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Abstract Engineers, control theorists, and neuroscientists often
view the delay imposed by finite signal propagation velocities as a
problem that needs to be compensated for or avoided. In this article,
we consider the alternative possibility that in some cases, signal delay
can be used functionally, that is, as an essential component of a
cognitive system. To investigate this idea, we evolve a minimal robot
controller to solve a basic stimulus-distinction task. The controller is
constrained so that the solution must utilize a delayed recurrent
signal. Different from previous evolutionary robotics studies, our
controller is modeled using delay differential equations, which (unlike
the ordinary differential equations of conventional continuous-time
recurrent neural networks) can accurately capture delays in signal
propagation. We analyze the evolved controller and its interaction
with its environment using classical dynamical systems techniques.
The analysis shows what kinds of invariant sets underlie the various
successful and unsuccessful performances of the robot, and what
kinds of bifurcations produce these invariant sets. In the second
phase of our analysis, we turn our attention to the parameter h, which
describes the amount of signal delay included in the model. We show
how the delay destabilizes certain attractors that would exist if there
were no delay and creates other stable attractors, resulting in an agent
that performs well at the target task.

1 Introduction

After NASAʼs New Horizons flew past Pluto, it turned its antenna toward Earth and began transmit-
ting the data that it had gathered. The distance between the probe and Earth was so vast that even
though the radio signals traveled at the speed of light, there was a five-hour delay between the start
of the transmission and the receipt of the first bit of data. Electrical signals moving through copper
wires travel almost as fast as those radio waves, moving at roughly 95% of the speed of light. When
the wire is short, as is the case in a robotʼs control circuitry, the delay between the emission of a
signal and its receipt at the other end of the wire is so brief that it can often be approximated as
nonexistent—an instantaneous transfer of information. The situation in your nervous system is dif-
ferent: The signals that travel along the neurons in your body and brain travel at a comparative snailʼs
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pace, with some types of signals taking three seconds to travel a mere meter, a difference of nine
orders of magnitude.

Slow signal propagation implies working with information that is old and sending instructions
that get to their destination too late, and robots can become remarkably difficult to control when
signal delay is significant. Even relatively short delays in signal propagation can be problematic when
the signals are involved in a feedback loop, and feedback loops are commonplace in both biological
organisms and robotics.1 For these reasons, roboticists tend to see delay as a problem to be over-
come. They embrace the biologically unrealistic conduction velocity of copper, and build robots out
of rigid materials that go quickly and precisely to where theyʼre told and stay where theyʼve been put.
By doing these things, these engineers can stay in control, working with accurate information and
simplified models of their systems that allow them to apply calculus and other mathematical formal-
isms, not just to predict or describe or control their creations, but even to prove that their systems
will perform as desired.

What, if anything, is lost in this approach? Certain modern efforts in robotics, psychology, and
philosophy of mind have returned to biology for inspiration, wondering how it is that floppy and
squishy biological bodies can be controlled with nervous tissues that are extremely complex, hetero-
geneous, asynchronous, and seemingly disordered. These researchers are interested not in how
brains are similar to computers, but instead in how they are different, and how by coming to un-
derstand these differences we might develop a better understanding of natural and artificial forms of
agency, cognition, and intelligence.

One emphasis in this perspective is upon the dynamical (i.e., time-related) differences between
brains and computers [4, 28]. Nervous tissues have their own autonomous and temporal dynamics.
For example, small neural circuits known as central pattern generators produce rhythmic or chaotic
activity, and the brainʼs various rhythms, with their own intrinsic natural frequencies, are famous (if
not well understood). Instead of viewing cognition as a kind of computation, the dynamical perspec-
tive sees it more generally as the result of an interaction between the autonomous dynamics of the
nervous tissues (and other parts of the body) and the world.

The classic, computationalist “brains are like computers” perspective can be made to fit within
this approach, but the emphasis is rather different. Computation generally is divided into three dis-
tinct and sequential phases: First data is acquired, then it is processed, and then an output is pro-
duced. Early efforts in AI such as Shakey the Robot [19] worked this way, and it remains common in
modern AI efforts such as image classification, where the data describing an image is entered, then
processed so as to produce an output that categorizes the image. In the computationalistʼs perspec-
tive, the important part of the system is how an AI can best build a model from the data and use that
model to make intelligent cognition-like decisions. The dynamical perspective is different. It blends
data input, processing, and output into one ongoing interaction, less easy to untangle, between
coupled dynamical systems. The important part in this perspective is the ongoing interaction be-
tween the brain, body, and world [2]. Instead of trying to figure out how a computer program could
generate the best possible internal representation of its environment, the question becomes (more
broadly) how to create a dynamical system that results in intelligent behavior when coupled to a
body in an environment [5]. In this latter approach, the use of manifest internal representations
becomes optional, and the set of possible brain architectures grows, as it is no longer committed
to notions of computation or internal model creation.

The field of evolutionary robotics has established itself as a popular method for investigating this
dynamical perspective. The method consists essentially of using an evolutionary algorithm to tune
the parameters of a dynamical system so that when it is coupled to the sensors and motors of a
robot, the system performs a target behavior. Once a solution is identified by the genetic algorithm,
the dynamics of the whole brain + body + environment system are analyzed to understand how the
desired behavior is accomplished. One of the reasons evolutionary robotics is appealing is that it

1 For example, sensors that indicate the position of a robot’s arm may be used to determine how next to move that arm, which
influences the state of the sensor, and so on.
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allows us to generate examples of an interesting cognitive behavior that is not as complicated as
those found in nature and that thus might be more easily studied and understood. The hope is that
an understanding of these artificial systems will inform our understanding of their natural counter-
parts. A second appealing aspect of this approach is that it does not assume that the brain (i.e., the
neural network) is the locus of the systemʼs intelligence, but instead shows how intelligent behavior
can emerge from, and in a sense be fundamentally built out of, interaction between brains, bodies,
and the environments in which they are situated. A third appealing aspect of evolutionary robotics is
that studies often involve simulated bodies and environments, where the entire system is formulated
as a set of differential equations, allowing researchers to employ dynamical systems analysis on the
entire system (and/or parts of it), providing a formal language (attractors, separatrices, bifurcations,
etc.) that can be used to describe how the intelligent behavior takes place.

Some of the best examples of work in this area have examined cognitive abilities such as categorical
perception [3], associative learning [14], and behaviors performed by the nematode Caenorhabditis elegans
[15]. In these and most other evolutionary robotics investigations, the neural networks used are
continuous-time recurrent neural networks (CTRNNs) [1]. These are described by a set of coupled
ordinary differential equations (ODEs), where each equation describes the dynamics of a single node in
the network (conceptualized as a neuron or group of neurons) and takes the following form:

s
dyi
dt

¼ − yi þ
X
j

wjir yj −bj
� �

þ I; (1)

where yi is the excitation of node i ; b and s are bias and time constants; r is the logistic sigmoidal
function; wji is the weight of the connection from node j to node i ; and I is an input signal into the
node, such as the state of a light sensor on the robot.

CTRNNs are universal dynamical approximators [2], but this does not mean that all dynamical
systems are easily or simply approximated by CTRNNs. Of particular interest here, CTRNNs do not
easily capture the delayed influence that we discussed at the start of this article, where the change in
a variable is directly influenced by the state of a variable at some time in the past. To be clear, this is not
to say that CTRNNs are ahistorical or that the effects of a perturbation are all immediate. Conven-
tional CTRNNs are recurrent stateful systems, and signals can propagate through these networks in
historical ways (i.e., where the current state is the result of its history). But this is qualitatively dif-
ferent than delayed influence, and this difference is demonstrated by the fact that delayed systems
cannot in general be described by ODEs, requiring a different mathematical formulation known as
delayed differential equations (DDEs).

To elaborate, ODEs take the form _y(t ) = f (t, y(t )), where the state of the system at time t is the
finite vector y(t) and f is the evolution function. The simplest DDE systems extend ODEs to
include one or more historical terms, thus:

_y tð Þ ¼ f t ; y tð Þ; y t −s1ð Þ; y t −s2ð Þ;…ð Þ; (2)

where each sj is a fixed parameter. Other forms of DDEs are possible, where for instance a delayed
derivative of a variable appears on the right-hand side, or where the amount of delay (the sj in the
equation above) is itself a dynamic variable, or depends on the current state of the system ( i.e., sj =
sj (y)). The inclusion of delay means that unlike an ODE, where the state is completely captured by
the finite vector y, the state of a DDE system includes the continuous history of the variables as far
back as the longest delay (s = maxj (sj )) in the system. The phase space of the DDE is thus no
longer finite, but is the infinite-dimensional space C ( [−s, 0]; ℝn ) × ℝ. Here, C ( [−s, 0]; ℝn ) is
the infinite-dimensional space of continuous functions over the interval [−s, 0], and s 2 ℝ represents
time. This infinite dimensionality often entails more complex dynamics and makes DDE systems more
difficult to investigate than ODEs. As a case in point: To specify an initial-value problem, one must
specify an initial history (a function segment) over the time interval [−s, 0]. An often-used choice of
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initial history in numerical solutions of DDEs (and the method employed below) is a constant value, but
this is only a one-dimensional subspace of the infinite-dimensional possible space of initial histories.

Despite the increase in complexity, provided certain constraints are met (e.g., the delay is not very
short), these delayed systems are often numerically tractable. In fact, many physical or biological
phenomena have been modeled using delayed differential equations. Examples include climate
models, where delay times model, for instance, the time taken for an oceanic wave to travel across
the Pacific Ocean [11], and lasers, where the delay times model the transit time for the light to cross
an optical cavity [18]. These models can often be simpler to analyze than large systems of ODEs or
PDEs, which would be required to otherwise incorporate the modeled delayed effect.

A number of tools exist for Python and Matlab designed for analyzing DDE systems. In the
work presented below, the Python package pydelay [10] was used for the numerical integration dur-
ing evolution, plotting, and analysis, and DDE-Biftool [8, 21], a Matlab package for continuation of
solutions to DDEs, was used as part of the bifurcation analysis.

The dynamical approach argues that we should take seriously the time-related properties of nervous
and other bodily tissues when trying to understand natural cognition, but a primary methodology used to
investigate these ideas (CTRNN-based evolutionary robotics) precludes a dynamical phenomenon known
to operate in nervous tissues: delayed influence due to the finite conduction velocity of nervous tissues.

Why have the effects of time delays been omitted so far in evolutionary robotics? The most
straightforward explanation is that ordinary differential equations are easier to analyze than delay
differential equations. But there may also be a conceptual hangover from the classical computation-
alist and engineering perspectives, where delay is generally seen as a problem to be overcome rather
than as a feature that might contribute to a functional cognitive system. This might cause researchers
to think, “Letʼs first figure out the easier case, where delay is omitted and from there move on to the
more difficult and more complicated case where delay is included.” “Furthermore,” they might ar-
gue, “delay may not play an important or interesting role in the generation of intelligent, adaptive
functional behaviors.” This perspective both props up and is itself supported by the common as-
sumption that neurons are as fast as they can possibly be given the other constraints that they must
satisfy. But in the following subsection (a lightly edited version of the review in [7]) we present
evidence from neuroscience research that argues against this dismissal of delay; evidence that sup-
ports the notion that delay plays an important role in the generation of functional intelligent behav-
ior. Some of this evidence is circumstantial, but in one case that we describe, the finite conduction
velocity of certain neurons in octopuses clearly plays an essential role in the production of one of its
coordinated activities. This evidence sets the scene for the remainder of the article, which presents
our evolutionary-robotics-based investigation of how delay can underlie good performance in a
simple cognitive task.

1.1 Delay in Natural and Artificial Systems
Delay is well recognized in neuroscience, where the finite conduction velocity of neurons is known
to cause delayed effects. In this context, as in engineering, delay is often characterized as a problem
to be compensated for or avoided. For instance, Swadlow and Waxman [24] and Chklovskii et al. [6]
suggest that evolution has acted to maximize conduction velocity to the point that any further in-
crease would come at too great a cost in terms of increased neuronal volume, additional metabolic
costs, reliability, and so on.

When nervous tissues are involved in reflexive responses to damage caused by cuts, heat, or the
like, it makes good sense that they would evolve to conduct as fast as they possibly can. But it is
interesting to note that neuronal conduction velocities vary over three orders of magnitude from 0.3
to 120 meters per second [24]. This wide range of conduction velocities is largely the result of two
ways that neurons vary: mylenation and axon diameter—thicker, mylenated axons conduct more
quickly than those that are thinner or less mylenated [29]. In the peripheral nervous system, neurons
associated with pain and temperature conduct more slowly than those associated with muscle acti-
vation, and within the central nervous system there exist a wide variety of conduction velocities with
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“some axonal systems [that] are nearly exclusively fast-conducting (corticospinal, corticotectal, and
sensory thalamocortical axons), some [that] are exclusively slowly conducting, with impulses taking
many 10s of ms to reach their terminals (cortically projecting neurons of the locus coeruleus and
substantia nigra), and some [that] consist of a broad spectrum of axons (corpus callosum, some
corticocortical populations, corticothalamic neurons of layer 6)” [24].

The presence of different conduction velocities does not eliminate the possibility that neurons
have evolved to be as fast as possible. Constraints upon different neural systems may vary, in some
cases enabling the growth of faster, but more costly neurons. Such constraints, however, do not
explain another common feature of neural conduction velocities: They change over time. This
change takes place over both long and short time scales. To give examples: Callosal axons can
change progressively (1–2%/day) over periods of months [23], while bursts in neuron activity
can increase the conduction velocity for seconds afterwards [24].

In many cases, it remains unclear what the function is of this variation and how it is accom-
plished. What is clear is that such variation in conduction velocity will undoubtedly influence the
relative times at which signals arrive at particular neurons, which we would expect to seriously in-
fluence neural dynamics. As a case in point, Hebbian learning and other synaptic plasticity rules
describe how synapses change as a function of the timing of the firing of downstream and upstream
neurons [12, 13, 25]. These mechanisms rely upon signals arriving more or less synchronously,
which suggests very precise timing, as the voltage change produced when a synapse fires lasts only
2–4 ms. In some cases the conduction velocity of neurons appears to be tuned so as to synchronize
the arrival of stimuli along different-length axons. One such case occurs in peripheral cephalopod
nerve fibers. The conduction velocities of these fibers is structured so as to synchronize the arrival
time of stimuli that occur at different distances from the organismʼs central nervous systems [20, 24]
(essentially, the shorter fibers conduct at a lower velocity than the longer fibers). Other examples of
conduction velocity being modulated so as to synchronize the arrival have also been found—a num-
ber of examples can be found in [9].

Here we see the first clear examples of delay playing a functional role. The conduction velocity of
these neurons is not just something to be maximized, but should instead (or in addition) be tuned so
as to enable synchronous activation of the muscles along an octopusʼs arm.

The synchronization of signals along axons of different lengths is a straightforward example of
delay playing a functional role. It is almost an anti-temporal mechanism—a mechanism that erases
temporal differences between signals. This kind of mechanism is easy for us to understand—are
there also less easily understood functions that delay might perform? Evolutionary robotics, and
more broadly the field of artificial life, involves the creation of artificial systems that can be used
to aid in the investigation of complex biological phenomena. In the next section, we develop an
artificial system that uses delay in signal propagation in part of its sensorimotor feedback loop to
solve a simple discrimination task. By understanding how the artificial system takes advantage of
signal delay, we hope to expand our understanding of the ways that delay can be used as part of
sensorimotor feedback systems or cognitive architectures. Such knowledge would hopefully prove
useful in the study of delay in natural systems.

2 Model

To evaluate how delay can contribute to solving a task, we consider a minimal model (first presented
in [7]) that consists of a robot situated in a one-dimensional periodic environment of length 1. The
robotʼs “brain” is modeled as a single neuron with one recurrent, delayed, and weighted synaptic
connection. The velocity of the robot is determined by the following ODE:

dx
dt

¼ 2
1þ exp −4yð Þ −1:0; (3)
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where x is the robotʼs position and y is the excitation of its neuron, which is governed by the
following DDE:

s
dy tð Þ
dt

¼ − cy tð Þ3 þ ωy t − hð Þ þ wI þ b: (4)

In this equation, s is a time-scale parameter and −cy(t )3 formalizes a tendency of the neuron to
return to a base level of excitation (the cubic is included so that this tendency grows increasingly
strong as the system moves farther away from the base level of excitation, which prevents the sys-
tem from exploding). The second term describes the influence of the delayed recurrent connection,
where ω expresses the weight of the connection and h describes the delay associated with it. The
third term, wI, indicates a scaled sensory input (described below), and b is a constant bias term.

The input to the neuron (I ) is a function of the robotʼs current position:

I ¼ exp
− x tð Þjpnð Þ2
0:0018

� �
þ exp

− x tð Þjpwð Þ2
0:0128

� �
; (5)

where A|B = min{|A − B|, |1.0 − |A − B||} represents the distance between points A and B (in
accordance with the minimum image convention followed for periodic boundary conditions). The
input (I ) has been plotted as a function of the robotʼs current position, x(t ), in Figure 1, with the
position of the narrow peak ( pn = 0) and the position of the wide peak ( pw = 0.75). Informally, one
can think of there being two hills in the agentʼs environment, of equal height, but with one narrower
and steeper than the other. In this description, I corresponds to the altitude of the robot.

A simple genetic algorithm was used to tune the parameters described by the Greek letters in the
equations above, so that after approximately 50s (s being the time unit), the robot is located near the
narrow peak. To evaluate the fitness of a parameterization, 120 initial-value problems of duration d 2
[45, 55] were solved numerically, where the initial starting position of the robot (x0) and the position
of the wide peak ( pw ) were taken from the Cartesian product {(x0, pw )|x0 2 {0, 0.05, …, 1} and
pw 2 {0.25, 0.35, …, 0.75}}. In all evaluations, the narrow-peak position is pn = 0. The excitation
preceding the trial was set to a constant value, yt≤0 = 0. Each of these 120 initial-value problems
were given a score, S = 0.5 + 0.5(�xt>d−10|pn ) − 0.5(�xt>d−10|pw ), which is higher when the average
distance of the robot during the last 10s of the trial (�xt>d−10) is close to the narrow peak and far
away from the wide peak. The fitness is then given by f =

Q
S(

S
4 +

3
4), the product of all of the 120

scores after they have been scaled to lie within [0.75, 1].

3 Analysis

We performed 32 evolutionary runs, each lasting approximately 3500 tournaments. The parameters
of the best-performing individual can be found in Table 1, and the evolutionary change in pop-
ulation fitness in the run that produced this agent is presented in Figure 2. The remainder of this
section presents our analysis of this system.

Figure 1. The state of the sensor (I) is a function of the current position of the robot, x(t). In each trial the location of the
peaks is different. This figure shows one example environment.

M. Egbert et al. Can Signal Delay be Functional?

320 Artificial Life Volume 25, Number 4



An overall summary of performance can be seen in Figure 3, which indicates the maximum dis-
tance between the robot and the narrow peak in the last 10s of a 100s trial for different initial robot
starting positions (horizontal axis) and different placements of the wide peak (vertical axis). The
controller performs well in the majority of initial conditions, especially those initial conditions that
were evaluated during the evolution, where pw 2 [0.25, 0.75].

The plots in Figure 4 show trajectories taken in various successful and unsuccessful trials, pro-
viding a first glimpse of some of the qualitative variety demonstrated in this system. The only things
differing in these trials are the placement of the distractor wide peak and the initial position of the
robot. These conditions are indicated above each set of plots. The plots on the left show how the
robotʼs position changes over time, and those on the right indicate the state of the robotʼs neuron
excitation ( y) plotted against its weighted delayed value, ωy (t − h ) (the second term in the RHS of
Equation 4). Note that the trajectories in the right column appear to self-intersect only because the
phase space is infinite-dimensional and the figure presents a two-dimensional projection of that
space.

The diverse dynamics seen in Figure 4 can be explained in terms of the attractors that exist for
different values of the parameter pw . We find the attractors by conducting a bifurcation analysis,
using the continuation software DDE-Biftool, to numerically continue (i.e., track) branches of equi-
libria and periodic orbits while varying pw . In contrast to simulations, this reveals both stable and
unstable solutions. The software can calculate the stability properties of the solutions and identify
different types of bifurcations. Understanding how the different solution types are organized in

Table 1. Evolved parameters. Parameters specified to three digits of precision. Simulation was conducted with an
absolute tolerance of 10−6 and a relative tolerance of 10−3.

s : 0.563 c: 9.595

w: 1.794 b: −0.272

ω : −1.297 h: 1.140

Figure 2. Progression of fitness evaluations during evolution. The top plot shows the distribution of fitness across the
population as it evolved. In this figure, each column indicates the fitness of the population (sorted by fitness).
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terms of parameters and how they are related through bifurcations gives one an overall picture of the
dynamical capabilities of the system.

We now very briefly recall the types of bifurcations we encounter. A formal and detailed descrip-
tion of these bifurcations can be found in any standard nonlinear dynamics textbook, for example,
[22]. Hopf bifurcation: An equilibrium changes stability, resulting in the birth of a periodic orbit with
zero amplitude. After the bifurcation, the amplitude of the periodic orbit grows. Saddle-node bifurcation:
Two invariant sets (most typically, equilibria or periodic orbits) collide and mutually destroy each
other. Period-doubling bifurcation: A periodic orbit changes stability, resulting in the birth of another
periodic orbit with twice the period of the original. Torus bifurcation: A periodic orbit changes stability,
resulting in the birth of a two-dimensional torus. Homoclinic bifurcation: A periodic orbit is born from
the meeting of trajectories along one stable and one unstable direction of a saddle equilibrium. This
bifurcation results in the sudden appearance of a nonzero-amplitude, but long-period, periodic orbit.

3.1 Bifurcation Analysis of Best-Performing Individual
We now describe the bifurcation diagram of the system in the parameter pw (the position of the wide
distractor peak) and then explain how this analysis can be interpreted to understand the behavior of
our robot. Figure 5 shows equilibria (thin curves) and periodic orbits (thick curves). In this figure,
solid lines indicate stable solutions and dotted lines indicate unstable solutions. The horizontal axis
represents the x value of the equilibria or the maximum x value of the periodic orbits (recalling that
x describes the position of the robot). The Hopf, homoclinic, and saddle-node bifurcations of equi-
libria are labeled H, C, and SN, respectively.

Figure 3. Initial condition survey. Values in this image indicate the maximum distance of the agent from the narrow peak
in the last 10s of 100s simulation 100, max(x90<t<100 |pn) for the parameter (pw) and initial condition (x0) values conditions
specified on the axes. The dashed lines indicate the limits of the parameter values tested during evolution (pw 2 [0.25,
0.75]).
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Figure 4. Trajectories for indicated initial conditions (x0) and environmental parameter values (pw). Plots on the left
indicate the position of the robot as a function of time. The positions of the stimulus peaks are also indicated by the
gray areas on the left of the plots. The graphs on the right show the excitation of the robotʼs neuron ( y( t )) plotted
against its earlier value ( y(t − s)) and scaled by the evolved parameter ω. These phase portraits are 2D projections of the
systemʼs infinite-dimensional phase space.
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The bifurcation diagram reveals that for most values of pw, there exist four equilibria (between the
saddle nodes at pw ≈ 0.75 and pw ≈ 0.25). For almost all values of pw, these equilibria are unstable. It
is only for two very small parameter ranges near pw ≈ 0.25 and pw ≈ 0.95 that we can find stable
equilibria, book-ended by Hopf bifurcations—only the second of these two branches is large enough
to be seen in Figure 5. In the context of the robotʼs dynamics, these equilibria represent positions
along the slopes of the peaks shown in the sensor function in Figure 1, where if the robot were sta-
tionary at one of these positions, and the recent excitation of its neuron were zero ( yt2[t−h,t ] = 0), the
robot would remain at that position indefinitely (or until perturbed). The positions of the equilibria
must have y = 0, and hence occur at a fixed input height, specifically I = b/w (by solving Equations 3
and 4 for d/dt = 0). For both small and large values of pw, the two peaks merge into a single peak.
When this happens, there are only two locations in the environment with the particular sensor ex-
citation associated with this unstable equilibrium, and this corresponds to the the disappearance of
two equilibria in saddle-node bifurcations when pw|pn ≲ 0.25.

The fact that the equilibria are almost always unstable implies that the dynamics of the robot will
almost always be oscillatory. This agrees with the observations in Figure 4, where the various be-
haviors observed are indeed oscillatory. Again, we can develop an understanding of the origin of
these oscillatory dynamical solutions by examining the bifurcations for different placements of
the distractor wide peak ( pw ). The most clearly relevant periodic solutions are those that produce
high-fitness behaviors and that have relatively large basins of attraction. Other solutions seem, at
least at first glance, to be less relevant, either because they are unstable, or because they only arise
for a very small set of initial conditions. However, tracking unstable solutions can provide insight, as
they may be associated with the disappearance of stable solutions (e.g., in a saddle-node bifurcation)
or with the reduction of another attractorʼs basin of attraction, or they may serve as an organizing
center for other important dynamics.

Let us briefly describe the solutions and bifurcations we observe before connecting these abstrac-
tions to the robotʼs behavior. Figure 6 provides enlargements of the bifurcation diagram depicted in
Figure 5. It shows the locations of homoclinic (C), period-doubling (P), torus (T), and saddle-node
(SN) bifurcations of periodic orbits. Panel A illustrates that a branch of periodic orbits emerges from
two Hopf bifurcations and is unstable. These periodic orbits are unstable, and so the Hopf bifurcations

Figure 5. Bifurcation diagram in parameter pw. Solid and dotted curves represent stable and unstable solutions, respec-
tively. Thin and thick curves represent equilibria and periodic orbits, respectively. Hopf, homoclinic, and saddle-node
bifurcations of equilibria are labeled H, C, and SN. Note that we plot the bifurcation parameter on the vertical axis, so as
to facilitate comparison with Figure 3.
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are subcritical. A second branch of stable periodic solutions emerges from two other supercritical Hopf
bifurcations. However, these periodic orbits soon lose their stability at period-doubling bifurcations,
producing another branch of periodic orbits. Part of this new branch of periodic orbits loses stability
between two torus bifurcations. We also observe a branch of periodic orbits with larger maxima in x
for a range of pw values. This branch of periodic orbits is bounded by two saddle-node bifurcations
(which are different from the saddle-node bifurcations that underlie the unstable equilibria mentioned
above). The periodic orbits along the stable segment of this branch change in stability at a torus bi-
furcation at about pw ≈ 0.4. Panel B shows another branch of stable solutions that loses stability in a
cascade of period-doubling bifurcations. The resulting unstable periodic orbits then each terminate at
homoclinic bifurcations.

What role do these bifurcations play in determining the success of the robotʼs mission to find the
narrow peak? To start our approach to this question, we can compare the max(x|pn ) values depicted
in the fitness survey of Figure 3 and in the bifurcation diagrams just described. First we observe the
large area of uniform high-fitness performance that covers most of the center of Figure 3. Through-
out this area, the maximum distance of the robot from the target narrow peak in the final 10s of the
simulation is max(x0|pn ) ≈ 0.142. Looking at the bifurcation diagram, we see a branch of stable
periodic orbits with the same max(x). We have labeled this branch B-I in Figure 6. Figure 7 super-
imposes the bifurcation diagram on top of the fitness-survey data from Figure 3, showing that B-I
does indeed exist for the relevant values of pw , and thus further supporting our association of this
stable periodic orbit with the majority of successful behaviors. Returning now to Figure 4, we see
that the two initial conditions that lie within this region (trajectories (b) and (c)) do indeed fall into
what appears to be the same attractor.

A second region of high fitness is also found in Figure 7. This area (which includes trajectory (a))
is slightly lower in fitness than that just described, and involves an oscillation of different form than
those of the higher-fitness region (compare the right column for trajectories (a), (b), and (c) in Figure 4).
This area has a large section where max(x0|pn ) ≈ 0.183, which nicely matches the branch of stable
periodic solutions labeled B-II in Figure 6. A torus bifurcation just above pw = 0.4 is associated with
this region becoming less and less fit as pw decreases. Note that continuation analysis does not pick
up quasi-periodic or chaotic solutions.

Figure 6. Enlargements of the bifurcation diagram shown in Figure 5. Line types are as in Figure 5. Homoclinic (C),
period-doubling (P), torus (T), and saddle-node (SN) bifurcations of periodic orbits are indicated.
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Turning now to the examples of poor performance, trajectory D presents a large-amplitude os-
cillation that belongs to one of two branches of periodic solutions that originate from homoclinic
bifurcations, labeled C (to be precise, trajectory D approaches the upper branch), in Figure 5. The
ranges of pw values where these branches are stable agree well with the yellow initial conditions in
Figure 7. Trajectory E is an example of a chaotic attractor. The robot initially appears to approach a
small-amplitude torus that is created in the torus bifurcation shown in Figure 6(a) at (max(x ), pw ) ≈
(0.08, 0.26). However, the trajectory in Figure 4(e) then undergoes irregular excursions throughout
phase space, resulting in large-amplitude oscillations in x. The final example in Figure 4(f) demon-
strates a successful trial, where the robot begins close to the Hopf bifurcation. Eventually, the robot
settles into aperiodic motion, in agreement with the attractor being born at the torus bifurcation near
pw ≈ 0.26. In fact, this attractor appears to also be chaotic, because changes to the initial condition of
x on the order of 10−9 lead to a set of different trajectories. Figures 4(e) and (f), therefore, dem-
onstrate that chaotic attractors can be both successful and unsuccessful for the robot.

The scattered pattern of yellow and purple points in Figure 7 in the region 0.28 ≲ pw ≲ 0.4 and
near 0.7 is evidence of the sensitivity to initial conditions associated with chaotic behavior. These
regions of the parameter pw correspond well to the period-doubling cascades seen on the branches of
periodic orbits for large max(x ), shown in detail in Figure 6(b), which represents a well-known route
to chaos [22]. Furthermore, one could expect to see chaotic behavior resulting in between the torus
bifurcations shown in Figure 6(a). It is likely that different resonances that result from dynamics on
tori interact to create chaotic attractors; for example, see Keane et al. [17].

To summarize the analysis this far, two branches of stable periodic orbits are responsible for the
successful behaviors demonstrated by the robot in a wide range of initial and environmental con-
ditions. The highest performance behavior is associated with branch B-I, and a slightly less effective
behavior with a smaller basin of attraction (at least in terms of the conditions explored in Figure 3) is
associated with a second branch of stable periodic orbits that we have labeled B-II. It is notable that
if this system did not include a delayed term, we would find fewer and less diverse bifurcations. We
see here a typical case of delayed systems involving a degree of dynamical complexity that is not
always present in systems of ODEs. This complexity is playing a role in producing the high-fitness
behavior, but beyond this vague assertion, the way that delay is contributing remains unclear. To

Figure 7. Bifurcation diagram in pw superimposed on the initial conditions survey for h = 1.140. The color scheme rep-
resents an evaluation of the robotʼs performance with purple (yellow) representing more (less) successful behaviors. Line
types are as in Figure 5. The letters A–F correspond to the initial conditions for the trajectories (a)–(f ) shown in Figure 4.
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address this and try to better understand the role that the delay is playing, our next phase of anal-
ysis evaluates the parameter h, which describes the amount of delay in the neuronʼs recurrent
connection.

3.2 Analysis of the Effect of the Delay Time, ���
We now consider the effect of varying the time delay parameter, h. We consider all other param-
eters to be fixed at the values given in Table 1. As an initial study, we consider the dynamics of the
system when there is no delay, that is, we set h = 0. We then consider increasing the delay from
zero to the value found in the evolution, and slightly beyond, to analyze how this changes the
dynamics.

Figure 8 shows the bifurcation diagram in pw with h = 0, superimposed on an initial-condition
performance survey for h = 0. We can see that the system admits either two or four equilibria,
depending on the position pw of the wide peak. Indeed, the locations of the equilibria are exactly
the same as seen in Figure 5, precisely because the locations of the equilibria are independent of h.
Again, the equilibria appear and disappear in saddle-node bifurcations, but unlike in the delayed
system, the emerging solutions always include one stable equilibrium. This stable equilibrium cor-
responds with a high-fitness score for values of pw between about 0.25 and 0.9, when it lies at ap-
proximately x = 0.06. The dark purple shading in Figure 8 shows the initial conditions that converge
to this good equilibrium. The remaining initial conditions converge to the bad equilibrium, which is
generally far from the narrow peak. Comparing Figures 8 and 3 and recalling that the genetic algo-
rithm focused on improving the robotʼs performance within the range pw 2 [0.25, 0.75], it is clear
that (as we might expect) the system with zero delay does not perform as well.

We now consider the effects of increasing h from zero. We now have two parameters to consider
( pw and h ), and we first fix pw while varying h. Figure 9 provides a first glimpse of the effect of
varying h. The top panel in this figure presents two different initial conditions (green and red) with
h = 0. The green trajectory converges to the good stable solution, and the red trajectory converges
to the bad one. Crudely summarized, the robot appears to stop at the first peak that it encounters.
The next two panels show trajectories for the same initial conditions and value of pw, but with
different values of h. For h = 0.7 we can see that the good solution is unchanged, but the bad
solution has now become oscillatory. As h is increased further to the value selected by evolution,
the red trajectory actually becomes a high-performance solution that moves to and remains close

Figure 8. Bifurcation diagram in pw superimposed on the initial-condition survey for h = 0. The color scheme is as in
Figure 7. Line types are as in Figure 5.

M. Egbert et al. Can Signal Delay be Functional?

Artificial Life Volume 25, Number 4 327



to the narrow peak. In fact the two solutions in this case have converged to the same attractor. As
a tradeoff, the green solution has also started to oscillate, and thus is now less fit than the green
solution for h = 0.

This behavior can be seen in more detail in Figure 10, which shows a bifurcation diagram for
fixed pw, varying h. The equilibrium solutions are now represented by vertical lines, because their
positions in x do not change as the delay h is varied (recall the discussion above, where we observed
that these equilibria are independent of h ). We observe that two of the four equilibria are always
unstable. The other two change their stability through Hopf bifurcations at various values of h. The

Figure 10. Bifurcation diagram for varying h and fixed pw = 0.6. Line types are as in Figure 5. The horizontal blue line
corresponds to the h value of 1.140.

Figure 9. Time series for fixed pw = 0.6 and (a) h = 0, (b) 0.7, and (c) 1.140. The plot shows the position of the robot
(horizontal axis) as a function of time (vertical axis). The green and red trajectories have constant-valued initial condi-
tions (x0, yt2[−h,0]) = (0.05, 0) and (0.6, 0), respectively. The robotʼs environment on an (I(x), x) plane is plotted in blue in
the background.
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Hopf bifurcations produce branches of periodic orbits that generally increase in amplitude as h
increases before undergoing torus, period-doubling, and homoclinic bifurcations.

A high-fitness parameter value would likely have a small-amplitude stable solution and no stable
large-amplitude solutions. In agreement with the example time series shown in Figure 9, the evolu-
tion algorithm appears to have found a value of h where for pw = 0.6 only small-amplitude stable
solutions exist. We see that all initial conditions in x will converge to a small-amplitude attractor. For
this particular value of pw we can see that near h = 0.9 in Figure 10, there appear to be no large-
amplitude solutions and only solutions that are even smaller than those at the evolved value of h.
This might appear to be a more optimal choice of h, but in fact, near h = 0.9 there exist complex
and chaotic solutions that regularly cross the periodic boundary in x and are therefore bad solutions.
These are not shown in Figure 10 (because of the difficulty in assigning a max(x ) for these solutions
as they wrap around the periodic environment), but result from the period-doubling cascade near
h ≈ 0.8, max(x ) ≈ 0.5. Moreover, we remind the reader that this is only a bifurcation diagram for
fixed pw = 0.6 and that the evolved solution was required to produce successful behavior for a
wide range of pw values.

Finally, we can show the effects of varying both h and pw by showing a bifurcation set in Figure 11.
A bifurcation set shows curves of bifurcations in a two-parameter space, so it can indicate how and
where different types of solutions arise in parameter space. However, the actual solutions, or any
measures of them, are not shown, so it is harder to assess the “fitness” of the solutions than in a
bifurcation diagram.

The bifurcation set in Figure 11 includes curves of (red) saddle-node bifurcations of equilibria,
(blue) Hopf bifurcations, (green) homoclinic bifurcations, (black) saddle-node bifurcations of peri-
odic orbits, and (magenta) period-doubling bifurcations. The curves of saddle-node bifurcations of
equilibria are horizontal lines in this projection because their location in pw is independent of h. This
is because their location is a function of the positions of the equilibria, which again (recall) is in-
dependent of h. These curves meet Hopf bifurcation curves at zero-Hopf bifurcations, labeled ZH.
As h is increased from 0, we again see a succession of Hopf bifurcations (blue curves), creating
periodic solutions. These periodic solutions change stability as period-doubling (magenta) or torus
bifurcations (not shown) are crossed. The dashed vertical line indicates the h value 1.140. The bi-
furcation set presented here is not exhaustive; for example, period-doubling cascades are not

Figure 11. Bifurcation set in the (h, pw) plane, including curves of (red) saddle node of equilibria, (blue) Hopf, (green)
homoclinic, (black) saddle node of periodic orbits, and (magenta) period-doubling bifurcations. Codimension-2 zero-
Hopf bifurcations are labeled ZH. The dashed vertical line indicates the h value selected by evolution, h = 1.140.
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shown. Nonetheless, it gives a clear impression of the complexity of the delayed system. The bi-
furcation set also reveals that the behavior of the robot is robust to small perturbations of h. One
could imagine shifting the vertical dashed line in Figure 11 slightly to the right or left and observing
that the same bifurcations occur (albeit at slightly different values of pw), and hence a similar set of
solutions would occur, again at slightly different values of pw, and with slightly different x-values.

The bifurcations in Figure 6 are those curves in Figure 11 that intersect the vertical line at h =
1.14. Going down that vertical line from the top, first you get the saddle-node bifurcation (black)
that is at about max(x ) = 0.27 in Figure 6, and is part of branch B-II. Then there are the two Hopf
bifurcations (blue) from the (leftmost) equilibrium. Below these is a period-doubling bifurcation
(pink), which creates branch B-I. The branch that destabilizes the bad equilibrium trajectories (ex-
emplified in the top panel of Figure 9) is the second-from-the-left blue Hopf curve (at h ≈ 0.25).
The destabilization of the periodic solutions (second panel) looks like it happens in a period-
doubling bifurcation that is not drawn in Figure 10.

4 Discussion

We have presented an extended dynamical analysis of a robot controller whose parameters were
optimized by an evolutionary algorithm to perform a simple embodied discrimination task. The pur-
pose of this study was to investigate how delayed signals might play a functional role within a sen-
sorimotor loop that accomplishes a discrimination task. To that end, the evolved controller was
constrained so that the only way that it could succeed would be by taking advantage of its delayed
recurrent connection, as this was the only aspect of the controller with sufficient potential dynamical
complexity to solve the task at hand. (In a preliminary study, we found that when h was constrained
to be zero, evolution was unable to find a parameterization that performed well on this problem,
supporting our claim that the delay is a necessary component of the high-performance behavior. The
results of this preliminary study are not presented in this article.) Within these constraints, the task and
controller were designed to be as simple as possible. The controller was modeled as a single neuron
with a recurrent connection, and the task to solve involved a robot embedded in a 1D environment
that has to distinguish between a narrow target stimulus peak and a wide distractor peak. Despite this
minimalism, the evolved system demonstrated diverse high- and low-performance behaviors.

The top-performing solution found in all of the 32 evolutionary runs demonstrated relatively
complex dynamics compared to ODE-based systems that lack delay. To understand these dynamics
and their relation to delay, we conducted a dynamical analysis. The first stage of this analysis exposed
the diverse bifurcations and solutions that underlie the demonstrated behaviors, and allowed us to
identify which branches of solutions were associated with the behaviors that contributed most to
fitness. The majority of high-performing behaviors of the evolved agent were oscillatory, with only a
relatively small set of parameters and initial conditions producing high-performing equilibrium-based
behaviors. Oscillations are common when delay is present, but engineers often prefer to avoid os-
cillations and use architectures that approach one or more equilibria. It would be interesting to see if
further constraints imposed upon the system could produce high-performance equilibria rather than
oscillations. It would also be interesting to consider basic biological sensorimotor behaviors in this
light—do they tend to involve (perhaps low-amplitude) oscillations, or are they better described as
equilibria?

We also observed a range of conditions that produced chaotic dynamics. Some of the trajectories
in this region were high-fitness, and others were low-fitness—trajectories (e) and (d) in Figure 4
provide examples of each. It is not uncommon for chaotic dynamics to appear in systems with delay,
and it is interesting to consider this, both in the context of engineering (chaos is generally something
robotics engineers try to avoid) and in the context of biology, where finite neural conduction velocity
means that delay is unavoidable.

The second stage of our dynamical analysis focused upon h, the amount of delay in the recurrent
connection. When h = 0 ( i.e., when there was no delay in the recurrent connection), the systemʼs

M. Egbert et al. Can Signal Delay be Functional?

330 Artificial Life Volume 25, Number 4



dynamics were relatively simple and incapable of solving the discrimination task; the robot essentially
moved with a positive velocity until it encountered a peak, where it would remain (an equilibrium
solution) regardless of whether that peak was the target narrow stimulus or the distractor wide stim-
ulus. For larger values of h, the equilibrium associated with the distractor peak becomes unstable. So
too does the equilibrium associated with the target peak, but as h increases, bifurcations produce
stable periodic orbits that cause the robot to oscillate relatively close to the target peak. The basins of
attraction of these periodic solutions include the majority of initial conditions tested during evolution
(the starting point of the robot and the placement of the distractor peak), and so, in most tested
cases, the robot avoids the distractor peak and moves toward the target peak as encouraged by the
fitness function. The evolved value of h appears to be a kind of compromise where the robot does
not approach as close to the target peak as the equilibrium that exists when h = 0, but settles where
the robot is more capable of distinguishing between the two peaks, avoiding the distractor and mov-
ing toward the target.

Evolution tuned all of the controllerʼs parameters simultaneously, so evaluating how the system
changes when we vary h on its own is perhaps a slightly artificial perspective, but one that never-
theless provides some insight into what evolution (or other adaptive processes such as development
and learning) might be able to take advantage of (i.e., work with) when modulating signal delay in
nervous systems. Specifically, as delay increases, the number of solutions and bifurcations in the
system increases. This is a well-established property of delayed systems. Yanchuk and Perlikowski
[31] show that as the delay time increases, so too does the number of coexisting solutions. This is
due to the fact that any finite-period solution that exists for a certain delay time will reappear for
infinitely many delay times. The same effect can give rise to repeating patterns of bifurcations as
delay increases, as demonstrated in systems of delay-coupled Hodgkin-Huxley neurons [16] and of
pulsing lasers with delayed self-feedback [26]. As discussed in [30], the delay time can be changed to
directly influence the dynamical complexity of a delay system. Increasing delay means increasing the
dimensionality of unstable manifolds and chaotic attractors, leading to complex dynamics. To give
an example that relates this idea to the model presented above, Figure 12 shows curves of Hopf
bifurcations (for the system examined in this article) in the ( pw , h ) plane for h ≤ 50. Every time a
Hopf curve is crossed as the delay is increased, an additional family of periodic orbits is introduced
into phase space (though keep in mind that many of the added solutions will be unstable).

One of the overarching goals of this research was to broaden our understanding of how delay can
serve a functional role in control architectures. In the introduction we described one example of
such functionality: The synchronization of signals traveling from the brain to limbs in octopuses.
The destabilization of equilibria by delay and the production of new stable and unstable invariant
sets described above provide examples of other ways that delay can be used by evolved controllers
to produce desired dynamics. In addition, delay has wide-ranging diverse effects upon the observed
dynamics. This is rather different from the parameters of conventional CTRNN-based evolutionary
robotics, where any one parameter can in a particular context cause one or a few of these kinds of
qualitative change, but in general is not capable of producing such a wide variety of changes. When
optimizing a system, it can be useful to have a handle that can not just effect small change, but also

Figure 12. Hopf bifurcation curves shown in Figure 11 for a larger range of h. These curves demonstrate the repeating
nature of periodic solutions in the delay system.
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qualitative change. Delay appears to be such a channel, and, as discussed in the introduction,
neuroscience evidence strongly suggests that the delay of neurons varies over a wide range of time
scales and is modulated by poorly understood, but presumably adaptive, mechanisms. Could the
delays in nervous systems and their modulation play just as important a role in influencing the
nervous systemʼs (and broader sensorimotor/behavioral) dynamics as the topology (i.e., the connec-
tome) of the brain itself?

Scientific investigation and modeling always involve a tradeoff between detailed realism and com-
prehensibility via simplification or abstraction. The dynamical hypothesis in the cognitive sciences
has made important advances in recognizing the dynamical natures of natural cognitive systems (and
the differences between these and computational devices). These advances have been accomplished
without including delay, despite its ubiquitous presence throughout nervous tissues. Is it time to
include delay in evolutionary robotics investigations? We have shown here that at least it is possible
to do so—the methods exist for investigating delay in situated, embodied, and dynamical robots. It
certainly seems that there is much more that can be learned through studies such as that just pre-
sented. Reiterating content presented in the introduction, we know of types of functional delay that
synchronize signals or cancel out the effect of diverse neuron lengths. It seems highly unlikely that
this is the only way that signal propagation delay is used functionally in natural systems. Evolutionary
robotics methods seem like an excellent way to expand our library of ways that functional delay
might be used advantageously.

Minimalistic evolutionary robotics studies such as this one, where we try to create as simple as
possible a model, can sometimes end up highlighting the immense complexity of biological nervous
systems. The human nervous system is already stupefying in scale, with approximately 100 billion
neurons and approximately 7000 times as many synapses. Recognizing the significant delays im-
posed by the diverse conduction velocities and varied-length neurons further complicates this
picture. At some level it is amazing that such a complex system does anything coherent at all. Rec-
ognizing the asynchronous, spatially and temporally extended dynamics of the brain also raises in-
teresting phenomenological questions regarding the perceived temporal unity of experience. As
mentioned above, engineers avoid delayed influence whenever possible, as it makes systems difficult
to understand, predict, and control. Evolution has different constraints than those of engineers in
that it does not need to be understood by anyone, it just needs to work [27]. Real tissues and bi-
ological sensors and motors have non-negligible delay. How are organisms organized so as to com-
pensate for, or take advantage of, the complexity inherent in delayed systems? We have presented
above our first steps toward approaching this question.
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