

Te Tumu Herenga THE UNIVERSITY OF AUCKLAND

### http://researchspace.auckland.ac.nz

#### ResearchSpace@Auckland

#### **Copyright Statement**

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

#### General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

## Studies of Osmium and Ruthenium Complexes with Ligands Featuring Group 14 and 15 Donor Atoms



A thesis presented to the University of Auckland in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Chemistry

### FOR EXAMINATION PURPOSES ONLY

Scott Darren Woodgate October 1998



### ABSTRACT

This thesis examines the preparation and chemistry of osmium and ruthenium complexes with ligands featuring the group 14 donor atoms carbon and silicon, and the group 15 donor atom phosphorus.

Aryl, alkenyl, and alkynyl complexes of osmium and ruthenium, prepared via mercury reagents, are discussed in Chapter One. 5-Coordinate 2-halophenyl complexes  $M(C_6H_4X-2)Cl(CE)(PPh_3)_2$  (M = Os; X = Cl, Br; E = O, S; M = Os; X = I, E = O; M = Ru; X = Cl, Br, E = O) were synthesised by reaction of organomercury reagents  $Hg(C_6H_4X-2)_2$ (X = Cl, I, Br) with MHCl(CO)(PPh\_3)\_3 (M = Os, Ru). Os(C\_6H\_4X-2)Cl(CO)(PPh\_3)\_2 (M = Os; X = Cl, I, Br) were characterised structurally and the interaction between X and M examined. Attempted benzyne syntheses using these complexes were not successful.

6-Coordinate complexes  $M(C_6H_4X-2)Cl(CO)(CE)(PPh_3)_2$  (M = Os, X = Cl, E = O, S ; Br, E = O, S; M = Os, E = O, X = I; M = Ru, E = O, X = Cl, Br) were prepared by the addition of carbon monoxide to the corresponding 5-coordinate precursors. Approaches towards reduction of these complexes are discussed.

The structure of  $Os(C_6H_4Cl-2)Cl(CS)(CO)(PPh_3)_2$  revealed that the thiocarbonyl and the aryl halide ligands were *cis* and therefore in an ideal geometry to rearrange and form a substituted thioacyl ligand. Indeed, on heating  $Os(C_6H_4X-2)Cl(CS)(CO)(PPh_3)_2$  (X = Cl, Br) the corresponding thioacyl complexes  $Os(\eta^2-CS\{C_6H_4X-2\})Cl(CO)(PPh_3)_2$  (X = Cl, Br) were formed.

The decreased electron density in the halo aryl rings of these thioacyl complexes, combined with the fact that the halide substituents were no longer bonded to the metal, enabled facile lithiation of the aryl rings, even at low temperature. Quenching the appropriate lithiated intermediate with Bu<sub>3</sub>SnCl gave Os( $\eta^2$ -CS{C<sub>6</sub>H<sub>4</sub>SnBu<sub>3</sub>-2})Cl(CO)(PPh<sub>3</sub>)<sub>2</sub>.

These results suggested that  $M(C_6H_4\{CH_2X\}-2)Cl(CO)(PPh_3)_2$  (M = Os, Ru) were worthwhile target complexes for lithiation studies. To this end,  $Hg(C_6H_4\{CH_2OH\}-2)Cl$  was prepared but attempts to convert the alcohol into a tosylate (for subsequent reaction with LiX) were unsuccessful and so this chemistry was not pursued further.  $Hg(C_6H_4\{CH_2OH\}-2)Cl$  transferred the benzylic alcohol groups to osmium and ruthenium, albeit in low yields. Oxidation of  $Hg(C_6H_4\{CH_2OH\}-2)Cl$  with PCC provided the benzaldehyde-containing mercury complex  $Hg(C_6H_4\{CHO\}-2)Cl$ , symmetrization of which gave  $Hg(C_6H_4\{CHO\}-2)_2$ . The latter compound was used to prepare aldehyde complexes of osmium and ruthenium, as well as mercury(II) benzaldoxime and benzaldimines. The aldehyde oxygen atoms in the osmium and ruthenium complexes were bound to the metals and were unaffected by amines, and by attempts to displace them from the metals. The addition of dimethyldithiocarbamate to  $Ru(C_6H_4\{CHO\}-2)(CO)(\{CH_3\}_2NCS_2)(PPh_3)$ displaced a triphenylphosphine ligand and  $Ru(C_6H_4\{CHO\}-2)(CO)(\{CH_3\}_2NCS_2)(PPh_3)$ was formed.

Transfer of the benzaldoxime ligand, and various benzaldimine ligands  $[C_6H_4{C[H]=NR} R = Me, CH_2CH_2NEt_2, CH_2CH_2NMe_2]$ , to osmium or ruthenium gave  $M(C_6H_4{C[H]=NR}-2)Cl(CO)(PPh_3)_2$  (M = Ru, R = OH; M = Os, Ru; R = Me,  $CH_2CH_2NEt_2$ ; M = Ru, R =  $CH_2CH_2NMe_2$ ). The derived cationic complexes  $Ru(C_6H_4{C[H]=NCH_2CH_2NHR_2}-2)Cl(CO)(PPh_3)_2]BF_4$  (R = Me, Et) were prepared by protonation of the benzaldimine complexes with  $HBF_{4}$ and  $[Ru(C_6H_4{C[H]=NCH_2CH_2NR_2}-2)(CO)(PPh_3)_2]BF_4$  (R = Me, Et) were prepared by Bromination of  $Ru(C_6H_4{C[H]=NMe}-2)Cl(CO)(PPh_3)_2$  gave addition of AgBF<sub>4</sub>.  $Ru(C_6H_3{C[H]=NMe}-2,Br-4)Cl(CO)(PPh_3)_2$  which was lithiated at low temperature. The aryllithium was quenched with  $Bu_3SnCl$  to give  $Ru(C_6H_3\{C[H]=NMe\}-2,SnBu_3-$ 4)Cl(CO)(PPh<sub>3</sub>)<sub>2</sub>.

The reaction of alkynylmercury reagents with osmium and ruthenium complexes are discussed in the following sections. Treatment of RuHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> with Hg(C=CPh)<sub>2</sub> has been reported previously, the result being formation of an  $\alpha$ -phenylethynyl-*trans*- $\beta$ -styryl ligand. However, the corresponding reaction with OsHCl(CO)(PPh<sub>3</sub>)<sub>3</sub> resulted in catalysed coupling of the alkyne. This reaction was re-examined and the 6-coordinate  $\alpha$ -phenylethynyl-*trans*- $\beta$ -styryl osmium complex was prepared by direct reaction of the 5-coordinate complex with acetate ion. A dicarbonyl complex containing the  $\alpha$ -phenylethynyl-*trans*- $\beta$ -styryl ligand, Os(C{C=CPh}=CHPh)Cl(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>, was prepared by the addition of carbon monoxide in the presence of LiCl to the acetate complex. Thiocarbonyl complexes

containing an  $\alpha$ -phenylethynyl-*trans*- $\beta$ -styryl ligand were prepared. Addition of carbon monoxide to solutions containing these complexes gave the thioacyl analogues M( $\eta^2$ -CS{C[C=CPh]=CHPh})Cl(CO)(PPh<sub>3</sub>)<sub>2</sub> (M = Os, Ru).

The remaining sections in Chapter One examine the reactions of mercury(II) reagents with the osmium(0) complexes  $Os(CO)_2(PPh_3)_3$  and  $OsCl(NO)(PPh_3)_3$ . Oxidative addition of the mercury-carbon bond of HgR<sub>2</sub> (R = C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>-4, C=CPh, *trans*-CH=CHPh) to  $Os(CO)_2(PPh_3)_3$  gave  $OsR(HgR)(CO)_2(PPh_3)_2$ . Reaction of the acetylide or styryl complexes with iodine resulted in cleavage of the osmium-mercury bond and yielded either  $Os(C=CPh)I(CO)_2(PPh_3)_2$  or  $Os(trans-CH=CHPh)I(CO)_2(PPh_3)_2$ . Similar complexes were not accessible from reaction of the osmium(II) complex  $OsHCl(CO)(PPh_3)_3$  with the appropriate mercury reagent.

Whereas the mercury reagents reacted with Os(CO)<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> to give the simple oxidative addition products, the corresponding reactions of OsCl(NO)(PPh<sub>3</sub>)<sub>3</sub> with HgR<sub>2</sub> did not always give the analogous products OsR(HgR)Cl(NO)(PPh<sub>3</sub>)<sub>2</sub>. Addition of  $Hg(C_6H_4CH_3-4)_2$  to  $OsCl(NO)(PPh_3)_3$  gave a mixture of the bis(p-tolyl) complex  $Os(C_6H_4CH_3-4)_2Cl(NO)(PPh_3)_2$ the mono(p-tolyl) complex and  $Os(C_6H_4CH_3-4)Cl_2(NO)(PPh_3)_2$ . The structure of the bis(*p*-tolyl) complex revealed that the p-tolyl ligands were trans and the metal-carbon(aryl) bond lengths were extremely long. Addition pyridine bis(p-tolyl) of to the complex gave  $Os(C_6H_4CH_3-$ 4)<sub>2</sub>(C<sub>5</sub>H<sub>5</sub>N)Cl(NO)(PPh<sub>3</sub>), which contained two *cis p*-tolyl ligands. The reactions of  $Hg(C_6H_4Cl-2)_2$  and Hg(C=CPh)Ph with  $OsCl(NO)(PPh_3)_3$  gave complexes containing a single organic ligand. In contrast, treatment of  $OsCl(NO)(PPh_3)_3$  with either  $Hg({C_4H_4S}-$ 2)<sub>2</sub> or Hg([C<sub>4</sub>H<sub>4</sub>SMe-5]-2])<sub>2</sub> gave the dithienyl complexes OsR<sub>2</sub>Cl(NO)(PPh<sub>3</sub>)<sub>2</sub> [R =  $(C_4H_4S)-2, (\{C_4H_4SMe-5\})-2].$ Furthermore, the reaction of  $Hg(CF_3)_2$ with OsCl(NO)(PPh<sub>3</sub>)<sub>3</sub> gave Os(CF<sub>3</sub>)(Hg{CF<sub>3</sub>})Cl(NO)(PPh<sub>3</sub>)<sub>2</sub>.

Treatment of  $OsCl(NO)(PPh_3)_3$  with  $Hg(trans-CH=CHPh)_2$  gave  $Os(trans-CH=CHPh)Cl_2(NO)(PPh_3)_2$  and an osmaindene complex,  $Os(C_6H_4CH=CH)H(NO)(PPh_3)_2$ , which in turn gave  $Os(C_6H_4CH=CH)Cl(NO)(PPh_3)_2$  on treatment with HCl.

Chapter Two examines osmabenzene chemistry. Spectroscopic data were collected  $Os(\eta^2 - C[S]CH = CHCH = CH)(CO)(PPh_3)_2,$ for the known complexes and Os(C[SH]CH=CHCH=CH)(cis-Cl)(CO)(PPh<sub>3</sub>)<sub>2</sub>. Oxidation of the osmabenzene thiol to a acid attempted. Methylation  $Os(n^2$ sulfinic was of the parent complex. C[S]CH=CHCH=CH)(CO)(PPh<sub>3</sub>)<sub>2</sub>, product of kinetic gave the control as Os(C[SMe]CH=CHCH=CH)(cis-I)(CO)(PPh3)2, reported previously, which rearranged on heating to give the trans isomer, Os(C[SMe]CH=CHCH=CH)(trans-I)(CO)(PPh\_3)\_2. Approaches to auration of the sulfur in  $Os(\eta^2-C[S]CH=CHCH=CH)(CO)(PPh_3)_2$  are described.

Although the metallabenzenes reported previously have physical properties comparable with those of benzene itself, little evidence has been reported to suggest that the chemical reactivity of metallabenzenes is similar to that of benzene. The research described in this chapter provides the first example of a metallabenzene complex that undergoes electrophilic substitution. aromatic Thus. the metallabenzene complex Os(C[SMe]CH=CHCH=CH)(cis-I)(CO)(PPh<sub>3</sub>)<sub>2</sub> was brominated, chlorinated, and even iodinated. Crystal structure determinations and NMR studies showed that C5, which was activated by the thioether functionality, was the preferred site of electrophile attack. Even more significantly, Os(C[SMe]CH=CHCH=CH)(cis-I)(CO)(PPh<sub>3</sub>)<sub>2</sub> was nitrated with either Cu(NO<sub>3</sub>)<sub>2</sub>/acetic anhydride, or with the more potent reagent NO<sub>2</sub>CF<sub>3</sub>SO<sub>3</sub>.CF<sub>3</sub>SO<sub>3</sub>H. The site of nitration was identical with that of halogenation, namely, C5.

Previous syntheses of metallabenzenes had reported the use of the simplest alkyne, ethyne. This chapter describes the first metallabenzene complex prepared from propyne, giving the metallabenzene  $Os(\eta^2-C[S]C\{CH_3\}=CHCH=C\{CH_3\})(CO)(PPh_3)_2$  and the oxidative addition product  $Os(C=CCH_3)H(CO)(CS)(PPh_3)_2$ .

Ten of the metallabenzene complexes were characterised structurally and the significance of the carbon-carbon bond lengths in the metallacyclic rings are discussed.

The complete characterisation of these complexes by NMR spectroscopy revealed that the ring protons in the metallabenzene complexes, excepting H6, were at chemical shifts similar to those expected for normal aromatic carbons.

V

Chapter Three examines the coordination of the strongly  $\pi$ -accepting tris(*N*-pyrrolyl)phosphine ligand to osmium. Two tris(*N*-pyrrolyl)phosphine complexes of Os(II), OsHCl(CO)(PPh<sub>3</sub>)<sub>2</sub>(P{NC<sub>4</sub>H<sub>4</sub>}<sub>3</sub>) and OsH(C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>-4)(CO)(PPh<sub>3</sub>)<sub>2</sub>(P{NC<sub>4</sub>H<sub>4</sub>}<sub>3</sub>), were prepared. Both of these showed significantly higher infrared carbonyl stretching absorptions than the analogous triphenylphosphine complexes, reflecting the  $\pi$ -acceptor nature of the tris(*N*-pyrrolyl)phosphine ligand.

The osmium(0) complexes  $Os(CE)(CO)(PPh_3)_2P(NC_4H_4)_3$  (E = O, S) were prepared and the carbonyl complex was characterised structurally. The osmium-phosphorus(pyrrolyl) bond length of this complex was relatively short. The tris(*N*-pyrrolyl)phosphine ligand was in the equatorial plane as were the two carbonyl ligands.

Chapter Four examines silvl and siloxane complexes of osmium and ruthenium. Although triethoxysilyl complexes of ruthenium have been prepared previously through ethanolysis of the coordinated SiCl<sub>3</sub> group, the osmium analogues could not be prepared this way. It was found that Os(Si{OEt}\_3)Cl(CO)(PPh\_3)\_2 could be prepared successfully by direct treatment of Os(Ph)Cl(CO)(PPh<sub>3</sub>)<sub>2</sub> with triethoxysilane. Addition of carbon monoxide to the 5-coordinate triethoxysilyl complex afforded the dicarbonyl complex. The triethoxysilyl nitrosyl complex, OsH(Si{OEt}3)Cl(NO)(PPh3)2, was prepared by oxidative addition of triethoxysilane OsCl(NO)(PPh<sub>3</sub>)<sub>3</sub>, to and the siloxane nitrosyl complex, Os(O[Si{OEt}\_3])Cl<sub>2</sub>(NO)(PPh<sub>3</sub>)<sub>2</sub> was also characterised fully.

Prior to this work only a single silatranyl complex was known. This chapter reports fifteen new silatranyl complexes and examines the unique properties conferred upon the silatrane by coordination to the metal. The silatranyl-containing complexes  $OsH(\overline{Si}\{\overline{OCH_2CH_2}\}_3\overline{N})Cl(NO)(PPh_3)_2$  and  $OsH(\overline{Si}\{\overline{OCH_2CH_2}\}_3\overline{N})(CO)_2(PPh_3)_2$  were formed by oxidative addition of silatrane to the appropriate osmium(0) complex. Neither was suitable for further research because the chloro nitrosyl complex ejected silatrane in the presence of oxygen, and the dicarbonyl complex was isolated as a mixture of three isomers. In contrast, the unsaturated complexes  $M(\overline{Si}\{\overline{OCH_2CH_2}\}_3\overline{N})Cl(CO)(PPh_3)_2$  (M = Os, Ru) were excellent materials for further study. The crystal structures of both of these complexes reveal typical metal-silyl distances with atypical silatranyl N $\rightarrow$ Si bond lengths. In both cases the N $\rightarrow$ Si bond length is elongated, the nitrogen is planar, and the cage is best described as

Abstract

quasi-silatranyl. The unsaturated nature of the metal in  $Os(Si\{OCH_2CH_2\}_3N)Cl(CO)(PPh_3)_2$ offered access to derived complexes. The  $\pi$ -acid carbon monoxide added to the vacant site forming  $Os(Si\{OCH_2CH_2\}_3N)Cl(CO)_2(PPh_3)_2$ .

Methylation of the 5-coordinate silatranyl complexes, gave  $[M(Si{OCH_2CH_2}_3NMe)Cl(CO)(PPh_3)_2]CF_3SO_3$  (M = Os, Ru). This reaction has not been achieved previously for silatrane derivatives. These methylated complexes have the longest recorded N $\rightarrow$ Si distances for any silatrane derivatives, and display a tetrahedral bridgehead nitrogen which points out of the cage at the methyl substituent.

Protonation of the 5-coordinate silatranyl complexes gave  $[M(Si{OCH_2CH_2}_3NH)Cl(CO)(PPh_3)_2]CF_3SO_3$  (M = Os, Ru). The thiocarbonyl-containing Os(Si{OCH<sub>2</sub>CH<sub>2</sub>}<sub>3</sub>N)Cl(CS)(PPh<sub>3</sub>)<sub>2</sub> derivatives and [Os(Si{OCH<sub>2</sub>CH<sub>2</sub>}<sub>3</sub>NMe)Cl(CS)(PPh<sub>3</sub>)<sub>2</sub>]CF<sub>3</sub>SO<sub>3</sub> were prepared and these complexes showed spectroscopic properties similar to those observed for the carbonyl-containing analogues. The 5-coordinate silatranyl-thiocarbonyl complex rearranged in the presence of carbon monoxide to form  $Os(\eta^2-C{S}Si{OCH_2CH_2}_3N)Cl(CO)(PPh_3)_2$ , which did not contain a metal-silicon bond. The silatranyl cage in the structure of this complex showed a very short N-Si bond with the nitrogen centre tetrahedral and pointing into the cage and towards the silicon atom.

The osmium(IV) complex  $OsH_3(\overline{Si}\{\overline{OCH_2CH_2}\}_3\overline{N})(PPh_3)_3$  was prepared from  $OsH_4(PPh_3)_3$  and silatrane. The structure of this complex showed that the hydride ligands were oriented *trans* to a single triphenylphosphine in each case. Treatment of this complex with methyl iodide gave the quaternary salt  $[OsH_3(Si\{OCH_2CH_2\}_3NMe)(PPh_3)_3]I$ , and protonation gave  $[OsH_3(Si\{OCH_2CH_2\}_3NH)(PPh_3)_3]CF_3SO_3$ .

## **TABLE OF CONTENTS**

| ABSTRACTii                                                                                                 |
|------------------------------------------------------------------------------------------------------------|
| TABLE OF CONTENTSviii                                                                                      |
| LIST OF ABBREVIATIONSxv                                                                                    |
| CHAPTER 1                                                                                                  |
| INTRODUCTION AND DISCUSSION1                                                                               |
| 1.1 Transition metal-carbon bonds1                                                                         |
| Displacement of a halide in a transition metal complex through reaction with an                            |
| alkylating agent2                                                                                          |
| Reaction of a transition metal complex anion with RX2                                                      |
| Oxidative addition reactions2                                                                              |
| Insertion reactions                                                                                        |
| Elimination reactions                                                                                      |
| Miscellaneous reactions                                                                                    |
| 1.2 Preparation of organomercury reagents                                                                  |
| Sodium stannite9                                                                                           |
| Hydrazine hydrate9                                                                                         |
| Ammonia9                                                                                                   |
| Potassium iodide10                                                                                         |
| Sodium thiosulfate                                                                                         |
| 1.3 Organomercury compounds in organometallic synthesis                                                    |
| Alkylation                                                                                                 |
| Oxidative addition                                                                                         |
| 1.4 Halide substituted aryl complexes                                                                      |
| Metal aryl complexes containing a metal-halide bond                                                        |
| Metal aryl complexes containing a metal-aryl bond                                                          |
| 1.5 Benzyne complexes of transition metals                                                                 |
| 1.6 Preparation of an osmium complex with a 2-chlorophenyl ligand                                          |
| Crystal structure of $Os(C_6H_4Cl-2)Cl(CO)(PPh_3)_2$ (1)                                                   |
| 1.7 Preparation of a ruthenium complex with a 2-chlorophenyl ligand                                        |
| Crystal structure of (PPh <sub>3</sub> ) <sub>2</sub> Cl(CO)Ru-Hg-Ru(CO)Cl(PPh <sub>3</sub> ) <sub>2</sub> |
| 1.8 Preparation of a ruthenium complex with a 2-iodophenyl ligand                                          |

| Crystal structure of $Os(C_6H_4I-2)Cl(CO)(PPh_3)_2$ (3)                                                                      |
|------------------------------------------------------------------------------------------------------------------------------|
| 1.9 Thiocarbonyl complexes containing 2-halophenyl ligands                                                                   |
| 1.10 Preparation of 2-bromophenyl complexes of osmium and ruthenium                                                          |
| Crystal structure of $Os(C_6H_4Br-2)Cl(CO)(PPh_3)_2$ (8)                                                                     |
| 1.11 Approaches towards 5-coordinate benzyne-containing complexes of osmium and                                              |
| ruthenium                                                                                                                    |
| 1.12 Preparation of 6-coordinate metal complexes containing 2-halophenyl ligands45                                           |
| Crystal structure of $Os(C_6H_4Cl-2)Cl(CO)_2(PPh_3)_2$ (10)                                                                  |
| 1.13 Approaches towards 6-coordinate benzyne-containing complexes of osmium and                                              |
| ruthenium                                                                                                                    |
| 1.14 Migration of 2-halophenyl ligands from metal centres to thioacyl-ligands                                                |
| Crystal structure of $Os(C_6H_4Cl-2)Cl(CS)(CO)(PPh_3)_2$ (15)                                                                |
| Crystal structure of $Os(\eta^2-CS{C_6H_4Cl-2})Cl(CO)(PPh_3)_2$ (16)                                                         |
| 1.15 Summary of <i>ortho</i> -halophenyl complexes                                                                           |
| 1.16 Complexes of transition metals with benzylic alcohol fragments as ligands                                               |
| 1.17 Aldehyde complexes of transition metals                                                                                 |
| 1.18 Benzaldimine complexes                                                                                                  |
| Direct reaction of an imine and a metal complex75                                                                            |
| Transfer of an imine moiety from a mercury reagent to a metal complex77                                                      |
| Modification of an existing ligand78                                                                                         |
| Insertion of benzonitrile into a metal-benzyne bond                                                                          |
| 1.19 Benzaldoxime complexes                                                                                                  |
| 1.20 Benzylic alcohol derivatives of osmium and ruthenium                                                                    |
| Crystal structure of $Hg(C_6H_4(CHO)-2)Cl(23)$                                                                               |
| <b>1.21</b> Preparation of $Hg(\overline{C_6}H_4\{\overline{CHO}\}-2)_2$ (24)                                                |
| <b>1.22</b> Preparation of $Os(C_6H_4\{CHO\}-2)Cl(CO)(PPh_3)_2$ (25)                                                         |
| Crystal structure of $\overline{Os(C_6H_4\{CHO\}-2)Cl(CO)(PPh_3)_2}$ (25)                                                    |
| <b>1.23</b> Preparation of $Ru(C_6H_4\{CHO\}-2)Cl(CO)(PPh_3)_2$ (26)                                                         |
| Crystal structure of $\overline{\text{Ru}(C_6\text{H}_4\{\text{CHO}\}-2)\text{Cl}(\text{CO})(\text{PPh}_3)_2}$ (26) (yellow) |
| Crystal structure of $\overline{\text{Ru}(C_6\text{H}_4(CHO))^2}$ -2)Cl(CO)(PPh <sub>3</sub> ) <sub>2</sub> (26) (orange)    |
| 1.24 Approaches towards new products from the reaction of osmium and ruthenium                                               |
| aldehyde complexes                                                                                                           |
| Crystal structure of $[Ru(C_6H_4(CHO)-2)(CO)_2(PPh_3)_2]PF_6$ (28) 100                                                       |

| 1.25 The reaction of complex 26 with the dimethyldithiocarbamate ion                                                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Crystal structure of $Ru(C_6H_4(CHO)-2)(CO)(\eta^2-S_2CN\{CH_3\}_2)(PPh_3)$ (29) 104                                             |  |  |  |
| 1.26 Thiocarbonyl aldehyde complexes of osmium                                                                                   |  |  |  |
| 1.27 A benzaldoxime complex of ruthenium                                                                                         |  |  |  |
| 1.28 N-methylbenzaldimine complexes of osmium and ruthenium                                                                      |  |  |  |
| 1.29 N-(N',N'-dialkylethylenediamine)benzaldimine complexes of osmium and                                                        |  |  |  |
| ruthenium111                                                                                                                     |  |  |  |
| 1.30 Use of benzaldimine complexes to limit reactivity at the metal centre                                                       |  |  |  |
| 1.31 Summary of complexes with benzylic alcohol, aldehyde, oxime, and imine ligands                                              |  |  |  |
|                                                                                                                                  |  |  |  |
| 1.32 Acetylene, acetylide and related complexes                                                                                  |  |  |  |
| Reaction of alkynes with metal complexes                                                                                         |  |  |  |
| Transfer of alkynyl fragments to metal complexes from mercury reagents                                                           |  |  |  |
| <b>1.33</b> Preparation of an $\alpha$ -phenylethynyl- <i>trans</i> - $\beta$ -styryl complex of osmium                          |  |  |  |
| Crystal Structure of Os(C{C=CPh}=CHPh)( $\eta^2$ -O <sub>2</sub> CCH <sub>3</sub> )(CO)(PPh <sub>3</sub> ) <sub>2</sub> (48) 135 |  |  |  |
| 1.34 Preparation of thiocarbonyl $\alpha$ -phenylethynyl-trans- $\beta$ -styryl-complexes of osmium                              |  |  |  |
| and ruthenium                                                                                                                    |  |  |  |
| Crystal structure of Ru(C{C=CPh}=CHPh)( $\eta^2$ -O <sub>2</sub> CCH <sub>3</sub> )(CS)(PPh <sub>3</sub> ) <sub>2</sub> (51) 141 |  |  |  |
| Crystal structure of $Os(\eta^2$ -CS{C[C=CPh]=CHPh})CI(CO)(PPh_3)_2 (52) 143                                                     |  |  |  |
| Crystal structure of $Ru(\eta^2$ -CS{C[C=CPh]=CHPh})Cl(CO)(PPh_3)_2 (53)                                                         |  |  |  |
| <b>1.35</b> Summary of α-phenylethynyl- <i>trans</i> -β-styryl complexes                                                         |  |  |  |
| 1.36 Reactions of OsCl(NO)(PPh <sub>3</sub> ) <sub>3</sub> and Os(CO) <sub>2</sub> (PPh <sub>3</sub> ) <sub>3</sub>              |  |  |  |
| <b>1.37</b> Reactions of diorganomercury compounds with Os(CO) <sub>2</sub> (PPh <sub>3</sub> ) <sub>3</sub>                     |  |  |  |
| <b>1.38</b> The reaction of $Hg(C_6H_4CH_3-4)_2$ with $OsCl(NO)(PPh_3)_3$                                                        |  |  |  |
| Crystal structure of $Os(C_cH_4CH_2-4)Cl_2(NO)(PPh_2)_2$ (60)                                                                    |  |  |  |
| Crystal structure of $Os(C_6H_4CH_3-4)_2Cl(NO)(PPh_3)_2$ (61)                                                                    |  |  |  |
| Crystal structure of $Os(C_6H_4CH_3-4)(C_5H_5N)Cl(NO)(PPh_3)$ (62)                                                               |  |  |  |
| <b>1.39</b> Reaction of a 2-halophenyl mercury compound with OsCl(NO)(PPh <sub>3</sub> ) <sub>3</sub>                            |  |  |  |
| Crystal structure of $Os(C_6H_4Cl-2)Cl_2(NO)(PPh_3)_2$ (63)                                                                      |  |  |  |
| 1.40 An acetylide nitrosyl complex of osmium                                                                                     |  |  |  |
| Crystal structure of complex Os(C≡CPh)Cl <sub>2</sub> (NO)(PPh <sub>3</sub> ) <sub>2</sub> (64) 175                              |  |  |  |

|     | 1.41               | Crystallographic                                    | confirmation                                        | of                                          | the                                  | structure                                    | of  |
|-----|--------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------------------|-----|
|     | Os(CF <sub>3</sub> | )(Hg{CF <sub>3</sub> })Cl(NO)(PPI                   | n <sub>3</sub> ) <sub>2</sub> ( <b>65</b> )         |                                             |                                      |                                              | 176 |
|     |                    | Crystal structure of Os(CF <sub>3</sub> )           | (Hg{CF <sub>3</sub> })Cl(NO)(PP                     | n <sub>3</sub> ) <sub>2</sub> ( <b>65</b> ) |                                      |                                              | 177 |
|     | 1.42 Th            | ienyl-nitrosyl complexe                             | s of osmium                                         |                                             |                                      |                                              | 179 |
|     | 1.43 Re            | eaction of OsCl(NO)(PP                              | h <sub>3</sub> ) <sub>3</sub> with Hg( <i>trans</i> | -CH=CH                                      | Ph) <sub>2</sub>                     |                                              | 180 |
|     |                    | Crystal structure of Os(trans                       | -CH=CHPh)Cl <sub>2</sub> (NO)(                      | PPh <sub>3</sub> ) <sub>2</sub> (68)        |                                      |                                              | 181 |
|     | 1.44 Inc           | dene, indenyl complexes                             | and metallaindene                                   | es                                          |                                      |                                              | 186 |
|     | 1.45 Ar            | n osmaindene complex                                |                                                     |                                             |                                      |                                              | 195 |
|     | ×                  | Crystal structure of $\overline{\delta s(C_6 H_4)}$ | CH=CH)H(NO)(PPh3                                    | ) <sub>2</sub> ( <b>69</b> )                |                                      |                                              | 197 |
|     | 1.46 Re            | eaction of an osmaindene                            | e complex with HC                                   | 1                                           |                                      |                                              | 201 |
|     |                    | Crystal structure of $Os(C_6H_4)$                   | CH=CH)Cl(NO)(PPh                                    | <sub>1</sub> ) <sub>2</sub> ( <b>70</b> )   |                                      |                                              | 202 |
|     | 1.47 Su            | mmary of chemistry inv                              | olving oxidative a                                  | dition of                                   | mercury                              | reagents                                     | 208 |
|     | 1.48 Ge            | eneral experimental                                 |                                                     |                                             |                                      |                                              | 209 |
| E   | XPERIN             | IENTAL                                              |                                                     |                                             |                                      |                                              | 211 |
| CHA | APTER 2            | 2                                                   |                                                     |                                             |                                      |                                              | 257 |
| IN  | TRODU              | UCTION                                              |                                                     | malanna                                     |                                      |                                              | 257 |
|     | 2.1 Ben            | zene and aromaticity                                |                                                     | *****                                       |                                      |                                              | 257 |
|     | 2.2 Het            | erobenzenes                                         |                                                     |                                             |                                      |                                              | 258 |
|     | 2.3 Met            | tallabenzenes                                       | ā                                                   |                                             |                                      |                                              | 261 |
|     | Liga               | nd substitution                                     |                                                     |                                             | ••••••                               |                                              | 265 |
|     | Oxid               | ative addition                                      |                                                     |                                             |                                      |                                              | 267 |
|     | Cycle              | oadditions                                          |                                                     |                                             |                                      |                                              | 268 |
|     | Coor               | dination                                            |                                                     |                                             |                                      |                                              | 271 |
|     | Elect              | rophilic addition                                   |                                                     |                                             |                                      |                                              | 272 |
| D   | ISCUSS             | SION                                                |                                                     |                                             |                                      |                                              | 276 |
|     | 2.1 An             | osmabenzene complex,                                | $Os(\eta^2 - C[S]CH = C]$                           | HCH=CH                                      | [)(CO)(P                             | Ph <sub>3</sub> ) <sub>2</sub> ( <b>71</b> ) | 276 |
|     | 2.2 Pro            | tonation of the exo-sulfu                           | r atom of <b>71</b> to for                          | m a thiol-                                  | -containi                            | ng complex                                   | 278 |
|     | 2.3 App            | proaches towards the ren                            | noval of the thiol s                                | ubstituen                                   | t                                    |                                              | 279 |
|     | 2.4 Met            | thylation of the exo-sulf                           | ur atom to form a t                                 | nioether.                                   |                                      |                                              | 280 |
|     |                    | Crystal structure of Os(C[SN                        | le]CH=CHCH=CH)(c                                    | is-Cl)(CO)                                  | $(PPh_3)_2 (75)_2$                   | 5)                                           | 282 |
|     | 2.5 Isor           | merisation of the halide                            | and carbonyl ligand                                 | ls                                          |                                      |                                              | 286 |
|     |                    | Crystal structure of Os(C[SM                        | ne]CH=CHCH=CH)(th                                   | ans-I)(CO                                   | )(PPh <sub>3</sub> ) <sub>2</sub> (7 | (4)                                          | 287 |
|     | 2.6 An             | approach towards metal                              | lation of the sulfur                                | group in                                    | complex                              | 71                                           | 292 |

| 2.7 Formation of a cationic metallabenzene containing complex                                           | 3 |
|---------------------------------------------------------------------------------------------------------|---|
| Crystal structure of $[Os(C[SMe]CH=CHCH=CH)(CO)_2(PPh_3)_2]ClO_4$ (76)                                  | 3 |
| 2.8 Bromination of the metallabenzene ring                                                              | 5 |
| Crystal structure of Os(C[SMe]CH=CHCBr=CH)(cis-I)(CO)(PPh <sub>3</sub> ) <sub>2</sub> (77)              | 0 |
| Crystal structure of Os(C[SMe]CH=CHCBr=CH)(cis-Br)(CO)(PPh <sub>3</sub> ) <sub>2</sub>                  | 2 |
| 2.9 Chlorination of the metallabenzene ring                                                             | 5 |
| 2.10 Approaches towards iodination of the metallabenzene ring                                           | 5 |
| 2.11 Nitration of a metallabenzene                                                                      | 7 |
| Crystal structure of $Os(C[SMe]CH=CHC{NO_2}=CH)(cis-Br)(CO)(PPh_3)_2$                                   | 9 |
| Crystal structure of $Os(C[SMe]CH=CHC{NO_2}=CH)(cis-I)(CO)(PPh_3)_2$ (79)                               | 0 |
| 2.12 A different source of NO <sub>2</sub> <sup>+</sup> ; nitronium triflate                            | 2 |
| Crystal structure of $\overline{Os(C_6H_3NO_2-2-CH_3-4)Cl(CO)(PPh_3)_2}$ (80)                           | 4 |
| 2.13 Nitronium triflate and the metallabenzene                                                          | 5 |
| 2.14 Other potential metallabenzene substrates, and their reactions with acetylene 316                  | 5 |
| <b>2.15</b> Reaction of $Os(CO)(CS)(PPh_3)_3$ with propyne (HC=C-CH <sub>3</sub> )                      | 7 |
| Crystal structure of $Os(C \equiv CCH_3)H(CO)(CS)(PPh_3)_2$ (81)                                        | 9 |
| 2.16 Addition of acid to Os(C≡CCH <sub>3</sub> )H(CO)(CS)(PPh <sub>3</sub> ) <sub>2</sub> (81)          | ) |
| Crystal structure of $Os(\eta^2$ -CS{CH=CHCH <sub>3</sub> })Cl(CO)(PPh <sub>3</sub> ) <sub>2</sub> (82) | 2 |
| 2.17 A metallabenzene derived from propyne building blocks                                              | 3 |
| Crystal structure of $Os(\eta^2 - C[S]C{CH_3}=CHCH=C{CH_3})(CO)(PPh_3)_2$ (83)                          | 0 |
| 2.18 Summary                                                                                            | 2 |
| EXPERIMENTAL                                                                                            | 4 |
| CHAPTER 3                                                                                               | 5 |
| Tris(N-pyrrolyl)phosphine complexes of osmium                                                           | 5 |
| INTRODUCTION                                                                                            | 5 |
| 3.1 Phosphorus ligands                                                                                  | 5 |
| 3.2 The chemistry of tris( <i>N</i> -pyrrolyl)phosphine                                                 | 3 |
| DISCUSSION                                                                                              | 3 |
| 3.1 An osmium(II) complex containing tris( <i>N</i> -pyrrolyl)phosphine                                 | 4 |
| 2.2 An osmium(II) complex containing both an aryl group and tris(N-pyrrolyl)phosphine                   | 2 |
|                                                                                                         | 7 |
| 2.3 An osmium(0) complex of tris( <i>N</i> -pyrrolyl)phosphine                                          | ) |
| Crystal structure of $Os(CO)_2(PPh_3)_2(P\{NC_4H_4\}_3)$ (86)                                           | 1 |

| <b>2.4</b> A second osmium(0) complex of tris( <i>N</i> -pyrrolyl)phosphine                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| 2.5 Summary                                                                                                                                 |
| EXPERIMENTAL                                                                                                                                |
| CHAPTER 4                                                                                                                                   |
| INTRODUCTION                                                                                                                                |
| 4.1 Silicon                                                                                                                                 |
| <b>4.2</b> The chemistry of atrane compounds                                                                                                |
| 4.3 Pro- and quasi- atranes                                                                                                                 |
| 4.4 Phosphorus based pro-and quasi-atranes                                                                                                  |
| 4.5 Silicon based pro- and quasi-atranes                                                                                                    |
| 4.6 Transition metal silyl complexes                                                                                                        |
| 4.7 Metal siloxane complexes                                                                                                                |
| DISCUSSION                                                                                                                                  |
| <b>4.1</b> Preparation of $Os(Si{OEt}_3)Cl(CO)(PPh_3)_2$                                                                                    |
| Crystal structure of $Os(Si{OEt}_3)Cl(CO)(PPh_3)_2$ (88)                                                                                    |
| 4.2 Formation of a saturated 6-coordinate complex containing Si(OEt) <sub>3</sub>                                                           |
| <b>4.3</b> Oxidative addition of HSi(OEt) <sub>3</sub> to a nitrosyl-containing complex                                                     |
| 4.4 A siloxane-containing complex of osmium                                                                                                 |
| Crystal structure of $Os(O[Si{OEt}_3])Cl_2(NO)(PPh_3)_2$ (91)                                                                               |
| <b>4.5</b> Oxidative addition of silatrane to OsCl(NO)(PPh <sub>3</sub> ) <sub>3</sub>                                                      |
| <b>4.6</b> Oxidative addition of silatrane to Os(CO) <sub>2</sub> (PPh <sub>3</sub> ) <sub>3</sub>                                          |
| 4.7 An unsaturated osmium(II) silatranyl complex                                                                                            |
| Crystal structure of $Os(\overline{Si}\{OCH_2CH_2\}_3N)Cl(CO)(PPh_3)_2$ (94)                                                                |
| 4.8 An unsaturated ruthenium silatranyl complex                                                                                             |
| Crystal structure of $\operatorname{Ru}(\overline{\operatorname{Si}}_{0CH_{2}CH_{2}}, \overline{\operatorname{N}})Cl(CO)(PPh_{3})_{2}$ (95) |
| <b>4.9</b> A saturated osmium complex containing silatrane                                                                                  |
| 4.10 Methylation of the nitrogen in an osmium complex containing a silatranyl cage. 420                                                     |
| $Crystal structure of [Os(Si{OCH_2CH_2}_3NMe)Cl(CO)(PPh_3)_2]CF_3SO_3 (97)422$                                                              |
| 4.11 Methylation of the bridgehead nitrogen in a silatranyl complex of ruthenium 424                                                        |
| Crystal structure of $[Ru(Si{OCH_2CH_2}_3NMe)Cl(CO)(PPh_3)_2]CF_3SO_3$ (98) 425                                                             |
| 4.12 Protonation of the bridgehead nitrogen in silatranyl complexes of osmium and                                                           |
| ruthenium                                                                                                                                   |
| 4.13 Attempted auration of the bridgehead nitrogen in a silatranyl osmium complex . 430                                                     |

| 4.14 An unsaturated osmium thiocarbonyl complex containing a silatranyl ligand 430                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| 4.15 Methylation of the thiocarbonyl silatranyl complex                                                                                 |
| 4.16 Migration of the silatranyl ligand and re-formation of the silatrane cage                                                          |
| Crystal structure of $Os(\eta^2$ -CS{Si[OCH <sub>2</sub> CH <sub>2</sub> ] <sub>3</sub> N})Cl(CO)(PPh <sub>3</sub> ) <sub>2</sub> (103) |
| 4.17 Approaches towards removal of a methylated silatrane cage from the metal centre                                                    |
|                                                                                                                                         |
| 4.18 An osmium(IV) silatranyl complex                                                                                                   |
| Crystal structure of $OsH_3(Si{OCH_2CH_2}_3N)(PPh_3)_3$ (104)                                                                           |
| 4.19 Methylation of an osmium(IV) silatranyl complex                                                                                    |
| 4.20 Protonation of an osmium(IV) silatranyl complex                                                                                    |
| 444 444                                                                                                                                 |
| EXPERIMENTAL                                                                                                                            |
| ADDENDUM                                                                                                                                |
| BIBLIOGRAPHY                                                                                                                            |
| LIST OF FIGURES                                                                                                                         |
| LIST OF TABLES                                                                                                                          |
| ACKNOWLEDGEMENTS                                                                                                                        |

.

# LIST OF ABBREVIATIONS

| Anal.           | microanalytic data                                                                            |
|-----------------|-----------------------------------------------------------------------------------------------|
| av.             | average                                                                                       |
| aq              | aqueous                                                                                       |
| atm.            | atmosphere(s)                                                                                 |
| Ar              | aryl                                                                                          |
| bcat            | 1,3,2-benzodioxaborole (catecholboryl)                                                        |
| BDA             | PhCH=CHCOMe                                                                                   |
| bipy            | 2,2'-bipyridyl                                                                                |
| bs              | broad singlet                                                                                 |
| <sup>n</sup> Bu | n-butyl                                                                                       |
| <sup>t</sup> Bu | t-butyl                                                                                       |
| ca.             | approximately                                                                                 |
| calc            | calculated                                                                                    |
| cm              | centimetre                                                                                    |
| conc.           | concentrated                                                                                  |
| COSY            | [ <sup>1</sup> H- <sup>1</sup> H]/[ <sup>13</sup> C- <sup>1</sup> H] correlation spectroscopy |
| Ср              | η <sup>5</sup> -cyclopentadienyl                                                              |
| Cq              | quaternary carbon                                                                             |
| Су              | cyclohexyl                                                                                    |
| d               | doublet                                                                                       |
| DBU             | 1,8-diazabicyclo[5.4.0]undec-7-ene                                                            |
| DEI             | desorption electron impact                                                                    |
| dmso            | dimethyl sulphoxide                                                                           |
| DEPT            | distortionless enhancement by polarisation                                                    |
|                 | transfer                                                                                      |
| ЕРТО            | 4-ethyl-2,6,7-trioxa-1-phosphabicyclo                                                         |
|                 | [2.2.2]octane                                                                                 |
| esd             | estimated standard deviation                                                                  |
| et al           | and others                                                                                    |
| Et              | ethyl                                                                                         |

| equiv.                      | equivalent(s)                            |  |
|-----------------------------|------------------------------------------|--|
| FAB                         | fast atom bombardment                    |  |
| Fc                          | ferrocene                                |  |
| HMBC                        | heteronuclear multiple bond coherence    |  |
| HMQC                        | heteronuclear multiple quantum coherence |  |
| HSQC                        | heteronuclear single quantum coherence   |  |
| IR                          | infrared                                 |  |
| In                          | indenyl                                  |  |
| i                           | ipso                                     |  |
| J .                         | coupling constant                        |  |
| m                           | meta                                     |  |
| m.p.                        | melting point                            |  |
| m.                          | multiplet                                |  |
| min.                        | minute(s)                                |  |
| Hz                          | hertz                                    |  |
| MHz                         | mega hertz                               |  |
| NBS                         | N-bromosuccinimide                       |  |
| NMR                         | nuclear magnetic resonance               |  |
| 0                           | ortho                                    |  |
| OAc                         | acetate                                  |  |
| o-phen                      | 1,10-phenanthroline                      |  |
| ORTEP                       | Oak Ridge Thermal Ellipsoid Plot         |  |
| p                           | para                                     |  |
| ppm                         | parts per million                        |  |
| <sup>i</sup> p <sub>r</sub> | i-propyl                                 |  |
| PPN                         | bis(triphenylphosphoranylidene) ammonium |  |
| Pyr                         | pyrrolyl                                 |  |
| OTf-                        | triflate                                 |  |
| q                           | quartet                                  |  |
| rms                         | root mean square                         |  |
| R <sub>f</sub>              | fluoroalkyl                              |  |
| S                           | singlet                                  |  |

1

| SS       | solid state splitting |
|----------|-----------------------|
| sol/soln | solution              |
| t        | triplet               |
| t'       | pseudo triplet        |
| thf      | tetrahydrofuran       |
| tms      | tetramethylsilane     |
| VT       | variable temperature  |
|          |                       |

For clarity, non-IUPAC notation is used in this thesis for the formulae of transition metal silyl complexes which are written with the silyl group directly following the transition metal.