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Abstract
We study the random geometry of first passage percolation on the complete graph equipped
with independent and identically distributed positive edge weights. We consider the case
where the lower extreme values of the edge weights are highly separated. This model exhibits
strong disorder and a crossover between local and global scales. Local neighborhoods are
related to invasion percolation that display self-organised criticality. Globally, the edges with
relevant edge weights form a barely supercritical Erdős–Rényi random graph that can be
described by branching processes. This near-critical behaviour gives rise to optimal paths
that are considerably longer than logarithmic in the number of vertices, interpolating between
random graph and minimal spanning tree path lengths. Crucial to our approach is the quan-
tification of the extreme-value behavior of small edge weights in terms of a sequence of
parameters (sn)n≥1 that characterises the different universality classes for first passage per-
colation on the complete graph. We investigate the case where sn →∞ with sn = o(n1/3),
which corresponds to the barely supercritical setting. We identify the scaling limit of the
weight of the optimal path between two vertices, and we prove that the number of edges in
this path obeys a central limit theorem with mean approximately sn log (n/s3n ) and variance
s2n log (n/s3n ). Remarkably, our proof also applies to n-dependent edge weights of the form
Esn , where E is an exponential random variable with mean 1, thus settling a conjecture of
Bhamidi et al. (Weak disorder asymptotics in the stochastic meanfieldmodel of distance. Ann
Appl Probab 22(1):29–69, 2012). The proof relies on a decomposition of the smallest-weight
tree into an initial part following invasion percolation dynamics, and a main part following
branching process dynamics. The initial part has been studied in Eckhoff et al. (Long paths in
first passage percolation on the complete graph I. Local PWIT dynamics. Electron. J. Probab.
25:1–45, 2020. https://doi.org/10.1214/20-EJP484); the current paper focuses on the global
branching dynamics.
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1 Model and Summary of Results

In this paper, we study first passage percolation on the complete graph equipped with inde-
pendent and identically distributed positive and continuous edgeweights. In contrast to earlier
work [11,12,16,20,27], we consider the case where the extreme values of the edge weights
are highly separated.

We start by introducing first passage percolation (FPP). Given a graph G = (V (G), E(G)),
let (Y (G)

e )e∈E(G) denote a collection of positive edge weights. Thinking of Y
(G)
e as the cost of

crossing an edge e, we can define a metric on V (G) by setting

dG,Y (G) (i, j) = inf
π : i→ j

∑

e∈π

Y (G)

e , (1.1)

where the infimum is over all paths π in G that join i to j , and Y (G) represents the edge
weights (Y (G)

e )e∈E(G). We will always assume that the infimum in (1.1) is attained uniquely,
by some (finite) path πi, j . We are interested in the situation where the edge weights Y (G)

e are
random, so that dG,Y (G) is a random metric. In particular, when the graph G is very large,
with |V (G)| = n say, we wish to understand the scaling behavior of the following quantities
for fixed i, j ∈ V (G):

(a) The distance Wn = dG,Y (G) (i, j)—the total edge cost of the optimal path πi, j ;
(b) The hopcount Hn—the number of edges in the optimal path πi, j ;
(c) The topological structure—the shape of the random neighborhood of a point.

In this paper, we consider FPP on the complete graph, which acts as amean-fieldmodel for
FPP on finite graphs. In [11], the question was raised what the universality classes are for this
model.Webring the discussion substantially further by describing away to distinguish several
universality classes and by identifying the limiting behavior of first passage percolation in one
of these classes. The cost regime introduced in (1.1) uses the information from all edges along
the path and is known as theweak disorder regime. By contrast, in the strong disorder regime
the cost of a pathπ is given bymaxe∈π Y (G)

e .We establish a firm connection between theweak
and strong disorder regimes in first passage percolation. Interestingly, this connection also
establishes a strong relation to invasion percolation (IP) on the Poisson-weighted infinite tree
(PWIT), which is the local limit of IP on the complete graph, and also arises in the context
of the minimal spanning tree on the complete graph (see e.g. [1]).

Our main interest is in the case G = Kn , the complete graph on n vertices V (Kn) =
[n] := {1, . . . , n}, equipped with independent and identically distributed (i.i.d.) edge weights
(Y (Kn )

e )e∈E(Kn). We write Y for a random variable with Y
d= Y (G)

e , and assume that the
distribution function FY of Y is continuous. For definiteness, we study the optimal path π1,2

between vertices 1 and 2. First, we introduce some general notation:
Notation. All limits in this paper are taken as n tends to infinity unless stated otherwise. A
sequence of events (An)n happens with high probability (whp) if P(An) → 1. For random

variables (Xn)n, X , we write Xn
d−→ X , Xn

P−→ X and Xn
a.s.−→ X to denote convergence in

distribution, in probability and almost surely, respectively. For real-valued sequences (an)n ,
(bn)n , we write an = O(bn) if the sequence (an/bn)n is bounded; an = o(bn) if an/bn → 0;
an = �(bn) if the sequences (an/bn)n and (bn/an)n are both bounded; and an ∼ bn if
an/bn → 1. Similarly, for sequences (Xn)n , (Yn)n of random variables, we write Xn =
OP(Yn) if the sequence (Xn/Yn)n is tight; Xn = oP(Yn) if Xn/Yn

P−→ 0; and Xn = �P(Yn)
if the sequences (Xn/Yn)n and (Yn/Xn)n are both tight. We denote by �x� the greatest
integer not exceeding x . Moreover, E denotes an exponentially distributed random variable
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with mean 1. We often need to refer to results from [21], and we will write, e.g., [Part I,
Lemma 2.18] for [21, Lemma 2.18].

For a brief overview of notation particular to this paper, see p. 81.

1.1 First Passage Percolation with Regularly-Varying EdgeWeights

In this paper, we will consider edge-weight distributions with a heavy tail near 0, in the sense
that the distribution function FY (y) decays slowly to 0 as y ↓ 0. It will provemore convenient
to express this notion in terms of inverse F−1Y (u), since we can write

Y (Kn )

e
d= F−1Y (U ), (1.2)

whereU is uniformly distributed on [0, 1]. Expressed in terms of F−1Y , saying that the edge-
weight distribution is heavy-tailed near 0 means that F−1Y (u) decays rapidly to 0 as u ↓ 0.We
will quantify this notion in terms of the logarithmic derivative of F−1Y , which will become
large as u ↓ 0.

In this section, we will assume that

u
d

du
log F−1Y (u) = u−αL(1/u), (1.3)

where α ≥ 0 and t 
→ L(t) is slowly varying as t → ∞. That is, for all a > 0,
limt→∞ L(at)/L(t) = 1. In other words, we assume that u 
→ u d

du log F
−1
Y (u) =

d
d(log u)

log F−1Y (u) is regularly varying as u ↓ 0. Recall that a function L̃ : (0,∞)→ (0,∞)

is called regularly varying as u ↓ 0 if limu↓0 L̃(au)/L̃(u) is finite but nonzero for all a > 0.
Define a sequence sn by setting u = 1/n:

sn = u
d

du
log F−1Y (u)

∣∣∣∣
u=1/n

= (F−1Y )′(1/n)

nF−1Y (1/n)
. (1.4)

The asymptotics of the sequence (sn)n quantify howheavy-tailed the edge-weight distribution
is. For instance, an identically constant sequence, say sn = s, corresponds to a pure power
law FY (y) = y1/s , F−1Y (u) = us ; larger values of s correspond to heavier-tailed distributions.

In this paper, we are interested in the regime where sn → ∞, which corresponds to a
very heavy-tailed distribution function FY (y) that decays to 0 slower than any power of y, as
y ↓ 0.

To describe our scaling results, define

un(x) = F−1Y (x/n). (1.5)

Then, for i.i.d. random variables (Yi )i∈N with distribution function FY ,

P

(
min
i∈[n] Yi ≤ un(x)

)
→ 1− e−x . (1.6)

In view of (1.6), the family (un(x))x∈(0,∞) are the characteristic values for mini∈[n] Yi . See
[22] for a detailed discussion of extreme value theory.

Theorem 1.1 (Weight and hopcount—regularly-varying logarithmic derivatives) Suppose
that the edge weights (Y (Kn )

e )e∈E(Kn) follow an n-independent distribution FY that satis-
fies (1.3). If the sequence (sn)n from (1.4) satisfies sn/ log log n → ∞ and sn = o(n1/3),
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then there exist sequences (λn)n and (φn)n with φn/sn → 1, λnun(1) → e−γ , where γ is
Euler’s constant, such that

nFY

(
Wn − 1

λn
log (n/s3n )

)
d−→ M (1) ∨ M (2), (1.7)

Hn − φn log (n/s3n )√
s2n log (n/s3n )

d−→ Z . (1.8)

Here Z is standard normal, and M (1), M (2) are i.i.d. random variables for which P(M ( j) ≤ x)
is the survival probability of a Poisson Galton–Watson branching process with mean x.

Let us discuss the result in Theorem 1.1 in more detail. Under the hypotheses of The-
orem 1.1, un(x) varies heavily in x in the sense in that un(x + δ)/un(x) → ∞ for every
x, δ > 0. Consequently, the extreme values are widely separated, which is characteristic of
the strong disorder regime.

We see in (1.7) thatWn− 1
λn

log (n/s3n ) ≈ un(M (1)∨M (2)), whichmeans that the weight of

the smallest-weight path has a deterministic part 1
λn

log (n/s3n ), while its random fluctuations
are of the same order of magnitude as some of the typical values for the minimal edge weight
adjacent to vertices 1 and 2. For j ∈ {1, 2}, one can think of M ( j) as the time needed to
“escape” from the local neighborhood of vertex j . The sequences (λn)n and (φn)n will be
identified in (3.17)–(3.18), subject to slightly stronger assumptions.

The optimal paths in Theorem 1.1 are long paths because the asymptotic mean of the path
length Hn in (1.8) is of larger order than log n, the path length that arises in many random
graph contexts. See Sect. 2.2 for a comprehensive literature overview. The following example
collects some edge-weight distributions that are covered by Theorem 1.1:

Example 1.2 (Examples of weight distributions)

(a) Let a, γ > 0. Take Y (Kn )
e

d= exp(−aEγ ), for which log F−1Y (u) = −a(log(1/u))γ and

sn = aγ (log n)γ−1. (1.9)

The hypotheses of Theorem 1.1 are satisfied whenever γ > 1.

(b) Let a, γ > 0. Take Y (Kn )
e

d= Ua(log(1+log(1/U )))γ , for which log F−1Y (u) = a log u(log(1+
log(1/u)))γ and

sn = a(log(1+ log n))γ + aγ
log n

1+ log n
(log(1+ log n))γ−1. (1.10)

We note that sn ∼ a(log log n)γ as n→∞. The hypotheses of Theorem 1.1 are satisfied
whenever γ > 1. We shall see, however, that the conclusions of Theorem 1.1 also hold
when 0 < γ ≤ 1; see Sect. 2.1 and Lemma 4.8.

(c) Let a, β > 0. Take Y (Kn )
e

d= exp(−aU−β/β), for which log F−1Y (u) = −au−β/β and

sn = anβ . (1.11)

The hypotheses of Theorem 1.1 are satisfied when 0 < β < 1/3. When β ≥ 1/3, we
conjecture that the hopcount scaling (1.8) fails; see the discussion in Sect. 2.2. An ana-
logue of the weight convergence (1.7) holds in a modified form; see [Part I, Theorem 1.1
and Example 1.4 (c)].
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Notice that every sequence (sn)n of the form sn = nαL(n), forα ≥ 0 and L slowly varying
at infinity, can be obtained from a distribution by taking log F−1Y (u) = ∫ u−1−αL(1/u)du,
i.e., the indefinite integral of the function u 
→ u−1−αL(1/u). In Sect. 2.1 we will weaken
the requirement sn/ log log n → ∞ to the requirement sn → ∞ subject to an additional
regularity assumption.

1.2 First Passage Percolation with n-Dependent EdgeWeights

In Theorem 1.1, we started with a fixed edge-weight distribution and extracted a specific
sequence (sn)n . For an essentially arbitrary distribution [subject to the relatively modest
regular variation assumption in (1.3)], its FPP properties are fully encoded, at least for the
purposes of the conclusions of Theorem 1.1, by the scaling properties of this sequence (sn)n .
Thus, Theorem 1.1 shows the common behaviour of a universality class of edge-weight
distributions, and shows that this universality class is described in terms of a sequence of real
numbers (sn)n and its scaling behaviour.

In this section, we reverse this setup. We take as input a sequence (sn)n and consider the
n-dependent edge-weight distribution

Y (Kn )

e
d= Esn , (1.12)

where E is exponentially distributedwithmean 1. (For legibility, our notationwill not indicate
the implicit dependence of Y (Kn )

e on n.) Then the conclusions of Theorem 1.1 hold verbatim:

Theorem 1.3 (Weight and hopcount—n-dependent edge weights) Let Y (Kn )
e

d= Esn , where
(sn)n is a positive sequence with sn →∞, sn = o(n1/3). Then

n
(
Wn − 1

nsn
(1+ 1/sn)sn
log (n/s3n )

)1/sn d−→ M (1) ∨ M (2), (1.13)

and

Hn − sn log (n/s3n )√
s2n log (n/s3n )

d−→ Z , (1.14)

where Z is standard normal and M (1), M (2) are i.i.d. random variables for whichP(M ( j) ≤ x)
is the survival probability of a Poisson Galton–Watson branching process with mean x .

We note that Theorem 1.3 resolves a conjecture in [11]. This problem is closely related to
the problemof strong disorder on the complete graph, and has attracted considerable attention
in the physics literature [18,23,33]. The convergence in (1.13) was proved in [Part I, Theorem
1.5 (a)] without the subtraction of the term 1

nsn
(1+1/sn)sn log (n/s3n ) in the argument, and

under the stronger assumption that sn/ log log n→∞.1

The edge-weight distribution in Theorem 1.3 allows for a simpler intuitive explanation
of (1.7), while the convergence (1.14) verifies the heuristics for the strong disorder regime
in [11, Sect. 1.4]. See Remark 4.6 for a discussion of the relation between these two results.
As mentioned in Sect. 1.1, strong disorder here refers to the fact that when sn → ∞ the
values of the random weights Esn

e depend strongly on the disorder (Ee)e∈E(G), making small

1 [Part I, Theorem 1.5 (a)] in fact deals with powers of uniform random variables, but for this discussion that
makes no difference.
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values increasingly more, and large values increasingly less, favorable. Mathematically, the
elementary limit

lim
s→∞(xs1 + xs2)

1/s = x1 ∨ x2 (1.15)

expresses the convergence of the �s norm towards the �∞ norm and establishes a relationship
between the weak disorder regime and the strong disorder regime of FPP.

Remarkably, a similar argument actually also applies to Theorem 1.1, exemplifying that
these settings are in the same universality class. Indeed, Theorem 1.3 shows that n-dependent
distributions can be understood in the same framework as the n-independent distributions in
Example 1.2.Wenext explain this comparison and generalize our results further by explaining
the universal picture behind them.

2 The Universal Picture

In Sect. 2.1, we generalize the results in Theorems1.1 and 1.3 to a larger class of edgeweights
and provide a common language that allows us to prove these results in one go. Having
reached this higher level of abstraction, in Sect. 2.2, we will embed the results achieved here
in the wider picture of universality classes of FPP, and provide conjectures or results how to
describe all universality classes and what the scaling behaviour of each of them might be.
Links to the relevant literature and existing results are provided. For a short guide to notation,
see p. 81.

2.1 Description of the Class of EdgeWeights toWhich Our Results Apply

In this section, we describe a general framework containing both Theorem 1.1 as well as
Theorem 1.3. This framework, which is in terms of i.i.d. exponential random variables,
determines the precise conditions that the edge weights need to satisfy for the results in Theo-
rems1.1–1.3 to apply. Interestingly, due to the parametrization in terms of exponential random
variables, this general framework also provides a clear link between the near-critical Erdős–
Rényi random graph and our first passage percolation problem where the lower extremes of
the edge-weight distribution are highly separated. Finally and conveniently, this framework
allows us to prove these theorems simultaneously. In particular, both the n-independent edge
weights in Theorem 1.1, as well as the n-dependent ones in Theorem 1.3, are key examples
of the class of edge weights that we will study in this paper.

For fixed n, the edge weights (Y (Kn )
e )e∈E(Kn) are independent for different e. However,

there is no requirement that they are independent over n, and in fact in Sect. 5, we will
produce Y (Kn )

e using a fixed source of randomness not depending on n. Therefore, it will be
useful to describe the randomness on the edge weights ((Y (Kn )

e )e∈E(Kn) : n ∈ N) uniformly
across the sequence. It will be most useful to give this description in terms of exponential
random variables. Fix independent exponential mean 1 variables (X (Kn )

e )e∈E(Kn), and define

Y (Kn )

e = g(X (Kn )

e ), (2.1)

where g : (0,∞)→ (0,∞) is a strictly increasing function. The relation between g and the
distribution function FY is given by

FY (y) = 1− e−g−1(y) and g(x) = F−1Y

(
1− e−x

)
. (2.2)
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We define

fn(x) = g(x/n) = F−1Y

(
1− e−x/n

)
. (2.3)

Let Y1, . . . , Yn be i.i.d. with Yi = g(Ei ) as in (2.1). Since g is increasing,

min
i∈[n] Yi = g

(
min
i∈[n] Ei

) d= g(E/n) = fn(E). (2.4)

Because of this convenient relation between the edge weights Y (Kn )
e and exponential random

variables, we will express our hypotheses about the distribution of the edge weights in terms
of conditions on the functions fn(x) as n→∞.

Consider first the case Y (Kn )
e

d= Esn from Theorem 1.3. From (2.1), we have g(x) =
gn(x) = xsn , so that (2.3) yields

for Y (Kn )

e
d= Esn , fn(x) = (x/n)sn = fn(1)x

sn . (2.5)

Thus, (2.4)–(2.5) show that the parameter sn measures the relative sensitivity of mini∈[n] Yi to
fluctuations in the variable E . In general, we will have fn(x) ≈ fn(1)xsn if x is appropriately
close to 1 and sn ≈ f ′n(1)/ fn(1). These observations motivate the following conditions on
the functions ( fn)n , which we will use to relate the distributions of the edge weights Y (Kn )

e ,
n ∈ N, to a sequence (sn)n :

Condition 2.1 (Scaling of fn) For every x ≥ 0,

fn(x1/sn )

fn(1)
→ x . (2.6)

Even though we will rely on Condition 2.1 when sn →∞ and sn = o(n1/3), we strongly
believe that the scaling of the sequence (sn)n actually characterises the universality classes,
in the sense that the behaviour of Hn andWn is similar for edge weights for (sn)n with similar
scaling behaviour, and different for sequences that have different scaling. We elaborate on
this in Sect. 2.2.1, where we identify eight different universality classes and the expected
and/or proved results in them.

Condition 2.2 (Density bound for small weights) There exist ε0 > 0, δ0 ∈ (0, 1] and n0 ∈ N

such that

ε0sn ≤ x f ′n(x)
fn(x)

≤ sn/ε0, whenever 1− δ0 ≤ x ≤ 1 and n ≥ n0. (2.7)

Condition 2.3 (Density bound for large weights)

(a) For all R > 1, there exist ε > 0 and n0 ∈ N such that for every 1 ≤ x ≤ R, and n ≥ n0,

x f ′n(x)
fn(x)

≥ εsn . (2.8)

(b) For all C > 1, there exist ε > 0 and n0 ∈ N such that (2.8) holds for every n ≥ n0 and
every x ≥ 1 satisfying fn(x) ≤ C fn(1) log n.

Notice that Condition 2.1 implies that fn(1) ∼ un(1) [recall the definition of un(x) in
(1.5)] whenever sn = o(n). Indeed, by (2.3) we can write un(1) = fn(x

1/sn
n ) for xn =

(−n log(1 − 1/n))sn . Since sn = o(n), we have xn = 1 − o(1) and the monotonicity of
fn implies that fn(x

1/sn
n )/ fn(1) → 1. We remark also that (1.6) remains valid if un(x) is

replaced by fn(x).
We are now in a position to state our main theorem:
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Theorem 2.4 (Weight and hopcount—general edgeweights)Assume that Conditions 2.1–2.3
hold for a positive sequence (sn)n with sn →∞ and sn = o(n1/3). Then there exist sequences
(λn)n and (φn)n such that φn/sn → 1, λn fn(1)→ e−γ , where γ is Euler’s constant, and

f −1n

(
Wn − 1

λn
log (n/s3n )

)
d−→ M (1) ∨ M (2), (2.9)

Hn − φn log (n/s3n )√
s2n log (n/s3n )

d−→ Z , (2.10)

where Z is standard normal, and M (1), M (2) are i.i.d. randomvariables forwhichP(M ( j) ≤ x)
is the survival probability of a Poisson Galton–Watson branching process with mean x . The
convergences in (2.9)–(2.10) hold jointly and the limiting random variables are independent.

The sequences (λn)n and (φn)n are identified in (3.17)–(3.18), subject to the additional
Condition 2.6. The proof of Theorem 2.4 is given in Sect. 3.7.

Relation between Theorem 2.4 and Theorems 1.1 and 1.3. Theorems 1.1 and 1.3 follow
from Theorem 2.4: in the case Y (Kn )

e
d= Esn from Theorem 1.3, (2.6)–(2.8) hold identically

with ε0 = ε = 1 and we explicitly compute λn = nsn
(1 + 1/sn)sn and φn = sn in
Example 6.1. We will prove in Lemma 4.8 that the distributions in Theorem 1.1 satisfy the
assumptions of Theorem 2.4. The convergence (1.7) in Theorem 1.1 is equivalent to (2.9) in
Theorem 2.4 by the observation that, for any non-negative random variables (Tn)n and M,

nFY (Tn)→M ⇐⇒ f −1n (Tn)→M, (2.11)

where the convergence is in distribution, in probability or almost surely; see e.g. [Part I,
Lemma 5.5] for an example.

The following example describes a generalization of Theorem 1.3:

Example 2.5 Let (sn)n be a positive sequence with sn → ∞, sn = o(n1/3). Let Z be a
positive-valued continuous random variable with distribution function G such that G ′(z)
exists and is continuous at z = 0 with G ′(0) > 0 [with G ′(0) interpreted as a right-hand

derivative]. Take Y (Kn )
e

d= Zsn , i.e., FY (y) = G(y1/sn ). Then Conditions 2.1–2.3 hold and
Theorem 2.4 applies.

For instance, we can take Z to be a uniform distribution on an interval (0, b), for any
b > 0. We give a proof of this assertion in Lemma 4.8.

Condition 2.3 can be strengthened to the following condition that will be equivalent for
our purposes:

Condition 2.6 (Extended density bound) There exist ε0 > 0 and n0 ∈ N such that

x f ′n(x)
fn(x)

≥ ε0sn for every x ≥ 1, n ≥ n0. (2.12)

Lemma 2.7 It suffices to prove Theorem 2.4 assuming Conditions 2.1, 2.2 and 2.6.

Lemma 2.7, which is proved in Sect. 4.3, reflects the fact that the upper tail of the edge-
weight distribution does not substantially influence the first passage percolation problem.

Henceforth, except where otherwise noted, we will assume Conditions 2.1, 2.2 and 2.6.
We will reserve the notation ε0, δ0 for some fixed choice of the constants in Conditions 2.2
and 2.6, with ε0 chosen small enough to satisfy both conditions.
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2.2 Discussion of Our Results

In this section we discuss our results and state open problems.

2.2.1 The Universality Class in Terms of sn

In Sect. 2.1, we have described an edge-weight universality class in terms of sn . In this paper,
we investigate the case where sn →∞with sn = o(n1/3). We conjecture that all universality
classes can be described in terms of the scaling behaviour of the sequence (sn)n and below
identify the eight universality classes that describe the different scaling behaviours. These
eight cases are defined by how fast sn → 0 (this gives rise to four cases), the case where sn
converges to a positive and finite constant, and by how sn →∞ (giving rise to three cases,
including the one that is studied in this paper). We believe that this paper represents a major
step forward in this direction in that it describes the scaling behaviour in a large regime of
(sn)n sequences. We next describe the eight scaling regimes of sn and the results proved
and/or predicted for them. We conjecture that these eight cases describe all universality
classes for FPP on the complete graph, and it would be of interest to make this universal
picture complete. Let us now describe these eight cases.
The regime sn → 0. In view of (2.5), for sn → 0, the first passage percolation problem
approximates the graph metric, where the approximation is stronger the faster sn tends to
zero. We distinguish four different scaling regimes according to how fast sn → 0:

(i) Firstly, sn log n→ γ ∈ [0,∞): the case thatY
d= E−γ for γ ∈ (0,∞) falls into this class

with sn = γ / log n (see [20, Sect. 1.2]) and was investigated in [16], where it is proved
that Hn is concentrated on at most two values. For the case of n-dependent edge weights

Y (Kn )
e

d= Esn , it was observed in [20] that when sn log n converges to γ fast enough, the
methods of [16] can be imitated and the concentration result for the hopcount continues
to hold.

(ii) When sn log n→∞ but s2n log n→ 0, the variance factor s2n log(n/s3n ) from the central
limit theorem (CLT) in (2.10) tends to zero. Since Hn is integer-valued, it follows that
(2.10) must fail in this case. First order asymptotics are investigated in [20], and it is

shown that Hn/(sn log n)
P−→ 1, Wn/(un(1)sn log n)

P−→ e. It is tempting to conjecture
that there exists an integer k = kn ≈ sn log n such that Hn ∈ {kn, kn + 1} whp.

(iii) The regime where sn log n → ∞ but s2n log n → γ ∈ (0,∞) corresponds to a critical
window between the one- or two-point concentration conjectured in (ii) and the CLT
scaling conjectured in (iv). It is natural to expect that Hn − �φn log n� is tight for an
appropriately chosen sequence φn ∼ sn , although the distribution of Hn − �φn log n�
might only have subsequential limits because of integer effects. Moreover, we would
expect these subsequential limits in distribution to match with (ii) and (iv) in the limits
γ → 0 or γ →∞, respectively.

(iv) When sn → 0, s2n log n → ∞, we conjecture that the CLT for the hopcount in Theo-
rem 2.4 remains true, and that un(1)−1Wn− 1

λn
log n converges to a Gumbel distribution

for a suitable sequence λn and un(1). Unlike in the fixed s case, we expect no martingale
limit terms to appear in the limiting distribution.

The fixed s regime. The fixed s regime was investigated in [11] in the case where Y
d= Es ,

and describes the boundary case between sn → 0 and sn →∞. We conjecture that for other
sequences of random variables for which Condition 2.1 is valid for some s ∈ (0,∞) the CLT
for the hopcount remains valid, while there exist V and λ(s) depending on the distribution
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Y such that un(1)−1Wn − 1
λ(s) log (n/s3)

d−→ V . In general, V will not be equal to (M (1) ∨
M (2))s , see for example [11]. Instead, it is described by a sum of different terms involving
Gumbel distributions and the martingale limit of a certain continuous-time branching process
depending on the distribution. Our proof is inspired by the methods developed in [11]. The
CLT for Hn in the fixed s regime can be recovered from our proofs; in fact, the reasoning in
that case simplifies considerably compared to our more general setup.

The results in [11] match up nicely with ours. Indeed, in [11], it was shown that

f −1n

(
Wn − log n/λ(s)

) d−→ λ(s)−1/s
(
1,2 − log L (1)

s − log L (2)
s − log(1/s)

)1/s
, (2.13)

where λ(s) = 
(1 + 1/s)s , 1,2 is a Gumbel variable so that P(1,2 ≤ x) = e−e−x and
L (1)
s , L (2)

s are two independent copies of the random variable Ls with E(Ls) = 1 solving the
distributional equation

Ls
d=
∑

i≥1
e−λ(s)(E1+···+Ei )

s
Ls,i , (2.14)

where (Ls,i )i≥1 are i.i.d. copies of Ls and (Ei )i≥1 are i.i.d. exponentials with mean 1. We
claim that the right-hand side of (2.13) converges to M (1)∨M (2) as s →∞, where M (1), M (2)

are as in Theorem 2.4. This is equivalent to the statement that (− log L ( j)
s )1/s

d−→ M ( j) as
s →∞. Assume that (− log L ( j)

s )1/s converges in distribution to a random variableM. Then

lim
s→∞

(
− log

(∑

i≥1
e−λ(s)(E1+···+Ei )

s
Ls,i

))1/s = min
i≥1 lim

s→∞
(
λ(s)(E1 + · · · + Ei )

s − log Ls,i

)1/s

= min
i≥1

(
(E1 + · · · + Ei ) ∨

(
lim
s→∞(− log Ls,i )

1/s)),

(2.15)

and using (2.14) we deduce that M is the solution of the equation

M d= min
i≥1 (E1 + · · · + Ei ) ∨Mi , (2.16)

where (Mi )i≥1 are i.i.d. copies ofM independent of (Ei )i≥1. The unique solution to (2.16)
is the random variable with P(M ≤ x) being the survival probability of a Poisson Galton–

Watson process with mean x , so that M d= M (1).
The regime sn →∞. The regime sn →∞ can be further separated into three cases.

(i) Firstly, the case where sn →∞ with sn/n1/3 → 0 is the main topic of this paper.
(ii) Secondly, the regime where sn/n1/3 → γ ∈ (0,∞) corresponds to the critical window

between the minimal spanning tree case discussed below and the case (i) studied here.
It is natural to expect (see also Theorems 1.1 and 1.3) that Hn/n1/3 converges to a non-
trivial limit that depends sensitively on γ , and that, when γ → 0 and γ →∞ matches
up with the cases (i) and (iii) discussed above and below, respectively.

(iii) Finally, the regime sn/n1/3 → ∞. Several of our methods do not extend to the case
where sn/n1/3 → ∞; indeed, we conjecture that the CLT in Theorem 2.4 ceases to
hold in this regime. In this case, our proof clearly suggests that first passage percolation
(FPP) on the complete graph is closely approximated by invasion percolation (IP) on the
Poisson-weighted infinite tree (PWIT), studied in [2], whenever sn →∞, see also [21].
It it tempting to predict that Hn/n1/3 converges to the same limit as the graph distance
between two vertices for the minimal spanning tree on the complete graph as identified
in [3].
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2.2.2 First Passage Percolation on Random Graphs

FPP on random graphs has attracted considerable attention in the past years, and our research
was strongly inspired by its studies. In [17], the authors show that for the configuration
model with finite-variance degrees (and related graphs) and edge weights with a continuous
distribution not depending on n, there exists only a single universality class. Indeed, if we
define Wn and Hn to be the weight of and the number of edges in the smallest-weight path
between two uniform vertices in the graph, then there exist positive, finite constants α, β, λ

and sequences (αn)n, (λn)n , with αn → α, λn → λ, such thatWn−(1/λn) log n converges in
distribution, while Hn satisfies a CLTwith asymptotic mean αn log n and asymptotic variance
β log n.

Related results for exponential edge weights appear for the Erdős–Rényi random graph
in [15], to certain inhomogeneous random graphs in [28] and to the small-world model
in [30]. The diameter of the weighted graph is studied in [6], and relations to compe-
tition on r -regular graphs are examined in [7]. Finally, the smallest-weight paths with
most edges from a single source or between any pair in the graph are investigated in
[5].

We conjecture that our results are closely related to FPP on random graphs with infinite-
variance degrees. Such graphs, sometimes called scale-free random graphs, have been
suggested in the networking community as appropriate models for various real-world net-
works. See [8,31] for extended surveys of real-world networks, and [19,24,32] for more
details on random graph models of such real-world networks. FPP on infinite-variance ran-
dom graphs with exponential weights was first studied in [13,14], of which the case of
finite-mean degrees studied in [14] is most relevant for our discussion here. There, it was
shown that a linear transformation of Wn converges in distribution, while Hn satisfies a CLT
with asymptotic mean and variance α log n, where α is a simple function of the power-law
exponent of the degree distribution of the configurationmodel. Since the configurationmodel
with infinite-variance degrees whp contains a complete graph of size a positive power of n,
it can be expected that the universality classes on these random graphs are closely related to
those on the complete graph Kn . In particular, the strong universality result for finite-variance
random graphs is false, which can be easily seen by observing that for the weight distribution
1 + E , where E is an exponential random variable, the hopcount Hn is of order log log n
(as for the graph distance [26]), rather than log n as it is for exponential weights. See [9] for
two examples proving that strong universality indeed fails in the infinite-variance setting,
and [4,10] for further results. The area has attracted substantial attention through the work
of Komjáthy and collaborators, see also [25,29] for recent work in geometric contexts.

2.2.3 Extremal Functionals for FPP on the Complete Graph

Many more fine results are known for FPP on the complete graph with exponential edge
weights. In [27], the weak limits of the rescaled path weight and flooding are determined,
where the flooding is the maximal smallest weight between a source and all vertices in the
graph. In [12] the same is performed for the diameter of the graph. It would be of interest to
investigate the weak limits of the flooding and diameter in our setting.
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3 Detailed Results, Overview and Classes of EdgeWeights

In this section, we provide an overview of the proof of our main results.
This section is organised as follows. In Sect. 3.1, we explain how FPP clusters can be

described in terms of an appropriate exploration process, both from one as well as from
two sources. In Sect. 3.2, we discuss how this exploration process can be coupled to first
passage percolation on the Poisson-weighted infinite tree (PWIT). In Sect. 3.3, we interpret
the FPP dynamics on the PWIT as a continuous-time branching process, and study one- and
two-vertex characteristics associated with it. The two-vertex characteristics are needed since
we explore from two sources. Due to the near-critical behavior of the involved branching
processes, the FPP clusters may run at rather different speeds, and we need to make sure
that their sizes are comparable. This is achieved by freezing the fastest growing one, which
is explained in detail in Sect. 3.4, both for the time at which this happens as well as the
sizes of the FPP cluster at the freezing times. There, we also investigate the collision times
between the two exploration processes, which correspond to (near-) shortest paths between
the two sources. In Sect. 3.5, we couple FPP on the complete graph from two sources to a
continuous-time branching process fromwhich we can retrieve the FPP clusters by a thinning
procedure. In Sect. 3.6, we use the explicit distribution of the collision edge (whether thinned
or not) to derive its scaling properties, both for the time at which it occurs, as well as the
generations of the vertices it consist of. Finally, in Sect. 3.7, we show that the first point
of the Cox process that describes the collision edge is with high probability unthinned and
complete the proof of our main results.

3.1 FPP Exploration Processes

To understand smallest-weight paths in the complete graph, we study the first passage explo-
ration process from one or two sources. Recall from (1.1) that dKn ,Y (Kn ) (i, j) denotes the
total cost of the optimal path πi, j between vertices i and j .

3.1.1 One-Source Exploration Process

For a vertex j ∈ V (Kn), let the one-source smallest-weight tree SWT ( j)
t be the connected

subgraph of Kn defined by

V (SWT ( j)
t ) = {i ∈ V (Kn) : dKn ,Y (Kn ) (i, j) ≤ t

}
,

E(SWT ( j)
t ) = {e ∈ E(Kn) : e ∈ π j,i for some i ∈ V (SWT ( j)

t )
}
.

(3.1)

Note that SWT ( j)
t is indeed a tree: if two optimal paths π j,k, π j,k′ pass through a common

vertex i , both paths must contain π j,i since the minimizers of (1.1) are unique. Moreover, by
construction, FPP distances from the source vertex j can be recovered from arrival times in
the process SWT ( j)

t :
dKn ,Y (Kn ) (i, j) = inf

{
t : i ∈ SWT ( j)

t
}
. (3.2)

To visualize the process (SWT ( j)
t )t≥0, think of the edge weight Y (Kn )

e as the time required
for fluid to flow across the edge e. Place a source of fluid at j and allow it to spread through
the graph. Then V (SWT ( j)

t ) is precisely the set of vertices that have been wetted by time t ,
while E(SWT ( j)

t ) is the set of edges along which, at any time up to t , fluid has flowed from a
wet vertex to a previously dry vertex. Equivalently, an edge is added to SWT ( j)

t whenever it
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becomes completely wet, with the additional rule that an edge is not added if it would create
a cycle.

Because fluid begins to flow across an edge only after one of its endpoints has beenwetted,
the age of a vertex—the length of time that a vertex has been wet—determines how far fluid
has traveled along the adjoining edges. Given SWT ( j)

t , the future of the exploration process
will therefore be influenced by the current ages of vertices in SWT ( j)

t , and the nature of
this effect depends on the probability law of the edge weights (Y (Kn )

e )e. In the sequel, for a
subgraph G = (V (G), E(G)) of Kn , we write G instead of V (G) for the vertex set when there
is no risk of ambiguity.

3.1.2 Two-Source Exploration Process

Consider now two vertices from Kn , which for simplicity we take to be vertices 1 and 2. The
two-source smallest-weight tree SWT (1,2)

t is the subgraph of Kn defined by

SWT (1,2)
t = SWT (1,2;1)

t ∪ SWT (1,2;2)
t , (3.3)

where

V (SWT (1,2;1)
t ) = {i ∈ [n] : dKn ,Y (Kn ) (1, i) ≤ t and dKn ,Y (Kn ) (1, i) < dKn ,Y (Kn ) (2, i)

}
,

V (SWT (1,2;2)
t ) = {i ∈ [n] : dKn ,Y (Kn ) (2, i) ≤ t and dKn ,Y (Kn ) (2, i) < dKn ,Y (Kn ) (1, i)

}
,

E(SWT (1,2; j)
t ) = {e ∈ E(Kn) : e ∈ π j,i for some i ∈ V (SWT (1,2; j)

t )
}
.

(3.4)
In other words, SWT (1,2)

t is the union, over all vertices i within FPP distance t of vertex 1 or
vertex 2, of an optimal path, either π1,i or π2,i whichever has smaller weight.

Because the edge weight distribution has no atoms, no two optimal paths have the same
length. It follows that, a.s., SWT (1,2)

t is the union of two vertex-disjoint trees for all t . (To see
this, suppose vertex i is closer to vertex j than to vertex j ′, where

{
j, j ′

} = {1, 2}. Then,
given another vertex i ′ and a path π passing from i ′ to i to j ′, there must be a strictly shorter
path passing from i ′ to i to j .) We note that

V (SWT (1,2)
t ) = V (SWT (1)

t ) ∪ V (SWT (2)
t ), E(SWT (1,2)

t ) ⊂ E(SWT (1)
t ) ∪ E(SWT (2)

t ),

(3.5)
with strict containment for sufficiently large t .

To visualize the process (SWT (1,2)
t )t≥0, place sources of fluid at vertices 1 and 2 and allow

both fluids to spread through the graph. Then, as before, V (SWT (1,2)
t ) is precisely the set of

vertices that have been wetted by time t , while E(SWT (1,2)
t ) is the set of edges along which,

at any time up to t , fluid has flowed from awet vertex to a previously dry vertex. Equivalently,
an edge is added to SWT (1,2)

t whenever it becomes completely wet, with the additional rules
that an edge is not added if it would create a cycle or if it would connect the two connected
components of SWT (1,2)

t .
From the process SWT (1,2)

t , we can partially recover FPP distances. Denote by
T SWT (1,2)

(i) = inf
{
t ≥ 0 : i ∈ SWT (1,2)

t
}
the arrival time of a vertex i ∈ [n]. Then, for

j ∈ {1, 2},
dKn ,Y (Kn ) (i, j) = T SWT (1,2)

(i) provided that i ∈ ∪t≥0SWT (1,2; j)
t . (3.6)

More generally, observing the process (SWT (1,2)
t )t≥0 allows us to recover the edge weights

Y (Kn )
e for all e ∈ ∪t≥0E(SWT (1,2)

t ). However, in contrast to the one-source case, the FPP
distanceWn = dKn ,Y (Kn ) (1, 2) cannot be determined by observing the process (SWT (1,2)

t )t≥0.
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Indeed, if vertices i1, i2 satisfy i1 ∈ SWT (1,2;1)
t and i2 ∈ SWT (1,2;2)

t for some t , then by
construction the edge {i1, i2} between them will never be added to SWT (1,2) and there is no
arrival time from which to determine the edge weight Y (Kn )

{i1,i2}.
The optimal weight Wn is the minimum value

Wn = min
i1∈SWT (1,2;1)∞ ,i2∈SWT (1,2;2)∞

(
T SWT (1,2)

(i1)+ Y (Kn )

{i1,i2} + T SWT (1,2)
(i2)
)

, (3.7)

which is uniquely attained a.s. by our assumptions on the edge weights.

Definition 3.1 (Collision time and edge) The SWT collision time is T SWT
coll = 1

2Wn . Let
I SWT
1 , I SWT

2 denote the (a.s. unique) minimizers in (3.7). The edge
{
I SWT
1 , I SWT

2

}
is called

the SWT collision edge.

In the fluid flow description above, T SWT
coll is the time when the fluid from vertex 1 and the

fluid from vertex 2 first collide, and this collision takes place inside the collision edge. Note
that since fluid flows at rate 1 from both sides simultaneously, the overall distance is given
by Wn = 2T SWT

coll .

Proposition 3.2 (Smallest-weight path) The end points of the collision edge are explored
before the collision time, T SWT (1,2)

(I SWT
j ) < T SWT

coll for j ∈ {1, 2} . The optimal path π1,2 from

vertex 1 to vertex 2 is the union of the unique path in SWT (1,2;1)
T SWT
coll

from 1 to I SWT
1 ; the collision

edge
{
I SWT
1 , I SWT

2

} ; and the unique path in SWT (1,2;2)
T SWT
coll

from I SWT
2 to 2. Furthermore

P
(
T SWT
coll > t

∣∣ (SWT (1,2)
u )u≥0

)

=
∏

i1∈SWT (1,2;1)
t

∏

i2∈SWT (1,2;2)
t

P

(
Y > t − T SWT (1,2)

(i1)+ t − T SWT (1,2)
(i2)

∣∣∣ Y >
∣∣T SWT (1,2)

(i1)− T SWT (1,2)
(i2)
∣∣
)

= exp

⎛

⎜⎝−1

n

∑

i1∈SWT (1,2;1)
t

∑

i2∈SWT (1,2;2)
t

(
f −1n

(
t − T SWT (1,2)

(i1)+ t − T SWT (1,2)
(i2)
)

− f −1n

(∣∣T SWT (1,2)
(i1)− T SWT (1,2)

(i2)
∣∣
) )
⎞

⎟⎠ . (3.8)

We will not use Proposition 3.2 and the formula (3.7), which are a special case of
Lemma 3.20 and Theorem 3.22. These generalizations deal with a freezing procedure that we
will explain below. Note that the conditioning in (3.8) reflects the information about Y{i1,i2}
gained by knowing that i1 and i2 belong to different connected components of SWT (1,2)

t :
during the period of time when one vertex was explored but not the other, the fluid must not
have had time to flow from the earlier-explored vertex to the later-explored vertex.

3.2 Coupling FPP on Kn to FPP on the Poisson-Weighted Infinite Tree

In this section, we state results that couple FPP on Kn to FPP on the Poisson-weighted infinite
tree (PWIT). We start by explaining the key idea, coupling of order statistics of exponentials
to Poisson processes, in Sect. 3.2.1. We continue to define the PWIT in Sect. 3.2.2. We then
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couple FPP on Kn to FPP on the PWIT, for one source in Sect. 3.2.3 and finally for two
sources in Sect. 3.2.4.

3.2.1 Order Statistics of Exponentials and Poisson Processes

To study the smallest-weight tree from a vertex, say vertex 1, let us consider the time until the

first vertex is added. By construction, mini∈[n]\{1} Y (Kn )

{1,i}
d= fn

(
n

n−1 E
)
[cf. (2.4)], where E

is an exponential random variable of mean 1. We next extend this to describe the distribution
of the order statistics Y (Kn)

(1) < Y (Kn)
(2) < · · · < Y (Kn)

(n−1) of the weights of edges from vertex 1
to all other vertices.

By (2.1) and (2.3), we can write Y (Kn )

{1,i} = fn(E ′i ), where E ′i = nX (Kn )

{1,i} are independent,
exponential random variables with rate 1/n. We can realize E ′i as the first point of a Poisson
point process P (i) with rate 1/n, with points X (i)

1 < X (i)
2 < · · · , chosen independently for

different i = 2, . . . , n. We can also form the Poisson point process P (1) with rate 1/n,
corresponding to i = 1, although this Poisson point process is not needed to produce an edge
weight. To each point of P (i), associate the mark i .

Now amalgamate all n Poisson point processes to form a single Poisson point process
of intensity 1, with points X1 < X2 < · · · . Each point Xk has an associated mark Mk . By
properties of Poisson point processes, given the points X1 < X2 < · · · , the marks Mk are
chosen uniformly at random from [n], different marks being independent.

To complete the construction of the edge weights Y (Kn )

{1,i}, we need to recover the first points
X (i)
1 , for all i = 2, . . . , n, from the amalgamated points X1 < X2 < · · · . Thus we will thin a

point Xk when Mk = 1 (since i = 1 is not used to form an edge weight) or when Mk = Mk′
for some k′ < k (since such a point is not the first point of its corresponding Poisson point
process). Then

(Y (Kn )

(k) )k∈[n−1]
d= ( fn(Xk))k∈N, Xk unthinned. (3.9)

In the next step, we extend this result to the smallest-weight tree SWT (1) using a relation to
FPP on the Poisson-weighted infinite tree.

3.2.2 The Poisson-Weighted Infinite Tree

The Poisson-weighted infinite tree is an infinite edge-weighted tree in which every vertex has
infinitely many (ordered) children. Before giving the definitions, we recall the Ulam–Harris
notation for describing trees.

Define the tree T (1) as follows. The vertices of T (1) are given by finite sequences of natural
numbers headed by the symbol∅1,whichwewrite as∅1 j1 j2 · · · jk . The sequence∅1 denotes
the root vertex of T (1). We concatenate sequences v = ∅1i1 · · · ik and w = ∅1 j1 · · · jm to
form the sequence vw = ∅1i1 · · · ik j1 · · · jm of length |vw| = |v|+|w| = k+m. Identifying
a natural number j with the corresponding sequence of length 1, the j th child of a vertex v

is v j , and we say that v is the parent of v j . Write p (v) for the (unique) parent of v �= ∅1,
and pk(v) for the ancestor k generations before, k ≤ |v|.

We can place an edge (which we could consider to be directed) between every v �= ∅1 and
its parent; this turns T (1) into a tree with root ∅1. With a slight abuse of notation, we will use
T (1) to mean both the set of vertices and the associated graph, with the edges given implicitly
according to the above discussion, and we will extend this convention to any subset τ ⊂ T (1).
We also write ∂τ = {v /∈ τ : p (v) ∈ τ } for the set of children one generation away from τ .
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To describe the PWIT formally, we associate weights to the edges of T (1). By construction,
we can index these edge weights by non-root vertices, writing the weights as X = (Xv)v �=∅1 ,
where the weight Xv is associated to the edge between v and its parent p(v). We make the
convention that Xv0 = 0.

Definition 3.3 (Poisson-weighted infinite tree) The Poisson-weighted infinite tree (PWIT) is
the random tree (T (1), X) for which Xvk − Xv(k−1) is exponentially distributed with mean 1,
independently for each v ∈ T (1) and each k ∈ N. Equivalently, the weights (Xv1, Xv2, . . .)

are the (ordered) points of a Poisson point process of intensity 1 on (0,∞), independently
for each v.

Motivated by (3.9), we study FPP on T (1) with edge weights ( fn(Xv))v :

Definition 3.4 (First passage percolation on the Poisson-weighted infinite tree) For FPP on
T (1) with edge weights ( fn(Xv))v , let the FPP edge weight between v ∈ T (1) \ {∅1} and
p (v) be fn(Xv). The FPP distance from ∅1 to v ∈ T (1) is

Tv =
|v|−1∑

k=0
fn(X pk(v)) (3.10)

and the FPP exploration process BP (1) = (BP (1)
t )t≥0 on T (1) is defined by BP (1)

t ={
v ∈ T (1) : Tv ≤ t

}
.

Note that the FPP edge weights ( fn(Xvk))k∈N are themselves the points of a Poisson point
process on (0,∞), independently for each v ∈ T (1). The intensity measure of this Poisson
point process, which we denote by μn , is the image of Lebesgue measure on (0,∞) under
fn . Since fn is strictly increasing by assumption, μn has no atoms and we may abbreviate
μn((a, b]) as μn(a, b) for simplicity. Thus μn is characterized by

μn(a, b) = f −1n (b)− f −1n (a),

∫ ∞

0
h(y)dμn(y) =

∫ ∞

0
h( fn(x))dx, (3.11)

for any measurable function h : [0,∞)→ [0,∞).
Clearly, and as suggested by the notation, the FPP exploration process BP is a continuous-

time branching process:

Proposition 3.5 (FPP on PWIT is CTBP) The process BP (1) is a continuous-time branching
process (CTBP), started from a single individual ∅1, where the ages at childbearing of an
individual form a Poisson point process with intensityμn, independently for each individual.
The time Tv is the birth time Tv = inf

{
t ≥ 0 : v ∈ BP (1)

t
}
of the individual v ∈ T (1).

3.2.3 Coupling One-Source Exploration to the PWIT

Similar to the analysis of the weights of the edges containing vertex 1, we now introduce a
thinning procedure that allows us to couple BP (1) and SWT (1). Define M∅1 = 1 and to each
other v ∈ T (1)\{∅1} associate a mark Mv chosen independently and uniformly from [n].
Definition 3.6 (Thinning—one CTBP) The vertex v ∈ T (1) \ {∅1} is thinned if it has an
ancestor v0 = pk(v) (possibly v itself) such that Mv0 = Mw for some unthinned vertex
w ∈ T (1) with Tw < Tv0 .
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This definition also appears as [Part I, Definition 2.8]. As explained there, this definition is
not circular since whether or not a vertex v is thinned can be assessed recursively in terms of
earlier-born vertices. Write B̃ P

(1)

t for the subgraph of BP (1)
t consisting of unthinned vertices.

Definition 3.7 Given a subset τ ⊂ T (1) and marks M = (Mv : v ∈ τ) with Mv ∈ [n], define
πM (τ ) to be the subgraph of Kn induced by the mapping τ → [n], v 
→ Mv . That is, πM (τ )

has vertex set {Mv : v ∈ τ }, with an edge between Mv and Mp(v) whenever v, p (v) ∈ τ .

Note that if the marks (Mv)v∈τ are distinct then πM (τ ) and τ are isomorphic graphs.
The following theorem, taken from [Part I, Theorem 2.10] and proved in [Part I, Sect. 3.3],

establishes a close connection between FPP on Kn and FPP on the PWIT with edge weights
( fn(Xv))v∈τ :

Theorem 3.8 (Coupling to FPP on PWIT—one source) The law of (SWT (1)
t )t≥0 is the same

as the law of
(
πM
(̃
BP

(1)

t

))

t≥0.

Theorem 3.8 is based on an explicit coupling between the edge weights (Y (Kn )
e )e on Kn

and (Xv)v on T (1). We will describe a related coupling in Sect. 3.5. A general form of those
couplings is given in Sect. 5.

3.2.4 Coupling Two-Source Exploration to the PWIT

Let T (1,2) be the disjoint union of two independent copies (T ( j), X ( j)), j ∈ {1, 2}, of the
PWIT. We shall assume that the copies T ( j) are vertex-disjoint, with roots ∅ j , so that we can
unambiguously write Xv instead of X

( j)
v for v ∈ T ( j), v �= ∅ j . We set M∅ j = j for j = 1, 2,

and otherwise the notation introduced for T (1) is used on T (1,2), verbatim. For example, for
any subset τ ⊆ T (1,2), we write ∂τ = {v /∈ τ : p (v) ∈ τ } for the boundary vertices of τ , and
we define the subgraph πM (τ ) for τ ⊂ T (1,2) just as in Definition 3.7.

As in Proposition 3.5, the two-source FPP exploration process on T (1,2) with edge weights
( fn(Xv))v starting from ∅1 and ∅2 is equivalent to the union BP = BP (1) ∪ BP (2) of two
CTBPs. (In the fluid-flow formulation, the additional rule—an edge is not explored if it would
join the connected components containing the two sources—does not apply.)

Definition 3.9 (Thinning—two CTBPs) The vertex v ∈ T (1,2) \ {∅1, ∅2} is thinned if it has
an ancestor v0 = pk(v) (possibly v itself) such that Mv0 = Mw for some unthinned vertex
w ∈ T (1,2) with Tw < Tv0 .

Note that this two-CTBP thinning rule is applied simultaneously across both trees: for
instance, a vertex v ∈ T (1) can be thinned due to an unthinned vertex w ∈ T (2). Henceforth
we will be concerned with the two-CTBP version of thinning. Write B̃ Pt for the subgraph
of BPt = BP (1)

t ∪ BP (2)
t consisting of unthinned vertices.

The following theorem is a special case of Theorem 3.26:

Theorem 3.10 (Coupling to FPP on PWIT—two sources) The law of (SWT (1,2)
t )t≥0 is the

same as the law of
(
πM
(̃
BPt

))

t≥0.

We will not use Theorem 3.10, but instead rely on its generalization Theorem 3.26, since,
in our setting, BP (1) and BP (2) can grow at rather different speeds. We will counteract
this unbalance by an appropriate freezing procedure, as explained in more detail later on.
Theorem 3.26 generalizes Theorem 3.10 to include this freezing.
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We next state an equality in law for the collision time and collision edge. As a preliminary
step, note that (3.8) can be rewritten in terms of the measure μn as

P
(
T SWT
coll > t

∣∣ (SWT u)u≥0
)

= exp

(
−

∑

i1∈SWT (1,2;1)
t

i2∈SWT (1,2;2)
t

μn

(∣∣T SWT (1,2)
(i1)− T SWT (1,2)

(i2)
∣∣, t − T SWT (1,2)

(i1)+ t − T SWT (1,2)
(i2)
)

/n

)
.

(3.12)

By a Cox process with random intensity measure Z (with respect to a σ -algebra F ) we
mean a random point measure P such that Z is F -measurable and, conditionally on F ,
P has the distribution of a Poisson point process with intensity measure Z . For notational
convenience, given a sequence of intensity measures Zn on R × X , for some measurable
space X , we write Zn,t for the measures on X defined by Zn,t (·) = Zn((−∞, t]× ·).

Thus (3.12) states that T SWT
coll has the law of the first point of a Cox process onR, where the

intensity measure is given by a sum over SWT (1,2;1) × SWT (1,2;2) (see also [11, Proposition
2.3]). Using Theorem 3.10, we can lift this equality in law to apply to the collision time and
collision edge.

Theorem 3.11 (Cox process for collision edge) Let P SWT
n be a Cox process on [0,∞) ×

T (1) × T (2) (with respect to the σ -algebra generated by BP and (Mv)v∈T (1,2) ) with random
intensity Z SWT

n = (Z SWT
n,t )t≥0 defined by

Z SWT
n,t ({v1} × {v2}) = 1{

v1∈BP(1)
t ,v2∈BP(2)

t

} 1
nμn

(∣∣Tv1 − Tv2

∣∣ , t − Tv1 + t − Tv2

)
(3.13)

for all t ≥ 0. Let (TPn ,SWT
coll , V (1,SWT )

coll , V (2,SWT )

coll ) denote the first point ofP SWT
n forwhich V (1,SWT )

coll

and V (2,SWT )

coll areunthinned. Then the lawof (TPn ,SWT
coll , πM (̃BP

TPn ,SWT
coll

),M
V (1,SWT )
coll

,M
V (2,SWT )
coll

)

is the same as the joint law of T SWT
coll = 1

2Wn; the smallest-weight tree SWT T SWT
coll

at the time

T SWT
coll ; and the endpoints I SWT

1 , I SWT
2 of the SWT collision edge. In particular, the hopcount

Hn has the same distribution as
∣∣V (1,SWT )

coll

∣∣+ ∣∣V (2,SWT )

coll

∣∣+ 1.

3.3 FPP on the PWIT as a CTBP

In this section, we relate FPP on the PWIT to a continuous-time branching process (CTBP).
In Sect. 3.3.1, we investigate the exploration from one vertex and describe this in terms of
one-vertex characteristics. In Sect. 3.3.2, we extend this to the exploration from two vertices
and relate this to two-vertex characteristics of CTBPs, which will be crucial to analyse
shortest-weight paths in FPP on Kn which we explore from two sources.

3.3.1 FPP on the PWIT as a CTBP: One-Vertex Characteristics

In this section, we analyze the CTBP BP (1) introduced in Sect. 3.2. Notice that (BP (1)
t )t≥0

depends on n through its offspring distribution. We have to understand the coupled double
asymptotics of n and t tending to infinity simultaneously.

Recall that we write |v| for the generation of v (i.e., its graph distance from the root
in the genealogical tree). To count particles in BP (1)

t , we use a non-random characteristic
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χ : [0,∞)→ [0,∞). Following [11], define the generation-weighted vertex characteristic
by

zχt (a) = zχ,BP(1)

t (a) =
∑

v∈BP(1)
t

a|v|χ(t − Tv) for all a, t ≥ 0. (3.14)

We make the convention that χ(t) = zχt (a) = 0 for t < 0. For characteristics χ , η and for
a, b, t, u ≥ 0, write

mχ
t (a) = E(zχt (a)) and Mχ,η

t,u (a, b) = E(zχt (a)zηu(b)). (3.15)

Let μ̂n(λ) = ∫ e−λydμn(y) denote the Laplace transform ofμn . For a > 0, define λn(a) > 0
by

aμ̂n(λn(a)) = 1 (3.16)

whenever (3.16) has a unique solution. The parameters λn and φn in Theorem 2.4 are given
by

λn = λn(1), (3.17)

φn = λ′n(1)/λn(1). (3.18)

The asymptotics of λn and φn stated in Theorem 2.4 is the content of the following lemma:

Lemma 3.12 (Asymptotics of BP-parameters)As n→∞, φn/sn → 1 and λn fn(1)→ e−γ ,

where γ is Euler’s constant.

Lemma 3.12 is proved in Sect. 6.3.
Typically, zχt (a) grows exponentially in t at rate λn(a). Therefore, we write

z̄χt (a) = e−λn(a)t zχt (a),

m̄χ
t (a) = E(z̄χt (a)) = e−λn(a)tmχ

t (a),

M̄χ,η
t,u (a, b) = E(z̄χt (a)z̄ηu(b)) = e−λn(a)te−λn(b)uMχ,η

t,u (a, b). (3.19)

In the following theorem, we investigate the asymptotics of such generation-weighted one-
vertex characteristics:

Theorem 3.13 (Asymptotics of one-vertex characteristics)Given ε > 0 and a compact subset
A ⊂ (0, 2), there is a constant K <∞ such that for n sufficiently large, uniformly for a, b ∈
A and for χ and η bounded, non-negative, non-decreasing functions, λn(1)[t ∧ u] ≥ K ,

∣∣s−1n m̄χ
t (a1/sn )− ∫∞0 e−zχ

(
z/λn(a1/sn )

)
dz
∣∣ ≤ ε ‖χ‖∞ , (3.20)

∣∣∣∣∣s
−3
n M̄χ,η

t,u (a1/sn , b1/sn )−
∫∞
0 e−zχ

(
z/λn(a1/sn )

)
dz
∫∞
0 e−wη

(
w/λn(b1/sn )

)
dw

log(1/a + 1/b)

∣∣∣∣∣

≤ ε ‖χ‖∞ ‖η‖∞ . (3.21)

Moreover, there is a constant K ′ < ∞ independent of ε such that m̄χ
t (a1/sn ) ≤

K ′ ‖χ‖∞ sn and M̄χ,η
t,u (a1/sn , b1/sn ) ≤ K ′ ‖χ‖∞ ‖η‖∞ s3n for all n sufficiently large, uni-

formly over u, t ≥ 0 and a, b ∈ A.

Corollary 3.14 (Asymptotics of means and variance of population size) The population size∣∣BP (1)
t

∣∣ satisfies E(
∣∣BP (1)

t

∣∣) ∼ sneλn(1)t and Var(
∣∣BP (1)

t

∣∣) ∼ s3ne
2λn(1)t/ log 2 in the limit as

λn(1)t →∞, n→∞.
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Theorem 3.13 is proved in Sect. 6.4. Generally, we will be interested in characteristics
χ = χn for which χn

(
λn(1)−1·

)
converges as n →∞, so that the integral in (3.20) acts as

a limiting value. In particular, Corollary 3.14 is the special case χ = 1[0,∞), a = 1.
Since sn → ∞, Theorem 3.13 and Corollary 3.14 show that the variance of z̄χt (a1/sn )

is larger compared to the square of the mean, by a factor of order sn . This suggests that
BP (1)

t is typically of order 1 when λn(1)t is of order 1 [i.e., when t is of order fn(1), see
Lemma 3.12] but has probability of order 1/sn of being of size of order s2n . See also [Part I,
Proposition 2.17] which confirms this behavior.

3.3.2 FPP on the PWIT as a CTBP: Two-Vertex Characteristics

Theorem 3.11 expresses the collision time T SWT
coll as the first point of a Cox process whose

cumulative intensity is given by a double sum over two branching processes. To study such
intensities, we introduce generation-weighted two-vertex characteristics. Let χ be a non-
random, non-negative function on [0,∞)2 and recall that Tv = inf {t ≥ 0 : v ∈ BPt } denotes
the birth time of vertex v and |v| the generation of v. The generation-weighted two-vertex
characteristic is given by

zχ�t (�a) =
∑

v1∈BP(1)
t1

∑

v2∈BP(2)
t2

a|v1|1 a|v2|2 χ(t1 − Tv1 , t2 − Tv2), (3.22)

for all t1, t2, a1, a2 ≥ 0, where we use vector notation �a = (a1, a2), �t = (t1, t2), and so on.
We make the convention that χ(t1, t2) = zχt1,t2(�a) = 0 for t1 ∧ t2 < 0. As in (3.19), we
rescale and write

z̄χ�t (�a) = e−λn(a1)t1e−λn(a2)t2 zχt1,t2(�a),

m̄χ

�t (�a) = E(z̄χ�t (�a)),

M̄χ,η

�t,�u (�a, �b) = E(z̄χ�t (�a)z̄η�u(�b)).
(3.23)

In (3.13), the cumulative intensity Z SWT
n,t can be expressed in terms of a two-vertex char-

acteristic. If we define
χn(t1, t2) = μn(|t1 − t2| , t1 + t2) (3.24)

then the total cumulative intensity is given by

∣∣Z SWT
n,t

∣∣ = Z SWT
n,t (T (1) × T (2)) = 1

n
zχn
t,t (1, 1). (3.25)

We will use the parameters a1, a2 to compute moment generating functions corresponding
to Z SWT

n,t .
The characteristic χn will prove difficult to control directly, because its values fluctuate

significantly in size: for instance, χn
( 1
2 fn(1), 1

2 fn(1)
) = 1 whereas χn

( 1
2 fn(1), fn(1)

) =
O(1/sn). Therefore, for K ∈ (0,∞), we define the truncated measure

μ(K )

n = μn
∣∣
( fn(1−K/sn), fn(1+K/sn)]

, (3.26)

and again write μ
(K )
n ((a, b]) = μ

(K )
n (a, b) to shorten notation. For convenience, we will

always assume that n is large enough that sn ≥ K . By analogy with (3.24), define

χ(K )

n (t1, t2) = μ(K )

n (|t1 − t2| , t1 + t2). (3.27)

By construction, the total mass of μ
(K )
n is 2K/sn , so that snχ

(K )
n is uniformly bounded.
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The following results identify the asymptotic behavior of z̄χ
(K )
n

t1,t2 (�a) and show that, for
K →∞, the contribution due toχn−χ

(K )
n becomes negligible. These results are formulated in

Theorem 3.15, which investigates the truncated two-vertex characteristic, and Theorem 3.16,
which studies the effect of truncation:

Theorem 3.15 (Convergence of truncated two-vertex characteristic) For every ε > 0 and
every compact subset A ⊂ (0, 2), there exists a constant K0 <∞ such that for every K ≥ K0

there are constants K ′ < ∞ and n0 ∈ N such that for all n ≥ n0, a1, a2, b1, b2 ∈ A and
λn(1)[t1 ∧ t2 ∧ u1 ∧ u2] ≥ K ′,

∣∣∣∣s
−1
n m̄χ

(K )
n
�t (�a1/sn )− ζ(a2/a1)

∣∣∣∣ ≤ ε, (3.28)

and
∣∣∣∣s
−4
n M̄χ

(K )
n ,χ

(K )
n

�t,�u (�a1/sn , �b1/sn )− ζ(a2/a1)ζ(b2/b1)

log(1/a1 + 1/b1) log(1/a2 + 1/b2)

∣∣∣∣ ≤ ε, (3.29)

where ζ : (0,∞)→ R is the continuous function defined by

ζ(a1/a2) =
{

2a1a2
a1+a2

log(a2/a1)
a2−a1 , if a1 �= a2,

1, if a1 = a2.
(3.30)

Moreover, for every K < ∞ there are constants K ′′ < ∞ and n′0 ∈ N such that

for all n ≥ n′0, t1, t2, u1, u2 ≥ 0 and a1, a2, b1, b2 ∈ A, m̄χ
(K )
n
�t (�a1/sn ) ≤ K ′′sn and

M̄χ
(K )
n ,χ

(K )
n

�t,�u (�a1/sn , �b1/sn ) ≤ K ′′s4n .

The exponents in Theorem 3.15 can be understood as follows. By Theorem 3.13, the
first and second moments of a bounded one-vertex characteristic are of order sn and s3n ,
respectively. Therefore, for two-vertex characteristics, one can expect s2n and s

6
n . Sinceχ

(K )
n =

1
sn
snχ

(K )
n appears once in the first and twice in the second moment, we arrive at sn and s4n ,

respectively.

Theorem 3.16 (The effect of truncation) For every K > 0, m̄χn−χ
(K )
n

�t (�1) = O(sn), uniformly
over t1, t2. Furthermore, given ε > 0, there exists K < ∞ such that, for all n sufficiently

large, m̄χn−χ
(K )
n

�t (�1) ≤ εsn whenever λn(1)[t1 ∧ t2] ≥ K .

Theorems 3.15 and 3.16 are proved in Sect. 7.

3.4 CTBP Growth and the Need for Freezing: MediumTime Scales

Theorem 3.11 shows how to analyze the weight Wn and hopcount Hn in terms of a Cox
process driven by two (n-dependent) branching processes. In this section, we describe how
this analysis works when the branching processes grow normally (i.e., exponentially with a
fixed prefactor). In theCTBP scaling results fromSect. 3.3, we have seen that the class of edge
weights we consider gives rise to a more complicated scaling, with n-dependent prefactors
that diverge to infinity. As we will explain, this causes a direct analysis to break down,
and we define an appropriate freezing mechanism that we use to overcome this obstacle. In
Sect. 3.4.1, we first explain what wemeanwith freezing andwhywe need it, and in Sect. 3.4.2
we explain how FPP from two sources can be frozen, and then later unfrozen, such that CTBP
asymptotics can be used and collision times between the two FPP clusters can be analyzed.
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3.4.1 Frozen FPP Exploration Process

Under reasonable hypotheses, a fixed CTBP grows exponentially under all measures of size.
More precisely, there will be a single constant λ such that mη

t (1) ∼ Aηeλt and Mη,η
t,t (1, 1) ∼

Bηe2λt for constants Aη, Bη, over a wide class of one-vertex characteristics η : [0,∞) →
R, including the choice η = 1 that encodes the population size. Similarly, if χ is a two-
vertex characteristic, we can expect that mχ

t,t (�1) ∼ Cχe2λt and Mχ

(t,t),(t,t) ∼ Dχe4λt . Taking∣∣Zn,t
∣∣ = 1

n z
χ
t,t (1) as in (3.25), we would then expect the first point of the Cox process from

Theorem 3.11 to appear at times t for which e2λt ≈ n. For such t , we have eλt ≈ √n, so that
each branching process has of order

√
n individuals and a typical individual is of order log n

generations away from the root.
If these asymptotics hold, then a typical vertex v alive at such times t is unthinned whp.

Indeed, for each of the ≈ log n ancestors, there are at most ≈ √n other vertices that might
have the same mark. Each pair of vertices has probability 1/n of having the same mark,

leading to an upper bound of ≈
√
n log n
n on the probability that v is thinned.

In particular, the first point of P SWT
n coincides whp with (T (Pn ,SWT )

coll , V (1,SWT )

coll , V (2,SWT )

coll ),
the first unthinned point of P SWT

n . Using Theorem 3.11, it is therefore possible to derive
asymptotics of Wn and Hn by analysing the first point of P SWT

n , which in turn can be done
by a first- and second-moment analysis of the intensity measure Z SWT

n,t .
In the setting of this paper, however, this analysis breaks down. The branching processes

now themselves depend on n, and their behaviour becomes irregular when n is large. One-
vertex characteristics satisfy mη

t (1) ∼ A′ηsneλn(1)t and Mη,η
t,t (1, 1) ∼ B ′ηs3ne2λn(1)t . The

mismatch of prefactors, sn versus s3n , suggests that the branching process has probability of
order 1/sn of growing to size s2n in a time of order 1/λn(1) ≈ fn(1), and that this unlikely
event is important to the long-run growth of the branching process.

We can balance the mismatched first and second moments by aggregating sn independent
copies of the branching process. The sum of sn independent copies of z

η
t (1)will havemean of

order A′ηs2neλn(1)t and second moment of order B ′′η s4ne2λn(1)t , where now the second moment
is on the order of the square of the mean. [With proper attention to correlations, it is also
possible to show that the two-vertex characteristics zχn

t,t (1), summed over two groups of sn
independent branching processes each, will have mean of order C ′s3ne2λn(1)t and second
moment D′s6ne4λn(1)t .] This balancing makes a first- and second-moment analysis possible.

To achieve the sameeffect starting from twobranchingprocesses,wait until each branching
process is large enough that it has of order sn new children in time of order 1. Then the
collection of all individuals born after that time (and their descendants) will again have
balanced first and second moments. However, as we will see, the time when each branching
process becomes large enough is highly variable. In particular, by the time the slower-growing
of the two branching processes is large enough, the faster-growing branching process will
have become much too large. For this reason, we will need to freeze the faster-growing
branching process to allow the other to catch up. In the following sections we explain how
freezing affects the FPP exploration process, the coupling to the PWIT, the Cox process
representation for the optimal path, and the effect of thinning. We now first explain precisely
how we freeze our two branching processes.

The choice of the freezing times T ( j)
fr must attain two goals. First, we must ensure that, at

the collision time Tcoll, the two branching processes with freezing are of comparable size (see
Theorem 3.33 and the discussion following it). Second, wemust ensure that, after the freezing
times, the branching processes growpredictably,with the relatively steady exponential growth
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typical of supercritical branching processes (in spite of Theorem 3.13 and Corollary 3.14,
where themismatch betweenmean and variance shows that a branching process from a single
initial individual has highly variable growth).

It has been argued in [Part I, Sect. 2.5] that the crossover to typical branching process
behavior occurs when we begin to discover “lucky” vertices that have a large number of
descendants—of order s2n—in a time of order fn(1). From [Part I, Theorem 2.15], we can
see that this crossover coincides approximately with several other milestones: for instance,
around the same time, the branching process also reaches height of order sn and total size
of order s2n . For our purposes, it will be most important to control moments of the branching
process after unfreezing, which will involve exponentially discounting future births at rate
λn(1).

These considerations lead to the following definition of the freezing times:

Definition 3.17 (Freezing) Define, for j = 1, 2, the freezing times

T ( j)
fr = inf

{
t ≥ 0 :

∑

v∈BP( j)
t

∫ ∞

t−Tv

e−λn(1)(y−(t−Tv))dμn(y) ≥ sn

}
, (3.31)

and the unfreezing time Tunfr = T (1)
fr ∨ T (2)

fr . The frozen cluster is given by

Bfr = BPTunfr = B(1)
fr ∪ B(2)

fr , where B( j)
fr = BP ( j)

T ( j)
fr

. (3.32)

The variable
∫∞
t−Tv

e−λn(1)(y−(t−Tv))dμn(y) represents the expected number of future off-

spring of vertex v ∈ BP ( j)
t , exponentially time-discounted at rate λn(1). In Definition 3.17,

this expected discounted number (summed over all v ∈ BP ( j)
t ) is required to exceed sn . This

is the correct choice of scaling, because each newly born vertex has probability of order 1/sn
of being “lucky”—i.e., having of order s2n descendants in time fn(1), see [Part I, Definition
2.14 and Proposition 2.17]—and the scaling sn in Definition 3.17 ensures that such a lucky
vertex will be born in time OP( fn(1)) after unfreezing.

Recall that M (1), M (2) are i.i.d. random variables for which P(M ( j) ≤ x) is the survival
probability of a Poisson Galton–Watson branching process with mean x . The asymptotics of
the freezing times T ( j)

fr and the frozen cluster Bfr are as follows.

Theorem 3.18 (Properties of the freezing times and frozen cluster)

(a) The freezing times satisfy f −1n (T ( j)
fr )

P−→ M ( j) for j = 1, 2.
(b) The volume |Bfr| of the frozen cluster is OP(s2n ).
(c) The maximum height max {|v| : v ∈ Bfr} of the frozen cluster is OP(sn).

We expect, but do not prove, that the bounds in parts (b) and (c) are of the correct order,
i.e., that the volume is �P(s2n ) and the diameter �P(sn). The proof of Theorem 3.18 is based
on [Part I, Theorem 2.15] and is given in Sect. 9.5.

Since M (1) �= M (2) a.s., Theorem 3.18 (a) and the scaling properties of fn confirm that
the two CTBPs BP (1) and BP (2) require substantially different times to grow large enough.
Theorem 3.18 (b) and (c) will allow us to ignore the elements coming from the frozen cluster
in the proof of Theorem 2.4. For instance, part (c) shows that heights within the frozen cluster
are negligible in the central limit theorem scaling of (2.10).

From the proof of Theorem 2.4, we will see that

Wn − 1

λn
log (n/s3n ) = T (1)

fr + T (2)
fr + OP( fn(1)). (3.33)
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[The presence of a logarithm in (3.33) reflects the fact that, after Tunfr , the branching processes
grow exponentially.] The effects of the three terms in (3.33) can be combined using the
following lemma:

Lemma 3.19 (Sums behave like maxima) Let (T (1)
n )n, (T (2)

n )n, M(1), M(2) be random vari-

ables such that M(1) ∨M(2) ≥ 1 a.s. and ( f −1n (T (1)
n ), f −1n (T (2)

n ))
P−→ (M(1),M(2)). Then

f −1n (T (1)
n + T (2)

n )
P−→M(1) ∨M(2).

Lemma 3.19 is proved in Sect. 4. Theorem 3.18 (a) and Lemma 3.19 yield that f −1n (T (1)
fr +

T (2)
fr )

P−→ M (1) ∨ M (2). Because M (1), M (2) > 1 a.s., we will be able to ignore the term
OP( fn(1)), and the scaling of Wn in Theorem 2.4 will follow.

3.4.2 FPP Exploration Process from Two Sources with Freezing and Collisions

Let T ( j)
fr be the freezing times defined in Definition 3.17, which are stopping times with

respect to the filtration induced by BP ( j)
t , j ∈ {1, 2}. Define

Tunfr = T (1)
fr ∨ T (2)

fr , (3.34)

R j (t) = (t ∧ T ( j)
fr )+ ((t − Tunfr) ∨ 0), (3.35)

and

Bt =
2⋃

j=1
B( j)
t , B( j)

t = {v ∈ T ( j) : Tv ≤ R j (t)
} = BP ( j)

R j (t)
for all t ≥ 0. (3.36)

In words, we run the two branching processes BP = BP (1) ∪ BP (2) normally until the
first freezing time, T (1)

fr ∧ T (2)
fr , when one of the two branching processes has become large

enough. Then we freeze the larger CTBP and allow the smaller one to evolve normally until
it is large enough, at time Tunfr = T (1)

fr ∨ T (2)
fr . At this time, which we call the unfreezing time

Tunfr = T (1)
fr ∨ T (2)

fr , both CTBPs resume their usual evolution. The processes R j (t) are the
on-off processes that encode this behaviour: R j (t) increases at constant rate 1, except for the
interval between T (1)

fr ∧T (2)
fr and Tunfr, where one of the two processes is constant. In the fluid

flow picture, R j (t) represents the distance traveled by fluid from vertex j ∈ {1, 2}. We call
the process (Bt )t≥0 the two-source branching process with freezing.

As with T (1,2), we can consider Bt to be the union of two trees by placing an edge between
each non-root vertex v /∈ {∅1, ∅2} and its parent. We denote by TB

v = inf {t ≥ 0 : v ∈ Bt }
the arrival time of the individual v ∈ T (1,2) in B = (Bt )t≥0. Using the left-continuous inverse
of R j (t), defined by

R−1j (y) = inf
{
t ≥ 0 : R j (t) ≥ y

} =
{
t if t ≤ T ( j)

fr ,

Tunfr − T ( j)
fr + t if t > T ( j)

fr ,
(3.37)

we obtain
TB

v = R−1j (Tv) for v ∈ T ( j). (3.38)

We next define the two-source FPP exploration process with freezing on Kn , which we
will denote (St )t≥0. Intuitively, St is the analogue of SWT (1,2)

t under the assumption that fluid
from vertex j has flowed a distance R j (t) by time t . As with SWT (1,2), fluid from one vertex
blocks fluid from the other vertex, so that St will consist of two vertex-disjoint trees for all
t . However, because fluid from one vertex may be frozen while still blocking fluid from the
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other vertex, it will no longer be possible to directly specify the vertex set V (St ) as in (3.4).
Instead we will define S = (St )t≥0 inductively using R−1j such that at every time t ≥ 0,

St = S (1)
t ∪S (2)

t is the disjoint union of two trees S (1)
t and S (2)

t with root 1 and 2, respectively.
At time t = 0, let S0 be the subgraph of Kn with vertex set {1, 2} and no edges. Suppose

inductively that we have constructed (St )0≤t≤τk−1 up to the time τk−1 where the (k − 1)st
vertex (not including the vertices 1 and 2) was added, for 1 ≤ k ≤ n−2, with the convention
that τ0 = 0. Denote by T S(i) = inf {t ≥ 0 : i ∈ St } the arrival time of a vertex i ∈ [n].

Consider the set ∂Sτk−1 of edges e joining a previously explored vertex e ∈ Sτk−1 to a new
vertex e /∈ Sτk−1 . For such an edge, write j(e) ∈ {1, 2} for the index defined by e ∈ S ( j(e))

τk−1 .
At time

τk = min
e∈∂Sτk−1

R−1j(e)
(
R j(e)

(
T S(e)

)+ Y (Kn )

e

)
, (3.39)

we add the edge ek that attains the minimum in (3.39). Our assumptions on the edge weights
Y (Kn )
e and the processes R1, R2 will imply that this minimum, and in addition the minimum

min
j∈{1,2} min

e : e∈∂S( j)
τk−1

R−1j
(
R j (T

S(e))+ Y (Kn )

e

)
(3.40)

(with edges between S (1) and S (2) included), are uniquely attained a.s. We set St = Sτk−1 for
τk−1 ≤ t < τk , and we define Sτk to be the graph obtained by adjoining ek to Sτk−1 .

In the case R1(t) = R2(t) = t , S coincides with the two-source smallest-weight tree
SWT (1,2). In general, because the processes R1, R2 increase at variable speeds, the relation-
ship between S, T S(i) and the FPP distances dKn ,Y (Kn ) (i, j) is subtle. For instance, it need
not hold that dKn ,Y (Kn ) (1, i) = R1(T S(i)) for i ∈ ∪t≥0S (1)

t . However, we have the following
analogue of (3.7):

Lemma 3.20 (Minimal-weight representation) The weight of the optimal path π1,2 from ver-
tex 1 to vertex 2 is given by

Wn = min
i1∈S(1),i2∈S(2)

(
R1(T

S(i1))+ Y (Kn )

{i1,i2} + R2(T
S(i2))

)
, (3.41)

and the minimum is attained uniquely a.s.

The conclusion of Lemma 3.20 is easily seen when R1(t) = t, R2(t) = 0 (in which case
S (1) is the same as SWT (1) with vertex 2 removed) or when R1(t) = R2(t) = t (in which
case S reduces to SWT (1,2)). The proof of Lemma 3.20 in general requires some care, and is
given in Sect. 5.3. The equality in (3.41) will be the basis of our analysis of Wn .

Definition 3.21 The collision time is

Tcoll = inf {t ≥ 0 : R1(t)+ R2(t) ≥ Wn} . (3.42)

The collision edge is the edge between the vertices I1 ∈ S (1) and I2 ∈ S (2) that attain the
minimum in (3.41). We denote by H(I1), H(I2) the graph distance between 1 and I1 in S (1)

and between 2 and I2 in S (2), respectively.

Theorem 3.22 (Exploration process at the collision time) The following statements hold
almost surely: the endpoints I1, I2 of the collision edge are explored before time Tcoll. The
optimal path π1,2 from vertex 1 to vertex 2 is the union of the unique path in S (1)

Tcoll
from 1

to I1; the collision edge {I1, I2}; and the unique path in S (2)
Tcoll

from I2 to 2. The weight and
hopcount satisfy

Wn = R1(Tcoll)+ R2(Tcoll), Hn = H(I1)+ H(I2)+ 1. (3.43)
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Theorem 3.22 is proved in Sect. 5.3. The first equality in (3.43) is a simple consequence
of continuity of t 
→ R j (t) and the definition of Tcoll in Definition 3.21.

Remark 3.23 The values of the process (St )t≥0 depend implicitly on the choice of the pro-
cesses R1, R2, which we have defined in terms of B. Similarly, the value of (Tcoll, I1, I2)
depends on the on-off processes R1(t), R2(t), as well as on the edge weights Y (Kn )

{i1,i2} for
i1 ∈ S (1), i2 ∈ S (2). In particular, the law of (Tcoll, I1, I2) will depend on the relationship
between B and the edge weights (Y (Kn )

e ), which we will specify in Sect. 3.5.
However, regardless of the laws of S and of (Tcoll, I1, I2), the laws of Wn and Hn are the

same.

3.5 Coupling FPP on Kn fromTwo Sources to a CTBP

In this section, we revisit the coupling of FPP on Kn from two sources to a CTBP, which we
initialized in Sect. 3.2, using the tools in Sect. 3.3 on vertex characteristics, as well as the
freezing, unfreezing and collisions discussed in Sect. 3.4. In Sect. 3.5.1, we give the final
conclusions of the coupling including freezing, and in Sect. 3.5.2, we relate the law of the
weight of the smallest-weight path and its number of collision edges to a certain Cox process
of collisions.

3.5.1 The Final Coupling Including Freezing

Similarly to Theorem 3.8, we next couple the FPP process S on Kn and the FPP process B
on T (1,2). To this end, we introduce a thinning procedure for B = (Bt )t≥0: define M∅ j = j ,
for j = 1, 2. To each other v ∈ T (1,2) \ {∅1, ∅2}, we associate a mark Mv chosen uniformly
and independently from [n].
Definition 3.24 (Thinning) The vertex v ∈ T \ {∅1, ∅2} is thinned if it has an ancestor
v0 = pk(v) (possibly v itself) such that Mv0 = Mw for some unthinned vertex w with
TB

w < TB
v0
.

The difference between Definition 3.24 and its closely related cousin Definition 3.9 is that
Definition 3.24 includes freezing, which, as explained in Sect. 3.4, is crucial for our analysis.
As with Definition 3.9, this definition is not circular, as vertices are investigated in their order
of appearance. Write B̃t for the subgraph of Bt consisting of unthinned vertices.

From here onwards, we will work on a probability space that contains

• the two independent PWITs (T ( j), X ( j)), j ∈ {1, 2},
• the marks Mv , v ∈ T (1,2),
• and a family of independent exponential random variables Ee, e ∈ E(K∞), with mean

1, independent of the PWITs and the marks.

Here E(K∞) = {{i, j} : i, j ∈ N, i < j}.
On this probability space, we can construct the FPP edge weights on Kn as follows. Let

T B̃(i) = inf
{
t ≥ 0 : Mv = i for some v ∈ B̃t

}
(3.44)

be the first time that a vertex with mark i appears in B̃ and denote the corresponding vertex
by V (i) ∈ T (1,2). Note that T B̃(i) is finite for all i almost surely since the FPP exploration
process eventually explores every edge. For every edge

{
i, i ′
} ∈ E(Kn), we define

X(i, i ′) = min
{
Xv : Mv = i ′, p (v) = V (i)

}
, (3.45)
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and

X (Kn )

{i,i ′} =

⎧
⎪⎨

⎪⎩

1
n X(i, i ′) if T B̃(i) < T B̃(i ′),
1
n X(i ′, i) if T B̃(i ′) < T B̃(i),

E{i,i ′} if T B̃(i) = T B̃(i ′) = 0.

(3.46)

The following proposition states that the random variables in (3.46) can be used to produce
the correct edge weights on Kn for our FPP problem:

Proposition 3.25 Let (X (Kn )
e )e∈E(Kn) be defined in (3.46), and write Y

(Kn )
e = g(X (Kn )

e ), where
g is the strictly increasing function from (2.1)–(2.2). Then the edge weights (Y (Kn )

e )e∈E(Kn)

are i.i.d. with distribution function FY .

Proposition 3.25 will be generalized in Theorem 5.3 and proved in Sect. 5.4.
In Theorem 3.22, we have explained the (deterministic) relationship between S and the

FPP problem with edge weights Y (Kn )
e . Proposition 3.25 shows that, subject to (3.46), these

edge weights have the desired distribution. We next explain the relationship between B and
S. Recall the subgraph πM (τ ) of Kn introduced in Definition 3.7, which we extend to the
case where τ ⊂ T (1,2).

Theorem 3.26 (The coupling with freezing) Under the edge-weight coupling (3.46), St =
πM (B̃t ) for all t ≥ 0 almost surely. Moreover, when B̃ and S are equipped with the FPP
edge weights Yv = fn(Xv) and Y

(Kn )
e = g(X (Kn )

e ), respectively, the mapping πM : B̃→ S is
an isomorphism of edge-weighted graphs.

The proof is given in Sect. 5.4. Even though Theorem 3.26 is closely related to Theo-
rem 3.10, it will be the version in Theorem 3.26 that we rely upon in our technical proofs.
We now discuss its importance in more detail.

Theorem 3.26 achieves two goals. First, it relates the exploration process B, defined in
terms of two infinite underlying trees, to the smallest-weight tree process S, defined in
terms of a single finite graph. Because thinning gives an explicit coupling between these two
objects, we will be able to control its effect, even when the total number of thinned vertices
is relatively large. Consequently we will be able to study the FPP problem by analyzing a
corresponding problem expressed in terms of B (see Theorems 3.27 and 3.28) and showing
that whp thinning does not affect our conclusions (see Theorem 3.33).

Second, Theorem 3.26 allows us to relate FPP on the complete graph (n-independent
dynamics run on an n-dependent weighted graph) with an exploration defined in terms of
a pair of Poisson-weighted infinite trees (n-dependent dynamics run on an n-independent
weighted graph). By analyzing the dynamics of B when n and sn are large, we obtain a
fruitful dual picture: when the number of explored vertices is large, we find a dynamic
rescaled branching process approximation that is essentially independent of n. When the
number of explored vertices is small, we make use of a static approximation by invasion
percolation found in [21]. In fact, under our scaling assumptions, FPP on the PWIT is closely
related to invasion percolation (IP) on the PWIT which is defined as follows. Set IP(1)(0) to
be the subgraph consisting of ∅1 only. For k ∈ N, form IP(1)(k) inductively by adjoining to
IP(1)(k− 1) the boundary vertex v ∈ ∂IP(1)(k− 1) of minimal weight. We note that, since we
consider only the relative ordering of the various edge weights, we can use either the PWIT
edge weights (Xv)v or the FPP edge weights ( fn(Xv))v .

Write IP(1)(∞) = ⋃∞k=1 IP(1)(k) for the limiting subgraph. We remark that IP(1)(∞) is a
strict subgraph of T (1) a.s. (in contrast to FPP, which eventually explores every edge). Indeed,
define

M (1) = sup
{
Xv : v ∈ IP(1)(∞) \ {∅1}

}
, (3.47)
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the largest weight of an invaded edge. Then P(M (1) < x) is the survival probability of a
Poisson Galton–Watson branching process with mean x , as in Theorems 1.1, 1.3 and 2.4.

Consequently, (2.9) in Theorem 2.4 can be read as a decomposition of the weight Wn of
the smallest-weight path into a deterministic part 1

λn
log(n/s3n ) coming from the branching

process dynamics and the weight of the largest edge explored by invasion percolation starting
from two sources fn(M (1) ∨ M (2)).

3.5.2 A Cox Process for the Collisions

Similarly to Theorem 3.11, we can relate the collision time and collision edge to a Cox
process driven by B. To state this result, we will use a slightly different coupling between B
and Kn than the one just described. More precisely, we alter the definition (3.36) of B and
work with a copy having the same law. This alteration only affects the thinned part B \ B̃,
and the pointwise relationships in (3.46) and Theorem 3.26 continue to apply. As discussed
in Remark 3.23, this change affects the law of (S, Tcoll, I1, I2) but not of Wn and Hn . The
full details can be found in Sect. 5.5.

Theorem 3.27 (A Cox process for the collision edges with freezing) LetPn be a Cox process
on [0,∞)×T (1)×T (2) [with respect to the σ -algebra generated by B, R1, R2 and (Mv)v∈B]
with random intensity measure Zn = (Zn,t )t≥0 defined by

Zn,t ({v1} × {v2}) = 1{
v1∈B(1)

t ,v2∈B(2)
t

} 1
nμn

(
�Rv1,v2 , R1(t)− R1(T

B
v1

)+ R2(t)− R2(T
B
v2

)
)

(3.48)

for all t ≥ 0, where

�Rv1,v2 =
{
R1(TB

v2
)− R1(TB

v1
), if TB

v1
≤ TB

v2
,

R2(TB
v1

)− R2(TB
v2

), if TB
v2
≤ TB

v1
.

(3.49)

Let (T (Pn )

coll , V (1)
coll, V

(2)
coll) denote the first point of Pn for which V (1)

coll and V (2)
coll are unthinned.

Then, for a suitable coupling, the law of (T (Pn )

coll , R1(T
(Pn )

coll )+ R2(T
(Pn )

coll ), πM (B̃
T (Pn )
coll

), M
V (1)
coll

,

M
V (2)
coll

) is the same as the joint law of the collision time Tcoll; the optimal weight Wn; the
smallest-weight tree STcoll at time Tcoll; and the endpoints I1, I2 of the collision edge. In
particular, the hopcount Hn has the same distribution as

∣∣V (1)
coll

∣∣+ ∣∣V (2)
coll

∣∣+ 1.

Theorem 3.27 is the version of Theorem 3.11 that includes freezing.
Sketch of the proof By Lemma 3.20, Theorem 3.22 and the fact that R1 + R2 is strictly
increasing, Tcoll > t is equivalent to Wn > R1(t)+ R2(t), which is in turn equivalent to

Y (Kn )

{i1,i2} > R1(t)+ R2(t)− R1(T
S(i1))− R2(T

S(i2)) for all i1 ∈ S (1)
t , i2 ∈ S (2)

t . (3.50)

On the other hand, the fact that i1 ∈ S (1)
t and i2 ∈ S (2)

t implies that between the times
T S(i1)∧ T S(i2) and T S(i1)∨ T S(i2) when the first vertex and the second vertex of {i1, i2}
were explored, respectively, the flow from the first explored vertex did not reach the other
vertex. This translates to precisely the information that Y (Kn )

{i1,i2} > �Ri1,i2 .

Because of the relation St = πM (B̃t ), the set of pairs (i1, i2) ∈ S (1)
t ×S (2)

t can be identified
with the set of pairs of unthinned vertices (v1, v2) ∈ B̃ P

(1)

t × B̃ P
(2)

t via i j = Mv j . Moreover,
under the edge-weight coupling (3.46), the connecting edge weight Y (Kn )

{i1,i2} is determined

based on the birth times of children of v1 with mark Mv2 (if TB
v1

< TB
v2
) or children of v2
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with mark Mv2 (if T
B
v1

< TB
v2
). In either case, given Bt and (Mv)v∈Bt for t ≤ TB

v1
∨ TB

v2
, the

conditional law of such birth times is Poisson with intensity given by (3.48).
To complete the proof, it remains to ensure that knowledge of Bt and (Mv)v∈Bt for t >

TB
ṽ1
∨ TB

ṽ2
does not reveal any other information about the birth times used to determine the

connecting edge weights Y (Kn )

{i1,i2}. We will accomplish this by redefining B and R1, R2 so that
they use a conditionally independent copy of those birth times. See Sect. 5.5 for more details
and the full proof of Theorem 3.27.

Theorem 3.27 means that we can study first passage percolation on Kn by studying a
CTBP problem and then controlling the effect of thinning. In fact, with Theorem 3.27 in
hand, we will no longer need to refer to Kn at all.

The remainder of the proof of Theorem 2.4 will be to use Theorems 3.26 and 3.27. In
Sect. 3.6, we will first study the properties of the collision edges ignoring the thinning, and in
Sect. 3.7, we will show that whp the first collision edge is not thinned to conclude the proof.

3.6 The Collision Edge and Its Properties: Long Time Scales

Theorem 3.27 expresses the collision edge in terms of the first unthinned point of Pn . We
begin by stating the asymptotic behavior of the first point (whether thinned or not) of Pn :

Theorem 3.28 (The first point of theCox process)LetPn be theCox process in Theorem 3.27,
and let (Tfirst, V

(1)
first, V

(2)
first) denote its first point. Then

Tfirst = Tunfr + log(n/s3n )

2λn
+ OP(1/λn). (3.51)

Furthermore, recalling the sequence (φn)n from (3.18), the pair
(∣∣V (1)

first

∣∣− 1
2φn log(n/s3n )√

s2n log(n/s3n )
,

∣∣V (2)
first

∣∣− 1
2φn log(n/s3n )√

s2n log(n/s3n )

)
(3.52)

converges in distribution to a pair of independent normal random variables of mean 0 and
variance 1

2 , and is asymptotically independent of Tfirst and of B.

The proof of Theorem 3.28, presented at the end of the current section, is based on a
general convergence result for Cox processes, which we now describe. Consider a sequence
of Cox processes (P∗n )n on R × R

2 with random intensity measures (Z∗n)n , with respect to
σ -fields (Fn)n . We will write P∗n,t for the measure defined by P∗n,t (·) = P∗n ([−∞, t) × ·).
Define

T ∗n,k = inf
{
t : ∣∣P∗n,t

∣∣ ≥ k
}

(3.53)

and let An,k be the event that T ∗n, j /∈ {±∞} and |P∗n,Tn, j
| = j , for j = 1, . . . , k. That is,

An,k is the event that the points of P∗n with the k smallest t-values are uniquely defined. On

An,k , let Xn,k denote the unique point for which P∗n (
{
T ∗n,k

}
× {Xn,k

}
) = 1, and otherwise

set Xn,k = †, an isolated cemetery point.
The following theorem gives a sufficient condition for the first points of such aCox process

to converge towards independent realizations of a probability measure Q. To state it, we write

R̂(�ξ) =
∫

Rd
e
�ξ ·�xd R(�x) (3.54)

for the moment generating function of a measure R on R
d and �ξ ∈ R

d .
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Theorem 3.29 Fix a probability measure Q on R
2 with Q̂(�ξ) < ∞ for all �ξ ∈ R

2, a non-
decreasing continuous function q : R → (0,∞) satisfying limt→−∞ q(t) = 0. Suppose that
we can find a decomposition Z∗n = Z ′(K )

n +Z ′′(K )
n for each K > 0, and sub-σ -fieldsF ′

n ⊂ Fn,

such that

(a) for each fixed ε > 0, t, u ∈ R, �ξ ∈ R
2, there exists K0 <∞ such that, for all K ≥ K0,

(1− ε)q(t)Q̂(�ξ) ≤ E

(
Ẑ ′(K )

n,t (�ξ)

∣∣∣F ′
n

)
≤ (1+ ε)q(t)Q̂(�ξ), (3.55)

E

(( Ẑ ′(K )

n,t (�ξ)

q(t)Q̂(�ξ)
−
∣∣Z ′(K )

n,u
∣∣

q(u)

)2
∣∣∣∣∣F

′
n

)
≤ ε, and (3.56)

E
( |Z ′′(K )

n,t |
∣∣F ′

n

)
< εq(t), (3.57)

all this with probability at least 1− ε for n sufficiently large; and
(b) for each ε > 0, there exists t such that

lim inf
n→∞ P

(∣∣Z∗n,t

∣∣ > 1/ε
)
≥ 1− ε. (3.58)

Then the random sequence (Xn, j )
∞
j=1 converges in distribution to an i.i.d. random sequence

(X j )
∞
j=1 where X j has law Q. Moreover

{
(Tn, j )

k
j=1 : n ∈ N

}
is tight, (Xn, j )

∞
j=1 is asymp-

totically independent ofFn and, if (Tj , X j )
∞
j=1 is any subsequential limit of (Tn, j , Xn, j )

∞
j=1,

then (Tj )
∞
j=1 and (X j )

∞
j=1 are independent.

Theorem 3.29 is proved in Sect. 8.
To apply Theorem 3.29, we will rescale and recentre both time and the heights of vertices.

Furthermore, we will remove the effect of the frozen cluster Bfr .

Definition 3.30 (Rescaling and recentering) For v ∈ T (1,2) \ Bfr , define punfr(v) to be the
unique ancestor v′ of v for which v′ ∈ ∂Bfr (with punfr(v) = v if p (v) ∈ Bfr). Write

|v|∗ = |v| −
∣∣punfr(v)

∣∣− 1
2φn log(n/s3n )√

s2n log(n/s3n )
, (3.59)

t∗ = λn(1)(t − Tunfr)− 1
2 log(n/s3n ). (3.60)

DefineP∗n to be the image under themapping (t, v1, v2) 
→ (t∗, |v1|∗ , |v2|∗) of the restriction
of Pn to [0,∞)× (T (1) \ B(1)

fr )× (T (2) \ B(2)
fr ).

Theorem 3.31 (Our collision Cox process is nice) The point measures (P∗n )n are Cox pro-
cesses and satisfy the hypotheses of Theorem 3.29 when Q is the law of a pair of independent
N
(
0, 1

2

)
random variables, q(t∗) = e2t

∗
, and F ′

n is the σ -field generated by the frozen
cluster Bfr .

We prove Theorem 3.31 in Sect. 9.3. All the vertices relevant to P∗n are born after the
unfreezing time Tunfr, and therefore appear according to certain CTBPs. Theorem 3.31 will
therefore be proved by a first and second moment analysis of the two-vertex characteristics
from Sect. 3.3.2.

To use Theorem 3.31 in the proof of Theorem 3.28, we will show that the first point
(T ∗first, H∗1 , H∗2 ) of P∗n and the first point (Tfirst, V

(1)
first, V

(2)
first) of Pn are whp related as in

(3.59)–(3.60). This will follow from part (b) of the following lemma, which we will prove in
Sects. 9.2 and 9.4:
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Lemma 3.32 Let K <∞ and t = Tunfr + λn(1)−1
( 1
2 log(n/s3n )+ K

)
. Then

(a)
∣∣Bt

∣∣ = OP(
√
nsn); and

(b) Pn
([0, t] × B(1)

fr × T (2)
) = Pn

([0, t] × T (1) × B(2)
fr

) = 0whp.

Assuming Lemma 3.32 (b) and Theorem 3.31, we can now prove Theorem 3.28:

Proof of Theorem 3.28 By construction, the first point (T ∗first, H∗1 , H∗2 ) of P∗n is the image
of some point (T , V1, V2) of Pn under the mapping (t, v1, v2) 
→ (t∗, |v1|∗ , |v2|∗). Theo-
rems 3.29 and 3.31 imply that T ∗first = OP(1), so that T = Tunfr + λn(1)−1

( 1
2 log(n/s3n )+

OP(1)) by (3.60).Wemay therefore apply Lemma 3.32 (b) to conclude thatPn
([0, T ] × B(1)

fr
×T (2)

) = Pn
([0, T ] × T (1) × B(2)

fr

) = 0whp.
In particular, whp, (T , V1, V2) equals the first point (Tfirst, V

(1)
first, V

(2)
first) ofPn , and therefore

H∗j =
∣∣V ( j)

first

∣∣∗. In Theorem 3.28, the heights are to be rescaled as in (3.52) rather than (3.59).

However, these differ only by the term
∣∣punfr(V ( j)

first)
∣∣ /sn

√
log(n/s3n ). By Theorem 3.18 (c),

we have
∣∣punfr(V ( j)

first)
∣∣ = 1+OP(sn), since p(punfr(V ( j)

first)) ∈ B( j)
fr by construction. Hence the

term
∣∣punfr(V ( j)

first)
∣∣ /sn

√
log(n/s3n ) is oP(1). Finally, the asymptotic independence statements

follow from those in Theorem 5.3 and (3.51) follows from the tightness of T ∗first.

3.7 Thinning and Completion of the Proof

In this section, we explain that the first point of the Cox process is whp unthinned and
conclude our main results:

Theorem 3.33 (First point of Cox process is whp unthinned) Let Pn be the Cox process in
Theorem 3.27, and let (Tfirst, V

(1)
first, V

(2)
first) denote its first point. Then V (1)

first and V (2)
first are whp

unthinned. Consequently, whp T (Pn )

coll = Tfirst, V
(1)
coll = V (1)

first, V
(2)
coll = V (2)

first.

Proof According to Definition 3.24, the vertex V ( j)
first, j ∈ {1, 2}, will be thinned if and only

if some non-root ancestor v0 of V ( j)
first has Mv0 = Mw, where w ∈ BTfirst is unthinned and

TB
w < TB

v0
.We obtain an upper bound by dropping the requirement thatw should be unthinned

and relaxing the condition TB
w < TB

v0
to TB

w ≤ Tfirst and w �= v0. Each such pair of vertices
(v0, w) has conditional probability 1/n of having the same mark, so, by a union bound,

P
(
V (1)
first or V

(2)
first is thinned

∣∣ V (1)
first, V

(2)
first,

∣∣BTfirst

∣∣) ≤ 1
n (
∣∣V (1)

first

∣∣+ ∣∣V (2)
first

∣∣)
∣∣BTfirst

∣∣ . (3.61)

By Theorem 3.28,
∣∣V ( j)

first

∣∣ = OP(sn log(n/s3n )). Moreover Tfirst = Tunfr + λn(1)−1( 1
2 log(n/s3n )+ OP(1)

)
, so that

∣∣BTfirst

∣∣ = OP(
√
nsn) by Lemma 3.32 (a). Hence

P
(
V (1)
first or V

(2)
first is thinned

∣∣ V (1)
first, V

(2)
first,

∣∣BTfirst

∣∣) ≤ OP

(
log(n/s3n )√

n/s3n

)
, (3.62)

and this upper bound is oP(1) since n/s3n →∞.

Note that other choices of R1(t), R2(t)would make Theorem 3.33 false. For the first point
ofPn to appear, the intensity measure Zn,t , which is given by 1/n times a sum overB(1)

t ×B(2)
t ,

must be of order 1. If R1(t) = t , R2(t) = 0, for instance, then B(2)
t is small and it follows that

B(1)
t must be large (of size at least of order n) at time t = Tfirst. In this case thinning would

have a very strong effect. We note that this argument applies even to relatively well-behaved
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edge distributions such as the Es edge weights considered in [11], where the exploration
must proceed simultaneously from both endpoints with R1(t) = R2(t) = t .

In the heavy-tailed case that we consider, even the symmetric choice R1(t) = R2(t) = t
is in effect unbalanced. Indeed, at the earlier of the two freezing times, t = min

{
T (1)
fr , T (2)

fr

}
,

the faster-growing cluster has reached size OP(s2n ), whereas

min
{
T (1)
fr , T (2)

fr

} ≈ fn(min
{
M (1), M (2)

}
) < fn(max

{
M (1), M (2)

}
) (3.63)

(see Theorem 3.18) implies that the slower-growing cluster has not yet explored the unique
edge of weight max

{
M (1), M (2)

}
and therefore has size OP(1). This is a crucial reason for

introducing the freezing procedure of Sect. 3.4.
We are now ready to complete the proof of Theorem 2.4:

Proof of Theorem 2.4 According to Lemma 2.7, we can assume Conditions 2.1, 2.2 and 2.6.

We begin with the hopcount result (2.10). By Theorem 3.27, Hn
d= ∣∣V (1)

coll

∣∣ + ∣∣V (2)
coll

∣∣ + 1,
where (T (Pn )

coll , V (1)
coll, V

(2)
coll) is the first point of the Cox process Pn for which V (1)

coll and V (1)
coll

are unthinned. By Theorem 3.33, T (Pn )

coll = Tfirst whp, so that the pairs (V (1)
coll, V

(2)
coll) and

(V (1)
first, V

(2)
first) in Theorems 3.27 and 3.28 are the same whp. Hence, whp,

Hn − φn log(n/s3n )√
s2n log(n/s3n )

d=
∣∣V (1)

first

∣∣− 1
2φn log(n/s3n )√

s2n log(n/s3n )
+
∣∣V (2)

first

∣∣− 1
2φn log(n/s3n )√

s2n log(n/s3n )
+ oP(1),

(3.64)

so that Theorem 3.28 implies the CLT for Hn in (2.10).

For the weight result (2.9), Theorem 3.27 states that Wn
d= R1(T

(Pn )

coll ) + R2(T
(Pn )

coll ).
On the event {Tfirst ≥ Tunfr} ∩

{
Tfirst = T (Pn )

coll

}
(which, by Theorem 3.28 and the argument

above, occurs whp), the definition (3.35) of R1(t), R2(t) leads to R1(T
(Pn )

coll )+ R2(T
(Pn )

coll ) =
T (1)
fr + T (2)

fr + 2(Tfirst − Tunfr). Using again Theorem 3.28, we obtain

Wn
d= T (1)

fr + T (2)
fr +

log(n/s3n )

λn
+ OP(1/λn). (3.65)

Therefore, (2.9) follows from Theorem 3.18 (a) and Lemmas 3.12 and 3.19. Finally, the
independence of the limiting variables follows from the asymptotic independence in Theo-
rem 3.28.

Organisation of this paper. In the remainder of the paper, we use the outline given in
Sects. 2.1–3.7 and give the details and proofs omitted there. We have already mentioned how
these results complete the proof of our main results, as well as where these results are proved,
we thus now restrict to the relation to the local behavior as described in the companion paper
[21]. While [21] focusses on the local behaviour of FPP on Kn , in this paper we extend
the analysis to the global behavior. We will rely on some results from [21], but in a highly
localized way. Indeed, in Sect. 5 we rely on some coupling results from [21], in particular
[Part I, Theorem 3.4] and some of its extensions. In Sect. 9, we mainly rely on [Part I,
Theorem 2.15] and some related results. The other sections do not rely on [21].
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4 Scaling Properties of fn and �n

In this section,we derive several useful consequences ofConditions 2.1, 2.2 and 2.6, including
Lemma 3.19.We also verify that the edge-weight distributions in Examples 1.2 and 2.5 satisfy
the hypotheses of Theorem 2.4, and we prove Lemma 2.7, showing that we may without loss
of generality assume the stronger condition Condition 2.6 in place of Condition 2.3.

4.1 Growth and Density Bounds for fn and�n

In this section, we explore the key implications of Conditions 2.1–2.2 and 2.6 on fn and on
the intensity measure μn .

Lemma 4.1 Assume Conditions 2.2 and 2.6. Then there exists n0 ∈ N such that

fn(x) ≤
( x

x ′
)ε0sn

fn(x
′) whenever 1− δ0 ≤ x ≤ x ′, n ≥ n0. (4.1)

Proof Divide (2.7) or (2.12) by x and integrate between x and x ′ to obtain log fn(x ′) −
log fn(x) ≥ ε0sn

(
log x ′ − log x

)
whenever 1− δ0 ≤ x ≤ x ′, n ≥ n0, as claimed.

We call Condition 2.6 a density bound because it implies the following lemma, which will
also be useful in the study of two-vertex characteristics in Sect. 7:

Lemma 4.2 Assume Conditions 2.2 and 2.6. Then, for n sufficiently large, on the interval
( fn(1− δ0),∞), the measure μn is absolutely continuous with respect to Lebesgue measure
and

1{y> fn(1−δ0)}dμn(y) ≤ 1

ε0sn

f −1n (y)

y
dy. (4.2)

Proof. ByConditions 2.2 and2.6, fn is strictly increasingon (1−δ0,∞), so y = fn(μn(0, y))
for y > fn(1− δ0). Differentiating and again applying Conditions 2.2 and 2.6, we get

1 = f ′n(μn(0, y))
d

dy
μn(0, y) ≥ ε0sn

fn(μn(0, y))

μn(0, y)

d

dy
μn(0, y), y > fn(1− δ0).

Lemma 4.3 Assume Conditions 2.2 and 2.6. Then, for n sufficiently large, the density of μn

with respect to Lebesgue measure is at most 1/(ε0sn fn(1)) on the interval ( fn(1),∞).

Proof From Lemma 4.1 it follows immediately that f −1n (y) ≤ (y/ fn(1))1/ε0sn ≤ y/ fn(1)
for all y > fn(1) and sufficiently large n. The result now follows from Lemma 4.2.

Lemma 4.4 Assume Conditions 2.2 and 2.6. Then, given ε, ε̄ > 0, there exist n0 ∈ N and
K <∞ such that, for all n ≥ n0 and t ≥ 0,

∫
e−εy/ fn(1)1{y≥K fn(1)}μn(t + dy) ≤ ε̄/sn . (4.3)

Proof By Lemma 4.3, for large n, the density of μn with respect to Lebesgue measure is
bounded from above by 1/(ε0sn fn(1)) on ( fn(1),∞). Hence, for K > 1,
∫

e−εy/ fn(1)1{y≥K fn(1)}μn(t + dy) ≤
∫ ∞

t
e−ε(y−t)/ fn(1)1{y−t≥K fn(1)}

dy

ε0sn fn(1)
= e−εK

ε0snε
.

Taking K sufficiently large proves the claim.
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Lemma 4.5 Assume Conditions 2.1, 2.2 and 2.6. Then, given K < ∞, there exist εK > 0
and n0 ∈ N such that, for 0 ≤ t ≤ K fn(1) and n ≥ n0,

∫
e−λn(1)yμn(t + dy) ≥ εK /sn . (4.4)

Proof For any 0 ≤ t ≤ K fn(1),
∫

e−λn(1)yμn(t+dy) =
∫

e−λn(1)(y−t)1{y≥t}dμn(y) ≥ e−2λn(1)K fn(1)μn(K fn(1), 2K fn(1)).

(4.5)
By Lemma 3.12, λn fn(1) converges to a finite constant. Since fn is strictly increasing on
(1 − δ0,∞), y = fn( f −1n (y)) for all y > fn(1 − δ0). Writing xn = f −1n (y) and using
Conditions 2.1 and 2.6, we get

y( f −1n )′(y)
f −1n (y)

=
[ xn f ′n(xn)

fn(xn)

]−1 ≤ (ε0sn)
−1 ∀y > fn(1− δ0).

By Condition 2.1, fn(1+ x/sn)/ fn(1)→ ex for every given x , and it follows with Taylor’s

theorem that f −1n ( fn(1)K ) ∼ f −1n

(
fn
(
1+ log K

sn

))
and, therefore,μn(K fn(1), 2K fn(1)) =

f −1n (2K fn(1))− f −1n (K fn(1)) ∼ (log 2)/sn .

We are now in the position to prove Lemma 3.19:

Proof of Lemma 3.19 Bymonotonicity, f −1n (T (1)
n +T (2)

n ) ≥ max
{
f −1n (T (1)

n ), f −1n (T (2)
n )
} P−→

M(1) ∨M(2). For the matching upper bound, let Tn = T (1)
n ∨ T (2)

n and M = M(1) ∨M(2),

so that f −1n (Tn)
P−→M. Noting that f −1n (T (1)

n + T (2)
n ) ≤ f −1n (2Tn), it suffices to show that

f −1n (2Tn)
P−→M. But for δ > 0, Lemma 4.1 implies that fn(x + δ)/ fn(x) tends to infinity,

and is in particular larger than 2 for n sufficiently large, uniformly over x ∈ [1, R] for any
R <∞. It follows that f −1n (2Tn) ≤ (1∨ f −1n (Tn))+ δ with high probability, for any δ > 0.
Since M ≥ 1 a.s. and δ > 0 was arbitrary, this completes the proof.

We conclude the section with a remark on the connection between Theorem 2.4 above
and [Part I, Theorem 2.1] which states that, if sn/ log log n→∞, then

f −1n (Wn)
d−→ M (1) ∨ M (2). (4.6)

Remark 4.6 The statements for Wn in Theorem 2.4 and (4.6) are consistent. Indeed, if
sn/ log log n→∞, then Lemmas 4.1 and 3.12 imply

f −1n

( 1

λn
log
(
n/s3n

)) ≤
( log(n/s3n )

λn fn(1)

)1/ε0sn = (1+o(1)) exp
( 1

ε0sn
log log(n/s3n )

)
= 1+o(1).

(4.7)
Hence, Lemma 3.19 gives that (2.9) and (4.6) agree if sn/ log log n→∞.

4.2 Analysis of Specific Edge-Weight Distributions

Lemma 4.7 With the notation of (2.2)–(2.3), the relation (1.3) [with t 
→ L(t) slowly varying
as t →∞] holds if and only if

x
d

dx
log g(x) = x−α L̃(1/x) (4.8)
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with t 
→ L̃(t) slowly varying as t →∞. If either of these two equivalent conditions hold,
then L(t) ∼ L̃(t) as t →∞ and the sequences (sn)n, (s̃n)n defined by (1.4) and

s̃n = f ′n(1)
fn(1)

(4.9)

satisfy sn ∼ s̃n as n → ∞. Moreover if in addition sn → ∞ (or equivalently s̃n → ∞)

then Conditions 2.1, 2.2 and 2.3 (a) hold for the sequences ( fn(x), sn) or ( fn(x), s̃n). If
the stronger statement sn/ log log n →∞ (or equivalently s̃n/ log log n →∞) holds, then
Condition 2.3 (b) holds.

Proof. The proof is virtually identical to the proof of [Part I, Lemma 5.4], and we indicate
only those parts of the proof that differ.

We prove Condition 2.1 for fn and the sequence s̃n defined in (4.9). We compute

1

s̃n

x f ′n(x)
fn(x)

= g(1/n)

(1/n)g′(1/n)

x
n g
′ ( x

n

)

g
( x
n

) = x−α L̃(n/x)

L̃(n)
. (4.10)

Noting that x f ′n(x)/ fn(x) is the derivative of log fn(x) with respect to q = log x , we find

fn(x1/sn )

fn(1)
= exp

(∫ log(x1/sn )

0
sne

−αq L̃(ne−q)
L̃(n)

dq

)
= exp

(∫ log x

0
e−αθ/sn L̃(ne−θ/sn )

L̃(n)
dθ

)
,

(4.11)
after the substitution θ = snq . As n→∞, we have s̃n →∞ by assumption, so that the last
integrand converges to 1 pointwise. For each fixed x , the convergence is uniform over θ by
properties of slowly varying functions, so that fn(x1/sn )/ fn(1) → elog x = x as required.
(This argument remains valid, interchanging the limits of integration as necessary, when
x < 1.)

For Condition 2.3 (b), we note that if sn/ log log n → ∞ then Condition 2.3 (a) implies
Condition 2.3 (b) because, for any ε > 0, R > 1,

fn(R)

fn(1) log n
≥ Rεsn

log n
= exp (ε log Rsn − log log n)→∞.

Lemma 4.8 The edge-weight distributions and the associated sequences (sn)n from Exam-
ple 1.2 (for all values of the parameters a, γ and β) and Example 2.5 satisfy Conditions 2.1–
2.3.

Proof For Example 1.2, it is readily verified that the regular-variation condition (1.3) holds.
By Lemma 4.7 it remains to show that Condition 2.3 (b) holds when sn/ log log n � ∞,
i.e., for Example 1.2 (b) with 0 < γ ≤ 1. It suffices to find a sequence xn with
g(xn/n)/g(1/n) log n → ∞ such that s−1n xg′(x)/g(x) → 1 uniformly over 1/n ≤ x ≤
xn/n; in fact we will take xn = log n.

Since u 
→ ua(log(1+log(1/u)))γ is increasing, it follows that, with q = log(1/u),

F−1Y (u) = ua(log(1+log(1/u)))γ = exp
(−aq(log(1+ q))γ

)
. (4.12)

Setting u = 1− e−x and q = log(1/u) = − log(1− e−x ), (2.2) and the chain rule lead to

xg′(x)
g(x)

= xe−x

1− e−x

(
a(log(1+ q))γ + aγ

q

1+ q
(log(1+ q))γ−1

)
. (4.13)

In particular, we see that xg′(x)/g(x) is a slowly-varying function of q = − log(1 − e−x ),
say xg′(x)/g(x) = h(q) where q 
→ h(q) is slowly varying as x ↓ 0, q → ∞. Since
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q = log(1/x) + O(x) as x ↓ 0, we find that q = log n + O(log log n) + O((log n)/n) =
(log n)(1+ o(1)) uniformly on 1/n ≤ x ≤ (log n)/n, and consequently

1

sn

xg′(x)
g(x)

= h(q)

h(− log(1− e−1/n))
= 1+ o(1) (4.14)

uniformly on 1/n ≤ x ≤ (log n)/n by properties of slowly varying functions, as required.
On the other hand xg′(x)/g(x) → ∞ as x ↓ 0 implies in particular that xg′(x)/g(x) ≥ 2
for x sufficiently small, so that

g((log n)/n)

g(1/n)
≥ (log n)2 (4.15)

for n sufficiently large and we have shown that g(xn/n)/g(1/n) log n→∞, as required.
For Example 2.5, we compute fn(x) =

(
G−1(1− e−x/n)

)sn and

1

sn

x f ′n(x)
fn(x)

= (x/n)(G−1)′(1− e−x/n)
G−1(1− e−x/n)

. (4.16)

Write a = G ′(0) > 0. Since Z is positive-valued, we have G(0) = 0 and therefore
u/G−1(u) → a as u ↓ 0, whereas (G−1)′(u) → 1/a as u → 0. This implies that the
quantity in (4.16) tends to 1 whenever x/n→ 0, which allows us to conclude Conditions 2.2
and 2.3 (a). Similarly, from sn → ∞ we can infer that x f ′n(x)/ fn(x) ≥ 2, uniformly over
x ≤ log n, for n sufficiently large, whence fn(log n)/ fn(1) log n→∞ and Condition 2.3 (b)
holds. Finally, as in (4.11), we find

fn(x1/sn )

fn(1)
= exp

(∫ log x

0

1

sn

x̃ f ′n(x̃)
fn(x̃)

∣∣∣∣
x̃=eθ/sn

dθ

)
(4.17)

and comparing with (4.16), the integrand converges to 1 as n → ∞, uniformly over θ for
any fixed x , and Condition 2.1 follows.

4.3 Equivalence of Conditions: Proof of Lemma 2.7

The proof of Lemma 2.7 is based on the observation that if the functions fn, f̃n agree on
the interval [0, x] then, for the FPP problems with edge weights fn(nX

(Kn )
e ) and f̃n(nX

(Kn )
e ),

respectively, the optimal paths and their corresponding edge weights are identical whenever
either optimal path has weight less than fn(x) = f̃n(x).

Proof of Lemma 2.7 Let δ0 be the constant from Condition 2.2, let R > 1, and define

xn,R = R ∨ ( inf {x ≥ 1 : fn(x) ≥ 4eγ fn(1) log n
} )

,

ε
(R)

0 = 1

2
lim inf
n→∞ inf

1−δ0≤x≤xn,R

x

sn

d

dx
log fn(x). (4.18)

Conditions 2.2 and 2.3 imply that ε
(R)

0 > 0 for any R > 1, and there exists n(R)

0 ∈ N such
that x d

dx log fn(x) ≥ ε
(R)

0 sn for x ∈ [1 − δ0, xn,R] whenever n ≥ n(R)

0 . For definiteness,
we take n(R)

0 minimal with this property. We may uniquely define fn,R : [0,∞) → [0,∞)

by requiring that fn,R = fn if n < n(R)

0 and if n ≥ n(R)

0 then (a) fn,R(x) = fn(x) for all
x ≤ xn,R , and (b) x

sn
d
dx log fn,R(x) is constant on

[
xn,R,∞). By construction, the sequence

( fn,R)n satisfies Condition 2.6 for any fixed R > 1. Furthermore, given any x > 0, R > 1
implies that x1/sn ≤ R ≤ xn,R for n sufficiently large, and it follows that fn,R satisfies
Condition 2.1. Since xn,R ≥ R > 1 it follows that Condition 2.2 holds for ( fn,R)n , too.
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Let μn,R and λn,R denote the analogues of μn and λn when fn is replaced by fn,R , and
let λn,R = λn,R(1) and φn,R = λ′n,R(1)/λn,R(1) denote the corresponding parameters [see
(3.11) and (3.16)–(3.18)]. Let Wn,R, Hn,R denote the weight and hopcount, respectively,
associated to the FPP problem on Kn with edge weights fn,R(nX (Kn )

e ). Abbreviate wn,R =
Wn,R − log(n/s3n )/λn,R , hn,R = (Hn,R − φn,R log(n/s3n ))/

√
s2n log(n/s3n ).

By assumption, Theorem 2.4 holds assuming Conditions 2.1, 2.2 and 2.6. Therefore, it
applies to fn,R . Using Theorem 2.4, we conclude that for any k ∈ N, we may find n(R,k)

0 ∈ N

such that n(R,k)
0 ≥ n(R)

0 and

sup
x,y∈R

∣∣∣P
(
f −1n,R

(
wn,R

) ≤ x, hn,R ≤ y
)
− P(M (1) ∨ M (2) ≤ x)P(Z ≤ y)

∣∣∣ ≤ 1

k
, (4.19a)

∣∣λn,R fn,R(1)− e−γ
∣∣ ≤ 1

k
,

∣∣∣∣
φn,R

sn
− 1

∣∣∣∣ ≤
1

k
, (4.19b)

fn,R(R − 1)+ log(n/s3n )

λn,R
≤ fn,R(R) ∨ 4eγ fn(1) log n (4.19c)

whenever n ≥ n(R,k)
0 , and for definiteness we take n(R,k)

0 minimal with these properties. Indeed,
using the continuity of M (1) ∨ M (2) and Z , the uniform convergence in (4.19a) follows from
the pointwise convergence at a finite grid ((xi , yi ))i depending on k and monotonicity of the
distribution functions. For (4.19c), use the inequality a + b ≤ 2(a ∨ b), Lemma 3.12, and
note that 2 fn,R(R − 1) ≤ fn,R(R) for n sufficiently large by Lemma 4.1. Set

Rn =
(
2 ∨max

{
k ∈ N : n ≥ n(k,k)

0

} ) ∧ n, and λn = λn,Rn , φn = φn,Rn . (4.20)

Since n(k,k)
0 is finite for each k ∈ N, it follows that Rn →∞. Moreover, as soon as n ≥ n(2,2)

0 ,
we have n ≥ n(Rn ,Rn )

0 , so that (4.19a)–(4.19c) hold with (R, k) = (Rn, Rn). By construction,
fn,R(1) = fn(1), and we conclude in particular that φn/sn → 1 and λn fn(1)→ e−γ .
Given two functions fn and f̃n , we can couple the corresponding FPP problems by

choosing edge weights fn(nX
(Kn )
e ) and f̃n(nX

(Kn )
e ), respectively. Let x̄ > 0. On the event

{Wn ≤ fn(x̄)}, the optimal path π1,2 uses only edges of weight at most fn(x̄). If fn and f̃n
agree on the interval [0, x̄], then the edges along that path have the same weights in the two
FPP problems and we deduce thatWn = W̃n and Hn = H̃n , where W̃n and H̃n are the weight
and the hopcount of the optimal path in the problem corresponding to f̃n .

Consequently, on the event
{
Wn,Rn ≤ fn,Rn (xn,Rn )

}
, Wn = Wn,Rn and Hn = Hn,Rn . By

(4.19a), it remains to show that this event occurs whp. Since Rn → ∞, we conclude from
(4.19a) thatWn,Rn ≤ fn,Rn (Rn−1)+ log(n/s3n )/λn,Rn whp. But from the definition of xn,Rn

and fn,Rn it follows that fn,Rn (xn,Rn ) ≥ fn,Rn (Rn)∨4eγ fn,Rn (1) log n, so (4.19c) completes
the proof.

5 Coupling Kn and the PWIT

In Theorem 3.26, we indicated that two random processes, the first passage exploration
processes S and B on Kn and T (1,2), respectively, could be coupled. In this section we
explain how this coupling arises as a special case of a general family of couplings between
Kn , understood as a random edge-weighted graph with i.i.d. exponential edge weights, and
the PWIT. We rely on some results from the companion paper [21], in particular [Part I,
Theorem 3.4, Lemma 3.6 and Proposition 3.7].
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5.1 Exploration Processes and the Definition of the Coupling

As in Sect. 3.5, we define M∅ j = j , for j = 1, 2, and to each v ∈ T (1,2) \ {∅1, ∅2}, we
associate a mark Mv chosen uniformly and independently from [n]. We next define what an
exploration process is:

Definition 5.1 (Exploration process on two PWITs) Let F0 be a σ -field containing all null
sets, and let (T (1,2), X) be independent of F0. We call a sequence E = (Ek)k∈N0 of subsets
of T (1,2) an exploration process if, with probability 1, E0 = {∅1, ∅2} and, for every k ∈ N,
either Ek = Ek−1 or else Ek is formed by adjoining to Ek−1 a previously unexplored child
vk ∈ ∂Ek−1, where the choice of vk depends only on the weights Xw and marks Mw for
vertices w ∈ Ek−1 ∪ ∂Ek−1 and on events in F0.

Examples for exploration processes are given by FPP and IP on T (1,2). For FPP, as defined
inDefinition 3.4, it is necessary to convert to discrete time by observing the branching process
at those moments when a new vertex is added. The standard IP on T (1,2) is defined as follows.
Set IP(0) = {∅1, ∅2}. For k ∈ N, form IP(k) inductively by adjoining to IP(k − 1) the
boundary vertex v ∈ ∂IP(k − 1) of minimal weight. However, an exploration process is also
obtained when we specify at each step (in any suitably measurable way) whether to perform
an invasion step in T (1) or T (2).

For k ∈ N, let Fk be the σ -field generated by F0 together with the weights Xw and
marks Mw for vertices w ∈ Ek−1 ∪ ∂Ek−1. Note that the requirement on the choice of vk in
Definition 5.1 can be expressed as the requirement that E is (Fk)k-adapted.

For v ∈ T (1,2), define the exploration time of v by

Nv = inf {k ∈ N0 : v ∈ Ek} . (5.1)

Definition 5.2 (Thinning of two PWITs) The vertex v ∈ T (1,2) \ {∅1, ∅2} is thinned if it has
an ancestor v0 = pk(v) (possibly v itself) such that Mv0 = Mw for some unthinned vertex
w with Nw < Nv0 . Write Ẽk for the subgraph of Ek consisting of unthinned vertices.

We define the stopping times

N (i) = inf
{
k ∈ N0 : Mv = i for some v ∈ Ẽk

}
(5.2)

at which i ∈ [n] first appears as a mark in the unthinned exploration process. Note that, on the
event {N (i) <∞}, Ẽk contains a unique vertex in T (1,2) whose mark is i , for any k ≥ N (i);
call that vertex V (i). On this event, we define

X(i, i ′) = min
{
Xw : Mw = i ′, p (w) = V (i)

}
. (5.3)

We define, for an edge
{
i, i ′
} ∈ E(Kn),

X (Kn )

{i,i ′} =

⎧
⎪⎨

⎪⎩

1
n X(i, i ′) if N (i) < N (i ′),
1
n X(i ′, i) if N (i ′) < N (i),

E{i,i ′} if N (i) = N (i ′) = ∞ or N (i) = N (i ′) = 0,

(5.4)

where (Ee)e∈E(Kn) are exponential variables with mean 1, independent of each other and of
(Xv)v .

Theorem 5.3 If E is an exploration process on the union T (1,2) of two PWITs, then the edge
weights X (Kn )

e defined in (5.4) are exponential with mean 1, independently for each e ∈
E(Kn).

123



M. Eckhoff et al.

The ideaunderlyingTheorem5.3 is that eachvariable 1
n X(i, i ′) is exponentially distributed

conditionally on the past up to the moment N (i) when it may be used to set the value of
X (Kn )

{i,i ′}. Theorem 5.3 restates [Part I, Theorem 3.4] and is proved in that paper.

5.2 Minimal-Rule Exploration Processes

An important class of exploration processes, which includes both FPP and IP, are those
exploration processes determined by a minimal rule in the following sense:

Definition 5.4 A minimal rule for an exploration process E on T (1,2) is an (Fk)k-adapted
sequence (Sk,≺k)

∞
k=1, where Sk ⊂ ∂Ek−1 is a (possibly empty) subset of the boundary

vertices of Ek−1 and ≺k is a strict total ordering of the elements of Sk (if any) such that the
implication

w ∈ Sk, p (v) = p (w) , Mv = Mw, Xv < Xw �⇒ v ∈ Sk, v ≺k w (5.5)

holds. An exploration process is determined by the minimal rule (Sk,≺k)
∞
k=1 if Ek = Ek−1

whenever Sk = ∅ and otherwise Ek is formed by adjoining to Ek−1 the unique vertex vk ∈ Sk
that is minimal with respect to ≺k .

In words, in every step k there is a set of boundary vertices Sk fromwhich we can select for
the next exploration step. The content of (5.5) is that, whenever a vertex w ∈ Sk is available
for selection, then all siblings of w with the same mark but smaller weight are also available
for selection and are preferred over w.

For FPP without freezing on T (1,2) with edge weights fn(Xv), we take v ≺k w if and only
if Tv < Tw [recall (3.10)] and take Sk = ∂Ek−1. For IP on T (1,2), we have v ≺k w if and only
if Xv < Xw; the choice of subset Sk can be used to enforce, for instance, whether the kth
step is taken in T (1) or T (2).

Recall the subtree Ẽk of unthinned vertices from Definition 5.2 and the subgraph πM (Ẽk)
fromDefinition 3.7. That is, πM (Ẽk) is the union of two trees with roots 1 and 2, respectively,
and for v ∈ Ẽk \{∅1, ∅2},πM (Ẽk) contains verticesMv andMp(v) and the edge

{
Mv, Mp(v)

}
.

For any i ∈ [n] for which N (i) <∞, recall that V (i) is the unique vertex of Ẽk (k ≥ N (i))
for which MV (i) = i . Define V (i, i ′) to be the first child of V (i) with mark i ′.

Recalling (5.3), an equivalent characterization of V (i, i ′) is

X(i, i ′) = XV (i,i ′). (5.6)

The following lemma shows that, for an exploration process determined by a minimal rule,
unthinned vertices must have the form V (i, i ′):

Lemma 5.5 Suppose E is an exploration process determined by a minimal rule (Sk,≺k)
∞
k=1

and k ∈ N is such that Ẽk �= Ẽk−1. Let ik = Mp(vk ) and i
′
k = Mvk . Then vk = V (ik, i ′k).

See the proof of [Part I, Lemma 3.6].
If E is an exploration process determined by a minimal rule, then we define

S(Kn )

k = {{i, i ′} ∈ E(Kn) : i ∈ πM (Ẽk−1), i ′ /∈ πM (Ẽk−1), V (i, i ′) ∈ Sk
}

(5.7)

and
e1 ≺̃k e2 ⇐⇒ V (i1, i

′
1) ≺k V (i2, i

′
2), e1, e2 ∈ S(Kn )

k , (5.8)

where e j =
{
i j , i ′j

}
and i j ∈ πM (Ẽk−1), i ′j /∈ πM (Ẽk−1) as in (5.7).
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Proposition 5.6 (Thinned minimal rule) Suppose E is an exploration process determined by
a minimal rule (Sk,≺k)

∞
k=1. Then, under the edge-weight coupling (5.4), the edge weights of

πM (Ẽk) are determined by

X (Kn )

{Mv,Mp(v)} = 1
n Xv for any v ∈ ∪∞k=1Ẽk \ {∅1, ∅2} (5.9)

and generally

X (Kn )

{i,i ′} = 1
n XV (i,i ′) whenever i ∈ πM (Ẽk−1), i ′ /∈ πM (Ẽk−1) for some k ∈ N. (5.10)

Moreover, for any k ∈ N for which Ẽk �= Ẽk−1, πM (Ẽk) is formed by adjoining to πM (Ẽk−1)
the unique edge ek ∈ S(Kn )

k that is minimal with respect to ≺̃k .

Proposition 5.6 asserts that the subgraph πM (Ẽk) of Kn , equipped with the edge weights
(X (Kn )

e )e∈E(πM (Ẽk )), is isomorphic as an edge-weighted graph to the subgraph Ẽk of T (1,2),

equipped with the edge weights
( 1
n Xv

)
v∈Ẽk\{∅1,∅2}. Furthermore, the subgraphs πM (Ẽk)

can be grown by an inductive rule. Thus the induced subgraphs (πM (Ẽk))∞k=0 themselves
form a minimal-rule exploration process on Kn , with a minimal rule derived from that of
E , with the caveat that ≺̃k may depend on edge weights from Ek−1 \ Ẽk−1 as well as from
πM (Ẽk−1).

See the proof of [Part I, Proposition 3.7] for the proof of Proposition 5.6.

5.3 FPP and the Two Smallest-Weight Trees: Proof of Theorem 3.22

In this section, we discuss the relationship between S and FPP distances, and we prove
Lemma 3.20 and Theorem 3.22.

Proof of Lemma 3.20 Define

S̄u = S̄ (1)
u ∪ S̄ (2)

u , S̄ ( j)
u = SWT ( j)

R j (u). (5.11)

To describe the discrete-time evolution of S̄ = (S̄u)u≥0, denote by τ̄k−1 the time where the
(k − 1)th vertex (not including vertices 1 and 2) was added to S̄. At time u = 0, S̄0 is equal
to S0, and contains vertex 1 and 2 and no edges. Having constructed the process until time
τ̄k−1, at time

τ̄k = min
j∈{1,2} min

e∈∂S̄( j)
τ̄k−1

R−1j
(
dKn ,Y (Kn ) ( j, e)+ Y (Kn )

e

)
(5.12)

adjoin the boundary edge ek to S̄
( jk )

τ̄k−1 , where ( jk, ek) is the minimizer in (5.12). [As in (3.39),

e is an edge from e ∈ S̄ ( j)
τ̄k−1 to e /∈ S̄ ( j)

τ̄k−1 ]. Note that the arrival times in S̄ ( j) are given by

T S̄( j)
(e) = R−1j (dKn ,Y (Kn ) ( j, e)) (5.13)

by construction, so that we may rewrite (5.12) as

τ̄k = min
j∈{1,2} min

e∈∂S̄( j)
τ̄k−1

R−1j
(
R j
(
T S̄( j)

(e)
)+ Y (Kn )

e

)
. (5.14)

Comparing (5.14) with (3.39), S and S̄ will evolve in the same way until the time

τ̄ = min
{
t : S̄ (1)

t ∩ S̄ (2)
t �= ∅

}
(5.15)
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when S̄ first accepts an edge between S̄ (1) and S̄ (2). In particular, the minimization problem in
(5.14) will be the same as in (3.40), and the minimizer will be a.s. unique, as long as τ̄k ≤ τ̄ .
Therefore we can choose J , J ′ with

{
J , J ′

} = {1, 2} and I ∈ S̄ (J )

τ̄−, I ′ ∈ S̄ (J ′)
τ̄− such that, at

time τ̄ , the edge between I and I ′ is adjoined to S̄ (J ). [In other words, j = J and e = {I , I ′}
is the minimizer in (5.14)].

Because the minimizer in (5.14) is unique, no vertex is added to S at time τ̄ . In particular,
T S(i) < τ̄ for every i ∈ Sτ̄ . Since S ( j)

t and S̄ ( j)
t agree for t < τ̄ , the arrival times before τ̄

must coincide. Recalling (5.13),

T S(i) = T S̄( j)
(i) = R−1j (dKn ,Y (Kn ) ( j, i))

dKn ,Y (Kn ) ( j, i) = R j (T
S(i))

if i ∈ S ( j)
τ̄ . (5.16)

In addition, S (J ′)
τ̄ and S̄ (J ′)

τ̄ have the same vertex set while S (J )

τ̄ and S̄ (J )

τ̄ differ only by the
vertex I ′. It follows that

dKn ,Y (Kn ) ( j, i) ≥ R j (τ ) if i /∈ S ( j)
τ̄ . (5.17)

Consider the optimal path from vertex J to vertex I ′. Since I ′ is adjoined to S̄ (J ) at time
τ̄ , it follows from (5.13) that dKn ,Y (Kn ) (J , I ′) = RJ (τ̄ ). Moreover, since I is the parent of I ′
in S̄ (J )

τ̄ = SWT (J )

RJ (τ̄ ), we have dKn ,Y (Kn ) (J , I ′) = dKn ,Y (Kn ) (J , I )+ Y (Kn )

{I ,I ′}. Applying (5.16)
to the path from J to I to I ′ to J ′,

Wn ≤ dKn ,Y (Kn ) (J , I )+ Y (Kn )

{I ,I ′} + dKn ,Y (Kn ) (J ′, I ′)

= RJ (T
S(I ))+ Y (Kn )

{I ,I ′} + RJ ′(T
S(I ′))

= RJ (τ )+ RJ ′(T
S(I ′)) ≤ RJ (τ̄ )+ RJ ′(τ̄ ). (5.18)

In particular, both sides of (3.41) are bounded above by R1(τ̄ )+ R2(τ̄ ).
The bound (5.18) will allow us to exclude vertices that arrive after time τ̄ . To this end,

we will show that (a) if a path π from vertex 1 to vertex 2 contains a vertex not belonging
to Sτ̄ , then the weight of π is greater than R1(τ̄ ) + R2(τ̄ ); and (b) if i1 ∈ S (1) \ S (1)

τ̄ or
i2 ∈ S (2) \ S (2)

τ̄ , then the term R1(T S(i1))+ Y (Kn )

{i1,i2} + R2(T S(i2)) in the minimum (3.41) is
greater than R1(τ̄ )+ R2(τ̄ ).

For (a), suppose that π contains a vertex i /∈ Sτ̄ . Since the vertex sets of Sτ̄ and S̄τ̄

coincide, it follows that i /∈ S̄τ̄ , and by right continuity i /∈ S̄t for some t > τ̄ . Since R1+ R2

is strictly increasing, (5.13) shows that the weight of π is at least

dKn ,Y (Kn ) (1, i)+ dKn ,Y (Kn ) (2, i) ≥ R1(t)+ R2(t) > R1(τ̄ )+ R2(τ̄ ). (5.19)

For (b), suppose for specificity that i1 ∈ S (1) \ S (1)
τ̄ . If in addition i2 ∈ S (2) \ S (2)

τ̄ then
T S(i1), T S(i2) > τ̄ and the strict monotonicity of R1+ R2 gives the desired result. We may
therefore suppose i2 ∈ S (2)

τ̄ . Since S (1) and S (2) are disjoint, we must have i1 /∈ S (2)
τ̄ , so that

dKn ,Y (Kn ) (2, i1) ≥ R2(τ̄ ). In particular, by considering the optimal path from 2 to i2 together
with the edge from i2 to i1, we conclude that dKn ,Y (Kn ) (2, i2) + Y (Kn )

{i1,i2} ≥ R2(τ̄ ). By the

assumption i2 ∈ S (2)
τ̄ , we may rewrite this as R2(T S(i2)) + Y (Kn )

{i1,i2} ≥ R2(τ̄ ). Together with
R1(T S(i1)) > R1(τ̄ ), this proves (b).

To complete the proof, consider a path π from vertex 1 to vertex 2. By statement (a) and
(5.18), π must contain only vertices from Sτ̄ if it is to be optimal. Since 1 ∈ S (1)

τ̄ but 2 ∈ S (2)
τ̄ ,

it follows that π must contain an edge between some pair of vertices i1 ∈ S (1)
τ̄ and i2 ∈ S (2)

τ̄ .
The minimum possible weight of such a path is dKn ,Y (Kn ) (1, i1)+ Y (Kn )

{i1,i2} + dKn ,Y (Kn ) (2, i2),
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which agrees with the corresponding term in (3.41) by (5.16). Therefore (3.41) is verified if
the minimum is taken only over i1 ∈ S (1)

τ̄ , i2 ∈ S (2)
τ̄ . But statement (b) and (5.18) shows that

the remaining terms must be strictly greater.

Proof of Theorem 3.22 Since R1 + R2 is strictly increasing, the relation Wn = R1(Tcoll) +
R2(Tcoll) is a reformulation of Definition 3.21.

Recall the time τ̄ from the proof of Lemma 3.20. We showed there that the minimizer of
(3.41) must come from vertices i1 ∈ S (1)

τ̄ , i2 ∈ S (2)
τ̄ . In particular, by (5.16),

Wn = R1
(
T S(I1)

)+ Y (Kn )

{I1,I2} + R2
(
T S(I2)

)
(5.20)

expresses Wn as the weight of the path formed as the union of the optimal path from 1 to
I1; the edge from I1 to I2; and the optimal path from I2 to 2. In particular, π1,2 is the same
as this path. Since T S(I j ) < τ and S ( j)

t = SWT ( j)

R j (t)
for t < τ̄ , it follows that the optimal

paths from j to I j coincide with the unique paths in S ( j)
τ̄ between these vertices. The relation

Hn = H(I1)+ H(I2)+ 1 follows by counting the edges in these subpaths.
It remains to show that T S(I j ) < Tcoll. Define t1 = R−11 (R1(T S(I1))+Y (Kn )

{I1,I2}). Recalling
(3.39), we see that t1 is the time at which the edge from I1 to I2 is adjoined to S (1), provided
that I2 has not already been added to S at some point strictly before time t1. By construction,
I2 is added to S (2), not S (1), so it must be that T S(I2) < t1. [Equality is not possible because
of our assumption that the minimizers of (3.39) are unique.] Aiming for a contradiction,
suppose that T S(I2) ≥ Tcoll. Comparing the relation Wn = R1(Tcoll) + R2(Tcoll) to (5.20)
gives R1(T S(I2)) + Y (Kn )

{I1,I2} ≤ R1(Tcoll), so that t1 ≤ Tcoll. This is a contradiction since
t1 > T S(I2) ≥ Tcoll. Similarly we must have T S(I1) < Tcoll. This shows that the unique
paths in S ( j)

τ from j to I j are actually paths in S ( j)
Tcoll

, as claimed.

5.4 B andS as Exploration Processes: Proof of Theorem 3.26

Before proving Theorem 3.26, we show that the discrete-time analogue ofB is an exploration
process determined by a minimal rule:

Lemma 5.7 Let vk denote the kth vertex added to B, excluding the root vertices ∅1, ∅2, and
set Ek = BTB

vk
for k ≥ 1, E0 = B0 = {∅1, ∅2} . Then E is an exploration process determined

by a minimal rule.

Proof Consider the kth step and define

τ
( j)
next(k) = min

v∈∂Ek−1∩T ( j)
Tv, (5.21)

i.e., the next birth time of a vertex in T ( j) in the absence of freezing, and let v
( j)
k denote the

a.s. unique vertex attaining the minimum in (5.21). Recalling the definition of the filtration
Fk , we see that τ

( j)
next(k) and v

( j)
k are Fk-measurable.

The variable T ( j)
fr is not Fk-measurable. However, the event

{
T ( j)
fr < τ

( j)
next(k)

}
is Fk-

measurable. To see this, define

τ
( j)
fr (k) = inf

{
t ≥ 0 :

∑

v∈Ek−1∩T ( j)

1{Tv≤t}
∫ ∞

t−Tv

e−λn(1)(y−(t−Tv))dμn(y) ≥ sn

}
, (5.22)

so that τ
( j)
fr (k) is Fk-measurable, and abbreviate τunfr(k) = τ

(1)
fr (k) ∨ τ

(2)
fr (k). We will use

τ
( j)
fr (k) as an approximation to T ( j)

fr based on the information available in Fk . By analogy
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with (3.35) and (3.37), we also define

R j,k(t) =
(
t ∧ τ

( j)
fr (k)

)+ ((t − τunfr(k)) ∨ 0) ,

R−1j,k(t) =
{
t if t ≤ τ

( j)
fr (k),

τunfr(k)− τ
( j)
fr (k)+ t if t > τ

( j)
fr (k).

(5.23)

We note the following:

(i) Ek−1 ∩ T ( j) = BP ( j)

t ′ and τ
( j)
next(k) = min

{
Tv : v ∈ ∂BP ( j)

t ′
}
, where t ′ = Tvk−1 .

(ii) The sum in (5.22) agrees with the sum in the definition (3.31) of T ( j)
fr whenever t <

τ
( j)
next(k).

(iii) T ( j)
fr < τ

( j)
next(k) if and only if τ

( j)
fr (k) < τ

( j)
next(k), and in this case T ( j)

fr = τ
( j)
fr (k).

(iv) For j ∈ {1, 2}, let I ( j)
k ⊆ [0, τ ( j)

next(k)] be nonempty. The minimizers of R−1j,k(t) and
R−1j (t) over all pairs (t, j)with t ∈ I ( j)

k and j ∈ {1, 2} agree and return the same value.

Statement (i) follows by induction and (3.36). For (ii), note that the sums in (3.31) and
(5.22) agreewhenever BP ( j)

t ⊂ Ek−1∩T ( j), so using (i) it suffices to show that BP ( j)
t ⊂ BP ( j)

t ′
for t < τ

( j)
next(k). But for any t ′ and any t < min

{
Tv : v ∈ ∂BP ( j)

t ′
}
we have BP ( j)

t ⊂ BP ( j)

t ′
by definition, so the second part of (i) completes the proof.

Statement (iii) follows from (ii): if one of the sums in (3.31) or (5.22) exceeds sn before
time τ

( j)
next(k), then so does the other, and the first times where they do so are the same. In

particular,
{
T ( j)
fr < τ

( j)
next(k)

}
is Fk-measurable because τ

( j)
fr (k) and τ

( j)
next(k) are.

To prove (iv), we distinguish three cases. If τ ( j)
fr (k) ≥ τ

( j)
next(k), then R−1j,k and R−1j reduce to

the identity on [0, τ ( j)
next(k)]by (iii).Hence, (iv) holds if τ ( j)

fr (k) ≥ τ
( j)
next(k) for both j ∈ {1, 2}. If

τ
( j)
fr (k) < τ

( j)
next(k) for both j ∈ {1, 2}, then R−1j,k and R−1j agree everywhere according to (iii).

Finally, consider the case that τ ( j)
fr (k) ≥ τ

( j)
next(k) and τ

( j ′)
fr (k) < τ

( j ′)
next(k) for

{
j, j ′

} = {1, 2}.
Then T ( j)

fr ≥ τ
( j)
next(k) and, therefore, R

−1
j,k(t) = R−1j (t) = t on I ( j)

k . Moreover, T ( j ′)
fr = τ

( j ′)
fr (k)

implying that R−1j ′,k(t) = R−1j ′ (t) = t on [0, τ ( j ′)
fr ] and for t ∈

(
τ

( j ′)
fr (k), τ ( j ′)

next(k)
]
, R−1j ′,k(t) ≥

τunfr(k) ≥ τ
( j)
next(k) and R−1j ′ (t) ≥ Tunfr ≥ τ

( j)
next(k). Hence, in all three cases, the functions

agree on the relevant domain and we have proved (iv).
Set (vEk , jEk ) to be the pair that minimizes R−1j,k(Tv) among all pairs (v, j) with v ∈

∂Ek−1∩T ( j), j ∈ {1, 2}. Note that R−1j,k(t) can be infinitewhen τ
( j)
fr (k) <∞ and τ

( j ′)
fr (k) = ∞,

where
{
j, j ′

} = {1, 2}, but in this case R−1j ′,k(t) must be finite for all t . Furthermore R−1j,k is
strictly increasing whenever it is finite. Recalling that the times Tv are formed from variables
with continuous distributions, it follows that the minimizing pair (vEk , jEk ) is well defined a.s.

Since R−1j,k is Fk-measurable, the choice of vEk is determined by a minimal rule with

Sk = ∂Ek−1. To complete the proof, we must show that vEk = vk .
The vertex vk is the first coordinate of the pair (vk, jk) that minimizes TB

v = R−1j (Tv)

over all pairs (v, j) with v ∈ ∂B( j)

TB
vk−1

, j ∈ {1, 2}. (Once again, this minimizing pair is

well defined a.s., reflecting the fact that, a.s., B never adds more than one vertex at a
time.) Since Ek−1 = BTB

vk−1
, the pairs (vEk , jEk ) and (vk, jk) are both minimizers over the

set
{
(v, j) : v ∈ ∂Ek−1 ∩ T ( j)

}
. Moreover, since R−1j and R−1j,k are both strictly increasing

(when finite), both minimizations can be restricted to the set
{
(v

( j)
k , j) : j = 1, 2

}
, where

v
( j)
k is the minimizer in (5.21). Since T

v
( j)
k
= τ

( j)
next(k), statement (iv) with I j,k =

{
τ

( j)
next(k)

}

implies vEk = vk , as claimed.
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Proof of Proposition 3.25 By Theorem 5.3, the edge weights X (Kn )
e associated via (5.4) to the

exploration process in Lemma 5.7 are independent exponential random variables with mean
1. Recalling (2.1)–(2.2), the corresponding edge weights Y (Kn )

e = g(X (Kn )
e ) are independent

with distribution function FY . To complete the proof it suffices to observe that N (i) < N (i ′)
if and only if T B̃(i) < T B̃(i ′) and that T B̃(i) is finite for all i ∈ [n] since the FPP process
explores every edge in T (1,2) eventually. Hence, definitions (3.46) and (5.4) agree.

Proof of Theorem 3.26 We resume the notation from the proof of Lemma 5.7. Create the edge
weights on Kn according to (5.4). Denote by τk′−1 the time where the (k′ − 1)th vertex (not
including the vertices 1 and 2) was added to S [see (3.39)]. As in the proof of Theorem 3.8,
both B̃ and S are increasing jump processes and πM (B̃0) = S0. By an inductive argument
we can suppose that k, k′ ∈ N are such that Ẽk �= Ẽk−1 and πM (Ẽk−1) = Sτk′−1 . The proof
will be complete if we can prove that (a) the edge e′k′ adjoined to Sτk′−1 to form Sτk′ is the
same as the edge ek =

{
ik, i ′k

}
adjoined to πM (Ẽk−1) to form πM (Ẽk); and (b) τk′ = TB

vk
.

Let i ∈ Sτk′−1 , and let j ∈ {1, 2} be such that i ∈ S ( j)
τk′−1 . By the inductive hypoth-

esis, V (i) ∈ Ẽk−1 ∩ T ( j) and the unique path in Sτk′−1 from i to j is the image of
the unique path in Ẽk−1 from V (i) to ∅ j under the mapping v 
→ Mv (recall Def-
inition 3.7). According to (5.9), (2.1) and (2.3), the edge weights along this path are
Y (Kn )

{Mpm−1(V (i)),Mpm(V (i))} = g(X (Kn )

{Mpm−1(V (i)),Mpm(V (i))}) = g
( 1
n X pm−1(V (i))

)
and fn(X pm−1(V (i))),

for m = 1, . . . , |V (i)|. Summing gives dSτk′−1 ,Y (Kn ) ( j, i) = TV (i).

In addition, let i ′ /∈ Sτk′−1 and write e = {
i, i ′
}
. By (5.10), X (Kn )

e = 1
n XV (i,i ′), so

that Y (Kn )
e = fn(XV (i,i ′)). Thus the expression in the right-hand side of (3.39) reduces to

R−1j
(
TV (i) + fn(XV (i,i ′))

)
, i.e., R−1j

(
TV (i,i ′)

)
. The edge e′k′ minimizes this expression over

all i ∈ Sτk′−1 , i
′ /∈ Sτk′−1 . By Proposition 5.6, the edge ek =

{
ik, i ′k

}
minimizes R−1j,k(TV (i,i ′))

over all i ∈ πM (Ẽk−1), i ′ /∈ πM (Ẽk−1) (with j such that V (i) ∈ E ( j)
k−1). By the induction

hypothesis, statement (iv) in the proof of Lemma 5.7 and monotonicity, these two mini-
mization problems have the same minimizers, proving (a), and return the same value, which
completes the proof of (b).

5.5 Coupling and Cox Processes: Proof of Theorem 3.27

In this section we explain the modified coupling in, and give the proof of Theorem 3.27.

Proof of Theorem 3.27 The edge-weight coupling (3.46) selects the edge weights Y (Kn )

{i1,i2} for
i1 ∈ S (1), i2 ∈ S (2) based on values fn(Xw) for which p (w) ∈ B̃ P and

{
Mp(w), Mw

} =
{i1, i2}. Under the present definition ofB [see (3.36)], such verticesw are eventually explored,
and consequently the values fn(Xw) can be recovered by observing (Bt )t≥0. On the other
hand, in the context of Theorem 3.27, we want the values fn(Xw) to behave as a Cox process
[with respect to B, R1, R2, (Mv)v∈B]. For this reason, we will modify the definition of B so
that it does not explore vertices w of this kind, and we will replace the contribution of those
vertices using an additional source of randomness.2

As always, we have two independent PWITs (T ( j), X ( j)), j ∈ {1, 2}, the marks Mv ,
v ∈ T (1,2), and a family of independent exponential random variables Ee, e ∈ E(K∞), with

2 Alternatively, we could retain the definition of B and set the edge weights Y (Kn )

{i1,i2} for i1 ∈ S(1), i2 ∈ S(2)

using an additional source of randomness. We prefer to avoid this option because it would entail proving a
more complicated version of Theorem 5.3.
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mean 1, independent of the PWITs and themarks. In addition, from each vertex v we initialise
an independent PWIT with vertices (v,w′), edge weights X ′

(v,w′) [such that (X ′
(v,w′k))

∞
k=1

forms a Poisson point process with rate 1 on (0,∞)] and marks M ′
(v,w′) uniform on [n], all

independent of each other and of the original variables Xv, Mv .
First consider (B, B̃, R1, R2) as normally constructed, without using the auxiliary PWITs

with vertices (v,w′). Fix i, i ′ ∈ [n], i �= i ′, and suppose for definiteness that T B̃(i) < T B̃(i ′).
[If instead T B̃(i ′) < T B̃(i), interchange the roles of i and i ′ in the following discussion.]
According to (3.46) or (5.4), the edge weight X (Kn )

{i,i ′} is set to be 1
n X(i, i ′), where X(i, i ′) is

the first point in the Poisson point process

P (i,i ′) =
∑

w : p(w)=V (i),Mw=i ′
δXw (5.24)

of intensity 1/n.
Now condition on V (i) and V (i ′) belonging to different trees, say V (i) ∈ T (J ), V (i ′) ∈

T (J ′) where
{
J , J ′

} = {1, 2}. For this to happen, the children of V (i) having mark
i ′ must not have been explored by time TB

V (i ′). A child w of V (i) is explored at time

R−1J (Tw) = R−1J (TV (i) + fn(Xw)), so we can reformulate this by saying that the Pois-
son point process P (i,i ′) must contain no point x with R−1J (TV (i) + fn(x)) ≤ TB

V (i ′). Using

the relation Tv = R j (TB
v ) for v ∈ T ( j), we can rewrite this as the condition that P (i,i ′)

contains no point x with fn(x) ≤ RJ (TB
V (i ′)) − RJ (TB

V (i)) = �RV (i),V (i ′). However, the
condition gives no information about points of larger value. It follows that, condition-
ally on (Bt , B̃t , R1(t), R2(t))t≤T B̃(i ′), P

(i,i ′) is a Poisson point process of intensity 1/n on

( f −1n (�RV (i),V (i ′)),∞).
To preserve this property when conditioning on (Bt , R1(t), R2(t), (Mv)v∈Bt ) for t >

T B̃(i ′), replace the edge weights and marks of all vertices w (and their descendants) for
which p (w) = V (i), Mw = i ′ and fn(Xw) > �RV (i),V (i ′), by the edge weights and
marks of the auxiliary vertices (V (i), w′) (and their descendants) for which p

(
w′
) = V (i),

M ′
(V (i),w′) = i ′ and fn(X ′(V (i),w′)) > �RV (i),V (i ′). Modify the evolution of B, R1, R2 for

t > T B̃(i ′) so as to use the replacement edge weights X ′
v,w′ , but continue to use the original

edge weights Xw in the edge-weight coupling (5.4). [Formally, modify the minimal rule from
Lemma 5.7 so that vertices are ineligible for exploring once they have been replaced, but
add to the sum in (5.22) the contribution from any replacement vertices from the auxiliary
PWITs that would have been explored at time t .]

These replacements do not change the law of B, R1, R2, (Mv)v∈B, or the edge
weights X (Kn )

e . The pointwise equality between πM (B̃) and S is unaffected: the replaced
vertices are thinned and therefore do not affect B̃. Finally, the evolution of B̃ for
t > T B̃(i2) now gives no additional information about the edge weights{
Xw : p (w) = V (i1), Mw = i2, fn(Xw) > �RV (i),V (i ′)

}
. In particular, conditionally on

B, R1, R2, (Mv)v∈B and the event that V (i) ∈ T (J ), V (i ′) ∈ T (J ′) for some choice of{
J , J ′

} = {1, 2}, the law of P (i,i ′) is that of a Poisson point process with intensity measure
1/n on ( f −1n (�RV (i),V (i ′)),∞). Furthermore, the Poisson point processes corresponding to
different i, i ′ will be conditionally independent.

We can now give an explicit construction of Pn . We begin by defining Pn on the subspace
given by unthinned pairs of vertices:
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for i1, i2 ∈ [n] such that V (i1) ∈ T (1), V (i2) ∈ T (2),

and for
{
j, j ′

} = {1, 2} with TB
V (i j )

< TB
V (i j ′ ),

Pn
∣∣
[0,∞)×{V (i1)}×{V (i2)} =

∑

w : p(w)=V (i j ),
Mw=i j ′

δ((R1+R2)−1
(
TV (i1)+ fn(Xw)+TV (i2)

)
,V (i1),V (i2)

).

(5.25)

In the notation above, Pn
∣∣
[0,∞)×{V (i1)}×{V (i2)} is the image of P (i j ,i j ′ ) under the mapping

x 
→ (R1 + R2)
−1(TV (i1) + fn(x)+ TV (i2)). (5.26)

In particular, by the remarks above, Pn
∣∣
[0,∞)×B̃(1)×B̃(2) has the conditional law of a

Poisson point process conditionally on B, R1, R2, (Mv)v∈B. To compute its intensity mea-
sure, note that the mapping x 
→ y = fn(x) sends 1/n times Lebesgue measure on
( f −1n (�RV (i),V (i ′)),∞) to the measure 1

n μn
∣∣
(�RV (i),V (i ′),∞)

. It follows that the further map-

ping y 
→ (R1+R2)
−1(TV (i1)+ y+TV (i2)) leads to the intensity measure specified by (3.48),

where we have again used the relation Tv = R j (TB
v ) for v ∈ T ( j). Thus Pn

∣∣
[0,∞)×B̃(1)×B̃(2)

is a Cox process of the correct intensity.
Finally, we may extend Pn to be a Cox process on [0,∞)× T (1)× T (2) with the specified

intensity, by defining Pn
∣∣
[0,∞)×{v1}×{v2} using an independent source of randomness for any

pair of vertices v1, v2 for which v1 ∈ B(1) \ B̃(1) or v2 ∈ B(2) \ B̃(2). Note that the details of
this extension are unimportant since such pairs (v1, v2) are not considered in the definition
of (T (Pn )

coll , V (1)
coll, V

(2)
coll).

Observe that under this construction of Pn and under the edge-weight coupling (3.46),

(T (Pn )

coll , V (1)
coll, V

(2)
coll) = (Tcoll, V (I1), V (I2)). (5.27)

Indeed, consider any i1, i2 ∈ [n] with V (i1) ∈ T (1) and V (i2) ∈ T (2). We note that
this assumption is equivalent to i1 ∈ S (1) and i2 ∈ S (2). Taking

{
J , J ′

} = {1, 2} with
TB
V (i J ) < TB

V (i J ′ ), (3.46) gives

Y (Kn )

{i1,i2} = g
(
X (Kn )

{i1,i2}
)
= g

( 1
n X(i J , i J ′)

) = fn(X(i J , i J ′)). (5.28)

The value X(i J , i J ′) coincides with the first point of P (i J ,i J ′ ), and applying the increasing
mapping (5.26) it follows that the first point of Pn

∣∣
[0,∞)×{V (i1)}×{V (i2)} has time coordinate

(R1 + R2)
−1 (TV (i1) + Y (Kn )

{i1,i2} + TV (i2)

)
. (5.29)

Using Lemma 3.20, the strict monotonicity of R1+R2, and the relation TV (i) = R j (TB
V (i)) =

R j (T S(i)) for V (i) ∈ T ( j), i ∈ S ( j), we see that

Tcoll = (R1 + R2)
−1(Wn) = (R1 + R2)

−1
(

min
i1∈S(1),i2∈S(2)

TV (i1) + Y (Kn )

{i1,i2} + TV (i2)

)

= min
i1∈S(1),i2∈S(2)

(R1 + R2)
−1 (TV (i1) + Y (Kn )

{i1,i2} + TV (i2)

)
(5.30)

is the result of minimizing (5.29) over all choices of i1, i2, and I1, I2 are the correspond-
ing minimizers. On the other hand, T (Pn )

coll is the result of minimizing the first point of
Pn
∣∣
[0,∞)×{v1}×{v2} over all choices of unthinned vertices v1 ∈ T (1), v2 ∈ T (2), and V (1)

coll, V
(2)
coll
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are the corresponding minimizers. Every such pair (v1, v2) can be written as v j = V (i j )
for some i j ∈ S ( j), j = 1, 2, and in fact i j = Mv j in this correspondence. Hence these two
minimizations problems are equivalent and their unique minimizers coincide, and we have
proved (5.27).

The remaining statements in Theorem 3.27 follow from (5.27) and the relations Wn =
R1(Tcoll)+R2(Tcoll),St = πM (B̃t ) for all t , andMV (i) = i, V (Mv) = v for i ∈ S, v ∈ B̃.

In the remainder of the paper, we will be concerned only with the equality in law from
Theorem 3.27. We can therefore continue to define B as in (3.36), ignoring the modified
construction given in the proof of Theorem 3.27. The edge-weight coupling (3.46) between
T (1,2) and Kn , and indeed the edge weights on Kn generally, will play no further direct role
in the analysis.

6 Branching Processes and RandomWalks

In this section, we prove Theorem 3.13 by continuing the analysis of the branching process
BP (1) introduced in Sect. 3. In Sect. 6.1 we identify a randomwalk which facilitates moment
computations of the one-vertex characteristics. Section 6.2 contains precise results about
the scaling behavior of the random walk and the parameter λn(a). The results are proved
in Sect. 6.3. Section 6.4 identifies the asymptotics of the first two moments of one-vertex
characteristics. Having understood these, we investigate two-vertex characteristics in Sect. 7
and prove Theorem 3.15.

6.1 Continuous-Time Branching Processes and RandomWalks

Recall that BP (1) = (BP (1)
t )t≥0 denotes a CTBP with original ancestor ∅1. Using Ulam–

Harris notation, the children of the root are the vertices v with p (v) = ∅1, and their birth
times (Tv)p(v)=∅1 form a Poisson point process with intensity μn . For v ∈ T (1), write BP (v)

for the branching process of descendants of such a v, re-rooted and time-shifted to start at
t = 0. Formally,

BP (v)

t =
{
w ∈ T (1) : vw ∈ BP (1)

Tv+t
}

. (6.1)

In particular, BP (1) = BP (∅1), and the processes (BP (v))p(v)=∅1 are independent of each
other and of (Tv)p(v)=∅1 . We may express this compactly by saying that the sum of point
masses Q = ∑

p(v)=∅1
δ(Tv,BP(v)) forms a Poisson point process with intensity dμn ⊗

dP(BP (1) ∈ ·), where P(BP (1) ∈ ·) is the law of the entire branching process. Recalling the
definition of the one-vertex characteristic from (3.14), we deduce that

zχt (a) = χ(t)+ a
∑

v : p(v)=∅

1{Tv≤t}z
χ,BP(v)

t−Tv
(a)

= χ(t)+ a
∫

dQ(y, bp)1{y≤t}zχ,bp
t−y (a).

(6.2)

Note that (6.2) holds jointly for all a, t, χ . To draw conclusions for mχ
t (a) and Mχ,η

t,u (a, b),
the expectation of zχt (a) and zχt (a)zηu(b), respectively, defined in (3.15), we will use the
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formulas

E

(∑

p∈Q̃
f (p)

)
=
∫

f (p) dμ̃(p),

Cov
(∑

p∈Q̃
f1(p),

∑

p∈Q̃
f2(p)

)
=
∫

f1(p) f2(p) dμ̃(p),
(6.3)

where Q̃ is a Poisson point process with some intensity μ̃ (and assuming the integrals exist).
Apply (6.3) to (6.2) with f (y, bp) = 1{y≤t}zχ,bp

t−y (a) to get

mχ
t (a) = χ(t)+ a

∫
dμn(y)1{y≤t}

∫
dP(BP (1) = bp)zχ,bp

t−y (a)

= χ(t)+ a
∫ t

0
dμn(y)m

χ
t−y(a). (6.4)

Similarly

Mχ,η
t,u (a, b)− mχ

t (a)mη
u(b)=ab

∫
dμn(y)1{y≤t}1{y≤u}

∫
dP(BP (1)=bp)zχ,bp

t−y (a)zη,bp
u−y (b)

= ab
∫ t∧u

0
dμn(y)M

χ,η
t−y,u−y(a, b). (6.5)

Recall from (3.16) that μ̂n(λ) = ∫
e−λt dμn(t) denotes the Laplace transform of μn and

that for a > 0 the parameter λn(a) > 0 is the unique solution to aμ̂n(λn(a)) = 1. [In
general, if μ̂n(λ0) is finite for some λ0 ≥ 0, then the equation has a solution whenever
1/μ̂n(λ0) ≤ a < 1/μn({0}), and this solution is unique if μn assigns positive mass to
(0,∞). Our assumptions imply that, for n sufficiently large, λn(a) exists uniquely for any
a > 0.] Since zχt (a) typically grows exponentially at rate λn(a), we study the rescaled
versions m̄χ

t (a), M̄χ,η
t,u (a, b) defined in (3.19) and let

dνa(y) = ae−λn(a)ydμn(y). (6.6)

Then (6.4) becomes m̄χ
t (a) = e−λ(a)tχ(t) + ∫ t0 dνa(y)m̄

χ
t−y(a). Since νa is a probability

measure by construction, this recursion can be solved in terms of a random walk:

m̄χ
t (a) = Ea

( ∞∑

j=0
e−λn(a)(t−S j )χ(t − S j )

)
, where S j =

j∑

i=1
Di , Pa(Di ∈ ·) = νa(·).

(6.7)
From (6.5), we obtain similarly

M̄χ,η
t,u (a, b) = Eab

( ∞∑

j=0
e−S j [λn(a)+λn(b)−λn(ab)]m̄χ

t−S j
(a)m̄η

u−S j
(b)
)
, (6.8)

where S j =∑ j
i=1 Di now has distribution Pab(Di ∈ ·) = νab(·).

Note that for a random variable D with law νa , for every h ≥ 0 measurable,

Ea(h(D)) =
∫

h(y)ae−λn(a)y dμn(y). (6.9)
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Moreover, let ν∗a denote the size-biasing of νa , i.e.,

dν∗a (y) =
y dνa(y)∫
y dνa(y)

so that Ea(h(D∗)) = Ea(Dh(D))

Ea(D)
(6.10)

for h ≥ 0 measurable. Here and in all of the following we assume that D and D∗ have laws
νa and ν∗a respectively under Ea . LetU be uniform on [0, 1], and let (Di )i≥1 be independent
with law νa , and independent ofU and D∗. Besides the random walk (S j ) j from (6.7)–(6.8),
it is useful to study the random walk (S∗j ) j with

S∗0 = UD∗ and S∗j = S∗0 +
j∑

i=1
Di for all j ≥ 1. (6.11)

6.2 RandomWalk Convergence

In this section, we investigate asymptotics of the random walks in (6.7)–(6.8) and (6.11).
Recall that the branching process BP (1) is derived from the intensity measure μn , where for
h : [0,∞)→ [0,∞) measurable,

∫
h(y)dμn(y) =

∫ ∞

0
h( fn(x))dx . (6.12)

In particular, all the quantities z,m, M, νa, Di , Pa and Ea as well as the random walks (S j ) j
and (S∗j ) j depend implicitly on n. We will give sufficient conditions for the sequence of
walks (S j ) j , (S∗j ) j to have scaling limits; in all cases the scaling limit is the Gamma process.
This is the content of Theorem 6.3 below.

As a motivation, we first look at the key example Y (Kn )
e

d= Esn :

Example 6.1 Let Y (Kn )
e

d= Esn . Then

FY (x) = 1− e−x1/sn and F−1Y (x) = (− log(1− x))sn ,

fn(x) = (x/n)sn = fn(1)x
sn and f −1n (x) = nx1/sn .

(6.13)

One easily checks that for all a > 0, β > 0,

fn(1)λn(a
1/sn ) = a
(1+ 1/sn)

sn , snλn(a
1/sn )Ea1/sn (D) = 1,

snλn(a
1/sn )2Ea1/sn (D

2) = 1+ 1/sn, a
(
μ̂n
(
λn(a

1/sn )β
))sn = 1/β.

(6.14)

Notice that 
(1+ 1/sn)sn → e−γ for n→∞.

Theorem 6.3 will show that in general the same identities hold asymptotically under our
conditions on fn . In fact, we will prove Theorem 6.3 under weaker assumptions on fn :

Condition 6.2 There exist ε0 > 0 and a sequence (δn)n∈N ∈ (0, 1]N such that sn fn(1 −
δn)/ fn(1) = o(1), fn(x1/sn ) ≥ fn(1)xε0 for x ≥ 1 and fn(x1/sn ) ≤ fn(1)xε0 for (1 −
δn)

sn ≤ x ≤ 1.

Conditions 2.2 and 2.6 together imply Condition 6.2: we may set δn = δ0, with ε0 chosen
as for Conditions 2.2 and 2.6, and replacing (x, x ′) in Lemma 4.1 by (1, x1/sn ) or (x1/sn , 1)
verifies the inequalities in Condition 6.2.

Theorem 6.3 (Random walk convergence) Suppose that Conditions 2.1 and 6.2 hold. Then,
for any a ∈ (0,∞),
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(a) the parameter λn(a) exists for n sufficiently large, and, for all β > 0,

lim
n→∞ fn(1)λn(a

1/sn ) = ae−γ , (6.15)

lim
n→∞ snλn(a

1/sn )Ea1/sn (D) = 1, (6.16)

lim
n→∞ snλn(a

1/sn )2Ea1/sn (D
2) = 1, (6.17)

lim
n→∞ a

(
μ̂n
(
λn(a

1/sn )β
))sn = 1/β, (6.18)

where γ is Euler’s constant;
(b) under Ea1/sn , the process (λn(a1/sn )S�sn t�)t≥0 converges in distribution (in the Skorohod

topology on compact subsets) to a Gamma process (
t )t≥0, i.e., the Lévy process such
that 
t has the Gamma(t, 1) distribution;

(c) under Ea1/sn , the variable λn(a1/sn )D∗ converges in distribution to an exponential
random variable E with mean 1, and the process (λn(a1/sn )S∗�sn t�)t≥0 converges in dis-
tribution to the sum (UE + 
t )t≥0 where U is Uniform on [0, 1] and U , E, (
t )t≥0 are
independent.

Moreover, given a compact subset A ⊂ (0,∞), all of the convergences occur uniformly for
a ∈ A and, for (6.18), for β ∈ A.

Theorem 6.3 will be proved in Sect. 6.3. We stress that the proof or Theorem 6.3 uses
only Conditions 2.1 and 6.2 and the relevant definitions but no other results stated so far.

6.3 Convergence of RandomWalks: Proof of Theorem 6.3

For notational convenience, we make the abbreviations

x̃ = x1/sn , ã = a1/sn , b̃ = b1/sn , etc., (6.19)

which we will use extensively in this section and in Sects. 7 and 9.

Proof of Theorem 6.3 We begin by proving

μ̂n

(
ae−γ

fn(1)

)
= 1− log a

sn
+ o(1/sn). (6.20)

Recalling (6.12), we have

μ̂n(λ) =
∫ ∞

0
e−λ fn(x̃)dx̃ . (6.21)

Write f̃n(x̃) = fn(x̃)1{x̃≥1−δn}. Then

μ̂n(λ) =
∫ ∞

0
e−λ f̃n(x̃) dx̃ −

∫ 1−δn

0

(
1− e−λ fn(x̃)

)
dx̃, (6.22)

and take λ = ae−γ / fn(1) to estimate
∫ 1−δn
0 (1 − e−ae−γ fn(x̃)/ fn(1)) dx̃ = O( fn(1 −

δn)/ fn(1)) = o(1/sn) by Condition 6.2. Hence, for the purposes of proving (6.20), it is
no loss of generality to assume that fn(x1/sn ) ≤ fn(1)xε0 for all x ≤ 1.

Inspired by (2.5), where fn(x̃) = fn(1)x̃ sn , we compute
∫ ∞

0
e−λ fn(1)x̃ sn d x̃ =

∫ ∞

0

1

sn
x1/sn−1e−λ fn(1)xdx =

(

(1+ 1/sn)sn

λ fn(1)

)1/sn
. (6.23)
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In particular, setting λ = a
(1+ 1/sn)sn/ fn(1) gives
∫∞
0 exp (−a
(1+ 1/sn)sn x̃ sn ) dx̃ =

a−1/sn , which is 1 − (log a)/sn + o(1/sn). Subtracting this from (6.21), we can therefore
prove (6.20) if we show that

sn

∫ ∞

0

(
e−ae−γ fn(x̃)/ fn(1) − e−a
(1+1/sn)sn x̃ sn

)
dx̃ → 0, (6.24)

or equivalently, by the substitution x̃ = x1/sn , if we show that
∫ ∞

0
x1/sn−1

(
e−ae−γ fn(x1/sn )/ fn(1) − e−a
(1+1/sn)sn x

)
dx → 0. (6.25)

Note that 
(1 + 1/s)s → e−γ as s → ∞. Together with Condition 2.1, this implies that
the integrand in (6.25) converges pointwise to 0. For x ≤ 1, fn(x1/sn ) ≤ fn(1)xε0 means
that the integrand is bounded by O(xε0−1 + 1). For x ≥ 1, Condition 6.2 implies that the
integrand is bounded by e−δxε0 for some δ > 0. Dominated convergence therefore completes
the proof of (6.20). It is easy to see that the proof of (6.25), and hence (6.20), holds uniformly
in a ∈ A, where A ⊆ (0,∞) is a fixed but arbitrary compact set.

To conclude (6.15) from (6.20), we use the monotonicity of μn and λn : given δ > 0, we
have μ̂n

(
ae−γ / fn(1)

)sn ≤ a−1+δ for all sufficiently large n, uniformly in a ∈ A. Replacing
a by a′ = (1/a − δ)−1 shows that λn(ã) ≤ a′e−γ / fn(1) for all n large enough, uniformly
in a. A lower bound holds similarly; take δ → 0 to conclude (6.15).

The proof of (6.16) is similar to that of (6.15). Using (6.9), we compute

snλn(ã)Eã(D) = snλn(ã)

∫
yãe−λn(ã)ydμn(y)

= λn(ã) fn(1)ã
∫ ∞

0
x1/sn−1 fn(x̃)

fn(1)
e−λn(ã) fn(x̃)dx . (6.26)

By (2.6) and (6.15), the integrand in (6.26) converges pointwise to e−ae−γ x , and satisfies a
similar dominated convergence estimates as (6.25) by Condition 6.2. Hence (6.26) converges
to ae−γ

∫∞
0 e−ae−γ xdx = 1 as claimed. The proof of (6.17) is similar.

To prove (6.18), let bn be defined by λn(b̃n) = βλn(ã). By (6.15) and monotonicity, it fol-
lows that bn → βa [for if lim supn→∞ bn ≥ (1+ε)βa then lim supn→∞ fn(1)λn(b̃n) ≥ (1+
ε)βae−γ = (1+ε) limn→∞ fn(1)βλn(ã), a contradiction, and similarly if lim infn→∞ bn ≤
(1− ε)βa]. But μ̂n(λn(b̃n))sn = b−1n , giving the result.

Since λn(ã)S�sn t� is non-decreasing and right-continuous, and has i.i.d. increments if snt
is restricted to integer values, it suffices to show that its limiting distribution is 
(t, 1) for
a fixed t , where 
(t, 1) denotes a standard Gamma variable with parameter t . For this, we
note that its Laplace transform is

Eã

(
e−τλn(ã)S�sn t�

)
= (ãμ̂n

(
λn(ã)(1+ τ)

))�sn t�. (6.27)

Since sn →∞, (6.18) yields that the right-hand side tends to (1+ τ)−t . This is the Laplace
transform of a 
(t, 1) variable, and thus completes the proof of (b).

For the proof of part (c) define bn by λn(b̃n) = (1 + τ)λn(ã) for a given τ ≥ 0. Then
(6.10) and (6.9) yield

Eã(e
−τλn(ã)D∗) = Eã(De−τλn(ã)D)

Eã(D)
= ã

∫
ye−λn(ã)y(1+τ)dμn(y)

Eã(D)
= ãEb̃n

(D)

b̃nEã(D)
. (6.28)
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By the same argument as in the proof of (6.18), bn → (1 + τ)a. Combining with (6.16),
we conclude that Eã(e−τλn(ã)D∗) → (1 + τ)−1 and λn(ã)D∗ converges to an exponential
variable with mean 1. So the rest of part (c) follows from part (b).

The remaining uniformity claims follow from the uniformity in (6.15). The uniformity
statements in parts (b) and (c) follow from the observation that the Radon–Nikodym deriva-
tives dPã

(
(λn(ã)S�sn t�)0≤t≤K ∈ ·

)
/dPã′

(
(λn(ã′)S�sn t�)0≤t≤K ∈ ·

)
(and similarly for D∗

and S∗) are tight for K <∞, uniformly over a, a′ ∈ A.

Lemma 6.4 For all a ∈ (0,∞), λ′n(a) = 1/(aEa(D)).

Proof Denote μ̂′n(λ) = d
dλ

μ̂n(λ) and μ̂′′n(λ) = d2

dλ2
μ̂n(λ). Using the definitions of μ̂n and

νa , an elementary computation shows that −aμ̂′n(λn(a)) = Ea(D). Moreover, by (3.16),
aμ̂n(λn(a)) = 1 and the claim follows.

Proof of Lemma 3.12 By (6.15), λn fn(1)→ e−γ and Lemma 6.4 gives

φn = λ′n(1)
λn(1)

= 1

λn(1)E1(D)
. (6.29)

Now (6.16) implies that φn/sn → 1, as required.

Corollary 6.5 Uniformly for a in a compact subset of (0,∞),

λn(a
1/sn ) = λn(1)

(
1+ φn

sn
(a − 1)+ o

(
(a − 1)2

))
. (6.30)

Proof By the same arguments as in the proof of Lemma 6.4, the function F(a) = λn(a1/sn )
satisfies −ãμ̂′n(F(a)) = Eã(D) and ãμ̂′′n(F(a)) = Eã(D2). By (3.16), aμ̂n(F(a))sn = 1
and we deduce that snEã(D)F ′(a) = 1/a and

snEã(D)F ′′(a) = snEã(D2)
(
asnEã(D)

)2 −
1+ 1

sn

a2
. (6.31)

The right-hand side of (6.31) converges uniformly to 0 by (6.16)–(6.17). Applying (6.16)
again and noting from (6.15) that λn(ã)/λn(1) is bounded, it follows that F ′′(a)/λn(1)
converges uniformly to 0. A Taylor expansion of F around the point 1 and (6.29) complete
the proof.

The following lemma is a consequence of Theorem 6.3 and will be used in the proof of
the second moment statements of Theorem 3.13:

Lemma 6.6 Assume the hypotheses of Theorem 6.3, and let A ⊂ (0, 2) be compact. For any
measurable, bounded function h ≥ 0, set

�(h) = Ea1/sn b1/sn

⎛

⎝
∞∑

j=0
e−
[
λn(a1/sn )+λn(b1/sn )−λn(a1/sn b1/sn )

]
S j h(S j )

⎞

⎠ . (6.32)

There are constants K < ∞ and n0 ∈ N independent of h such that �(h) ≤ Ksn ‖h‖∞ for
all n ≥ n0 and a, b ∈ A. Moreover, for any ε > 0 there are constants K ′ < ∞, n′0 ∈ N

independent of h such that for all a, b ∈ A, n ≥ n′0,

− ε ‖h‖∞ +
inf
{
h(y) : λn(1)y ≤ K ′

}

log(1/a + 1/b)
≤ �(h)

sn
≤ ε ‖h‖∞ +

sup
{
h(y) : λn(1)y ≤ K ′

}

log(1/a + 1/b)
.

(6.33)
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Note that log(1/a + 1/b) is positive and bounded away from 0 by our assumption on A.

Proof of Lemma 6.6 We rewrite �(h) in integral form, bound h by its maximum, and use
(6.9) and the definition of μ̂n , to obtain

�(h) = sn

∫ ∞

0
Eãb̃

(
e−[λn(ã)+λn(b̃)−λn(ãb̃)]S�sn t�h(S�sn t�)

)
dt (6.34)

≤ sn ‖h‖∞
∫ ∞

0

[
ãb̃μ̂n

(
λn(ã)+ λn(b̃)

)]�sn t�
dt . (6.35)

By (6.15) and (6.18), we deduce (λn(ã)+ λn(b̃))/λn(1)→ (a + b) and
[
ãb̃μ̂n(λn(ã)+ λn(b̃))

]sn → ab/(a + b). (6.36)

Since log((a + b)/ab) = log(1/a + 1/b) is positive and uniformly bounded away from 0,
the integral in (6.35) is uniformly bounded for sufficiently large n and we conclude that there
is a constant K <∞ with �(h) ≤ Ksn ‖h‖∞.

For (6.33), let ε > 0 be given. Since A ⊂ (0, 2) is compact, (6.15) implies that there
exists δ > 0 and n′0 ∈ N such that λn(ã) + λn(b̃) − λn(ãb̃) ≥ δ fn(1) for all n ≥ n′0 and
a, b ∈ A. Using again (6.36), wemay take t0 and n′0 sufficiently large that

∫∞
t0
[ãb̃μ̂n(λn(ã)+

λn(b̃))]�sn t�dt ≤ 1
3ε and

∣∣∣
∫ t0
0 [ãb̃μ̂n(λn(ã)+ λn(b̃))]�sn t�dt − 1/ log(1/a + 1/b)

∣∣∣ ≤ 1
3ε

for all n ≥ n′0, a, b ∈ A. Furthermore, Theorem 6.3(b) implies that the family of laws
Pãb̃(λn(1)S�sn t� ∈ ·), t ≤ t0, a, b ∈ A, is tight. Hence we may take K ′ large enough that

t0e−δK ′ ≤ 1 and Pãb̃(λn(1)S�sn t� > K ′) ≤ 1
3ε, uniformly for t ≤ t0. We conclude from

(6.34) that

∫ t0

0

[
inf
{
h(y) : λn(1)y ≤ K ′

}
Eãb̃

(
e−[λn (ã)+λn (b̃)−λn (ãb̃)]S�sn t�

)
− 1

3 εe−δK ′ ‖h‖∞
]
dt

≤ �(h)

sn
≤
∫ t0

0

[
sup
{
h(y) : λn(1)y ≤ K ′

}
Eãb̃

(
e−[λn (ã)+λn (b̃)−λn (ãb̃)]S�sn t�

)
+ 1

3 εe−δK ′ ‖h‖∞
]
dt

+
∫ ∞
t0
‖h‖∞ Eãb̃

(
e−(λn (ã)+λn (b̃)−λn (ãb̃))S�sn t�

)
dt (6.37)

for n ≥ n′0. Using again Eãb̃(e
−S�sn t�(λn(ã)+λn(b̃)−λn(ãb̃))) = [ãb̃μ̂n(λn(ã)+λn(b̃))]�sn t�, we

see that the hypotheses on t0 and n′0 imply (6.33).

6.4 Means of One-Vertex Characteristics: Proof of Theorem 3.13

In this section, we prove Theorem 3.13. Further, we set the stage for the proofs of Theorems
3.15 and 3.16 in Sect. 7.

Recall from (6.7) that

m̄χ
t (a) = Ea

⎛

⎝
∞∑

j=0
e−λn(a)(t−S j )χ(t − S j )

⎞

⎠ .

Thus, m̄χ
t (a) can be understood as the expected integral of e−λn(a)tχ(t) against the

counting measure on the random set
{
t − S j : j ∈ N0

}
. When t → ∞, this measure

approaches its stationary equivalent, which is the counting measure on the point-stationary

set
{
t − S∗j : j ∈ N0

}
(see [34]). Since the expected value of this stationary measure is a
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multiple of the Lebesgue measure, m̄χ
t (a) will approach (as t → ∞) the same multiple of∫∞

0 e−λn(a)tχ(t)dt . In the following we make this more precise. We begin with general esti-
mates that apply to any CTBP with any intensity measure μ, and we will write simply λ(a)

for the parameter defined by the analogue of (3.16). Similarly, all other notation introduced
for BP (1) will be used for a general CTBP.

Proposition 6.7 Let (S∗j ) j be the random walk defined in (6.11). Let χ be a non-negative
characteristic. Then, for all a, t > 0,

Ea(m̄
χ
t−UD∗(a)) = Ea

⎛

⎝
∞∑

j=0
e−λ(a)(t−S∗j )χ(t − S∗j )

⎞

⎠ =
∫ t
0 e
−λ(a)uχ(u) du

Ea(D)
. (6.38)

Proof The first equality is (6.7); the second follows because the set
{
t − S∗j : j ∈ N0

}
is

point-stationary in the sense of [34]. Alternatively, the equality may be verified by taking
Laplace transforms with respect to t .

In (6.7) and (6.38), we may collapse the tail of the sum into a single value of m̄χ
u (a).

Namely, if J is a stopping time for (S j ) j or (S∗j ) j , respectively, then by the strong Markov
property

m̄χ
t (a) = Ea

⎛

⎝m̄χ
t−SJ

(a)+
J−1∑

j=0
e−λ(a)(t−S j )χ(t − S j )

⎞

⎠ ,

∫ t
0 e
−λ(a)uχ(u) du

Ea(D)
= Ea

⎛

⎝m̄χ

t−S∗J
(a)+

J−1∑

j=0
e−λ(a)(t−S∗j )χ(t − S∗j )

⎞

⎠ .

(6.39)

The following lemmas provide bounds on m̄χ
t (a) when mχ

t (a) is non-decreasing in t :

Lemma 6.8 Suppose χ is a non-negative characteristic such that mχ
t (a) is non-decreasing

in t (in particular, this holds if χ is non-decreasing). Let (S j ) j be as in (6.7) and (S∗j ) j
as in (6.38), and suppose that (S j ) j and (S∗j ) j are independent. Let ε > 0 and set J =
inf
{
j :
∣∣∣S j − S∗j

∣∣∣ ≤ ε
}
. Then, for a, t > 0,

e−2λ(a)ε

∫ t−ε

0 e−λ(a)uχ(u) du

Ea(D)
− Ea

⎛

⎝
J−1∑

j=0
e−λ(a)(t−ε−S∗j )χ(t − ε − S∗j )

⎞

⎠

≤ m̄χ
t (a) ≤ e2λ(a)ε

∫ t+ε

0 e−λ(a)uχ(u) du

Ea(D)
+ Ea

⎛

⎝
J−1∑

j=0
e−λ(a)(t−S j )χ(t − S j )

⎞

⎠ . (6.40)

Proof The hypotheses imply t − ε − S∗J ≤ t − SJ ≤ t + ε − S∗J and therefore
e−2λ(a)εm̄χ

t−ε−S∗J
(a) ≤ m̄χ

t−SJ
(a) ≤ e2λ(a)εm̄χ

t+ε−S∗J
(a). Combining with (6.39) gives the

result.

Lemma 6.9 Suppose χ is a non-negative characteristic such that mχ
t (a) is non-decreasing

in t. Then, for all a, t > 0 and K > 0,

m̄χ
t (a) ≤ eK

Ea

(
eλ(a)S∗01{λ(a)S∗0≤K}

)
∫∞
0 e−λ(a)uχ(u) du

Ea(D)
. (6.41)
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Proof On
{
λ(a)S∗0 ≤ K

}
we have m̄χ

t+K/λ(a)−S∗0
(a) ≥ e−K eλ(a)S∗0 m̄χ

t (a). Apply (6.38) and

replace the limit of integration by∞ to obtain the result.

Lemma 6.10 Letχ beanon-negative,non-decreasing characteristic such that
∫∞
0 e−λ(a)uχ(u)

du < ∞, and fix a, K > 0. Then, for all t > 0,
∑∞

j=0 e−λ(a)(t−S j )χ(t − S j ) is square-

integrable under Ea and, abbreviating Ca,K = eK /Ea(eλ(a)S∗01{λ(a)S∗0≤K}),

Ea

⎛

⎜⎝

⎛

⎝
∞∑

j=0
e−λ(a)(t−S j )χ(t − S j )

⎞

⎠
2
⎞

⎟⎠ ≤ Ca,K

∫∞
0 e−2λ(a)uχ(u)2du

Ea(D)
+ 2C2

a,K
(
∫∞
0 e−λ(a)uχ(u)du)2

Ea(D)2
.

(6.42)
The same bound holds with (S j ) j replaced by (S∗j ) j .

Proof Since χ is non-decreasing,
∫∞
0 e−λ(a)uχ(u)du < ∞ implies that e−λ(a)uχ(u) must

be bounded. Hence
∫∞
0 e−2λ(a)uχ(u)2du < ∞ also. Applying Lemma 6.9 to χ and χ2, we

deduce

Ea

⎛

⎜⎝

⎛

⎝
∞∑

j=0
e−λ(a)(t−S j )χ(t − S j )

⎞

⎠
2
⎞

⎟⎠

= Ea

⎛

⎝
∞∑

j=0
e−2λ(a)(t−S j )χ(t − S j )

2

⎞

⎠

+ 2Ea

⎛

⎝
∞∑

j=0
e−λ(a)(t−S j )χ(t − S j )

∞∑

k= j+1
e−λ(a)(t−Sk )χ(t − Sk)

⎞

⎠

= m̄χ2

t (a)+ 2Ea

⎛

⎝
∞∑

j=0
e−λ(a)(t−S j )χ(t − S j )m̄

χ
t−S j+1 (a)

⎞

⎠

≤ Ca,K

∫∞
0 e−λ(a)uχ(u)2du

Ea(D)
+ 2Ca,K

∫∞
0 e−λ(a)uχ(u)du

Ea(D)
Ea

⎛

⎝
∞∑

j=0
e−λ(a)(t−S j )χ(t − S j )

⎞

⎠ .

(6.43)

Another application of Lemma 6.9 gives (6.42). Finally replacing (S j ) j by (S∗j ) j is equivalent
to replacing t by t −UD∗. Since the upper bound in (6.42) does not depend on t , the result
follows.

We now specialise to the offspring distribution μn and apply the convergence results of
Theorem 6.3 to prove Theorem 3.13:

Proof of Theorem 3.13 By Lemma 6.9, for all a, t > 0,

m̄χ
t (ã) ≤ sn

e1

Pã(λn(ã)S∗0 ≤ 1)

∫∞
0 λn(ã)e−λn(ã)u ‖χ‖∞ du

snλn(ã)Eã(D)
, (6.44)

and, by Theorem 6.3, Pã(λn(ã)S∗0 ≤ 1) → P(UE ≤ 1) and snλn(ã)Eã(D) → 1 uniformly
in a ∈ A. Hence, the uniform bound for m̄χ

t (ã) follows. By the same reasoning, Lemma 6.10
yields a constant C <∞ such that

Eã

⎛

⎜⎝

⎛

⎝
∞∑

j=0
e−λn(ã)(t−S j )χ(t − S j )

⎞

⎠
2
⎞

⎟⎠ ≤ Cs2n ‖χ‖2∞ , (6.45)
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an estimate that will be needed shortly.
For (3.20), fix ε > 0. Apply Lemma 6.8 with ε and a replaced by ε̃ = λn(ã)−1ε and

ã, with the stopping time Jn = inf
{
j :
∣∣∣S j − S∗j

∣∣∣ ≤ ε̃
}
= inf

{
j : λn(ã)

∣∣∣S j − S∗j
∣∣∣ ≤ ε

}
.

By (6.15), we may choose K large enough that
∫∞
t−ε̃

λn(ã)e−λn(ã)zχ(z)dz ≤ ‖χ‖∞ ε when-
ever λn(1)t ≥ K . By (6.16), it follows that the first terms in the upper and lower bounds
of Lemma 6.8 are sn

∫∞
0 λn(ã)e−λn(ã)zχ(z)dz + O(ε)sn ‖χ‖∞. Therefore it is enough to

show that the error term Eã

(∑Jn−1
j=0 e−λn(ã)(t−ε̃−S∗j )χ(t − ε̃ − S∗j )

)
is also O(ε)sn ‖χ‖∞

for λn(1)t sufficiently large, uniformly in a ∈ A (the same proof will work for the term with
S j ).

To prove this, observe that the variables (Jn/sn, λn(ã)S∗Jn )n∈N,a∈A are tight. Indeed, the
rescaled processes (λn(ã)S�sn t�)t≥0, (λn(ã)S∗�sn t�)t≥0 converge by Theorem 6.3 to indepen-
dent Gamma processes (with different initial conditions). These limiting processes approach
to within ε/2 at some random but finite time, and tightness follows.

Thus wemay chooseC ′ large enough that the eventA = {Jn ≤ C ′sn
}∪
{
λn(ã)S∗Jn ≤ C ′

}

satisfies Pã(Ac) ≤ ε2. Using the Cauchy–Schwarz inequality and (6.45),

Eã

⎛

⎝1Ac

Jn−1∑

j=0
e−λn(ã)(t−ε̃−S∗j )χ(t − ε̃ − S∗j )

⎞

⎠

≤
⎡

⎢⎣Pã(Ac)Eã

⎛

⎜⎝

⎛

⎝
∞∑

j=0
e−λn(ã)(t−ε̃−S∗j )χ(t − ε̃ − S∗j )

⎞

⎠
2
⎞

⎟⎠

⎤

⎥⎦

1/2

≤ √Cεsn ‖χ‖∞ ,

(6.46)

whereas

Eã

⎛

⎝1A

Jn−1∑

j=0
e−λn(ã)(t−ε̃−S∗j )χ(t − ε̃ − S∗j )

⎞

⎠ ≤ C ′sn ‖χ‖∞ e−λn(ã)(t−ε̃)+C ′ . (6.47)

By (6.15), the right-hand side is at most εsn ‖χ‖∞, uniformly over a ∈ A, if λn(1)t ≥ K
with K sufficiently large. This completes the proof of (3.20).

We turn to the estimates for M̄χ,η
t,u (ã, b̃). In view of (6.8), apply Lemma 6.6 to h(y) =

m̄χ
t−y(ã)m̄η

u−y(b̃). By the first part of the current proof, ‖h‖∞ = O(s2n ) ‖χ‖∞ ‖η‖∞
and for any ε > 0 we can make the infimum and supremum in (6.33) differ from
s2n
∫∞
0 e−zχ

(
z/λn(ã)

)
dz · ∫∞0 e−wη

(
w/λn(b̃)

)
dw by at most εs2n , by taking λn(1)[t ∧ u]

large enough.

7 Continuous-Time Branching Processes: Two-Vertex Characteristics

In view of Theorems 3.11 and 3.27, we wish to consider generation-weighted two-vertex
characteristics of the form

zχ�t (�a) =
∑

v1∈BP(1)
t1

∑

v2∈BP(2)
t2

a|v1|1 a|v2|2 χ(t1 − Tv1 , t2 − Tv2) (7.1)

for χ(�t) = χn(�t) = μn(|t1 − t2| , t1 + t2) defined in (3.24). As discussed in Sect. 3.3.2, we
split χn into χ

(K )
n and χn − χ

(K )
n for some K ∈ (0,∞).
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Regarding t1 as fixed,

snχ
(K )

n (t1, t2) = snμ
(K )

n (t1 − t2, t1 + t2)− 1{t2≥t1}snμ(K )

n (t1 − t2, t2 − t1) (7.2)

expresses the one-vertex characteristic snχ
(K )
n (t1, ·) as the difference of two uniformly

bounded, non-negative, non-decreasing functions.
We extend our abbreviations from (6.19) to vectors and write

�̃a = �a1/sn = (ã1, ã2) = (a1/sn1 , a1/sn2 ) etc. (7.3)

7.1 Truncated Two-Vertex Characteristic: Proof of Theorem 3.15

In this section, we prove Theorem 3.15. For any two-vertex characteristic χ , note that zχ�t (�a)

can be written in terms of two one-vertex characteristics as follows:

zχ�t (�a) = zρ
′,BP(1)

t1 (a1), where ρ′(t ′1) =
∑

v2∈BP(2)
t2

a|v2|2 χ(t ′1, t2 − Tv2) = z
χ(t ′1,·),BP(2)

t2 (a2).

(7.4)

Similarly, we may evaluate the two-vertex mean m̄χ
(K )
n
�t (�a) via two one-vertex means:

m̄χ
(K )
n
�t (�̃a) = m̄

ρt2,ã2
t1 (ã1), where ρt2,ã2(t

′
1) = m̄

χ
(K )
n (t ′1,·)

t2 (ã2). (7.5)

For this reason we first give estimates for the one-vertex characteristic χ
(K )
n (t1, ·) uniformly

in t1. In their statements, we rely on the function ζ given in (3.30) and on the following
definition:

I (z) =
∫ ∞

0

(
e−|y−z| − e−(y+z)) dy

y
. (7.6)

Proposition 7.1 Assume the hypotheses of Theorem 6.3. For every ε > 0 and for every
compact subset A ⊂ (0, 2), there is a constant K0 < ∞ such that for every K ≥ K0 there
exist constants K ′ <∞ and n0 ∈ N such that for n ≥ n0, a1, a2, b1, b2 ∈ A and t ′1 ≥ 0,

∣∣∣∣m̄
χ

(K )
n (t ′1,·)

t2 (ã2)− I
(
λn(ã2)t

′
1

)∣∣∣∣ ≤ ε,

∣∣∣∣s
−3
n M̄

ρt2,ã2 ,ρu2,b̃2
t1,u1 (ã1, b̃1)− ζ(a2/a1)ζ(b2/b1)

log(1/a1 + 1/b1)

∣∣∣∣ ≤ ε,

if λn(1)[t1 ∧ t2 ∧ u1 ∧ u2] ≥ K ′.

(7.7)
Moreover, for every K <∞, there are constants K ′′ <∞ and n′0 ∈ N such that

m̄χ
(K )
n (t1,·)

t2 (ã2) ≤ K ′′, M̄
ρt2,ã2 ,ρu2,b̃2
t1,u1 (ã1, b̃1) ≤ K ′′s3n (7.8)

for all n ≥ n′0, t1, t2, u1, u2 ≥ 0 and a1, a2, b1, b2 ∈ A.

Note that m̄χ
(K )
n (t1,·)

t2 (ã2) is asymptotically constant, instead of growing like sn as in The-
orem 3.13. This reflects the fact that χ(K )

n itself is typically of scale 1/sn .

Proof of Proposition 7.1 The integrand in (7.6) can be bounded by 2e−y+1 if z ≤ 1 and by
1{y≤1}2e−z+1+1{y>1}e−|y−z|/y if z ≥ 1. It follows that wemay choose K0 <∞ sufficiently

large that
∣∣∣
∫ aeK−γ

ae−K−γ (e−|y−z| − e−(y+z))dy/y − I (z)
∣∣∣ < 1

3ε, for all z ≥ 0, a ∈ A, K ≥ K0.

Here, γ again denotes Euler’s constant.
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Applying Theorem 3.13 to each of the uniformly bounded, non-negative, non-decreasing

functions in (7.2), we conclude that for every K <∞, m̄
χ

(K )
n (t ′1,·)

t2 (ã2) is uniformly bounded
and is within 1

3ε of
∫∞
0 snλn(ã2)e−λn(ã2)tχ

(K )
n (t ′1, t) dt if λn(1)t2 is sufficiently large, uni-

formly over a2 ∈ A. Use Fubini’s Theorem and (6.12), write z = λn(ã2)t ′1 and substitute
x̃ = x1/sn to compute

∫ ∞

0
snλn(ã2)e

−λn(ã2)tχ(K )

n (t ′1, t) dt

= sn

∫
dμ(K )

n (y)
∫ ∞

0
1{|y−t ′1|≤t≤y+t ′1}λn(ã2)e−λn(ã2)t dt

= sn

∫ 1+K/sn

1−K/sn

(
e−λn(ã2)| fn(x̃)−t ′1| − e−λn(ã2)( fn(x̃)+t ′1)

)
dx̃

=
∫ (1+K/sn)sn

(1−K/sn)sn

(
e−|λn(ã2) fn(x̃)−z| − e−(λn(ã2) fn(x̃)+z)

)
x1/sn−1dx . (7.9)

Monotonicity, Condition 2.1 and (6.15) imply that λn(ã2) fn(x̃) → a2e−γ x as n → ∞,
uniformly over x ∈ [(1 − K/sn)sn , (1 + K/sn)sn ] and a2 ∈ A. Hence the integral in (7.9)

is within 1
3ε of

∫ eK
e−K (e−|a2e−γ x−z| − e−(a2e−γ x+z))dx/x for n sufficiently large, uniformly

in z ≥ 0 and a2 ∈ A. Substituting y = a2e−γ x and using K ≥ K0, we obtain the desired

statements for m̄
χ

(K )
n (t ′1,·)

t2 (ã2).

For M̄
ρt2,ã2 ,ρu2,b̃2
t1,u1 (ã1, b̃1), the statements for m̄

χ
(K )
n (t ′1,·)

t2 (ã2) can be interpreted to say that
the characteristics ρt2,ã2(·), ρu2,b̃2(·) are uniformly bounded and lie within 1

2ε of the charac-

teristics I (λn(ã2) ·), I
(
λn(b̃2) ·

)
if λn(1)t2, λn(1)u2 are sufficiently large. It is readily verified

that I (z) can be written as the difference of two bounded, non-negative, non-decreasing func-
tions. We may therefore apply Theorem 3.13 to these characteristics. A calculation shows
that ∫ ∞

0
e−z I (r z)dz = ζ(r), r = λn(ã2)/λn(ã1), (7.10)

where ζ is defined in (3.30). By (6.15), we have r → a2/a1 uniformly over a1, a2 ∈ A; since
ζ is continuous, this completes the proof.

Proof of Theorem 3.15 Interchanging the roles of t1 and t2 in (7.2) and using Proposition 7.1,
we can write ρt2,ã2 in (7.5) as the difference of two bounded, non-negative, non-decreasing

functions and Theorem 3.13 yields that 1
sn
m̄χ

(K )
n
�t (�̃a) is bounded. To show (3.28), Proposi-

tion 7.1 allows us to replace ρt2,ã2 in (7.5) by I (λn(ã2·)), making an error of at most εsn .
Since I can be written as the difference of two bounded, non-negative, non-decreasing func-
tions, Theorem 3.13, (7.10) and the fact that ζ(r)→ ζ(a2/a1) uniformly, yield the claim.

For M̄χ
(K )
n ,χ

(K )
n

�t,�u (�̃a, �̃b), use (7.4) to obtain [similarly to (6.8)]

M̄χ,η

�t,�u (�a, �b) = Ea1b1,a2b2

⎛

⎝
∞∑

j1=0

∞∑

j2=0
e−[λn(a1)+λn(b1)−λn(a1b1)]S(1)

j1 e−[λn(a2)+λn(b2)−λn(a2b2)]S(2)
j2

· m̄χ

t1−S(1)
j1

, t2−S(2)
j2

(�a)m̄η

u1−S(1)
j1

, u2−S(2)
j2

(�b)
)

, (7.11)
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where now (S(1)
j ) j and (S(2)

j ) j are independent random walks and (S(i)
j ) j has step distribution

νai bi , i = 1, 2. Applying Lemma 6.6 twice and using the results from the first part of the
proof, we obtain the desired conclusions.

7.2 The Effect of Truncation: Proof of Theorem 3.16

In this section, we control the effect of truncation and prove Theorem 3.16, by showing that
the remainder χn − χ

(K )
n has a negligible first moment.

We will write χn =
∫
dμn(y)�y , where

�y(t1, t2) = 1{|t1−t2|≤y,t1+t2≥y}. (7.12)

The same is true for χ
(K )
n and μ

(K )
n , so that, by (6.12) and the substitution x̃ = x1/sn ,

s−1n m̄χn−χ
(K )
n

�t (�1) =
∫ 1−δ0

0
s−1n m̄

� fn (x̃)

�t (�1)dx̃

+
(∫ (1−K/sn)sn

(1−δ0)sn
+
∫ ∞

(1+K/sn)sn

)
s−2n m̄

� fn (x̃)

�t (�1)x1/sn−1dx

= I0 + I1 + I2. (7.13)

We must therefore show that I0, I1, I2 are uniformly bounded and can be made small by

making K and λn(1)[t1 ∧ t2] large. To this end, we will bound the two-vertex mean m̄
�y

�t (�1)
in terms of one-vertex means. Abbreviate

η(q)(t) = 1{0≤t≤q}. (7.14)

Lemma 7.2 For any y ∈ (0,∞),

m̄
�y

�t (�1) ≤ 1

y

[ ∫ ∞

0
e−2λn(1)r m̄η(2y)

t1−r (1)m̄
η(2y)

t2−r (1)dr

+
∫ y

0
e−λn(1)(y−r)

(
m̄η(2r)

t1−y+r (1)m̄
η(r)

t2 (1)+ m̄η(2r)

t2−y+r (1)m̄
η(r)

t1 (1)
)
dr

]
. (7.15)

Proof Note that

�y ≤ 1

y

[ ∫ ∞

0
1[r ,r+2y]2dr +

∫ y

0
(1[y−r ,y+r ]×[0,r ] + 1[0,r ]×[y−r ,y+r ])dr

]
(7.16)

since, for any �t for which �y(�t) > 0, the measure of the sets of parameter values r for which
�t belongs to the relevant rectangles is at least y in total. Then the identities m̄1[a,b]×[c,d]

t1,t2 (�a) =
m̄

1[a,b]
t1 (a1)m̄

1[c,d]
t2 (a2) and

m̄
1[c,d]
t (a) = e−λn(a)cm̄η(d−c)

t−c (a) (7.17)

complete the proof.

Using Lemma 7.2, it will suffice to bound the one-vertex means m̄η(q)

t (1). We will use
different bounds depending on the relative sizes of q , t and fn(1), as in the following lemma:
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Lemma 7.3 There is a constant C <∞ such that, for n sufficiently large,

m̄η(q)

t (1) ≤ Csn for all t, q ≥ 0, (7.18a)

m̄η(q)

t (1) ≤ Csn
q + sn fn(1− δ0)

fn(1)
if t ≥ fn(1− 1/sn), q ≤ 1

2 t, (7.18b)

m̄η(q)

t (1) ≤ C
q + sn fn(1− δ0)

snt(1− f −1n (t))2
if t < fn(1), q ≤ 1

2 t, (7.18c)

m̄η(2q)

t (1) ≤ 2

1− f −1n (q)
, if q < fn(1), t ≥ 0. (7.18d)

Proof Theorem 3.13 and
∥∥η(q)

∥∥∞ = 1 imply (7.18a). For (7.18d), use the representation (6.7)
and note that, starting from the first index J for which η(2q)(t − SJ ) �= 0 (if one exists), the
total number of indices j for which η(2q)(t− S j ) �= 0 is stochastically bounded by the waiting
time (starting from J ) until the second step where Y j > q . Then P1(Dj ≤ q) ≤ f −1n (q)

proves (7.18d).
For (7.18b)–(7.18c), we employ a size-biasing argument on the jump sizes Di . For i ≤ j ,

write S′j,i =
∑

1≤k≤ j,k �=i Dk . We can therefore rewrite (6.7) (noting that the term j = 0
vanishes) as

m̄η(q)

t (1)=
∞∑

j=1

j∑

i=1
E1

(
e−λn(1)(t−S′j,i )E1

(
eλn(1)Di

Di

S′j,i+Di
1{

t−q−S′j,i≤Di≤t−S′j,i
}

∣∣∣∣∣ S
′
j,i

))
.

(7.19)
We split according to whether Di > fn(1 − δ0) or Di ≤ fn(1 − δ0). For any measurable
function h ≥ 0, (6.9) and Lemma 4.2 imply

E1

(
eλn(1)Di Di h(Di )1{Di> fn(1−δ0)}

)
≤ 1

ε0sn

∫
h(y) f −1n (y)dy. (7.20)

On the other hand, E1
(
eλn(1)Di Di h(Di )1{Di≤ fn(1−δ0)}

) ≤ max {yh(y) : y ≤ fn(1− δ0)} by
(6.9). Consequently, writing x+ := x ∨ 0,

m̄η(q)

t (1) ≤
∞∑

j=1

j∑

i=1
E1

(
e−λn (1)(t−S′j,i )1{

t−S′j,i≥0
}

[
1

ε0sn

∫ t−S′j,i

(t−q−S′j,i )+
f −1n (y)

S′j,i + y
dy + fn(1− δ0)

t − q

])

≤
∞∑

j=1

j∑

i=1
E1

(
e−λn (1)(t−S′j,i )1{

t−S′j,i≥0
}

[
f −1n (t − S′j,i )

ε0sn
log

(
t

t − q

)
+ fn(1− δ0)

t − q

])

≤ 2

t

∞∑

j=1

j∑

i=1
E1

(
e−λn (1)(t−S′j,i )1{

t−S′j,i≥0
}

[
q f −1n (t − S′j,i )

ε0sn
+ fn(1− δ0)

])
(7.21)

since − log(1 − x) ≤ 2x for x ∈ [0, 1/2] and q ≤ 1
2 t . To obtain (7.18c), we note that

P1(S′j,i ≤ t) ≤ f −1n (t) j−1, as in the proof of (7.18d), and therefore

m̄η(q)

t (1) ≤ C ′ q f
−1
n (t)+ sn fn(1− δ0)

snt

∞∑

j=1
j f −1n (t) j−1, (7.22)

and f −1n (t) < f −1n ( fn(1)) = 1 completes the proof of (7.18c).
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Finally, to prove (7.18b) we now reverse the argument that led to (7.21) by reintroducing
a term Di . By (6.12),
∫

yi1{yi≤ fn(1)}dμn(yi ) =
∫ 1

0
fn(x̃)dx̃ ≥

∫ 1

1−1/sn
fn(1− 1/sn)dx̃ = fn(1− 1/sn)

sn
,

(7.23)
so that E1(eλn(1)Di Di1{Di≤ fn(1)}/ fn(1 − 1/sn)) ≥ 1/sn . Abbreviate ρ(u) = 1{u≥0}
[q f −1n (u)/ε0 + sn fn(1 − δ0)]. Note that ρ is increasing and that on {Di ≤ fn(1)} we have
t − S′j,i ≤ t − S j + fn(1). Continuing from (7.21), we estimate

m̄η(q)

t (1) ≤ 2

t

∞∑

j=1

j∑

i=1
E1

(
e−λn(1)(t−S′j,i )ρ(t−S′j,i )E1

(
eλn(1)Di

Di

fn(1−1/sn)
1{Di≤ fn(1)}

))

≤ 2

t

∞∑

j=1

j∑

i=1
E1

(
e−λn(1)(t−S j )ρ(t + fn(1)− S j )

Di

fn(1− 1/sn)

)

= 2eλn(1) fn(1)

fn(1− 1/sn)

∞∑

j=0
E1

(
e−λn(1)(t+ fn(1)−S j )ρ(t + fn(1)− S j )

S j

t

)

≤ 2eλn(1) fn(1)

fn(1− 1/sn)

t + fn(1)

t
m̄ρ

t+ fn(1)
(1), (7.24)

where in the last inequality we have used that ρ(t + fn(1) − S j ) = 0 if S j > t + fn(1).
As in the proof of Theorem 3.13, we use Lemma 6.9, Theorem 6.3 and the definition of ρ to
obtain

m̄ρ

t+ fn(1)
(1) ≤ O(1)

∫ ∞

0
snλn(1)e

−λn(1)uρ(u) du

= O(sn)
[ q
ε0

∫ ∞

0
λn(1)e

−λn(1)u f −1n (u) du + sn fn(1− δ0)
]
. (7.25)

By Condition 6.2, we have f −1n (u) ≤ (u/ fn(1))1/ε0sn for u ≥ fn(1). Changing variables
and using that ε0sn ≥ 1 for large n, we obtain

∫ ∞

0
λn(1)e

−λn(1)u f −1n (u) du ≤ 1+
∫ ∞

0
λn(1) fn(1)e

−λn(1) fn(1)uu

du = 1+ 1

λn(1) fn(1)
= O(1) (7.26)

according to (6.15). Hence m̄ρ

t+ fn(1)
(1) = O(sn)(q + sn fn(1 − δ0)). The other factors in

(7.24) are O(1/ fn(1)) because of (6.15), Condition 2.1, and the assumption t ≥ fn(1−1/sn).
This completes the proof of (7.18b).

To make use of the bounds (7.18c)–(7.18d), we note the following consequence of Con-
dition 2.2:

Lemma 7.4 Suppose without loss of generality that the constant δ0 from Condition 2.2 sat-
isfies δ0 < 1. Then there exists C <∞ such that, uniformly over fn(1− δ0) ≤ u ≤ fn(1),

f −1n (u) ≤ 1− 1

Csn
log( fn(1)/u). (7.27)
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Proof It suffices to show that x ≤ 1 − (Csn)−1 log( fn(1)/ fn(x)) for 1 − δ0 ≤ x ≤ 1, i.e.,
that log( fn(1)/ fn(x)) ≤ Csn(1 − x). But Condition 2.2 implies that log( fn(1)/ fn(x)) ≤
ε−10 sn log(1/x), as in the proof of Lemma 4.1, so a Taylor expansion gives the result.

Proof of Theorem 3.16 We will show that each of the terms I0, I1, I2 in (7.13) is uniformly
bounded, and furthermore can be made arbitrarily small by taking K large enough (for I1 and
I2) and λn(1)[t1∧t2] large enough (for I0).We beginwith the term I2 [i.e., x ≥ (1+K/sn)sn ].
Lemma 7.2, (7.18a) and (6.15) give

m̄
� fn (x̃)

�t (�1) ≤ O(s2n )

fn(x̃)

[∫ ∞

0
e−2λn(1)r dr + 2

∫ fn(x̃)

0
e−λn(1)( fn(x̃)−r)dr

]
= O(s2n ) fn(1)

fn(x̃)
.

(7.28)

By Lemma 4.1, fn(x̃) ≥ fn(1)xε0 for x ≥ 1, so that I2 ≤ O(1)
∫∞
(1+K/sn)sn

x1/sn−ε0−1 dx .
Since

∫∞
1 x−ε0−1 dx <∞, it follows that I2 is uniformly bounded and can bemade arbitrarily

small by taking K , and hence (1+ K/sn)sn , large enough, uniformly over t1, t2.

For I1, we again start by estimating m̄
�y

�t (�1)where y = fn(x̃)with x̃ ∈ [1−δ0, 1−K/sn].
Suppose for definiteness, and without loss of generality by symmetry, that t1 ≤ t2. Split the
first integral from Lemma 7.2 into the intervals [0, t1− fn(1−1/sn)], [t1− fn(1−1/sn), t1−
4y] and [t1− 4y, t1] (noting that the integrand vanishes for r > t1) and denote the summand
by θ 11

n (y), θ 12
n (y) and θ 13

n (y). The second summand in Lemma 7.2 is called θ 14
n (y). The

corresponding parts of I1 are denoted by I11, . . . , I14.
We first estimate θ 13

n (y) and θ 14
n (y). Since fn(1 − δ0) ≤ y ≤ fn(1 − K/sn) < fn(1),

(7.18d) and Lemma 7.4 give

θ 13
n (y)+ θ 14

n (y) ≤ 1

y

[ ∫ t1

t1−4y

( 2

1− f −1n (y)

)2
dr +

∫ y

0
2

2

1− f −1n (r)

2

1− f −1n (r/2)
dr
]

≤ O(1)

(1− f −1n (y))2
≤ O(s2n )(

log( fn(1)/y)
)2 . (7.29)

According to Lemma 4.1, y = fn(x̃) ≤ fn(1)xε0 for all 1− δ0 ≤ x̃ ≤ 1. Substitute x = e−u
to obtain

I13 + I14 ≤ O(1)
∫ (1−K/sn)sn

(1−δ0)sn

1

(log(1/xε0))2
x1/sn−1 dx ≤ O(1)

∫ ∞

K

1

u2
du. (7.30)

Hence I13 + I14 is uniformly bounded and can be made arbitrarily small by taking K large.
For θ 11

n (y), r ∈ [0, t1 − fn(1− 1/sn)] implies t2 − r ≥ t1 − r ≥ fn(1− 1/sn) and since
2y ≤ 2 fn(1 − K/sn) ≤ 1

2 fn(1 − 1/sn) for large n by Condition 2.1, we can apply first
(7.18b) and then (6.15) to obtain

θ 11
n (y) ≤ 1

y

∫ t1− fn(1−1/sn)

0
e−2λn(1)r O(s2n )

(2y + sn fn(1− δ0)

fn(1)

)2
dr

= O(s2n )
(y + sn fn(1− δ0))

2

y fn(1)
. (7.31)
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Using that (a + b)2 ≤ 2(a2 + b2) for all a, b ∈ R and that fn(x̃) ≤ fn(1)xε0 and, for
x ∈ (1− δ0, 1− K/sn), fn(x̃) ≥ fn(1− δ0), we obtain

I11 ≤
∫ (1−K/sn)sn

(1−δ0)sn
O(1)

( fn(x̃)

fn(1)
+ s2n fn(1− δ0)

2

fn(x̃) fn(1)

)
x1/sn−1 dx

≤ O(1)

[ ∫ (1−K/sn)sn

(1−δ0)sn
xε0+1/sn−1 dx + s2n

fn(1− δ0)

fn(1)

∫ (1−K/sn)sn

(1−δ0)sn
x1/sn−1 dx

]
.

(7.32)

The first summand is bounded and can be made arbitrarily small by choosing K large. The
second summand is arbitrarily small for large n uniformly in K since fn(1 − δ0)/ fn(1) ≤
(1− δ0)

ε0sn = o(s−3n ) according to Lemma 4.1.
For θ 12

n (y) we substitute u = t1 − r to obtain

θ 12
n (y) = 1

y

∫ fn(1−1/sn)

4y
e−2λn(1)(t1−u)m̄η(2y)

u (1)m̄η(2y)

t2−t1+u(1) du. (7.33)

We consider the two cases t2 − t1 ≥ fn(1)/2 and 0 ≤ t2 − t1 < fn(1)/2 separately. First
t2− t1 ≥ fn(1)/2. Then t2− t1+u ≥ fn(1)/2+4 fn(1− δ0) ≥ fn(1−1/sn) for sufficiently
large n. Hence (7.18b), (7.18c) and Lemma 7.4 yield

θ 12
n (y) ≤ 1

y

∫ fn(1−1/sn)

4y
O(1)

2y + sn fn(1− δ0)

snu(1− f −1n (u))2
sn
2y + sn fn(1− δ0)

fn(1)
du

≤ O(s2n )
(y + sn fn(1− δ0))

2

y fn(1)

∫ fn(1−1/sn)

4y

1

u
(
log( fn(1)/u)

)2 du

≤ O(s2n )
(y + sn fn(1− δ0))

2

y fn(1)

∫ ∞

log( fn(1)/ fn(1−1/sn))
1

ξ2
dξ, (7.34)

where the last integral [inwhich ξ = log( fn(1)/u)] isO(1) since log( fn(1)/ fn(1−1/sn))→
1 as n → ∞. Hence, in the case t2 − t1 ≥ fn(1)/2, we have the same bound for θ 12

n (y) as
for θ 11

n (y).
Now let t2 − t1 < fn(1)/2, and abbreviate u′ = t2 − t1 + u. Recalling that fn(1 −

1/sn)/ fn(1)→ e−1, we have u′ ≤ fn(1)/2+ fn(1−1/sn) < 9
10 fn(1) for large n, uniformly

over u ≤ fn(1−1/sn).We first apply (7.18c) to both factors in (7.33) and then use Lemma 7.4
to obtain

θ 12
n (y) ≤ 1

y

∫ fn(1−1/sn)

4y
O(1)

2y + sn fn(1− δ0)

snu(1− f −1n (u))2

2y + sn fn(1− δ0)

snu′(1− f −1n (u′))2
du

≤ O(1)
(y+sn fn(1−δ0))

2

ys2n

∫ fn(1−1/sn)

4y

s2n

u
(
log( fn(1)/u)

)2
s2n

u′
(
log( fn(1)/u′)

)2 du.

(7.35)

In (7.35), we have u′ ≥ u, and we are particularly concerned with the case u′ = u. The
function u′ 
→ (u′/ fn(1))(log( fn(1)/u′))2 is not monotone over u′ ∈ [u, 9

10 fn(1)
]
, but it is

increasing over
(
0, 1

10 fn(1)
)
and bounded from zero and infinity over

[ 1
10 fn(1), 9

10 fn(1)
]
.

We may therefore find a constant c > 0 such that u′(log( fn(1)/u′))2 ≥ cu(log( fn(1)/u))2

whenever u ≤ u′ ≤ 9
10 fn(1). The bound (7.35) may therefore be simplified to

θ 12
n (y) ≤ O(s2n )

(y + sn fn(1− δ0))
2

y

∫ fn(1−1/sn)

4y

1

u2 log( fn(1)/u)4
du, (7.36)
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and an integration by parts shows that

θ 12
n (y) ≤ O(s2n )

(y + sn fn(1− δ0))
2

y2(log( fn(1)/y))4
. (7.37)

Inserting the bound (7.37) into I12 and using again (a+ b)2 ≤ 2(a2 + b2), we conclude that

I12 ≤
∫ (1−K/sn)sn

(1−δ0)sn
O(1)

fn(x̃)2 + s2n fn(1− δ0)
2

fn(x̃)2(log( fn(1)/ fn(x̃)))4
x1/sn−1 dx . (7.38)

Recall fromLemma4.1 the bounds fn(x̃) ≤ fn(1)xε0 and fn(1−δ0) ≤ fn(x̃)((1−δ0)/x̃)ε0sn .
We split the integral for the second summand in (7.38) at (1− δ0/2)sn . For x ≥ (1− δ0/2)sn ,
fn(1−δ0) ≤ fn(x̃)(1−δ′)ε0sn for some δ′ ∈ (0, 1). For x ≤ (1−δ0/2)sn , log( fn(1)/ fn(x̃)) ≥
ε0 log(1/x) ≥ csn for some c > 0. Hence

I12 ≤ O(1)
(
1+ s2n (1− δ′)ε0sn

) ∫ (1−K/sn)sn

(1−δ0)sn

1

x(log(1/x))4
dx

+ O(1)
∫ (1−δ0/2)sn

(1−δ0)sn

s2n fn(1− δ0)
2

fn(x̃)2s4n
x1/sn−1 dx

≤ O(1)
∫ e−K

0

1

x(log(1/x))4
dx + O

(
s−2n

) ∫ (1−δ0/2)sn

(1−δ0)sn
(1− δ0)

2ε0sn x−1−2ε0 dx .

(7.39)

The first summand in (7.39) is bounded and can be made arbitrarily small by choosing K
large, while the second summand is arbitrarily small for large n uniformly in K . We have
now handled all four contributions to I1.

Finally, for I0, let y ≤ fn(1−δ0) and note that�y(t ′1, ·) = 1[|t ′1−y|,t ′1+y] ≤ 1[(t ′1−y)+,t ′1+y],
where (t ′1 − y)+ := (t ′1 − y) ∨ 0. From (7.17) and (7.18d) it follows that

m̄
�y(t ′1,·)
t2 (1) ≤ 1{t2≥t ′1− fn(1−δ0)}e−λn(1)(t ′1−y)+m̄η

(t ′1+y−(t ′1−y)+)

t2−(t ′1−y)+ (1)

≤ 1{t2≥t ′1− fn(1−δ0)}
2

1− f −1n (2 fn(1− δ0))
= O(1)1[0,t2+ fn(1−δ0)](t ′1), (7.40)

and therefore m̄
�y

�t (�1) ≤ O(sn) by (7.4)–(7.5) and (7.18a). We conclude that I0 is uniformly
bounded. To show the smallness, we sharpen the bound (7.40) when t ′1 is far from t2 by using
(7.18b) instead of (7.18d), to obtain for t2 ≥ t ′1 + fn(1− δ0)+ fn(1),

m̄
�y(t ′1,·)
t2 (1) ≤ m̄η

(t ′1+y−(t ′1−y)+)

t2−(t ′1−y)+ (1) ≤ O(sn)
2y + sn fn(1− δ0)

fn(1)
= O(s2n )

fn(1− δ0)

fn(1)
.

(7.41)

Combining (7.40)–(7.41),wehave m̄
�y(t ′1,·)
t2 (1) ≤ O(s2n )

fn(1−δ0)
fn(1)

+O(1)1{t2−2 fn(1)≤t ′1≤t2+ fn(1)}.
Applying (7.4)–(7.5), (7.17), (7.18a) and (6.15) we conclude that

m̄
�y

�t (�1) ≤ O(s3n )
fn(1− δ0)

fn(1)
+ O(sn)e

−λn(1)t2 (7.42)

and consequently I0 may be made small by taking t2 large.
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8 First Points of Cox Processes: Proof of Theorem 3.29

Let X denote a topological space equipped with its Borel σ -field and let (Pn)n≥1 be a
sequence of Cox processes on R×X with random intensity measures (Zn)n≥1. That is, there
exist σ -fields Fn such that Zn is Fn-measurable and, conditionally on Fn , Pn is a Poisson
point process with (random) intensity Zn . For instance, Theorem 3.27 expresses the first
passage distance and hopcount in terms of the first point of a Cox process. In this section,
we determine sufficient conditions to identify the limiting distribution of the first points of
Pn based on the intensity measure at fixed times t .

This section is organised as follows.We start in Sect. 8.1 with preparations of convergence
of Cox processes. In Sect. 8.2, we use these results to prove Theorem 3.29.

8.1 Preparations:Weak Convergence of Cox Processes

Wewill writePn,t for themeasure defined byPn,t (·) = Pn((−∞, t]×·), and given a partition
t0 < · · · < tN we abbreviate �Pn,i = Pn,ti − Pn,ti−1 ; similarly for Zn,t ,�Zn,i . Write |μ|
for the total mass of a measure μ.

Define
Tn,k = inf

{
t : ∣∣Pn,t

∣∣ ≥ k
}
, (8.1)

and let An,k be the event that Tn, j /∈ {±∞} and ∣∣Pn,Tn, j

∣∣ = j , for j = 1, . . . , k. That is, An,k

is the event that the points of suppPn with the k smallest t-values are uniquely defined. On
An,k , let Xn,k denote the unique point for which Pn(

{
Tn,k

} × {Xn,k
}
) = 1, and otherwise

set Xn,k = †, an isolated cemetery point.
We will impose the following conditions on the intensity measures (Zn)n , expressed in

terms of a probability measure Q on X and a familyH of measurable functions h : X → R.

Condition 8.1 (Regularity of Cox process intensities)

(a) For any t ∈ R and for any h ∈ H,
∫

X
h dZn,t −

∣∣Zn,t
∣∣
∫

X
h dQ

P−→ 0. (8.2)

(b) For each ε > 0, there exists t ∈ R such that

lim inf
n→∞ P

(∣∣Zn,t
∣∣ < ε

) ≥ 1− ε. (8.3)

(c) For each ε > 0, there exists t ∈ R such that

lim inf
n→∞ P

(∣∣Zn,t

∣∣ > 1/ε
) ≥ 1− ε. (8.4)

(d) For each ε > 0 and each t < t, there exists a partition t0 = t < t1 < · · · < tN = t of
[t, t] such that

lim inf
n→∞ P

(
N∑

i=1

∣∣�Zn,i
∣∣2 ≤ ε

)
≥ 1− ε. (8.5)

We make the convention that any function h on X is extended to X ∪ {†} by h(†) = 0.

Proposition 8.2 Suppose that Condition 8.1 holds for a probability measure Q on X and
a family H of bounded measurable functions h : X → R. Then, for each fixed k ∈ N,

P(An,k)→ 1, the collection
{
(Tn, j )

k
j=1 : n ∈ N

}
of random vectors is tight, and
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E

⎛

⎝
k∏

j=1
g j (Tn, j )h j (Xn, j )

∣∣∣∣∣∣
Fn

⎞

⎠− E

⎛

⎝
k∏

j=1
g j (Tn, j )

∣∣∣∣∣∣
Fn

⎞

⎠
k∏

j=1

∫

X
h j dQ

P−→ 0 (8.6)

for all bounded continuous functions g1, . . . , gk : R → R and all h1, . . . , hk ∈ H.

Theorem 8.3 Suppose Condition 8.1 holds when either

H is the family of all bounded continuous functions on X ;
X = R

d and H is the family of functions h(�x) = ei �ξ ·�x for �ξ ∈ R
d ; or

X = [0,∞)d and H is the family of functions h(�x) = e−�ξ ·�x for �ξ ∈ [0,∞)d .

Then

(a) the random sequence (Xn, j )
∞
j=1 converges in distribution [with respect to the product

topology on (X ∪ {†})N] to a random sequence (X j )
∞
j=1, where the X j are independent

with law Q;
(b) the sequence (Xn, j )

∞
j=1 is asymptotically independent of Fn;

(c) the collection
{
(Tn, j )

k
j=1 : n ∈ N

}
of random vectors is tight; and

(d) if (Tj , X j )
∞
j=1 is any subsequential limit in distribution of (Tn, j , Xn, j )

∞
j=1, then (Tj )

∞
j=1

and (X j )
∞
j=1 are independent.

Proof of Theorem 8.3 assuming Proposition 8.2 Because of the product topology, it suffices to
consider finite sequences (Tn, j , Xn, j )

k
j=1 for a fixed k ∈ N. Applying (8.6) with g j (t) = 1

gives the convergence of (Xn, j )
k
j=1. The independence of (Tj )

k
j=1 and (X j )

k
j=1 follows from

the product form of (8.6), and the asymptotic independence of X j fromFn follows because
of the conditional expectations in (8.6).

We first prove the following lemma. Given t0 < · · · < tN , write Bn,k for the event that
there exist (random) integers 1 ≤ I1 < · · · < Ik ≤ N with

∣∣�Pn,I j

∣∣ = 1 for j = 1, . . . , k
and

∣∣Pn,tIk

∣∣ = k. (That is, Bn,k is the event that each of the first k points of Pn is the unique
point in some interval (ti−1, ti

]
. In particular Bn,k ⊂ An,k .)

Lemma 8.4 Assume Conditions 8.1 (b)–(c). Then, given ε > 0 and k ∈ N, there exists [t, t]
and a partition t = t0 < · · · < tN = t of [t, t] such that lim infn→∞ P(Bn,k) ≥ 1 − ε. In
particular, P(An,k)→ 1.

Proof Given a partition t = t0 < · · · < tN = t , the complement Bc
n,k is the event that

Pn contains a point in
(−∞, t

]
, fewer than k points in

(−∞, t
]
, or more than one point

in some interval (ti−1, ti
]
. By Conditions 8.1 (b)–(c), we may choose t, t such that the first

two events each have probability at most ε/3 for n large. Since P
( ∣∣�Pn,i

∣∣ ≥ 2
∣∣ Zn

) =
1− e−|�Zn,i |(1+ ∣∣�Zn,i

∣∣) ≤ ∣∣�Zn,i
∣∣2, Condition 8.1 (c) gives a partition of [t, t] such that

the third event also has probability at most ε/3 for n large.

Proof of Proposition 8.2 Fix any ε > 0 and bounded, continuous functions g1, . . . , gk .
Choose t0 < · · · < tN as in Lemma 8.4. By taking a refinement, we may assume that∣∣g j (t)− g j (ti )

∣∣ ≤ ε for each t ∈ (ti−1, ti
]
and each i, j . Define ψ(t) = ti if ti−1 < t ≤ ti

and ψ(t) = tN otherwise, and set g̃ j = g j ◦ ψ . Partitioning according to the integers I j ,

1Bn,k

k∏

j=1
g̃ j (Tn, j )h j (Xn, j ) =

∑

�i
1Bn,k1

{ �I=�i
}

k∏

j=1
g j (ti j )

∫

X
h j �Pn,i j , (8.7)
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where the sum is over �i ∈ N
k with 1 ≤ i1 < · · · < ik ≤ N , and we write �I = (I1, . . . , Ik).

Observe that a Poisson point process P with intensity μ satisfies E(1{|P|=1}
∫
h dP) =

e−|μ|
∫
h dμ. Consequently,

E

⎛

⎝1Bn,k

k∏

j=1
g̃ j (Tn, j )h j (Xn, j )

∣∣∣∣∣∣
Fn

⎞

⎠ =
∑

�i
e
−
∣∣∣Zn,tik

∣∣∣
k∏

j=1
g j (ti j )

∫

X
h j �Zn,i j . (8.8)

Apply (8.8) twice, with the original h j ’s and with the constant functions h̃ j (x) =
∫
h j dQ,

to get

E

⎛

⎝1Bn,k

⎡

⎣
k∏

j=1
g̃ j (Tn, j )h j (Xn, j )−

k∏

j=1
g̃ j (Tn, j )

∫

X
h j dQ

⎤

⎦

∣∣∣∣∣∣
Fn

⎞

⎠

=
∑

�i
e
−
∣∣∣Zn,tik

∣∣∣

⎡

⎣
k∏

j=1
g j (ti j )

∫

X
h j �Zn,i j −

k∏

j=1
g j (ti j )

∣∣�Zn,i j

∣∣
∫

X
h j dQ

⎤

⎦ . (8.9)

The right-hand side of (8.9) is bounded (since g j , h j , and |�Zn,i j |e−|�Zn,i j | are bounded)
and, by Condition 8.1 (a), converges to 0 in probability, and hence also in expectation. By
the choice of the partition,

∣∣g̃ j (Tn, j )− g j (Tn, j )
∣∣ ≤ ε on Bn,k and lim supn→∞ P(Bc

n,k) ≤ ε.
Now let (Fn)n be a uniformly bounded sequence of R-valued random variables such that Fn
is Fn-measurable. Since all the functions involved are bounded, there exists C < ∞ such
that

lim sup
n→∞

∣∣∣∣∣∣
E

⎛

⎝Fn

k∏

j=1
g j (Tn, j )h j (Xn, j )

⎞

⎠− E

⎛

⎝Fn

k∏

j=1
g j (Tn, j )

⎞

⎠
k∏

j=1

∫

X
h j dQ

∣∣∣∣∣∣
≤ Cε,

(8.10)

which completes the proof.

When X = R
d , another natural family is H =

{
h(�x) = e�ξ ·�x : �ξ ∈ R

d
}
. However, these

functions are not bounded, so it is necessary to modify the argument of Proposition 8.2 and
Theorem 8.3. Recall from (3.54) that we write R̂ for the moment generating function of a
measure R on R

d .

Proposition 8.5 LetX = R
d . Suppose Condition 8.1 holds whenH is the family of functions

h(x) = e�ξ ·�x for �ξ ∈ R
d , |�ξ | ≤ δ, where δ > 0 and Q̂(�ξ) < ∞ for all |�ξ | ≤ δ. Then the

conclusions (a)–(d) of Theorem 8.3 hold.

Proof Fix any ε > 0, k ∈ N, g1, . . . , gk bounded, continuous functions, and choose t0 <

· · · < tN as in Lemma 8.4. By taking a refinement, we may assume that ti − ti−1 ≤ ε.
Let Cn be the event that Ẑn,ti (

�ξ0) ≤
∣∣Zn,ti

∣∣ Q̂(�ξ0) + ε for each i = 1, . . . , N and for each
�ξ0 ∈ {δ/

√
d,−δ/

√
d}d . By Condition 8.1 (a), P(Cn) → 1. Let X j be independent random

variables with law Q, and define X̃n, j = Xn, j on Bn,k ∩ Cn and X̃n, j = X j otherwise.
Recall the notations ψ(t), g̃ j (t) from the proof of Proposition 8.2 and set T̃n, j = ψ(Tn, j ).

Set h j (�x) = e�ξ j ·�x for ‖�ξ j‖∞ ≤ δ/
√
d . By the argument of the previous proof, this time using

that the X̃n, j have law Q on (Bn,k ∩ Cn)
c, we find
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E

⎛

⎝
k∏

j=1
g j (T̃n, j )h j (X̃n, j )−

k∏

j=1
g j (T̃n, j )Q̂(�ξ j )

∣∣∣∣∣∣
Fn

⎞

⎠

= 1Cn

∑

�i
e
−
∣∣∣Zn,tik

∣∣∣

⎡

⎣
k∏

j=1
g j (ti j )�̂Zn,i j (

�ξ j )−
k∏

j=1
g j (ti j )

∣∣�Zn,i j

∣∣ Q̂(�ξ j )
⎤

⎦ . (8.11)

By Condition 8.1 (a), the right-hand side of (8.11) converges to 0 in probability. Moreover,
by the bound e�ξ j ·�x ≤∑�ξ0∈{±δ/

√
d}d e

�ξ0·�x and the choice of Cn , it is bounded as well. Hence

we may repeat the argument from the proof of Theorem 8.3 to find that (T̃n, j , X̃n, j ) j satisfy
the desired conclusions. But by construction, lim infn→∞ P(Xn, j = X̃n, j , |Tn, j − T̃n, j | ≤
ε) ≥ 1 − ε. Since ε > 0 was arbitrary, it follows that Xn, j and Tn, j themselves have the
same convergence properties.

8.2 Convergence of First Point of Cox Processes: Proof of Theorem 3.29

In this section, we use the above conditions for convergence of Cox processes to prove
Theorem 3.29:

Proof of Theorem 3.29 For any ε > 0 we may define

t(ε) = max
{
t ∈ Z, t < −1/ε : q(t) < ε2

}
, (8.12)

t(ε) = min
{
t ∈ Z, t > 1/ε : lim inf

n→∞ P(|Z∗n,t | > 1/ε) > 1− ε
}

, (8.13)

K1(ε) = min
{
k1 ∈ N : lim inf

n→∞ P

(
E

(∣∣Z ′(K )

n,t(ε)

∣∣
∣∣∣F ′

n

)
≤ 2q(t(ε))

)
≥ 1− ε for all K ≥ k1

}

∨min
{
k1 ∈ N : lim inf

n→∞ P

(
E

(∣∣Z ′′(K )

n,t(ε)

∣∣
∣∣∣F ′

n

)
≤ ε2

)
≥ 1− ε for all K ≥ k1

}
,

(8.14)

by limt→−∞ q(t) = 0, assumption (b), (3.55) and (3.57), respectively. Given any ε > 0,
let ε′ ∈ (0, ε) be arbitrary. By construction, t(ε′) ≤ t(ε), so taking K = K1(ε

′) shows that
E

(∣∣Z∗n,t(ε)

∣∣
∣∣∣F ′

n

)
is uniformly bounded apart from an event of probability at most 2ε′+o(1).

Since ε′ was arbitrary, it follows that
∣∣Z∗n,t(ε)

∣∣ is tight as n→∞, so we may define

z0(ε) = min

{
z ∈ N : lim sup

n→∞
P(|Z∗n,t(ε)| ≤ z) ≥ 1− ε

}
. (8.15)

For ε > 0, t, u ∈ R, �ξ ∈ R
2, let K0(ε, t, u, �ξ) denote the smallest integer exceed-

ing K1(ε) such that (3.55)–(3.57) hold with probability at least 1 − ε for K ≥ K0(ε)

and n ≥ n0(K , ε, t, u, �ξ). Let K0(ε) and n0(ε) denote the maxima of K0(ε, t, u, �ξ)

and n0(K0(ε), ε, t, u, �ξ), respectively, over all numbers t, u ∈ [t(ε), t(ε)] and ξ1, ξ2 ∈
[−1/ε, 1/ε] that are dyadic rationals of the form i2−� (i ∈ Z, � ∈ N) with � < 1/ε.

The hypotheses imply that K0(ε) and n0(ε) are finite for each ε > 0. Moreover, by
construction, t(ε) → ∞, t(ε) → −∞ as ε ↓ 0. Therefore, by letting ε = εn decrease
to 0 sufficiently slowly as n → ∞ and setting K = K0(εn), we can assume that Z∗n =
Z ′(K )
n + Z ′′(K )

n where
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E

(
Ẑ ′(K )

n,t (�ξ)

∣∣∣F ′
n

)
P−→ q(t)Q̂(�ξ), (8.16)

E

(( Ẑ ′(K )

n,t (�ξ)

q(t)Q̂(�ξ)
−
∣∣Z ′(K )

n,u
∣∣

q(u)

)2
∣∣∣∣∣F

′
n

)
P−→ 0, (8.17)

E
( ∣∣Z ′′(K )

n,t

∣∣ ∣∣F ′
n

) P−→ 0, (8.18)

whenever t, u, ξ1, ξ2 are dyadic rationals.
Let P ′n,P ′′n denote the Cox processes with intensity measures Z ′(K )

n , Z ′′(K )
n , respectively.

For any fixed t ∈ R, (8.18) implies that the first point ofP ′′n does not occur by time t with high
probability. By Proposition 8.5, it therefore suffices to show that Z ′(K )

n satisfies Condition 8.1
for the family of functions h(�x) = e�ξ ·�x , �ξ ∈ R

2.
Applying Chebyshev’s inequality to (8.17),

Ẑ ′(K )

n,t (�ξ)− q(t)

q(u)
Q̂(�ξ)

∣∣Z ′(K )

n,u

∣∣ P−→ 0 (8.19)

(a continuity argument extends the convergence from dyadic rationals to all t, u, �ξ ). Taking
t = u verifies Condition 8.1 (a). For Condition 8.1 (b), fix ε > 0 and choose t ∈ R such that

q(t) < 1
4ε

2. Then (8.16) implies that E

(∣∣∣Z ′(K )

n,t

∣∣∣
∣∣∣Fn

)
≤ 1

2ε
2 whp, and Markov’s inequality

implies that P

(∣∣∣Z ′(K )

n,t

∣∣∣ ≥ ε

∣∣∣Fn

)
≤ 1

2ε whp. Condition 8.1 (c) follows from (8.18) and

assumption (b) in Theorem 3.29.
Finally, let ε > 0 and a compact interval [t, t] be given. Expanding the interval if necessary,

we may assume that t, t are dyadic rationals, and, decreasing ε if necessary, we may assume
that t ≤ t(ε). Since q is continuous and non-decreasing, we may choose a partition t0 <

· · · < tN of [t, t] consisting of dyadic rationals such that

N∑

i=1

(
q(ti )

q(ti−1)
− 1

)2

≤ ε

4z0(ε)2
. (8.20)

[it is enough to choose the partition finely enough that maxi (q(ti ) − q(ti−1)) ≤
q(t)/4z0(ε)2q(t)], and bound

N∑

i=1

∣∣∣�Z ′(K )

n,i

∣∣∣
2 =

N∑

i=1

(∣∣Z ′(K )

n,ti

∣∣− q(ti )

q(ti−1)
∣∣Z ′(K )

n,ti−1
∣∣+
( q(ti )

q(ti−1)
− 1
)∣∣Z ′(K )

n,ti−1
∣∣
)2

≤
N∑

i=1
2

(∣∣Z ′(K )

n,ti

∣∣− q(ti )

q(ti−1)
∣∣Z ′(K )

n,ti−1
∣∣
)2

+ 2

(
q(ti )

q(ti−1)
− 1

)2 ∣∣Z ′(K )

n,ti−1
∣∣2

≤ ε

2z0(ε)2

∣∣∣Z∗n,t(ε)

∣∣∣
2 + 2

N∑

i=1

(∣∣Z ′(K )

n,ti

∣∣− q(ti )

q(ti−1)
∣∣Z ′(K )

n,ti−1
∣∣
)2

. (8.21)

The latter sum is oP(1) by (8.19) with �ξ = �0, and the remaining term is at most ε/2 on the
event

{|Z∗n,t(ε)| ≤ z0(ε)
}
. This event has probability at least 1 − ε − o(1) by (8.15), which

completes the proof.
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9 Moment Estimates and the Cluster After Unfreezing

While most other sections did not rely on the companion paper [21], in this section we do
heavily rely on it. In particular, we make use of [Part I, Theorem 2.15], [Part I, Lemma 2.18],
[Part I, Proposition 2.17] and [Part I, Lemma 6.4].

In this section we study Bt for t ≥ Tunfr, when the cluster resumes its CTBP behaviour.
We will use moment methods to prove Lemma 3.32 and Theorem 3.31, completing the proof
of our results.

This section is organised as follows. We start in Sect. 9.1 with some preparations con-
cerning frozen intensity measures. In Sect. 9.2, we investigate the volume of the cluster after
unfreezing and prove Lemma 3.32 (a). In Sect. 9.3 we use second moment methods on the
collision edges to prove Theorem 3.31. In Sect. 9.4 we show that the collision edge whp
does not originate from the frozen cluster, but rather from one of its descendants, to prove
Lemma 3.32 (b). Finally, in Sect. 9.5, we study the freezing time and frozen cluster and use
this to prove Theorem 3.18.

9.1 Preparations: Frozen Intensity Measures

We introduce the frozen intensity measures

dμ
( j)
n,fr(y) =

∑

v∈B( j)
fr

1{y≥0}μn
(
T ( j)
fr − Tv + dy

)
. (9.1)

Recall that the notation μ(t0 + dy) denotes the translation of the measure μ by t0; thus (9.1)
means that, for a test function h ≥ 0,

∫
h(y)dμ

( j)
n,fr(y) =

∑

v∈B( j)
fr

∫ ∞

T ( j)
fr −Tv

h
(
y − (T ( j)

fr − Tv)
)
dμn(y). (9.2)

Lemma 9.1 Almost surely, for j = 1, 2,

sn ≤
∫

e−λn(1)ydμ
( j)
n,fr(y) ≤ sn + 1. (9.3)

Proof By (9.2),
∫

e−λn ydμ
( j)
n,fr(y) =

∑

v∈B( j)
fr

∫ ∞

T ( j)
fr −Tv

e
−λn

(
y−(T ( j)

fr −Tv)
)

dμn(y). (9.4)

The expression in (9.4) is the value of the process
∑

v∈BP( j)
t

∫∞
t−Tv

e−λn(y−(t−Tv))dμn(y) from

Definition 3.17, stopped at t = T ( j)
fr (recall that B( j)

fr = BP ( j)

T ( j)
fr

). Since μn has no atoms, this

process is continuous in t except for jumps at the birth times, and since the birth times are
distinct a.s., the corresponding jump has size

∫∞
0 e−λn ydμn(y) = 1. By definition, T ( j)

fr is
the first time the process in (9.4) exceeds sn , so it can have value at most sn + 1 at that time.

For future reference, we now state a lemma, to be used in Sect. 9.3, showing that most of
the mass of the frozen intensity measures μ

( j)
n,fr comes from small times:
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Lemma 9.2 Let δ, δ′ > 0 and a0 > 0 be given. Then there exists K < ∞ and n0 ∈ N such
that, for all a ≥ a0 and n ≥ n0,

P

(∫
e−λn(a1/sn )y1{λn(1)y≥K }dμ

( j)
n,fr(y) > δsn

)
≤ δ′. (9.5)

Proof Let ε = a0e−γ /2, where γ denotes Euler’s constant. Using the definition of μ
( j)
n,fr

from (9.1), the monotonicity of λn(·) and (6.15), we obtain n0 ∈ N such that for all K <∞,
a ≥ a0 and n ≥ n0,
∫

e−λn(ã)y1{λn(1)y≥K }dμ
( j)
n,fr(y) ≤

∑

v∈B( j)
fr

∫
e−εy/ fn(1)1{y≥K fn(1)}μn

(
T ( j)
fr − Tv + dy

)
.

(9.6)
According to Lemma 4.4, for any ε′ > 0 we can choose some K < ∞ such that, after
possibly increasing n0, the right-hand side of (9.6) is bounded from above by

∣∣B( j)
fr

∣∣ ε′/sn .
Since

∣∣B( j)
fr

∣∣ = OP(s2n ) by Theorem 3.18 (b), the proof is complete.

9.2 A First Moment Estimate: Proof of Lemma 3.32 (a)

In this section we show how to express Bt \ Bfr , t ≥ Tunfr, as a suitable union of branching
processes. This representation leads to a simple proof of Lemma 3.32 (a). We will also use
it in Sect. 9.3 to prove Theorem 3.31.

Consider the immediate children v ∈ ∂Bfr of individuals in the frozen cluster Bfr . Then,
for t ′ ≥ 0,

BTunfr+t ′ \ Bfr =
⋃

v∈∂Bfr : TB
v ≤Tunfr+t ′

{
vw : w ∈ BP (v)

t ′+Tunfr−TB
v

}
, (9.7)

where BP (v) denotes the branching process of descendants of v, re-rooted and time-shifted
as in (6.1). Furthermore, conditionally on Bfr , the children v ∈ ∂Bfr appear according to a
Cox process. Formally, the point measures

P ( j)
n,unfr =

∑

v∈∂B( j)
fr

δ(TB
v −Tunfr,BP(v)) (9.8)

form Cox processes with intensities dμ
( j)
n,fr ⊗ dP(BP (1) ∈ ·), j = 1, 2, where the frozen

intensity measures μ
( j)
n,fr were introduced in (9.1).

Proof of Lemma 3.32 (a) ByTheorem3.18 (b), the volume |Bfr|of the frozen cluster isOP(s2n ),
and this is oP(

√
nsn) since n/s3n → ∞. It therefore suffices to show that

∣∣Bt \ Bfr
∣∣ =

OP(
√
nsn) when t = Tunfr + λn(1)−1

( 1
2 log(n/s3n )+ K

)
.

Abbreviate t ′ = t − Tunfr = λn(1)−1
( 1
2 log(n/s3n )+ K

)
. By (9.7)–(9.8),

∣∣Bt \ Bfr
∣∣ =

∑

v∈∂Bfr : TB
v ≤Tunfr+t ′

z1,BP(v)

t ′+Tunfr−TB
v

(1) =
2∑

j=1

∫
1{t≤t ′}z1,bpt ′−t (1)dP

( j)
n,unfr(t, bp),

(9.9)
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so that, by Theorem 3.13 and Lemma 9.1, there exists a K ′ < ∞ such that for sufficiently
large n,

E
( ∣∣Bt \ Bfr

∣∣ ∣∣Bfr
) =

2∑

j=1

∫
1{t≤t ′}eλn(1)(t ′−t)m̄1

t ′−t (1)dμ
( j)
n,fr(t)

≤
√

n

s3n
eK

2∑

j=1

∫
1{t≤t ′}K ′sne−λn(1)t dμ

( j)
n,fr(t)≤K ′eK

√
n

s3n
sn(sn+1).

(9.10)

Markov’s inequality completes the proof.

9.3 SecondMoment Estimates: Proof of Theorem 3.31

In this section we prove that P∗n satisfies the assumptions of Theorem 3.29. Namely, we will
split μn = μ

(K )
n + (μn − μ

(K )
n ) into the truncated measure and a remainder, as in Sect. 7.

This induces a splitting of the intensity measure into Z ′(K )
n + Z ′′(K )

n , and the hypothesis (a)
will be verified using the estimates for the two-vertex characteristics χ

(K )
n and χn − χ

(K )
n

in Theorems 3.15 and 3.16. The remaining hypothesis (b) will be proved using a separate
argument.

Throughout the proof, the times t and t∗ are related as in (3.60), and we recall from (3.54)
that, for a measure Q on R

d , we write Q̂ for its moment generating function.

Proof of Theorem 3.31 Since P∗n is the image of a Cox process under a mapping that is mea-
surable with respect to Bfr , it is immediate that it itself is a Cox process, and its intensity
measure is

Z∗n,t∗=
∑

v1∈B(1)
t \B(1)

fr

∑

v2∈B(2)
t \B(2)

fr

1
nμn

(
�Rv1,v2 , R1(t)−R1

(
TB
v1

)
+R2(t)−R2

(
TB
v2

))
δ(|v1|∗,|v2|∗),

(9.11)
wherewe recall |v|∗ from (3.59) and

∣∣v j
∣∣∗ denotes |v|∗ forB( j). In the above sum, TB

v j
≥ Tunfr,

so that R j ′(t)− R j ′(TB
v j

) = t − TB
v j

whenever t ≥ TB
v j
, j, j ′ ∈ {1, 2}, and, recalling (3.49),

�Rv1,v2 =
∣∣TB

v1
− TB

v2

∣∣.
We begin by expressing Ẑ∗n,t∗(�ξ) as a sum of two-vertex characteristics. As in (9.7), any

vertex v′ ∈ Bt \Bfr is descended from a unique vertex v = punfr(v′) ∈ ∂Bfr and can therefore
be written as v′ = vw for some w ∈ BP (v)

t−TB
v

. Hence
∣∣v′
∣∣− ∣∣punfr(v′)∣∣ = |vw| − |v| = |w|.

Thus

Ẑ∗n,t∗(�ξ)

=
∑

v1∈∂B(1)
fr

∑

w1∈BP
(v1)

t−TBv1

∑

v2∈∂B(2)
fr

∑

w2∈BP
(v2)

t−TBv2

exp

(
ξ1 |w1| + ξ2 |w2|
sn
√
log(n/s3n )

− (ξ1 + ξ2)
φn

2sn

√
log(n/s3n )

)

× 1
nμn

(∣∣TB
v1w1

− TB
v2w2

∣∣ , t − TB
v1w1

+ t − TB
v2w2

)
. (9.12)
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We note that TB
v jw j

= TB
v j
+ T

(v j )
w j , where T

(v j )
w j denotes the birth time of w j in the branching

process BP (v j ) defined in (6.1). (Note that TB
v j
≥ Tunfr, so that freezing plays no role after

TB
v j

and we need not consider TB
w j
.) It follows that

μn
(∣∣TB

v1w1
− TB

v2w2

∣∣ , t − TB
v1w1

+ t − TB
v2w2

) = χn

(
t − TB

v1
− T (v1)

w1 , t − TB
v2
− T (v2)

w2

)
,

(9.13)

where χn is the two-vertex characteristic from (3.24). Recalling the notation from (3.22),

Ẑ∗n,t∗(�ξ) = 1

n
exp

(
−(ξ1 + ξ2)

φn

2sn

√
log(n/s3n )

) ∑

v1∈∂B(1)
fr

∑

v2∈∂B(2)
fr

zχn ,BP(v1),BP(v2)

t−TB
v1

, t−TB
v2

(�̃a),

(9.14)

where �̃a = (a1/sn1 , a1/sn2 ) as in (7.3) and

a j = exp

(
ξ j√

log(n/s3n )

)
. (9.15)

Note that a1, a2 depend implicitly on n and a j → 1 as n→∞.
As in Sect. 9.2, we express the sums over ∂B(1)

fr , ∂B(2)
fr in (9.14) in terms of the point

measures P ( j)
n,unfr =

∑
v∈∂B( j)

fr
δ(TB

v −Tunfr,BP(v)) from (9.8):

Ẑ∗n,t∗(�ξ) = 1

n
exp

(
−(ξ1 + ξ2)

φn

2sn

√
log(n/s3n )

)∫
dP (1)

n,unfr(t1, bp
(1))

×
∫

dP (2)
n,unfr(t2, bp

(2))zχn ,bp(1), bp(2)

t−Tunfr−t1,t−Tunfr−t2(�̃a). (9.16)

Recalling the notation from (3.23) and (6.19),

Ẑ∗n,t∗ (�ξ) = 1

n
exp

(
−(ξ1 + ξ2)

φn

2sn

√
log(n/s3n )+ (t − Tunfr)(λn(ã1)+ λn(ã2))

)

×
∫

dP (1)
n,unfr(t1, bp

(1))

∫
dP (2)

n,unfr(t2, bp
(2))e−λn(ã1)t1−λn(ã2)t2 z̄χn ,bp(1),bp(2)

t−Tunfr−t1, t−Tunfr−t2 (�̃a)

= exp

(
λn(ã1)+ λn(ã2)

λn(1)

(
t∗ + 1

2 log(n/s3n )
)
− (ξ1 + ξ2)

φn

2sn

√
log(n/s3n )− log(n/s3n )

)

× 1

s3n

∫
dP (1)

n,unfr(t1, bp
(1))

∫
dP (2)

n,unfr(t2, bp
(2))e−λn(ã1)t1−λn(ã2)t2 z̄χn ,bp(1),bp(2)

t−Tunfr−t1, t−Tunfr−t2 (�̃a).

(9.17)

For the non-random factors on the right-hand side of (9.17), we use the asymptotics from
Corollary 6.5:

λn(ã j )

λn(1)
= 1+ φn

sn

(
exp

(
ξ j/

√
log(n/s3n )

)
− 1

)
+ o

(
exp

(
ξ j/

√
log(n/s3n )

)
− 1

)2

= 1+ φn

sn

(
ξ j/

√
log(n/s3n )+

1

2
ξ2j / log(n/s3n )

)
+ o

(
1/ log

(
n/s3n

))
. (9.18)

Combining with the asymptotics λn(ã j )/λn(1) = 1+o(1) and sn/φn = 1+o(1) [see (6.15)
and Lemma 3.12], we conclude that, for any fixed t∗ ∈ R,

λn(ã j )

λn(1)

(
t∗ + 1

2 log(n/s3n )
)− ξ j

φn

2sn

√
log(n/s3n )−

1

2
log(n/s3n ) = t∗ + 1

4ξ
2
j + o(1). (9.19)
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[When ξ j = 0, a j = 1, the term o(1) in (9.19) is absent.] Combining (9.17) and (9.19),

Ẑ∗n,t∗(�ξ) = e
2t∗+ 1

4

∥∥∥�ξ
∥∥∥
2+o(1)

s3n

∫
dP (1)

n,unfr(t1, bp
(1))

∫
dP (2)

n,unfr(t2, bp
(2))

· e−λn(ã1)t1e−λn(ã2)t2 z̄χn ,bp(1),bp(2)

t−Tunfr−t1, t−Tunfr−t2(�̃a). (9.20)

This is the desired representation in terms of two-vertex characteristics.
Given K <∞, define

Z ′(K )

n,t∗ =
∑

v1∈B(1)
t \B(1)

fr

∑

v2∈B(2)
t \B(2)

fr

1
nμ(K )

n

(∣∣TB
v1
− TB

v2

∣∣ , t − TB
v1
+ t − TB

v2

)
δ(|v1|∗,|v2|∗), (9.21)

similarly to Definition 3.30, and set Z ′′(K )

n,t∗ = Z∗n,t∗ − Z ′(K )

n,t∗ . (We suppress the dependence of

Z ′(K )
n , Z ′′(K )

n on K .) Clearly, (9.20) remains true when Z∗n,t∗ and χn are replaced by Z ′(K )

n,t∗ and

χ
(K )
n , or by Z ′′(K )

n,t∗ and χn − χ
(K )
n , respectively. We will use (9.20) to control first and second

moments of Z ′(K )

n,t∗ , for arbitrary but fixed values t∗, ξ1, ξ2 ∈ R, and first moments of Z ′′(K )

n,t∗
with ξ1 = ξ2 = 0.
Verification of (3.55): Writing λn(�̃a) = (λn(ã1), λn(ã2)), we obtain from (9.20),

E

(
Ẑ ′n,t∗(�ξ)

∣∣∣Bfr

)
= e

2t∗+ 1
4

∥∥∥�ξ
∥∥∥
2+o(1)

s2n

∫∫
e−λn(�̃a)·�t m̄

χ
(K )
n

t−Tunfr−�t (�̃a)

sn
dμ

(1)
n,fr(t1)dμ

(2)
n,fr(t2).

(9.22)

Sinceλn(1)(t−Tunfr) = 1
2 log(n/s3n )+t∗ → ∞ anda j → 1, Theorem3.15 andCorollary 6.5

imply that for ε ∈ (0, 1) and K <∞ sufficiently large, there exists K ′ <∞ and n0 ∈ N such
that the integrand of (9.22) lies between e−λn(1)(t1+t2)−ε(1 − ε) and e−λn(1)(t1+t2)+ε(1 + ε)

for λn(1)[t1 ∨ t2] ≤ K ′ and n ≥ n0, and there are constants K ′′ < ∞, n′0 ∈ N such that it

is bounded by K ′′e−λn(�̃a)·�t for all t1, t2 ≥ 0, n ≥ n′0. Using Lemmas 9.1 and 9.2, it easily
follows that

e
2t∗+ 1

4

∥∥∥�ξ
∥∥∥
2

(1− 2ε) ≤ E

(
Ẑ ′n,t∗(�ξ)

∣∣∣Bfr

)
≤ e

2t∗+ 1
4

∥∥∥�ξ
∥∥∥
2

(1+ 2ε) (9.23)

whp. Since e
1
4

∥∥∥�ξ
∥∥∥
2

= Q̂(�ξ), where Q is the law of two independent N
(
0, 1

2

)
variables, we

have therefore verified the first moment condition (3.55) of Theorem 3.29 with q(t∗) = e2t
∗
.

Verification of (3.57): For Z ′′(K )

n,t∗ , set �ξ = �0 := (0, 0). In (9.22), we can replace Z ′(K )

n,t∗ and

χ
(K )
n by Z ′′(K )

n,t∗ and χn − χ
(K )
n , and Theorem 3.16 implies that, for any ε ∈ (0, 1) and large K ,

there is K ′ < ∞ such that the integrand of the resulting equation is at most εe−λn(1)(t1+t2),
uniformly for λn(1)[t1 ∨ t2] ≤ K ′ for large n, and there is K ′′ < ∞ such that it is bounded
by K ′′e−λn(1)(t1+t2) for all t1, t2 ≥ 0, n large. This verifies the first moment condition (3.57),
as in the previous case.
Verification of (3.56): The second moment estimates for Z ′(K )

n,t∗ , though somewhat more
complicated, are similar in spirit. Note the importance of freezing, which is not so far apparent
from the first moment calculations only: the freezing times T ( j)

fr and the rescaled times t ≈
Tunfr + 1

2λn(1)
−1 log(n/s3n ) have exactly the scaling needed so that both the first and second

moments of Z∗n,t∗ will have order 1, even though m̄χ
(K )
n
�t (�̃a) ≈ sn , M̄

χ
(K )
n ,χ

(K )
n

�t,�u (�̃a, �̃b) ≈ s4n by
Theorem 3.15.

123



M. Eckhoff et al.

Equation (9.20) for Z ′n,t∗ expresses Ẑ
′
n,t∗(�ξ) in terms of a double integral with respect to

a pair of Cox processes, whose intensity is measurable with respect to Bfr . An elementary
calculation [applying (6.3) twice] shows that, for a pair P (1),P (2) of Poisson point processes
with intensities ν1, ν2,

E

(∫∫
f (x1, x2)dP (1)(x1)dP (2)(x2)

∫∫
g(y1, y2)dP (1)(y1)dP (2)(y2)

)

=
∫∫

f (x1, x2)g(x1, x2)dν1(x1)dν2(x2)+
∫∫∫

f (x1, x2)g(x1, y2)dν1(x1)dν2(x2)dν2(y2)

+
∫∫∫

f (x1, x2)g(y1, x2)dν1(x1)dν1(y1)dν2(x2)

+
∫∫

f (x1, x2)dν1(x1)dν2(x2)
∫∫

g(y1, y2)dν1(y1)dν2(y2). (9.24)

We apply (9.24) to (9.20). In the notation of (9.24), we have x j = (t j , bp( j)), and

f (x1, x2) = g(x1, x2) = e−λn(ã1)t1e−λn(ã2)t2 z̄χ
(K )
n ,bp(1),bp(2)

t−Tunfr−t1, t−Tunfr−t2(�̃a). Integration against the

intensity measure dν j = dμ
( j)
n,fr ⊗ dP(BP ( j) ∈ ·) is equivalent to a branching process

expectation together with an integration over t j , and we will therefore obtain first or second
moments of one- or two-vertex characteristics from the various terms in (9.24). Namely, for
�ξ, �ζ ∈ R

2 and writing b j = exp(ζ j/
√
log(n/s3n )), we obtain

s6ne
−2t∗− 1

4

∥∥∥�ξ
∥∥∥
2−2u∗− 1

4

∥∥∥�ζ
∥∥∥
2−o(1)

E

(
Ẑ ′n,t∗(�ξ)Ẑ ′n,u∗(�ζ )

∣∣∣Bfr

)

=
∫∫

e−(λn(ã1)+λn(b̃1))t1e−(λn(ã2)+λn(b̃2))t2 M̄χ
(K )
n ,χ

(K )
n

t−Tunfr−�t,u−Tunfr−�t
(
�̃a, �̃b
)
dμ

(1)
n,fr(t1)dμ

(2)
n,fr(t2)

+
∫∫∫

e−(λn(ã1)+λn(b̃1))t1e−λn(ã2)t2e−λn(b̃2)u2 M̄
ρt−Tunfr−t2,ã2 ,ρu−Tunfr−u2,b̃2
t−Tunfr−t1,u−Tunfr−t1 (ã1, b̃1)

× dμ
(1)
n,fr(t1)dμ

(2)
n,fr(t2)dμ

(2)
n,fr(u2)

+
∫∫∫

e−(λn(ã2)+λn(b̃2))t2e−λn(ã1)t1e−λn(b̃1)u1 M̄
ρt−Tunfr−t1,ã1 ,ρu−Tunfr−u1,b̃1
t−Tunfr−t2,u−Tunfr−t2 (ã2, b̃2)

× dμ
(1)
n,fr(t2)dμ

(2)
n,fr(t1)dμ

(2)
n,fr(u1)

+
∫∫

e−λn(ã1)t1e−λn(ã2)t2m̄χ
(K )
n

t−Tunfr−�t (�̃a)dμ
(1)
n,fr(t1)dμ

(2)
n,fr(t2)

×
∫∫

e−λn(b̃1)u1e−λn(b̃2)u2m̄χ
(K )
n

u−Tunfr−�u( �̃b)dμ
(1)
n,fr(u1)dμ

(2)
n,fr(u2),

(9.25)

where ρt2,ã2(t
′
1) = m̄

χ
(K )
n (t ′1,·)

t2 (ã2) is the characteristic from (7.5). Abbreviate

D = e
−2t∗− 1

4

∥∥∥�ξ
∥∥∥
2

Ẑ ′n,t∗(�ξ)−e−2u∗
∣∣∣Z ′(K )

n,u∗
∣∣∣ = e

−2t∗− 1
4

∥∥∥�ξ
∥∥∥
2

Ẑ ′n,t∗(�ξ)−e−2u∗ Ẑ ′n,u∗(�0). (9.26)

Then

E

(
D2
∣∣∣Bfr

)
= e

−4t∗− 2
4

∥∥∥�ξ
∥∥∥
2

E

(
Ẑ ′n,t∗ (�ξ)Ẑ ′n,t∗ (�ξ)

∣∣∣Bfr

)
− 2e

−2t∗− 1
4

∥∥∥�ξ
∥∥∥
2−2u∗

E

(
Ẑ ′n,t∗ (�ξ)Ẑ ′n,u∗ (�0)

∣∣∣Bfr

)

+ e−4u∗E
(
Ẑ ′n,u∗ (�0)Ẑ ′n,u∗ (�0)

∣∣∣Bfr

)
. (9.27)
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Applying (9.25) to each of the 3 terms in (9.27) gives 12 summands. From the first term in
the right-hand side of (9.25), we obtain

eo(1)

s2n

∫∫
s−4n

[
e−2λn(ã1)t1e−2λn(ã2)t2 M̄χ

(K )
n ,χ

(K )
n

t−Tunfr−�t,t−Tunfr−�t
(
�̃a, �̃a
)

− 2e−(λn(ã1)+λn(1))t1e−(λn(ã2)+λn(1))t2 M̄χ
(K )
n ,χ

(K )
n

t−Tunfr−�t,u−Tunfr−�t
(
�̃a, �1
)

+ e−2λn(1)t1e−2λn(1)t2 M̄χ
(K )
n ,χ

(K )
n

u−Tunfr−�t,u−Tunfr−�t
(�1, �1

)]
dμ

(1)
n,fr(t1)dμ

(2)
n,fr(t2). (9.28)

As in (9.22), Theorem 3.15 and Corollary 6.5 imply that the integrand in (9.28) is at most
(4ε+o(1))e−2λn(1)t1+o(1)e−2λn(1)t2+o(1) in absolute value, uniformly for λn(1)[t1∨ t2] ≤ K ′,
and is otherwise bounded by 4K ′′e−2λn(1∧ã1)t1e−2λn(1∧ã2)t2 . Using Lemmas 9.1 and 9.2, it
easily follows that the quantity in (9.28) is at most 5ε in absolute value, whp. From the second
term in the right-hand side of (9.25), we obtain similarly

eo(1)

s3n

∫∫∫
s−3n

[
e−2λn(ã1)t1e−2λn(ã2)(t2+u2)M̄ρt−Tunfr−t2,ã2 ,ρt−Tunfr−u2,ã2

t−Tunfr−t1,t−Tunfr−t1 (ã1, ã1)

− 2e−(λn(ã1)+λn(1))t1e−λn(ã2)t2e−λn(1)u2 M̄
ρt−Tunfr−t2,ã2 ,ρu−Tunfr−u2,1

t−Tunfr−t1,u−Tunfr−t1 (ã1, 1)

+ e−2λn(1)t1e−2λn(1)(t2+u2)M̄ρu−Tunfr−t2,1,ρu−Tunfr−u2,1

u−Tunfr−t1,u−Tunfr−t1 (1, 1)
]
dμ

(1)
n,fr(t1)dμ

(2)
n,fr(t2)dμ

(2)
n,fr(u2).

(9.29)

Arguing from Proposition 7.1 instead of Theorem 3.15, the quantity in (9.29) is again at most
5ε in absolute value, whp. The third and fourth terms from (9.25) are analogous. This verifies
the second moment condition (3.56).
Verification of (3.58): Finally we verify condition (b) of Theorem 3.29. For R ∈ (0,∞), let

v j,R be the first vertex in B( j) born after time Tunfr with
∣∣∣BP (v)

fn(1)

∣∣∣ ≥ Rs2n , so that v is Rs2n -

lucky in the sense of [Part I, Definition 2.14]. (We will use a similar notion in Definition 9.3.)
It follows from [Part I, Proposition 2.17 and Lemma 2.18] that

TB
v j,R

= Tunfr + OP( fn(1)). (9.30)

To see this, note that [Part I, Lemma 2.18] gives Tv j,R − Tv j,r = OP( fn(1)) for each r > 0,
so it suffices to show that TB

v j,r
= Tunfr + OP( fn(1)) for some r > 0 sufficiently small. Let

ε > 0 and use Lemmas 9.1 and 9.2 to find K <∞ such that μ( j)
n,fr([0, K fn(1)]) ≥ 1

2 sn with
probability at least 1− ε for n sufficiently large. Assuming this event occurs, the number of
vertices born in the time interval (Tunfr, Tunfr + K fn(1)] is conditionally Poissonwithmean at
least 12 sn . By [Part I, Proposition 2.17] we can choose r > 0 such that, for n sufficiently large,
each such vertex has probability at least 1/εsn of being rs2n -lucky. Hence at least one vertex
born by time Tunfr+K fn(1)will be rs2n -lucky, with probability at least 1−ε−e−1/2ε−o(1).
This verifies TB

v j,r
= Tunfr + OP( fn(1)) and hence proves (9.30).

Now let ε > 0 and choose n0 ∈ N andC ′ <∞ such thatλn(1)( fn(1)+ fn(1+1/sn)) ≤ C ′
for all n ≥ n0. Choose R ∈ (0,∞) such that 16

(log 2)4
e4C

′
(1 + 2R)/R2 ≤ ε. After possibly

increasing n0, (9.30) and (6.15) yield a constant C ′′ ∈ (0,∞) such that with probability at
least 1− ε, λn(1)(TB

v j,R
− Tunfr) ≤ C ′′. Denote this event byA and assume for the remainder

of the proof that A holds.
Set L( j)

R to be the collection of descendants w of v j,R such that TB
w − TB

v j,R
≤ fn(1) (thus∣∣L( j)

R

∣∣ ≥ Rs2n by definition). We will repeat the previous arguments used to analyze Zn,t∗ ,
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with L( j)
R playing the role of B( j)

fr . Instead of ∂L( j)
R , we consider the subset

U ( j)
R =

{
v ∈ ∂L( j)

R : TB
p(v) + fn(1) < TB

v < TB
p(v) + fn(1+ 1/sn)

}
(9.31)

[the set of immediate children of L( j)
R born to a parent of age between times fn(1) and

fn(1 + 1/sn)]. Since v j,R is born after Tunfr, it follows immediately that B( j)
fr ∩ U ( j)

R = ∅.
Moreover the arrival time TB

v of any v ∈ U ( j)
R satisfies

TB
v j,R
+ fn(1) < TB

p(v)+ fn(1) < TB
v < TB

p(v)+ fn(1+1/sn) ≤ TB
v j,R
+ fn(1)+ fn(1+1/sn).

(9.32)
Let P̃ ( j)

n,R =
∑

v∈U ( j)
R

δ(TB
v −Tunfr,BP(v)) [cf. (9.8)]. The definitions of v j,R and L( j)

R depend

only on descendants born to parents of age atmost fn(1), whereasU ( j)
R consists of descendants

born to parents of age greater than fn(1). It follows that P̃ ( j)
n,R is a Cox process conditionally

on L( j)
R with intensity measure dμ̃

( j)
n,R ⊗ dP(BP (1) ∈ ·), where μ̃n,R is the measure such that,

for all measurable, nonnegative functions h on R,

∫
h(y) dμ̃

( j)
n,R(y) =

∑

w∈L( j)
R

∫ fn(1+1/sn)

fn(1)
h(y − (T ( j)

fr − Tw)) dμn(y). (9.33)

[These are the analogues of P ( j)
n,unfr and μ

( j)
n,fr , see (9.2 and (9.8).] In particular, the total mass

of μ̃( j)
n,R is at least Rsn . Using (9.32) we find that its support is in [TB

v j,R
−Tunfr+ fn(1), TB

v j,R
−

Tunfr + fn(1)+ fn(1+ 1/sn)] and, uniformly over t j in that set and t∗ ≥ 0,

λn(1)(T
B
v j,R

− Tunfr) ≤ λn(1)t j ≤ λn(1)(T
B
v j,R

− Tunfr)+ C ′, (9.34)

λn(1)(t − Tunfr − t j ) ≥ 1

2
log(n/s3n )− C ′′ − C ′. (9.35)

In particular, the fact that the right-hand side of (9.35) tends to infinity implies that, possibly
after increasing n0, U ( j)

R ⊂ B( j)
t whenever n ≥ n0 and t∗ ≥ 0. Furthermore, Theorem 3.15

and Proposition 7.1 yield a constant K <∞ such that

m̄χ
(K )
n

t−Tunfr−t1,t−Tunfr−t2(�1) ≥ sn/2, (9.36)

M̄χ
(K )
n ,χ

(K )
n

t−Tunfr−�t,u−Tunfr−�t
(�1, �1

)
≤ 2

(log 2)2
s4n , (9.37)

M̄
ρt−Tunfr−t j ,1,ρu−Tunfr−u j ,1
t−Tunfr−t j ′ ,u−Tunfr−ti (1, 1) ≤ 2

log 2
s3n , (9.38)

for
{
j, j ′

} = {1, 2}, all t1, t2 in the support of μ̃
( j)
n,R and n ≥ n0. Using this K to truncate,

let Z̃ ′(K )

n,t∗,R denote the restriction of Z ′(K )

n,t∗ to pairs (v1, v2) for which each v j is a descendant

of some vertex of U ( j)
R . As in the argument leading to (9.20), we conclude that

∣∣Z∗n,t∗
∣∣ ≥ ∣∣Z̃ ′(K )

n,t∗,R
∣∣ = e2t

∗

s3n

∫
dP̃ (1)

n,R(t1, bp
(1))

×
∫

dP̃ (2)
n,R(t2, bp

(2))e−λn(1)(t1+t2) z̄χ
(K )
n ,bp(1),bp(2)

t−Tunfr−t1,t−Tunfr−t2(�1). (9.39)

Hence, on A, we may use (9.34) and (9.36) to obtain
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E

( ∣∣Z̃ ′(K )

n,t∗,R
∣∣
∣∣∣L(1)

R ,L(2)
R

)
(9.40)

≥ e2t
∗

s3n

∫
dμ̃

(1)
n,R(t1)

∫
dμ̃

(2)
n,R(t2) exp

(
−λn(1)

(
TB
v1,R

− Tunfr + TB
v2,R

− Tunfr
)
− 2C ′

) sn
2

= 1

2
exp

(
2t∗ − λn(1)

(
TB
v1,R

− Tunfr + TB
v2,R

− Tunfr
)
− 2C ′

)
∣∣∣μ̃(1)

n,R

∣∣∣
sn

∣∣∣μ̃(2)
n,R

∣∣∣
sn

(9.41)

≥ R2

2
exp

(
2t∗ − 2(C ′′ + C ′)

)
. (9.42)

Similarly, using (9.24) to compute the variance of
∣∣Z̃ ′(K )

n,t∗,R
∣∣ as in (9.25), and employing

(9.34) and (9.37)–(9.38) for the estimation, we find that, on A,

Var
( ∣∣Z̃ ′(K )

n,t∗,R
∣∣
∣∣∣L(1)

R ,L(2)
R

)
≤ 2

(log 2)2
exp

(
4t∗ − 2λn(1)

(
TB

v1,R
− Tunfr + TB

v2,R
− Tunfr

))

×
⎛

⎜⎝

∣∣∣μ̃(1)
n,R

∣∣∣
∣∣∣μ̃(2)

n,R

∣∣∣ s4n
s6n

+
∣∣∣μ̃(1)

n,R

∣∣∣
∣∣∣μ̃(2)

n,R

∣∣∣
2
s3n +

∣∣∣μ̃(1)
n,R

∣∣∣
2 ∣∣∣μ̃(2)

n,R

∣∣∣ s3n
s6n

⎞

⎟⎠ .

(9.43)

Abbreviate the conditional mean from (9.40) asm. Chebyshev’s inequality, (9.41) and (9.43)
give

P

(∣∣Z̃ ′(K )

n,t∗,R
∣∣ ≥ 1

2m
∣∣∣L(1)

R ,L(2)
R

)
≥ 1− 16

(log 2)4
e4C

′
⎛

⎝ s2n∣∣∣μ̃(1)
n,R

∣∣∣
∣∣∣μ̃(2)

n,R

∣∣∣
+ sn∣∣∣μ̃(1)

n,R

∣∣∣
+ sn∣∣∣μ̃(2)

n,R

∣∣∣

⎞

⎠

≥ 1− 16

(log 2)4
e4C

′
(

1

R2 + 2
1

R

)
≥ 1− ε, (9.44)

on A. For given C < ∞, we use (9.42) to choose t∗ sufficiently large that 1
2m ≥ C . The

claim now follows from
∣∣∣Z∗n,t∗

∣∣∣ ≥ ∣∣Z̃ ′n,t∗,R
∣∣ and (9.44).

9.4 No Collisions from the Frozen Cluster: Proof of Lemma 3.32 (b)

In this section we prove Lemma 3.32 (b), which will show that whp the collision edge neither
starts nor ends in the frozen cluster.

Definition 9.3 Let ε1 denote the constant from Lemma 4.5 for K = 1. Call a vertex v ∈ T ( j)

lucky if
∣∣BP (v)

fn(1)

∣∣ ≥ s2n/ε1, and set

T ( j)
lucky = inf

{
Tv : v ∈ T ( j) \ {∅ j

}
is lucky and Tv > Tp(v) + fn(1)

}
, (9.45)

the first time that a lucky vertex is born to a parent of age greater than fn(1).

The notion that v is lucky is the same as the notion of v being s2n/ε1-lucky in [Part I,
Definition 2.14 and (2.24)]. We will use this fact later on, when we apply results from Part I.

In view of Definition 3.17 and Lemma 4.5, we have

v ∈ T ( j) is lucky �⇒ T ( j)
fr ≤ Tv + fn(1). (9.46)
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In other words, a lucky vertex has enough descendants in time fn(1) that the integral in the
definition (3.31) of the freezing time must be at least sn .

It has been proved in [Part I, Lemma 6.4 and Proposition 2.17] that the distribution of

∑

v∈BP( j)

T
( j)
lucky

(
f −1n

(
T ( j)
lucky − Tv

)
− 1
)+

is exponential with rate P(v is lucky), (9.47)

and that there is a constant δ > 0 so that for sufficiently large n,

P(v is lucky) ≥ δ/sn . (9.48)

Now we are in the position to prove Lemma 3.32 (b):

Proof of Lemma 3.32 (b) It suffices to show that the Cox intensity Zn,t satisfies

∑

v1∈B(1)
t

∑

v2∈B(2)
t

1{{v1,v2}∩Bfr �=∅}Zn,t ({v1} × {v2}) = oP(1), (9.49)

where we recall that Zn,t ({v1}×{v2}) = 1
nμn

(
�Rv1,v2 , R1(t)−R1(TB

v1
)+R2(t)−R2(TB

v2
)
)
.

We begin with the contribution to Zn,t arising from the restriction of μn to ( fn(1),∞).
Note that, by construction, R j (t) − R j (T

( j)
fr ) = λn(1)−1( 12 log(n/s3n ) + K ) and(

R j (T
( j)
fr )− R j (TB

v j
)
)+ =

(
T ( j)
fr − TB

v j

)+
. Hence

1
nμn

∣∣
( fn(1),∞)

(
�Rv1,v2 , R1(t)− R1(T

B
v1

)+ R2(t)− R2
(
TB

v2

))

≤ 1
nμn

(
fn(1),

log(n/s3n )+ 2K

λn(1)
+ R1(T

(1)
fr )− R1(T

B
v1

)+ R2(T
(2)
fr )− R2(T

B
v2

)

)

≤ 1
nμn

(
fn(1), 3

log(n/s3n )+ 2K

λn(1)

)
+

2∑

j=1
1
nμn

(
fn(1), fn(1) ∨ 3

(
T ( j)
fr − TB

v j

)+)
.

(9.50)

Lemma 4.3 and (6.15) imply that the first term in (9.50) is O(1)(log(n/s3n ) + K )/(nsn). In
the second term, the j th summand is zero if v j /∈ B( j)

fr . For v j ∈ B( j)
fr , we consider separately

the intervals

I1 =
(
fn(1), fn(1) ∨

(
T ( j)
lucky − TB

v j

)+)
,

I2 =
(
fn(1) ∨

(
T ( j)
lucky − TB

v j

)+
, fn(1) ∨

(
T ( j)
fr − TB

v j

)+)
,

I3 =
(
fn(1) ∨

(
T ( j)
fr − TB

v j

)+
, fn(1) ∨ 3

(
T ( j)
fr − TB

v j

)+)
,

(9.51)

where T ( j)
lucky was defined inDefinition 9.3. The definition ofμn givesμn(I1) =

(
f −1n (T ( j)

lucky−
TB

v j
)− 1

)+. For I2, note from (9.46) that I2 is a subinterval of ( fn(1),∞) of length at most

fn(1), soμn(I2) ≤ O(1/sn)byLemma4.3. For I3, note fromLemma4.1 that fn(31/ε0snm) ≥
3 fn(m) for any m ≥ 1. It follows that f −1n (3y) ≤ 31/ε0sn f −1n (y) = (1 + O(1/sn)) f −1n (y)
uniformly over y ≥ fn(1), so that μn(I3) ≤ O(1/sn) f −1n (T ( j)

fr ). We conclude that
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1
nμn

∣∣
( fn(1),∞)

(
�Rv1,v2 , R1(t)− R1(T

B
v1

)+ R2(t)− R2(T
B
v2

)
)

≤ O(1)

⎛

⎝ log(n/s3n )

nsn
+

2∑

j=1
1{

v j∈B( j)
fr

}

(
1
n

(
f −1n

(
T ( j)
lucky − TB

v j

)
− 1
)+ + 1+ f −1n (T ( j)

fr )

nsn

)⎞

⎠ .

(9.52)

By Theorem 3.18 (a), f −1n (T ( j)
fr ) = OP(1). Sum (9.52) over v1 ∈ B(1)

t , v2 ∈ B(2)

t with

{v1, v2} ∩ Bfr �= ∅ and use TB
v j
= Tv j for v j ∈ B( j)

fr to obtain

O(1)
∑

{ j, j ′}={1,2}

∣∣∣B( j ′)
t

∣∣∣
( log(n/s3n )+ OP(1)

nsn

∣∣B( j)
fr

∣∣+1

n

∑

v j∈B( j)
fr

(
f −1n

(
T ( j)
lucky − Tv j

)
− 1
)+ )

.

(9.53)

By Lemma 3.32 (a),
∣∣∣B( j ′)

t

∣∣∣ = OP(
√
nsn), and by Theorem 3.18 (b),

∣∣B( j)
fr

∣∣ = OP(s2n ). In the

sum over v j ∈ B( j)
fr , only terms with v j ∈ B( j)

T ( j)
lucky

can contribute, so (9.46)–(9.48) imply that

the inner sum in (9.53) is OP(sn). Hence (9.53) is OP(log(n/s3n )/
√
n/s3n ), which is oP(1)

since n/s3n →∞.
We now turn to the contribution to Zn,t arising from the restriction of μn to [0, fn(1)] and

split the sum into three groups of vertex pairs. Let (J , J ′) denote the randomordering of {1, 2}
forwhich T (J )

fr < T (J ′)
fr . Thefirst groupof vertex pairs are thosewithvJ ∈ B(J )

t andvJ ′ ∈ B(J ′)
T (J )
fr

.

That is, the vertex in the slower-growing cluster is born before the faster cluster freezes.
We show that the number

∣∣B(J ′)
T (J )
fr

∣∣ of such choices for vJ ′ is OP(1). By Theorem 3.18 (a),

f −1n (T ( j)
fr )

P−→ M ( j) for j ∈ {1, 2} and M (1) �= M (2) a.s. Hence T (J )

fr < fn(M (J ′)) whp. A

vertex v′ ∈ B(J ′)
fr with TB

v′ < fn(M (J ′))must be connected to the root∅J ′ by edges that all have
PWIT edge weight less than M (J ′). The number of such vertices is finite and independent of
n, and is in particular OP(1). Since the measure μn

∣∣[0, fn(1)] has total mass 1 by construction,

the total contribution to Zn,t of this group of vertex pairs is at most 1
n

∣∣∣B(J )

t

∣∣∣ OP(1), which is

oP(1) by Lemma 3.32 (a).
The second group are pairs (v1, v2) with TB

vJ ′ ≥ T (J )

fr ≥ TB
vJ
. For these pairs, by (3.49),

�Rv1,v2 = RJ (T
B
vJ ′ )− RJ (T

B
vJ

) ≥ RJ (T
(J )

fr )− RJ (T
B
vJ

) = T (J )

fr − TB
vJ

. (9.54)

We can therefore bound the contribution to Zn,t in terms of the contribution to μ
(J )

n,fr:

1

n

∑

v1,v2 : TB
vJ ′ ≥T

(J )
fr ≥TB

vJ

μn
∣∣[0, fn(1)]

(
�Rv1,v2 , R1(t)− R1(T

B
v1

)+ R2(t)− R2(T
B
v2

)
)

≤ 1
n

∣∣∣B(J ′)
t

∣∣∣
∑

vJ∈B(J )
fr

μn
(
fn(1) ∧

(
T (J )

fr − TB
vJ

)
, fn(1)

)

≤ 1
n OP(

√
nsn)

∑

vJ∈B(J )
fr

eλn(1) fn(1)
∫ ∞

0
e−λn(1)yμn

(
T (J )

fr − TB
vJ
+ dy

) ≤ OP(

√
s3n/n)

(9.55)
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by Lemma 3.32 (a), Lemma 9.1 and (6.15). The last group of vertex pairs are those with
TB

vJ
≥ T (J ′)

fr ≥ TB
vJ ′ . These pairs satisfy �Rv1,v2 ≥ T (J ′)

fr − TB
vJ ′ instead of (9.54), and their

contribution can therefore be handled as in (9.55) with J and J ′ interchanged.

9.5 Properties of the Freezing Time and Frozen Cluster: Proof of Theorem 3.18

Proof of Theorem 3.18 The proof uses the results of [Part I, Theorem 2.15], which applies
because the assumptions in [Part I, Conditions 2.2–2.3] are weaker than those of Condi-
tions 2.1–2.3. We adopt the terminology of [Part I, Theorem 2.15], adding superscripts in the
obvious way to indicate the two copies of the PWIT.

Let ε1 denote the constant from Lemma 4.5 with K = 1. Then Lemma 4.5 asserts that
any vertex v ∈ BP ( j)

t of age at most 1, i.e. t − Tv ≤ fn(1), contributes at least ε1/sn to the
sum in the formula (3.31) defining T ( j)

fr , for n sufficiently large. In particular, if there are at
least s2n/ε1 such vertices at time t , then the sum in (3.31) will be at least sn . We conclude that
then v is lucky, as in Definition 9.3. Thus,

T ( j)
fr ≤ T ( j)

lucky (9.56)

for n sufficiently large.
On the other hand, by Lemma 4.4 [with ε̄ = 1 and ε chosen sufficiently small that

ε/ fn(1) ≤ λn(1); this is possible, for n sufficiently large, by Lemma 3.12], a single vertex
can contribute at most

∫ ∞

t
e−λn(1)(y−t)dμn(y) ≤ μn(0, K fn(1))+

∫
e−εy′/ fn(1)1{y′≥K fn(1)}μn(t + dy′)

≤ 1+ O(1/sn)+ 1/sn (9.57)

to the sum in (3.31). In particular, this contribution is O(1). It follows that Bfr must contain
at least δsn vertices, for some δ > 0 chosen sufficiently small, and thus that

T ( j)
fr ≥ T ( j)

size δsn
. (9.58)

The proof now follows from (9.56), (9.58) and [Part I, Theorem 2.15] (with σn = sn/
√

ε1
and σn = √δsn , respectively).

A short guide to notation:

• SWT ( j)
t is SWT from vertex j ∈ {1, 2}.

• S ( j)
t is the SWT from vertex j ∈ {1, 2} such that S (1) and S (2) cannot merge and with an

appropriate freezing procedure.
• St = S (1)

t ∪ S (2)
t .

• BP ( j) is branching process copy number j where j ∈ {1, 2}, without freezing.
• B( j) is branching process copy number j where j ∈ {1, 2}, with freezing.
• Bt is the union of 2 CTBPs with the appropriate freezing of one of them.
• B̃t is the union of 2 CTBPs with the appropriate freezing of one of them, and the resulting

thinning. Thus, B̃t has the same law as the frozen St .
• fn is the function with Y (Kn )

e
d= fn(nE), where E is exponential with mean 1.

• μn is the image of the Lebesgue measure on (0,∞) under fn .
• λn(a) is the exponential growth rate of the CTBP, cf. (3.16).
• zχt (a) and zχ�t (�a) are the generation-weighted vertex characteristics from one and two

vertices, respectively, cf. (3.14) and (3.22).
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• m̄χ
t (a) and m̄χ

�t (�a) are the expected, rescaled vertex characteristics, cf. (3.19) and (3.23),
respectively.
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