − B ≤ 5

(∑
=∈$
(f2

=F=,A), :A, h
)
, ∀A ∈ (, (5.4)

F ∈ {0, 1}. (5.5)

5.2.1 Risk Averse Objective Function

In the SurSched problem defined in the previous section, the objective was to
minimise the sum of the earliness/lateness of all of the operations; we refer to
this objective as the ‘Total’ objective. If, instead, the management of the ORs is
concerned with the patients whose operations are performed the largest amount
of time after their due dates, then a risk averse objective such as the conditional
value at risk (CVaR) objective given in (5.6) may be appropriate. This objective
minimises the expected cost of the operations in the worst (1−V)% of assignment
cost. In this formulation a variable U is used to calculate the Vth percentile of
the assignment costs, and the variable W= is 0 if operation = is not in the worst
(1−V)% of assignment costs, otherwise it is the amount that the cost of operation
= exceeds U. The CVaR objective can then be modelled by replacing the objective
function in (5.2) with (5.6) given below, and adding constraints (5.7) and (5.8),
as shown by Rockafellar and Uryasev (2000):

min U +
1

|$|(1 − V)
∑
=∈$

W=. (5.6)
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The following additional constraints ensure the definitions of U, and W=:

W= ≥
∑
A∈(

(
2=,AF=,A

) − U ∀= ∈ $, (5.7)

W= ≥ 0. (5.8)

5.2.2 Methods for Constraining Assigned Session Duration

Four methods for constraining the assigned session duration are considered. The
first two methods are based on the assumption that the durations of the opera-
tions are normally distributed, whereas the third and fourth rely on sampling
from historical data.

GND Method

Assumption 5.1 (Grand normal distribution). All operation durations are inde-
pendent and follow a single normal distribution with mean ¯̀ and standard devia-
tion f̄.

Given Assumption 5.1, the first method – called the ‘grand normal distribu-
tion (GND)’ method – calculates the amount of time that should be reserved
on average in a session of length :A such that the session does not run overtime
with a probability greater than h.

Since the durations of the operations are normally distributed, the actual session
duration, !A, is also normally distributed, with mean <:A,h( ¯̀+ B)− B and standard
deviation

√
<:A,hf̄, given that at most <:A,h operations are assigned to a session of

length :A with overtime probability h.

The probability that the actual session duration does not exceed the session
length can be calculated using a z-statistic, where Z ( F−`

f

)
denotes the proba-

bility that a random variable following a normal distribution with mean ` and
standard deviation f will take a value ≤ F, and is given by:

Z
(
:A − (<:A,h( ¯̀ + B) − B)√

<:A,hf̄

)
. (5.9)

Therefore the expected number of operations assigned can be calculated by
equating this probability to one minus the allowed probability of overtime:
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Z
(
:A − (<:A,h( ¯̀ + B) − B)√

<:A,hf̄

)
= 1 − h, (5.10)

which gives

<:A,h =

√
−lf̄ +

√
l2f̄2 + 4( ¯̀ + B)(:A + B)

2( ¯̀ + B) , (5.11)

wherel = Z−1(1−h). For each session the limit on the assigned session duration
can then be calculated as <:A,h( ¯̀ + B) − B. Therefore:

5

(∑
=∈$
(f2

=F=,A), :A, h
)
= <:A,h( ¯̀ + B) − B,

and the constraints in (5.4) are replaced with∑
=∈$
(`= + B)F=,A ≤ <:A,h( ¯̀ + B).

SND Method

Assumption 5.2 (Session normal distribution). Each operation’s duration is nor-
mally distributed with its own mean, `=, and standard deviation, f=, and is inde-
pendent of the duration of all other operations.

Instead of Assumption 5.1, i.e., that all operation durations come from a single
normal distribution, we can use Assumption 5.2 to define the second method for
constraining the assigned session duration, called the ‘session normal distribu-
tion (SND)’ method.

Given an assignment of operations to sessions, F=,A, the realised duration of a
session, !A, is normally distributed with mean

∑
=∈$(`= + B)F=,A − B, and standard

deviation
√∑

=∈$ f2
=F=,A, because the sum of independent normally distributed

random variables is also normally distributed. The probability that a normally
distributed random variable with this mean and standard deviation does not
exceed :A is given by:

Z
(
:A −

∑
=∈$(`= + B)F=,A + B√∑

=∈$ f2
=F=,A

)
. (5.12)
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If we require this probability to be greater than or equal to 1 − h we obtain the
following form for 5 , where once again l = Z−1(1 − h):

5

(∑
=∈$

f2
=F=,A, :A, h

)
= :A − l

√∑
=∈$

f2
=F=,A . (5.13)

These constraints are non-linear and non-convex so they are approximated using
a piecewise linear function, and SOS2 constraints (Beale and Tomlin 1969) are
used to implement them in the optimisation model.

DED Method

The third method, called the ‘duration empirical distribution (DED)’ method,
samples sessions and operations from the historical data to build a probability
density function to determine a link between the assigned session duration and
the probability of running overtime, instead of assuming that the operation du-
rations are normally distributed, e.g., Assumption 5.1 or 5.2.

A sample set of sessions is created to build an empirical conditional probability
distribution. This sample contains sessions from two sources. First, historical
sessions are used directly, including the operations that were assigned to the
sessions. Second, for each historical session operations were randomly assigned
to the session. The randomly generated sessions were added to the historical ses-
sions to create a sample that has more uniform distributions of assigned session
duration and variance. The combined session sample does not have perfectly
uniform distributions, however it is better than each of the other samples indivi-
dually. Hopefully using this combination removes some of the bias the empirical
distribution has towards sessions that are scheduled in the way that has been
performed historically by the hospital.

To create the random sessions the following steps were performed for each his-
torical session:

1. A random number of operations was chosen to be assigned to that session,
from the historical distribution of the number of operations in a session;

2. Operations were chosen randomly, from the historical operations, to be
assigned to that session, up to the previously chosen number.
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Including the randomly created sessions gives a sample of sessions that includes
two assignments of operations for each historical session, one with the actual
historical assignment of operations, and one with randomly assigned operations.

For each session, A, in the historical data, there are two sets of operations: the
operations that were performed historically $(ℎ)A ; and a randomly assigned set
$(@)A . The assigned session duration "A, and assigned session variance +A can be
calculated for either set of operations as follows:

"A =
∑
=∈$
(`= + B) − B and +A =

∑
=∈$
(f2

=),

where $ ∈ {$(ℎ)A ,$(@)A }. Figure 5.1 shows the distribution of the assigned session
duration and assigned session variance in the historical sessions, the randomly
assigned sessions and the combined session sample, for sessions with a length of
210 minutes.

Realisations of the session duration, !A, can be created by sampling durations
for each of the operations in the session from historical data, and then adding
them together along with the turn around times. For each session in the sample
1000 realisations of the session duration were created using 1000 samples of the
operation durations from the historical data The method used for sampling the
operation durations is not presented here, but is given in detail in algorithm 6.1.
Figure 5.2 shows 5 realised session durations for each of the sessions in the
sample.

The entire process for creating the data for the empirical distribution for each
session in the historical data is given in algorithm 5.1 and realises the opera-
tions that were performed historically, $(ℎ)A , and the randomly assigned set of
operations, $(@)A , respectively. For each of these two sets of operations both the
assigned session duration, "A, and the assigned session variance, +A, and 1000
realisations of !A are calculated.

For the DEDmethod the realisations of session duration are paired with the assig-
ned session duration, and then used to estimate �!A |"A , the conditional cumula-
tive distribution function of realised session duration given assigned session du-
ration. �!A |"A is estimated using the ‘KDEMultivariateConditional’ function from
the ‘statsmodels’ python package. This function takes the lists of realised ses-
sion duration and assigned session duration and estimates the conditional CDF
at given values of !A, and "A using the techniques described in both chapter 6
of Li and Racine (2006), and Liu and Yang (2008). Since we are concerned with
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Figure 5.2: 5 Realised Session Durations for Example Session Sample

whether the session runs overtime, we evaluate this conditional CDF at :A, and
100 values of "A uniformly spaced from the smallest to largest values in the ses-
sion sample. This gives us the probability that the realised session duration is less
than or equal to the length of the session for 100 values of the assigned session
duration. Figure 5.3 shows an example of this conditional CDF and compares it
to the probability obtained under the GND assumption (which assumes that all
operation durations come from a single normal distribution), for a 210 minute
session (:A = 210). We then define another function ℎ:A("A) = 1−�!A |"A(:A |"A),
which is the probability that a session of length :A runs overtime given that it has
an assigned session duration "A.

The value of 5
(∑

=∈$ f2
=F=,A, :A, h

)
is then estimated using the inverse of this

function, ℎ−1
:A
(h), and interpolating linearly between the values of overtime pro-

bability nearest to h that ℎ:A("A) is estimated at. In relation to figure 5.3 this
is equivalent to drawing a horizontal line across the graph at the level corre-
sponding to h. Then drawing a straight line between the two vertically closest
blue points, since the blue points represent the empirical function we are inte-
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Algorithm 5.1: Session Sampling Algorithm

Step 1. Given a session, A, determine from the historical data the set $(ℎ)A ,
the set of operations that were performed in the session historically.

Step 2. Determine the set $(@)A , a set of randomly assigned operations by:

Step 2.1. Choosing a number of operations to be assigned to that ses-
sion. The number is chosen randomly from the historical distribution
of the number of operations in a session.

Step 2.2. Choosing operations randomly, from the historical operations,
to be assigned to that session, up to the previously chosen number of
operations.

Step 3. For both $(ℎ)A and $(@)A determine the assigned session duration
using "A =

∑
=∈$A(`= + B) − B and the assigned session variance using

+A =
∑
=∈$

A(ℎ)
(f2

=).

Step 4. For both $(ℎ)A and $(@)A create 1000 realisations of the session du-
ration !A by taking 1000 samples of each operation in the set (using
algorithm 6.1), and for each sample calculating the resulting session
duration using the same formula as for "A in the previous step.
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Figure 5.3: Example Overtime Probability Function
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rested in. The x-axis value at which these two lines intersect is the value used
for ℎ−1

:A
(h).

DVED Method

The fourth method, called the ‘duration variance empirical distribution (DVED)’
method, also uses historical data to estimate the probability of a session run-
ning overtime, however instead of being only dependent on the assigned session
duration it can now also depend on the assigned session variance.

The same procedure is used whereby the assigned session duration and vari-
ance are calculated for each of the historical and randomly generated sessions,
and then realisations of the session duration are created by sampling durations
for each of the operations. For the DVED method, however, the realised session
durations are combined with both the assigned session duration and the assig-
ned session variance to estimate�!A |"A,+A , the conditional cumulative distribution
function.

Once again the ‘KDEMultivariateConditional’ function from the ‘statsmodels’ py-
thon package is used to estimate the conditional cumulative distribution function
of realised session duration given both assigned session duration and variance,
�!A |"A,+A , this time on a uniformly spaced grid of both assigned session duration
and variance. The probability of overtime given assigned session duration and
variance for a particular session length, ℎ:A("A,+A) is again estimated at each of
the points on the grid by subtracting the value of the conditional CDF at that
point and session length from 1. An example of the estimated probability of
overtime for a 210 minute session given assigned session duration and variance
is shown in figure 5.4.

The function, ℎ:A("A,+A), is converted into constraints for the optimisation pro-
blem for a given h by finding, for each ‘column’ of points corresponding to a
single value of assigned session variance, the first point that exceeds the desired
overtime threshold. These points define a piecewise linear function of assigned
session duration in terms of assigned session variance. These functions are non-
convex and piecewise linear so SOS2 constraints are used to implement them in
the optimisation model. To reduce the number of additional variables and con-
straints used to model these functions as SOS2 constraints a simpler piecewise
linear function using a maximum of 11 points was fit to the original functions,
and it is this function that is used as 5

(∑
=∈$ f2

=F=,A, :A, h
)
in the optimisation

model. Figure 5.5 compares an example of these piecewise linear functions for
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Figure 5.4: Probability of Overtime Given Assigned Session Duration and Vari-
ance for a 210 Minute Session

both the DVED and SND methods for five levels of overtime threshold: 0.5, 0.4,
0.3, 0.2, and 0.1.

Generally the constraints formed using the SND method are less restrictive than
those formed using the DVED method, however much of the added feasible re-
gion is the area with a high assigned session variance and low assigned session
duration (in the bottom right of figure 5.5). When scheduling sessions this re-
gion is impossible to reach as assigned session variance increases with assigned
session duration (as seen in figure 5.1).

Using SOS2 constraints that describe a simpler, fitted function – as described
above – is not the only way of obtaining constraints from the overtime probability
function shown in figure 5.4. For example another approach could be to take the
convex hull of the points for which ℎ:A("A,+A) ≥ h holds. This methodwill always
provide a constraint that is more conservative than strictly necessary, potentially
removing many sessions that would be feasible under the method used here.
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Figure 5.5: Example Constraints for DVED and SND Methods for a 210 Minute
Session

5.3 Rescheduling Problem
The surgery scheduling problem described in section 5.1 and formulated as
SurSched in section 5.2 assumes that there is a fixed set of operations, $, that
need to be scheduled once. The problem that OR management actually face is
more dynamic with each day bringing new patients requiring operations. Wemo-
del this evolving problem as series of optimisation problems at discrete points in
time.

Suppose we have a set of points in time � and at each point 7 in this set the date-
time is g7. At each point in time 7 we assume there is a set of operations needing
to be performed $7, and sessions in which to perform them (7. Given a first time
point, 7 = 1, the SurSched problem described in section 5.2 can be solved using
the sets$1 and (1, where$1 is the set of all operations that are currently waiting
to be performed at that point in time and (1 is the set of all available sessions in
the future. The set of sessions can be truncated at some reasonable point such
that there are enough sessions to fit all of the operations, but not so many as to
introduce a lot of unnecessary variables into the optimisation problem.

Solving the first problem gives an optimal assignment of operations to sessions,
F̂1
=,A. If we then step to point 7 = 2 an amount of time g2−g1 will have passed, the

sessions where 1A ≤ g2 will have been completed, and the operations in them
will have been performed. We denote the sessions completed and operations
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performed in the time between points 1 and 2 as  1 = {A ∈ (1 : 1A ≤ g2}
and %1 = {= ∈ $1 : F̂1

=,A = 1 ∧ A ∈  1}. Note that this assumes that all of the
operations assigned to each session are completed, and are never cancelled due
to the session running overtime or to enable emergency operations.

In addition we refer to the set of new patients that arrive and need an operation
in the time between points 1 and 2 as �1. If the set ( did not include all future
sessions then the point in time at which the set was truncated should be moved
forward and the extra sessions included are referred to as �1.

At the point in time 7 = 2 we then have a problem where the set of operations
to be scheduled is $2 = {$1 \ %1} ∪ �1, and the sessions in which they are to
be performed is (2 = {(1 \  1} ∪ �1. Further we have the solution from the
previous problem F̂1

=,A which allows us to define costs that include a penalty if an
operation is moved from the session it was assigned to at time point 1. The new
cost of assigning operation = to session A at time point 2 is given below:

22
=,A =


min(1A − 3=, 0) + (max(1A − 3=, 0))_, if = ∈ �1

min(1A − 3=, 0) + (max(1A − 3=, 0))_ + d(1 − F̂1
=,A), otherwise

(5.14)

The SurSched problem described in section 5.2 can then be solved again, this
time using the newly defined costs 22

=,A and the sets $2 and (2. This procedure is
then repeated until the point |� | + 1 is reached. The process can be summarised
in the steps in algorithm 5.2.
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Algorithm 5.2: Rescheduling Algorithm

Step 1. Set 7 = 1.

Step 2. Solve SurSched with costs defined by (5.1) and sets $1 and (1,
giving an optimal solution F̂1

=,A.

Step 3. Increment 7 (7 = 7 + 1).

Step 4. Update sets of operations and sessions, $7 = {$7−1 \ %7−1} ∪ �7−1
and (7 = {(7−1 \  7−1} ∪ �7−1.

Step 5. Update the costs using

27=,A =

{
min(1A − 3=, 0) + (max(1A − 3=, 0))_, if = ∈ �7−1

min(1A − 3=, 0) + (max(1A − 3=, 0))_ + d(1 − F̂ 7−1
=,A ), otherwise

Step 6. Solve SurSched with costs 27=,A and sets $7 and (7, giving an opti-
mal solution F̂ 7=,A.

Step 7. If 7 ≤ |� | then go back to 3, otherwise stop.
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Conclusion
In this chapter we presented a surgery scheduling problem where a set of opera-
tions needs to be assigned to a set of sessions in which they are to be performed.
The objective of the problem is to minimise the sum of how late each operation is
performed with respect to when it is due. Historical data is used both to estimate
the duration of operations, and the probability that sessions will run overtime.
The uncertainty of operation durations is taken into account in the constraints
that limit the number and type of operations that are assigned to a session. The
nature of the uncertainty is approximated using historical data on the durations
of the operations.

We included a risk averse version of the objective which limits the scope of the
objective function to only the worst (1 − V)% of operations in terms of lateness
cost. This can be used to model a situation where the management of the ORs
wish to focus on making sure the latest operations are not too late.

In addition four methods for preventing the overbooking of sessions were pre-
sented. All of the methods depend on the allowed probability that a session runs
overtime, h. The methods differ in the way that each of them incorporates the
uncertainty of the operation durations into the model. The first two, GND and
SND, use historical data to define normal distributions either for session length
(GND) or surgery duration (SND). The second two, DED and DVED, use the
historical data to define empirical distributions of the probability that a session
runs overtime.

Finally, a rescheduling problem was defined, that solves the original scheduling
model at consecutive points in time with updated values for the costs, set of
operations to be performed, and set of sessions in which to perform them. The
updated costs include a penalty that discourages operations from being moved
from the session that they were scheduled in at the previous time point.

In the next chapter we apply the model and methods presented here to a case
study at Middlemore Hospital (MMH).



— Chapter 6 —

Surgery Scheduling Case Study

In chapter 5 we formulated an optimisationmodel that assigns a set of operations
to a set of surgical sessions, and introduced two objective functions and four
methods for constraining the operations assigned to a session. In this chapter
we present a case study of a surgical centre in Auckland, New Zealand.

First we give some background on the surgical services offered by Counties Ma-
nukau District Health Board (CMDHB), and the facilities they operate. We then
analyse the historical data on both operations and sessions that was provided to
us, in order to estimate the parameters required for the optimisation model. The
results of using the model to schedule a year of operations are then presented
and discussed in detail.

6.1 Background
The CMDHB provides health services to the Manukau City, Franklin, and Papa-
kura districts. The population served by the CMDHB has a higher proportion of
Pacific Island people and has proportionally more people in the most deprived
quintile (The New Zealand Ministry of Health 2019b). In addition the popula-
tion exhibits high rates of smoking, alcohol consumption, and obesity (Board
2015).

CMDHB operates many facilities throughout the South Auckland region, howe-
ver this case study focuses on theManukau Surgery Centre (MSC). TheMSC pro-
vides day surgery services and elective surgery for patients who are not expected

121
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to need intensive care. This means that the MSC does not provide emergency or
urgent services.

The MSC has 10 operating rooms (ORs) and 78 inpatient beds that are shared
between six surgical specialties. These specialties are; General Surgery, Gynae-
cology, Orthopaedic Surgery, Ophthalmology, Plastic Surgery, and Urology.

The time in each OR is divided into blocks that are called ‘sessions’. Most of the
sessions are either a half-day session (a.m. or p.m.) that lasts 210 minutes, or
a full day session that that lasts 480 minutes, however there are some sessions
that are slightly different lengths (240 or 510 minutes).

Each session is assigned to one of the surgical specialties and only that specialty
can perform operations in that session. This form of scheduling is known as block
surgical scheduling and the assignment of the sessions to the specialties is known
as the master surgery schedule. For the scheduling problems we assume that
the master surgery schedule has already been created. Therefore each specialty
has its own set of operations to be performed and sessions in which to perform
them, and the scheduling of the operations can be decomposed by specialty. If
in practice the sessions and operations are split not by specialty but by surgeon,
where each surgeon has a set of operations to perform and a set of sessions in
which to perform them, then the scheduling of operations could be decomposed
by surgeon rather than specialty. For the purposes of this case study, however, we
assume that the sessions and operations are partitioned by specialty. Figure 6.1
shows the master surgery schedule for the MSC in February 2016 from the 15th
to the 20th, and table 6.1 gives the number of sessions each specialty was given in
2016 and the number of new operations that needed to be performed during that
period. In figure 6.1 each block of colour represents a surgical session in a theatre
which was assigned to a specialty, the small rectangles represent either a.m. or
p.m. sessions, and the larger rectangles represent full day sessions. It can be seen
that some theatres are used more than others, and some are dedicated to a single
specialty while others are shared between specialties. Further some theatres are
used by different specialties in the morning and afternoon, for example theatre
3 on the 15th. In such situations making sure the probability that the morning
session runs overtime is within acceptable limits is important as even a small
overrun will prevent the second specialty from starting on time.

To assess the performance of the scheduling model developed in the previous
chapter it was used to schedule the operations for General Surgery, Ophthalmo-
logy, and Urology throughout 2016. These three specialties were chosen because
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Figure 6.1: Surgical Sessions Coloured by Specialty in February 15th–20th 2016;
Each Block Represents a Session in a Theatre

Table 6.1: Number of Sessions and Operations in 2016

Specialty Sessions Operations

General Surgery 503 1773
Gynaecology 391 1340
Orthopaedic Surgery 386 1303
Ophthalmology 350 1516
Plastic Surgery 405 1447
Urology 35 269

they represent quite different scheduling problems. Urology is a small specialty
that performs relatively few operations per year, making it an easier test pro-
blem. General Surgery and Ophthalmology are both larger specialties perfor-
ming many operations each year, however they are quite different in the average
duration of the operations, with Ophthalmology operations requiring much less
time than General Surgery operations on average. This means that Ophthalmo-
logy needs fewer sessions to perform the same number of operations, and has
more operations per session on average.

To make the comparison of the performance of the scheduling model to the ac-
tual schedule as fair as possible only information available to the schedulers at
the time is used in the model. This means that any estimations of model para-
meters such as the mean duration of operations, or the empirical distribution



124 6. Surgery Scheduling Case Study

functions that constrain the assignment of operations to sessions, are calculated
using data from before 2016.

6.2 Historical Data
We were provided with two and a half years of data from CMDHB on the sur-
gical operations that were performed and the sessions they were performed in
from January 2015 to July 2017. In an ideal situation every historical operation
would come with an estimate of the mean and standard deviation of its duration,
as these are both needed for the scheduling model. In practice often all that is
available is the amount of time scheduled for the operation, and the actual du-
ration of the operation. Therefore a significant part of this section is dedicated
to the estimation of these parameters, even though this is not our primary focus
in the process of scheduling operations. The remainder of the section uses the
historical data to evaluate the performance of the surgical services of the three
specialties of interest during 2016. For each operation in the historical data the
following information was available:

• The arrival date, the date that it was added to the waiting list of operations
to be performed;

• The due date, the date that the operation should be performed by;

• The surgical specialty that will perform the operation;

• The procedure code, a code such as ‘SAB63’ that describes the operation
that needs to be performed;

• The surgical session that the operation was performed in;

• The scheduled duration of the operation;

• The time that the operation began;

• The actual duration of the operation.

From the operations’ data we can directly define the set of operations to be per-
formed for each specialty, $, and the due date of each of the operations 3=. Both
the mean duration of each operation `= (and the global mean, ¯̀, of a particular
specialty) and the standard deviation of the duration f= (and the global standard
deviation, f̄, of a particular specialty) require further analysis.
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For each session the following information was available:

• The date and time that the session started;

• The surgical specialty performing operations in the session;

• The amount of time that the session was supposed to run for;

• The actual amount of time spent performing operations, including any
time between operations.

The session data allows us to define the set of sessions for each specialty, (, the
start time of each session 1A, and the length of each session :A.

To estimate `= and f=, as well as ¯̀ and f̄, the operations were categorised by
specialty since each specialty has its own scheduling problem. In addition be-
cause we will be scheduling the 2016 operations and sessions it would not be
a fair comparison if data from this time period was used to inform these esti-
mates, as that data was not available to the schedulers at the time. Therefore
we only use data from before 2016 to estimate the parameters, however we do
compare this data to that from 2016 onwards to see if there are any significant
differences.

First we analysed the durations of the operations of each specialty for both before
2016 and afterwards. Taking the point of view of a scheduler at the beginning of
2016 these two sets are referred to as the ‘Historical’ operations and the ‘Future’
operations.

Figure 6.2 shows histograms of the distributions of the operation durations for
each specialty for both the historical and future operations. For the grand normal
distribution (GND) method it is assumed that all operation durations come from
a single normal distribution withmean and standard deviation equal to themean
and standard deviation of the set of historical operation durations. In order to
assess the validity of this assumption the global mean and standard deviation
of each set of data ( ¯̀, f̄) are displayed in addition to the probability density
function of a normal distribution with that mean and standard deviation.

Figure 6.2 shows that none of the sets of operations durations are normally dis-
tributed. The operation durations for both General Surgery and Ophthalmology
have long right tails that increase the mean and standard deviation and result in
the approximating normal distribution having a large probability of being less
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than 0. The Urology operations are closer to being normally distributed, howe-
ver there is still a large section of each normal distribution probability density
function that corresponds to operation durations less than 0.

It is also noted that the mean and standard deviation for the historical and fu-
ture operations are very similar for both General Surgery and Ophthalmology,
but there is a significant difference in these statistics for Urology. This means
that estimates made using the historical data for Urology will not be representa-
tive of the corresponding estimates for the future Urology data. Since all of the
methods for constraining assigned session duration rely on estimates from the
historical data, either in the form of normal distribution parameters or empirical
distributions of session overtime probability, it would be expected that they do
not perform as well for Urology. The reliance on historical data being represen-
tative of the future observations could be somewhat alleviated by periodically
updating the model parameters that depend on the historical data, as new data
becomes available.

We now have estimates for ¯̀ and f̄ for each specialty, however we still need
estimates for `= and f= for each operation. To estimate `= and f= the operations
are once again split by specialty, because as figure 6.2 shows the distribution of
operation duration is different for each specialty. Within each specialty we use
a generalised linear model (GLM) that models the duration of the operations as
a random variable that follows a gamma distribution. The mean of the gamma
random variable is modelled as a so called ‘link function’ applied to a linear
predictor. The linear predictor is the covariates multiplied by a coefficient. The
covariates that we used were the procedure code and scheduled duration of the
operation, and the link function used was the identity transform. Although the
3-parameter log-normal distribution is more commonly used to model surgery
durations (Strum, May, and Vargas 2000; Lamiri, Dreo, and Xie 2007; Oostrum
et al. 2008), a gamma GLM was chosen instead as it provided better predictions
for the CMDHB data. Further the estimates of the operation durations are esti-
mated here only to serve as input for the scheduling model, and can be replaced
with estimates from another model.

GLMs also assume that the variance of the response variable (operation duration)
can vary only as a function of the mean of the response variable. Further for a
GLM with the response variable modelled by a gamma distribution the variance
of the response variable is equal to the mean squared multiplied by a scale factor.
Figure 6.3 shows the durations of the operations from before 2016 against the
mean of all operations with the same procedure code. Procedure codes where
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Figure 6.3: Actual Duration of Operations Grouped by Procedure Code

less than 15 operations were observed were grouped together into a general
procedure code. For both General Surgery and Ophthalmology variance does
appear to increase with the mean duration, although perhaps not quadratically.
For Urology there does not appear to be a relationship between group mean and
variance, although the range of the group means is much smaller than for the
other two specialties.

Bymodelling the operation durations with a GLMwe estimate both themean and
the variance (and therefore standard deviation) of each operation at the same
time. However, using a model where the variance of an operation’s duration is
directly proportional to the mean has several negative consequences. The first is
that the session constraint methods that use both the assigned session duration
and the assigned session variance (the session normal distribution (SND) and
duration variance empirical distribution (DVED) methods) are not being pro-
vided with independent pieces of information, and the variance used in these
methods could be calculated from the mean. This does not make including the
variance useless, as the probability of overtime may have a quadratic relations-
hip with the mean of the assigned operations durations. The second (negative
consequence) is that the model assumes that all operations that have the same
mean duration have the same variance. This is not always the case in practice,
as there may be two types of procedure that take the same time on average but
one is very consistent while the other is highly variable.
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In addition a contradiction that arises when modelling operation durations using
a GLM is that the model assumes that the durations of the operations follow a
gamma distribution, whereas both the GND and SND methods assume that the
durations are normally distributed. Clearly one of these assumptions is false, and
possibly both are.

A GLM has been used before to model the mean and standard deviation of the
duration of operations by Shylo, Prokopyev, and Schaefer (2013). We are willing
to accept the limitations of this method given that the estimation of themean and
variance of operation durations is only necessary as an input for the scheduling
model, and not the main focus of this work.

6.2.1 Resampling Operation Durations

A resampling procedure is used to generate realisations of operation durations.
The samples of durations are used both for determining the realised session
durations for the empirical distribution methods, and to simulate the sessions
obtained by each of the different solution methods.

To perform the sampling for a given operation, a pool of durations to sample
from is determined. This pool is the historical operations that share the same
procedure code and scheduled duration as the operation for which we wish to
sample durations. For a small number of procedure code and scheduled duration
combinations (around 10% of the total operations) limiting the pool to only
those operations with the same procedure code and scheduled duration leads to
a very small pool of possible durations from which to sample. In fact, sometimes
there is only the original operation itself.

In the cases where the pool is smaller than 15 durations a different criteria is
used. Instead of having the same procedure code and scheduled duration we con-
sider the historical operations that have the same expected duration, as determi-
ned by the GLM, as the operation in question. If this pool is still too small then
we include operations whose expected durations are within a given threshold
of the target operation’s. This threshold starts at one minute and is increased a
minute at a time until the pool contains at least 15 operations. The resampling
process that creates a sample of durations for a given operation is described in
algorithm 6.1.

The method in algorithm 6.1 is somewhat unsatisfactory as we are using our
previous estimates of expected duration to determine which operations should
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Algorithm 6.1: Resampling Algorithm

Step 1. Choose an operation =̂ with procedure code >=̂ and expected du-
ration `=̂, for which we wish to create a sample of durations.

Step 2. Choose a set of operations $ from which the durations are to be
sampled.

Step 3. Define the set $(>) = {= : = ∈ $, >= = >=̂}.
Step 4. If |$(>) | ≥ 15 go to Step 6, otherwise go to Step 5.

Step 5. Set Δ = 0.

Step 5.1. Increment Δ (Δ = Δ + 1).
Step 5.2. Update $(>), $(>) = {= : = ∈ $, |`=̂ − `= | ≤ Δ}
Step 5.3. If |$(>) | ≥ 15 go to Step 6, otherwise go to Step 5.1.

Step 6. Sample operations with replacement from the set $(>) and take
the durations of the the sampled operations as the sample of durations
for the original operation =̂.

be included in the pool to sample from, which may bias the sample. Other op-
tions were considered for operations where the pool is small, such as: using a
parametric distribution such as the normal, triangular or gamma; using the ‘Ge-
neral’ procedure code instead of the operation’s code; or using the entire set of
historical operations. All of these options have their own downsides and ideally
we would have enough data so that this compromise would not be necessary in
the first place; in the absence of sufficient data no solution is ideal. In addition
this problem only occurs for a small number of the operations so hopefully our
choice for handling the situation has little bearing on the final results.

To summarise, the following steps are performed when scheduling operations
given: a starting point in time A, a finishing point in time B, a set of histori-
cal sessions that were performed before A, the operations that were performed
in those sessions and their durations, the sessions currently planned to be per-
formed between A and B, and the currently known operations waiting to be
performed.

1. Use a gamma GLM trained on the operations performed before A to es-
timate `= and f= for the operations performed before A and the known
upcoming operations;
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2. Use algorithm 5.1 to create a sample of session duration realisations;

3. For each of the four session duration constraint methods, GND,
SND, duration empirical distribution (DED), and DVED, determine
5
(∑

=∈$ f2
=F=,A, :A, h

)
, a function of the sum of the variances of the dura-

tions of the operations assigned to a session, the length of the session, and
the allowed probability of overtime that limits the sum of the means of the
durations of the operations assigned to a session, as described in chapter 5;

4. Determine an appropriate set of points in time � (between A and B), and
penalty for moving an already scheduled operation to another session d;

5. Use algorithm 5.2 to schedule the operations between A and B.

6.2.2 Actual Performance in 2016

To assess the actual performance of the surgical services in 2016 the number
of patients waiting for their operation and the total expected duration of those
operations throughout the year are shown in figure 6.4.

Both General Surgery and Ophthalmology have between 300 and 400 operations
waiting and remain relatively constant throughout the year. Urology begins with
28 patients waiting for operations and increases constantly throughout the year,
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Figure 6.5: Histograms and Box Plots of the Earliness and Lateness of Operations
Available for Scheduling in 2016

ending with 90 patients waiting. The total duration of operations waiting dis-
plays the same trends, except that there is a large difference between General
Surgery and Ophthalmology. The larger duration waiting for General Surgery
than Ophthalmology, even though the number waiting is the same, is due to
General Surgery operations being longer on average than Ophthalmology ope-
rations.

The distribution of the lateness of the operations performed in 2016 by each of
the specialties is displayed in figure 6.5 using both histograms and horizontal
box plots above them. Ophthalmology and Urology have similar, unimodal dis-
tributions of lateness with medians just above zero, whereas General Surgery
has a bimodal distribution with its median below zero. For all of the specialties
no operation is more than 100 days early or late.

We also analysed the proportion of sessions that ran overtime in 2016, for each
of the specialties. We considered both the proportion that actually ran overtime,
calculated from the actual historical operation durations, and the proportion
that ran overtime calculated from a simulation using 10,000 sampled durations
of the operations. Algorithm 6.1 is used to create this duration sample and the
operations performed before 2016 are used as the set of operations from which
the durations are sampled. The actual and simulated overtime proportions are
both given in table 6.2. For all of the specialties there is a significant difference in
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Table 6.2: Proportion of Sessions that Run Overtime in 2016

Specialty Actual Proportion Simulated Proportion

General Surgery 0.20 0.45
Ophthalmology 0.08 0.24
Urology 0.03 0.51

the actual proportion that ran overtime and the simulated proportion, with the
simulated proportion being between 0.16 and 0.48 greater than the actual pro-
portion. This is possibly because in practice the sessions are overbooked and then
if the first few operations are running early the remaining operations are allo-
wed to be performed. On the other hand if the first few operations run late, then
the last operation(s) can be cancelled. This results in sessions that on average
would frequently run overtime, but do not actually run overtime because the last
operations were only performed because the first ones were quicker than usual.

In the scheduling model defined in the previous section it is assumed that all ope-
rations that are assigned to a session are always performed, and no operations
are performed that were not previously assigned. This means that we cannot take
advantage of the first operations in a session running early in the same way that
the actual OR schedulers can. Consequently, when comparing the proportion of
sessions that run overtime from the optimisation model to the actual sessions,
using the simulated proportion is a fairer comparison.

Finally, we investigated the distributions of the simulated probability of session
overtime for each of the specialties. This is shown in figure 6.6 which contains
histograms and horizontal box plots of the simulated probability that sessions
ran overtime.

Both General Surgery and Urology have median session overtime probabilities of
around 0.5, whereas Ophthalmology has a lower median at 0.2. However even
Ophthalmology has a significant fraction of sessions that have a probability of
overtime of more than 0.5.

6.3 Results
We first describe the experiments that were performed before presenting the
results, for discussions and explanations of the results see section 6.4.

We scheduled the operations throughout 2016 using the optimisation model
described in section 5.3, and the corresponding algorithm 5.2, and compared
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Figure 6.6: Histograms and Box Plots of the Simulated Probability of Overtime
of the Historical Sessions in 2016

the solution(s) to the actual schedule to evaluate the model’s performance. The
operations and sessions in 2016 were chosen to be scheduled because the data
available was from January 2015 to July 2017. Scheduling throughout 2016 allo-
wed for: one year of data to be used to train the overtime probability estimation
methods, one year of operations to schedule, and have six months of additional
sessions left over to schedule operations in at the end of 2016.

To define the rescheduling problem initial sets of operations, $1, and sessions,
(1, are required, as well as the set of time points, �, at which the model is to
be solved. For each specialty, the set of initial operations, $1, is defined as the
all of the operations that have arrived needing an operation before 04/01/2016
but have not yet had their operation performed. The sessions in which these
operations are scheduled, (1, are all of the historical sessions from 04/01/2016
until 01/07/2017. The fourth of January is used as the starting date as it is the
first Monday of 2016 and there were no sessions on the previous days in 2016.

The set, �, of time points, 7, at which operations are scheduled, is defined
for 7 = 1 to 52, and � = {1, 2, . . . , 52}, representing the weeks in the
year 2016. The date-times, g7, associated with the time points in � are 12
a.m. in the morning on the Monday of the corresponding week in the year,
so g1 = 04/01/2016 00:00:00, g2 = 11/01/2016 00:00:00, and g52 =

26/12/2016 00:00:00. This means that the rescheduling problem is solved once
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a week throughout 2016. Any patients that arrive between time points have to
wait until the next Monday to be scheduled. In general this may result in some
patients not being able to be scheduled before their due date, if their due date
was less than a week after when they arrived. All of the operations performed
at the MSC, however, are non-urgent elective operations and the smallest time
between arrival and due date is two weeks. Therefore patients will always have
at least one opportunity to have their operation scheduled before their due date,
however they will not necessarily always be assigned to a session before their
due date, depending on how many other operations need to be scheduled and
their respective due dates.

The rescheduling problem described above was applied to three of the special-
ties that perform operations at the MSC: General Surgery, Ophthalmology, and
Urology. The values of the parameter h, which determines the maximum allowed
probability of overtime for any session, were 0.5, 0.4, 0.3, 0.2, and 0.1. Each of
these values of h was combined with three values for the parameter _, which is
the exponent applied to the lateness of an operation session assignment in the
cost function, 1, 1.5, and 2. The value of d, which is the penalty applied if an
operation is moved to another session after it has already been scheduled in a
session was set as equal to being one week late with an exponent of 1, regard-
less of the value of h or _. This means, if the earliness and lateness in the cost
coefficients is being measured in days, that d = 7.

The five values of h and three values of _ result in 15 combinations of parame-
ter values to be used. In addition each of the four methods for estimating the
probability that a session runs overtime, GND, SND, DED, and DVED, were all
applied to each of the 15 (h, _) combinations, giving 60 parameter combinati-
ons. Finally both the original objective and the conditional value at risk (CVaR)
objective were used, giving a total of 120 problems for each of the three speci-
alties. For the CVaR objective _ was held constant at 1, and instead the three
values 0.8, 0.9, and 0.95 were used for V, where V is the quantile of lateness the
operations with lateness above which are averaged in the objective function.

For each of the 120 problems 52 mixed integer programmes (MIPs) had to be
solved, one for each of the 52 weeks in 2016, in total among the three specialties
18,720 MIPs were solved. These MIPs were solved using Gurobi version 8.1.1
on a server running Ubuntu version 16.04.4 with 24 cores each at 2.60 GHz,
and 48 GB of RAM. For each MIP a relative gap of 0.05 (5%) and a time limit of
5 minutes were used as the terminating criteria. This means that Gurobi would
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stop searching for new solutions and report the current best solution if the diffe-
rence between the upper and lower bound divided by the absolute value of the
upper bound was less than 0.05, or the time limit of 5 minutes was reached. To
ensure that a solution was always returned Gurobi was given a feasible solution
at the beginning of the solution process, this feasible solution was found using a
first fit heuristic.

The first fit heuristic begins by sorting all of the operations by their due date, with
those due first coming first in the list. The heuristic then proceeds through the
sorted list of operations assigning each one to the first session (chronologically)
in which it fits, given the operations that have already been assigned. Whether or
not an operation can fit into a session is determined by using the session’s dura-
tion, the assigned session duration (and variance) with the operation included,
the limit on the probability of overtime, and one of the methods for estimating
this probability. For the rescheduling problems only the new operations are as-
signed to sessions by the first fit heuristic. All operations that remain from the
previous period are assigned to the same sessions that they were in previously.

The time limit and relative gap were enforced because 18,720MIPs needed to be
solved. If every problem hit the 5 minute time limit then this would take a total
of 65 days. Many of the problems did not reach the time limit and therefore the
total computation time was much shorter than this. In a practical setting only
one of these problems would need to be solved each week for each specialty, and
therefore more time could be committed to solving each problem. In addition, in
practice, it would not be necessary to solve problems with many different com-
binations of parameters. In particular, if the OR management has an acceptable
probability of overtime for all sessions, then it can be used for h. Further only one
of the four methods for estimating the probability of overtime would need to be
used. It is also possible that the OR management would have a clear idea of their
objectives when scheduling operations and therefore the appropriate objective
function and value of either _ or V could be determined. The OR management
could also have more than one objective, in which case a multi-objective problem
could be defined. However, for the purposes of this case study we assume that
each problem we solve has a single objective. We investigate the effects of dif-
ferent values of the parameters on the schedule with the aim of understanding
which values would be appropriate in a practical application. Before proceeding
with the performance of the solutions during 2016 it is useful to first consider
the performance of the four methods for estimating the probability that a session
runs overtime, presented in section 5.2.2.
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6.3.1 Constraint Methods as Classifiers

To analyse the performance of the four methods for estimating the probability
that a session runs overtime each of the four methods was used to estimate the
probability of overtime in every session in every solution. For example, consider
General Surgery. In each of the 120 solutions there are between 500 and 700
sessions to which operations are allocated, depending on the number of operati-
ons in each session. For each one of these sessions the assigned session duration
and variance can be calculated. Using the assigned session duration and vari-
ance the probability of overtime can be estimated by each of the four methods.
The probability that each of these sessions runs overtime is then also estima-
ted using 10,000 sampled durations of the operations. Two samples of 10,000
were created, one where the durations are sampled from the same data that
methods were trained on, that is operations performed before 01/01/2016, and
a second where the durations are sampled from operations that were performed
after 01/01/2016. These two samples of the operations’ durations are referred
to as the ‘historical’ and ‘future’ samples (both here and in the following secti-
ons) and are equivalent to an in-sample and out-of-sample test. We therefore
have for each session four estimates of the probability of overtime from the four
methods described in section 5.2.2, and two estimates using simulations based
on the historical and future operations.

To assess the performance of each of the four methods they were used as a bi-
nary classifier at various levels of overtime probability. This means that for a
given value of h a session is assigned a ‘positive’ if the estimate for the proba-
bility of overtime is greater than h and a ‘negative’ if it is less than or equal to
it. This classification into positives and negatives is also performed for the es-
timates from simulation. The accuracy of the estimates from the four methods
compared to those from the simulations is calculated by counting the number
of sessions that were given the correct label – the estimation method assigns
a positive and the simulation does too, or the estimation method assigns a ne-
gative and the simulation does too – divided by the total number of sessions.
Treating the methods as binary classifiers in this way is similar to how they are
used in the optimisation models, where if the method’s estimate of the probabi-
lity that a session runs overtime is greater than h, then that session is infeasible
and not allowed in the solution. Figures 6.7 and 6.8 give the accuracies of the
four methods compared to the historical and future simulated probabilities, for
h varying between 0 and 1, and table 6.3 summarises the mean accuracies of
the four methods over all values of h.
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Figure 6.7: Historical Accuracy of Overtime Probability Estimation
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Figure 6.8: Future Accuracy of Overtime Probability Estimation
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Table 6.3: Mean Accuracy of Overtime Estimation Methods

Specialty Method Historical Accuracy Future Accuracy

General Surgery DED 0.89 0.88
DVED 0.90 0.89
GND 0.85 0.85
SND 0.91 0.90

Ophthalmology DED 0.94 0.93
DVED 0.95 0.93
GND 0.89 0.91
SND 0.96 0.92

Urology DED 0.95 0.71
DVED 0.92 0.71
GND 0.96 0.68
SND 0.96 0.67

For the historical sample (in sample) the accuracy for all three specialties follows
a similar pattern, where it decreases from 1.0 to about 0.8 as the probability of
overtime threshold increases from 0.0 to 0.2, and then increases to 1.0 again as
the probability of overtime threshold increases from 0.2 to 0.6. General Surgery
displays a clear difference in the accuracy of the four estimation methods with
SND being the most accurate, then DVED, then DED, and finally GND. For both
Ophthalmology and Urology there is less difference in accuracy between the four
methods, however, the GND method is slightly less accurate for Ophthalmology
than the other methods.

For General Surgery and Ophthalmology the accuracy of the four methods is si-
milar to the historical sample on the future sample (out of sample). For Urology,
however, the accuracy on the future sample is much worse than the historical
sample for all four methods. This stark difference between the historical and fu-
ture Urology samples is a recurring observation, first noted in 6.2 and discussed
further in 6.4.1.

It was also of interest to investigate whether the four estimation methods were
over or under predicting the probability of overtime on both the historical and
future sample. To achieve this 20 bins of overtime probability were created,
evenly spaced between 0 and 1. Each session was then placed in one of the bins
based on its simulated probability of overtime. The mean simulated probability
of overtime for the sessions in each bin was then plotted against the mean of
each of the estimates (from the methods) for the sessions in the bin, as shown
in figures 6.9 and 6.10.

It can be seen that, excluding the future sample for Urology, the methods over
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Figure 6.9: Mean Error of Overtime Probability Estimates on Historical Sample
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Figure 6.11: Mean Lateness Compared to Number of Operations Performed

estimate the probability of overtime on average for low probability sessions, and
under estimate it for high probability sessions. For the future sample for Urology
all four methods consistently underestimate the probability of overtime.

6.3.2 Scheduling Operations in 2016

The complete results of solving the 120 problems, arising from the combinati-
ons of objective function, probability of overtime estimation method, and model
parameters, for each specialty are given in appendix B. Here we first present
overall trends in the output metrics of interest, before examining some of them
in more detail.

The most obvious trend in the results of solving the rescheduling problems is
the relationship between the mean lateness of the operations scheduled, and the
number of operations performed in 2016. Figure 6.11 shows this relationship for
each specialty, the solutions we found are in blue, and the actual schedule is in
orange.

There is a clear negative linear relationship between mean lateness and number
of operations performed, that is as the mean lateness increases the number of
operations performed decreases.

A similar, although not quite as clear cut, positive linear relationship is displayed
between the mean lateness and the total duration (in minutes) of operations
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Figure 6.12: Mean Lateness Compared to Total Duration of Operations Waiting

waiting to be performed at the end of 2016, this is shown in figure 6.12.

When mean lateness is compared to CVaR at 0.95 lateness, or in other words
the mean lateness of the latest 5% of operations, there is no clear relationship
for either Ophthalmology or Urology, however for General Surgery there is a
slight positive relationship, as is shown in figure 6.13. For Urology there is a
distinct partition of the solutions in terms of CVaR at 0.95 lateness, with a set
of solutions around 300, and another around 0, and no solutions in between. A
similar partition exists to a lesser extent for Ophthalmology.

Both the mean probability of overtime, and the CVaR at 0.95 of the probability
of overtime display negative relationships with the mean lateness, as shown in
figures 6.14 and 6.15. The relationship between mean lateness and mean over-
time probability is linear for Urology, but for both General Surgery and Opht-
halmology the mean probability of overtime flattens out as it approaches 0, this
may also happen for Urology but none of the solutions found have a low enough
mean overtime probability to tell. The relationship between mean lateness and
the CVaR at 0.95 of the probability of overtime is also approximately linear for
all of the specialties.

Also of interest is how the distribution of the lateness of the operations, and
overtime probability of the sessions, is influenced by the parameters h, the limit
on the probability of overtime, and _ and V, the exponent on lateness and the
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CVaR quantile level respectively, as well as by the two types of objective functi-
ons. In the interests of brevity only the box plots for General Surgery are shown
here, although those for Ophthalmology and Urology can be found in appen-
dix C. To investigate these relationships figures 6.16 and 6.17 show box plots of
the distribution of the lateness of the operations for each combination of session
constraint method, lateness exponential (or CVaR quantile level), and overtime
probability limit for both the Total objective and CVaR objective respectively.
The operations that were scheduled in 2016 are shown in the blue box plot and
those left for 2017 in orange.

For the Total objective there is a significant difference in the distributions for
all of the methods and overtime probability limits when the late exponent is
increased from 1.0 to 1.5, but not much difference from 1.5 to 2. When the
late exponent increases from 1.0 to 1.5 the lateness of the latest operations is
significantly decreased.

For all combinations of parameters the lower quartile, median, and upper quar-
tile of lateness are very close together for operations scheduled in 2016. For
operations scheduled in 2017, however there is a larger interquartile range in
the solutions found using the DED and GND methods when the late exponent is
1.0.

For most parameter combinations the distribution of lateness is worse for the
operations scheduled for 2017 than 2016, and in particular the maximum late-
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ness. The exceptions to this are those combinations that have a high limit for
the probability of overtime, either 0.4 or 0.5. The relationship between the pa-
rameters and the way in which the lateness of the operations changes over time
is further investigated later in this section. There is also a relationship, similar
to that shown in figure 6.14, where the median lateness decreases as the over-
time probability limit increases, which is more obvious in the distributions of the
operations scheduled for 2017.

For the CVaR objective there is a very little difference in the distributions for
all of the methods and overtime probability limits when the CVaR quantile is
increased from 0.8 to 0.9 or to 0.95.

The trend of operations being scheduled later during 2017 than 2016 is once
again seen for overtime probability limits of 0.1, 0.2, and 0.3, and sometimes
0.4. Also the trend of a decreasing median lateness, and range of lateness, as
the overtime probability limit increases is more pronounced, possibly because
the range of the y-axis is smaller.

The main difference between the two objective functions is that with the CVaR
objective there are no combinations of parameters that result in a maximum
lateness over 250, whereas all of the combinations with the Total objective and
a late exponent of 1.0, and some with a late exponent of 1.5, have operations
with lateness over 250.

The same analysis of parameter combinations was performed for the overtime
probability of the sessions, rather than the lateness of the operations, and the
resulting box plots are shown in figures 6.18 and 6.19. Instead of the blue box
plots representing operations scheduled on 2016, and the orange in 2017, the
blue box plots are the probability of overtime evaluated on the historical surgery
data, and the orange box plots the probability of overtime using future surgery
data. The historical surgery data being the operations and sessions from before
the beginning of 2016, and the future surgery data those coming afterwards.

For the Total objective there is very little difference between the distributions of
the probability of overtime of the sessions when the late exponent is changed
from 1.0 to either 1.5 or 2.0. The overtime limit, however, does have a signi-
ficant influence on the distribution of overtime probability. In particular as the
overtime limit increases the lower quartile, median, upper quartile and maxi-
mum probability of overtime all increase regardless of late exponent or session
constraint method.
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Additionally the distributions of overtime probability for the historical surgery
sample, and the future surgery sample are very similar with no clear trend for
both General Surgery and Ophthalmology. For Urology, which is not shown here
but is figure C.7 in appendix C, all five metrics (minimum, lower quartile, me-
dian, upper quartile and maximum) are larger for the future sample than the
historical.

There is not much difference between the four methods for estimating the pro-
bability of overtime of a session (DED, DVED, GND, and SND), for the higher
overtime limits of 0.4 and 0.5. For the lower overtime limits, however, DVED and
GND have slightly lower values for most of the distribution, and for the maxi-
mum in particular. The CVaR objective function solutions have distributions very
similar to the Total objective function, and the same trends are also apparent.

The final analysis on the 2016 schedules that we performed was to investigate
how the lateness of the operations scheduled changed throughout the time pe-
riod, and what effects the parameters had on this relationship. To do this we
smoothed scatter plots, for each parameter combination, of the arrival date of
an operation on the x-axis against the lateness of the operation on the y-axis,
using a LOESS smoother. The resulting smoothed lines for General Surgery are
shown in figure 6.20 for the Total objective and figure 6.21 for the CVaR ob-
jective.

For General Surgery and the Total objective function for all four of the probability
of overtime estimation methods, the long term trend in lateness against arrival
date is almost identical when _ is equal to 1.5 or 2.0. For the DVED and SND
methods the trend is also the same when _ = 1.0, however for the DED and
GND methods the trend is different when _ = 1.0. The difference between the
trends when _ is 1.0 and 1.5 (or 2.0) is that the smoothed lateness starts higher
and decreases more quickly when _ = 1.0, whereas when _ is 1.5 or 2.0 the
smoothed lateness is lower at the beginning.

Apart from this the four methods overall display similar trends where lateness
increases over time for smaller values of the overtime limit, h, and remains con-
stant or reduces slightly over time for the middle and upper values.

For the CVaR objective there is even less difference between the trends with dif-
ferent values of V than there is between the values of _ for the Total objective.
There is also little difference in the trends between the four methods of esti-
mating the probability of overtime. The main factor that influences how the
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smoothed lateness changes over time is the overtime limit, h, with larger values
displaying a decreasing trend, and lower values an increasing one.

These relationships between the parameters and estimation methods, and the
smoothed lateness over time for General Surgery are broadly similar to those
seen for Ophthalmology and Urology, the smoothed scatter plots of which are
given in appendix D, although the actual trends of smoothed lateness over time
are different, for example for Urology even small values of h show a decreasing
lateness over time in figure D.3. Overall these smoothed scatter plots show that
some combinations of parameters lead to decreasing lateness over time, while
others lead to increasing lateness.

6.3.3 Optimality Gaps

To assess how close the solutions to the MIPs solved by Gurobi are to optimal,
and therefore how difficult the problems are to solve, the average absolute, re-
lative and uniform gaps are given for each combination of parameter values and
for each specialty. As stated earlier there are a total of 120 combinations of _
(or V), h, overtime probability estimation method, and objective function for
each specialty. For each one of these combinations 52 MIPs were solved, one for
each week in 2016, and a relative gap of 0.05 (5%) and a time limit of 5 minu-
tes were used. At the end of the solution process we have a value for the best
solution found so far, H∗ and a lower bound on the objective function value, H−.

The absolute gap, n, is defined as the difference between the best solution’s ob-
jective value and the lower bound n = H∗− H−. The relative gap, [, is the absolute
gap divided by the absolute value of the best solution’s objective function value,
[ = H∗−H−

|H∗ | . The uniform gap, k, is the absolute gap divided by the best solution’s
objective value plus one, i.e. k = H∗−H−

|H∗ |+1 .

The uniform gap is included in the results because the objective functions can
take a wide range of values, and can be both positive and negative. The uniform
gap behaves similarly to the relative gap when H∗ and H− are both large, and
similarly to the absolute gap when H∗ is close to zero. When H∗ is close to zero the
relative gap can be very large even if the absolute gap is small. This can make the
relative gap an unreliable estimate of how good a solution is, particularly when
the lower bound is negative but the objective function value of the incumbent
is small but positive. As the value of the incumbent solution’s objective function
gets closer to zero the relative gap increases dramatically, whereas the uniform
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Table 6.4: General Surgery Optimality Gap Results for Total Objective

_ h DED DVED GND SND

n [ k n [ k n [ k n [ k

1 0.5 97 0.04 0.04 1885 2.69 2.66 91 0.04 0.04 120 0.09 0.09
0.4 267 0.04 0.04 3666 2.48 2.47 349 0.04 0.04 2329 1.92 1.91
0.3 535 0.04 0.04 6479 1.02 1.02 809 0.04 0.04 3942 1.32 1.32
0.2 1194 0.04 0.04 12730 0.64 0.64 1697 0.04 0.04 6955 0.73 0.73
0.1 1747 0.04 0.04 22348 0.49 0.49 4235 0.06 0.06 12710 0.59 0.59

Mean 768 0.04 0.04 9422 1.46 1.46 1436 0.05 0.05 5211 0.93 0.93

1.5 0.5 160 0.04 0.04 1397 0.53 0.53 160 0.04 0.04 192 0.05 0.05
0.4 126 0.28 0.27 3441 3.33 3.26 199 0.54 0.53 1452 1.12 1.12
0.3 528 0.19 0.19 11912 1.52 1.51 1283 0.22 0.22 4170 2.24 2.23
0.2 2450 0.07 0.07 41906 0.57 0.57 5560 0.06 0.06 13459 0.74 0.74
0.1 8788 0.06 0.06 110056 0.44 0.44 31366 0.08 0.08 43632 0.50 0.50

Mean 2410 0.13 0.13 33742 1.28 1.26 7713 0.19 0.19 12581 0.93 0.93

2.0 0.5 244 0.07 0.07 1414 0.44 0.44 226 0.04 0.04 258 0.05 0.05
0.4 227 0.22 0.22 9298 5.50 5.35 407 0.53 0.50 2295 1.76 1.76
0.3 2392 0.63 0.60 61294 0.84 0.84 8266 0.33 0.32 16426 1.60 1.59
0.2 15560 0.09 0.09 316534 0.62 0.62 43544 0.09 0.09 79358 0.69 0.69
0.1 76290 0.09 0.09 1132759 0.53 0.53 260455 0.08 0.08 338192 0.57 0.57

Mean 18943 0.22 0.21 304260 1.59 1.56 62580 0.21 0.21 87306 0.94 0.93

Grand Mean 7374 0.13 0.13 115808 1.44 1.43 23910 0.15 0.15 35033 0.93 0.93

gap does not increase as much. This makes the uniform gap a fairer measure of
the quality of a solution when H∗ is very close to zero.

Tables 6.4 and 6.5 show the mean values of the absolute, relative and uniform
gaps (n, [,k) over the 52 MIPs, for each parameter and overtime probability
estimation method combination, for the Total and CVaR objectives respectively
for General Surgery.

Since the absolute gaps are never close to zero for the Total objective the relative
and uniform gaps are always very close. The absolute gap increases as h decrea-
ses and also increases as _ increases. An increasing absolute gap as h decreases
and as _ increases is to be expected as the objective function values get larger. In
general the DVED method has the largest absolute gaps, then the SND method,
then GND, and the DED method has the smallest.

For the DVED and SND methods there are no clear trends in the relative or
uniform gaps as h decreases or as _ increases. For the DED and GND methods,
however, both the relative and uniform gaps increase as _ increases. In addition
the relative and uniform gaps are much smaller for the DED and GND methods
than the DVED and SND methods.
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Table 6.5: General Surgery Optimality Gap Results for CVaR Objective

V h DED DVED GND SND

n [ k n [ k n [ k n [ k

0.8 0.5 4 0.64 0.53 13 13.07 2.99 4 0.49 0.41 7 2.82 1.56
0.4 10 1.47 1.14 22 0.83 0.79 14 0.94 0.76 16 1.13 1.04
0.3 20 0.57 0.54 34 0.66 0.65 27 0.49 0.48 24 0.72 0.69
0.2 35 0.46 0.45 55 0.60 0.59 50 0.45 0.45 35 0.62 0.60
0.1 60 0.45 0.44 91 0.57 0.56 93 0.46 0.46 55 0.58 0.57

Mean 26 0.72 0.62 43 3.14 1.12 38 0.57 0.51 27 1.17 0.89

0.9 0.5 5 3.80 1.48 15 9.21 2.04 5 2.07 1.16 9 13.13 2.81
0.4 14 1.28 0.96 26 0.77 0.75 18 0.76 0.70 20 0.89 0.84
0.3 25 0.58 0.56 41 0.66 0.64 33 0.52 0.51 30 0.69 0.67
0.2 43 0.49 0.48 66 0.62 0.61 56 0.48 0.47 42 0.63 0.62
0.1 69 0.47 0.47 105 0.60 0.59 107 0.49 0.48 65 0.60 0.60

Mean 31 1.33 0.79 51 2.37 0.93 44 0.86 0.66 33 3.19 1.11

0.95 0.5 6 3.02 1.40 15 2.35 1.20 5 3.45 1.45 9 7.72 2.56
0.4 16 0.91 0.80 28 0.70 0.68 21 0.70 0.64 21 0.77 0.74
0.3 27 0.56 0.55 45 0.65 0.64 37 0.51 0.50 34 0.66 0.64
0.2 47 0.49 0.49 72 0.62 0.62 61 0.48 0.48 47 0.63 0.62
0.1 74 0.48 0.47 115 0.61 0.61 113 0.49 0.48 71 0.62 0.61

Mean 34 1.09 0.74 55 0.99 0.75 47 1.12 0.71 36 2.08 1.04

Grand Mean 30 1.05 0.72 50 2.17 0.93 43 0.85 0.63 32 2.15 1.01

For the CVaR objective the absolute gap once again increases as h decreases
and also increases as V increases. Once again the DVED method had the largest
absolute gaps, then the GND method, then SND, and the DED method has the
smallest. The difference in the absolute gaps between the methods are smaller
for the CVaR objective than the Total objective.

When considering the CVaR objective, there is a difference between the relative
and uniform gap for some of the parameter combinations, particularly when h
is 0.5, when the absolute gaps are smallest. In addition, both the relative and
uniform gap decrease as h decreases, however the effect is larger for the relative
gap, as it is generally larger for the larger values of h. Also the relative gaps are
smaller for the DED and GND methods than the DVED and SND methods. Furt-
her, the uniform gaps are also smaller for the DED and GND methods than the
DVED and SND methods but have not decreased as much as the relative gaps.
Overall the absolute gaps are smaller for the CVaR objective than the Total ob-
jective, whereas the relative and uniform gaps are larger. These trends also hold
for Ophthalmology, the optimality gaps for which are given in tables F.1 and F.2.
For Urology, however, none of the trends in relative or uniform gaps are obser-
ved because nearly every single MIP was solved to within the 5% optimality gap
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Table 6.6: General Surgery First Fit Heuristic Gap Results for Total Objective

_ DED DVED GND SND

n [ k n [ k n [ k n [ k

1 1210.94 0.25 0.25 146.98 0.08 0.08 1449.71 0.24 0.24 242.91 0.20 0.20
1.5 1376.01 0.30 0.29 216.23 0.08 0.08 2093.42 0.49 0.48 251.55 0.12 0.12
2 7278.34 1.70 1.63 1306.07 0.10 0.10 13292.76 1.96 1.84 1190.89 0.17 0.17

Mean 3288.43 0.75 0.72 556.43 0.09 0.09 5611.96 0.89 0.85 561.79 0.16 0.16

Table 6.7: General Surgery First Fit Heuristic Gap Results for CVaR Objective

V DED DVED GND SND

n [ k n [ k n [ k n [ k

0.8 2.43 0.33 0.23 0.68 0.55 0.13 2.19 0.24 0.16 1.14 0.18 0.13
0.9 4.48 0.77 0.43 0.87 1.06 0.16 4.13 0.54 0.36 1.81 1.06 0.33
0.95 7.64 1.44 0.77 0.91 0.49 0.14 7.05 1.30 0.66 2.70 2.95 0.55

Mean 4.85 0.85 0.48 0.82 0.70 0.14 4.46 0.69 0.39 1.88 1.40 0.34

and all objective, estimation method, and parameter combinations have mean
relative and uniform gaps of 0.05 or less as seen in tables F.3 and F.4.

To investigate the quality of solutions, the first fit heuristic solutions are com-
pared to those from Gurobi solving the MIPs. Tables 6.6 and 6.7 show mean of
the absolute, relative and uniform gaps between the objective function value of
the solution found using the first fit heuristic, and the best solution returned by
Gurobi, for the Total and CVaR objective functions respectively.

Table 6.6 shows that for all four estimation methods the absolute, relative, and
uniform gaps all increase as _ increases. In addition all three gaps aremuch larger
for the DED and GND methods than for the DVED and SND methods. Similar
trends are seen for the CVaR objective in table 6.7, with increasing gaps as V
increases. The relationships between the methods are not as obvious, however,
with no clear trends in the absolute and relative gaps. The uniform gap does
have the same trend as the Total objective with larger values for the DED and
GND methods and smaller values for the DVED and SND methods, although the
differences are smaller for the CVaR objective than the Total.

The relative (and uniform) gaps are much smaller for the other two specialties
than for General Surgery, as shown in tables F.5 to F.8. The mean relative gap
for Ophthalmology with the Total objective is 0.09, and 0.05 with the CVaR
objective, for Urology these relative gaps are 0.01 and 0.26 respectively.
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6.4 Discussion
We now discuss the results presented in the previous section and further inves-
tigate some of the relationships that were seen.

6.4.1 Constraint Methods as Classifiers

For General Surgery and Ophthalmology the accuracy of the four methods on the
historical sample is similar to the accuracy on the future sample (out of sample).
For Urology, however, the accuracy on the future sample is much worse than for
the historical sample across all four methods.

When evaluating the quality of the four methods of overtime probability esti-
mation as binary classifiers figures 6.7 and 6.8 showed that the SND method,
which assumes that a session’s duration is normally distributed with mean and
variance equal to the sum of the means and variances of the operations assigned
to it, performed as well or better than the empirical distribution methods DED
and DVED. This improved performance is most noticeable for General Surgery
when classifying sessions with a low probability of overtime. This suggests the
sessions that the methods are tested on are different than those that they were
trained on. The empirical methods were trained using a combined sample of his-
torical and randomly generated sessions, whereas this test is on the sessions that
are created by the optimisation models. The difference in the distribution of the
assigned duration and variance between the sample that the empirical methods
were trained on (training sample), and a random subset of the sessions from the
optimisation solutions (solution sample) can be seen in figure 6.22.

Figure 6.22 shows that sessions generated by the optimisation models, referred
to as ‘solution sessions’, have a much smaller range in both assigned session du-
ration and variance, than the training sessions. The fact that there are very few
solution sessions with a large assigned session duration or variance means that
there are not many sessions that have a high probability of running overtime
(>0.6). This explains why in figures 6.7 and 6.8 the accuracy of all the met-
hods for General Surgery and Ophthalmology is very close to 1 when classifying
sessions with a probability of overtime above 0.6.

Instead of evaluating the accuracy of the methods as classifiers on the sessions
from the optimisation solutions we can evaluate the accuracy on just the histori-
cal sessions. This is shown in figure 6.23, where the historical sample of surgeries
is also used to calculate the probability of overtime for a session.
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Figure 6.22: Distribution of Assigned Duration and Variance for Training and
Solution Sessions

All of the methods show a higher accuracy on just the historical sessions com-
pared to all of the sessions from solving the optimisation problems, for all three
specialties. In addition the differences between the four methods are much smal-
ler, with no one method clearly performing better than the others. The fact that
the empirical methods have higher accuracies on the historical sessions sugge-
sts that if they were trained on a sample of sessions from optimisation solutions
then their accuracy on these sessions could be improved. The SND method, on
the other hand, does not suffer from as great a decrease in accuracy on the ses-
sions from optimisation solutions, in comparison to the historical sessions. This
suggests that the SND method may be more robust to systematic changes in the
way that the sessions are scheduled, and therefore the types of sessions that are
created. The SND method, therefore, may be useful when there is very little his-
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Figure 6.23: Accuracy of Overtime Probability Estimation on Historical Sessions

torical data to work with, or if there is going to be a known systematic change
in the way that operations are performed or scheduled.

The consistency of the accuracies of all the methods between the historical sur-
gery sample and the future sample for General Surgery and Ophthalmology, seen
in figures 6.7 and 6.8, shows that the methods are, in general, not over fit to the
operations duration distribution. Conversely, the large decrease in accuracy of all
the methods for the Urology sessions between the historical surgery sample and
the future surgery sample is not surprising considering that the distribution of
the operations durations is very different in the historical and future samples, as
seen in figure 6.2. In particular the fact that the probability of overtime is unde-
restimated is to be expected since the average duration of operations increases
in the future sample. As mentioned earlier the decrease in accuracy for Urology
could be lessened by periodically re-training the overtime estimation methods.
As new data becomes available it can be added to the training data, perhaps
with more weight than the older data. This would allow the methods to slowly
adapt to changes in the distribution of operation durations.

Finally the results from figures 6.9 and 6.10 show that themethods over estimate
the probability of overtime on average for low probability sessions, and under
estimate it for high probability sessions. This means that, on average, all of the
methods are more restrictive than necessary on sessions with a low simulated
probability of overtime. It is these sessions that are the most important as, in
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practice, OR managers are unlikely to be trying to schedule sessions with more
than a 50% probability of running overtime.

6.4.2 2016 Schedule

As noted earlier, in practice, instead of solving the problem described in chap-
ter 5, it may be desirable to solve a multi-objective problem with objectives such
as: mean lateness, throughput, risk-adjusted (CVaR) lateness, or mean overtime
probability. Figure 6.11 shows that, for mean lateness and throughput, this is
unnecessary as they are highly linearly correlated with throughput increasing as
mean lateness decreases.

If, however, the three objectives are mean lateness, CVaR at 95% lateness, and
mean overtime probability, then figure 6.24 shows the efficient solutions that
were found using the various combinations of parameters (the efficient solutions
for Ophthalmology and Urology are given in appendix E).

From figure 6.24 it is clear that there is a large range of CVaR at 95% lateness
between about 100 and 500 where no efficient solutions were found, and similar
gaps are seen in figures E.1 and E.2. It is possible that there are no solutions
in these regions for any of the specialties, however, it is also possible that the
combinations of parameters used simply did not find any of the solutions in
these regions. If a _ between 1.0 and 1.5 was used for the Total objective, or a
V less than 0.8 was used for the CVaR objective it may be possible to find some
solutions in this area.

Further exploring the _ values between 1.0 and 1.5, and V values less than 0.8,
would also be of interest when considering the distribution of lateness as shown
in figures 6.16 and 6.17. For the Total objective the distributions of lateness
were very similar for _ = 1.5 and 2, showing that increasing the exponent on
lateness past 1.5 does not improve the latest operations. For the CVaR objective
the distributions were similar for all values of V, and notably the distributions
were similar to those for the Total objective with _ = 1.5 or 2. This is notable
because it suggests that it may be possible to achieve the risk aversion to lateness
sought through the CVaR objective, by using an appropriate _ with the Total
objective.

The other major observation from these distributions, that median , interquartile
range, and range of the distributions decreases as h increases, is to be expected
because as h increases more operations will be able to be performed in each
session, so the operations will be performed earlier overall. The distributions of
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Figure 6.24: Efficient Solutions for General Surgery

overtime probability shown in figures 6.18 and 6.19 show that the only para-
meter that has a significant effect on this distribution is h. Once again this is to
be expected as h limits the estimated probability of overtime of the sessions that
are scheduled.

The way in which the parameters influence how the lateness of operations chan-
ges over time is seen in figures 6.20 and 6.21. By far the most important factor in
determining the long term lateness of operations is h, which again makes sense
as it directly affects the number of operations that can be performed in each ses-
sion. Interestingly, however, _ only appears to influence the short term lateness
of operations, and eventually all three values converge to similar smoothed scat-
ter plots, and V has almost no affect at all. Even the methods of estimating the
probability of overtime have little effect on the short or long term trends. It can
also be seen from these figures that, for General Surgery, a value of around 0.3
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or higher for h is required to prevent the lateness of the operations continually
increasing in the long term.

Even though the smoothed lateness has the same long term trends we investiga-
ted how the scatter plots themselves differed for three solutions and the actual
schedule. The three solutions all used the DEDmethod with h = 0.3: the first two
are the Total objective with _ = 1 and 1.5, the third is the CVaR objective with
V = 0.8. The scatter plots of arrival date of the operations against the lateness
of the operations for these three solutions and the actual schedule are shown in
figure 6.25, in addition the colour of the points represents the duration of the
operation.

When _ = 1 for the Total objective many operations are allowed to be more than
100 days late, whereas no operations are this late in any of the other schedules.
The benefit of allowing these operations to be performed very late, is that the
remaining operations are performed earlier. In addition the operations that are
more than 100 days late tend to be the longer operations, as seen by the lighter
coloured points.

When _ = 1.5 for the Total objective these very late operations are performed
earlier, and there is a high concentration of operations performed just on time
(lateness = 0). This is likely because the _ only applies to the cost of an operation
being late, and not to it being early where the exponent is still 1. The CVaR
objective with V = 0.8 has a similar profile as the Total objective with _ = 1.5,
however the operations aremore spread out around the on timemark. The actual
schedule is once again similar to these two but with an even larger spread in
operation lateness around 0.

The scatter plots in figure 6.25 suggest that using a _ of 1.5 or greater with the
Total objective, or a V of 0.8 or greater with the CVaR objective, not only reduces
the lateness of the latest operations, but also reduces the preference for shorter
operations to be performed earlier than longer ones.

To further investigate the relationship between operation duration and lateness
scatter plots of these two properties, for the three solutions described above and
the actual schedule, are shown in figure 6.26. This shows that there is a clear
positive relationship between operation duration and lateness when _ = 1 for
the Total objective, but not for the three other schedules.



Discussion 163

0

200

400

Total: _ = 1.0

0

200

400

Total: _ = 1.5

0

200

400

CVaR: V = 0.8

09/2015 02/2016 07/2016 12/2016

0

200

400

Actual

50 100 150 200 250 300 350

Date

D
ay
s
Ea

rl
y/
La

te

Operation Duration

Figure 6.25: Scatter Plots of Arrival Date Against Lateness of Three General Sur-
gery Solutions and the Actual Schedule



164 6. Surgery Scheduling Case Study

0

200

400

Total: _ = 1.0

0

200

400

Total: _ = 1.5

0

200

400

CVaR: V = 0.8

0 50 100 150 200 250 300 350 400

0

200

400

Actual

Operation Duration

D
ay
s
Ea

rl
y/
La

te

Figure 6.26: Scatter Plots of Operation Duration Against Lateness of Three Ge-
neral Surgery Solutions and the Actual Schedule



Discussion 165

6.4.3 Optimality Gaps

In general the DED and GND methods had smaller relative and uniform gaps
than the DVED and SND methods. This is to be expected as the DVED and SND
methods required SOS2 constraints to model a piecewise linear function of assig-
ned session duration and variance that constrained the possible sessions. These
SOS2 constraints are handled internally by Gurobi in the branch and bound
process, but nevertheless make the problems more difficult to solve. Using an
alternative formulation for the piecewise linear models, for example one of the
formulations suggested by Vielma, Ahmed, and Nemhauser (2010), could make
these problems easier to solve.

The problems with the CVaR objective have larger relative and uniform gaps,
than those with the Total objective. The larger relative gaps are, in part, due to
problems where the lower bound is negative while the upper bound is small and
positive. For these problems the uniform gap is much smaller than the relative
gap. It also to be expected, however, that the problems with the CVaR objective
are more difficult to solve than those with the Total objective since the CVaR
objective requires additional variables and constraints to be modelled. Further
since only (1−V)% of the operations contribute directly to the objective function,
some effort in searching the branch and bound tree is spent deciding on the
assignment of operations that do not directly influence the objective function.

The exception to both of these observations is the Urology specialty, where al-
most every single problem was solved to within the 5% relative gap within the
5 minute time limit. This is because Urology has much fewer operations to sche-
dule and sessions in which to schedule them. As shown in table 6.1, there are
only 269 Urology operations compared to 1516 for Ophthalmology and 1773
for General Surgery, and there are only 35 Urology sessions compared to 350 for
Ophthalmology and 503 for General Surgery.

In order to further investigate the difficulty of some of the problems that did
not reach the 5% relative gap within the 5 minute time limit we re-solved three
General Surgery problems with a two hour (7200 seconds) time limit. The first
problem was with the DED method, the CVaR objective, and V = 0.8, and had
a relative gap of 18.9% in the original 5 minute solve. The other two problems
used the DVED method with the Total and CVaR objective functions, and _ = 1
and V = 0.8 respectively. These two problems had relative gaps of 88.38% and
26.54% respectively at the end of the 5 minute time limits. These three problems
all had an overtime probability limit of 0.5. Figure 6.27 shows the progression
of the upper and lower bounds of the three problems over two hours.
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2 Hours

All three of the problems showed significant improvement in the upper bound in
the first 1500 seconds of solving, and relatively little improvement from then on.
The lower bounds, on the other hand, did not improve very much over the whole
two hours, particularly for the two problems that used the DVED method, and
therefore had SOS2 constraints. None of the problems reached the 5% relative
gap threshold in two hours, however the DED CVaR problem came close with
a finishing gap of 5.04%, while the other two problems finished with gaps of
66.38% and 17.87% respectively.

While the results presented above are only for three problems, and may not be
representative of all of the problems that did not reach 5%, they suggest that
approaches that focus on improving the lower bound could improve the solu-
tion process. Such approaches include reformulating the MIP so the linear pro-
gramme (LP) relaxation provides a tighter lower bound, and custom branching
methods.

Finally, the first fit heuristic, when compared to the MIPs, performed poorly on
the General Surgery problems with the Total objective and the DED and GND
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methods (relative gaps of 75% and 89%), but better on those with the DVED and
SND methods (9% and 16%). The performance of the first fit heuristic was more
even across the four methods for the CVaR objective problems, with relative gaps
between 69% and 140%. This reflects the MIP results where the relative gaps
are smaller for the DED and GND methods than the DVED and SND methods
for the Total objective, and are larger and more even for the CVaR objective.
Once again this suggests that the DED and GND MIPs with the Total objective
are easier to solve and can therefore find solutions that are much better than
the first fit heuristic. The remaining MIPs are more difficult and it is harder to
find any solution let alone good solutions. Hence, the first fit heuristic solutions
compare more favourably to the MIP solution because the MIPs can not improve
the first fit solution very quickly.

For the other two specialties the first fit heuristic gaps are smaller, between 3%
and 11%. This performance on the Ophthalmology problems is somewhat sur-
prising given that the MIPs are not much easier than those for General Surgery,
judging by the optimality gaps of the MIPs and the number of operations and
sessions to schedule. One possible cause for the improved performance is that the
average duration of Ophthalmology operations is much smaller than for General
Surgery (36 minutes compared to 92), and about two thirds of Ophthalmology
operations are the same type of operation. Both of these factors could make it
easier for the first fit heuristic to schedule operations into sessions as efficiently
as the MIPs, however further investigation is required to determine if this is the
case. On the other hand, the effectiveness of the first fit heuristic on the Urology
problems is not as surprising, given that there very few operations and sessions
to be scheduled, and therefore little room for improvement by the MIPs.

While discussing the first fit heuristic it should be noted that it was designed
simply to provide a feasible solution as an incumbent to the MIPs, and as such is
very rudimentary. Further work into incorporating the type of objective function
being considered and the value of _ or V used would likely be able to improve
the heuristic’s performance.

Conclusion
This chapter presented a case study of the application of the surgery scheduling
model developed in chapter 5. The model was used to schedule operations for
three surgical specialties at the Manukau Surgery Centre (MSC). The incorpo-



168 6. Surgery Scheduling Case Study

ration of historical data into the estimations of operation durations and session
overtime probability enabled better solutions to be found.

Analysis of the four methods of estimating the probability that a session runs
overtime, presented in section 5.2.2, as binary classifiers showed that in sample
accuracy of over 90% can be achieved by all the methods. Testing on a different
operation sample showed that the accuracy is not greatly affected if the new
sample is similar to the training sample. On the other hand, testing on sessi-
ons from the optimisation models (as opposed to the historical sessions used for
training), showed that the way sessions are created affects the accuracy. Adding
some sessions from the optimisation models into the set of training sessions for
empirical methods could improve their accuracy on the these sessions (ones from
the optimisation models), although this would first require solving an optimisa-
tion model to obtain the sessions.

When scheduling operations in 2016, schedules were found that outperform the
actual schedule in terms of all three metrics of: mean lateness; CVaR at 95%
lateness; and mean overtime probability. It was also shown that a _ of 1.5 is
enough to greatly reduce the lateness of the latest operations, and reduce the
bias towards short operations. Using a _ of 1.5 or 2 was shown to have very
similar results to using the CVaR objective with all the values of V tested. In
addition the Total objective problems were easier to solve and therefore present
an attractive alternative to the CVaR objective, particularly in practical settings.

Investigation of the optimality gaps achieved when solving the various problems
showed that the overtime probability estimation methods that required SOS2
constraints were more difficult to solve than those that did not, and the CVaR
objective problems were, in general, more difficult than the Total objective ones.
With the added difficulty of solving the respective MIPs in mind, the marginal
additional accuracy when classifying overtime sessions given by the DVED and
SND methods does not seem worthwhile to use in practice especially compared
to the DED method.

The DED method appears to give the best trade off between accuracy of classi-
fying overtime sessions and difficulty in solving the resulting optimisation mo-
dels. In addition the Total objective with _ = 1.5 prevents operations from being
performed very late, without making the models more difficult to solve. This
completes our investigation of surgery scheduling and we present a concluding
discussion of the whole thesis in the following chapter.
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Concluding Discussion

Throughout this thesis we have discussed the utilisation of historical data in
optimisation models for planning in healthcare. First we considered personnel
scheduling in the context of rostering general medicine (GM) physicians at two
hospitals. Second the scheduling of surgeries was examined at an elective surgi-
cal facility. This chapter summarises the research carried out in these two areas,
highlights the major contributions to scheduling research, and compares the two
areas.

7.1 General Medicine Rostering
In chapter 3 we introduced a mixed integer programme (MIP) for creating cyclic
rosters for physicians in GM departments in hospitals. The rostering model was
then applied to two case studies in chapter 4. The first case study, at Waitakere
Hospital (WTH) in Waitemata District Health Board (WDHB), shows the full
implementation of the model, whereas the second, at Auckland City Hospital
(ACH) in Auckland District Health Board (ADHB), demonstrates the definition
of parameters for some features of the model that are not required for the first
case study.

7.1.1 Contributions

Embedded within the rostering MIP is a model of the patient pathways through
the GM department. This patient flow model creates a link between the admis-
sion and discharge of patients, and the rosters of the physicians, which allows

169
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the number of patients that the physicians are caring for to be calculated. This
novel use of patient data in physician rostering enables rosters to be created that
balance the patient workloads between the physicians, and represents progress
towards the objective of incorporating patient data into healthcare planning mo-
dels.

Uncertainty in the number of arrivals and discharges throughout the planning
horizon was taken into account by generating potential scenarios from the his-
torical data. The scenarios are aggregated in the MIP either by averaging the
cost of the roster in all of the scenarios, or using a risk measure, called conditi-
onal value at risk (CVaR), that only considers the worst scenarios. Both of these
contributions are advances of the objective of incorporating uncertainty and risk
into healthcare planning models. Further, a Benders’ decomposition was presen-
ted where each scenario is represented in a sub-problem (SP) and the solutions,
the physicians’ workloads, can be found through straightforward calculations.

In order to achieve the objective of determining the value of the developed
models a roster was created using this model and historical patient data from
WDHB. The rosters created using this model performed 8% better on average,
and 10% better in the worst scenarios, than a traditionally constructed roster.
Further, one of the rosters created was put in place in the GM department at
WTH.

7.1.2 Insights

The results of the first case study showed that using the optimisation model to
create a roster for the physicians was a significant improvement over a hand
made roster. On the other hand, including uncertainty in admissions and dis-
charges in the optimisation model, at least in the scenarios that we generated,
was only a marginal improvement over using the expected value. In addition the
risk averse objective did not significantly improve the performance in the worst
case scenarios. Future application of the model to additional cases where there is
greater flexibility in feasible rosters and variation in admissions and discharges,
may show that solving these more difficult problems is worthwhile.

7.1.3 Further Research

The rostering model assumes both that there is a fixed ordering of physicians,
and that they work a cyclic roster. Both of these assumptions can be relaxed by
extending the decision variables of the MIP. It is also assumed that the pathways
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of the patients are independent of the current workloads of the physicians. This
is not always the case, as some departments have rules that patients will be
transferred between physicians if one of them is caring for too many patients.
The types of rostering rules (linked, following, exclusive, etc.), and therefore
constraints, considered are not exhaustive and therefore do not cover all possi-
bilities. A more general approach that allows any regular expression of shifts to
be enforced or banned could be investigated. Other generalisations of the model
are also possible, for example normalisation of the workloads of the workload
groups by the number of physicians in each group. This normalisation has not
yet been included as, in the settings we have encountered, all workload groups
have the same number of physicians, however in other settings this may not be
the case.

Although the Benders’ decomposition reduced the time required to solve the
MIP, some of the larger problems, particularly when there were many scena-
rios, were still difficult to solve. As the SPs are already solved very efficiently,
additional effort into solving the master problem (MP), such as using a network
representation, could prove fruitful.

7.2 Surgery Scheduling
Chapter 5 presented another MIP, this one for scheduling surgical operations
into sessions. Historical data is used throughout the model, to estimate both the
duration, and variance of the duration, of the operations, and the probability
that a session, with operations assigned to it, runs overtime. The application of
this model to scheduling operations at the Manukau Surgery Centre (MSC) in
Counties Manukau District Health Board (CMDHB) is demonstrated in chapter 6.

7.2.1 Contributions

Two objective functions were considered for the MIP. The first minimises the
total earliness/lateness of the operations, subject to an exponent on the lateness.
The second, novel, objective applies the same risk measure used in the physician
rostering problem, CVaR, to the latenesses of the operations, in order to focus
the objective function on just the latest operations, and is a contribution to the
thesis’ objective of incorporating risk into healthcare planning models.

The uncertainty of the operations’ durations is taken into account in chance con-
straints in the MIP. The chance constraints prevent sessions from being schedu-
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led that have an estimated probability of running overtime greater than a pres-
cribed value. Four methods for estimating the probability that a session runs
overtime are presented, given the sum of the durations (and variances) of the
operations assigned to the session. Of the four methods two – grand normal
distribution (GND) and session normal distribution (SND) – rely on normal dis-
tribution assumptions, and the other two novel methods – duration empirical
distribution (DED) and duration variance empirical distribution (DVED) – use
empirical distributions estimated from historical sessions and operations. The
two empirical distribution methods represent progress towards the objectives
of utilising patient data and incorporating uncertainty into healthcare planning
models.

The results of using the optimisation model to schedule operations throughout
2016 showed that schedules could be created that outperformed the actual sche-
dule in terms of throughput, probability of sessions running overtime, and the
lateness of the latest 5% of operations. The four methods of estimating the pro-
bability that a session runs overtime were all able to achieve accuracies of over
90% as binary classifiers, however the SND method performed the best on out of
sample tests. These are both examples of achieving the objective of determining
the value of the developed models in a practical setting.

The uptake of these modelling techniques in practical settings has been difficult
to achieve, as surgical service operators are reluctant to relinquish scheduling
decisions to a mathematical model. Simpler tools, however, that allow opera-
tors to maintain more control have had more success in their implementation.
Further, encouraging initial discussions with operators at other facilities indicate
that not all surgical services are opposed to the adoption of these methods.

7.2.2 Insights

In the case study considered we found that using an exponent applied to the
lateness of operations produced similar results to a risk measure. This is useful
as the application of an exponent to lateness is both simpler to understand and
easier to implement. In addition we found that in the long term the lateness
of operations depended mainly on the allowed probability of sessions running
overtime, rather than the objective function used. This is because the long term
lateness depends on the overall capacity or throughput of the system which is
reduced if the accepted probability of overtime is lowered.

We also found that, when the variance of operations’ durations is taken into
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account, using normal approximations performed very slightly better than an
empirical distribution based method. When only the mean of operations’ du-
rations is accounted for, however, the empirical method is superior. Given that
the difference in accuracy between the empirical method without variance and
both the methods with variance is very small, but the additional effort to solve
the variance-inclusive methods is significant, the empirical method without va-
riance appears to be best suited for use in practice, in this instance.

7.2.3 Further Research

It was assumed that the master surgery schedule, which is the allocation of ses-
sions to surgical specialties, had been determined prior to the scheduling of the
operations. This meant that the overall scheduling problem could be decompo-
sed by specialty, as there is no interaction between them. Instead we could allow
the model to decide the specialty of each session, effectively creating the mas-
ter surgery schedule at the same time as scheduling the operations. This would
mean that the problem could no longer be decomposed by specialty, and would
likely make it much more difficult to solve. Further it was assumed that no other
factors, in particular the availability of surgeons, limited the assignment of ope-
rations to sessions. Surgeon availability could be taken into account in a similar
manner to howwe currently deal with the master surgery schedule. That is, each
session could be allocated to not only a specialty but also a surgeon(s), and ope-
rations could be restricted to only those sessions that have been allocated to an
appropriate surgeon.

Sources of uncertainty other than the duration of operations, such as the number
of new operations that will arrive in the future, are not taken into account. To
take operations that are not currently known about into account, space in future
sessions could be reserved so that they are not completely filled, and the new
arrivals could then be assigned to these spaces.

The chance constraints included in the model only limit the probability of sessi-
ons running overtime. Other constraints on overtime may be of interest, such as
limiting the probability that a session runs more than 30 minutes overtime, or
restricting a risk measure applied to overtime. For example multiple constraints
on the probability of a session’s duration exceeding various levels could be in-
cluded, such as a constraint that limits the probability of any overtime to 10%
and one that limits the probability of 30 minutes or more of overtime to 5%. In
this type of case, combined with one of the methods that only uses the assigned
session duration, one of the constraints will always be more restrictive than the
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remaining ones, making them redundant. For the methods that use the assigned
session variance as well, however, including more than one of these constraints
may be useful. Another approach to constraining overtime that may be of inte-
rest would be to consider all of the sessions scheduled as a ‘portfolio’ and restrict
some properties of this portfolio. This may be attractive to operating room (OR)
management if, for example, they are willing to sacrifice some sessions as defi-
nitely running overtime if it means that the remaining sessions all run on time.

Using historical session and operation data we defined empirical conditional pro-
bability distributions that a session runs overtime given the duration and vari-
ance of the operations assigned to it. Combining these empirical methods with
the methods that assume normal distributions could improve the accuracy furt-
her, if, for example, the empirical methods are used when there is plenty of
historical data, and the normal assumptions are used when the data is sparse,
i.e., a hybrid approach to estimating session overtime probability.

Instead of using this approach, constraints could be formed directly from the
historical data using machine learning techniques such as support vector machi-
nes. Given an acceptable probability of overtime, the historical sessions can be
classified as either feasible or infeasible. A hyperplane can then be found that
best separates the feasible sessions from the infeasible and further conditions
can be placed on this hyperplane so that it can be easily incorporated into a MIP
as a constraint.

7.3 Comparison
While the focus of this thesis has been on the application of historical data in
scheduling models, it has also provided an opportunity to consider the simila-
rities and differences between the two models, and problems, considered. In
chapter 1 we briefly compared the overall approaches in the domains of person-
nel and surgery scheduling, here we compare and contrast the specific models
we developed.

Both problems aremodelled withMIPs, whichmeans they both benefit from, and
fall victim to, the strengths and weaknesses of this framework. The main benefits
of modelling using a MIP are: the guarantee of optimality given long enough
solution time; the capability to model many different types of decision processes;
the availability of high quality solvers, for example Gurobi and CPLEX; and the
quantity of research into integer programming techniques. On the other hand,
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a limitation of using MIPs, as seen in the surgery scheduling problem, is that it
can be very difficult to solve them to optimality, and a lot of effort can be spent
attempting to improve the solution process.

While both problems are modelled with MIPs the ways that uncertainty is ta-
ken into account in each problem presents a point of difference. The physician
rostering model represents the uncertainty in admissions and discharges using
scenarios, whereas the surgery scheduling model uses probability density functi-
ons.

Scenarios are used to represent the uncertainty in the physician rostering mo-
del because defining the required parametric or empirical distribution functions
to link the admissions and discharges to the workloads of the physicians would
require finding expressions for the behaviour of a complex queue system that
represents the patients’ pathways. The definition of such expressions is itself a
difficult task, and there is no guarantee, given that the task is achievable, that
they can be implemented in a MIP. In addition the scenarios are able to be re-
presented as sub-problems in a Benders’ decomposition, as they do not require
any integer variables. This means that the problem can still be solved efficiently
even when many scenarios are included.

Conversely, in the surgery scheduling model both parametric and empirical pro-
bability distribution functions can be constructed that link the operations assig-
ned to a session to the probability that the session runs overtime. It is then straig-
htforward to use these functions in chance constraints in the MIP. If scenarios of
operation duration were to be utilised instead, it would require the addition of a
constraint on the duration of a session for each scenario. Each constraint would
use a different duration for the operations, coming from the different scenarios.
A further constraint would be required to ensure that the session does not run
overtime in more than the allowed fraction of scenarios. This formulation pre-
sents more difficulty than the corresponding physician rostering one, as there
are integer variables in the scenario sub-problems, although a column genera-
tion approach could be utilised to overcome this difficulty. Also of concern is the
feasibility of the MIP. Given a realisation of operation duration scenarios, it may
not be possible to assign them to sessions in a way that the sessions do not run
overtime in many scenarios. This is particularly likely if a small number of sce-
narios are used, as just a few large operation durations could make the model
infeasible. In contrast, the physician rostering model does not have this problem
as the SPs are evaluating the performance of a roster in a scenario, and do not
effect the feasibility of the overall model.
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One similarity between the models when considering uncertainty is that both
use a resampling procedure applied to historical data. For the physician roste-
ring model the resampling is used to create scenarios of patient admissions and
discharges that are used directly in the model to represent the uncertainty in
these processes. On the other hand, the surgery scheduling model uses resam-
pling of historical operation durations to create the empirical distributions of the
probability that a session runs overtime.

The difference in the approaches to risk are not as stark. In both instances a
risk averse objective function, CVaR, is used to target the worst outcomes. The
difference is that in the physician rostering model the worst outcomes relate
to the scenarios in which the maximum difference in workloads is the greatest,
whereas, in the surgery scheduling model the worst outcomes are the latest ope-
rations, and are not directly related to the uncertainty being modelled.

The final similarity, and perhaps most important in terms of practical usefulness,
is that both models provide a test bed in which one can experiment with policy
and procedural changes. This ability was touched on previously for both mo-
dels. First the physician rostering model was used to compare the performance
of rosters with different numbers of physicians and structures of the department.
Second the surgery schedulingmodel showed the effects of using different penal-
ties for lateness and values for the allowed probability of overtime on the surgery
schedules. These parameters can be chosen by OR management to reflect their
priorities and create a schedule that they find acceptable.

Many more opportunities for experimentation are offered by the two models,
however, and both models also produce secondary output that may be valuable.
In the physician rostering model, for instance, the effect of new roster rules,
which may be the result of law changes or a new collective agreement with the
employees, can be investigated. Also the scenarios could be used to represent the
future increases in admissions due to a growing population. In this situation, in
particular, the fact that the model not only calculates the largest difference in
workloads, but also the workloads of all the physicians throughout the planning
horizon would be useful for the department management. The workloads of
all the physicians can aid in planning for other resources, particularly the bed
capacity of the wards.

The surgery scheduling model also provides further scope for analysing changes
to the OR scheduling process. More sessions can easily be added to the model,
for example, or the current sessions can be made longer. One adjustment that
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may be of particular interest is the use of a morning and afternoon session, as
compared to an all day session. In addition the schedules of operations assigned
to sessions produced by the model can once again be used when planning other
long term resources, such as staff and equipment levels, as they give a precise
estimate of how long it will take to perform the currently waiting operations.

Both models make use of the data that is growing in volume and increasing in
granularity to provide rostering and scheduling decision making environments.
By embedding actual data into the decisionmaking process thesemodels provide
data-informed insights into the effect of decisions and enable decision makers
to have improved confidence in key decisions within the healthcare sector.
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— Appendix A —

Benders’ Decomposition Results

This appendix provides the dual transformation of the primal sub-problem (SP)
of the Benders’ decomposition proposed in 3.3, and shows that it is always both
feasible and bounded. Given the primal form of the SP below, we first show how
the dual of this problem is formed.

min
∑
H∈/
("̄(H)),

s.t. # (H):,9,2,> = B
(H)
:,9,2,> F̄, ∀: ∈ !, 9 ∈  , 2 ∈ �, > ∈ %, H ∈ /,

(3.10′)

"+ (H)2,> −
∑
9∈ 
(# (H):,9,2,>) ≥ 0, ∀: ∈ !, 2 ∈ �, > ∈ %, H ∈ /, (3.11)∑

9∈ 
(# (H):,9,2,>) − "

− (H)
2,> ≥ 0, ∀: ∈ !, 2 ∈ �, > ∈ %, H ∈ /, (3.12)

"̄(H) − ("+ (H)2,> − "− (H)2,> ) ≥ 0, ∀2 ∈ �, > ∈ %, H ∈ /, (3.13)

#,"+,"−, "̄ ≥ 0. (3.17)

We assume that the dual variables c1,c2,c3,c4 correspond to constraints
(3.10′)–(3.13), and note that they are indexed by the sets that are used to enu-
merate the constraints. The objective of the dual is the sum of these new vari-
ables multiplied by the right hand sides of the corresponding constraints. The
only right hand side that is non-zero is for constraint (3.10′), which is B(H):,9,2,> F̄,
and the corresponding dual variable is c1. The dual objective is therefore

max
∑

∀:∈!,9∈ ,2∈�,>∈%,H∈/

(
c(1,H):,9,2,>(B

(H)
:,9,2,> F̄)

)
,
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or equivalently using vector notation

max
∑
H∈/

(
(c(1,H))ᵀ(B(H) F̄)

)
.

To transform the constraints we start by noting that the all of the variables in
the primal problem are ≥ 0 which means that all of the dual constraints are
≤, additionally we should be able to form four constraints corresponding to the
four primal variables. In addition because the right hand sides of the constraints
correspond to the objective coefficients in the primal problem, all of the right
hand sides are zero except for the fourth constraint relating to the primal variable
"̄(H).

The first of the constraints relates to the variable # (H):,9,2,> which is involved in
constraints (3.10′), (3.11), and (3.12), and as the second two constraints are
not indexed by  but the first is we need to sum the dual variables for the first
constraint over  , which gives the constraints below:∑

9∈ 
(c(1,H):,9,2,>) − c

(2,H)
:,2,> + c

(3,H)
:,2,> ≤ 0, ∀: ∈ !, 2 ∈ �, > ∈ %, H ∈ /.

The second of the dual constraints is related to the primal variable "+ (H)2,> , which
is used the the constraints (3.11) and (3.13), once again the indices are different
so a summation is required, this time over !.

∑
:∈!
(c(2,H):,2,> ) − c

(4,H)
2,> ≤ 0,∀2 ∈ �, > ∈ %, H ∈ /.

The third constraint is very similar to the second, with the only changes the signs
on the variables and c(3) instead of c(2).

c(4,H)2,> −
∑
:∈!
(c(3,H):,2,> ) ≤ 0,∀2 ∈ �, > ∈ %, H ∈ /.

The last constraint relates to the primal variable "̄(H), and has a right hand side
of 1 and a summation over � and % because of the difference in indices:

∑
2∈�,>∈%

(c(4,H)2,> ) ≤ 1,∀H ∈ /.
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Finally the dual variables c2,c3,c4 are ≥ 0 and c1 is free, because of the rela-
tions of the primal constraints. Combining all of these constraints together gives
the full dual SP:

max
∑
H∈/

(
(c(1,H))ᵀ(B(H) F̄)

)
, (3.21)

s.t.
∑
9∈ 
(c(1,H):,9,2,>) − c

(2,H)
:,2,> + c

(3,H)
:,2,> ≤ 0, ∀: ∈ !, 2 ∈ �, > ∈ %, H ∈ /, (3.22)∑

:∈!
(c(2,H):,2,> ) − c

(4,H)
2,> ≤ 0, ∀2 ∈ �, > ∈ %, H ∈ /, (3.23)

c(4,H)2,> −
∑
:∈!
(c(3,H):,2,> ) ≤ 0, ∀2 ∈ �, > ∈ %, H ∈ /, (3.24)∑

2∈�,>∈%
(c(4,H)2,> ) ≤ 1, ∀H ∈ /, (3.25)

c1 free,c2,c3,c4 ≥ 0.

The solution c1 = c2 = c3 = c4 = 0 is always feasible. In addition because of
the assumption that B(H) F̄ is always positive, combined with the maximisation
objective mean that c1 will always be positive or 0. This means that the problem
is bounded as c4 is bounded below by 0 and above by 1, c2 is bounded below
by 0 and above by c4, and c1 and c3 are both bounded below by 0 and above
by c2. This means that the dual SP is always feasible and bounded and therefore
there is always an optimal solution.
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Surgery Scheduling Results Tables

This appendix provides tables of results from scheduling the operations of Ge-
neral Surgery, Ophthalmology, and Urology at Manukau Surgery Centre (MSC)
throughout 2016. The results presented are: the mean lateness of operations
scheduled in days, the conditional value at risk (CVaR) @ 95% lateness of opera-
tions scheduled in days, the mean overtime probability of the sessions scheduled
in 2016, the CVaR @ 95% of overtime probability of the sessions scheduled in
2016, the number of operations scheduled to be performed in 2016, and the total
duration of operations waiting to be performed in 2017 in 1000s of minutes.

Each table includes the results for one of the four methods for estimating the pro-
bability of overtime — duration empirical distribution (DED), duration variance
empirical distribution (DVED), grand normal distribution (GND), and session
normal distribution (SND) — and one of the two objective functions — Total,
and CVaR. For each combination of these two factors all combinations of _ (or
V for the CVaR objective) and h are given in each table.
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Table B.1: General Surgery Results for Total Objective and DED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -36 180 0.44 0.82 1900 18
0.4 -29 236 0.31 0.67 1840 27
0.3 -18 303 0.19 0.62 1760 36
0.2 0 384 0.09 0.50 1620 49
0.1 17 445 0.04 0.31 1520 61

1.5 0.5 -28 21 0.44 0.84 1860 18
0.4 -18 22 0.34 0.75 1780 25
0.3 -4 35 0.23 0.68 1670 34
0.2 12 100 0.12 0.54 1580 46
0.1 30 187 0.05 0.33 1480 60

2 0.5 -26 21 0.43 0.83 1850 19
0.4 -17 21 0.34 0.75 1770 25
0.3 -1 30 0.22 0.66 1650 34
0.2 16 71 0.12 0.55 1560 46
0.1 36 139 0.05 0.36 1450 59

Table B.2: General Surgery Results for Total Objective and DVED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -21 97 0.40 0.79 1820 22
0.4 -8 94 0.28 0.66 1710 30
0.3 4 110 0.18 0.50 1620 39
0.2 26 119 0.09 0.31 1490 51
0.1 55 187 0.03 0.20 1340 66

1.5 0.5 -20 19 0.41 0.79 1800 22
0.4 -7 29 0.28 0.68 1710 30
0.3 6 50 0.19 0.50 1610 39
0.2 26 86 0.09 0.33 1500 51
0.1 55 143 0.03 0.19 1340 66

2 0.5 -21 21 0.41 0.81 1800 21
0.4 -7 28 0.28 0.66 1700 30
0.3 6 49 0.18 0.49 1610 39
0.2 26 86 0.09 0.31 1500 51
0.1 55 142 0.03 0.18 1340 66
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Table B.3: General Surgery Results for Total Objective and GND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -36 178 0.44 0.84 1900 18
0.4 -25 254 0.24 0.64 1810 31
0.3 -11 349 0.12 0.51 1710 43
0.2 11 424 0.06 0.40 1550 56
0.1 40 503 0.02 0.16 1430 73

1.5 0.5 -28 21 0.44 0.85 1860 17
0.4 -13 24 0.28 0.74 1730 29
0.3 5 67 0.16 0.59 1620 41
0.2 22 151 0.07 0.44 1530 55
0.1 52 254 0.02 0.16 1380 72

2 0.5 -27 21 0.44 0.84 1850 18
0.4 -11 22 0.28 0.73 1720 29
0.3 9 51 0.16 0.59 1600 41
0.2 28 110 0.07 0.43 1490 54
0.1 59 197 0.02 0.20 1340 71

Table B.4: General Surgery Results for Total Objective and SND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -35 177 0.43 0.83 1900 18
0.4 -13 147 0.31 0.73 1750 27
0.3 -3 144 0.23 0.65 1680 34
0.2 10 112 0.15 0.57 1590 42
0.1 28 122 0.08 0.41 1480 52

1.5 0.5 -28 21 0.44 0.85 1860 18
0.4 -13 22 0.32 0.76 1740 26
0.3 -2 35 0.23 0.65 1670 33
0.2 10 55 0.16 0.57 1590 41
0.1 28 89 0.09 0.43 1490 52

2 0.5 -27 21 0.44 0.86 1840 18
0.4 -13 23 0.32 0.76 1740 26
0.3 -2 34 0.24 0.65 1670 33
0.2 10 55 0.15 0.56 1590 41
0.1 29 90 0.08 0.41 1480 52
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Table B.5: General Surgery Results for CVaR Objective and DED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -19 20 0.43 0.84 1810 19
0.4 -8 23 0.30 0.76 1720 27
0.3 5 46 0.20 0.66 1630 37
0.2 24 87 0.11 0.54 1510 48
0.1 49 154 0.05 0.35 1380 61

1.5 0.5 -19 20 0.42 0.85 1800 19
0.4 -8 23 0.30 0.76 1720 27
0.3 6 45 0.20 0.63 1620 37
0.2 26 95 0.11 0.52 1490 49
0.1 53 205 0.05 0.36 1340 61

2 0.5 -19 20 0.42 0.83 1800 19
0.4 -8 24 0.30 0.76 1720 28
0.3 6 52 0.19 0.65 1620 37
0.2 26 108 0.11 0.51 1480 49
0.1 51 206 0.05 0.34 1360 61

Table B.6: General Surgery Results for CVaR Objective and DVED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -16 22 0.39 0.79 1780 22
0.4 -4 31 0.26 0.64 1690 32
0.3 9 55 0.17 0.48 1600 41
0.2 29 91 0.08 0.30 1480 52
0.1 58 144 0.03 0.19 1330 66

1.5 0.5 -16 20 0.39 0.78 1780 22
0.4 -4 31 0.27 0.66 1690 31
0.3 11 56 0.16 0.50 1590 41
0.2 31 93 0.08 0.28 1470 53
0.1 58 143 0.03 0.19 1320 66

2 0.5 -16 23 0.39 0.76 1770 23
0.4 -4 32 0.26 0.65 1690 32
0.3 10 55 0.17 0.48 1590 41
0.2 31 92 0.08 0.28 1470 53
0.1 60 144 0.03 0.19 1310 67
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Table B.7: General Surgery Results for CVaR Objective and GND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -21 21 0.44 0.84 1820 18
0.4 -3 29 0.25 0.70 1680 31
0.3 15 76 0.14 0.61 1560 43
0.2 39 117 0.07 0.45 1430 56
0.1 76 232 0.02 0.21 1260 73

1.5 0.5 -19 21 0.42 0.84 1810 19
0.4 -2 31 0.24 0.70 1680 32
0.3 16 82 0.14 0.61 1560 44
0.2 41 157 0.07 0.43 1400 56
0.1 77 239 0.02 0.20 1240 73

2 0.5 -20 21 0.43 0.84 1810 18
0.4 -1 32 0.25 0.70 1670 32
0.3 16 75 0.14 0.59 1560 44
0.2 41 162 0.07 0.42 1410 56
0.1 82 258 0.02 0.20 1210 73

Table B.8: General Surgery Results for CVaR Objective and SND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -18 21 0.41 0.85 1800 20
0.4 -10 25 0.31 0.76 1730 27
0.3 1 37 0.22 0.65 1650 35
0.2 13 60 0.15 0.57 1570 43
0.1 31 95 0.08 0.44 1470 53

1.5 0.5 -19 21 0.41 0.84 1800 19
0.4 -9 24 0.30 0.75 1720 28
0.3 1 37 0.22 0.64 1650 35
0.2 13 60 0.15 0.57 1570 43
0.1 32 94 0.08 0.41 1470 53

2 0.5 -18 21 0.41 0.83 1800 19
0.4 -9 25 0.30 0.76 1730 27
0.3 1 40 0.22 0.67 1650 35
0.2 13 60 0.15 0.56 1570 42
0.1 31 92 0.08 0.42 1470 53
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Table B.9: Ophthalmology Results for Total Objective and DED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -16 145 0.45 0.82 1800 2
0.4 -15 148 0.41 0.75 1780 3
0.3 -1 239 0.18 0.56 1700 10
0.2 2 252 0.13 0.47 1680 11
0.1 6 284 0.08 0.31 1650 13

1.5 0.5 -12 46 0.46 0.82 1800 2
0.4 -9 49 0.41 0.76 1780 3
0.3 9 57 0.19 0.62 1640 8
0.2 14 68 0.15 0.60 1600 10
0.1 18 83 0.10 0.42 1570 12

2 0.5 -12 38 0.47 0.82 1810 2
0.4 -8 41 0.41 0.76 1770 3
0.3 10 48 0.20 0.64 1630 8
0.2 16 51 0.15 0.59 1590 10
0.1 21 61 0.10 0.45 1550 12

Table B.10: Ophthalmology Results for Total Objective and DVED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 6 246 0.12 0.50 1640 12
0.4 7 258 0.11 0.42 1650 12
0.3 10 253 0.10 0.40 1600 12
0.2 14 243 0.08 0.32 1580 13
0.1 29 234 0.05 0.17 1490 16

1.5 0.5 16 76 0.13 0.58 1580 11
0.4 17 78 0.12 0.56 1570 11
0.3 19 82 0.11 0.47 1570 12
0.2 21 89 0.08 0.36 1550 13
0.1 34 114 0.05 0.22 1470 16

2 0.5 19 58 0.12 0.56 1560 11
0.4 20 59 0.12 0.51 1560 11
0.3 21 62 0.10 0.42 1540 12
0.2 24 65 0.09 0.39 1530 13
0.1 37 87 0.05 0.26 1460 16
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Table B.11: Ophthalmology Results for Total Objective and GND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -15 149 0.42 0.81 1780 3
0.4 -1 233 0.18 0.59 1700 9
0.3 3 258 0.13 0.56 1670 12
0.2 8 298 0.07 0.26 1630 14
0.1 43 454 0.02 0.13 1440 22

1.5 0.5 -10 49 0.43 0.78 1790 2
0.4 8 56 0.20 0.65 1640 8
0.3 14 68 0.15 0.57 1590 10
0.2 21 93 0.08 0.39 1550 13
0.1 50 212 0.02 0.16 1370 21

2 0.5 -9 40 0.42 0.82 1780 2
0.4 9 47 0.20 0.64 1640 8
0.3 16 52 0.15 0.61 1590 10
0.2 24 67 0.08 0.39 1530 13
0.1 56 153 0.02 0.16 1340 20

Table B.12: Ophthalmology Results for Total Objective and SND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -15 149 0.42 0.81 1790 3
0.4 -13 164 0.38 0.73 1780 4
0.3 1 237 0.19 0.57 1700 9
0.2 3 259 0.14 0.48 1660 11
0.1 14 246 0.09 0.34 1590 13

1.5 0.5 -10 48 0.43 0.80 1780 2
0.4 -7 49 0.38 0.71 1760 4
0.3 9 53 0.20 0.64 1640 8
0.2 13 67 0.15 0.59 1600 10
0.1 20 87 0.09 0.41 1550 12

2 0.5 -9 40 0.42 0.78 1780 3
0.4 -6 41 0.38 0.72 1760 4
0.3 10 47 0.20 0.65 1640 8
0.2 15 52 0.15 0.60 1590 10
0.1 23 67 0.09 0.43 1530 12
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Table B.13: Ophthalmology Results for CVaR Objective and DED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -11 37 0.48 0.80 1810 1
0.4 -6 39 0.40 0.73 1770 3
0.3 12 45 0.19 0.62 1630 8
0.2 18 48 0.14 0.58 1580 10
0.1 27 54 0.09 0.36 1520 12

1.5 0.5 -11 37 0.48 0.83 1810 1
0.4 -5 39 0.40 0.72 1770 3
0.3 12 47 0.19 0.63 1620 8
0.2 17 48 0.15 0.60 1590 10
0.1 27 52 0.09 0.36 1520 12

2 0.5 -11 38 0.48 0.81 1810 1
0.4 -5 40 0.39 0.73 1760 3
0.3 12 48 0.19 0.64 1620 8
0.2 18 50 0.15 0.57 1580 10
0.1 27 53 0.09 0.36 1530 12

Table B.14: Ophthalmology Results for CVaR Objective and DVED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -9 37 0.45 0.78 1800 2
0.4 -3 38 0.38 0.72 1750 4
0.3 17 45 0.16 0.62 1590 10
0.2 23 48 0.11 0.45 1540 11
0.1 36 60 0.07 0.31 1460 14

1.5 0.5 -9 37 0.45 0.80 1790 2
0.4 -3 38 0.37 0.71 1740 4
0.3 17 46 0.16 0.60 1590 10
0.2 22 48 0.12 0.46 1540 11
0.1 35 62 0.06 0.24 1460 14

2 0.5 -8 38 0.45 0.82 1790 2
0.4 -3 40 0.37 0.74 1740 4
0.3 17 46 0.16 0.61 1590 10
0.2 22 49 0.12 0.45 1540 11
0.1 35 62 0.07 0.34 1460 14
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Table B.15: Ophthalmology Results for CVaR Objective and GND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -8 38 0.43 0.80 1790 2
0.4 9 45 0.22 0.64 1650 8
0.3 17 48 0.15 0.60 1590 10
0.2 27 53 0.09 0.41 1520 12
0.1 63 136 0.03 0.18 1310 20

1.5 0.5 -7 39 0.42 0.78 1780 3
0.4 10 46 0.22 0.66 1640 8
0.3 17 50 0.15 0.59 1580 10
0.2 27 52 0.09 0.39 1520 12
0.1 63 135 0.03 0.18 1310 20

2 0.5 -7 39 0.42 0.81 1780 3
0.4 10 47 0.21 0.65 1640 8
0.3 17 50 0.15 0.59 1590 10
0.2 27 54 0.09 0.41 1520 12
0.1 63 139 0.03 0.19 1300 20

Table B.16: Ophthalmology Results for CVaR Objective and SND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -7 39 0.43 0.77 1780 3
0.4 -2 40 0.36 0.66 1740 4
0.3 11 44 0.20 0.59 1630 8
0.2 20 47 0.13 0.56 1560 10
0.1 27 50 0.09 0.32 1510 12

1.5 0.5 -7 38 0.42 0.76 1780 3
0.4 -2 39 0.36 0.71 1740 4
0.3 12 44 0.20 0.60 1630 8
0.2 20 47 0.14 0.58 1560 11
0.1 27 50 0.09 0.32 1510 12

2 0.5 -7 40 0.42 0.78 1780 3
0.4 -3 40 0.37 0.69 1750 4
0.3 11 45 0.20 0.61 1630 8
0.2 20 48 0.14 0.57 1560 11
0.1 27 52 0.09 0.33 1510 12
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Table B.17: Urology Results for Total Objective and DED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 2 267 0.65 0.99 229 2.8
0.4 7 262 0.53 0.95 221 3.1
0.3 12 282 0.46 0.84 215 3.4
0.2 20 304 0.29 0.83 204 3.8
0.1 35 347 0.11 0.46 184 4.6

1.5 0.5 4 38 0.72 0.99 230 2.6
0.4 7 39 0.65 0.93 224 2.9
0.3 13 42 0.52 0.85 215 3.2
0.2 21 56 0.33 0.64 204 3.6
0.1 35 68 0.13 0.55 186 4.3

2 0.5 5 39 0.69 0.99 228 2.7
0.4 8 39 0.62 0.94 223 2.9
0.3 13 39 0.49 0.83 213 3.3
0.2 21 52 0.33 0.72 203 3.7
0.1 35 67 0.13 0.52 186 4.3

Table B.18: Urology Results for Total Objective and DVED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 -2 250 0.74 0.98 234 2.6
0.4 1 268 0.70 0.97 231 2.7
0.3 8 265 0.57 0.83 220 3.1
0.2 15 312 0.38 0.83 210 3.6
0.1 30 362 0.15 0.38 190 4.3

1.5 0.5 1 39 0.77 0.97 233 2.6
0.4 4 41 0.72 0.95 230 2.7
0.3 11 43 0.58 0.83 219 3.1
0.2 19 52 0.39 0.67 207 3.5
0.1 32 74 0.17 0.53 190 4.2

2 0.5 3 37 0.73 0.96 230 2.6
0.4 5 39 0.70 0.92 227 2.8
0.3 11 40 0.58 0.89 218 3.1
0.2 20 46 0.37 0.69 206 3.5
0.1 34 69 0.15 0.62 188 4.2
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Table B.19: Urology Results for Total Objective and GND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 3 291 0.65 0.96 228 2.9
0.4 7 277 0.58 0.89 222 3.1
0.3 12 287 0.45 0.83 214 3.4
0.2 16 309 0.35 0.73 208 3.6
0.1 21 319 0.24 0.59 200 3.9

1.5 0.5 3 39 0.76 0.97 230 2.6
0.4 7 39 0.62 0.95 224 2.9
0.3 13 42 0.53 0.83 216 3.2
0.2 17 43 0.43 0.76 210 3.4
0.1 23 58 0.29 0.66 200 3.8

2 0.5 4 39 0.72 0.96 229 2.7
0.4 9 40 0.61 0.94 222 2.9
0.3 13 39 0.52 0.89 214 3.2
0.2 17 41 0.42 0.76 208 3.5
0.1 23 53 0.29 0.66 200 3.8

Table B.20: Urology Results for Total Objective and SND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 2 266 0.67 0.96 229 2.8
0.4 6 259 0.58 0.94 223 3.0
0.3 11 275 0.53 0.96 217 3.2
0.2 14 256 0.44 0.75 213 3.4
0.1 19 301 0.31 0.72 203 3.7

1.5 0.5 3 39 0.75 0.96 230 2.6
0.4 6 43 0.68 0.95 225 2.8
0.3 11 40 0.57 0.88 218 3.1
0.2 15 46 0.47 0.76 212 3.3
0.1 21 56 0.35 0.58 204 3.6

2 0.5 4 39 0.73 0.98 229 2.7
0.4 7 40 0.64 0.95 224 2.9
0.3 12 40 0.56 0.91 217 3.1
0.2 17 40 0.46 0.76 210 3.4
0.1 22 52 0.34 0.58 203 3.7
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Table B.21: Urology Results for CVaR Objective and DED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 7 37 0.67 0.97 225 2.8
0.4 10 38 0.60 0.96 220 3.0
0.3 15 40 0.50 0.84 212 3.3
0.2 24 50 0.29 0.72 200 3.8
0.1 37 64 0.12 0.51 182 4.4

1.5 0.5 8 37 0.64 0.96 222 2.9
0.4 12 39 0.57 0.96 217 3.1
0.3 17 40 0.44 0.72 210 3.4
0.2 25 51 0.28 0.74 199 3.8
0.1 37 64 0.11 0.50 183 4.4

2 0.5 9 40 0.63 0.97 222 2.9
0.4 12 41 0.55 0.92 216 3.1
0.3 16 40 0.45 0.78 210 3.4
0.2 24 50 0.29 0.77 200 3.8
0.1 37 64 0.11 0.50 182 4.4

Table B.22: Urology Results for CVaR Objective and DVED Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 6 37 0.69 0.98 227 2.7
0.4 10 38 0.61 0.93 221 3.0
0.3 15 40 0.50 0.80 213 3.3
0.2 22 46 0.32 0.70 203 3.7
0.1 37 65 0.12 0.48 183 4.4

1.5 0.5 7 36 0.67 0.95 225 2.8
0.4 10 38 0.60 0.92 220 3.0
0.3 16 40 0.45 0.82 211 3.4
0.2 22 47 0.32 0.75 202 3.7
0.1 37 64 0.12 0.47 183 4.4

2 0.5 7 37 0.68 0.95 225 2.8
0.4 11 38 0.59 0.92 220 3.0
0.3 16 40 0.48 0.78 211 3.3
0.2 22 47 0.36 0.77 205 3.6
0.1 38 64 0.12 0.48 182 4.4
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Table B.23: Urology Results for CVaR Objective and GND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 6 37 0.67 0.96 225 2.8
0.4 11 38 0.58 0.95 219 3.0
0.3 13 39 0.50 0.90 213 3.2
0.2 17 40 0.43 0.75 209 3.4
0.1 25 51 0.28 0.61 199 3.8

1.5 0.5 6 37 0.69 0.96 226 2.8
0.4 12 39 0.54 0.86 215 3.2
0.3 15 40 0.48 0.81 212 3.3
0.2 17 40 0.41 0.74 208 3.5
0.1 27 52 0.25 0.69 196 3.9

2 0.5 8 37 0.63 0.94 221 2.9
0.4 11 39 0.56 0.90 219 3.1
0.3 16 40 0.47 0.85 211 3.3
0.2 17 42 0.43 0.75 209 3.4
0.1 26 53 0.27 0.67 198 3.8

Table B.24: Urology Results for CVaR Objective and SND Method

_ h Mean CVaR Mean CVaR Number Duration
Lateness @ 0.95 Overtime @ 0.95 Performed Waiting

Lateness Probability Overtime

1 0.5 7 37 0.67 0.98 225 2.8
0.4 11 38 0.59 0.93 219 3.0
0.3 14 39 0.49 0.89 212 3.3
0.2 17 40 0.43 0.73 209 3.4
0.1 24 50 0.30 0.60 200 3.8

1.5 0.5 7 37 0.66 0.95 224 2.8
0.4 12 38 0.55 0.94 217 3.1
0.3 16 40 0.46 0.82 212 3.3
0.2 17 40 0.42 0.72 208 3.5
0.1 24 49 0.29 0.62 200 3.8

2 0.5 8 37 0.64 0.97 222 2.9
0.4 13 39 0.53 0.86 215 3.2
0.3 16 40 0.47 0.77 210 3.4
0.2 17 40 0.42 0.73 209 3.4
0.1 24 50 0.30 0.59 201 3.7





— Appendix C —

Surgery Scheduling Lateness and
Overtime Box Plots

This appendix includes box plots of both the lateness of operations and the over-
time probability of sessions for Ophthalmology and Urology. There is one figure
for each combination of: specialty, objective, and distribution (lateness of over-
time). Within each figure there is a sub-plot for each combination of overtime
probability estimation method, and _/V.
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Figure C.1: Box Plots of Lateness for Ophthalmology with the Total Objective
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Figure C.2: Box Plots of Lateness for Ophthalmology with the CVaR Objective
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Figure C.3: Box Plots of Lateness for Urology with the Total Objective
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Figure C.4: Box Plots of Lateness for Urology with the CVaR Objective



204 C. Surgery Scheduling Lateness and Overtime Box Plots

0.0

0.5

D
ED

D
VED

G
N
D

_=1.0

SN
D

0.0

0.5

_=1.5

0.5
0.4

0.3
0.2

0.1
0.0

0.5

0.5
0.4

0.3
0.2

0.1
0.5

0.4
0.3

0.2
0.1

0.5
0.4

0.3
0.2

0.1

_=2.0

O
vertim

e
Probability

Lim
it

Probability of Overtime

H
istorical

Future

Figure C.5: Box Plots of Overtime Probability for Ophthalmology with the Total
Objective
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Figure C.6: Box Plots of Overtime Probability for Ophthalmology with the CVaR
Objective
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Figure C.7: Box Plots of Overtime Probability for Urologywith the Total Objective
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Figure C.8: Box Plots of Overtime Probability for Urology with the CVaR Ob-
jective
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Surgery Scheduling Smoothed
Scatter Plots

This appendix contains smoothed scatter plots of arrival date on the x-axis and
lateness on the y-axis, for the Ophthalmology and Urology specialties. One fi-
gure is given for each combination of specialty and objective function. Within
each figure there is a sub-plot for each type of overtime probability estimation
method.

209



210 D. Surgery Scheduling Smoothed Scatter Plots

0

100

200

DED

0

100

200

DVED

0

200

400

GND

09/2015 02/2016 07/2016 12/2016

0

100

200

300
SND

_

Overtime Limit
Date

Sm
oo

th
ed

D
ay
s
Ea

rl
y/
La

te

1.0 1.5 2.0

0.5 0.4 0.3 0.2 0.1

Figure D.1: Smoothed Scatter Plots of Arrival Date and Lateness for Ophthalmo-
logy and the Total Objective
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Figure D.2: Smoothed Scatter Plots of Arrival Date and Lateness for Ophthalmo-
logy and the CVaR Objective
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Figure D.3: Smoothed Scatter Plots of Arrival Date and Lateness for Urology and
the Total Objective
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Figure D.4: Smoothed Scatter Plots of Arrival Date and Lateness for Urology and
the CVaR Objective
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Scatter Plots of Efficient Solutions

This appendix provides three two-dimensional scatter plots of the efficient solu-
tions for both Ophthalmology and Urology. The objectives that the solutions are
compared using to determine efficiency are: mean lateness, conditional value at
risk (CVaR) at 95% lateness, and mean overtime probability.
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Figure E.1: Efficient Solutions for Ophthalmology
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— Appendix F —

Surgery Scheduling Optimality
Gaps

This appendix contains tables of the optimality and first fit heuristic gap results
for both Ophthalmology and Urology. The optimality gap tables are separated by
specialty and objective function, and show the mean values of the absolute, re-
lative and uniform gaps (n, [,k) over the 52 mixed integer programmes (MIPs),
for each parameter and overtime probability estimation method combination.
The first fit heuristic gap tables are also separated by specialty and objective
function, and show the mean values of the absolute, relative and uniform gaps
(n, [,k) over the 52 MIPs and the five overtime limits, h, for each objective pa-
rameter, _/V.
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Table F.1: Ophthalmology Optimality Gap Results for Total Objective

_ h DED DVED GND SND

n [ k n [ k n [ k n [ k

1 0.5 244 0.03 0.03 663 0.09 0.09 216 0.03 0.03 229 0.03 0.03
0.4 220 0.04 0.04 847 0.19 0.19 531 0.04 0.04 621 0.08 0.08
0.3 600 0.04 0.04 2203 0.16 0.16 705 0.04 0.04 1802 0.11 0.11
0.2 727 0.04 0.04 2951 0.15 0.15 745 0.04 0.04 2529 0.13 0.13
0.1 678 0.04 0.04 3860 0.11 0.11 1937 0.04 0.04 3015 0.12 0.12

Mean 494 0.04 0.04 2105 0.14 0.14 827 0.04 0.04 1639 0.09 0.09

1.5 0.5 487 0.03 0.03 2221 0.15 0.15 551 0.03 0.03 542 0.03 0.03
0.4 590 0.03 0.03 2918 0.16 0.16 797 0.03 0.03 1421 0.07 0.07
0.3 984 0.04 0.04 8370 0.56 0.56 1319 0.04 0.04 5358 1.10 1.08
0.2 1355 0.04 0.04 11655 0.38 0.38 1968 0.04 0.04 8297 0.30 0.30
0.1 1946 0.04 0.04 23288 0.30 0.30 9587 0.04 0.04 12088 0.27 0.27

Mean 1072 0.04 0.04 9691 0.31 0.31 2844 0.04 0.04 5541 0.35 0.35

2 0.5 2150 0.03 0.03 12285 0.12 0.12 2441 0.03 0.03 2335 0.03 0.03
0.4 2763 0.03 0.03 16088 0.25 0.25 4376 0.04 0.04 5900 0.07 0.07
0.3 5747 0.04 0.04 53316 0.56 0.56 7234 0.05 0.05 27920 1.92 1.87
0.2 7607 0.05 0.05 72551 0.43 0.43 12229 0.05 0.05 47749 0.35 0.35
0.1 11693 0.05 0.05 157209 0.35 0.35 79802 0.04 0.04 77669 0.33 0.33

Mean 5992 0.04 0.04 62290 0.34 0.34 21217 0.04 0.04 32315 0.54 0.53

Grand Mean 2520 0.04 0.04 24695 0.27 0.27 8296 0.04 0.04 13165 0.33 0.32

Table F.2: Ophthalmology Optimality Gap Results for CVaR Objective

V h DED DVED GND SND

n [ k n [ k n [ k n [ k

0.8 0.5 1.66 0.05 0.05 3.33 0.09 0.09 1.99 0.06 0.06 2.38 0.07 0.06
0.4 2.50 0.07 0.07 4.45 0.15 0.14 4.87 0.48 0.37 3.45 0.12 0.11
0.3 5.82 0.34 0.30 14.16 0.44 0.42 7.77 0.25 0.24 9.16 0.69 0.53
0.2 8.21 0.25 0.24 17.15 0.38 0.37 13.23 0.25 0.25 13.59 0.36 0.35
0.1 13.40 0.26 0.25 26.44 0.39 0.38 35.28 0.29 0.29 18.24 0.35 0.34

Mean 6.32 0.19 0.18 13.10 0.29 0.28 12.63 0.27 0.24 9.36 0.32 0.28

0.9 0.5 1.76 0.05 0.04 3.11 0.08 0.08 2.30 0.06 0.06 2.65 0.07 0.07
0.4 2.53 0.07 0.06 4.54 0.15 0.14 5.50 0.43 0.34 3.60 0.12 0.11
0.3 6.69 0.32 0.29 14.19 0.40 0.39 8.48 0.25 0.24 9.52 0.46 0.42
0.2 8.99 0.26 0.25 17.31 0.37 0.37 14.74 0.27 0.27 14.17 0.34 0.33
0.1 14.18 0.26 0.26 28.02 0.39 0.38 39.71 0.31 0.31 19.28 0.35 0.34

Mean 6.83 0.19 0.18 13.43 0.28 0.27 14.15 0.27 0.24 9.84 0.27 0.25

0.95 0.5 1.50 0.04 0.04 2.35 0.06 0.06 1.89 0.05 0.05 2.05 0.05 0.05
0.4 2.10 0.06 0.05 3.64 0.11 0.11 5.25 0.26 0.23 3.07 0.08 0.08
0.3 5.63 0.22 0.21 12.80 0.35 0.33 8.18 0.23 0.22 8.57 0.42 0.37
0.2 8.36 0.22 0.22 16.04 0.33 0.32 14.01 0.25 0.25 14.04 0.32 0.31
0.1 14.02 0.26 0.25 26.83 0.36 0.36 42.75 0.32 0.32 18.58 0.32 0.31

Mean 6.32 0.16 0.15 12.33 0.24 0.24 14.42 0.22 0.21 9.27 0.24 0.23

Grand Mean 6.49 0.18 0.17 12.96 0.27 0.26 13.73 0.25 0.23 9.49 0.27 0.25
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Table F.3: Urology Optimality Gap Results for Total Objective

_ h DED DVED GND SND

n [ k n [ k n [ k n [ k

1 0.5 79 0.03 0.03 79 0.04 0.04 91 0.03 0.03 77 0.03 0.03
0.4 97 0.04 0.04 92 0.04 0.04 106 0.04 0.04 92 0.04 0.04
0.3 120 0.04 0.04 111 0.04 0.04 120 0.04 0.04 121 0.05 0.05
0.2 151 0.04 0.04 158 0.04 0.04 142 0.04 0.04 128 0.04 0.04
0.1 230 0.04 0.04 270 0.05 0.05 171 0.04 0.04 176 0.05 0.05

Mean 135 0.04 0.04 142 0.04 0.04 126 0.04 0.04 119 0.04 0.04

1.5 0.5 123 0.04 0.04 143 0.06 0.06 126 0.04 0.04 130 0.04 0.04
0.4 171 0.04 0.04 178 0.05 0.05 170 0.04 0.04 172 0.07 0.06
0.3 227 0.04 0.04 239 0.05 0.05 217 0.04 0.04 260 0.06 0.06
0.2 404 0.04 0.04 401 0.05 0.05 286 0.04 0.04 355 0.06 0.06
0.1 857 0.04 0.04 1020 0.06 0.06 454 0.04 0.04 459 0.05 0.05

Mean 356 0.04 0.04 396 0.06 0.06 251 0.04 0.04 275 0.06 0.05

2 0.5 597 0.04 0.04 865 0.06 0.06 615 0.04 0.04 593 0.04 0.04
0.4 817 0.04 0.04 881 0.05 0.05 841 0.04 0.04 872 0.04 0.04
0.3 1156 0.04 0.04 1223 0.05 0.05 1002 0.04 0.04 1361 0.05 0.05
0.2 2650 0.05 0.05 2466 0.05 0.05 1594 0.04 0.04 2382 0.09 0.09
0.1 6032 0.04 0.04 8192 0.07 0.07 2826 0.05 0.05 3584 0.06 0.06

Mean 2250 0.04 0.04 2725 0.06 0.06 1376 0.04 0.04 1758 0.06 0.06

Grand Mean 914 0.04 0.04 1088 0.05 0.05 584 0.04 0.04 718 0.05 0.05

Table F.4: Urology Optimality Gap Results for CVaR Objective

V h DED DVED GND SND

n [ k n [ k n [ k n [ k

0.8 0.5 1.11 0.04 0.04 1.13 0.04 0.04 1.08 0.04 0.04 1.09 0.04 0.04
0.4 1.20 0.04 0.04 1.31 0.04 0.04 1.28 0.04 0.04 1.29 0.04 0.04
0.3 1.45 0.05 0.04 1.43 0.04 0.04 1.33 0.04 0.04 1.33 0.04 0.04
0.2 1.89 0.05 0.04 1.92 0.05 0.05 1.47 0.04 0.04 1.49 0.05 0.04
0.1 2.45 0.04 0.04 4.52 0.08 0.08 2.00 0.05 0.05 2.45 0.06 0.06

Mean 1.62 0.04 0.04 2.06 0.05 0.05 1.44 0.04 0.04 1.53 0.05 0.04

0.9 0.5 0.85 0.03 0.03 0.96 0.03 0.03 0.82 0.03 0.03 0.90 0.03 0.03
0.4 1.14 0.03 0.03 1.15 0.03 0.03 1.18 0.04 0.03 1.16 0.04 0.03
0.3 1.43 0.04 0.04 1.30 0.04 0.04 1.36 0.04 0.04 1.31 0.04 0.04
0.2 1.94 0.04 0.04 1.94 0.05 0.04 1.47 0.04 0.04 1.31 0.04 0.04
0.1 2.37 0.04 0.04 4.12 0.07 0.07 1.84 0.04 0.04 2.37 0.05 0.05

Mean 1.55 0.04 0.04 1.89 0.04 0.04 1.33 0.04 0.04 1.41 0.04 0.04

0.95 0.5 0.62 0.02 0.02 0.71 0.02 0.02 0.66 0.02 0.02 0.78 0.03 0.02
0.4 0.74 0.02 0.02 1.08 0.03 0.03 0.86 0.03 0.02 0.96 0.03 0.03
0.3 0.95 0.03 0.03 1.19 0.03 0.03 0.92 0.03 0.02 0.96 0.03 0.03
0.2 1.58 0.03 0.03 1.67 0.04 0.04 1.02 0.03 0.03 1.12 0.03 0.03
0.1 2.14 0.04 0.03 3.09 0.05 0.05 1.61 0.03 0.03 2.55 0.05 0.05

Mean 1.21 0.03 0.03 1.55 0.03 0.03 1.01 0.03 0.03 1.27 0.03 0.03

Grand Mean 1.46 0.04 0.03 1.83 0.04 0.04 1.26 0.04 0.03 1.40 0.04 0.04
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Table F.5: Ophthalmology First Fit Heuristic Gap Results for Total Objective

_ DED DVED GND SND

n [ k n [ k n [ k n [ k

1 658.42 0.08 0.08 384.06 0.05 0.04 855.87 0.18 0.17 378.89 0.06 0.06
1.5 611.64 0.06 0.06 559.84 0.03 0.03 1187.35 0.06 0.06 550.42 0.06 0.06
2 2594.66 0.04 0.04 2948.61 0.04 0.04 5355.58 0.06 0.05 2677.63 0.07 0.07

Mean 1288.24 0.06 0.06 1297.50 0.04 0.04 2466.27 0.10 0.09 1202.31 0.06 0.06

Table F.6: Ophthalmology First Fit Heuristic Gap Results for CVaR Objective

V DED DVED GND SND

n [ k n [ k n [ k n [ k

0.8 0.71 0.03 0.03 0.25 0.01 0.01 0.64 0.11 0.04 0.24 0.05 0.01
0.9 0.70 0.03 0.03 0.28 0.02 0.01 0.65 0.03 0.02 0.32 0.02 0.02
0.95 0.77 0.03 0.03 0.36 0.04 0.02 0.58 0.06 0.03 0.41 0.02 0.02

Mean 0.73 0.03 0.03 0.30 0.02 0.01 0.62 0.06 0.03 0.33 0.03 0.02

Table F.7: Urology First Fit Heuristic Gap Results for Total Objective

_ DED DVED GND SND

n [ k n [ k n [ k n [ k

1 22.02 0.01 0.01 30.92 0.01 0.01 22.05 0.01 0.01 19.33 0.01 0.01
1.5 96.11 0.03 0.03 107.12 0.04 0.04 90.33 0.05 0.05 86.54 0.08 0.08
2 811.34 0.05 0.05 809.59 0.06 0.06 696.03 0.09 0.09 687.60 0.06 0.06

Mean 309.82 0.03 0.03 315.87 0.04 0.04 269.47 0.05 0.05 264.49 0.05 0.05

Table F.8: Urology First Fit Heuristic Gap Results for CVaR Objective

V DED DVED GND SND

n [ k n [ k n [ k n [ k

0.8 1.05 0.10 0.06 1.05 0.21 0.07 0.97 0.65 0.07 1.03 0.08 0.06
0.9 1.49 0.06 0.05 1.50 0.05 0.04 1.34 0.07 0.06 1.55 0.07 0.06
0.95 2.28 0.05 0.05 2.33 0.06 0.06 1.78 0.05 0.05 2.27 0.06 0.06

Mean 1.60 0.07 0.05 1.63 0.11 0.06 1.36 0.26 0.06 1.62 0.07 0.06
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