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Preface

Chapters 1 to 4 of this work generalize the work of W. Littman and L. Markus [17] on the
'Exact Boundary Controllability of a Hybrid System of Elasticity'. The remaining chapter
deals with the Gevrey regularity of strongly continuous semigroups.

The work of [17] treats the exact boundary controllability of a simplified version of the
SCOLE model. The SCOLE [21] (Spacecraft Control Laboratory Experiment) model
consists of a long flexible mast clamped at one end to a space shuttle and at the other end to
an antenna (see figure 8). The authors of [17] aim to capture some of the mathematical
features of the problem by modelling the mast as an Euler-Bernoulli beam vibrating in a
fixed plane. The transverse deflections of the beam satisfy the equation

 
!t2
!

2w   +  
!x4
!

4w   =  0.
                                                        (1)

The requirement that the beam is clamped to the shuttle (which is assumed to be inertial) at
x = 0  yields the 'clamped end conditions'  w(0,t) = !w

!x(0,t) = 0. The ordinary differential

equation of motion of the antenna at the other end of the beam yields unusual boundary
conditions for the partial differential equation. These may be written as B1w(d,t) = f1(t),
B2w(d,t) = f2(t), where the functions f1 and f2 are a controlling force and a controlling
torque respectively, both applied only to the antenna. The control problem solved in [17] is
the following: Given an initial disturbance (satisfying certain compatibility and smoothness
assumptions) w(x,0) = w0(x), !w

!t (x,0) = v0(x), and given  T > 0, find appropriate functions

f1 and f2 that will drive the whole system to rest for all times  t " T.

The method used in [17] to prove the controllability is also described by W. Littman in
[16]. We summarize it below:

(1) Extend the domains of the initial data w0, v0 so that these functions are defined on 
[0,#) and have compact support.

(2) Taking the clamped end conditions into account, solve the beam equation for
x $ [0,#)  with the modified initial data.
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(3) Let % be a cut-off function satisfying  %(t) = 1  for  t & T/2, %(t) = 0  for  t " T. Set
F(x,t) = (!2/!t2 + !4/!x4){%(t) w(x,t)} = 2%'(t) !w

!t (x,t) + %"(t) w(x,t), where w is 

the solution of Step 2.

(4) Solve the problem

                        
 
!t2
!

2W  +  
!x4
!

4W  = F,   W(0, t) = 
!x
!W(0, t) = 

!x2
!

2W(0, t) = 
!x3
!

3W(0, t) = 0,

to get a solution which vanishes for  t & T/2  and  t " T.

(5) Put  u(x,t) = %(t) w(x,t) - W(x,t). This function satisfies the beam equation, the 
clamped end conditions and the initial conditions. Further, it vanishes for  t > T. 
The control functions are then obtained from the equations  f1(t) = B1u(d,t),
f2(t) = B2u(d,t).

Step 4 is difficult, for the beam equation must be solved in the x-direction.  This leads to a
problem which is not well-posed. However, it is shown in [16] and [17] that this can be
solved if F is of Gevrey class 2 in the time variable for  t > 0. What this means (c.f.
Hörmander [8]) is that for any given  ' > 0  and any given compact subset K of (0,#),
there exists a constant  C " 0  such that

                               

 (
(
( !tn
!

nF(x, t) ((
(
 & C 'n (n!)2,       ) t $ K,   n " 0.

These Gevrey functions form an algebra which is closed under differentiation with respect
to t. Further, it is possible to choose % in Step 3 to be a Gevrey 2 function (such functions
can be explicitly written - see [8]). So F may be obtained as a Gevrey 2 function, as long as
the solution of Step 2 is a Gevrey 2 function.

In [17], an explicit formula  is given for the solution of Step 2. The formula shows that
w(x,t) is actually analytic in t for  t > 0 (and is thus Gevrey 2 in t for  t > 0). Thus, Steps 1-5
are easily carried out to solve the control problem.
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In the present work, we generalize the work of [17] to obtain results applicable to equations
of the form

 
!t2
!

2w (x, t) + *
i=0

4
 ai(x) 

!xi
!

iw (x, t)  + *
i=0

2
 bi(x) 

!xi!t
!

i+1w (x, t) = 0,
                   (2)

where  a4(x) > 0  and  b2(x) & 0. Obviously, one cannot present an explicit fundamental
solution for Step 2, so a considerable amount of work is required to show that such
fundamental solutions exist and that they have the required properties. It is proved in
Chapter 1 that when the coefficients are variable (and satisfy mild assumptions), such
fundamental solutions exist and are of Gevrey class 2 in t for  t > 0. It appears that the
analyticity in t for  t > 0  seen in [17] does not always occur. However, in Chapter 2 we
show that if the coefficients of equation (2) are constants, then the fundamental solution is
analytic in t for  t > 0.

We carry out Step 4 in Chapter 3. In [17] an explicit series solution is presented for the
corresponding step, and the convergence of the series is based on Gevrey estimates. Here,
we prefer to use a different approach, based on the Ovcyannikov Theorem (see Treves [22],
[23]). This allows us to treat partial differential equations like (2) in which we allow also a
dependence of the coefficients on time.

The theory of Chapters 1-3 is applied in Chapter 4 to solve problems similar to the one
solved in [17]. However, here we have an Euler-Bernoulli beam with variable  physical
characteristics. We also treat the case in which the shuttle is rotating with a varying angular
velocity.

It should be noted that there are other methods for proving boundary controllability results.
One method which has achieved considerable success is the HUM (Hilbert Uniqueness)
Method (see Lions [11], [12]). However, it is not clear that this method can be used to get
similar results for the type of problems we consider. Even for the simple beam equation
considered in [17], an application of the method yields controllability results in spaces with
very poor regularity. Indeed, the spaces are occasionally spaces of distributions. It is
possible that the process of 'weakening the norm' (Lagnese, Lions [10]) can overcome this
problem, but even then the HUM method in its present form does not apply to equations of
the form (2).
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Chapter 5 of this work can be read independently of the preceding chapters and deals with
the Gevrey regularity of strongly continuous semigroups. We see that this property falls
naturally between those of differentiability and analyticity of semigroups. Theorems
analogous to those already known for differentiable and analytic semigroups are given.

Finally, we note that the definition of Gevrey functions which we use here differs little from
that of the functions introduced by Maurice Gevrey [6], in 1918. His name for these
functions is functions of class +.  We use the following definition:

Definition:  Let , be an open subset of Rn, let  - > 0, and let (B, || || ) be a Banach space.
If  f : ,.B  is infinitely differentiable then we say that f is of Gevrey class ----  (i.e.
f $ /-(,; B) ) if for each compact subset K of , and each  ' > 0, there exists a constant
C " 0  such that†

                |D
+f(x)| & C '

|+|
 (|+ |!)-,    for all multi-indices +,  and all  t $ K.

If  B = R, we just write /-(,; R) = /-(,).

Occasionally we need to use this concept in a locally convex space X topologized by a
family of separating seminorms P. In this case, we say that an infinitely differentiable
function  f : ,.X  is of Gevrey class ---- with respect to the seminorms P (i.e  f $ /-(,;
X, P) ) if for each compact subset K of ,, each p $ P and each  ' > 0, there exists a constant
C " 0  such that

                (D+f(x)) & C '
|+|

 (|+ |!)-,    for all multi-indices +,  and all  t $ K.p

Stephen W. Taylor.

†The notation here is that of Laurent Schwartz [9]. If + = (i,j)  then  D+u(x,a) = ! i+ju
!x  i !a j (x,a), and

|+| = i+j.
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Abstract

Chapters 1 to 4 of this work generalize the work of Littman and Markus [17] on the 'Exact
Boundary Controllability of a Hybrid System of Elasticity'. Chapter 5 is independent of the
earlier chapters and it deals with the Gevrey regularity of strongly continuous semigroups.

In Chapter 1, we consider equations of the form

                        
 
!t2
!

2w (x, t) + *
i=0

4
 ai(x) 

!xi
!

iw (x, t)  + *
i=0

2
 bi(x) 

!xi!t
!

i+1w (x, t) = 0,

where  b2(x) & 0, a4(x) > 0  and the coefficients satisfy other mild conditions. We
investigate solutions belonging to certain spaces of functions and show that if the initial
values of w and  !w!t   have compact support, then the solutions are infinitely differentiable

with respect to t for  t > 0. Moreover, the derivatives are shown to satisfy certain Gevrey
estimates.

In Chapter 2, we restrict the coefficients to be constants and show that in this case we obtain
solutions which are analytic functions of t for  t > 0.

In Chapter 3, we use the Gevrey regularity established in Chapter 1 to obtain solutions
which vanish for  t > T (T being a given positive constant). In fact, we consider more general
equations which are assumed to satisfy results similar to those proved in Chapter 1 and
which have coefficients possessing a 'Gevrey' dependence on time. We need the Gevrey
regularity to solve the equations in the 'x-direction'.

We apply the theory of the previous chapters in Chapter 4. Here, we consider the boundary
controllability of a hybrid system consisting of an elastic beam clamped at one end to a
space shuttle and at the other end to an antenna. The beam equation has variable coefficients
and the ordinary differential equation of motion for the antenna yields unusual boundary
conditions. We prove that the system is exactly controllable with two open loop controllers
applied only to the antenna and that the rest state may be reached during an arbitrarily short
time duration. The case in which the shuttle is rotating is also considered. This generalizes
the work in [17].
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The Gevrey regularity of semigroups is dealt with in Chapter 5. We develop theorems
yielding both necessary and sufficient conditions for this regularity, which is a property
falling naturally between those of differentiability and analyticity of semigroups.



Chapter 1

Gevrey Solutions for Equations of

Euler-Bernoulli Type
1.0  Introduction

In this chapter, we consider the following partial differential equation

           
 
!t2
!

2w (x, t) + *
i=0

4
 ai(x) 

!xi
!

iw (x, t)  + *
i=0

2
 bi(x) 

!xi!t
!

i+1w (x, t) = 0,
                           (1)

for  t > 0  and x in an interval  (0,r).

What we have in mind are boundary control problems of the following form:

Find functions  f1(t), f2(t) so that the solution w(x,t) of (1), with the following
boundary and initial conditions, vanishes for  t " T, where  T > 0  is given.

 w(x, 0) = w0(x),      
!t
!w (x, 0) = v0(x)       0 & x & r,

                                           (2)

 w(0, t) = 
!x
!w (0, t) = 0            for  t " 0,

                                                              (3)

B1w(r,t) = f1(t),      B2w(r,t) = f2(t)               for t " 0,                                     (4)

where B1 and B2 are linear differential operators defined at the boundary.

There are many examples of such control problems when equation (1) is, for instance, the
Euler-Bernoulli beam equation,

                      
 0(x)

!t2
!

2w (x, t)   +   
!x2
!

2  1
2
3
E(x) I(x) 

!x2
!

2w (x, t)
 4
5
6
  =  0.

which will be discussed in Chapter 4.



1.0    INTRODUCTION
2

As was mentioned in the Preface, a first step in solving such problems is to generate
solutions of (1), (2) and (3) which are of Gevrey class in the time variable, t, for  t > 0. This
first step is the purpose of Chapter 1.

We achieve this goal by first solving equations (1), (2) and (3)  for  x $ (0,#), after
extending the domains of the coefficients of (1) and of the initial data.

In Sections 1.1 to 1.7, we make the restrictions

                                            a4(x) 7 1,          a3(x) 7 0.                                                     (5)

for this can be achieved by means of an elementary transformation of variables. This
restriction is removed in Section 1.8.

We note that the reader will quickly realize that the methods developed in this chapter are
applicable when equation (3) is replaced by certain other types of homogeneous boundary
conditions. However for the sake of clarity of exposition, we consider only the boundary
conditions (3).

Our main result is that there is a fundamental solution K(x,a,t), of equation (1), which is of
Gevrey class 2 in t, and is such that solutions of (1) are given by

             
 w(x, t) = 8

0

#

 K(x, a, t) v0(a) + L2 w0(a) da  +  
!t
!  8

0

#

 K(x, a, t) w0(a) da,
                 (6)

provided that w0 and v0 are in certain spaces of functions†  with compact support. In this
expression, L2=b2(x)d2/dx2+b1(x)d/dx+b0(x).

The chapter is set out as follows:

Section 1.1 deals with the standard semigroup approach for solving equation (1).

In Sections 1.2 to 1.4, we use an asymptotic analysis approach to construct a fundamental
solution (Green's function) for the resolvent ordinary differential equation. Standard

†For a precise statement of this, see section (1.8).
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analyses of this type impose the condition that the spectral parameter be confined to a
certain sector of the complex plane. However, we require an analytic continuation into a
larger set, and our assumptions allow us to achieve this.

In Sections 1.5 to 1.7, we use the spectral properties found in the preceding sections to
construct the fundamental solution of (1) and show that it is indeed of Gevrey class 2.

Finally, in Section 1.8, we remove the restrictions (5) and present the final results of the
chapter.

1.1  The Semigroup Formulation For The Solution of Equation (1) for  x $$$$    (0,####)

Let L1 and L2 denote the differential expressions:

              L1=a2(x)d2/dx2+a1(x)d/dx+a0(x)

              L2=b2(x)d2/dx2+b1(x)d/dx+b0(x).

Here we have assumed that the domains of the coefficient functions ai(x), bi(x) have been
extended so that these functions are continuous and bounded on [0,#). Later, in Section 1.2,
we will restrict attention to the case in which these functions have compact support in [0,#),
but this assumption is not required in the present section.

Equation (1) may be written as a system:

                        
!t
!  

 1
2
3

w
v

 4
5
6
 = 

 1
2
3

v

- 
!x4
!

4w  -L1w - L2v

 4
5
6

   

.                                                       (7)

We shall solve equation (7) by considering the corresponding abstract ordinary differential
equation in a Hilbert space. We let Hdenote the Hilbert space:

                                    H = H0
2(R+) × L2(R+)

endowed with the inner product (  ,  ), where:
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 9
:
;

 9
:
;

w1v1

 <
=
> ,  

 9
:
;

w2v2

 <
=
>

 <
=
> = 8

0

#

 v1(x)v2(x) + w1(x)w2(x) + w1
 ' (x)w2' (x) + w1' ' (x)w2' ' (x) dx      (8)

We use the notation (u,u) = ||u||2.

We may define an unbounded operator A;  on H as follows:

                 The domain of A,   DA = (H4(R+) ? H0
2(R+)) × @0

2
(R+),

                             

A  
 1
2
3

w
v

 4
5
6
 = 

 1
2
3

v

- 
!x4
!

4w  -L1w - L2v

 4
5
6

   

.                                                       (9)

It is clear that A is a closed, densely defined operator. We shall be interested in solving the
abstract ordinary differential equation initial value problem:

          
                      dt

du = Au,                   u(0) = 
 1
2
3

w0

v0

 4
5
6
 $ DA  .

                                      (10)

The following lemmas contain the properties of A which we will need to solve equation
(10).

Lemma 1

Suppose that ai , bi , bi', bi", for i $ {0,1,2} are all continuous and bounded on [0,#) and
that  b2(x) & 0  for all  x $ [0,#).
Then there exists a constant

             
A = A( ||a0||

L#
 ,  ||a1||

L#
 ,  ||a2||

L#
 ,  ||b2"||

L#
 ,  ||b1' ||

L#
 ,  ||b0||

L#
 )

such that (Au,u) & A||u||2  for all u $ DA.                                                                        (11)

Proof
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Let u = 

 1
2
3

w
v

 4
5
6
 $ DA . Then:

                  

 

(Au, u) = 

 9
:
;

 1
2
3

v

-  

!x4
!

4w  - L1w - L2v

 4
5
6

 ,  
 1
2
3

w
v

 4
5
6

 <
=
>

           =8
0

#

 vw + v' w'  + v"w" - vw(4) -vL1w - vL2v dx

                            

 

=8
0

#

 vw + v' w'  - vL1w - vL2v dx

=8
0

#

 vw + v' w'  - v*
i=0

2
 ai w

(i)  -v*
i=0

2
 bi v 

(i)  dx

=8
0

#

 vw + v' w'  - v*
i=0

2
 ai  w

(i) + b2(v' )2 + (b2'  - b1)vv'  - b0v2 dx

                            

 

= 8
0

#

 vw - vw" - v*
i=0

2
 ai w

(i)  + b2(v' )2 + 2
1(b1'  - b2" - 2b0)v2 dx

&8
0

#

 vw - vw" - v*
i=0

2
 ai w

(i)  + 2
1(b1'  - b2" - 2b0)v2 dx

& A||u||2

             
with A = 2 max ( ||a0||

L#
 + 1,  ||a1||

L#
 ,  ||a2||

L#
 +1,  2||b0||

L#
 + ||b1' ||

L#
 + ||b2"||

L#
 ).

  

Remark: Note that equation (11) simply states that  A - AI  is a dissipative operator, i.e.
that  ((A - AI)u,u) & 0  for all u in DA. If the function b2  were to vanish, a slight
modification of the proof of Lemma 1 shows that  - A - AI  would also be dissipative.

We shall denote by R(B) the resolvent of A; i.e. R(B) = (BI - A)-1, where I is the identity
mapping on H.

Observe that:
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 (BI - A) 

 1
2
3

w
v

 4
5
6
 = 

 1
2
3

f1

f2

 4
5
6
  $ H

                      

 
C     B

 1
2
3

w
v

 4
5
6
 + 

 1
2
3

- v

w(4) + L1w + L2v

 4
5
6
 = 

 1
2
3

f1

f2

 4
5
6

   
 C     

 D
E
F

v = Bw - f1

B
2w + w(4) + BL2w + L1w = f2 + Bf1+ L2 f1 .                               (13)

Thus a study of the spectral properties of A amounts to investigating the solutions
 w $ H4(R+) ? H0

2(R+)  of equation (13) with f1 $ H0
2(R+) and f2 $ L2(R+).

Lemma 2

For each k > 0 there exists a mapping

                            Gk $ b (L2(R+) ,  H4(R+) ? H0
2(R+))

with the following properties:

                                  k
4w + w(4) = f ,                                                                   (14)

                              
 ||w(i)||

L2 & C|k|i-4||f||
L2   ,   (  i = 0, 1, 2, 3, 4  ),

                                        (15)

where w = Gkf, and C is a constant independent of k. Further, w = Gkf
 is the unique member of H0

2(R+) such that

         
 gk(w ,  u) = 8

0

#

 w"u" + k4wu dx = 8
0

#

 fu dx      ) u $ H0
2(R+).

                          (16)

Proof
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Consider the functions

                 
 b(x, k) = 

8k3
2 {(1+i)exp[-k

2
(1+i)|x|] + (1-i)exp[-k

2
(1-i) |x|]},

                          (17)

                 

 c(x, a, k) = 
8k3

2 {(1+i)exp[-k
2

(1-i)(x+a)] + (1-i)exp[-k
2

(1+i)(x+a)]

                 -2 exp[- 
2
k ((x+a)-i|x-a|)] -2 exp[- 

2
k ((x+a)+i|x-a|)]},

                (18)

                  g(x, a, k) = b(x-a, k) + c(x, a, k).                                                                     (19)

 We define mappings Bk and Ck on C0
#(R+) by:

                 
 Bkf(x) = 8

0

#

 b(x-a, k)f(a) da ,         Ckf(x) = 8
0

#

 c(x, a, k)f(a) da .
                       (20)

Now it is clear that

                

 (
(
(!xj
!

jc(x, a, k)
 (
(
(

 & 2 |k|
j-3

 exp[- 
2
k (x+a)] ,   for j = 0,  1,  2,  3,  4.

                       (21)

Hence by the Cauchy - Schwarz inequality and from the fact that

                        

 9
:
;
8
0

#

 8
0

#

 e- 2 k(x+a) dx da
 <
=
>

2
1

 =  8
0

#

 e- 2 kx dx  = 
2 k
1

  ,

estimates like those of (15) hold for the mapping Ck.
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 Bk can be conveniently analysed by redefining it to act on C0
#(R) as follows:

                    
 Bkf(x) = 8

- #

#

 b(x-a, k)f(a) da =  ( b(.,k) G f ) (x).

                                         (22)

An elementary calculation shows that the Fourier transform of b(.,k) is

                          
 Hk(I) = 

2J (k4 + I
4
)

1

.                                                            (23)

Thus we have:

                   (D
nBkf)^ (I) = Hk(I) (iI)n f̂(I) ,       for  n = 0,  1,  2,  3,  4,  . . . . . .                 (24)

where D denotes the first derivative operator. A further elementary calculation shows that
the suprema of the expressions  |In(k4 + I4)-1|  are:

                            

 D
E
F

4
1 nn/4(4-n)1-n/4kn-4       if  n = 0,  1,  2,  3

1                                    if  n = 4.                                         (25)

Since  f �$ C#0(R), it follows that f̂ is a member of the Schwarz class of functions. In

particular, f̂ $ L2(R). Hence, we see that

                             
 ||(DnBkf)^||

L2  & Ckn-4||f̂||
L2 .       n = 0,  1,  2,  3,  4.

                             (26)

But the Fourier transform preserves L2 norms, so estimates like those of (15) also hold for
the mapping Bk, where  f �$ C#0(R+). Hence, estimates (15) hold for the mapping

Gk = Bk + Ck, provided that  f �$ C#0(R+). Since C#0(R+) is dense in L2(R+), Gk extends

uniquely to a mapping from L2(R+) into H4(R+) having the properties listed in (15).

 The function g was constructed to have the following properties:

                         g(. , . ,k) $ C2(R2) ? C#( {(x, a) : x K a} ) ,                                            (27)
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!x3
!

3g(a, a-, k) - 
!x3
!

3g(a, a+, k) = 1,
                                                                 (28)

                       
 
!x4
!

4g(x, a, k) + k4g(x, a, k) = 0              for  x K a,
                                      (29)

                       
 g(0, a, k) 7 

!x
!g(0, a, k) 7 0.

                                                                       (30)

 Equation (30) implies that Gk maps C0
#(R+) into H4(R+) ? H0

2(R+). Since this is a

 closed subspace of H4(R+),  it follows that Gk maps L2(R+) into H4(R+) ? H0
2(R+).

 Properties (27),  (28) and (29) imply that gk(. , . ,k) is a fundamental solution for the

operator  !4/!x4 + k4 , so equation (14) is satisfied as stated.

Equation (16) follows from equation (14) and integration by parts. The uniqueness
assertion follows from the fact that the form gk is positive definite.

This completes the proof of Lemma 2.
  

Lemma 3

Suppose that all the coefficients of L1 and L2 are continuous and bounded, that b2(x) & 0
for all x in [0,#), and that b2' is continuous and bounded.

Then there exist constants k0 > 0, C > 0 such that for each k > k0 there is a unique mapping

                                Hk $ b (L2(R+) ,  H4(R+) ? H0
2(R+))

with the following properties:

                                     k
4w + w(4) + k 

2L2w + L1w = f,                                                   (31)

                              
 ||w(i)||

L2 & C|k|i-4||f||
L2   ,   (  i = 0, 1, 2, 3, 4  ),

                                       (32)
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where w = Hkf.

Proof

 Consider the bilinear form hk on H0
2(R+):

 hk(w ,  u) = 8
0

#

 w"u" + k4wu + k2(b2w"u + b1w' u + b0wu) + a2w"u + a1w' u + a0wu dx.

                                                                                                                                      (33)

This bilinear form is clearly continuous. We shall see below that there exists a constant
k0 > 0 such that if  k > k0 then

                       
 hk(w ,  w) " 9

1(||w"||
L2
2  + k2||w' ||

L2
2  + k4||w||

L2
2  ).

                                          (34)

To prove inequality (34) we make use of the standard interpolation inequality (c.f. Gilbarg
and Trudinger [7] ), which states that if w" and w are in L2(R+) then w' is in L2(R+) and for
L > 0,

           
 ||w' ||

L2
2  & 6(L||w"||

L2
2  + L

1||w||
L2
2  ).

                                                  (35)

This of course implies the following inequality:

                          
 ||w' ||

L2 & 3(L||w"||
L2 + L

1||w||
L2 ).                                                    (36)

Now,

          

 
hk(w ,  w) = 8

0

#

 (w")2 + k4w2 + k2((b1 - b2' )ww'  + b0w2)

                              
                                - k2b2(w' )2 + (a2w"w + a1w' w + a0w2) dx
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 " ||w"||
L2
2  + k4||w||

L2
2  - k2C1(||w||

L2 ||w' ||
L2 + ||w||

L2
2  ) - C2(||w"||

L2 ||w||
L2 +

                                                   ||w' ||
L2 ||w||

L2 + ||w||
L2
2  ),

where C1 = max (||b1 - b2' ||
L#

 ,  ||b0||
L#

 ) and C2 = max ( ||a2||
L#

 ,  ||a1||
L#

 ,  ||a0||
L#

 ).

But by equations (35) and (36),

               

 
||w' ||

L2
2  & 6(

k2
1 ||w"||

L2
2  + k2||w||

L2
2  )   and   ||w' ||

L2 & 3(k
1||w"||

L2 + k||w||
L2 ).

Hence,

               

hk(w ,  w) " ||w"||
L2
2  + k4||w||

L2
2  - k2C1(k

3||w"||
L2 ||w||

L2 + (3k+1)||w||
L2
2   )

            - C2((1+k
3)||w"||

L2 ||w||
L2 + (3k+1)||w||

L2
2  )

                             

 
" ||w"||

L2
2  + k4||w||

L2
2  - k2C1

 9
:
;k

3  1
2
3 2k2

1 ||w"||
L2
2  + 2

k2
||w||

L2
2  4
5
6
 + (3k+1)||w||

L2
2

 <
=
>

               - C2

 9
:
;

 9
:
;
1 + k

3 <
=
>

 1
2
3 2k2

1 ||w"||
L2
2  + 2

k2
||w||

L2
2  4
5
6
 + (3k+1)||w||

L2
2

 <
=
>

                             

 = 
 9
:
;
1 - 2k

3C1 - 
2k2

C2  1
2
3
1 + k

3 4
5
6

 <
=
>
 ||w"||

L2
2  +

              
 9
:
;
1 - k

C1  1
2
3 2
9 + k

1 4
5
6
 - 

k2

C2
 1
2
3
2
1 + 2k

9  + 
k2
1  4
5
6

 <
=
>

 k4||w||
L2

2
 ,

So there exists k0 > 0 such that for k > k0,
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hk(w ,  w) " 9

7(||w"||
L2
2  + k4||w||

L2
2  )

                                          
 " 9

7(||w"||
L2
2  + k4||w||

L2
2  ) + 9

1k2||w' ||
L2
2  - 9

6k2(
k2
1 ||w"||

L2
2  + k2||w||

L2
2  )

                                          
  " 9

1(||w"||
L2
2  + k2||w' ||

L2
2  + k4||w||

L2
2  ).

This proves inequality (34).

By the Lax-Milgram lemma [13], for each f in L2 there exists a unique w in H2
0 (defining

the mapping  w = Hkf) such that:

    
 hk(w ,  u) = 8

0

#

 fu dx    ) u $ H0
2(R+).

                                                   (37)

By equation (37) and inequality (34) we immediately obtain:

             

 
||w||

L2  & 
k4
9 ||f||

L2 ,            ||w' ||
L2  & 

k3
27||f||

L2 ,              ||w"||
L2 & 

k2
27||f||

L2 .

This establishes part of (32). For the rest of the proof we use Lemma 2 and note that
equation (37) may be rewritten as follows:

      

 gk(Hkf ,  u) = 8
0

#

 {- k2(b2[Hkf]" + b1[Hkf]'  + b0[Hkf])

(a2[Hkf]" + a1[Hkf]'  + a 0[Hkf] + f)}   - dx   ) u $ H0
2(R+).     (38)

From equation (38) and Lemma 2 we obtain:

    Hk = Gk {I - k2(b2D2 + b1D + b0)Hk - (a2D2 + a1D + a0)Hk},                     (39)

where D denotes the first derivative operator.
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From equation (39) it follows that the range of Hk is contained in  H4(R+) ? H2
0(R+).

Further, the estimates in (32) which are yet to be proved (i.e. for i = 3,4) follow from those
already found above, and from the fact that Gk satisfies (32).

Finally, the uniqueness assertion follows from the fact that if  w $ H4(R+) ? H2
0(R+)

satisfies (31), then it also satisfies (37).This completes the proof of Lemma 3.
  

Theorem 4

Under the conditions of Lemma 1, A is the infinitesimal generator of a strongly continuous
semigroup U on H, and  ||U(t)|| & eAt  for  t " 0.

Proof

 An immediate deduction from the result of lemma 3 is that for  B > k0
2 ,  RB exists.

In fact,

  

 R
B
 = 

 1
2
3

H
B
 (B+L2) H

B

H
B
 (B2+BL2) - 1 BH

B

 4
5
6

 .

                                                 (40)

 Thus the resolvent of  A - AI  exists for  B > k0
2 + A .  Equation (11) of lemma 1 states that

A - AI is dissipative. We have already observed that  A - AI  is closed and densely defined.
Thus it follows from the Lumer - Phillips theorem [18] that  A - AI  is the infinitesimal
generator of a strongly continuous semigroup of contractions. Consequently, A is the
infinitesimal generator of a strongly continuous semigroup U satisfying ||U(t)|| & eAt  for
t " 0. This proves Theorem 4.

  

Remark: If the function b2 were identically zero, a slight modification of Lemma 3 shows
that the resolvent of  -A - AI  would also exist for B sufficiently large. By the remark
following Lemma 1 and by the proof of Theorem 3 it follows that -A would in this case also
be the infinitesimal generator of a strongly continuous semigroup. This implies that the
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semigroup U of Theorem 3 could be continued in the negative t direction so as to obtain a
strongly continuous group satisfying  ||U(t)|| & e|A|t.

1.2  Approximate Solutions of  Lku = 0

We now restrict attention to the case in which the coefficient functions ai, bi  (for  i $
{0,1,2})  have compact support in [0,#). In addition to this,we assume that A satisfies a
certain "light damping" assumption.

Definition: We say that A satisfies the light damping assumption if  -2 < b2(x) & 0  for
all x in R+. Since b2 is continuous with compact support, we can use the representation

  b2(x) = -2cos'(x),                                                                          (41)

where we can find '1 > 0 such that

 
 '1 < '(x) & 2

J       ) x $ [0,#).
                                                             (42)

The function ' is just as smooth as the function b2 and is identically equal to J/2 outside a
compact set.

We shall now investigate approximate solutions of equation (13). For this it is convenient to
set B = k2 and consider the differential expression:

 
 Lk = 

dx4
d4

 + k2(2cos'
dx2
d2

 +  b1dx
d  + b0 ) + a2dx2

d2
 + a1dx

d  + a0 + k4
,
                    (43)

for k $ C.

Lemma 5

In addition to the assumptions already stated in Lemma 1 and those stated above, let ' $

C4[0,#) and b1 $ C3[0,#). Then there exist functions rj of the form:

rj(x,k) = kMj(x) + µj(x),         j = 1, 2, 3, 4,                                             (44)
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such that:

(i) µj, Mj $ C4[0,#), j = 1, 2, 3, 4;

(ii) The functions uj(x,k) = exp(rj(x,k)) , j = 1, 2, 3, 4, are such that
  1
uj(x,k) Lkuj(x,k)  is a polynomial in k of degree no greater than two with coefficients

which are continuous functions of x with compact support;

(iii) The Wronskian W(x,k) = det 
 ;
:
9

 >
=
<!jui(x,k)

!xj   is a polynomial in k of degree six. The

coefficient of k6 is  16 sin2'(0), while the coefficients of lower powers of k are
continuous functions of x with compact support.

Proof

Consider u(x,k) = exp(kM(x) + µ(x)). The expansion of   1
u(x,k) Lku(x,k) is a polynomial in

k of degree no greater than four. Setting the third and fourth order terms equal to zero
yields the two equations:

 (M' )4 - 2cos'(M' )2 + 1 = 0,                                                               (45)
 4(M' )3

µ'  + 6(M' )2
M" - 2cos(')(2M' µ'  + M") + b1M'  = 0.                                     (46)

 Equation (45) yields  (M' )2 = e±i'.  From this we take the four solutions:

 M1(x) = 8
0

x

 exp[2
1 i'(s)] ds,

                                                           (47a)

 M2 (x) = 8
0

x

 exp[- 2
1 i'(s)] ds,

                                                       (47b)

 M3(x) = 8
0

x

- exp[2
1 i'(s)] ds,

                                                         (47c)
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 M4 (x) = 8
0

x

- exp[- 2
1 i'(s)] ds.

                                                      (47d)

Substituting  Mj into equation (46) (for j = 1, 2, 3, 4) yields the following solutions µj :

 
 µ1(x) = - 2

1 ln
sin('(0))
sin('(x))  + 4

3i('(x) - '(0)) + 4
i 8

0

x

 
sin('(s))

b1(s)
 ds,

                    (48a)

 µ2(x) = - 2
1 ln

sin('(0))
sin('(x))  - 4

3i('(x) - '(0)) - 4
i 8

0

x

 
sin('(s))

b1(s)
 ds,

                      (48b)

 µ3 (x) = - 2
1 ln

sin('(0))
sin('(x))  + 4

3i('(x) - '(0)) + 4
i 8

0

x

 
sin('(s))

b1(s)
 ds,

                (48c)

 µ4 (x) = - 2
1 ln

sin('(0))
sin('(x))  - 4

3i('(x) - '(0)) - 4
i 8

0

x

 
sin('(s))

b1(s)
 ds.

                     (48d)

Now we define rj by equation (44) and uj by equation (ii). Clearly from equations (47) and
(48) we have Mj, µj $ C4[0,#). The expressions

                             1
uj(x,k) Lkuj(x,k),       j = 1, 2, 3, 4,

have been constructed to be polynomials in k of degree no greater than two, the coefficients
of which are continuous functions of x with compact support. This establishes (ii).

By equations (47) and (48) we have:

 

 W(x, k) = 
 9
:
; sin'(x)

sin'(0) <
=
>

2

 
 (
(
(

1 1 1 1

r1' r2' r3' r4'

(r1')
2+r1" (r2')

2+r2" (r3')
2+r3" (r4')

2+r4"

(r1')
3+3r1'r1"+r1

(3) (r2')
3+3r2'r2"+r2

(3) (r3')
3+3r3'r3"+r3

(3) (r4')
3+3r4'r4"+r4

(3)

 (
(
( .
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Since each rj' is a first degree polynomial in k, it is apparent that the determinant above is a
polynomial in k of degree no larger than six. The coefficient of k6 is given by the usual
Vandermonde expression:

         
 W(x, k) = 

 9
:
; sin'(x)

sin'(0) <
=
>

2

[(r2' -r1' )(r3' -r2' )(r3' -r1' )(r4' -r3' )(r4' -r2' )(r4' -r1' )]k6 + p1(x, k)  

                     

 = 
 9
:
; sin'(x)

sin'(0) <
=
>

2

 (e-i'/2 - ei'/2)(-ei'/2 - e-i'/2)(-ei'/2 - ei'/2)(-e-i'/2 + ei'/2)

                         
                                     .  (-e-i'/2 - e-i'/2)(-e-i'/2 - ei'/2)k6 + p2(x, k)

 = 16 sin2'(0) k6 + p3(x,k).                                                                         (49)

Here p1(x,k), p2(x,k) and p3(x,k) are polynomials in k of degree less than or equal to five.
Since b1 has compact support and  '(x) = J/2  outside a compact set, it is easy to see that
the coefficients of order less than or equal to five in the expression for W(x,k) vanish
outside a compact set. Thus  W(x,k) = 16 sin2'(0) k6   for large values of x. This proves
(iii).

   

The functions u1, u2, u3, u4  have been constructed as approximate solutions of the ordinary
differential equation  Lku = 0. However it is more useful to consider them as actual
solutions of an equation which approximates the equation  Lku = 0. The following lemma
shows how we can do this.

Lemma 6

Under the assumptions of Lemma 5, there exists a constant C1 > 0 such that for  |k| > C1
the functions u1, u2, u3, u4 form a fundamental set of solutions for a homogeneous
equation:

L~ky = y(4) + k2(2cos'y" + b1y') + k4y + c3y(3) + c2y" + c1y'+ c0y = 0 .            (50)
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The functions c3, c2, c1, c0 are all rational functions of k with coefficients which are
continuous functions of x. There exists a constant M1 such that

|cj(x,k)| & M1|k|2-j,           j = 0, 1, 2, 3,           |k| > C1.                             (51)

Further, the functions cj(x,k) vanish for x outside a compact set. If ' $ C5[0,#), b1 $
C4[0,#), then the functions cj(x,k) are each C1[0,#) functions of x and an estimate of the
same form as (51) holds with cj' replacing cj.

Proof

By (42) and part (iii) of Lemma 5, we can find  C1 > 0  such that

                                

 (
(
( 16k6sin2'(0)

W(x, k)  (
(
(

 " 2
1                  for |k| > C1.

Since u1, u2, u3, u4 are all C4[0,#) functions of x which have a Wronskian which does not
vanish, an elementary result from the theory of ordinary differential equations (see
Coddington and Levinson [4] ) yields the fact that these functions form a fundamental
solution set for a linear, homogeneous, fourth order equation. In fact, the equation can
readily be written down in terms of determinants:

                     Wronskian of (y, u1, u2, u3, u4) = 0,

 i.e. ,    

 (
(
(

y u1 u2 u3 u4

y' u1' u2' u3' u4'

y" u1" u2" u3" u4"

y(3) u1
(3) u2

(3) u3
(3) u4

(3)

y(4) u1
(4) u2

(4) u3
(4) u4

(4)

 (
(
(

= 0.

                                      (52)

After factoring out an exponential term, we may write equation (52) as

 det ( Y
.

,  R
   1

.
 ,  R

   2

.
 ,  R

   3

.
 ,  R

   4

.
  ) = 0,

                                                                 (53)
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 where  Y
.

 = 

 1
2
3

y

y'

y"

y(3)

y(4)

 4
5
6

 ,  and  R
   j

.
 = 

 1
2
3

1

rj'

(rj')
2+ rj"

(rj')
3+ 3rj'rj"+ rj

(3)

(rj')
4+ 6(rj')

2rj"+ 4rj'rj
(3) + 3(rj")2+ rj

(4)

 4
5
6

    for j = 1,  2,  3,  4.

Equation (53) is equivalent to the equation

 det ( Z
.

,  S
   1

.
 ,  S

   2

.
 ,  S

   3

.
 ,  S

   4

.
  ) = 0,

                                                                   (54)

                          
 where  Z

.
 = Y

.
 + {k2(2cos'  y" + b1y' ) + k4y} e

   5
.         

   
  

                         
 and  S

   j

.
 = R

   j

.
 + {k2(2cos'[(rj' )

2 + rj"] + b1rj' ) + k4} e
   5
.  .

It is clear that for i = 1, 2, 3, 4, the ith component in each of the vectors  Sj
.  is a polynomial

in k of degree no more than  i-1. However, by the construction of the functions rj in Lemma

5, it follows that the fifth component of each of the vectors  Sj
. is a polynomial in k of degree

no greater than two.

Thus in the cofactor expansion of the left side of equation (54), down its first column, we
see that the coefficient of y(4) + k2(2cos' y" + b1y') +k4y is a polynomial of degree six,
while the coefficients of y(3), y", y' and y are polynomials of degree no more than five, six,
seven and eight respectively.

The coefficient of y(4) + k2(2cos' y" + b1y') +k4y has as its highest order (k6) term the
same Vandermonde determinant that was encountered in the proof of Lemma 5. Thus, for
|k| > C1, we can divide by this coefficient to get equation (50), where the functions cj are
rational functions of k which satisfy estimates (51). That the functions cj are continuous
functions of x is an immediate consequence of the fact that the functions rj are C4[0,#) in x.
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The last statement in the lemma follows from the fact that the rj are C5[0,#) functions of x if
' $ C5[0,#) and b1 $ C4[0,#).

  

1.3  A Fundamental Solution for  L~kg~ = ----(x-a)

Theorem 7

Let  L~k be as in Lemma 6. There is a constant  C2 > 0  such that for  |k| > C2  there exists a
fundamental solution g~(x,a,k) of

                                                  L~ky = -(x-a)

satisfying:

g~, g~x, g~xx  g~a, g~ax are all continuous functions of x and a,  g~xxx, g~xxxx, g~xxa, g~xxxa,
g~xxxxa are all continuous functions of x and a for xKa, and all mixed derivatives, of
the same order with respect to a and of the same order with respect to x as one listed
here, are equal. Further, the restrictions of these functions to either of the domains
{(x,a) : 0 & x < a} and {(x,a) : 0 & a < x} can be extended to be continuous
functions on the closure of that domain.                                                              (55)

 
!x3
!

3g~ (a, a-, k) - 
!x3
!

3g~ (a, a+, k) = 1,
                                                                            (56)

L~k g~(x,a,k) = 0     provided  x K a,                                                                     (57)

 g~(0, a, k) 7 
!x
!g~ (0, a, k) 7 0.

                                                                                   (58)

             
 Further,  if  f $ C0

#(R+),   wk(x) = 8
0

#

 g~(x, a, k)f(a)da,   and  |arg k| < 4
J ,

 wk(x),  wk' (x),  wk"(x),  wk
(3)(x),  wk

(4)(x) all . 0 as x . #.                                (59)

Proof



1.3   A FUNDAMENTAL SOLUTION FOR  L~kg~ = -(x-a) 2 1

It is convenient to define two functions:

 +(k) = - 2
1(e- i'(0)+ 1) + 4k

1 e- i'(0)/2(3i' ' (0) + 
sin'(0)
ib1(0)

 ),
                           (60)

  
 +
_

(k) = - 2
1(ei'(0)+ 1) - 4k

1 ei'(0)/2(3i' ' (0) + 
sin'(0)
ib1(0)

 ).
                                (61)

 Note that  +(k) = +(k)  and that

 
 +(k)+(k) = 2

1 (1 + cos'(0)) + 
16k2

1  
 9
:
;
3' ' (0) + 

sin'(0)
b1(0)

 
 <
=
>

2

.
                        (62)

We now set

                      y1 = u1 + +u2 - (1 + +)u4,        y2 = u2 + +u1 - (1 + +)u3.

Clearly  y1(0,k) = y2(0,k) = 0,  and it is easy to check that  y1'(0,k) = y2'(0,k) = 0. Thus
{y1,y2} form a basis for the set of solutions y of  L~ky = 0, y(0) = y'(0) = 0.

Next, we define for  |k| > C1  (C1 is the constant of Lemma 6)

 P(x, a, k) = 

 D
E
F

W(a, k)
1  

 (
(
(

u1(a, k) u2(a, k) u3(a, k) u4(a, k)

u1' (a, k) u2' (a, k) u3' (a, k) u4' (a, k)

u1"(a, k) u2"(a, k) u3"(a, k) u4"(a, k)

u1(x, k) u2(x, k) u3(x, k) u4(x, k)

 (
(
(

 ,   x > a

0,   x & a.

The function P satisfies (55), (56), (57) and (58) and is therefore a fundamental solution for
L~k. However, (59) is not satisfied because in the definition of P the cofactors of the
increasing exponential terms u1(x,k) and u2(x,k) are not necessarily equal to zero. We show
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below that we can uniquely find functions m1(a,k) and m2(a,k), both C1 functions of 'a' such
that

   g~(x,a,k) = P(x,a,k) + m1(a,k)y1(x,k) + m2(a,k)y2(x,k)                                     (63)

has all of the required properties.

Clearly (55), (56), (57) and (58) are automatically satisfied. To obtain (59) we need only
choose m1 and m2 so that the coefficients of u1(x,k) and u2(x,k) vanish for  x > a. This
requires:

    

 1
2
3

1 +(k)

+(k) 1

 4
5
6

 1
2
3

m1(a, k)

m2(a, k)

 4
5
6
 = W(a, k)

1  
 1
2
3

N(a, k)

N(a, k)

 4
5
6
,

                                      (64)

 

 where  N(a, k) = 
 (
(
(

u2(a, k) u3(a, k) u4(a, k)

u2' (a, k) u3' (a, k) u4' (a, k)

u2"(a, k) u3"(a, k) u4"(a, k)

 (
(
(

,

                                 (65)

 

 and  N(a, k) = 
 (
(
(

u1(a, k) u4(a, k) u3(a, k)

u1' (a, k) u4' (a, k) u3' (a, k)

u1"(a, k) u4"(a, k) u3"(a, k)

 (
(
(

.

                                 (66)

By the light damping assumption ((41) and (42)) and by equation (62) it follows that there
is a constant  C2 > C1  such that the determinant of the system (64) is non-zero for  |k|>C2.

This establishes the existence and uniqueness of the functions m1 and m2, and completes
the proof of the theorem.

  

Remark:  For the particular case ' = J/2, b1 = 0, the fundamental solution g~ constructed
above is precisely the function g of Lemma 2.
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Our aim is to construct a fundamental solution for the differential expression Lk with
properties similar to those of the function g~ of Theorem 7. In the process of doing this we
shall encounter an integro-differential equation, the solution of which requires the estimates
of the following lemma.

Lemma 8

 Let  B(d, k) = 
 D
E
F

1 ,          if  |arg k| < 4
J

exp[
2
d  (|Im k| - Re k)] ,   if  4

J  & |arg k| & 2
J  

                                         (67)

There is a constant M2 such that for all k satisfying  |k| > C2 (C2 being the constant of
Theorem 7), the following estimates hold:

  

 (
(
(!xn!am
!

m+ng~ (x, a, k)
 (
(
(
 & M  B(x+a, k)|k|n+m-3    n = 0,  1,  2,  3,  4;  m = 0,  1.2               (68)

These estimates hold for all  x > 0, a > 0  if  m + n < 3, otherwise they hold only for x K a.

Proof

It is easily verified that g~(x,a,k) equals

 

 F
(
(
E
(
(
D  

W(a, k)
1 {N(a, k)u1(x, k)+N(a, k)u2(x, k)

               +(1-+(k)+(k))-1[(+(k)+1)(+(k)N(a, k)-N(a, k))u4(x, k)

                   +(+(k)+1)(+(k)N(a, k)-N(a, k))u3(x, k)]},                             if  x & a,
 
W(a, k)

1 {[-/(a, k) + (1-+(k)+(k))-1(+(k)+1)(+(k)N(a, k)-N(a, k))]u4(x, k)

       +[-/(a, k) + (1-+(k)+(k))-1(+(k)+1)(+(k)N(a, k)-N(a, k))]u3(x, k)},   if  x " a.

    (69)

 

 where  /(a, k) = 
 (
(
(

u1(a, k) u2(a, k) u4(a, k)

u1' (a, k) u2' (a, k) u4' (a, k)

u1"(a, k) u2"(a, k) u4"(a, k)

 (
(
(

,

                                              (70)
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 and  /(a, k) = 
 (
(
(

u2(a, k) u1(a, k) u3(a, k)

u2' (a, k) u1' (a, k) u3' (a, k)

u2"(a, k) u1"(a, k) u3"(a, k)

 (
(
(

.

                                              (71)

By equations (47), (48) and (65) we obtain:

 N(a, k) = exp
 1
2
3

k
 9
:
;
8
0

a

-ei'(s)/2 ds
 <
=
>
 - 2

3 ln
 9
:
; sin'(0)

sin'(a)  <
=
> - 4

3i ('(a) - '(0)) - 4
i  8

0

a

sin'(s)
b1(s)

 ds
 4
5
6

                                       

 .  
 (
(
(

1 1 1
r2' r3' r4'

r2"+(r2' )2 r3"+(r3' )2 r4"+(r4' )2

 (
(
(

.

But the determinant above is a polynomial in k, of degree three, with bounded coefficients.
Hence for  |k| > C2  we can find a constant C such that

   |N(a,k)| & C|k|3exp
 32
2
21

 65
5
54

-Re
 ;:
:
9

 >=
=
<

8
0

a
 ei'(s)/2 ds  .                                                 (72)

 Now  N' (a, k) = 
 (
(
(

u2(a, k) u3(a, k) u4(a, k)

u2' (a, k) u3' (a, k) u4' (a, k)

u2
(3)(a, k) u3

(3)(a, k) u4
(3)(a, k)

 (
(
(

,

and it is easy to see that C can be chosen so that also:

|N'(a,k)| & C|k|4exp
 32
2
21

 65
5
54

-Re
 ;:
:
9

 >=
=
<

8
0

a
 ei'(s)/2 ds  .                                             (73)

We may treat N
_

, /, /
_
  and these functions' first derivatives similarly to obtain:
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|N
_

(a,k)| & C|k|3exp
 32
2
21

 65
5
54

-Re
 ;:
:
9

 >=
=
<

8
0

a
 e-i'(s)/2 ds  ,                                             (74)

 |N
_

'(a,k)| & C|k|4exp
 32
2
21

 65
5
54

-Re
 ;:
:
9

 >=
=
<

8
0

a
 e-i'(s)/2 ds  ,                                            (75)

|/(a,k)| & C|k|3exp
 32
2
21

 65
5
54

Re
 ;:
:
9

 >=
=
<

8
0

a
 ei'(s)/2 ds  ,                                                (76)

|/'(a,k)| & C|k|4exp
 32
2
21

 65
5
54

Re
 ;:
:
9

 >=
=
<

8
0

a
 ei'(s)/2 ds  ,                                               (77)

|/
_

(a,k)| & C|k|3exp
 32
2
21

 65
5
54

Re
 ;:
:
9

 >=
=
<

8
0

a
 e-i'(s)/2 ds  ,                                               (78)

|/
_

'(a,k)| & C|k|4exp
 32
2
21

 65
5
54

Re
 ;:
:
9

 >=
=
<

8
0

a
 e-i'(s)/2 ds  .                                              (79)

From equations (47) and (48),

  
 u1(x, k) = exp

 1
2
3

k
 9
:
;
8
0

x

ei'(s)/2 ds
 <
=
>
 - 2

1 ln
 9
:
; sin'(0)

sin'(x) <
=
> + 4

3i ('(x)-'(0)) + 4
i 8

0

x

sin'(s)
b1(s)

 ds
 4
5
6 .

From this we obtain:

|u(n)
1 (x,k)| & C|k|n exp

 32
2
21

 65
5
54

Re
 ;:
:
9

 >=
=
<

k 8
0

x
 ei'(s)/2 ds  ,          n = 0, 1, 2, 3, 4.              (80)

Similarly, for n = 0, 1, 2, 3, 4:

 |u(n)
2 (x,k)| & C|k|n exp

 32
2
21

 65
5
54

Re
 ;:
:
9

 >=
=
<

k 8
0

x
 e-i'(s)/2 ds  ,                                                  (81)
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|u(n)
3 (x,k)| & C|k|n exp

 32
2
21

 65
5
54

-Re
 ;:
:
9

 >=
=
<

k 8
0

x
 ei'(s)/2 ds  ,                                                  (82)

|u(n)
4 (x,k)| & C|k|n exp

 32
2
21

 65
5
54

-Re
 ;:
:
9

 >=
=
<

k 8
0

x
 e-i'(s)/2 ds  .                                                 (83)

Furthermore, from Lemma 6 we have for  |k| > C2 > C1,

W(a,k) " constant . |k|6 .                                                                        (84)

and from the proof of Lemma 5, it is clear that we have

W'(a,k) & constant . |k|6             for  |k| > C2.                                         (85)

Hence from equation (69) and the estimates above, we see that for  x & a,

         |g~(x,a,k)| & constant
|k|3  {exp

 32
2
21

 65
5
54

- Re
 ;:
:
9

 >=
=
<

k 8
x

a
ei'(s)/2 ds  +exp

 32
2
21

 65
5
54

- Re
 ;:
:
9

 >=
=
<

k 8
x

a
e-i'(s)/2 ds

                                               + exp
 32
2
21

 65
5
54

- Re
 F(
E
(D

 O(
P
(Q

k
 ;:
:
9

 >=
=
<

8
0

a
e-i'(s)/2 ds + 8

0

x
e-i'(s)/2 ds

                                               + exp
 32
2
21

 65
5
54

- Re
 F(
E
(D

 O(
P
(Q

k
 ;:
:
9

 >=
=
<

8
0

a
ei'(s)/2 ds + 8

0

x
e-i'(s)/2 ds

                                               + exp
 32
2
21

 65
5
54

- Re
 F(
E
(D

 O(
P
(Q

k
 ;:
:
9

 >=
=
<

8
0

a
e-i'(s)/2 ds + 8

0

x
ei'(s)/2 ds

                                               + exp
 32
2
21

 65
5
54

- Re
 F(
E
(D

 O(
P
(Q

k
 ;:
:
9

 >=
=
<

8
0

a
ei'(s)/2 ds + 8

0

x
ei'(s)/2 ds  }.

For  x " a, the same formula nearly applies, the only change necessary  being that
" 8ax "  should be replaced by  " 8xa ".

Recall that  0 < '1 < '(x) & J/2, so if  |arg k| & J/4  we obtain

                              g~(x,a,k) & constant
|k|3   .
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If  J/4 & |arg k| & J/2, the dominant exponential term in the expression is

either             exp
 32
2
21

 65
5
54

- Re
 F(
E
(D

 O(
P
(Q

k
 ;:
:
9

 >=
=
<

8
0

a
e-i'(s)/2 ds + 8

0

x
e-i'(s)/2 ds  ,

or                  exp
 32
2
21

 65
5
54

- Re
 F(
E
(D

 O(
P
(Q

k
 ;:
:
9

 >=
=
<

8
0

a
ei'(s)/2 ds + 8

0

x
ei'(s)/2 ds  ,

both of which are no greater than

               exp[-(Re k)(8a0 cos('(s)/2) ds + 8x0  cos('(s)/2) ds)

                    + |Im k|8a0 sin('(s)/2) ds + 8x0 sin('(s)/2) ds)]

                    & exp[(|Im k| - (Re k))(x+a)/RS 2 ].

This establishes the first of inequalities (68) (for m = n = 0). The others follow in a similar
fashion from the preceding estimates. This completes the proof of Lemma 8.

  

1.4  A Fundamental Solution for  Lkg = ----(x-a)

We are now in a position to construct a suitable fundamental solution for the differential
expression Lk. For the sake of clarity of exposition, we first define some seminorms on the
class of functions  f : [0,#)2 . C  which satisfy the regularity result (55) of Theorem 7. If i
$ {0,1,2,3,4}  and  j $ {0,1}, we define

 |f|i,j(d", d' ) = sup  
 (
(
( !xi!aj
!

i+j
f(x, a) (

(
(                    0&x&d"

                    0&a&d'
                     xKa

.

                                               (86)

Theorem 9

Suppose that the supports of the coefficient functions of the differential expressions L1 and
L2 are contained in [0,d]. Then there exists a constant p such that for each k in the region

, = {k $ C : B(2d,k) < p|k|}                                                       (87)
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(i) there is a fundamental solution g(x,a,k) of

   Lk g(x,a,k) = d4

dx4 g(x,a,k) + L1g(x,a,k) + k2L2g(x,a,k) + k4g(x,a,k) = -(x-a).

(ii) g satisfies the regularity result (55) of Theorem 7 and there is a constant M3 such that
for all d' " d, d" " d, i $ {0,1,2,3,4}  and  j $ {0,1},

 

 
|k|

i+j

|g|i,j(d", d' )
  & M3 

|k|3
B(d"+d' ,k)  .

                                                          (88)

(iii) g satisfies (56), (58), and (59) of Theorem 7. Equation (57) is of course replaced with

                            Lkg(x,a,k) = 0    for  x K a.

(iv) g(x,a,k) and its partial derivatives listed in (55) are analytic functions of k for k $ , .

Proof

We start by solving the integro-differential equation

 g(x, a, k) = g~(x, a, k) + 8
0

d

 g~(x, b, k) Pkg(b, a, k) db,
                                                       (89)

 where      Pkg(b, a, k) = [c3(b, k)
!b3
!

3
 + {c2(b, k) - a2(b)}

!b2
!

2
   +{c1(b, k) - a1(b)}

!b
!

                               
                                       +{c0(b, k) - a0(b) - k2b0(b)}] g(b, a).    (90)

We solve equation (89) by successive approximations, by defining

 K0(x, a, k) = g~(x, a, k),     and for  n " 1      Kn(x, a, k) = 8
0

d

 g~(x, b, k) PkKn-1(b, a, k) db.
  (91)
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By inequalities (51) of Lemma 6, we obtain for  d' " d  and  i $ {0,1,2,3},

       

 |Kn|i,0(d, d' ) & d|g~ |i,0(d, d) (M1|k|-1|Kn-1|3,0(d, d' ) + [M1+ ||a2||
L#

] |Kn-1|2,0(d, d' )

                                           + [M1|k| + ||a1||
L#

] |Kn-1|1,0(d, d' )

                                       
 + [M1|k|2+ ||a0||

L#
 + ||b0||

L#
 |k|2] |Kn-1|0,0(d, d' )).

But if we set

               
 M = d max (M1+ ||a2||

L#
 ,  M1 + C2

||a1||
L# ,  M1+ ||b0||

L#
 + 

C2
2

||a0||
L#  ),

we get for  |k| > C2,

                 
 |Kn|i,0(d, d' ) & |k|2 |g~ |i,0(d, d) M *

j=0

3
 |k|

-j
 |Kn-1|j,0(d, d' )      i $ {0, 1, 2, 3}.

But by inequalities (68) of Lemma 8, we have

                             
  |g~ |i,0(d, d) & M2 B(2d, k) |k|i-3.

The last two inequalities imply that for  i $ {0,1,2,3},

 |k|-i |Kn|i,0(d, d' ) & |k|-1 M M2 B(2d, k) *
j=0

3
 |k|

-j
 |Kn-1|j,0(d, d' ).

                         (92)

However, since K0 = g~, we have for  j $ {0,1,2,3},

                                     
 |k|

-j
 |K0|j,0(d, d' ) & |k|-3M2 B(d+d' ,k).

So iteration of inequality (92) yields

                  
 |k|-i |Kn|i,0(d, d' ) & |k|-3M2 B(d+d' ,k) 

 1
2
3 |k|

4MM2 B(2d, k) 4
5
6

n

.
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We choose the constant p in equation (87) by

                     p-1 = max (8MM2 , C2),

so we get:

                        
 |k|-i |Kn|i,0(d, d' ) & |k|-3M2 B(d+d' ,k)

 1
2
3 2
1 4
5
6

n

.

Thus the series  K0+K1+K2+K3+ . . .  together with the series of first and second partial
derivatives with respect to x converge absolutely, uniformly on the compact set [0,d] × [0,d'].
The third partial derivative of each Kn with respect to x exists and is continuous when  xKa.
Thus we get convergence to a function g which, along with gx and gxx is continuous on [0,d]
× [0,d']. Also, gxxx is continuous on ([0,d] × [0,d']) ? {(x,a) : x K a}  and its restriction to
either one of the components of this set can be continued to be a continuous function on
that component. Furthermore, since the series converge uniformly, we see that they converge
to analytic functions of k in ,, and that g satisfies equation (89). Also,

                   
 |k|-i |g|i,0(d, d' ) & |k|-3 M2

  B(d+d' ,k) *
n=0

#

 
 1
2
3 2

1 4
5
6

n

                                      = 2|k|-3 M2 B(d+d' ,k).

Next, note that for  a & d,

           

 
!a
!Kn(x, a, k) = 8

0

a

 g~(x, b, k) Pk !a
!Kn-1(b, a, k) db + 8

a

d

 g~(x, b, k) Pk !a
!Kn-1(b, a, k) db

                          
 + g~(x, a, k) c3(a, k) 

 1
2
3 !x3

!
3Kn-1(a-, a, k) - 

!x3

!
3Kn-1(a+, a, k)

 4
5
6
.

For  a " d  the same formula applies, but the last term vanishes. From this we obtain:
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 |Kn|i ,1(d, d' ) & |k|2 |g~ |i,0(d, d) M *

j=0

3
 |k|

-j
 |Kn-1|j ,1(d, d' )

                                 
 + |g~ |i,0(d, d) M1|k|-1 |Kn-1|3,0(d, d).

Hence,

               
 |k|-i |Kn|i ,1(d, d' ) & |k|-1 M M2 B(2d, k) *

j=0

3
 |k|

-j
 |Kn-1|j ,1(d, d' )

                                     + |k|-4 M1 M2
2 [B(2d, k)]2 

 1
2
3 2

1 4
5
6

n-1

                                    
 & 8

1 *
j=0

3
 |k|

-j
 |Kn-1|j,1(d, d' )  +  

8|k|3d

M2  B(2d, k) 
 1
2
3 2

1 4
5
6

n-1

.

But from inequality (68) of Lemma 8,

                            
 |k|-i |K0|i,1(d, d' ) & M2 |k|-2 B(d+d' ,k).

The last two inequalities imply that for  i $ {0,1,2,3},

                  
 |k|-i |Kn|i,1(d, d' ) & 

 1
2
3 2

1 4
5
6

n

M2 B(d+d' ,k) |k|-2 + n M2 
8|k|3d

B(2d, k) 
 1
2
3 2

1 4
5
6

n-1

.

This shows that the series

                              
 *
n=0

#

 
!xi!a
!

i+1Kn             i $ {0, 1}

converge uniformly on  [0,d] × [0,d'], and that the series
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 *
n=0

#

 
!xi!a
!

i+1Kn             i $ {2, 3}

converge uniformly on each component of the set ([0,d] × [0,d']) ? {(x,a) : x K a}. The
restriction of the sums

                                          
 
!

ix!a
!

i+1g             i $ {2, 3}

to either one of the components can be continued to continuous functions on that
component. The mixed partial derivatives of g may be taken in any order because the same
is true for each Kn. Further, the partial derivatives of g are analytic in k because of the
uniform convergence. Summing the last inequality yields for  i $ {0,1,2,3}:

                
 |k|-i |g|i,1(d, d' ) & 2|k|-2 M2 B(d+d' ,k) + (2d)-1|k|-3        M2 B(2d, k)

 & |k|-2 M3 B(d+d' ,k),           where  M3 = 2M2 + 2C2d
M2  .

           (93)

Note that equation (89) serves as a definition for g(x,a,k) for  x > d, since g is known for  x
& d. From this we see that if  d' " d  and  d" " d  then for  i $ {0,1,2,3},

           
 |k|-i |g|i,0(d", d' ) & |k|-i |g~ |i,0(d", d' ) + M |k|2-i |g~ |i,0(d", d) *

j=0

3
 |k|

-j
 |g|j,0(d, d' )

                     & |k|-3 M2 B(d"+d' ,k) + |k|-3 M2 B(d"+d, k) |k|-1 8M M2 B(d+d' ,k).

But since  B(µ1,k) B(µ2,k) = B(µ1+µ2,k), we obtain:

         
 |k|-i |g|i,0(d", d' ) & |k|-3 M2 B(d"+d' ,k) + |k|-3 M2 B(d"+d' ,k) |k|-1 8M M2 B(d+d' ,k)

                             & 2|k|-3 M2 B(d"+d' ,k).

We may similarly deduce inequalities (88) for  j = 1  and  i & 3  by using  inequality (93).
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From equation (89) we get (for x K a)

                        

 L
    k

~  g(x, a, k) = L
    k

~  8
0

d

 g~(x, b, k) Pkg(b, a, k) db

                  = Pkg(x, a, k).

i.e                              Lkg(x,a,k) = 0     for  x K a.

From this the remaining estimates (88)  (i.e. for  i = 4)  follow from the previous ones.

Finally, that g satisfies (56), (58) and (59) follows immediately from equation (89) and the
fact that g~ satisfies these conditions. This completes the proof of Theorem 9.

  

1.5  'Spectral' Properties of g

We will now see that the conclusions of Theorem 9 yield very strong regularity results for
the solution of equation (1).

Notice that the function   g(x, a, B )  is analytic in a domain containing

                                    {B $ C : Re B > p-2}.

(Here the square root function is defined so that the square root of positive real numbers is
positive, with its branch line coinciding with the negative real axis). For  Re B > p-2 we see
from (88) that:

                          

   sup   |g(x, a, B )| & M3|B |-3/2.
x$[0,#)
a$[0,#)

Thus we may define  J : [0,#)3 . C  by

 J(x, a, t) = 2Ji
1  8
/-i#

/+i#

  g(x, a, B ) eBt dB,            where / > p-2.

                      (94)
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Now we define for  r > 0 ,

,(r) = {k $ C :  B(r,k) < p|k|}.                                                          (95)

Recall that  , = ,(2d). It is obvious that if  0 < r1 < r2, then  ,(r2)  T ,(r1). We define
,'(r)  as the square of  ,(r), i.e. ,'(r); = sq(,(r))  where sq(z) = z2. We set  ,' = ,'(2d).

We will make use of the following important property of ,'(r).

Lemma 10

Given  r > 0  and  b > 0, there exists  c = c(b,r) > 0  such that the set

 Ub,r = {B $ C  : Re B " -b |Im B|1/2 + c}
                                  (96)

is contained in  ,'(r).

Further, if  r = d' + d"  where  d' " d  and  d" " d, then for  B $ Ub,r  we have the estimates:

 |g(. , . , B )|i,j(d", d' ) & constant .  |B |
(i+j-3)/2

          i $ {0, 1, 2, 3, 4},   j $ {0, 1}.
      (97)

Proof

We notice that ,(r) contains the set

                     A = {eJi/4(V+i-) :  V > p-1,   0 & - < r-1ln Vp},

 for   B(r, eJi/4(V+i-)) = e-r < Vp & p|eJi/4(V+i-)|.

Similarly, A*, the reflection of A in the real axis is contained in ,(r). Thus,

                   ,(r) W {k : |k| > p-1,  |arg k| & J/4} X A X A*.
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                                       Figure 1

Given  b > 0, choose  V0 = p-1ebr/2. We see that the infinite rectangle

                           R = {eJi/4(V+i-) : V > V0, 0 & - < b/2}

is contained in A, and is thus in ,(r). Similarly R*, the reflection of R in the real axis is
contained in ,(r).

The left boundary of sq(R) (see figure 2) is parametrized by

                      B = (eJi/4[V+ib/2])2 = -bV + i(V2 - b2/4),      for  V > V0.

 We see that such points satisfy

                              Re B = -bV & - (Im B)1/2 b.

Clearly points on the left boundary of R* satisfy

                              Re B & - |Im B|1/2 b.
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From this it is clear that we can pick  c > 0  so that the entire curve

                              Re B = - |Im B|1/2 b + c

is to the right of the boundary of ,'(r). This completes the proof of the first part of the
lemma.

                                

                                                          Figure 2

Notice that if  Re B > 0 then estimates (97) follow immediately from estimates (88). If

                        B = (eJi/4[V+i-])2  where  V > V0  and  0 & - < b/2,

we have

                       (d'+d")(|Im k| - Re k)/RS 2 = (d'+d")- = r- < rb/2,

so that  B(d"+d',k) & erb/2. With (88) this establishes estimates (97) in

                                         Ub,r ? {B : Im B > 0}
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for 0 sufficiently large. Similarly, (97) holds in

                                         Ub,r ? {B : Im B < -0}.

The only part of Ub,r  for which we have not verified (97) is a bounded part. But then the
boundedness is enough to get (97) from (88). This completes the proof of Lemma 10.

  

1.6  The Gevrey Smoothness of J

We now show that the function J, defined in equation (94), is of Gevrey class /2 in the time
variable t  for t > 0. For this we need to specify the locally convex space X and the family of
seminorms P which topologize X.

We let X be the space of complex-valued functions on [0,#)2 satisfying the regularity
conditions (55) of Theorem 7. X may be topologized by the separating family of seminorms

                             P = {|   |i,j(d',d') :  d' " d, i $ {0,1,2,3,4}, j $ {0,1}},

which makes X into a locally convex topological vector space.

To prove that  J $ /2((0,#),X,P), it is clearly enough to show that for any  d' " d, the
restriction of J to  (x,a) $ [0,d']2  is in /2((0,#),Xd') where Xd' is the Banach space of
functions on [0,d']2 having the regularity†  specified in (55) and having the norm

                                    

 *
  0&i&4

     0&j&1

 |   |i,j(d' ,d' ).

Theorem 11

J : (0,#) . Xd'  is in the Gevrey class  /2((0,#),Xd').

Proof

†The partial derivatives listed in (55) are assumed to be continuable continuously to the boundaries of each
of the sets  {(x,a) : 0&a<x<d'}  and   {(x,a) : 0&x<a<d'}.
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The integral (94) defining the function J converges absolutely, uniformly for  (x,a) $
compact subsets of [0,#)2. We first show that the integral can be taken over a different
contour which will allow us to make use of the estimates (88) of Theorem 9.

Let  b > 0. Choosing c and Ub,2d' as in Lemma 10, we let Y be the boundary of Ub,2d' with
upwards orientation.

Let YR be the contour

                             YR = {s+iR : -bR1/2 + c & s & /},

with orientation in the direction of increasing  Re B (the definition of YR makes sense if R is
sufficiently large).

                                        Figure 3

By estimates (88),

                
 

 (
(
(
8
YR

 g(., . , B ) eBt dB (
(
(0,0

(d' ,d' ) & constant. R-3/2 8
-#

/

 est ds
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                                                       = constant. R-3/2 e/t.

 Thus  8
YR

 g(x, a, B ) eBt dB . 0  as  R . #  uniformly for  (x, a) $ [0, d' ]2.

Similarly, with Y-R being the reflection of YR in the real axis, we see that

              

    8
Y-R

 g(x, a, B ) eBt dB . 0  as  R . #  uniformly for  (x, a) $ [0, d' ]2.

Thus we may replace the contour  Re B = /  with the contour  Y : Re B = -b|Im B|1/2 + c,
provided that the orientation is taken in the direction of increasing  Im B.

We now show that for  t > 0  and  (x,a) $ [0,d']2,

 
!tn
!

n
 J(x, a, t) = 2Ji

1  8
Y

 Bn g(x, a, B ) eBt dB,     n = 0,  1,  2,  3,  4,  .  .  .  .  
        (98)

For now, we let  In(t)  denote the integral on the right hand side of (98). If we can show that
In(t)  is absolutely convergent in Xd', uniformly in t for t on compact subsets of (0,#), then
(98) will follow, along with the fact that  J(.,.,t) is a C# function of t in Xd'. To see why this
is true, let  t0 > 0  be given and pick  L < t0. For  n = 0, 1, 2, 3, 4, . . . , let Bn be a constant
such that  for  t $ [t0-L,t0+L],

 8
Y

 |B |n ||g(. , . , B )||Xd'
|eBt| |dB| < Bn.

                                        (99)

Then for  0 < |h| < L , we can find t- $ [t0-|h|,t0+|h|], depending on B, such that

             
 

h
exp(B(t0+h)) - exp(Bt0)

  -  Bexp(Bt0) = Bexp(Bt ) - Bexp(Bt0)

                                 = B2 (t - t0) exp(Bt~ ),     where t~  is between t0 and t.
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Thus,

                 

 (
(
( h

exp(B(t0+h)) - exp(Bt0)
  -  Bexp(Bt0)

 (
(
(

 & |h| |B |2 
 D
E
F

|exp B(t0-L)|   if  Re B & 0

|exp B(t0+L)|  if  Re B " 0
  .

We get from this that

     
 2J || h

In(t0+h)-In(t0)
  - In+1(t0) ||Xd'

 & |h|  8
      Y?{B: ReB<0}

 |B |n+2 ||g(. , . , B )||Xd'
 |exp B(t0-L)| |dB|

                                             
 +  |h|  8
      Y?{B: ReB>0}

 |B |n+2 ||g(. , . , B )||Xd'
 |exp B(t0+L)| |dB|

                                              & 2|h| Bn+2.

Thus it remains to prove (99). We will see that the estimation of Bn will also establish the
Gevrey smoothness of J.

On Y, set

                          B = iR - b|R|1/2 + c.    Then  dB = idR ± 2
1  b|R|-1/2dR.

Let  R0 > 1  be such that for  |R| > R0  we have  |B| & 2|R|  and  |dB| & 2|dR|. Then for  i $
{0,1,2,3,4}, j $ {0,1}  and  t $ [t0-L,t0+L], we get from Lemma 10 that

 8
Y?{B: ImB>R0}

   |B |n |g(. , . , B )|i,j(d' ,d' ) |eBt| |dB| & constant.8
R0

#

 (2R)n R
(i+j-3)/2

 ect-bt R 2dR

                                     
 & constant. 2n+1 ect 8

0

#

 Rn+1 e-bt R dR



1.6   THE GEVREY SMOOTHNESS OF J
4 1

                                     
 = constant. 2n+2 ect 8

0

#

 u2n+3 e-btu du

                                     
 = constant.  1

2
3b2t2

2  4
5
6

 n+2

 ect (2n+3)!

But  (2n+3)! < 22n+3 (n+2)! (n+1)!, so the integral is bounded by

                  
 
2
1  constant.

 1
2
3 b2(t0-L)2

8  4
5
6

 n+2

exp[c(t0+L)] (n+2)3 n!2

   .

The constant  b > 0  is arbitrary. Thus, given  ' > 0, we choose

                                    
 b = 

(t0-L) '

4

and note that since the sequence {(n+2)3/2n+3} is bounded, there exists a constant C such
that the integral is actually bounded by

                                                           C 'n n!2.

The part of the integral taken over  Y ? {B : Im B < -R0}  may be treated similarly. What
remains is the integral over  Y ? {B : Im B < -R0}, which is a compact set. If we set

                               D = diameter (Y ? {B : |Im B| & R0}),

we see that

            
 8

Y?{B:|Im B|&R0 }

 |B |n ||g(. , . , B )||Xd'
|eBt| |dB| < constant.Dn exp c(t0+L).

But the sequence {(D/')n / n!2}  is bounded. Thus we have proved estimate (99) and
equation (98). In so doing, we have found that for any  ' > 0  and compact sub-interval K of
(0,#), there exists a constant  C' such that for all  t $ K,
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 || 

dtn
dn

 J(. , . , t) ||Xd'
  <  C'  'n n!2,              n = 0,  1,  2,  3,  4,  .  .  .  .  

This completes the proof of the theorem.
  

Recall that some of the partial derivatives of the function g do not exist on the line  x = a,
while limits of these derivatives from either side of this line do exist. The following result
shows that J does not inherit this discontinuous behavior.

Lemma 12

For  t > 0, all of the partial derivatives of J(x,a,t) listed in (55) exist and are continuous at
points on the line  x = a. Further, for fixed  a $ [0,#), J(.,a,.) satisfies the partial differential
equation

 
!t2
!

2J(x, a, t) + 
!x4
!

4J (x, a, t) + L2 
!t
!J(x, a, t) + L1J(x, a, t) = 0      for (x, t) $ (0,#)2,

      (100)

and for  t > 0, J satisfies the boundary conditions

 J(0, a, t) = !x
!J (0, a, t) = 0.                                                   (101)

Proof

Pick any  d' " d  and let the contour Y†  be as in the proof of Theorem 11. Since g satisfies

                              
 
!x3
!

3g(a, a-, k) - 
!x3
!

3g(a, a+, k) = 1,

we get from the proof of Theorem 11 that for any  a < d',

†Y, of course, depends on a prescribed constant b > 0. However, for the purposes of this proof, any b will
do.
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!x3
!

3J (a, a-, t) - 
!x3
!

3J (a, a+, t) = 2Ji
1  8

Y

 eBt dB.

Recall that Y is the contour parametrized by

                                  B = iR - b|R|1/2 + c,         -# < R < #.

 For a given  R0 > 0,  we consider a contour  /R0
  consisting of the line segment

                    
 /R0

 = {is - bR0
1/2 + c : -R0 & s & R0},

with orientation in the direction of increasing s.

                                           Figure 4

Now,

              
 

 (
(
(
8
/R0

 eBt dB (
(
(

 & 8
-R0

R0

 exp[ct - bR0
1/2t] ds = 2R0 exp[ct - bR0

1/2t].
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So we see that

                    

 
!x3
!

3J (a, a-, t) - 
!x3
!

3J (a, a+, t) = 2Ji
1    lim

R0.#
      8

/R0

 eBt dB  = 0.

But this together with

 (i) 
!x2
!

2J (x, a, t) exists and is continuous for all  (x, a) $ (0,#)2,

 (ii) 
!x3
!

3J (x, a, t) exists and is continuous on either side of the line  x = a,  and has

      limiting values as (x,a) converges on either side of the line to a point on it,

 imply that  
!x3
!

3J (x, a, t)  exists and is continuous at  x = a.

Next, using equation (98) and part (iii) of Theorem 9, we see that equation (100) is satisfied
provided that  x K a. But every member of equation (100) except for the fourth order term is
known to be a continuous function of (x,a), even on the line  x = a. This implies that

                                                         
 
!x4
!

4J (x, a, t)

exists and is continuous at points on the line.

Now we note that we have trivially:

                               
 
!x2
!

2J (a, a-, t) = 
!x2
!

2J (a, a+, t),

which implies that
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!x3
!

3J (a, a-, t) + 
!a!x2
!

3J (a, a-, t) = 
!x3
!

3J (a, a+, t) + 
!a!x2
!

3J (a, a+, t).

We have already seen that

                                                   
 
!x3
!

3J (x, a, t)

exists and is continuous at points on the line  x = a. Thus also

                                                  
 
!a!x2
!

3J (x, a, t)

exists and is continuous at points on this line.

Similarly we may prove the existence and continuity of

                                                  
 
!a!x3
!

4J (x, a, t),

while the existence and continuity of

                                                  
 
!a!x4
!

5J (x, a, t)

can be proved simply by differentiating equation (100).

Equations (101) follow immediately from (98) and:

                                    
 g(0, a, k) = 

!x
!g(0, a, k) = 0.

Finally we note that since the mixed partial derivatives may be taken in any order for  x K a,
the same is true at  x = a  by continuity.

This completes the proof of Lemma 12.
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Lemma 12 implies that for each  t > 0, J(.,.,t) belongs to the class Y of functions

                                 f : [0,#)2 . C

given by

 Y = {f : for  i ${0, 1, 2, 3, 4} and j ${0, 1},   
!xi!aj
!

i+j
f (x, a) is a continuous function of (x, a),

      and all partial derivatives of order j with respect to 'a' and i with respect to x are equal}.

If we topologize Y by the same seminorms P topologizing X, we see immediately that Y is a
closed subspace of X. Further, we have the following result:

Corollary 13

t . J(.,.,t)  is a member of  /2((0,#),Y,P).
  

1.7  Gevrey Solutions of Equation (1)

We now consider the following mappings on functions f $ L2(R+)  with compact support:

 
 GBf(x) = 8

0

#

 g(x, a, B )f(a) da                         (B $ ,' ),
                    (102)

 J(t)f(x) = 8
0

#

 J(x, a, t)f(a) da                             (t > 0).
                       (103)

Recall that A is the infinitesimal generator of a strongly continuous semigroup. This fact
implies that there exists a real constant A0 such that RB, the resolvent of A, exists and is
analytic in

                                            Z = {B: Re B > A0}.

One easily verifies, using the results of Theorem 9, that if (f1,f2) $ (C#
0 (R+))2 and
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B $ ,' ? Z, then

   

 R
B
 
 1
2
3

f1
f2

 4
5
6

 = 
 1
2
3

G
B
(B+L2) G

B

G
B
(B2+BL2) - 1 BG

B

 4
5
6

 
 1
2
3

f1
f2

 4
5
6

 .

                                             (104)

Now if  f1 $ H2
0(R+) and f2 $ L2(R+)  and these functions have support in [0,d'), one can

find [1 and [2 in C#
0 , with support in [0,d'], such that ([1,[2) is arbitrarily close to (f1,f2) in

H.

Because of the continuity of the mapping RB, we see that equation (104) holds for all
members of H with compact support. This forms the basis of the following theorem.

Theorem 14

Let  f1 $ H2
0(R+)  and  f2 $ L2(R+)  have compact support. Then for  t > 0,

 U(t) 
 1
2
3

f1
f2

 4
5
6

 = 
 1
2
3

J' (t) + J(t) L2 J(t)

J"(t) + J' (t) L2 J' (t)

 4
5
6

 
 1
2
3

f1
f2

 4
5
6

 .

                                                (105)

Proof

We first suppose that  (f1,f2) $ D 
A2, the domain of A2. In this case, a classical result (e.g.

see Pazy [15]) is that if  / > A0 then

                               

 U(t) 
 1
2
3

f1

f2

 4
5
6
 = 2Ji

1   8
/-i#

/+i#

   RB 
 1
2
3

f1

f2

 4
5
6
 eBt dB,

and the integral converges as an improper Riemann integral in H, uniformly for t on
compact subsets of (0,#).

If we let
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 1
2
3

w(.,t)

v(.,t)

 4
5
6
 = U(t) 

 1
2
3

f1

f2

 4
5
6
,

we get from the discussion preceding the statement of the theorem that, if / is sufficiently
large,

                   

 w(.,t) = 2Ji
1   8

/-i#

/+i#

     8
0

#

 g(. ,a, B )(Bf1(a) + L2f1(a) + f2(a)) da dB.

We pick an arbitrary  d' > d  such that [0,d'] contains the supports of f1 and f2, and we show
that for  x $ [0,d']  and  t > 0, w(x,t) is given by the first component of the right side of
equation (105).

Given  b†  > 0, we take Ub,2d' as in the proof of Lemma 10, and let Y be as in the proof of
Theorem 11. By Lemma 10, we have

            
 ma
0&x&d'

x   |BGBf1(x) + GBf2(x)| & constant. (|B |-1/2||f1||
L2 + |B |-3/2[ ||f2||

L2 + ||f1||
H2]).

This estimate allows us to deform contours as in the proof of Theorem 11, so that we get:

                     
 w(.,t) = 2Ji

1   8  8
0

d'

 g(.,a, B )(Bf1(a) + L2f1(a) + f2(a)) da dB.
Y

one easily checks as in the proof of Theorem 11 that this integral is absolutely convergent
for any  t > 0, uniformly for  x $ [0,d']. Hence, by Fubini's theorem, we can interchange the
order of integration and arrive at

 w(x, t) = 8
0

#

 J(x, a, t){f2(a)+ L2f1(a)} da  +  
!t
!  8

0

#

 J(x, a, t)f1(a) da,  
                        (106)

†Again, any fixed  b > 0  will suffice for the proof of this theorem.
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for  t > 0  and  x $ [0,d']. But since d' can be arbitrarily large, it follows that equation (106)
holds for all  x $[0,#).

To show that equation (106) holds for all  (f1,f2) $ H  with compact support, we need to
show that we can approximate (f1,f2) arbitrarily well in H by members of D 

A2 with compact

support. For then we can get (106) by using the boundedness of U(t). To see this, let  L > 0
be given. Since D 

A2 is dense in H, we can find (h1,h2) $ H such that

                                        ||(f1,f2) - (h1,h2)|| < L.

However, it is not guaranteed that h1 and h2 have compact support. But we can overcome
this problem. Recall that

               
 D

A2 = 
 D
E
F

 1
2
3

g1

g2

 4
5
6
 $ DA :  A 

 1
2
3

g1

g2

 4
5
6
 $ DA

 Q
P
O

                 = {(g1, g2): g1 $ H4(R+)?H0
2(R+),   g2 $ H4(R+)?H0

2(R+),

                                           
 g1

(4) + *
j=0

2
 aj g1

(j)  + *
j=0

2
 bj g2

(j)  $ H0
2(R+) }.

But the supports of the functions aj, bj are contained in [0,d]. Thus if  [ $ C#
0   and [(x) = 1

for  x & d, then  ([g1,[g2) $ D 
A2 if  (g1,g2) $ D 

A2.

We consider  % $ C#
0   satisfying

             
 %(x) = 

 D
E
F

1      x & 0

0      x " 1
     ,         with  M = ma

0&x&1
x  (|%(x)|,  |%' (x)|,  |%"(x)|).

We set (for  R > d)

                                    %R(x) = %(x-R).
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Since  H = H2
0(R+) × L2(R+), it is easy to see that by making R sufficiently large, we can

get

           ||(h1,h2) - (%Rh1,%Rh2)|| < L       and thus      ||(f1,f2) - (%Rh1,%Rh2)|| < 2L.

Hence equation (106) holds for arbitrary  (f1,f2) $ H  with compact support.

It remains for us to show that

 v(.,t) = 
!t
!  8

0

#

 J(. ,a, t){f2(a) + L2f1(a)} da  +  
!t2
!

2
 8
0

#

 J(. ,a, t)f2(a) da.
                    (107)

If  (f1,f2) $ DA  with compact support then this follows from equation (106), because the
first component of the equation

                                

 
dt
d  U(t) 

 1
2
3

f1

f2

 4
5
6
 = A U(t) 

 1
2
3

f1

f2

 4
5
6

yields  v(.,t) = (d/dt)w(.,t)  in  H2
0(R+). Equation (107) now follows,by a continuity

argument similar to the one used in proving (106), for all  (f1,f2) $ H with compact support.

This completes the proof of Theorem 14.
  

We next consider the space  C4[0,#) topologized by the seminorms  P1 = {pr : r > 0},
where

                                         
 pr(f) = ma

0&x&r
x    *

j=0

4
 |f

(j)
(x)|.

An immediate consequence of Corollary 13 and Theorem 14 is the following result.

Corollary 15
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If  (f1,f2) $ H  with compact support and

                                          

 1
2
3

w(.,t)

v(.,t)

 4
5
6
 = U(t) 

 1
2
3

f1

f2

 4
5
6
,

then both w and v are in  /2((0,#),C4[0,#),P1).
  

1.8  Removing the Restrictions on Equation (1)

We now remove the restrictions  a4(x) = 1, a3(x) = 0  in equation (1). We set

                                     
 q(x) = 8

0

x

 (a4(s))-1/4 ds,

and consider the transformation  Qw = w~ , where

 w~ (y, t) = w(q-1(y), t) [a4(q-1(y))]-3/8 exp
 1
2
3

 4
1   8

0

q-1(y)

   a4(s)
a3(s)

  ds
 4
5
6

,
                  (108)

is the one referred to in Section 1.0 and it transforms equation (1) into

 
!t2
!

2w~  + 
!y4
!

4w~  + *
j=0

2
 a
   j
~  (y) 

!yj
!

j
w~   + *

j=0

2
 b
   j
~  (y) 

!yj
!t

!
j+1

w~   = 0,
                       (109)

where  a~0, a~1, a~2, b~0, b~1, b~2  of course depend on  a0, a1, a2, a3, a4, b0, b1, b2. The severest
assumptions on the regularity of  a~0, a~1, a~2, b~0, b~1, b~2  arise in Lemma 5 and in the work
following Lemma 5, where we require

        b~2 $ C4[0,#),   b~1 $ C3[0,#), and all other coefficients are in C[0,#).

For these conditions to hold, it is sufficient for the original coefficients to satisfy the
conditions
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(I)      a4 $ C4[0,#),       a3 $ C3[0,#),       b2 $ C4[0,#),        b1 $ C3[0,#),
          aj $ C[0,#)    for  j $ {0,1,2},          b0 $ C[0,#).

We shall also assume that the domains of the functions  a0, a1, a2, a3, a4, b0, b1, b2 have been
extended to  [0,#) in such a way that

(II)     a0, a1, a2, a3, b0, b1, b2 all have compact support, there exists R > 0 such that
          for x > R, a4(x) = 1, and a4(x) > 0  for all x $ [0,#).

The requirement  -2 < b~2(x) & 0  is equivalent to what we call a light damping assumption:

(III)   -2RSS S a4(x) < b2(x) & 0            for all x $ [0,#).

One easily verifies that, under these assumptions, the mapping†   Q maps H = H2
0(R+) ×

L2(R+) continuously into itself and that it has a continuous inverse.

If we define

S(t) = Q-1 U(t) Q,                                                                       (110)

it is obvious that S(t) is a strongly continuous semigroup on H. Further, one can easily
compute the infinitesimal generator B of S(t) and find that

                      DB = DA = (H4(R+)?H0
2(R+)) × L2(R+),

 B
 1
2
3

w
v

 4
5
6
 = 

 1
2
3

v

- *
j=0

4
 aj(x) 

!xj
!

j
w   - *

j=0

2
 bj(x) 

!xj
!

j
v
 4
5
6

.

                                   (111)

We further define, for  (x,b,t) $ [0,#)3,

†i.e. Q is applied component-wise.
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 K(x, b, t) = [a4(x)]3/8[a4(b)]-5/8exp
 1
2
3

4
18

x

b

 a4(s)
a3(s)

 ds
 4
5
6
 J(q-1(x), q(b), t).

             (112)

For  t > 0, we consider the following operator on functions  f $ L2(R+)  with compact
support:

 
 K (t)f(x) = 8

0

#

 K(x, a, t)f(a) da.
                                                       (113)

The preceding theorems on U, J and J imply similar results about S, K and K. We
summarize these results in the following theorem.

Theorem 16

Under conditions (I), (II) and (III), the following statements hold.

(i) t . K(.,.,t)  is a member of  /2((0,#),Y,P).

(ii) For each fixed  a $ [0,#),

      

 
!t2
!

2K(x, a, t) + *
j=0

4
 aj(x) 

!xj
!

j
K (x, a, t)  + *

j=0

2
 bj(x) 

!xj
!t

!
j+1

K(x, a, t) = 0,   for (x, t) $ (0,#)2.

(iii) Let  f1 $ H2
0(R+)  and  f2 $ L2(R+)  have compact support. Then for  t > 0,

                            

 S(t) 
 1
2
3

f1
f2

 4
5
6

 = 
 1
2
3

K ' (t) + K (t) L2 K (t)

K "(t) + K ' (t) L2 K ' (t)

 4
5
6

 
 1
2
3

f1
f2

 4
5
6

 ,

        where L2 = b2 d2/dx2 + b1 d/dx + b0.

  (iv) If  
 1
2
3

w(.,t)

v(.,t)

 4
5
6
 = S(t) 

 1
2
3

f1

f2

 4
5
6
,   where f1 and f2 are as in (iii),  then 
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        t . w(.,t)  and  t . v(.,t)  are both members of   /2((0,#),C4[0,#),P1).
  



Chapter 2

Analyticity for Equations of Euler-Bernoulli
Type With Constant Coefficients

2.0  Introduction

In this chapter, we once again investigate the the properties of solutions of the equation

 
!t2
!

2w   +  *
i=0

4
 ai !xi

!
iw    +  *

i=0

2
 bi !xi!t

!
i+1w   =  0.

                                (1 )

However, here we suppose that the coefficients a0, a1, a2, a3, a4, b0, b1, b2 are constants and
we show that, under this assumption, we obtain even better regularity results for the
fundamental solution K(x,a,t) than those obtained in Chapter 1. Indeed, we show that K may
be continued analytically on to a certain subset of C3.

In this work, we assume that  a4 > 0  and that the light damping assumption,

-2 RSS a4 < b2 & 0,                                                                           (2)

is satisfied. As in Chapter 1, we begin by considering the case  a4 = 1, a3 = 0, for this can be
achieved by means of the transformation Q (see equation (108) of Chapter 1). In this case,
we may pick  ' $ (0,J/2]  so that  b2 = -2 cos '.

We again investigate solutions of (1) satisfying the 'clamped end conditions'

                             
 w(0, t) = 

!x
!w (0, t) = 0,         for  t " 0.

However, it will become clear that the methods developed here are applicable to problems
with certain other homogeneous boundary conditions at  x = 0.

The semigroup formulation of Section 1.1 still, of course, applies for this case of constant
coefficients. However, the construction of the function g in Chapter 1 is not valid here,
because it was done under the assumption that certain coefficients of the partial differential
equation have compact support. Thus, we start the investigation in Section 2.1 by
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constructing the function g. At the same time, we derive the properties of g which we later
use to obtain regularity results for the function J.

In Section 2.2, we use changes in contours to demonstrate the analyticity of J in much the
same way that we demonstrated that the function J of Chapter 1 is of Gevrey class in the
time variable.

In Section 2.3, we remove the assumptions a4 = 1, a3 = 0  and present the final results of the
chapter. The chapter ends with an example for which we can write down the fundamental
solution of equation (1) explicitly. It exemplifies the results of the final theorem of the
chapter.

2.1  The Construction and Properties of the Function g

In this section, we construct the function g corresponding to the case of constant
coefficients with  a4 = 1  and  a3 = 0. Since g is a fundamental solution of an ordinary
differential equation with constant coefficients, it may be expressed in terms of the roots of
the characteristic polynomial of the differential equation. Thus we see that the properties of
g depend largely on the behavior of the roots as functions of the spectral parameter. We
start by considering these roots.

It is convenient to define for  r > 0  the family of sets

                                         S(r) = {\ $ C : |\| > r}.                                                           (3)

Lemma 1

There exists a constant  d > 0  depending on a0, a1, a2, ', b0 and b1 such that for all  k $
S(d), the roots of the equation

 x4 - 2cos'  k2 x2 + k2(b1x+b0) + a2x2 + a1x + a0 + k4 = 0                             (4)

are distinct and depend analytically on k. Also, each root is expressible as a Laurent series
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 m1(k) = kei'/2 +  *

j=0

#

 c1j k
-j
,            m2(k) = ke-i'/2 +  *

j=0

#

 c2j k
-j
,

 
 m3(k) = -kei'/2 +  *

j=0

#

 c3 j k
-j
,            m4(k) = -ke-i'/2 +  *

j=0

#

 c4 j k
-j
,
                         (5)

each of which converges absolutely, uniformly for  k $ S(d+-)  for all positive constants

-.

Proof

Setting  x = kz  and  k = 1/L, we see that equation (4) is equivalent to

            h(z,L) = z4 - 2cos' z2 + 1 + Lb1z + L2a2z2 + L3a1z + L4a0 + L2b0 = 0.

Let  f(z) = z4 - 2cos' z2 + 1  and  - = sin'/2. Clearly if  z $ C-, where

                     C- = {z $ C : |z - ei'/2| = -},

then

                   f(z) = (z - ei'/2)(z + ei'/2)(z - e-i'/2)(z + e-i'/2) > -4.

Further, if  z $ C- then  |z| & -+1 < 2  and

                   |f(z) - h(z,L)| & 2|Lb1| + 4|L2a2| + 2|L3a1| + |L4a0| + |L2b0|.

Hence if  |L| < 0 = 15 -4(1 + 2|b1| + 2|a2|1/2 + (2|a1|)1/3 + |a0|1/4 + |b0|1/2)-1, then

                    |f(z) - h(z,L)| < -4 < |f(z)|         for all  z $ C-.

Thus by Rouché's Theorem [20], we see that if  |L| < 0  then f(z) and h(z,L) have the same
number of zeros inside the circle C-. But f(z) has only one zero, ei'/2, in this set, so it
follows that g has only one zero, z1(L), in this set .
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An elementary result†  from complex analysis gives z1(L) explicitly:

                                    

 z1(L) = 2Ji
1  8

C
-

 h(z, L)
zh' (z, L) dz.

It was shown that  |f(z)| > -4  for  z $ C-. Thus we can find  ] > 0  so that  |f(z)| > -4+]
for z $ C-. Hence,

           |h(z,L)| " |f(z)| - |h(z,L) - f(z)| > ]      for  z $ C-   and   |L| & 0.

It follows that  zh'(z,L)/h(z,L)  is a uniformly continuous function of (z,L) for  z $ C-  and
|L| & 0. If C is any simple closed contour contained in  {\ $ C : |\| < 0} then by Fubini's
theorem

                        
 8
C

 z1(L) dL =  2Ji
1   8

C
-

  8
C

 h(z, L)
zh' (z, L)  dL dz = 0.

This shows that z1(L) is analytic for  |L| < 0. Hence we can write z1(L) as a power series*

with radius of convergence no less than 0:

                               
 z1(L) = ei'/2 +  *

j=0

#

 c1j L
j+1.

If we set  m1(k) = k z1(1/k), then we obtain the first of equations (5). The convergence
properties of the Laurent series for m1 follow from those of the Taylor series for z1.

The roots m2, m3 and m4 may be treated similarly.
  

Remark: The constants cij of Lemma 1 satisfy the equations

                             
 c1j = c2j     and     c3j = c4j        for  j = 1,  2,  3,  4,  .  .  .  .  .

†The expression yields the sum of the zeros of an analytic function inside a simple, closed contour. In this
case, however, the sum is clearly z1(L).
*The constant coefficient is easily computed from the equation  h(z,L) = 0  to be ei'/2.
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One easily sees this by recognizing that when k is real the roots appear as a pair of complex
conjugates

                              m1(k) = m2(k)      and      m3(k) = m4(k).

With Lemma 1 in mind, we define functions g1 and g2 on  C2 × S:

             g1(x,a,k) = - exp[m1(x-a)]
(m1-m2)(m1-m3)(m1-m4)  -  

exp[m2(x-a)]
(m2-m1)(m2-m3)(m2-m4)

                               +  exp[m3x-m1a]
(m2-m1)(m3-m1)(m3-m4)  +  exp[m3x-m2a]

(m2-m1)(m3-m2)(m4-m3)

+  exp[m4x-m1a]
(m2-m1)(m4-m3)(m1-m4)  +  exp[m4x-m2a]

(m1-m2)(m4-m2)(m4-m3)  ,               (6)

             g2(x,a,k) = - exp[m3(x-a)]
(m3-m4)(m3-m2)(m3-m1)  -  

exp[m4(x-a)]
(m4-m3)(m4-m2)(m4-m1)

                               +  exp[m3x-m1a]
(m2-m1)(m3-m1)(m3-m4)  +  exp[m3x-m2a]

(m2-m1)(m3-m2)(m4-m3)

+  exp[m4x-m1a]
(m2-m1)(m4-m3)(m1-m4)  +  exp[m4x-m2a]

(m1-m2)(m4-m2)(m4-m3)  .               (7)

These functions have the following properties:

(i) g1 and g2 are analytic in  C2 × S.

(ii) g1-g2 and its partial derivatives of order & 2 with respect to (x,a) vanish at all points
(a,a,k) $ C2 × S.

(iii) If  |arg k| < J/4,  |k| is sufficiently large and  (x,a) $ [0,#)2, then  g2(x,a,k)  and all of
its derivatives tend to zero as x tends to infinity. Further,

                              g1(0,a,k) = !g1
!x (0,a,k) = 0         for all  (a,k) $ C × S.
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(iv)                       !
3g2
!x3 (a,a,k) - !

3g1
!x3 (a,a,k) = 1         for all  (a,k) $ C × S.

(v)                         Lk gj(x,a,k) = 0             for all  (x,a,k) $ C2 × S, j $ {1,2}.

Further, we define  g : [0,#)2 × S . C  by:

 g(x, a, k) = 
 D
E
F

 g1(x, a, k)      for  0 & x < a

 g2(x, a, k)      for  0 & a < x
 .                                               (8)

It is easily seen that g has the following properties:

(i) Let  T1 = {(x,a) : 0 & x < a}  and  T2 = {(x,a) : 0 & a < x}.  Then  g T1  and g T2  have

analytic continuations into  C2 × S  (the continuations are g1 and g2 respectively).

(ii) The function g and its partial derivatives of order & 2 with respect to (x,a) are
continuous.

(iii) If  |arg k| < J/4,  |k| is sufficiently large and  (x,a) $ [0,#)2, then  g(x,a,k)  and all of its
derivatives tend to zero as x tends to infinity. Further,

                              g(0,a,k) = !g
!x(0,a,k) = 0.

(iv)                       !
3g
!x3(a,a-,k) - !

3g
!x3(a,a+,k) = 1.

(v) If  x K a  then  Lk g(x,a,k) = 0.  Further, g is a fundamental solution for  Lk u = f.

(vi) There exist constants†   d' > d  and  C > 0  such that if  arg k = [  then*  for  i = 1,2,

†The constant d is that of lemma 1.

*The notation here is that of Laurent Schwartz [9]. If + = (i,j)  then  D+u(x,a) = ! i+ju
!x  i !a j (x,a), and

|+| = i+j.
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 |D+ g|Ti

 (x, a, k)| & 
 D
E
F

2
|+|

 C |k|
|+|-3

 exp[-|k| cos{(|[|+'/2)|x-a|}]  for  k $ S1?S(d' )

2
|+|

 C |k|
|+|-3

 exp[-|k| cos{(|[|+'/2)(x+a)}]  for  k $ (S2XS3)?S(d' ).

Here S1, S2 and S3 are the sectors

                    S1 = {\ : '/2 - J/2 < arg \ < J/2 - '/2},

                    S2 = {\ : - J/2 & arg \ & '/2 - J/2},

                    S3 = {\ : J/2 - '/2 & arg \ & J/2}.

By property (vi) with  + = (0,0), we see that if   |B| > (d')2  and  Re B > 0  then

|g(x,a,(B)1/2)| & C |B|-3/2,                                                                     (9)

so we may define  J : [0,#)3 . C  as in Chapter 1 by

 J(x, a, t) = 2Ji
1  8
/-i#

/+i#

  g(x, a, B ) eBt dB,            where / > (d' )2.

                       (10)

2.2  Analyticity of the Function J

It is easy to see from equation (10) that J is a continuous function of its arguments.
However, as we see in the following theorems, much more is true.

Theorem 2

The functions J T1 × [0,#)  and J T2 × [0,#)   may be continued analytically on to the set

C2 × {t $ C : Re t > 0}.

Proof

We consider the contour YR consisting of the line segment  {s+iR : 0 & s & /}, with
orientation in the direction of increasing s. Inequality (9) shows that
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 lim
R.±#

      8
YR

 g(x, a, B ) eBt dB = 0.

This shows that we may replace the original contour  C1 ={/+is : s $ R} by the contour
C2  shown in figure 5.

                                      
C2

-i/   

i/   

                      (-1+i)/

                     (1+i)/

                                                Figure 5

Thus we obtain

                        J(x,a,t) = 1
Ji 8C3

 g(x,a,k) k exp[k2t] dk,

where C3  is the image of C2  under the transformation  B . B1/2 = k. C3  coincides with
the rays  arg k = ± J/4  for large |k|.

Now consider the contour Y'R = {s+iR : 0 & s & R}, with orientation in the direction of
increasing s (see figure 6).

 From property (vi) of the function g,  we see that for  k $ (S2XS3)?S(d' ),

                |g(x,a,k)| & C |k|-3 exp[|k|(x+a)(sin|[| sin'/2 - cos[ cos'/2)]

                               & C |k|-3 exp[|k|(x+a)(sin|[| - cos[)/RS 2]

                               & C |k|-3 exp[(x+a)(|Im k| - Re k)/RS 2].
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Inspection of (vi) shows that we even have

                 |g(x,a,k)| & C |k|-3 exp[(x+a)(|Im k| - Re k)/RS 2]

for all  k $ S(d')  satisfying  J/4 & |arg k| & J/2. Thus if  k = s+iR  on Y'R, with  R > /1/2,
then
                            |k g(x,a,k)| & C |R|-2 exp[(x+a)(R-s)/RS 2].

                                     

iR         Y'R

                        C3

                                                      Figure 6

Thus,

       
 8
Y 'R

 |g(x, a, k) k ek2 t| |dk|  &  C R-2 8
0

R

 exp[(x+a)(R-s)/ 2 ] exp[(s2-R2)t] ds.

Consider the polynomial  p(s) = (x+a)(R-s)/RS 2 + (s2-R2)t. If  t > 0  and  R > (x+a)/(RS 2 t),
then  p(s) & 0  for  s $ [0,R]. Thus we see that for  t > 0,

                                  

 lim
R.#

    8
Y 'R

 g(x, a, k) k ek2 t dk  = 0.

We may show in a similar fashion that the integral over Y'-R, the reflection of Y'R in the real
axis, tends to zero as R tends to infinity. Thus we may replace the contour C3  by any
simple contour C4  which coincides with the imaginary axis for large enough |k| and which,
since g(x,a,k) is an analytic function of k in S(d), passes to the right of the disc
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{w : |w| & d}. We pick  r > d and choose for C4  the set

                         {z$C  : |z| = r,  Re z " 0}X{iV : V$R,  |V| " r},

with orientation in the direction of increasing imaginary part.

                                               

C4

                                                Figure 7

In summary, we have obtained the result that

J(x,a,t) = 1
Ji 8C4

 g(x,a,k) k exp[k2t] dk.                                       (11)

It is easy to see that the integrals defining the functions

Ji(x,a,t) = 1
Ji 8C4

 gi(x,a,k) k exp[k2t] dk         i ${1,2}                    (12)

converge absolutely, uniformly on compact subsets of  C2 × {t $ C : Re t > 0}. Thus, the
functions J1 and J2 are analytic in C2 × {t $ C: Re t > 0} and the theorem has been proved.
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Recall that we found in Chapter 1 that, for the case of variable coefficients, the function J
does not inherit the discontinuities of the function g of that chapter. We can say even more
about this in the constant coefficient case, as we see in the following theorem.

Theorem 3

The function J may be continued analytically on to the set  C2 × {t $ C : Re t > 0}. Further,
if we also denote the continuation by J, we have:

 
!t2
!

2J   +  
!x4
!

4J   +  *
j=0

2
 bj 

!t!xj
!

j+1
J   +  aj 

!xj
!

j
J   = 0     in   C2 × {t $ C  : Re t > 0}.

            (13)

Proof

By property (v) of the functions g1 and g2, and by equation (12), it follows easily that
equation (13) is satisfied by the functions J1 and J2. We prove the theorem by
demonstrating that J1 and J2 are the same function.

By property (iv) of the functions g1 and g2, and by equation (12), we have

         !
3J2
!x3 (a,a,k)  -  !

3J1
!x3 (a,a,k)  =  1

Ji  8C4
 k exp[k2t] dk =  1

Ji  8-i#
i#
k exp[k2t] dk = 0.

for all  (a,t) $ C × {t $ C : Re t > 0}.

Further, by property (ii) of the functions g1 and g2, and equation (12), we see that

    J1(a,a,k) = J2(a,a,k),  !J1
!x (a,a,k) = !J2

!x (a,a,k)   and   !
2J1
!x2 (a,a,k) =  !

2J2
!x2 (a,a,k)

for all  (a,t) $ C × {t $ C : Re t > 0}. Since J1 and J2 satisfy equation (13), we also get that

                                     !
4J1
!x4 (a,a,k) =  !

4J2
!x4 (a,a,k)
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for all  (a,t) $ C × {t $ C : Re t > 0}. Differentiation of equation (13) with respect to x
yields, by induction, that

                                     !
nJ1
!xn (a,a,k) =  !

nJ2
!xn (a,a,k)      n = 0, 1, 2, 3, 4, . . .

for all  (a,t) $ C × {t $ C : Re t > 0}.

Since for, any fixed (a,t), J1(x,a,t) and J2(x,a,t) are entire functions of x, it follows that J1 and
J2 are identical. This completes the proof of the theorem.

  

2.3  Analyticity of the Fundamental Solution of Equation (1)

In this section we see the connection between the semigroup U(t) and the function J of the
previous sections. At the end of the section we also remove the restrictions  a4(x) = 1  and
a3(x) = 0  in equation (1).

The results which we obtain are the analogues of those obtained in Sections 1.7 and 1.8 for
the case of variable coefficients with restricted supports. Consequently, the proofs of the
results of this section resemble those of Sections 1.7 and 1.8 so closely that we omit them.

As in Section 1.7, we define a mapping on the space of functions  f $ L2(R+) with compact
support:

J(t) f(x) = 8
0

#
J(x,a,t)f(a) da               for  (x,t) $ C × {t $ C : Re t > 0}.           (14)

We may prove, as in Theorem 14 of Chapter 1, that, for  f1 $ H2
0(R+)  and  f2 $ L2(R+)

with compact support, and  t > 0,

 

 U(t) 
 1
2
3

f1
f2

 4
5
6

 = 
 1
2
3

J' (t) + J(t) L2 J(t)

J"(t) + J' (t) L2 J' (t)

 4
5
6

 
 1
2
3

f1
f2

 4
5
6

 .

                                          (15)

It follows immediately that if f1 and f2 are as above and
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 1
2
3

w(.,t)

v(.,t)

 4
5
6
 = U(t) 

 1
2
3

f1

f2

 4
5
6
,

                                                              (16)

then both w and v have analytic continuations on to  C × {t $ C : Re t > 0}.

Now we come to removing the restrictions on a4 and a3. This is done exactly as in Section
1.8. We need only check that when the original coefficients a0, a1, a2, a3, a4, b0, b1, b2 are
constants, then the coefficients a~0, a~1, a~2, b~0, b~1, b~2 of the transformed equation (109 of
Chapter 1) are also constants. But this is easily verified, for in the case of constant
coefficients, the transformation Q (see equation (108) in Chapter 1) is nothing more than a
scaling of the space variable x by a constant factor, composed with multiplication of the
dependent variable w by an exponential function of x.

It is interesting to note that there are equations with variable coefficients which, under the
transformation Q, are transformed into equations for which a~0, a~1, a~2, b~0, b~1, b~2 are
constants. Obviously, the theory of this chapter applies equally well to these equations in the
sense that we can deduce the existence of a fundamental solution, which is analytic in t for
Re t > 0, for them. It is easy to see that such equations can formally be written in the form

                

 
!t2

!
2p(x)w  + 

![q(x)]4
!

4p(x)w  + *
j=0

2
 b
    j

~    
!t![q(x)]

j
!

j+1
p(x)w   + a

    j
~    

![q(x)]
j

!
j
p(x)w   = 0,

where a~0, a~1, a~2, b~0, b~1, b~2 are constants. However, we will say no more about such
equations and we return to the case in which a0, a1, a2, a3, a4, b0, b1, b2 are constants.

We may define a strongly continuous semigroup S(t) by equation (110) of Section 1.8. The
infinitesimal generator, B, of S(t) is, of course, still given by equation (111). Further, we
may use equation (112) to define a function  K :  C2 × {t $ C : Re t > 0} . C, which, for
this more general setting, replaces the function J constructed above. Finally, we may still use
equation (113) for the definition of the integral operator K(t), but now we note that it maps
members of L2(R+) with compact support into the space of analytic functions on  C × {t $
C : Re t > 0}.
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Having made these considerations, we may summarize the results of this chapter in the
following theorem, which corresponds to Theorem 16 of Chapter 1.

Theorem 4

If a0, a1, a2, a3, a4, b0, b1, b2 are constants, a4 > 0  and  -2RSS a4 < b2 & 0, then the following
statements hold:

(i) K is analytic on the set  C2 × {t $ C : Re t > 0}.

(ii) For  (x,a,t) $ C2 × {t $ C : Re t > 0},

                

 
!t2
!

2K(x, a, t) + *
j=0

4
 aj 

!xj
!

j
K (x, a, t)  + *

j=0

2
 bj 

!xj
!t

!
j+1

K(x, a, t) = 0.

(iii) Let  f1 $ H2
0(R+)  and  f2 $ L2(R+)  have compact support. Then for  t > 0,

                            

 S(t) 
 1
2
3

f1
f2

 4
5
6

 = 
 1
2
3

K ' (t) + K (t) L2 K (t)

K "(t) + K ' (t) L2 K ' (t)

 4
5
6

 
 1
2
3

f1
f2

 4
5
6

 ,

        where L2 = b2 d2/dx2 + b1 d/dx + b0.

  (iv) If  
 1
2
3

w(.,t)

v(.,t)

 4
5
6
 = S(t) 

 1
2
3

f1

f2

 4
5
6
,   where f1 and f2 are as in (iii),  then 

        w and v  are both analytic on  C × {t $ C : Re t > 0}.
  

We end the chapter with an example which illustrates the theory which we have developed.

Example: An Euler-Bernoulli beam with constant physical characteristics.
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Littman and Markus [17], in their investigation of the exact boundary controllability of an
Euler-Bernoulli beam, considered the solution of the following problem:

 
!t2
!

2w   +  
!x4
!

4w   =  0,           for  (x, t) $ (R+)2,

w(x,0) = w0(x),   v(x,0) = v0(x),        for  x " 0.

 w(0, t) = 
!x
!w (0, t) = 0,         for  t " 0.

In [17], it is shown that, if  (w0,v0) $ C#
0 (R+)2, there is a fundamental solution U(x,t,a) such

that solutions of the problem are given uniquely†  by the expression

                   
 w(x, t) = 8

0

#

 w0(a) U(x, t, a) da  + 8
0

t

 8
0

#

 v0(a) U(x, ,̂ a) da d^.

Moreover, the function U is given explicitly:

       
 U(x, t, a) = 

2 2Jt
1  {cos[(x-a)2/4t] + sin[(x-a)2/4t] + cos[(x+a)2/4t]

                                            - sin[(x+a)2/4t] - 2e-2xa/4t cos[(x2-a2)/4t]}.

Comparing the solution with part (iii) of Theorem 4, we see that the functions U and K are
related by the formula

                             
 K(x, a, t) = 8

0

t

 U(x, ,̂ a) d^.

This formula illustrates part (i) of Theorem 4. Indeed, it shows that there is an analytic
continuation of the function K on to the set  C2 × (C \ {^ $ R : ^ & 0}).

†Uniqueness is proven for the class of continuous, generalized solutions which are bounded by some
positive power of x in each strip  0 & t & T.



Chapter 3

Solutions of Euler-Bernoulli
Type Equations which Vanish for t """" T

3.0  Introduction

In this chapter, given an arbitrarily prescribed  T > 0, we demonstrate the existence of
solutions of equations of Euler-Bernoulli type which satisfy the initial and clamped end
conditions (see equations (1), (2) and (3) of Chapter one) and which vanish for  t " T. The
method which we use will actually allow us to attack more general equations, the coefficients
of which are functions of x and t satisfying for t on compact subsets of (0,#) certain
Gevrey estimates for their partial derivatives with respect to t:

 Lw = 
!t2
!

2w (x, t) +  *
i=0

4
 ai(x, t) 

!xi
!

iw (x, t)  +  *
i=0

2
 bi(x, t) 

!xi!t
!

i+1w (x, t)  = 0.
             (1)

Our key assumption is that we have at our disposal functions K0(x,a,t) and K1(x,a,t), each
satisfying for t on compact subsets of (0,#) certain Gevrey estimates for their partial
derivatives with respect to t, such that if the initial data, w0 and v0, are functions of compact
support (and in suitable function spaces), then solutions of (1) for  t > 0  are of the form

 w(x, t) = 8
0

#

 K1(x, a, t) w0(a) da  +  8
0

#

 K0(x, a, t){v0(a) + L2(a, 0) w0(a)} da,
               (2)

where  L2(x,t) = b2(x,t) d2/dx2 + b1(x,t) d/dx + b0(x,t). We recall that this is the situation in
chapters one and two in which solutions are given, for  t > 0, by equation (2) with

 K0(x, a, t) 7 K(x, a, t),     K1(x, a, t) 7 
!t
!K(x, a, t).

                                   (3 )

We show in this chapter that for a certain  l > 0, depending on the Gevrey estimates of the
coefficient functions, we can find functions K~ 0 and K

~
1 defined for  t " 0, 0 & x & l,

0 & a < #, such that for  j $ {0,1},

K~ j(x,a,t) = Kj(x,a,t)  for  t & T/2,   K~ j(x,a,t) = 0  for  t " T.
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K~ j(x,a,t) satisfies equation (1) as a function of x and t, for  t > 0.

K~ j(0,a,t) = !K~ j
!x (0,a,t) = 0.                                                                                     (4)

It follows from conditions (4) that, for  t > 0  and  x $ [0,l],

 _w(x, t) =  8
0

#

 _K1(x, a, t)        w0(a, t) da  +  8
0

#

 _K0(x, a, t)  {v0(a, t) + L2(a, 0) w0(a)} da,
             (5)

satisfies equation (1), the clamped end conditions, and takes on the initial data (w0,v0) in the
same sense that w(x,t) does.

The method of construction of the function w~  is that described by Littman [16] and used by
Littman and Markus in [17]. We start with any function  % $ /2(R)  satisfying

%(t) = 1    for   t & T/2,               %(t) = 0    for   t " T.                                    (6)

Hörmander [8] shows how such functions can be explicitly constructed. We now let

                   F(x,t) = L(w %)(x,t) = %"(t) w(x,t) + 2%'(t) !w
!t (x,t)

This function obviously vanishes for  t & T/2  and for  t " T. If we can now solve the
problem

 Lu = F,        u(0, t) = 
!x
!u(0, t) = 

!x2
!

2u(0, t) = 
!x3
!

3u(0, t) = 0,
                        (7 )

to get a solution which also vanishes for  t & T/2  and for  t " T, it will follow that

w~ (x,t) = %(t) w(x,t) - u(x,t)                                                          (8)

will be a solution of  equation (1) vanishing for  t " T. Clearly this solution will satisfy the
clamped end conditions and the equation  w~ (x,t) = w(x,t)  for  t & T/2.

We can in fact treat all solutions w(x,t) given by equation (2) at once. For  j $ {0,1} we set
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Fj(x, a, t) = L(Kj %)(x, a, t)
                                            ( 9 )

and then find functions uj(x,a,t) with support in the strip  T/2 & t & T  satisfying, with 'a' as a
parameter,

Luj = Fj,            uj(0,a,t) = !uj
!x (0,a,t) = !

2uj
!x2   = !

3uj
!x3 (0,a,t) = 0.                   (10)

If this is done, it follows that the functions

 _Kj(x, a, t) = %(t) Kj(x, a, t) - uj(x, a, t) 
                                  (11)

would satisfy conditions (4). We see, then, that all we have to do is solve equation (10) to
obtain the kernels K~ j. However, this problem is ordinarily not a well-posed problem and we
must rely on the Gevrey smoothness of the functions Fj and of the coefficients of L in
order to solve it.

The chapter is set out as follows: In Section 3.1 we set up the frame work for solving
problem (10), in Section 3.2 we study the spaces in which we look for a solution, and finally
in Section 3.3 we solve the problem.

We solve (10) by using the Ovcyannikov Theorem which is a generalization of the classical
Cauchy-Kowalevski Theorem. Treves [22], [23] has studied applications of this theorem to
certain types of problems solvable in Gevrey spaces, however, his work is not directly
applicable to our problem. Further, it is desirable for us to use a slight modification of the
usual statement of the Ovcyannikov Theorem in order to obtain a solution of equation (10)
for  x $ [0,l], with as large a value for l as possible. This modified Ovcyannikov Theorem is
stated in Section 3.1.

Finally, we remark that problem (10) can sometimes be solved by writing down an explicit
series solution and using Gevrey estimates to show the convergence of it. This is how
Littman and Markus [17] solve the problem in the case for which equation (1) is the
uniform Euler-Bernoulli beam equation
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!t2
!

2w   +  
!x4
!

4w   = 0.

This approach is easily generalized to handle the case of the equations discussed in Chapter
1. However, when the coefficients of L depend on time, it seems that the easiest method for
solving (10) is the one that we use here.

3.1  Statement of the Problem

For fixed  i $ {0,1}, we rewrite problem (10) as follows. We let a column vector y have

components y1 = ui,  y2 = !ui
!x ,  y3 = !

2ui
!x2 ,  y4 = !

3ui
!x3 ,  and we let  F(x,a) = Fi(x,a,.) e.4, e.4

being the unit vector in the direction of the y4-axis. Problem (10) may now be written in the
form

dy
dx   =  A(x) y + F(x,a),           y(0) = 0.                                            (12)

Here A(x) is formally the operator which maps certain R4-valued functions of t into certain
other R4-valued functions of t (this will be made more precise below), and is of the form

             

 A(x) = 
 1
2
3

0 1 0 0
0 0 1 0
0 0 0 1

- a4(x, .)
a0(x, .)

- a4(x, .)
a1(x, .)

- a4(x, .)
a2(x, .)

- a4(x, .)
a3(x, .)

 4
5
6

 - 
 1
2
3

0 0 0 0
0 0 0 0
0 0 0 0

a4(x, .)
b0(x, .)

a4(x, .)
b1(x, .)

a4(x, .)
b2(x, .)

0

 4
5
6

  
!t
!     -   

 1
2
3

0 0 0 0
0 0 0 0
0 0 0 0

a4(x, .)
1

0 0 0

 4
5
6

   
!t2
!
2

  .

   (13)

In the following section, we define a scale of Banach spaces (Es, |  |s) for  s $ [0,1], such
that:

(I)  If  s' & s  then  Es' W Es  and the natural injection has norm & 1.
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(II) For  s' & s  and each  x $ [0,]], A(x) is a bounded mapping from Es into Es', and there
are constants  M > 0, N " 0, both independent of x, s and s', such that the operator norm of
this mapping is & M(s-s')-1 + N. Further, the mapping is a continuous function of x in the
uniform operator topology.                                                                                        (14)

These conditions will allow us to apply the Ovcyannikov Theorem.  However, in the usual
statement of the Ovcyannikov Theorem, condition (I) is assumed and a condition (II)' is
assumed. The condition (II)' is the same as condition (II) except that the estimate of the
norm in the mapping is replaced by a quantity of the form

M'(s-s')-1.                                                                             (14)'

Clearly, the constant N of (14) can be absorbed into the constant M of (14) to give an
estimate of the form (14)' with  M' = M + N. However, the classical theorem states that the
solution of the problem exists in an interval [0,-0(1-s)], where -0 is a decreasing function of
M'. Specifically,

-0 = min {], (M'e)-1}.                                                                   (15)'

Thus, a direct application of the theorem would give an estimate for -0 which would
decrease with increasing N. However, a more careful analysis, as in the proof of Theorem 1,
shows that if assumption (II) holds, then the constant -0 is given by

-0 = min {], (Me)-1}.                                                                     (15)

We prefer to use the modification of the theorem, rather than the original theorem, because,
as we shall see, the constants M and N of (14) depend on different coefficients of the
differential expression L. For applications it is of use to know which coefficients limit the
length of the interval of existence of the solution. We now state the modified Ovcyannikov
theorem.

Theorem 1
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Suppose that assumptions (I) and (II) hold, that  y0 $ E1  and that  F $ C([0,]]; E1). Then
the problem

                               dy
dx   =  A(x) y + F(x),           y(0) = y0

has a unique solution belonging to C1([0, -0(1-s)]; Es) for each  s $ [0,1]. The constant -0

is given by equation (15).

Proof

We proceed as in the proof of the original theorem and define

                                         
 z0(x) = y0 +  8

0

x
 F(u) du,

while for  n " 0, we define

                                         
 zn+1(x) =  8

0

x
 A(u) zn(u) du.

We put

                                         
 C = |y0|1 +  8

0

]

 |F(u)|1 du.

Thus  |z0(x)|s & C. By assumption (II), for all L satisfying  0 < L & 1-s,

                          |z1(x)|s & (ML-1+N) t |z0|s+L & (ML-1+N) C x.

We choose  L = 1-s  and obtain

                                       |z1(x)| & (M(1-s)-1+N) C x.

Suppose now that we have, for some  k " 1,
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                                   |zk(x)|s & (kM(1-s)-1+N)k C xk / k!.

It follows that for all L satisfying  0 < L < 1-s,

                     |zk+1(x)|s & (ML-1+N) (kM(1-s-L)-1+N)k C xk+1 / [k+1]!.

If we choose  L = (1-s) / (k+1), we obtain

                          |zk+1(x)|s & ([k+1]M(1-s)-1+N)k+1 C xk+1 / [k+1]!.

Thus by the principle of induction, the formula holds for all k (even for  k = 0). Now we
observe that

                             |zk(x)|s & C [Mx/(1-s)]k (kk/k!) (1+N(1-s)/Mk)k

                                         & C [Mx/(1-s)]k ek eN(1-s)/M.

Hence, we can proceed as in [23] and show that the series  z0 + z1 + z2 + . . . converges
absolutely, uniformly on the interval  Is = [0, -0(1-s)]  to a continuous function y(x) valued
in each Es, and that

                               
 y(x) = y0 +  8

0

x
 F(u) du  +  8

0

x
 A(u) y(u) du.

It follows from this that  y $ C1(Is; Es) and that y is indeed a solution of the initial value
problem. The uniqueness assertion is proved as in [23].

  

We remark that we may replace the system (12) by a more general one, for which

 A(x) = A(x, .) + B(x, .) 
!t
!   + Y(x, .) 

!t2
!

2
  ,

                               (16)

where
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 A(x, t) = 
 1
2
3

+11(x, t) +12(x, t) 0 0

+21(x, t) +22(x, t) +23(x, t) 0
+31(x, t) +32(x, t) +33(x, t) +34(x, t)

+41(x, t) +42(x, t) +43(x, t) +44(x, t)

 4
5
6

 ,

                    

 B(x, t) = 
 1
2
3

0 0 0 0
N21(x, t) 0 0 0

N31(x, t) N32(x, t) 0 0

N41(x, t) N42(x, t) N43(x, t) 0

 4
5
6

 ,

 Y(x, t) = 
 1
2
3

0 0 0 0
0 0 0 0
0 0 0 0

/41(x, t) 0 0 0

 4
5
6

 .

                                              (17)

We define the spaces Es as

Es = Bs,0 × Bs,1/2 × Bs,1 × Bs,3/2  ,                                                         (18)

where the spaces Bs,+ are the subject of the next section.

3.2  The Spaces Bs,++++

Definition:  Let K be an interval [a,b] and let '0 and '1 be two positive constants such that
'1 < '0. Given  s $ [0,1]  and  + $ [0,#), we define  Bs,+(K) = Bs,+  to be the space of C#

functions f with support in K, satisfying

|f|s,+ = sup
n"0

 max
t$K

 |f(n)(t)| ('1-s
0  's

1)-(n++) (n!)-2 (n+1)-2+ < #.                               (19)

It is easily seen that |  |s,+ is a norm on Bs,+ which makes Bs,+ into a Banach space.
Further, for + fixed and s ranging in [0,1], the spaces Bs,+ form a scale of Banach spaces in
the sense that
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if  s' & s, then  Bs',+ W Bs,+  and the natural injection has norm & 1.                 (20)

In the following lemmas, we study the properties of these spaces further. In this study, we
will make use of the following simple result:

If  h(x) = ('0/'1)-xm (x+1)N,  where  m > 0  and  N > 0, then

 sup
x"0

 |h(x)| & ('0/'1)m e-N 
 32
21

 65
54N

m ln['0/'1]  
N
.                                                (21)

Lemma 2

(i) If  s' < s  and  +' < +, then  Bs',+' W Bs,+  and the natural injection is continuous. Further,
if also  + - +' & 1/2, then there is a constant C1 = C1(+,'0/'1) such that the norm of the
natural injection no greater than

 C1 '0
1/2 (s-s' )-1.                                                                     (22)

(ii) The  mth derivative is a continuous mapping from Bs,+ into Bs',+', provided that

                                   s' < s  and  +' < m + +.

If we also have  m + + - +' & 1/2, then there is a constant  C2 = C2(+,m,'0/'1)  such that the
norm of the mapping is no greater than

 C2 '0
1/2 (s-s' )-1.                                                                    (23)

Proof

We notice that if we allow the case  m = 0  in (ii), then (ii) yields statement (i). Thus we can
prove (i) and (ii) at the same time to get  C1(+,'0/'1) = C2(+,0,'0/'1).
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If ` $ Bs,+, then

            |̀
(m+n)

(t)| ['0
1-s' '1

s ']
-(n++')

 (n+1)-2+'(n!)-2 

                   = |̀
(m+n)

(t)| ['0
1-s '1

s ]
-(m+n++)

 (m+n+1)-2+ ((m+n)!)-2

                   . ('0/'1)
-n(s-s')

 (n+1)-2+' (m+n+1)2+ [(m+n)!/n!]2 ('0
1-s'
' 1

s')-+' ('0
1-s

 '1
s )++m

                  & |̀ |s,+ ('0/'1)
-n(s-s')

 (n+1)-2+' (m+n+1)2++2m ('0
1-s' '1

s')-+' ('0
1-s

 '1

s
)
++m

                 
 = |̀ |s,+ ('0/'1)

-n(s-s')
 (n+1)2++2m-2+' (1+ n+1

m )2++2m ('0
1-s' '1

s')-+' ('0
1-s

 '1

s
)
++m

                 
 & |̀ |s,+ ('0/'1)s-s' e-2(m++-+') 

 1
2
3
(s-s' ) ln['0/'1]

2(m++-+' )  4
5
6

2(m++-+')

                                  . (1+m)2++2m ('0
1-s' '1

s')-+' ('0
1-s

 '1

s )++m.

This proves the first parts of each of (i) and (ii). If  m + + - +' = 1/2, we find that the norm
of the mapping is no greater than

                           (1+m)2++2m ('0/'1)
|1-+-m|

 (e ln['0/'1])-1 '0
1/2 (s-s' )-1.

But the norm can be no greater than this whenever  m + + - +' < 1/2, because of (20).
  

Lemma 3

(i) If  +' " +,  then  Bs,+' W Bs,+  and the norm of the natural injection is no greater than
'+-+'

1 .
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(ii) If  +' " + + m, then the mth derivative is a continuous mapping from Bs,+ into Bs,+' with
norm no greater than  'm++-+'

1  (m+1)2m+2+.

Proof

As with the previous lemma, there is some redundancy in the statement of Lemma 3: We
can prove (i) by proving (ii) and then setting  m = 0. To prove (ii), we let  `$ Bs,+. Then:

             |̀
(m+n)

(t)| ('0
1-s '1

s)
-(n++')

 (n!)-2 (n+1)-2+'

 = |̀
(n+m)

(t)| ('0
1-s '1

s)
-(n+m++)

 [(n+m)!]-2 (n+m+1)-2+

                                  .  ('0
1-s '1

s)m++-+' [(n+m)! / n!]2 (n+m+1)2+ (n+1)-2+'

 & |̀ |s,+ '1
m++-+' (n+m+1)2m+2+ (n+1)-2+'

 & |̀ |s,+ '1
m++-+' (n+1)

2(m++-+')
 (m+1)2m+2+

 & |̀ |s,+ '1
m++-+' (m+1)2m+2+.

  

It is clear that there should be some kind of relationship between the spaces Bs,+ and
Gevrey class 2 functions. We will be wanting to make use of this relationship later, so now
we examine some aspects of it.
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Lemma 4

Let  r > 0, k " 0  and  f : [0,r] × R . C  have support in the strip  [0,r] × K. Suppose that the
mapping  t . f(.,t)  is infinitely differentiable in the topology of Ck[0,r]  and that there are
constants M and ' such that

 
 (
(
(!tn
!

nf(. , t) ((
(

Ck[0,r]

  & M 'n (n!)2              ) t $ K   and  n " 0.

                   (24)

If  ' < '1  then the mapping  x . f(x,.)  is a member of  Ck([0,r]; Bs,+).

Proof

Since we have the injections (20), it clearly suffices to prove the lemma for  s = 1. It is clear
from the estimate (24) that the mapping  x . f(x,.)  is a Bs,+- valued function, which we
denote by f~. Further, for any x1 and x2 in [0,r], t $ R  and  n > 0,

 
 (
(
( !tn
!

n f  (x1, t) - 
!tn
!

n f  (x2, t) ((
(
 & 2 M 'n (n!)2.

                                (25)

Given  L > 0, we pick  N > 0  so that, for  n > N, we have

 2 M 'n '1
-(n++)

 (n+1)-2+ < L.                                         (26)

Next, we use the uniform continuity of  !
n

 f
!tn

  for  n & N  to pick  - > 0  so that for

|x1-x2| < -, we have

 

 (
(
( !tn
!

n f  (x1, t) - 
!tn
!

n f  (x2, t) ((
(
 '1

-(n++)
 (n+1)-2+ (n!)-2  < L      for  n = 0,  1,  2,  .  .  .  ,  N.

       (27)

It now follows from (25), (26) and (27) that, for  |x1-x2| < -, we have

                                         | f~(x1)-f~(x2)|1,+ < L.
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This proves the lemma for the case  k = 0.

We suppose now that we have proved that f~ is in Cj([0,r]; Bs,+) for some j satisfying
0 & j < k  and that the derivatives are given by

                                      f~(i)(x) = !
i
 f

!xi(x,.)                for  0 & i & j.

Given  L > 0, we again pick N so that (26) is satisfied for  n > N. Suppose that both x and
x+h  are in [0,r], with  |h| > 0. Then we can find x~ between x and x+h, and depending on n, t
and j, such that

                              
 
h
1

 9
:
; !tn!xj
!

n+j
f (x+h, t) - 

!tn!xj
!

n+j
f (x, t)

 <
=
>
 = 
!tn!xj+1
!

n+j+1
f (x~,t).

Thus, if  n > N,

       

 (
(
(h

1 
 9
:
; !tn!xj
!

n+j
f (x+h, t) - 

!tn!xj
!

n+j
f (x, t)

 <
=
>
 - 
!tn!xj+1
!

n+j+1
f (x, t)

 (
(
(
'1

-(n++)
 (n+1)-2+ (n!)-2

                     
 & '1

-(n++)
 (n+1)-2+ (n!)-2 

 9
:
;

 (
(
(!tn!xj+1
!

n+j+1
f (x~,t)

 (
(
(

 + 
 (
(
(!tn!xj+1
!

n+j+1
f (x, t)

 (
(
(

 <
=
>

                     < L.

We next pick  - > 0  so small that if  0 < |h| < -  and  x+h $ [0,r]  then for  0 & n & N,

       

 (
(
(h

1 
 9
:
; !tn!xj
!

n+j
f (x+h, t) - 

!tn!xj
!

n+j
f (x, t)

 <
=
>
 - 
!tn!xj+1
!

n+j+1
f (x, t)

 (
(
(
' 1
 -(n++)

 (n+1)-2+ (n!)-2 < L.

It follows that f~ is j+1 times differentiable and that f~(j+1)(x) = !
j+1f
!xj+1(x,.). The proof that
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 f~(j+1) is continuous is the same as the proof that f~ is continuous. This completes the proof
of the lemma by induction.

  

Lemma 5

Suppose  f~ : [0,r] . Bs,+ is m times continuously differentiable. We define
f(x,t) = [f~(x)](t). The function f satisfies the following:

(i)  t . f(.,t)  is infinitely differentiable in the topology of Cm[0,r].

(ii) If  ' = '1-s
0 's

1, then there is a constant M such that

 
 (
(
(!tn
!

nf(. , t) ((
(

Ck[0,r]

  & M 'n (n!)2 (n+1)2+.

Proof

For fixed x, f(x,t) is clearly infinitely differentiable with respect to t. Given  L > 0, we can
find  - > 0  so that if x1 and x2 are in [0,r] and  |x1-x2| < -, then  |f~(x1) - f~(x2)| < L. But this
implies that,  for n = 0, 1, 2, 3, . . . ,

                               
 (
(
(!tn
!

nf(x1, t) - 
!tn
!

nf(x2, t) ((
(
 < L 'n (n!)2 (n+1)2+.

Thus, for each t and n, !
nf
!tn

(.,t) is a member of C[0,r]. If we set

                        Mj = max
0&x&r

 |f~(j)(x)|s,+,          for  j $ {0,1,2,3, . . . ,m},

then we have

                             
 (
(
(!tn
!

nf(x, t) ((
(
 & M0 'n (n!)2 (n+1)2+ ,             ) n " 0.
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It follows that for  |k| > 0, there exists t~ between t and t+k such that

      

 (
(
(k

1 
 9
:
; !tn
!

nf(x, t+k) - 
!tn
!

nf(x, t)
 <
=
>
 - 
!tn+1
!

n+1f(x, t)
 (
(
(

 = 
 (
(
( !tn+1
!

n+1f(x, t~) - 
!tn+1
!

n+1f(x, t)
 (
(
(

                                                                       & |t - t~| M0 'n+2 ([n+2]!)2 (n+3)2+

                                                                       & |k| M0 'n+2 ([n+2]!)2 (n+3)2+.

This shows that the difference quotients converge in C[0,r]. Hence, we have proved the
lemma for the case  m = 0.

Next, we suppose that for some j satisfying  0 & j < m, we know that:

(a) !
n+jf

!xj!tn
(x,t)  exists for each  n " 0, is a continuous function of x and coincides with

                                  [f~(j)(x)](n)(t).

(b) The difference quotients  1k 
 32
2
21

 65
5
54!nf

!tn
(.,t+k) - !

nf
!tn

(.,t)   converge in Cj[0,r] as  k . 0.

Given  L > 0, we can find  - > 0  so that if x1 and x2 are in [0,r] and  |x1-x2| < -, then

                                |f~(j+1)(x1) - f~(j+1)(x1)|s,+ < L.

Hence  |[f~(j+1)(x1)](n)(t) - [f~(j+1)(x1)](n)(t)| < L 'n (n!)2 (n+1)2+, for all n, which shows that
each of the functions [f~(j+1)(x1)](n)(t) is a continuous function of x. Moreover, given L > 0,
we can find  - > 0  such that if  0 < |h| < -, and x and x+h are both in [0,r], then

                             
 ((
((

 ((
((1

h [ ]f~(j)(x+h) - f~(j)(x)  - f~(j+1)(x)  s,+ < L.

This implies that
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 ((
(
((

 ((
(
((1

h 
 32
2
21

 65
5
54!n+jf

!xj!tn
(x+h,t) - !

n+jf
!xj!tn

(x,t)  - [f~(j+1)(x)](n)(t)  < L 'n (n!)2 (n+1)2+.

Hence  !
n+j+1f

!xj+1!tn
  exists and coincides with  [f~(j+1)(x)](n)(t), which is continuous in x. Thus,

statement (a) holds with 'j+1' replacing 'j'. Further, for  |k| > 0, we have

         
 ((
(
((

 ((
(
((1

k 
 32
2
21

 65
5
54!n+j+1f

!xj+1!tn
(x,t+k) - !

n+j+1f
!xj+1!tn

(x,t)  - !n+j+2f
!xj+1!tn+1(x,t)

                                = 
 ((
((

 ((
((1

k { }[f~(j+1)(x)](n)(t+k) -[f~(j+1)(x)](n)(t)  - [f~(j+1)(x)](n+1)(t)

                                = | |[f~(j+1)(x)](n+1)( t~) - [f~(j+1)(x)](n+1)(t)

                                
 & |k| Mj+1 'n+2 ([n+2]!)2 (n+3)2+.

(Here, t~ is a point between t and t+k). Thus, statement (b) holds with 'j+1' replacing 'j'. By
the principle of induction, statements (a) and (b) hold for all j satisfying  0 & j & m. This
completes the proof of (i).

Part (ii) follows easily:

            *
j=0

m

 ((
(
((

 ((
(
((!n+jf

!xj!tn
(x,t)  = *

j=0

m | |[f~(j)(x)](n)(t)  & 
 ;:
:
9

 >=
=
<*

j=0

m
 Mj  'n (n!)2 (n+1)2+.

  

One would expect that the product of a member of Bs,+ and a function satisfying a suitable
Gevrey estimate would also be a member of Bs,+. The following lemma shows that this is
the case, and that such an operation is a bounded mapping.
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Lemma 6

Let U be an open subset of R containing K, and let  [ $ C#(U) satisfy

                                 |[(n)(t)| & M 'n
1 (n!)2      for all  t $ K.

Then the mapping  f . [f, which we denote by `, is a bounded mapping of Bs,+ into itself,
with operator norm no greater than 3M.

Proof

We first observe that if  f $ Bs,+ , then [f is a C# function with support in K. Now we
compute:

           
 |([f)

(n)
(t)| = 

 (
(
(
*
j=0

n
 
 9
:
;

n
j

 <
=
>
 [

(j)
(t) f

(n-j)
(t)

 (
(
(

                          
 & *

j=0

n
 
 9
:
;

n
j

 <
=
>
 M '1

j
 (j!)2 ['1

s  '0
1-s]

n-j++
 [(n-j)!]2 (n+1-j)2+ |f|s,+

                          
 = M |f|s,+ (n+1)2+ ['1

s  '0
1-s]n++ (n!)2 *

j=0

n
 n!
j! (n-j)! 

 1
2
3 n+1
n+1-j  45

6
 ['1/'0]

(1-s)j

                           & 3 M |f|s,+ (n+1)2+ ['1
s  '0

1-s]n++ (n!)2,

because

          

   *
j=0

n
 n!
j! (n-j)! 

 1
2
3 n+1
n+1-j  45

6
 ['1/'0]

(1-s)j
& *

j=0

n
 n!
j! (n-j)!

& 1 + n
n-1 + 1 & 3.

  

Since the coefficients of our differential equation depend on x, the following modification of
Lemma 6, which we prove using Lemma 6, is more useful to us.
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Lemma 7

Let U be an open subset of R containing K, and let  [ $ C#(U; Ck[0,r]) satisfy

                                 ||[(n)(.,t)||Ck & M 'n (n!)2      for all  t $ K.

Then, if  ' < '1, the mapping  f . [(x,.)f, which we denote by `(x), is a bounded mapping
of Bs,+ into itself, with operator norm no greater than 3M. Further, x . `(x) is k times
continuously differentiable in the uniform operator topology.

Proof

For  x $ [0,r], we let `0(x), `1(x), `2(x), . . , `k(x) be the bounded linear operators

obtained by applying Lemma 6 to the functions [, ![!x(x,.), !
2[

!x2(x,.), . . , !
k[

!xk(x,.). We see that

the operator norm of each of these operators is no greater than 3M.

Now we can proceed as in the proof of Lemma 4 to show that for any j satisfying 0 & j & k,
and any  L > 0, one can find  - > 0  so that, if  |x1-x2| < -, then

                  

 (
(
(

 
!xj

!tn
!

j+n
[ (x1, t) - 

!xj
!tn

!
j+n
[ (x2, t) 

 (
(
(

 & L '1
n (n!)2     for all n.

But, by Lemma 6, this implies that  ||`j(x1) - `j(x2)|| < 3 L. This shows that each of the
mappings  x . `j(x)  is continuous on [0,r], in the uniform operator topology.

One can also proceed as in the proof of Lemma 4 to show that for any j satisfying
0 & j < k, and any  L > 0, one can find  - > 0  so that  if  0 < |h| < -  and both x and x+h are
in [0,r], then

             

 (
(
(h

1 
 9
:
;!xj

!tn
!

j+n
[ (x+h, t) - 

!xj
!tn

!
j+n
[ (x, t)

 <
=
>

 - 
!xj+1

!tn
!

j+n+1
[ (x, t)

 (
(
(

 & L '1
n (n!)2.
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But this and Lemma 6 show that  `j'(x) = `j+1(x), where the derivative is taken in the
uniform operator topology. This completes the proof of the lemma.

  

Recall that the function K lies in a certain space of functions Y (see the definition of Y
preceding Corollary 13 in Chapter 1). We are aiming to modify K without destroying any
of its regularity properties. In order to see how to do this, we define spaces similar to Y and
see how sets of functions, which satisfy some kind of Gevrey estimate and are valued in
such spaces, are related to the spaces Bs,+ .

Definitions:  Let R be a compact rectangle in R2. We denote by Dm,n(R) the space of
functions  f : R . C  such that for  0 & i & m  and  0 & j & n, all mixed partial derivatives of
order i with respect to the first variable and j with respect to the second variable are equal
and continuous. As before, we let it be understood that we define derivatives at the boundary
of R as the usual one - sided limits of difference quotients.

We may define a norm |  |m,n on Dm,n(R) by the expression

 |f|m,n = *
i=0

m
 *

j=0

n
  ma
(x,a)$R

x    
 (
(
(!xi!aj
!

i+j
f (x, a)

 (
(
(

.
                                            (28)

It is easily verified that this norm makes Dm,n(R) into a Banach space.

Similarly, given a Banach space (B,||  ||), we may define Dm,n(R; B) as the space of
functions  f : R . B  having the differentiability properties listed above. Again, we may
make Dm,n(R; B) into a Banach space, with norm given by the expression

   *
i=0

m
 *

j=0

n
  ma
(x,a)$R

x   
 (
(
(
 
 (
(
(!xi!aj
!

i+j
f (x, a)

 (
(
(

 (
(
(

.
                                                 (29)

We will often be considering the space Dm,n(R; Bs,+), the norm of which we denote by the
symbol  |  | m,n

 s,+ .
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We are now ready to state some relationships between spaces of Dm,n(R) - valued functions
satisfying a certain Gevrey estimate, and the spaces Dm,n(R; Bs,+). These results are very
similar to the statements of Lemmas 4 and 5, which examine the relationships between
spaces of Cm[0,r] - valued functions satisfying a certain Gevrey estimate, and the spaces
Cm([0,r]; Bs,+). We state the relationships in Lemmas 8 and 9 below, the proofs of which
are straight - forward modifications of the proofs of Lemmas 4 and 5 respectively.

Lemma 8

Let  f : R × R . C  have support in the strip  R × K. Suppose that the mapping  t . f(.,t)  is
infinitely differentiable in the topology of  Dm,n(R)  and that there are constants M and '
such that

 

 (
(
( !ti
!

if (. , . , t)
 (
(
(

m,n

 & M ' i (i!)2                       ) t $ K   and  i " 0.
                    (30)

If  ' < '1  then the mapping  (x,a) . f(x,a, .)  is a member of  Dm,n(R; Bs,+).
  

Lemma 9

Suppose  f~ $ Dm,n(R; Bs,+). We define  f(x,a,t) = [f~(x,a)](t). The function f satisfies the
following:

(i)  t . f(.,.,t)  is infinitely differentiable in the topology of Dm,n(R).

(ii) If  ' = '1-s
0 's

1, then there is a constant M such that

 

 (
(
( !ti
!

if (. , . , t)
 (
(
(

m,n

 & M ' i (i!)2 (i+1)               ) t $ K   and  i " 0.2+

  

We now investigate how the solution y of the Ovcyannikov Theorem (Theorem 1) depends
on a parameter 'a' when  F(x,a) $ D0,1(R; E1). Here, R = [0,]] × [0,]'], where  ]' > 0 and ]
is as in Theorem 1.
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Lemma 10

Let  F $ D0,1(R; E1)  and for each  a $ [0,]'], let y(.,a) denote the solution of the problem

                               dy
dx   =  A(x) y + F(x,a),           y(0) = y0,

which, according to Theorem 1, is a member of C1([0, -0(1-s)]; Es). As a function of (x,a), y
is a member of C1(Rs; Es), where  Rs = [0, -0(1-s)] × [0,]'].

Proof

Recall from the proof of Theorem 1 that we have

 z0(x, a) = y0 +  8
0

x
 F(u, a) du,

                                                            (31)

 zn+1(x, a) =  8
0

x
 A(u) zn(u, a) du.

                                                         (32)

But  F $ D0,1(R; E1). Thus,  z0 $ C1(R; E1)  with

 
!x
!z0(x, a) = F(x, a),

                                                                    (33)

 
!a
!z0(x, a) =  8

0

x
  
!a
!F(u, a) du.

                                                            (34)

Inductively, we see that for each  n " 1  and each s satisfying  0 & s < 1, zn $ C1(R; Es), and
that

 
!x
!zn(x, a) = A(x) zn-1(x, a),

                                                          (35)
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!a
!zn(x, a) =  8

0

x
 A(u) 

!a
!zn-1(u, a) du.

                                                  (36)

But, from the proof of Theorem 1, we have the estimate

                                      
 |zn(x, a)|s &  

 9
:
; 1-s

nM + N <
=
>

n

 C n!
xn

 .

It follows from equation (35) that for any L satisfying  0 < L < 1-s,

                               
 (
(
( !x
!zn(x, a)

 (
(
(s & (ML-1+N)

 9
:
; 1-s
(n-1)M  + N <

=
>

n-1

 C (n-1)!
xn-1

 .

If we choose  L = 1-s
n , we obtain

 

 (
(
( !x
!zn(x, a)

 (
(
(s

 & 
 9
:
; 1-s
nM + N <

=
>

n

 C (n-1)!
xn-1

 .
                                          (37)

 If we put  C'  = ma
(x,a)$R

x    ] 
 (
(
( !a
!F(x, a) (

(
(

1
,  it follows from equation (34) that

                                                    

 (
(
( !a
!z0(x, a)

 (
(
(s

 & C' .

Proceeding with an inductive argument as in the proof of Theorem 1, we can show that for
0 & s < 1,

 
 (
(
( !a
!zn(x, a)

 (
(
(s

 & 
 9
:
; 1-s
nM + N <

=
>

n

 C'  n!
xn

 .
                                            (38)

Estimates (37) and (38) show that the series  y = z0 + z1 + z2 + . . . converges uniformly in
C1(Rs; Es). This completes the proof of the lemma.

  

3.3   Solution of the Problem
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In this section, we apply the previous results to the solution of the initial value problem (12).
We begin by assuming that A(x) is given by the more general expression (16), and then we
consider the case in which A(x) is given by equation (13) so that we can solve problem
(10). Our primary assumptions are as follows:

(i) The entries of A, B, Y are all infinitely differentiable with respect to t in the topology of
C[0,]].

(ii) There exist constants  M > 0, N " 0  and  ' with  0 & ' < '1, such that for all  n " 0,

                   

 (
(
( !tn
!

n
+ij(x, a, t)

 (
(
(

 & 
 D
E
F

M'
n(n!)2    for  (i, j) $ {(1, 2), (2, 3), (3, 4)}

N'n(n!)2    otherwise

                   

 (
(
( !tn
!

n
Nij(x, a, t)

 (
(
(

 & 
 D
E
F

M'
n(n!)2    for  (i, j) $ {(2, 1), (3, 2), (4, 3)}

N'n(n!)2    otherwise

 

 (
(
( !tn
!

n
/41(x, a, t)

 (
(
(

 & M'n(n!)2.
                                                        (31)

(iii) Let R be the rectangle  [0,]] x [0,]']. We assume that for  i $ [1,2,3,4}, the functions
t . fi(.,.,t) are infinitely differentiable in the topology of D0,1(R). Also, there is a constant
Q such that for all  n " 0,

 

 (
(
( !tn
!

nfi(., ., t)
 (
(
(  & Q 'n (n!)2.
0,1

                                                         (32)

We let F(x,a) be the column vector with components fi(x,a,.).

Definition: For  s $ [0,1], let Es denote the Banach space

Es = Bs,0 × Bs,1/2 × Bs,1 × Bs,3/2  ,                                                   (33)

with norm given by  |  |s, where  |(y1,y2,y3,y4)|s = |y1|s,0 + |y2|s,1/2 + |y3|s,1 + |y4|s,3/2 .
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The spaces Bs,+ satisfy condition (20), so it is automatic that the spaces Es satisfy condition
(I) of the Ovcyannikov Theorem. We now show that assumptions (i) and (ii) imply that A
satisfies condition (II) of our Ovcyannikov Theorem.

Theorem 11

Let A(x) be given by (16) and let conditions (i) and (ii) be satisfied. Then A satisfies
condition (II) for the Ovcyannikov Theorem. Further, if M and N are the constants of (ii)
above, and if C2 is the constant of Lemma 2, then we have the estimate

||A(x)||b(Es,Es') & 60 N max('-3/2
1 ,1) + 6 M C2(0,2,'0/'1) '1/2

0  (s-s')-1              (34)

Proof

We consider the operation on Bs,(j-1)/2 given by

                              f . +ij(x,.) f + Nij(x,.) f' + /ij(x,.) f".

We show that this is, for each fixed x, a bounded mapping from Bs,(j-1)/2 into Bs',(i-1)/2 and
that the mapping is a continuous function of x in the uniform operator topology. To see this,
we consider the separate operations

                     f . +ij(x,.) f ,   f . Nij(x,.) f',   f . /ij(x,.) f" ,

which we denote by the symbols Tij(x), Uij(x) and Vij(x) respectively.

(a) The Operation Tij(x): There are three cases to consider:

(i) If  j > i+1 then Tij(x) is the zero mapping.

(ii) If  j = i+1 for  i $ {1,2,3}, we know from Lemma 2 that the norm of the natural
injection from Bs,(j-1)/2 into Bs',(i-1)/2 is no greater than

                                    C2([j-1]/2,0,'0/'1) '1/2
0  (s-s')-1.
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Thus, by Lemma 7, Tij(x) is a bounded mapping from Bs,(j-1)/2 into Bs',(i-1)/2 with
operator norm no greater than

                              3 M C2([j-1]/2,0,'0/'1) '1/2
0  (s-s')-1.

Lemma 7 also shows that  x . Tij(x)  is continuous in the uniform operator topology.

(iii) If  j < i+1, we know from Lemma 3 that the norm of the natural injection from
Bs,(j-1)/2 into Bs',(i-1)/2 is no greater than '(j-i)/2

1 . Because of the injection (20) and the
results of Lemma 7, we conclude that, in this case, Tij(x) is a bounded mapping from
Bs,(j-1)/2 into Bs',(i-1)/2 with norm no greater than

                                             3 N max{'-3/2
1 ,1}

and that the mapping is a continuous function of x in the uniform operator topology.

(b) The Operation Uij(x): Again, there are three cases to consider:

(i) If  j > i-1  then Uij(x) is the zero mapping.

(ii) If  j = i-1, we know from Lemma 2 that the norm of the mapping  f . f'  from
Bs,(j-1)/2 into Bs',(i-1)/2 is no greater than

                                  C2([j-1]/2,1,'0/'1) '1/2
0  (s-s')-1.

We conclude as before that Uij(x) is a continuous function of x in the uniform operator
topology of mappings from Bs,(j-1)/2 into Bs',(i-1)/2, with operator norm no greater than

                             3 M C2([j-1]/2,1,'0/'1) '1/2
0  (s-s')-1.

(iii) If  j < i-1, we know from Lemma 3 that the norm of the mapping  f . f'  from
Bs,(j-1)/2 into Bs',(i-1)/2 is no greater than

                                  '1+(j-i)/2
1  21+j & 8 max {'-1/2

1 ,1}.
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Because of the injections (20) and the results of Lemma 7, we conclude that Uij(x) is a
continuous function of x in the uniform operator topology of mappings from Bs,(j-1)/2
into Bs',(i-1)/2, with operator norm no greater than

                                            24 N max {'-1/2
1 ,1}.

(c) The Operation Vij(x): Here there are only two cases to consider:

(i) If  (i,j) K (4,1), then this is the zero mapping.

(ii) If  (i,j) = (4,1), we get from Lemma 2 that the norm of the mapping  f . f"  from
Bs,0 into Bs',3/2 is no greater than

                                  C2(0,2,'0/'1) '1/2
0  (s-s')-1.

We conclude as before that V41(x) is a continuous function of x in the uniform operator
topology of mappings from Bs,0 into Bs',3/2, with operator norm no greater than

                             3 M C2(0,2,'0/'1) '1/2
0  (s-s')-1.

The results of the considerations (a), (b) and (c) above imply the first statement in theorem.
To obtain estimate (34), we notice that

     
 ||A(x)||b (Es,Es')

  &        ma
j${1,2,3,4}

x       *
i=1

4
 ||Tij(x) + Uij(x) + Vij(x)||b (Bs,(j-1)/2 , Bs',(i-1)/2).

The constant C2, which is in fact a function of various parameters, is given explicitly in
Lemma 2 and it is clear from this that the largest value that C2 attains in (a), (b) and (c) is
C2(0,2,'0/'1). These facts and a simple computation lead to estimate (34).

  

We are now ready to apply Theorem 1, the Ovcyannikov Theorem, to our problem. First we
assume that A(x) has the general form given in equations (16) and (17).

Theorem 12
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Let A(x) be given by equations (16) and (17), and suppose that this expression satisfies the
assumptions (i) and (ii) stated at the beginning of Section 3.3. Further, let  F $ C([0,]]; E1).
Then the problem

                               dy
dx = A(x) y + F(x),      y(0) = 0

has a unique solution belonging to C1([0,-0(1-s)]; Es), where the constant -0 is given by

-0 = min{], (M C '1/2
0 )-1}.                                                          (35)

Here C is a constant depending only on '0/'1 and is given by

C('0/'1) = 6 e C2(0,2,'0/'1).                                                        (36)

Proof

By Theorem 11, A(x) satisfies condition (II) of Theorem 1, so we may apply Theorem 1 to
obtain the result stated above.

  

Theorem 13

Let  F(x,a) = (f1(x,a,.),f2(x,a,.),f3(x,a,.),f4(x,a,.))t, where the functions f1, f2, f3 and f4 satisfy
condition (32) in the rectangle  R = [0,]] × [0,]'], and let A(x) be as in Theorem 12. Then
there is a unique solution, y(x,a), of the problem

                               dy
dx = A(x) y + F(x,a),      y(0) = 0

which, for each  s $ [0,1], is a member of C1(Rs; Es), where  Rs = [0, -0(1-s)] × [0,]']  and
-0 is given by equation (35).

Proof
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By Lemma 8, F is a member of D0,1(R; Es) for each  s $ [0,1]. Thus we may apply Lemma
10 to obtain Theorem 13 as stated.

  

Corollary 14

Suppose that the functions a0(x,t), a1(x,t), a2(x,t), a3(x,t), a4(x,t), b0(x,t), b1(x,t) and b2(x,t)
are all infinitely differentiable with respect to t in the topology of C[0,]]. Suppose also that
there are constants M > 0, N " 0  and ' satisfying  0 & ' < '1, such that for  (x,t) $ [0,]] ×
K,

 

 (
(
(!tn
!

n
 [b2(x, t)/a4(x, t)] ((

(
 & M 'n (n!)2,

                                                    (37)

 

 (
(
(!tn
!

n
 [1/a4(x, t)] ((

(
 & M 'n (n!)2,

                                                        (38)

 

 (
(
(!tn
!

n
 [aj(x, t)/a4(x, t)] ((

(
 & N 'n (n!)2,   for  j $ {0, 1, 2, 3},

                                (39)

 

 (
(
(!tn
!

n
 [bj(x, t)/a4(x, t)] ((

(
 & N 'n (n!)2,   for  j $ {0, 1}.

                                   (40)

Suppose also that f(.,.,t) is infinitely differentiable with respect to t in the topology of
D0,1(R), where  R = [0,]] × [0,]'], and that there is a constant Q such that

 

 (
(
(!tn
!

nf(x, a, t) ((
(

0,1
 & Q 'n (n!)2,     for  n " 0,  (x, a) $ R  and  t $ K.

                         (41)

If  A(x)  is given by equation (13) and if  F(x,a) = (0,0,0,f(x,a,.))t, then for each  s $ [0,1],
the problem

dy
dx = A(x) y + F(x,a),      y(0) = 0                                                        (42)
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has a unique solution, y(x,a), valued in C1(Rs; Es), where  Rs = [0, -0(1-s)] × [0,]']  and -0

is given by equation (35).
  

The following result shows that we indeed get a solution of problem (10) from the solution
y  of Corollary 14. It also shifts the focus from Es-valued functions of (x,a) to Dm,n-valued
functions of t.

Theorem 15

Let  zi(x,a,t), i $ {1,2,3,4}, be the components of the solution [y(x,a)](t) in Corollary 14.
Then:
(i) For  i $ {1,2,3,4}, the function  t . zi(.,.,t)  is infinitely differentiable in the topology of
D5-i,1(R0).

(ii) There is a constant  P > 0  such that, for each  n " 0,

                                

 (
(
( !tn
!

nz1 (., . , t)
 (
(
(

4,1

 & P '0
n (n!)2 (n+1)3.

(iii)                   L z1(x,a,t) = f(x,a,t)     for (x,a,t) $ R0 × K,

                    z1(0,a,t) = !z1
!x (0,a,t) = !

2z1
!x2 (0,a,t) = !

3z1
!x3 (0,a,t) = 0.

Proof

By Lemma 9 and Corollary 14, the functions zi are infinitely differentiable in the topology
of D1,1(R0) = C1(R0), and for each  s $ [0,1], there exists a constant Ms such that for  (x,a)
$ Rs = [0, -0(1-s)] × [0,]'], and  t $ K,

 

 (
(
( !tn
!

nzi(x, a, t)
 (
(
(

1,1

 & Ms ('0
1-s '1

s)n (n!)2 (n+1)i-1.
                                (43)
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Examination of the components of (42) yields the equations, holding for  (x,a,t) $ R0 × K,

                                       !z1
!x  = z2,   !z2

!x  = z3,   !z3
!x  = z4,

                  

 
!x
!z4  = - *

j=0

3
  a4

aj  zj+1   -  *
j=0

2
  a4

bj   
!t
!zj+1    -  a4

1   
!t2
!

2z4  +  f.

It is easy to see that these, along with the equation  y(0) = 0, establish (iii). Statements (i)
and (ii) follow from these equations and inequality (43) with  s = 0. The constant in (ii) can
be taken as  P = 4 M0.

  

In the foregoing theory, we have obtained a solution of the problem

                                dy
dx = A(x) y + F(x,a),      y(0) = 0,

for x in an interval  [0,-0], where

                                      -0 = min {], (M C '1/2
0 )-1}

(the solution is in C1(R0; E0), where R0 = [0, -0] × [0,]']). Here, M is the constant of
Corollary 14 and depends on Gevrey estimates involving only a4(x,t) and b2(x,t). Moreover,
the constant C depends only on the ratio '0/'1.

It is of interest to see how large we can make the interval of existence, with given
coefficients a0(x,t), a1(x,t), a2(x,t), a3(x,t), a4(x,t), b0(x,t), b1(x,t), b2(x,t) and a given function
f(x,t). With this in mind, we let '2 be the infimum of all constants ' such that the
coefficients and f satisfy estimates of the form (37) to (41), and for  ' > '2, we let M(') be
the smallest constant possible in estimates (37) and (38). It is clear that M(') is defined as a
non-increasing function of ' on the interval ('2,#). Let

a* = inf {M(') '1/2 : ' > '1},                                                       (44)
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We now claim that we may get a solution of our problem for x in the interval [0,µ), where

 µ = min {], (36eM*)-1}                                                               (45)

To see this, we let  L > 0  and pick  '3 > '2  such that  a* > M('3) ('3)1/2 + L. We let
'1 = (1+L) '3  and  '0= 0'1, where 0 is a constant > 1. The theory above then implies that
we have a solution for x in the interval [0, -0], where

 -0 = min {], [(1+L)1/2 01/2 C M('3) ('3)1/2]-1},                                      (46)

where  C = C(0) = 6 e C2(0,2,0), and the constant C2 is the explicit constant of Lemma 2. In
fact, C2(0,2,0) = 34 0 (e ln 0)-1. We choose  0 = e2/3, which happens to minimize 01/2 C(0),
the minimum being 36e. Our claim now follows from equation (46), because  L > 0  is
arbitrary.

We note that the interval [0,µ), where µ is given by equation (45), is not necessarily the
largest interval of existence, because we have not always chosen the best possible constants
in our theory. However, in many important cases estimate (45) is more than sufficient for
our purposes. Suppose, for instance, that the functions b2 and a4 are independent of t and
that estimates of the form (39), (40) and (41) hold for all  ' > 0. It follows that the function
M(') is just a constant and that  M* = 0, the infimum being approached for  ' b 0. Further,
if ] can be chosen to be arbitrarily large, it then follows that the solution exists for x in the
interval [0,#). This is the case for the situation examined in Chapter 1.

We now summarize the main results of the chapter. They follow easily from the results
proved above and the discussion of Section 3.0.

Theorem 16

Let  T > 0, 0 < - < T  and let  K = [T--,T] and  R = [0,]] × [0,]']. We make the following
assumptions:

(i) The kernels K1 and K0 of equation (2) are infinitely differentiable with respect to t 
in the topology of D0,1(R) (for t in a neighborhood of K) and there exist constants  
' > 0  and  Q " 0  such that
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 (
(
( !tn
!

nKj(., . , t)
 (
(
(0,1

 & Q (n!)2 'n        for  t $ K,     j $ {0, 1}   and   n " 0.

(ii) The functions a0(x,t), a1(x,t), a2(x,t), a3(x,t), a4(x,t), b0(x,t), b1(x,t) and b2(x,t) 
are all infinitely differentiable with respect to t in the topology of C[0,]] (for t in a 
neighborhood of K). Also, there are constants M > 0, N " 0  such that for  (x,t) $ 
[0,]] × K,

                                    

 (
(
(!tn
!

n
 [b2(x, t)/a4(x, t)] ((

(
 & M 'n (n!)2,

                                        

 (
(
(!tn
!

n
 [1/a4(x, t)] ((

(
 & M 'n (n!)2,

                         

 (
(
(!tn
!

n
 [aj(x, t)/a4(x, t)] ((

(
 & N 'n (n!)2,   for  j $ {0, 1, 2, 3},

                            

 (
(
(!tn
!

n
 [bj(x, t)/a4(x, t)] ((

(
 & N 'n (n!)2,   for  j $ {0, 1}.

Let '1 be any constant > ', and let '0 = e2/3 '1. If we set

                               -0 = min {], [36 M e ('1)1/2]-1},

then for (x,a) $ R0 = [0, -0] × [0,]'] there exist kernels K~ 0(x,a,t) and K
~

1(x,a,t) such that:

(a) If  t " T, then  K~ 0(x,a,t) = K~ 1(x,a,t) = 0.

(b) If  t & T - -, then  K~ 0(x,a,t) = K0(x,a,t)  and  K~ 1(x,a,t) = K1(x,a,t).

(c) For t in a neighborhood of K, the functions K~ 0 and K
~

1 are infinitely differentiable 
in the topology of D4,1(R0), and there is a constant  P > 0  such that
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 (
(
( !tn
!

n _Kj(., . , t)
 (
(
(

4,1

 & P ('0)n (n!)2,           for  t $ K,   n " 0,   j $ {0, 1}.

(d)                   L K~ j(x,a,t) = 0  for (x,a) $ R0,  t > 0  and  j $ {0,1}.

                 K~ j(0,a,t) = !K~ j
!x (0,a,t) = 0  for  a $ [0,]'],  t > 0,  and  j $ {0,1}.

  

The situation of Chapters 1 and 2, for which the coefficients of the partial differential
equation are independent of t, deserves special attention. Recall that solutions corresponding
to initial data with compact support are given for  t > 0  by equation (2), where the functions
K0 and K1 are given by equation (3) for  (x,a,t) $ [0,#)2 × (0,#). In this case, we get the
following result.

Theorem 17

Suppose that the functions a0, a1, a2, a3, a4, b0, b1 and b2 are independent of t and that they
satisfy either the assumptions of Theorem 16 in Chapter 1, or the assumptions of Theorem
4 in Chapter 2. Let K be the kernel of the corresponding theorem.

Given constants  T > 0  and  0 < - < T, there exists a kernel K~  defined for
(x,a,t) $ [0,#)2 × (0,#)  such that the following are satisfied:

(a) t . K~ (.,.,t)  is a member of  /2((0,#),Y,P).

(b) For each fixed  a $ [0,#),

      

 
!t2
!

2 _K(x, a, t) + *
j=0

4
 aj(x) 

!xj
!

j _K(x, a, t)  + *
j=0

2
 bj(x) 

!xj
!t

!
j+1 _K(x, a, t) = 0,   for (x, t) $ (0,#)2.

(c)                                   K~ (0,a,t) = !K
~
!x (0,a,t) = 0.

(d) If  t " T, then  K~ (x,a,t) = 0.
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(e) If  t & T - -, then  K~ (x,a,t) = K(x,a,t).

Proof

We need only observe that Theorem 16 for  K = K0  holds with any constants  ' > 0, ] > 0
and  ]' > 0, and that the constant M does not depend on '. Instead of constructing K~ 1 as in

the previous theorem, we simply let  K~ 1 = !K~ 0
!t  .

  



Chapter 4

Applications of the Theory to
Exact Boundary Controllability

Problems

4.0  Introduction

In this chapter we make use of the theory of Chapters 2 and 3 to solve two control problems
involving the simplified SCOLE model mentioned in the Preface. In the first of these, the
space shuttle is assumed to be at rest, while the antenna and mast system is initially moving
because of some previous maneuver of the shuttle. The control problem

                         

MAST

 ANTENNA

  
                       

                                           Figure 8

here is to find a force and torque which, when applied only to the antenna, will bring the
system to its target rest state. The second control problem occurs for the situation in which
the whole system is rotating about its center of mass at an angular velocity which varies with
time. In this case, the 'zero state' is no longer a solution of the equations of motion, so we
choose another target state. The target state is assumed to be a given solution of the
equations of motion (e.g. the 'bent' equilibrium state of the mast for the case of constant
angular velocity).
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Obviously, the second problem is a generalization of the first. However, the method that we
employ (i.e. the use of Transmutation Operators) for the solution of the second problem
allows us to obtain most of the results we need from the solution of the first, simpler
problem.

We model the system by assuming that the bending of the mast and motion of the antenna
occur in a fixed plane. The mast itself is assumed to be an Euler-Bernoulli beam with
variable physical characteristics. For the solution of each problem, we find results entirely
analogous to the results found by W. Littman and L. Markus who in [17] consider the
particular case in which the shuttle is at rest and the mast is modelled as an Euler-Bernoulli
beam with constant physical characteristics. The control functions (see Theorems 4 and 13)
are continuous at  t = 0  and are Gevrey regular for  t > 0. Further, they may be chosen so
that the target state is reached after an arbitrarily small time duration. In each case, the
response  [w(.,t), !w!t (.,t)]  is a continuous mapping into H6(0,d) × H4(0,d), 'd' being the

length of the mast.

We start in Section 4.1 with some details about the model and equations of motion for the
first problem. The control problem is explicitly stated there. In Section 4.2, the control
problem is solved by applying the results of Chapter 3 (in which it is shown that solutions
vanishing for  t > T  can be obtained from a fundamental solution which vanishes for
t > T). Much of the theory of this section deals with some regularity results that were not
considered in Chapter 1.

In Section 4.3, we discuss the equations of motion for the second control problem. Before
we can apply the theory of Chapter 3 to this problem, we must demonstrate the existence of
fundamental solutions which are Gevrey regular in the appropriate sense. This does not
follow immediately from the theory of Chapter 1, because the partial differential equation
that we consider here has certain time dependent coefficients, while the coefficients of the
equations considered in Chapter 1 have no time dependence. However, we are very fortunate
in this situation, because there exists an invertible mapping (transmutation operator) which
maps solutions of our differential equation into solutions of one (the same equation
considered in the first control problem) with no time dependent coefficients. Transmutation
operators are briefly discussed in Section 4.4, where we also investigate the circumstances
under which they preserve Gevrey regularity. Finally, in Section 4.5, we show how to obtain
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the appropriate fundamental solutions using the transmutation operator and then we apply
the theory of Chapter 3 to solve the control problem.

We remark that for practical applications, there is an advantage in solving the control
problems by the use of fundamental solutions. This is because once these solutions are
known, the required boundary control functions may be quickly calculated by a simple one-
dimensional integration. (See the remark after the proof of Theorem 4).

4.1  The Model, Equations of Motion and Control Problem for the Case in which
the Shuttle is at Rest

We model the situation described in the Introduction as follows:

x

y

SHUTTLE

ANTENNA

w(x,t) y(t)

MAST

' (t)

                                                          Figure 9

The mast is a beam with physical characteristics which are allowed to vary along its length.
We attach a Cartesian coordinate system to the shuttle, which we assume to be so massive,
compared with the beam, that the coordinate system can be treated as an inertial reference
frame. The directions of all motions are supposed to be in the x - y plane (see Figure 9),
while the x - axis coincides with the equilibrium rest state of the beam, which is clamped to
the shuttle at  x = 0. Further, it is assumed that the motion of the beam in the direction of the
x - axis is negligible. Let w(x,t) denote the displacement in the direction of the y - axis, at
time t, of an element of the beam which has x as its 'x - coordinate'. The beam itself is an
Euler - Bernoulli beam (see Rayleigh [19]) of length d and has the equation of motion
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 0(x)
!t2
!

2w (x, t)   +   
!x2
!

2  1
2
3
E(x) I(x) 

!x2
!

2w (x, t)
 4
5
6
  =  0.

                                    (1)

The physical parameters appearing in this equation are:

0(x) = mass per unit length of the beam, measured at position x.

E(x) = Young's Modulus of Elasticity, measured at position x.

I(x) = "Moment of inertia of a cross section of the beam. This is measured about an axis
parallel with the z - axis, and passing through the neutral curve of the beam (the neutral
curve is the curve within the beam along which the filaments of the Euler - Bernoulli beam
model do not undergo stretching or compression).

As was mentioned before, the beam is rigidly clamped to the shuttle at  x = 0. This condition
is described mathematically by what we call the 'clamped end conditions':

 w(0, t) = 
!x
!w (0, t) = 0.

                                                                    (2)

The antenna is modelled as a rigid body clamped to the other end of the beam (at  x = d) at
its center of mass. We let m denote the mass of the antenna, and J its moment of inertia
measured about an axis parallel with the  z - axis and passing through the center of mass of
the antenna.

For the Euler - Bernoulli beam model, it can be shown that the torque on the antenna, due to
the bending of the beam, is equal to - (E I !

2w
!x2)(d,t). If there is also an external (controlling)

torque, f2(t), applied to the antenna, then Newton's law for the angular motion of the antenna
is

 J 
dt2
d2
' (t) = - (E I 

!x2
!

2w )(d, t) + f2(t).
                                                  (3)

Here ' is the angular deflection of the antenna from the x - axis. In our model, we assume
that all displacements are small, so ' is given by
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'(t) = !w
!x(d,t).                                                                     (4)

The force on the antenna, due to the bending of the beam, is equal to  !!x(E I  !
2w
!x2)(d,t).

Thus, taking into account an external (controlling) force f1(t) applied in the direction of the
y - axis, we see that Newton's law of motion for the antenna is

 m 
dt2
d2y(t) = 

!x
! (E I

!x2
!

2w )(d, t) + f1(t).
                                                 (5)

Here, y(t) denotes the displacement of the antenna in the direction of the y - axis. It is clear
that we have

y(t) = w(d,t).                                                                       (6)

The state of the mechanical system at any time t is completely described by specifying the
pair of functions (w(.,t) , !w!t (.,t)), for if this is known, equations (4) and (6) furnish the

values of '(t), d'dt (t), y(t)  and  dy
dt (t).

To complete the description of the evolution of the system, we need only specify the initial
conditions

w(x,0) = w0(x),         !w!t (x,0) = v0(x).                                                 (7)

We now discuss the open - loop boundary control problem for the system. In words, it is as
follows: Given an arbitrarily small positive time T and initial data (w0(.),v0(.)), find a force,
f1(t), and a torque, f2(t), which, when applied to the antenna, drive the system to rest for
times  t " T. Thus, we choose the target state as the stationary equilibrium rest state w(x,t) =
0, !w!t (x,t) = 0.

Specifically, we must find functions f1 and f2 such that the solution w of the following
mixed problem, which we call 'Problem A', vanishes for all times  t " T:
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                                                       Problem A

 0(x)
!t2
!

2w (x, t)  +  
!x2
!

2  1
2
3
E(x) I(x) 

!x2
!

2w (x, t)
 4
5
6
 = 0,       for  (x, t) $ (0, d) × (0,#).

         (1)

 w(0, t) = 
!x
!w (0, t) = 0,        for  t " 0.

                                                      (2)

w(x,0) = w0(x),         !w!t (x,0) = v0(x),      for  0 & x & d.                                 (7)

 B1w(d, t) = m 
!t2
!

2w (d, t)  -  
!x
!

 1
2
3
E I 

!x2
!

2w 4
5
6
(d, t) = f1(t),        for  t > 0.

                      (8)

 B2w(d, t) = J 
!t2!x
!

3w (d, t) + E I 
!x2
!

2w (d, t) = f2(t),          for  t > 0.
                           (9)

4.2  Solution of the Control Problem for the Case in which the Shuttle is at Rest

We now use the theory of Chapters 1 and 3 to solve the control problem. For convenience,
we set  +(x) = 0(x)-1  and  N(x) = E(x) I(x). We assume that + and N are members of
C4[0,d] and we continue them to C4[0,#) functions in such a way that  +(x) = N(x) = 1  for
all x sufficiently large, and  +(x) N(x) > 0  for all  x $ [0,#). Equation (1) may, of course,
be written in the form

 
!t2
!

2w (x, t) + +(x) N(x) 
!x4
!

4w (x, t) + 2+(x) N' (x) 
!x3
!

3w (x, t) + +(x) N"(x) 
!x2
!

2w (x, t).
    (10)

The coefficients of this equation satisfy assumptions (I), (II) and (III) of Section 1.8. Thus,
by the theory of that section, there exists a strongly continuous semigroup S(t) on  H =

H2
0(R+) × L2(R+). The infinitesimal generator of this semigroup is an unbounded operator

B, given by:

                             DB = {H4(R+) ? H0
2(R+)} × L2(R+),
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 B 1
2
3

w
v

 4
5
6
(x) = 

 1
2
3

v(x)

- +(x) 
!x2
!

2
(N(x) w(x))

 4
5
6

.

                                                   (11)

Further, Theorem 16 of Chapter 1 implies that there exists a kernel K defined on [0,#)3

with the properties:

(i)  t . K(.,.,t)  is a member of  /2((0,#),Y,P).

(ii) For each  a $ [0,#), K(x,a,t) satisfies equation (1) as a function of (x,t).

(iii) The operator K(t), defined for  t " 0  by

                                   
 K (t) f(x) = 8

0

#

 K(x, a, t) f(a) da,

satisfies, for  t > 0,

                                  

 S(t) 
 1
2
3

f1

f2

 4
5
6
 = 

 1
2
3

K ' (t) K (t)

K "(t) K ' (t)

 4
5
6
 
 1
2
3

f1

f2

 4
5
6
.

provided that  f1 $ H2
0(R+)  and  f2 $ L2(R+)  have compact support.

Given  T > 0  and  0 < - < T, we let K~  be the kernel of Theorem 17 in Chapter 3. K~  satisfies
(i) and (ii) above. Moreover, K~ (x,a,t) vanishes for  t " T and coincides with K(x,a,t) for  t &
-. We extend the domain of our initial data (w0,v0) so that it has compact support in [0,#)
and we tentatively set:

 w(x, t) = 8
0

#

 _K(x, a, t) v0(a) da  +  8
0

#

 
!t
!
_K(x, a, t) w0(a) da.

                              (12)

Under suitable regularity assumptions for w0 and v0 we will see that equation (12) provides
us with a solution of the control problem, in the sense that w(x,t) takes on the initial
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conditions, satisfies equation (1) and the clamped end conditions, and vanishes for
t " T. The boundary control functions are given by

                                   f1(t) = B1w(d,t),          f2(t) = B2w(d,t).

The 'suitable regularity assumptions' are required so that the boundary operators can be
applied to the function w for all  t " 0, and so that we indeed get a classical solution to
Problem A. The following theorem provides us with the necessary information.

Theorem 1

Let S(t) be the strongly continuous semigroup defined by equation (110) of Chapter 1 and
let B be the infinitesimal generator of S(t) (see equation (111) of Chapter 1). Suppose that,
in addition to satisfying assumptions (I) and (II) of Chapter 1, the coefficients of B are all
twice continuously differentiable on [0,#). Then the following statements hold:

 (i)  D
B2 = {(w,v) $ H6 × H4: w(0) = w' (0) = v(0) = v' (0) = 0,

                     
 *
i=0

4
 ai(0) w(i)(0)  +  *

i=0

2
 bi(0) v(i)(0)  = 0,

                    
 *
i=0

4
 ai' (0) w(i)(0) + ai(0) w(i+1)(0)  +  *

i=0

2
 bi' (0) v(i)(0) + bi(0) v(i+1)(0) = 0}.

 Further,  if  
 1
2
3

w0
v0

 4
5
6
 $ D

B2  and  
 1
2
3

w(.,t)
v(.,t)

 4
5
6
 = S(t) 

 1
2
3

w0
v0

 4
5
6
,  then:

(ii) The mapping  t . [w(.,t),v(.,t)]  is a continuous mapping from [0,#) into H6 × H4 which
is continuously differentiable in the norm topology of  H4 × H2  and twice continuously
differentiable in the norm topology of  H2 × L2.

(iii)  v = !w!t  .
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(iv)  !
i+jw
!ti!xj  exists and is a continuous function of (x,t) for all i, j satisfying  j+2i & 5.

Further, the mixed derivatives may be taken in any order.

(v) w satisfies the 'clamped end conditions' and the differential equation

                    
 
!t2
!

2w   +  *
i=0

4
 ai !xi

!
iw     +  *

i=0

2
 bi !xi!t

!
i+1w    = 0.

Proof

For (i), we recall that

                                      
 D

B2 = 
 D
E
F

 1
2
3

w
v

 4
5
6
 $ DB :  B  12

3

w
v

 4
5
6
 $ DB

 Q
P
O
.

 But if   12
3

w
v

 4
5
6
 $ DB = (H4 ? H0

2) × H0
2,  then  B  12

3

w
v

 4
5
6
 $ DB  is equivalent to:

                           
 v $ H4 ? H0

2,       *
i=0

4
 ai w

(i)  +  *
i=0

2
 bi v

(i)  $ H0
2 .

Thus, it is easy to see that DB2 contains the given set. For the opposite inclusion, suppose

that  
 32
21

 65
54 

 
w
v  $ DB2. From this, it is easy to see that w(4) is twice weakly differentiable and that

w(5) and w(6) are in L2. Thus  w $ H6. The rest of (i) follows easily.

A substantial part of (ii) will follow from semigroup theory. We first recall that, since S(t) is

strongly continuous, the mapping  t . S(t) 
 32
21

 65
54  

  
f1
f2

  is a continuous mapping from [0,#) into

H = H2
0 × L2  for any  

 32
21

 65
54  

  
f1
f2

 $ H. Further, if  
 32
21

 65
54  

  
f1
f2

 $ DB  then the mapping is even

continuously differentiable in  H2
0 × L2  and

                              ddt S(t) 
 32
21

 65
54  

  
f1
f2

 = B S(t) 
 32
21

 65
54  

  
f1
f2

 = S(t) B 
 32
21

 65
54  

  
f1
f2

 .



4.2   THE SOLUTION OF THE CONTROL PROBLEM  FOR THE CASE
IN WHICH THE SHUTTLE IS AT REST 1 1 3

Now for fixed  
 32
21

 65
54  

  
w0
v0

 $ DB2, we let [ denote the mapping  t . S(t) 
 32
21

 65
54  

  
w0
v0

. Since S(t) carries

DBn into DBn, we know from (i) that the range of [ is contained in  H6 × H4. Further, [ is
continuously differentiable in the topology of H and we have

['(t) = ddt  32
21

 65
54   

   
w(.,t)
v(.,t)  = B 

 32
21

 65
54   

   
w(.,t)
v(.,t)  = S(t) B 

 32
21

 65
54  

  
w0
v0

 .                                     (13)

The range of [' is contained in  DB = (H4 ? H2
0) × H2

0. Similarly, [' is continuously

differentiable in the topology of H and we have

["(t) = d
2

dt2 
 32
21

 65
54   

   
w(.,t)
v(.,t)  = ddt B 

 32
21

 65
54   

   
w(.,t)
v(.,t)  = B ddt  32

21

 65
54   

   
w(.,t)
v(.,t)  = B2 

 32
21

 65
54   

   
w(.,t)
v(.,t)  = S(t) B2 

 32
21

 65
54  

  
w0
v0

 .       (14)

It remains to show that f is continuous in the topology of  H6 × H4  and continuously
differentiable in the topology of  H4 × H2. For the latter assertion, we observe from
equations (13) that the difference quotient  1h (B[(t+h) - B[(t))  converges in  H2 × L2  to

["(t) as h . 0. But

                            

 B [(t) = 
 1
2
3

v(.,t)

- *
i=0

4
 ai !xi

!
iw (.,t)  -  *

i=0

2
 bi !xi

!
iv (. , t)

 4
5
6

 .

Thus the difference quotient  1h (v(.,t+h) - v(.,t))  converges in H2. Rewriting

             
 *
i=0

4
 ai !xi

!
if          as        a4 exp

 1
2
3
- 4

1 8
 

 a4

a3  45
6
 
!x4
!

4
 
 D
E
F

exp
 1
2
34
1 8 a4

a3 4
5
6
 f

 Q
P
O

 + l f,

where l is a second order differential expression with continuous coefficients, shows us
immediately that the difference quotient

                             
 
h
1 

 D
E
F!x4
!

4
 exp

 1
2
3
 4
1 8 a4

a3 
 4
5
6
 (w(.,t+h) - w(.,t))

 Q
P
O



4.2   THE SOLUTION OF THE CONTROL PROBLEM  FOR THE CASE
IN WHICH THE SHUTTLE IS AT REST 1 1 4

converges in L2 to a continuous L2-valued function as  h . 0. But we know already that the
difference quotient  1h (w(.,t+h) - w(.,t))  converges in H2 to a continuous H2-valued

function. So it follows from the interpolation inequality (inequality (36) of Chapter 1) that

                             
 
h
1 

 D
E
F!x3
!

3
 exp

 1
2
3
 4
1 8 a4

a3 
 4
5
6
 (w(.,t+h) - w(.,t))

 Q
P
O

converges in L2. Thus

                             
 
h
1 

 D
E
F!x2
!

2
 exp

 1
2
3
 4
1 8 a4

a3 
 4
5
6
 (w(.,t+h) - w(.,t))

 Q
P
O

converges in H2 and we easily see from this that  1h (w(.,t+h) - w(.,t))  converges in H4 to a

continuous H4-valued function. Thus we have proved the assertion that [ is continuously
differentiable in  H4 × H2.

To show that [ is continuous in the topology of  H6 × H4, we again use equations (14).
Note that

 B2
[ = B2 

 1
2
3

w(.,t)
v(.,t)

 4
5
6
 = 
 1
2
3

- *
i=0

4
 ai !xi

!
iw   -  *

i=0

2
 bi !xi

!
iv

- *
i=0

4
 ai !xi

!
iv   +  *

i=0

2
 bi !xi

!
i

 
 D
E
F
*
j=0

4
 aj 

!xj
!

j
w   +  *

j=0

2
 bj 

!xj
!

j
v Q
P
O

 4
5
6

.

    (15)

The first component of this varies continuously in H2
0, while the second varies continuously

in L2. Thus     ai 
!iv
!xi*

i=0

4     varies continuously in L2 and, by the interpolation argument used

earlier, t . v(.,t)  is a continuous mapping from [0,#) into H4. Now if we consider again

the first component of equation (15), we see that      ai 
!iw
!xi*

i=0

4     varies continuously in H2. So,

once again, we may use the interpolation inequality argument to conclude that  t . w(.,t)  is
a continuous mapping from [0,#) into H6. Thus, all of (ii) has been proved.
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The result (iii) follows even for  
 32
21

 65
54  

  
w0
v0

 $ DB, for in H we have

              

 
dt
d  

 1
2
3

w(.,t)
v(.,t)

 4
5
6
 = B 

 1
2
3

w(.,t)
v(.,t)

 4
5
6
 = 

 1
2
3

v(.,t)

- *
i=0

4
 ai !xi

!
iw (.,t)  -  *

i=0

2
 bi !xi

!
iv (. , t)

 4
5
6

 .

Statement (iv) follows from (ii) and the Sobolev embedding theorems. Indeed, (ii) implies

that the mapping  t . 
 32
21

 65
54   

   
w(.,t)
v(.,t)   is continuous in the topology of  C5,1/2(K) × C3,1/2(K)  for

any compact set K. Further, the mapping is differentiable in the topology of  C3,1/2(K) ×
C1,1/2(K)  and the first component of it is twice differentiable in the topology of  C1,1/2(K).

The function w satisfies more than just the 'clamped end' conditions at  x = 0, since 
 32
21

 65
54 

 
w
v

remains in DB2 (see (i)). To prove the rest of part (v), we merely observe that it is the first
component of the equation

                                        d
2

dt2 
 32
21

 65
54   

   
w(.,t)
v(.,t)  = B2 

 32
21

 65
54   

   
w(.,t)
v(.,t) .

  

We note that the assumptions which we have already made about our Euler-Bernoulli beam
allow us to apply Theorem 1 to obtain results about the solutions when  (w0,v0) $ DB2. In
particular, Theorem 1 shows that in this way we obtain classical solutions of the beam
problem.

Before proceeding with the control problem, we state another regularity result which we
obtain from the smoothness of the coefficients + and N.
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Lemma 2

Let K be any compact subset of [0,#)2. Then the kernels K(.,.,t) and K~ (.,.,t) are members of
/2((0,#); D6,1(K)).

Proof

We know already that the kernels are members of /2((0,#); D4,1(K)). We extend this result
by observing that they satisfy the equation

                                      
 
!t2
!

2k  +  + 
!x2
!

2  D
E
F
N 
!x2
!

2k Q
P
O

  =  0,

where + and N are in C4[0,#) with  +N > 0.
  

Remark: We see from Theorem 1 that if  (w0,v0) $ DB2  with compact support, then the
mapping

                       
 t . 8

0

#

 w0(a) 
!t
!K(.,a, t) da  +  8

0

#

 v0(a) K(.,a, t) da

is continuous in the topology of H6(R+), continuously differentiable in the topology of
H4(R+) and twice continuously differentiable in the topology of H2(R+). Lemma 2 implies
that the same can be said about the mapping

                       
 t . 8

0

#

 w0(a) 
!t
!
_K(.,a, t) da  +  8

0

#

 v0(a) _K(.,a, t) da,

if we replace the Sobolev spaces on R+ with the corresponding spaces on any finite interval
of the form (0,-).

We now return to the control problem. Our first result is a uniqueness result obtained from
energy considerations.
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Definition: The energy, E of a solution w of Problem A is

 
 E(t) = 2

1 8
0

d
 0(x) 

 1
2
3 !t
!w (x, t) 4

5
6

2

  +  E(x) I(x) 
 1
2
3 !x2
!

2w (x, t)
 4
5
6

2

 dx  + 2
1 m 

 1
2
3 dt

dy(t) 4
5
6

2

 + 2
1 J 

 1
2
3 dt
d' (t) 4

5
6

2

.

This is recognizable from a physical point of view as the total mechanical energy (kinetic +
elastic potential) of the system.

Lemma 3

Let w be a solution of Problem A having the regularity properties of Theorem 1 (i.e. the
mapping  t . w(.,t)  is continuous in the topology of H6(0,d), continuously differentiable in
the topology of H4(0,d) and twice continuously differentiable in the topology of H2(0,d)).
Then:

(i)                                    dE
dt  = f1(t) dy

dt   +  f2(t) d'dt   .

(ii) If w~  is any other such solution of Problem A with the same boundary functions f1 and
f2, then  w = w~ .

Proof

The regularity of w allows us to differentiate E and we obtain (i) by an integration by parts.

The second statement of the lemma is proved by letting  u(x,t) = w(x,t) - w~ (x,t). The function
u is thus a solution of Problem A with zero boundary data (f1 = f2 = 0). Thus, by (i), its
energy is E(t) = E(0) = 0. It is easy to see that this implies that  u(x,t) = 0.

  

We are now ready to state the boundary controllability result for Problem A.
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Theorem 4

Consider the boundary controllability of Problem A. Let  (w0,v0) $ H6(0,d) × H4(0,d)
satisfy the 'clamped end conditions'

                                           w0(0) = w0'(0) = 0

and the 'compatibility conditions'

                         v0(0) = v0'(0) = (N w0")"(0) = {+ (N w0")"}'(0) = 0,

where  + = 1/0  and  N = E I  are members of C4[0,d] and  +(x) > 0, N(x) > 0 for all  x $
[0,d].

Then, given  T > 0, there exist boundary control functions  f1: [0,#) . R  and
f2: [0,#) . R, which are continuous on [0,#) and are members of  /2(0,#), such that
Problem A has a solution w with the properties:

(i) For  t " 0, t . w(.,t)  is continuous in H6(0,d), continuously differentiable in H4(0,d) and
twice continuously differentiable in H2(0,d). Moreover, w is unique in the class of solutions
of Problem A with these regularity properties.

(ii) w(.,t) = 0  for all  t " T.

Proof

First, we extend the domain of the initial data so that the extension is in  H6(R+) × H4(R+)
and has compact support. By Theorem 1, (w0,v0) is now in DB2. We let K~  be the kernel of
Theorem 17 in Chapter 3 and set

                       
 w(x, t) = 8

0

#

 _K(x, a, t) v0(a) da  +  8
0

#

 
!t
!
_K(x, a, t) w0(a) da.
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According to the remark following Lemma 2, for  t " 0, t . w(.,t)  is continuous in H6(0,-),
continuously differentiable in H4(0,-) and twice continuously differentiable in H2(0,-) for
any  - > 0. Also, w(.,t) vanishes for  t " T  because K~ (.,.,t) does.

We set  f1(t) = B1w(d,t)  and  f2(t) = B2w(d,t).  It is clear that f1 and f2 are in /2(0,#)
because w is in /2((0,#); C6[0,-]) for any  - > 0  (see Lemma 2). Moreover, because of the
regularity of the mapping  t . w(.,t)  for  t " 0, it is easy to see that the Sobolev embedding
theorems imply that f1 and f2 are continuous on the interval [0,#).

Finally, the uniqueness of w has already been proved in Lemma 3.
  

Remark: For practical applications, it is of interest that we can give the control functions
explicitly in terms of the initial data. To see this, let  d' > d  and let  E1: H6(0,d) . H6(R+)
and  E2: H4(0,d) . H4(R+)  be any extension operators having ranges which are spaces of
functions with support in [0,d']. The response w is given by

                     
 w(x, t) = 8

0

#

 _K(x, a, t) E2[v0(a)] da  +  8
0

#

 
!t
!
_K(x, a, t) E1[w0(a)] da,

so the boundary control functions are given by

 fj(t) = 8
0

#
Bj 

_K(d, a, t) E2[v0(a)] da  +  8
0

#
Bj !t
!
_K(d, a, t) E1[w0(a)] da,   for  j $ {1, 2}.

     (16)

This is perhaps useful for computational purposes, for the four functions B1K~ (d,a,t),
B2K~ (d,a,t),  !!t B1K~ (d,a,t)  and  !!t B2K~ (d,a,t), which are functions of only the two variables 'a'

and 't', need only be computed once. Thereafter, the control functions can be calculated for
any initial data by the integration in equation (16).

4.3  The Equations of Motion and Control Problem For a Rotating Shuttle

We now suppose that the system is rotating about an axis which is parallel with the z-axis
and passes through the system's center of mass. We let (-h,-k) be the x - y coordinates of
the center of mass and assume that the shuttle is so massive, compared with the mast and
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antenna, that h and k can be taken as constants. We let d[/dt denote the angular velocity of
the shuttle and allow it to vary with time.

  

x

y

SHUTTLE

ANTENNA

w(x,t) y(t)

MAST

' (t)

(-h,-k) .

 

 

 
dt
d[

                                                     Figure 10

We use the same Cartesian coordinate system attached to the shuttle that we used in the
absence of rotation. However, it is no longer an inertial reference frame because of the
rotation. Consequently, there are additional force and torque terms in the equations of
motion. One can show that the modified equations of motion become (see Littman and
Markus [17])

 0 
!t2
!

2w   +  
!x2
!

2  1
2
3
E I 

!x2
!

2w 4
5
6
  -  0 (w+k)  12

3 dt
d[ 4
5
6

2
  +  0 (x+h) 

dt2
d2
[   =  0.

                  (17)

w(0,t) = !w!x(0,t) = 0.                                                      (18)

w(d,t) = y(t),               !w!x(d,t) = '(t).                                          (19)

 m 
dt2
d2y  =  

!x
!  

 1
2
3
E I 

!x2
!

2w 4
5
6
(d, t)  +  m (y+k)  12

3 dt
d[ 4
5
6

2
  -  m (d+h) 

dt2
d2
[   +  f1(t).

             (20)

 J 
dt2
d2
'   =  - E I 

!x2
!

2w (d, t)  -  J 
dt2
d2
[   +  f2(t).

                                        (21)
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w(x,0) = w0(x),           v(x,0) = v0(x).                                            (22)

We choose for the target state a particular solution W of equations (17) - (21). It may be the
case that a non-zero force F1(t) and/or torque F2(t) are necessary to sustain the solution W,
or if desired, the target state may be chosen to be a solution corresponding to no force or
torque being applied to the antenna.

In either case, if we denote the solution of equations (17) - (22) by w~  and set

                                        w(x,t) = w~ (x,t) - W(x,t),

we see that the control problem reduces to steering w(x,t) to zero. More precisely, given
T > 0, we look for functions f1 and f2 such that the solution w(x,t) of the following mixed
problem, which we call 'Problem B', vanishes for  t " T:

                                                       Problem B

 0 
!t2
!

2w   +  
!x2
!

2  1
2
3
EI 

!x2
!

2w 4
5
6
  -  0 w  12

3 dt
d[ 4
5
6

2
 =  0.

                                             (23)

 w(0, t) = 
!x
!w (0, t) = 0,        for  t " 0.

                                                      (24)

w(x,0) = w0(x),         !w!t (x,0) = v0(x),      for  0 & x & d.                                 (25)

 B1w(d, t) = m 
!t2
!

2w (d, t)  -  
!x
!

 1
2
3
E I 

!x2
!

2w 4
5
6
(d, t) - m w(d, t) 

 1
2
3 dt

d[ 4
5
6

2
 = f1(t),       for  t > 0.

   (26)

 B2w(d, t) = J 
!t2!x
!

3w (d, t) + E I 
!x2
!

2w (d, t) = f2(t),          for  t > 0.
                     (27)

This system has time-dependent coefficients, so we cannot use the theory of Chapters 1 and
2 to solve the control problem directly. We digress to discuss 'transmutation operators', a
tool which will allow us to use, in this time-dependent setting, our results already found for
systems which have no time-dependent coefficients.
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4.4  Digression:  Transmutation Operators

We remark that the only difference between equations (10) and (23) is that to obtain (23)
from (10), we replace the differential expression  !

2

!t2  by the differential expression
!2

!t2 + q(t), where  q(t) = - (d[/dt)2. It is natural to ask if there exist transformations which

will map solutions of equation (10) into solutions of equation (23) and vice versa.

We will see that there is an affirmative answer to this question. In fact, the type of
transformation we need has been known of since the 1930's (see Delsarte [5]). The
transformations are called Transmutation Operators, and have been studied by many
researchers. For our purposes it suffices to refer to the work of Lions [14], [15], but for
further references, the reader may wish to see the recent report by Trimèche [24] and its
bibliography.

We let  U = (-r,r)  where  r > 0  (possibly equal to infinity), and we suppose at first that
q $ C1(U). Let L1 and L2 be the differential operators on C(U), with domains C2(U), given
by:

L1 f = f",                         L2 f = f" + q.                                             (28)

We seek an invertible operator B on C(U) with the properties:

L2 B = B L1 ,                                                                   (29)

(B f)(0) = f(0),         (B f)'(0) = f'(0).                                               (30)

The existence of B is  guaranteed by the following theorem, which also contains some of
the properties of the transmutation operator. To see how such theorems are proved, the
reader is referred to Lions [14], [15].
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Theorem 5

If  q $ C1(U)  then there exists a function  b $ C2(U × U)  such that the integral operator

 (B f)(t) = f(t)  +  8
- t

t
 b(s, t) f(s) ds

                                                 (31)

satisfies equations (29) and (30). In fact, b is the unique solution of the problem:

 
!t2
!

2b(s, t) + q(t) b(s, t) -  
!s2
!

2b(s, t) = 0,       for  (s, t) $ U × U,
                             (32)

 b(t, t) = - 2
1 8

0

t
 q(^) d^,       b(-t, t) = 0,      for  t $ U.

                                  (33)

Further, B-1 exists and is given by

 (B-1 f)(t) = f(t)  +  8
- t

t
 c(s, t) f(s) ds,

                                              (34)

where  c $ C2(U × U)  is the unique solution of the problem:

               
 
!t2
!

2c (s, t) - q(s) c(s, t) -  
!s2
!

2c (s, t) = 0,       for  (s, t) $ U × U,

                        
 c(t, t) =  2

1 8
0

t
 q(^) d^,       c(-t, t) = 0,      for  t $ U.

  

The case of interest to us is that for which  q $ /2(U). In this case, one would hope that the
transmutation operator preserves Gevrey Class 2 regularity. We begin to investigate this
possibility with the following lemma.

Lemma 6
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Let  q $ /2(U). Then the functions b and c are members of /2(U × U).

Proof

We prove only that  b $ /2(U × U), for the proof that  c $ /2(U × U)  is virtually identical.

First, we change variables as follows:

] = s + t,      I = t - s,       [(],I) = b(s,t).                                         (35)

Under this transformation, the set  U × U  is mapped on to

S = {(],I) : |]| + |I| < 2r}.                                                        (36)

Since  b $ C2(U × U)  and satisfies equations (32) and (33), it is apparent that  [ $ C2(S)
and satisfies in S the equations:

 4 
!]!I

!
2
[ (],I)  +  q([]+I]/2) [(], I)  =  0,

                                           (37)

 [(0, I) = 0,                  [(0,]) = - 2
1 8

0

]/2

 q(^) d^.
                                       (38)

On setting  % = ![!] , we see that [ and % must satisfy the integral equations†

 %(], I) = - 4
1 q(]/2)  - 4

1 8
0

I

 q([]+^]/2) [(], ^) d^,
                                      (39)

 [(], I) =  8
0

]

 %(^, I) d^.
                                                               (40)

†These integral equations can be used to prove the existence of a solution b of equations (32) and (33).
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Since  q $ C#(U),  we may differentiate these integral equations and easily find by
induction that [ and % are members of C#(S). We now estimate the derivatives of [ and %
and show that the functions are in fact members of /2(S).

For this purpose, we let  - < r  and set  S- = {(],I) : |]| + |I| & 2-}. For integers  n " 0
and real numbers  ' > 0, we consider the following seminorms on functions  f $ C#(S):

                   
 | f |

-,'
n  = max{'-n (n!)-2 |D+f(], I)| : (], I) $ S

-
 ,  |+ | = n},

                                       
 || f ||

-,'
n  = max{ | f |

-,'
j

 : j & n}.

Differentiation of equation (39) yields the equations

   
 DN %(], I) = - 4

1 D
N - (0,1)

{q([]+I]/2) [(], I)},       for  N = (N1, N2)  with  N2 K 0.

              

 
!]n
!

n
%(],I) = - 4

1 
d]n
dn

{q(]/2)}  -  4
1 8

0

I

 
!]n
!

n
 {q([]+^]/2) [(], ^)} d^.

However, since  q $ /2(U), it follows easily that the function  (],I) . q([]+I]/2)  is a
member of /2(S), and for any  ' > 0, we can find  C' " 0  such that

             
 
(D+q([]+I]/2)) '

- |+|
 (|+ |!)-2 & C

'
,     for all multi-indices  + = (+1,+2).

We now use a result which we prefer to state as a separate lemma, instead of proving it here.
The result is stated and proved as Lemma 7 and follows the proof of this lemma. By Lemma
7, and the last three equations, we obtain the estimates

   
 max{|DN%(], I)| : (], I) $ S

-
} & 4

9 C
'
 {(|N |-1)!}2 || [ ||

-,'

|N|c1
 '

|N|c1
,  provided  N2 K 0,

       
 max{|D

(n,0)
%(], I)| : (], I) $ S

-
} & 4

1 C
'
 'n (n!)2 + 2

9 - C
'
 (n!)2 || [ ||

-,'
n  'n.

However, equation (40) implies that
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                     D
+ [ = D

+ - (1,0)
 %,     for  + = (+1,+2)  with  +1 K 0,

                                 
 and    

!I
n

!
n
[(],I) = 8

0

]

  
!I

n
!

n
%( ,̂I) d^.

From these equations and the two estimates preceding them, we immediately obtain the
following estimates (assuming (],I) $ S-):

        
 |D+[(], I)| & 4

1 C
'
 'n-1 [(n-1)!]2 + 2

9 - C
'
 [(n-1)!]2 || [ ||

-,'
n-1  'n-1

                               
 + 4

9 C
'
 [(n-2)!]2 || [ ||

-,'
n-2  'n-2,   for  |+ | = +1++2 = n  and  +1 K 0,

        

 (
(
(!I

n
!

n
[(],I)

 (
(
(

 & 2
9 - C

'
 [(n-1)!]2 || [ ||

-,'
n-1  'n-1.

It follows that

                
 | [ |

-,'
n  & 

4 n2 '
1  C

'
  +  

2 n2 '
9 - C' || [ ||

-,'
n-1  +  

n2 (n-1)2 '2
9  C

'
 || [ ||

-,'
n-2 .

4

We choose N so large that for  n > N  we have  9 - C' < n2 '  and  9 C' < 2 n2 (n-1)2 '2.
Then for  n > N, we have

                                          
 | [ |

-,'
n   &  

4 n2 '
1  C

'
   +   || [ ||

-,'
n-1 .

If we iterate this inequality, we obtain for  m " 0

                               
 || [ ||

-,'
n+m  &   || [ ||

-,'
n-1   +   

4 '
1  C

'
  *

j=0

m
  

(n+j)2
1   .
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 Hence,   su
m"0

p || [ ||
-,'
n+m  &  || [ ||

-,'
n-1  +  *

j=0

#
 
(n+j)2

1    <  #.

But ' and - are arbitrary, so this last inequality implies that  [ $ /2(S). This implies that
b $ /2(U × U). This completes the proof of the lemma.

  

We now prove Lemma 7, the result of which was used in proving Lemma 6.

Lemma 7

Let the seminorms  |  |n -,'  and  ||  ||n -,'  be as in the proof of Lemma 6. Then for functions f

and g in C#(S), and integers  k " 0, the following inequality holds:

                                     
 | f g |

-,'
k    &  9 || f ||

-,'
k  || g ||

-,'
k  .

Proof

                

 
!]m!I

n
!

m+nf g  ((
(
  =   ((

(
 *
j=0

m
  *

i=0

n
  

 9
:
;

m
j

 <
=
>
 
 9
:
;

n
i

 <
=
>
  
!]

j
!I

i
!

j+i
f    

!]
m-j
!I

n-i
!

m+n-i-j
g (

(
(

 (
(
(

             
 &  || f ||

-,'
m+n || g ||

-,'
m+n  'm+n [(m+n)!]2  *

j=0

m
  *

i=0

n
  

 9
:
;

m
j

 <
=
>
 
 9
:
;

n
i

 <
=
>
 

[(m+n)!]2
[(m+n-i-j)!]2 [(i+j)!]2

  .

Thus the proof has been reduced to showing that

   *
j=0

m
  *

i=0

n
  

 9
:
;

m
j

 <
=
>
 
 9
:
;

n
i

 <
=
>
 

[(m+n)!]2
[(m+n-i-j)!]2 [(i+j)!]2

  & 9.
                                 (41)

To see this, we use the standard inequality

                                                        

 9
:
;

m
j

 <
=
>
 
 9
:
;

n
i

 <
=
>
  &  

 9
:
;

m+n
i+j

 <
=
>
.
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Thus, the left hand side of inequality (41) is no greater than:

                           
 *
j=0

m
  *

i=0

n
  

 9
:
;

m
j

 <
=
>

-1

 
 9
:
;

n
i

 <
=
>

-1
  =  

 1
2
3
*
j=0

m
  

 9
:
;

m
j

 <
=
>

-1 4
5
6

  
 1
2
3
*
i=0

n
  

 9
:
;

n
i

 <
=
>

-1 4
5
6
  < 9.

The last inequality here is deduced from the fact that

                                 
 *
s=0

p

 
 9
:
;

p
s

 <
=
>

-1
  &   D

E
F

 1 + (p-1)/p + 1 < 3,    if  p " 1
1,    if  p = 0

Thus, inequality (41) has been established, completing the proof of the lemma.
  

4.5  Solution of the Control Problem for the Rotating System

We write equation (23) in the form

 
!t2
!

2w   +  q(t) w  +   + 
!x2
!

2  1
2
3
N 
!x2
!

2w 4
5
6
  =  0,

                                      (42)

where  q(t) = - (d[/dt)2,  and  + = 0-1, N = E I  as before. As in the non-rotating system, we
assume that + and N have been continued to be in C4[0,#) in such a manner that
+ N > 0  and, for all x sufficiently large, +(x) = N(x) = 1. We further assume that
q $ C1(U), while later we restrict attention to the case  q $ /2(U).

We now use the transmutation operator B of Theorem 5 to solve the 'semi-infinite rotating
beam problem', which we call  Problem C, consisting of equation (42) and the equations

w(0,t) = !w!x(0,t) = 0,                                                               (43)

w(x,0) = w0(x),    !w!t (x,0) = v0(x),                                                   (44)
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for  (x,t) $ [0,#) × U.

Our aim is to solve Problem C by applying B to solutions of equation (10). However, this
requires the existence of solutions of (10) for negative t values. But we are fortunate in that
equation (10) is time-reversible. In fact, we can easily show that we can continue the
strongly continuous semigroup S(t), for negative t values, to obtain a strongly continuous
group†. Moreover, it is easy to see that for  t & 0,

S(t) 
 32
21

 65
54  

  
w0
v0

 = S(-t) 
 32
21

 65
54  

  
w0
-v0

 .                                                      (45)

This equation allows us to continue the function K(x,a,t) for negative t values, for if 
 32
21

 65
54  

  
w0
v0

has compact support and  t < 0, then we obtain from equation (45), and Theorem 16 of
Chapter 1:

                                   S(t) 
 32
21

 65
54  

  
w0
v0

 = 
 32
2
2
21

 65
5
5
54     

          

K'(-t) K(-t)
 

K"(-t) K'(-t)
 
 32
21

 65
54  

  
w0
-v0

Thus, if w(.,t) is the first component of  S(t) 
 32
21

 65
54  

  
w0
v0

  and if we define for t negative

K(x,a,t) = - K(x,a,-t),                                                       (46)

then we obtain for  t $ R \ {0}  and 
 32
21

 65
54  

  
w0
v0

 of compact support,

 w(x, t) = 8
0

#

 K(x, a, t) v0(a) da   +   8
0

#

 
!t
!K(x, a, t) w0(a) da.

                           (47)

We now use these facts to investigate the solution of Problem C.

Theorem 8

† This follows from the remark after Theorem 4 of Chapter 1 and equation (110) of Chapter 1.
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Let  (w0,v0) $ DB2 and set w(.,t) equal to the first component of  S(t) 
 32
21

 65
54  

  
w0
v0

  for  t $ R. We

define for  t $ U,

 ~w(.,t) = B w(.,t) = w(.,t) +  8
-t

t
 b(s, t) w(.,s) ds.

                                    (48)

Then the mapping  [(t) = w~ (.,t)  satisfies:
(i) [ is a continuous mapping from U into H6(R+).
(ii) [ is continuously differentiable in the topology of H4(R+).
(iii) [ is twice continuously differentiable in the topology of H2(R+).

Moreover, w~  is a solution of Problem C, and if any other function u is a solution of Problem
C and has the regularity listed in (i), (ii), (iii) above, then  u = w~ .

Proof

By part (ii) of Theorem 1, the mapping  t . w(.,t)  has the regularity of (i), (ii) and (iii)
above. Hence (i), (ii) and (iii) follow immediately for the mapping [ since  b $ C2(U × U).

Further,  w~ (x,0) = w(x,0) = w0(x), and  !w
~
!t (x,0) = !w!t (x,0) + 2b(0,0) w(x,0) = v0(x)  because

b(0,0) = 0. Also, w~  satisfies the 'clamped end' conditions (equations (43)) because w
satisfies these conditions.

The fact that w~  satisfies equation (42) follows from the properties of the transmutation
operator B, for we have:

                   

 1
2
3 !t2
!

2
  +  q(t)

 4
5
6
 _w(x, t) = 

 1
2
3 !t2
!

2
  +  q(t)

 4
5
6
 Bw (x, t) = B 

 1
2
3 !t2
!

2w 4
5
6

      
 = B 

 1
2
3
- + 

!x2
!

2
 N 

!x2
!

2w 4
5
6
(x, t) = - + 

!x2
!

2
 N 
!x2
!

2
 Bw (x, t) = - + 

!x2
!

2
 N 

!x2
!

2 _w(x, t).

We now establish the uniqueness of the solution. For this, we define the energy E0 of a
solution W of Problem C as
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 E0(t) =  2

1 8
0

#

 0(x) 
 1
2
3 !t
!W (x, t) 4

5
6

2

  +  E(x) I(x) 
 1
2
3 !x2
!

2W (x, t)
 4
5
6

2

  dx.

If W is a solution of Problem C with the regularity specified in (i), (ii), (iii), then we can
differentiate the energy and obtain:

                   
 E0' (t) =  8

0

#

 0 
!t
!W 

!t2
!

2W  +  E I 
!x2
!

2W 
!t!x2
!

3W   dx

                             
 =  - q(t)  8

0

#

  W(x, t) 
!t
!W(x, t)  dx

                             
 &  |q(t)| ||W||

L2  ((
(

 (
(
( !t
!W  (

(
(

 (
(
(L2

 .

But if we now assume that  W(x,0) = 0, it follows that

                                          
 E0' (t) & |q(t)|

 (
(
(

 (
(
( !t
!W(t) (

(
(

 (
(
(

L2
  8
0

t
 

 (
(
( 
 (
(
( !t
!W(^) (

(
(

 (
(
(

L2
 d^ 

We pick - so that  U W [--,-]  and  C = C(-) so that  |q(t)| & C  on [--,-]. We then obtain

                                          
 E0(t)  & C 8

0

t
 (t - ^) E0(^)  d^

 for  t $ [--,-], since the function  w~  - u  has zero initial energy. This implies that its energy
vanishes on [--,-]. Since  - > 0  is arbitrary, we see that the energy vanishes on U. This

implies that  !
2

!x2(w~  - u)  vanishes for x in [0,#). Since  w~  - u  satisfies the 'clamped end

conditions', it follows that  w~  - u  vanishes identically. This completes the proof of the
theorem.
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We now wish to show that the solutions w~  of the theorem above can be written in the form
of equation (2) of Chapter 3. i.e. for (w0,v0) of compact support,

 _w(x, t) =  8
0

#

 K1(x, a, t) w0(a) da  +  8
0

#

 K0(x, a, t) v0(a) da .
                          (49)

If we can establish (49) and show that K1 and K0 are of Gevrey class 2, then we can apply
the theory of Chapter 3 and construct new kernels which vanish for  t " T.

In view of equations (47) and (48), the obvious choices for the kernels K1 and K0 are
respectively  B(!K/!t)  and  BK. There is no problem in setting  K0 = BK, for K is a
continuous function of (x,a,t). However, we must be careful with what we mean by
B(!K/!t), for  !K/!t  may be unbounded for t near the origin. Instead, we write for K1 what
we would formally obtain after an integration by parts of the expression  B(!K/!t):

Definitions: (i) For  (x,a,t) $ [0,#)2 × U, we define

 K0(x, a, t) = K(x, a, t)  +  8
-t

t
 b(s, t) K(x, a, s) ds.

                                     (50)

(ii) For  (x,a,t) $ [0,#)2 × (U \ {0}), we define

    
 K1(x, a, t) =  

!t
!K(x, a, t)  +  b(t, t) K(x, a, t)  -  b(-t, t) K(x, a, -t)  -  8

-t

t
 
!s
!b(s, t) K(x, a, s) ds

 
 =  

!t
!K(x, a, t)  -  2

1 
 1
2
3
8
0

t
 q(^) d^

 4
5
6
 K(x, a, t)  -  8

-t

t
 
!s
!b(s, t) K(x, a, s) ds.

                (51)

In order to apply the theory of Chapter 3 to these kernels, we must first show that they have
the require Gevrey properties and that equation (49) is indeed satisfied. However, there are
some difficulties in doing this, because of the unbounded nature of the partial derivatives of
K(x,a,t) near  t = 0. We use the following lemma to overcome these difficulties.

Lemma 9
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For integers  n " 0, we define In(x,a,t)  for (x,a,t) on  [0,#)2 × R  by

       
 I0(x, a, t) =  8

0

t
 K(x, a, s) ds,   and for  n " 1,    In(x, a, t) =  8

0

t
 In-1(x, a, s) ds,

i.e. we have for  n " 0,

                                 
 In(x, a, t) =  8

0

t
 n!
(t-s)n

 K(x, a, s) ds.

Let R  be any compact rectangle in [0,#)2. Then the mapping  t . In(.,.,t)  is a member of
/2(R\{0}; D4,1(R))  and if  n " 2, it is also a member of C(R ; D4,1(R)).

Proof

By equation (46), we need only to examine the behavior of In for  t & 0. Because of the way
the kernel K was defined in terms of a kernel J (see equation (112) of Chapter 1 for the
definition of K, and equation (94) of Chapter 1 for the definition of J), it clearly suffices to
prove the lemma for J.

We first prove that the kernels are given by

 In(x, a, t) = 2Ji
1   8
/-i#

/+i#

  
B

n+1
g(x, a, B ) eBt dB,

                                             (52)

where the constant / is as in equation (94), Chapter 1.
Now by equation (94),

                        
 8
0

t
 J(x, a, s) ds =  2Ji

1   8
/-i#

/+i#

  g(x, a, B ) (eBt - 1)/B dB.
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For  R > 0, we let CR denote the contour which consists of the semi-circle which is the
intersection of the set  {B : Re B " /} with the circle of radius R, centered at /. The
orientation of CR is shown in figure 11. By inequality (88), Chapter 1,

                                            g(x, a, B ) & M3 |B |-3/2

                                                

/

 CR

                                                          Figure 11

                                            g(x, a, B ) & M3 |B |-3/2

if  Re B " 0. Thus,

 8
/-i#

/+i#

  g(x, a, B ) B-m dB  =  lim
R.#

    8
CR

  g(x, a, B ) B-m dB  = 0,   for  m " 0.

              (53)

Hence equation (52) holds if  n = 0. We pose the inductive hypothesis that it holds if
n = k. If this is the case, we use equation (53) and obtain

                

 Ik+1(x, a, t) = 8
0

t
 Ik(x, a, s) ds =  2Ji

1  8
/-i#

/+i#

 g(x, a, B ) (eBt-1)/Bk+2 dB
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 =  2Ji
1  8
/-i#

/+i#

  
B

k+2
g(x, a, B ) eBt dB.

Equation (52) follows by induction.

We omit the proof that  In(.,.,t)  is a member of  /2(R\{0}; D4,1(R)), and point out that this
proof is based on equation (52) and is very similar to the last part of the proof of Theorem
11, Chapter 1, in which the Gevrey smoothness of J is established.

To see that  In(.,.,t)  is a member of  C([0,#); D4,1(R))  for  n " 2, it suffices to prove that
the integral in equation (52) converges  for  n " 2, absolutely in  D4,1(R), uniformly for t on
compact subsets of [0,#). If we set  R = [0,d"] × [0,d'], then this fact follows immediately
from inequality (88) of Chapter 1, which states that

                                 
 

 (
(
( B

n+1
g(., . , B ) eBt

 (
(
(4,1

(d", d' )  &  M3 
|B |n
e/t  .

  

Theorem 10

Let  q $ /2(U). Then the mappings  t . K0(.,.,t)  and  t . K1(.,.,t)  are members of
/2(U\{0}; D6,1(R)), for any compact rectangle R  contained in [0,#)2. Further, the kernels
satisfy, for  i $ {0,1},

 Ki(0, a, t) = 
!x
!Ki(0, a, t) = 0,     for  t $ U\{0},

                               (54)

 
!t2
!

2Ki  +  + 
!x2
!

2
 N 

!x2

!
2Ki  +  q Ki  =  0,   in  (0,#)2 × [U\{0}].

                 (55)

If  (w0,v0) $ DB2  and has compact support, then the solutions of Problem C (as given in
Theorem 8) are, for  t K 0, expressible as:
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 _w(x, t) =  8
0

#

 K1(x, a, t) w0(a) da  +  8
0

#

 K0(x, a, t) v0(a) da .
                          (49)

Proof

For the first part of the theorem, we show that K0 has the properties listed. The proof that
K1 also has these properties is similar.

By Lemma 6, b $ /2(U × U)  and thus  b $ C#(U × U), so we can integrate by parts in
equation (50) to obtain:

     
 K0(x, a, t) = K(x, a, t)  +  [I0(x, a, s) b(s, t) - I1(x, a, s) 

!s
!b(s, t) + I2(x, a, s) 

!s2
!

2b(s, t)]s=-t
s=t

                                 
 - 8
-t

t
 
!s3
!

3b(s, t) I2(x, a, s) ds.

Thus, to show that  K0(.,.,t)  is in  /2(U\{0}; D4,1(R)), it suffices to prove that

                                 
 M(x, a, t) = 8

-t

t
 
!s3
!

3b(s, t) I2(x, a, s) ds.

is in  /2(U\{0}; D4,1(R)). We show that the mapping is in  /2(U ? (0,#); D4,1(R)), the
proof for negative values of t being similar.

Let  [t0,t1]  T U ? (0,#). Then for  t $ U ? (0,#)  we have  M(x,a,t) = M1(x,a,t) + M2(x,a,t)
+ M3(x,a,t), where

     

 M1(x, a, t) = 8
-t

-t0
 
!s3
!

3b(s, t) I2(x, a, s) ds,          M2(x, a, t) = 8
-t0

t0
 
!s3
!

3b(s, t) I2(x, a, s) ds,

                                   

 M3(x, a, t) = 8
t0

t
 
!s3
!

3b(s, t) I2(x, a, s) ds.
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Now we apply Lemmas 6 and 9 to obtain for  t $ [t0,t1]

                   
 

 (
(
( !tn
!

nM2(., . , t)
 (
(
(

4,1

 & 8
-t0

t0
   

 (
(
( !tn!
!

n+3b(s, t)
 (
(
(

 |I2(. , . ,s)|4,1
 ds

s3

                                                & constant .  'n+3 [(n+3)!]2,     for any  '  > 0.

Hence  M2(.,.,t) $ /2([t0,t1]; D4,1(R)).

Now we consider M3 and note that the product  f(.,.,s,t) = !
3b
!s3(s,t) I2(.,.,s)  is a member of

/2([t0,t1]2 ; D4,1(R)). An easy computation yields

     

 
!tn
!

nM3(x, a, t) =  *
j=0

n-1
   1
2
3 dt

d   45
6

j
 
!tn-1-j
!

n-1-j
f (x, a, t, t)  +  8

t0

t
  
!tn
!

nf(x, a, s, t) ds

                         

 =  *
j=0

n-1
  *

k=0

j

  
 9
:
;

j
k

 <
=
>
 
!sk!tn-k-1
!

n-1f (x, a, t, t)   +   8
t0

t
  
!tn
!

nf(x, a, s, t) ds.

Thus, for all t in [t0,t1], and for any  ' > 0, we can find C1 and C2 so that

       

 (
(
( !tn
!

nM3(., . , t)
 (
(
(

4,1

 & C1 *
j=0

n-1
  *

k=0

j

  
 9
:
;

j
k

 <
=
>
 'n-1 [(n-1)!]2   +  C2 'n [n!]2

                                   
 = C1 'n-1 [(n-1)!]2 *

j=0

n-1
 2

j
   +  C2 'n [n!]2

                                    & 2 C1 (2')n-1 [(n-1)!]2  +  C2 'n [n!]2.
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Hence  M3(.,.,t) $ /2([t0,t1]; D4,1(R)). Similarly, we may show that  M1(.,.,t) $
/2([t0,t1]; D4,1(R)). The proofs are almost identical for negative t values and we see that
K0(.,.,t) $ /2(U ? (0,#); D4,1(R)).

We now let  [ $ C#
0 (R+). Clearly  (0,[) $ DB2. We let u(.,t) be the first component of

S(t) 
 32
21

 65
54 

 
0
[   and we set  u~(.,t) = Bu (.,t). But

                                      
 u(x, t) = 8

0

#

 [(a) K(x, a, t) da.

Thus, we may write

                
 _u(x, t) = 8

0

#

 [(a) K(x, a, t) da  +  8
-t

t
 b(s, t) 8

0

#

 [(a) K(x, a, s) da ds

                          
 = 8

0

#

 [(a) K0(x, a, t) da.

But u~ is a solution of Problem C (see Theorem 8). Using this fact and our newly found
knowledge of the regularity of K0 yields the equations

                  
 8
0

#

 [(a) K0(0, a, t) da  =  8
0

#

 [(a) 
!x
!K0(0, a, t) da = 0,

               
 8
0

#

 [(a) 
 1
2
3 !t2
!

2K0  +  q K0  +  + 
!x2
!

2
 N 

!x2

!
2K0

 4
5
6
(x, a, t) da = 0.

But, since [ is an arbitrary member of C#
0 (R+), it follows that K0 satisfies equations (54)

and (55).

Now, since K0 satisfies the partial differential equation (55) and is a member of
/2(U ? (0,#); D4,1(R)), it follows easily that K0 $ /2(U ? (0,#); D6,1(R)).
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We note that all of the results proved above for K0 may similarly be proved for K1. Thus, it
remains for us to prove equation (49). If  (w0,v0) $ DB2 with compact support, then we have

                    
 w(x, t) = 8

0

#

 K(x, a, t) v0(a) da  +  8
0

#

 
!t
!K(x, a, t) w0(a) da.

Hence,

             
 _w(x, t) = 8

0

#

 K(x, a, t) v0(a) da  +  8
0

#

 
!t
!K(x, a, t) w0(a) da

                        
 +  8

-t

t
 b(s, t) 

 D
E
F
8
0

#

 K(x, a, s) v0(a) da  +  
!s
!  8

0

#

 K(x, a, s) w0(a) da
 Q
P
O

 ds

                       
 = 8

0

#

 K0(x, a, t) v0(a) da  +  8
0

#

 
!t
!K(x, a, t) w0(a) da 

                       

 +  
 1
2
3
b(s, t) 8

0

#

 K(x, a, s) w0(a) da
 4
5
6s=-t

s=t

   -  8
-t

t
 
!s
!b(s, t) 8

0

#

 K(x, a, s) w0(a) da ds

                       
 = 8

0

#

 K0(x, a, t) v0(a) da   +   8
0

#

 K1(x, a, t) w0(a) da.

This completes the proof of the theorem.
  

We are now ready to use the theory of Chapter 3 to obtain kernels K~ 0 and K~ 1 which vanish
for  t " T.

Theorem 11

Let  0 < T < r  (recall that  U= (-r,r) ), and  - > 0  satisfy  0 < - < T. Then there exist kernels
K~ 0 and K~ 1 satisfying (i $ {0,1}):
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(a) K~ i(x,a,t) = Ki(x,a,t)  for  t & -.

(b) K~ i(x,a,t) = 0  for  t " T.

(c) K~ i(0,a,t)= !K
~

i
!x (0,a,t) = 0.

 
!t2
!

2Ki  +  + 
!x2
!

2
 N 

!x2

!
2Ki  +  q Ki  =  0.

~ ~
~(d)

(e)  The mapping  t . K~ i  is a member of  /2(U\{0}; D6,1(R))  for any compact rectangle R
contained in [0,#)2.

Proof

Parts (a) - (d) are direct consequences of Theorem 16 of Chapter 3. The theorem also
implies that the mapping in (e) is a member of  /2(U\{0}; D6,1(R)). However, since each of
the kernels satisfies the partial differential equation in (d), it is easily seen that statement (e)
holds.

  

Before stating the theorem concerning the controllability of Problem C, we give a
uniqueness lemma which shows that the response w~  to the boundary controls is unique. We
define the energy E of a solution of Problem B by the same formula defining the energy for
solutions of Problem A, i.e.

 E(t) = 2
1 8

0

d
 0(x) 

 1
2
3 !t
!w (x, t) 4

5
6

2

  +  E(x) I(x) 
 1
2
3 !x2
!

2w (x, t)
 4
5
6

2

 dx  + 2
1 m 

 1
2
3 dt

dy(t) 4
5
6

2

 + 2
1 J 

 1
2
3 dt
d' (t) 4

5
6

2

.

Lemma 12

Let w~  be a solution of Problem B having the regularity properties: the mapping  t . w~ (.,t)
is continuous in the topology of H6(0,d), continuously differentiable in the topology of
H4(0,d) and twice continuously differentiable in the topology of H2(0,d).
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Then:

 (i)            dt
dE  = f1(t) dt

dy  +  f2(t) dt
d'   - q(t) 8

0

d
 _w

!t
! _w dx.

(ii) If W is any other such solution of Problem B with the same boundary functions f1 and
f2, then  W = w~ .

Proof

The regularity of w allows us to differentiate E and we obtain (i) by an integration by parts.
The uniqueness assertion may now be proved just as it was proved for Problem C in
Theorem 8.

  

We now state the boundary controllability result for Problem B.

Theorem 13

Consider the boundary controllability of Problem B. We let U = (-r,r) and suppose that
q $ /2(U). Let  (w0,v0) $ H6(0,d) × H4(0,d)  satisfy the 'clamped end conditions'

                                           w0(0) = w0'(0) = 0

and the 'compatibility conditions'

                         v0(0) = v0'(0) = (N w0")"(0) = {+ (N w0")"}'(0) = 0,

where  + = 1/0  and  N = E I  are members of C4[0,d] and  +(x) > 0, N(x) > 0 for all  x $
[0,d].

Then, given  T $ (0,r), there exist boundary control functions  f1: [0,r) . R  and
f2: [0,r) . R, which are continuous on [0,r) and are members of  /2((0,r)), such that
Problem B has a solution w~  with the properties:
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(i) For  t $ [0,r), t . w~ (.,t)  is continuous in H6(0,d), continuously differentiable in H4(0,d)
and twice continuously differentiable in H2(0,d). Moreover, w~  is unique in the class of
solutions of Problem B with these regularity properties.

(ii) w~ (.,t) = 0  for  T & t < r.

Proof

First, we extend the domain of the initial data so that the extension is in  H6(R+) × H4(R+)
and has compact support. By Theorem 1, (w0,v0) is now in DB2. We let K~ 1 and K~ 0 be the
kernels of Theorem 11 and set

                       

 _w(x, t) =  8
0

#

 K1(x, a, t) w0(a) da  +  8
0

#

 K0(x, a, t) v0(a) da .~ ~

By Theorems 8, 10 and 11, for  t $ U, t . w~ (.,t)  is continuous in H6(0,L), continuously
differentiable in H4(0,L) and twice continuously differentiable in H2(0,L) for any  L > 0.
Also, w~ (.,t) vanishes for  t " T  because K~ 1(.,.,t) and K~ 0 do.

We set  f1(t) = B1w(d,t)  and  f2(t) = B2w(d,t).  It is clear that f1 and f2 are in /2(0,#)
because w~  is in /2((0,r); C6[0,L]) for any  L > 0  (by Theorem 11, part (e)). Moreover,
because of the regularity of the mapping  t . w~ (.,t)  for  t $ [0,r), it is easy to see that the
Sobolev embedding theorems imply that f1 and f2 are continuous on the interval [0,r).

Finally, the uniqueness of w~  has already been proved in Lemma 12.
  



Chapter 5

Gevrey Semigroups

5.0  Introduction

In this chapter, we develop a theory for the Gevrey regularity of strongly continuous
semigroups. Our aim is to try to complement the beautiful theory which already exists and
describes necessary and/or sufficient conditions for a semigroup to be differentiable or
analytic. The reader may find such results in the work by Pazy [18], which inspires much of
the theory of this chapter.

One would expect that Gevrey semigroups should have a behavior somewhat 'between' that
of differentiable semigroups and analytic semigroups. This is indeed found to be the case,
and we point out the similarities throughout the next section with numerous references to
[18].

We begin in Section 5.1 with definitions and theory. The chapter ends (Section 5.2) with a
number of examples which demonstrate the application of the theorems to some concrete
problems.

5.1  Theory of Gevrey Semigroups

Definition: Let T(t) be a strongly continuous semigroup on a Banach space X and let
- > 1. We say that T(t) is of Gevrey class  - for  t > t0 if T(t) is infinitely differentiable for
t $ (t0,#) and, for every compact  K  T (t0,#) and each  ' > 0, there exists a constant  C =
C(',K) such that

 ||T
(n)

(t)|| & C 'n (n!)-         for all  t $ K  and  n $ {0, 1, 2, 3,  .  .}.                   (1)

Remarks: (1) We did not specify in the definition the type of differentiation. We assume
that T(t) is infinitely differentiable in the operator norm topology, but this is easily seen to
be equivalent to T(t) being infinitely differentiable in the strong topology.

(2) If T(t) is strongly continuous then there exist constants  M " 1  and  \ $ R  such that
||T(t)|| & M e\t. This implies that the estimates (1) for  t $ K  may be replaced with
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equivalent estimates on intervals [t1,#), where  t1 > t0. This is shown in the following
theorem.

Theorem 1

Let T(t) be a strongly continuous semigroup satisfying  ||T(t)|| & M e\t  and suppose that
T(t) is infinitely differentiable for  t > t0. Then the following statements are equivalent:

(a) T(t) is of Gevrey class - for  t > t0.

(b) For any  t1 > t0  and  ' > 0 there exists a constant  C1 = C1(t1,') such that

                           ||T
(n)

(t1)|| & C1 'n (n!)-        for each  n $ {0, 1, 2, 3,  .  .}.

(c) For any  t1 > t0  and  ' > 0 there exists a constant  C2 = C2(t1,') such that

                |T
(n)

(t)|| & C2 'n (n!)- e\t    for all  t $ [t1,#)  and  n $ {0, 1, 2,  .  .  .}.

Proof

It is obvious that (a) implies (b) and that (c) implies (a). To show that (b) implies (c), we let
t1 > t0  and  ' > 0  be given, and we choose C1 as in (b). Now, for any  s1 " 0, s2 > t0, we
have the identity

                                          T
(n)

(s1+s2) = T(s1) T
(n)

(s2).

Thus, we obtain for  t " t1

                        ||T
(n)

(t)|| = ||T(t - t1) T
(n)

(t1)|| & M e
\(t-t1)

 C1 'n (n!)-,

which yields (c), with  C2 = M C1 exp[-\t1].
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While Theorem 1 is of interest with regard to the definition of Gevrey semigroups, it does
not help us to identify them. The following theorem is more useful in this respect, for it
provides necessary and sufficient conditions on the resolvent of the infinitesimal generator
of such semigroups.

Theorem 2

Let T(t) be a strongly continuous semigroup with infinitesimal generator A. Let RB denote
the resolvent of A and let 0(A) denote the resolvent set of A. The following statements are
equivalent:

(a) T(t) is of Gevrey class - for  t > t0.

(b) For each  t1 > t0  and  b > 0, there exist constants  a > 0, C1 " 0, C2 " 0, depending on
only b and t1, such that

0(A) W Ub = { B : Re B " a - b |Im B|1/-},                                          (2)

||RB|| & C1 exp[-t1 Re B] + C2       for all  B $ Ub.                                    (3)

Remark: For strongly continuous semigroups, one can always find  \ $ R  such that for
Re B > \,  ||RB|| & C/[(Re B) - \]. Thus, for applications, estimate (3) need only be verified
in the subset  Ub ? {B : Re B < \ + L}, for some  L > 0.

The proof of Theorem 2 relies on the following lemma. Although the lemma is a simple
generalization of a lemma in [18] (Lemma 4.6, page 53), we provide a proof of it because we
shall also use elements of this proof to prove Theorem 2. We prove Theorem 2 after
proving Lemma 3.
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Lemma 3

Suppose T(t) is n times differentiable (in the strong topology) for  t > t0. Then, if  t > t0,

                                   0(A) W {B : Bn eBt $ 0(An d(t))}.

Proof of Lemma 3

If  n = 0, Lemma 3 is proved in [18] (Theorem 2.3, page 45), so we consider only the case
n " 1. As in [18], we define a family of operators BB(t) on X as:

                                        
 B
B
(t) x = 8

0

t
 eB(t-s) T(s) x ds.

One easily shows that  BB'(t) = T(t) + B BB(t)  and that (see [18], Lemma 2.2)

 (BI - A) B
B
(t) x = eBt x - T(t) x     for all  x $ X,                                    (4)

 B
B
(t) (BI - A) x = eBt x - T(t) x     for all  x $ DA.                                   (5)

From now on we assume that  t > t0. Then

 B
B

(n)
(t) = Bn B

B
(t) +  *

k=0

n-1
 Bn-k-1 T

(k)
(t).

                                            (6)

Equations (5) and (6) imply that for all  x $ DA,

 B
B

(n)
(t) (BI - A) x = [Bn B

B
(t) +  *

k=0

n-1
 Bn-k-1 T

(k)
(t)] (BI - A) x = B

n eBt x - T
(n)

(t) x.
    (7)

We also show that for all  x $ X,
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  (BI - A) B
B

(n)
(t) x = (BI - A) [Bn B

B
(t) +  *

k=0

n-1
 Bn-k-1 T

(k)
(t)] x = B

n eBt x - T
(n)

(t) x.
   (8)

If  x $ DA, then equation (8) follows from equations (4), (5), (6) and (7). But then (8) must
hold for all  x $ X, for each entry in the equation is a bounded operator acting on x, and DA
is dense in X.

Suppose that  Bn eBt $ 0(An T(t)). Then, on setting  x = (Bn eBt - An T(t))-1y  in equation
(8), we obtain

                     y = (BI - A) B
B

(n)
(t) (Bn eBt - An T(t))-1 y      for all  y $ X.

Equation (7) implies that

                     x = B
B

(n)
(t) (Bn eBt - An T(t))-1  (BI - A) x    for all  x $ DA.

The last two equations show that  BI - A  is invertible. Thus, B $ 0(A) and the lemma has
been proved.

  

Proof of Theorem 2

(a) eeee    (b): We let  t1 > t0 , b > 0, set  ' = e-1 [b t1]--  and choose C so that inequality (1) is
satisfied for t = t1. By Lemma 3, we have for  n " 0,

                         0(A) W {B : Bn exp[Bt1] $ 0(An T(t1))}

                                  W {B : |Bn exp[Bt1]| > C 'n n-n}

                                  = {B : t1 Re B > ln C + n ln[' n-/|B |] }.

For a fixed B, we pick n to be the largest integer smaller than  (|B| [' e]-1)1/-. Thus,
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 n ln[' n-/|B |] < n ln e-1 = -n < - 

 1
2
3 ' e

|B |  4
5
6

1/-

 + 1.

Thus, we see that  0(A) W Ub = { B : Re B " a - b |Im B|1/-}, where we have chosen

                                a > max{0, [2 + ln C]/t1}.

Now we estimate the resolvent on Ub. By equation (7) of Lemma 3, with 'RB x' in place of
'x', we obtain

          
 Bn exp[Bt1] R

B
 x = An T(t1) R

B
 x +  *

k=0

n-1
 Bn-k-1 T

(k)
(t1) x + Bn B

B
(t1) x.

Thus,

      
 ||R

B
 x|| &  

|B |n
C 'n n-n

 exp[-t1 Re B] ||R
B
 x||  +  

|B|
 *
k=0

n-1
 C 

|B |k
'

k k-k
 exp[-t1 Re B] ||x||

                                              
 + 

 (
(
(

 (
(
(

 8
0

t1
 e-Bs T(s) x ds

 (
(
(

 (
(
(

.

For a fixed B, we pick n to be the largest integer smaller than  (|Im B| [' e]-1)1/-. Thus,

                         
 
|Im B|n
'

n n-n
  & e-n & exp[1 - (|Im B| [' e]-1)1/-].

So we obtain

               ||RB
 x|| & C exp[-t1 Re B + 1 - (|Im B| [' e]-1)1/-] ||R

B
 x||

                            
 +  

|B |
  *

k=0

n-1
  C e-k exp[- t1 Re B]   +   8

0

t1
 |e-Bs| ||T(s) x|| ds. ||x||
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But if  B $ Ub  then

           -t1 Re B + 1 - (|Im B| [' e]-1)1/- = - t1 Re B + 1 - b t1 |Im B|1/- < -1 - ln C.

Further, if  ||T(s)|| & M e\s, then we obtain for B $ Ub:

                      
 ||R

B
 x|| & e-1 ||R

B
 x||  +  e-1

Ce  |B |-1 exp[-t1 Re B] ||x||

                                                  
+   M t1 exp[\ t1] max{1,  exp[-t1 Re B]}.||x||

This yields estimate (3) since  |B|-1 is bounded in Ub. This completes the proof that
statement (a) implies statement (b).

(b) eeee (a): Assuming that (b) holds, and given  t1 > t0, b > 0, we choose C1, C2 and
a > 0 so that (2) and (3) are satisfied. We suppose at first that  x $ DA2. Thus, we can find
/ $ R  such that for all  t > 0,

                                   

 T(t) x =  2Ji
1   8
/-i#

/+i#

  R
B
 x  eBt  dB,

where the integral converges as an improper Riemann integral in X. Consider, for real
numbers R satisfying  a - b |R|1/- < /, the contour  YR = {s+iR : a - b |R|1/- & s & /} with
orientation in the direction of increasing Re B. Since, for  x $ DA2, we have

                                
 R
B
 x  =  

B
x   +  

B
2

A x  +  
B

2

R
B
 A2 x

 ,

it follows that we can find constants c1 and c2 so that for  B $ Ub,

                               ||RB x|| & c1
|B | exp[-t1 Re B]  +  c2

|B |  .
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a/

Y

 Y
R

                                                               Figure 12

Thus for  t > t1, we have

            
 

 (
(
(
8

YR

  R
B
 x  eBt dB   &   8

a - b|R|1/-

/

     |R|
1  (c1 exp[(t-t1)s] + c2 exp[t s]) ds

 (
(
(

 (
(
(

 (
(
(

                                              
 &  |R|

1  
 1
2
3

t - t1

c1 exp[(t - t1) /]
  +  t

c2 exp[t /] 4
5
6
.

 Clearly   lim
R. ±#

     8
YR

 R
B
 x  eBt dB = 0  for  t > t1  and we may write

                           
 T(t) x =  2Ji

1   8  RB x  eBt dB         (x $ DA2 ,   t > t
1
),  

f

where f is the contour consisting of the boundary of Ub with orientation in the direction of
increasing Im B.

We now estimate each of the integrals  8
f

 |B|n ||RB|| |eBt| |dB|. We parametrize f by
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                B = i R - b |R|1/- + a,                    dB = i dR ± b- |R|-1+1/- dR.

Let  R0 > 0  be such that for  |R| > R0  we have

                             - b |R|1/- + a  & 0,     |B| & 2|R|,    |dB| & 2|dR|.

Then for  t > t1  we obtain

 8
 ? {B : Im B >R0}

       |B |n ||R
B
|| |eBt| |dB|  &  2n+1 (c1 + c2) exp[a(t - t

1
)]  8

R0

#

 Rn exp[-(t - t
1
) b R1/-] dR

f

                              
 & 2n+1 (c1 + c2) exp[a (t - t1)] -  8

0

#

 u(n+1)--1 exp[-(t - t1) b u] du

                              
 =  

 1
2
3 {b(t - t1)}-

2  4
5
6

n+1

 - (c1 + c2) exp[a(t - t1)]  Y[(n+1)-].

But  Y[(n+1)-] < [(n+1)-](n+1)- = -(n+1)- [n+1](n+1)- < -(n+1)- [en+1 (n+1)!]-. Thus, the
integral is bounded by

                                

 D
E
F

2
 1
2
3
b(t - t

1
)

e -  4
5
6

- Q
P
O

n+1

 - (c1 + c2) exp[[a(t -  t
1
)] [(n+1)!]-

We may similarly analyse the corresponding integral over  f ? {B : Im B < -R0}  and
obtain the same bound for it. Also, if d is the diameter of  f ? {B : |Im B| & R0}, then it is
obvious that we can find a constant N such that

                             
 8

f ? {B : |Im B| & R0}

         |B |n ||R
B
|| |eBt| |dB|  &  N dn eat.

We set
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 ' = '(b, t - t1) = 4 

 1
2
3

b (t - t
1
)

e -  4
5
6

-

and conclude from the estimates above that for t in any prescribed compact subset K of
(t1,#), there exists a constant C3, depending on only b, K and t1, such that

 8
f

 |B |n ||R
B
|| |eBt| |dB|  &  C3 'n (n!)-.

                                         (9)

These bounds show that each of the integrals  In(t) = 1
2Ji 8

f
 Bn RB eBt dB  converges

absolutely in the operator norm topology, uniformly for t in compact subsets of (t0,#). We
can now proceed as in the proof of Theorem 11 in Chapter 1 to show that  In'(t) = In+1(t)
for  t > t0  and  n " 0, where the differentiation is in the sense of the operator norm
topology. But for  x $ DA2, we know that  I0(t) x = T(t) x. Since DA2 is dense in X, it
follows that  I0(t) = T(t)  for  t > t0.

The above considerations show that we can do the following: Given a compact subset K  of
(t0,#) and  '0 > 0, we let  ^ = dist (K, t0) and set  t1 = t0 + ^/2. We choose b so that  '(b,^/2)
< '0 . We can now pick C3 so that inequality (9) holds for all  t $ K  and conclude that

                                            ||T
(n)

(t)||  &  C3 '0
n (n!)-  for all  t $K  .

This completes the proof of the theorem.
  

We now give some sufficient conditions for semigroups to be of Gevrey class. Often, as we
shall see in the examples, they are easier to apply than Theorem 2. We remark that all of
these conditions are similar to well known conditions for differentiable or analytic
semigroups, which may be found in [18].
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Theorem 4   (c.f. Theorem 4.9, p 57 of [18])

Let T(t) be a strongly continuous semigroup satisfying  ||T(t)|| & M e\t. Suppose that, for
some  µ " \  and + satisfying  0 < + & 1,

                                      
 lim
| |̂.#

 sup  |̂ |+ ||R
µ+i |̂|  =  C  <  #.

Then T(t) is of Gevrey class - for  t > 0, for every  - > 1/+.

Proof

RB may be written as a Taylor series near  µ + i^:

 R
B
 =  *

k=0

#
 (R

µ+i^)
k+1 (µ + i^ - B)k.

                                        (10)

Given  L > 0, we choose ^0 so that for  |^| > ^0  we have  ||Rµ+i^|| &  C + L/2
|^|+  . It then follows

that the Taylor series converges in the operator norm topology for all B satisfying

|µ + i^ - B| < |^|+
C + L . Thus, the resolvent exists in the set

                            {B = V + i^ : |µ - V| < |^|+
C + L  , |^| > ^0}.

In this set, we easily find from equation (10) that  ||RB|| &   (2C + L)(C + L)
L |^|+  .

Further, since  ||T(t)|| & M e\t, the resolvent also exists in the set  {B : Re B " µ + ]},
where  ] > 0. In this set, ||RB|| & M/(\-Re B) & M/]. Thus, it follows that

                           
 0(A) W {B : Re B " µ + ] +  C + L

^0
+ - |Im B|+

  }
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and that ||RB|| is bounded in U. Suppose that  - > 1/+. Given any  b > 0, it is clear that 'a'
can be chosen so that  U W Ub = { B : Re B " a - b |Im B|1/-}. By Theorem 2, T(t) is of
Gevrey class - for  t > 0.

  

Theorem 5   (c.f. Theorem 4.11, p 58, and Corollary 5.7, p 68 of [18])

Let T(t) be a strongly continuous semigroup and suppose that there exist constants +, C and
L such that  0 < + & 1, C > 0, L > 0  and

                                  || T(t) - I || & 2 - C t1-+        for all  t $ (0,L).

Then T(t) is of Gevrey class - for  t > 0, for every  - > 1/+.

Proof

The proof is just a simple modification of the proof of Theorem 4.11 in [18], so we refer the
reader to this source. We remark that the proof here relies on our Theorem 4, while in [18],
use is made of the corresponding result for differentiable semigroups (Theorem 4.9, p 57).

  

Remark: If  + = 1  in the statement of Theorem 5 then the semigroup is analytic. This is a
simple consequence of Corollary 5.7, p 68 of [18].

Theorem 6   (c.f. Theorem 5.2 (d), p 61 of [18], for analytic semigroups).

Let T(t) be a differentiable semigroup and let  - > 1. Suppose that

                                                 
 lim
t b 0

    t- ||T' (t)|| = 0.

Then T(t) is of Gevrey class - for  t > 0.
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Proof

Let  ' > 0  and  t1 > 0. We set  C = (t1/e)- '  and pick  L > 0  so that  ||T'(t)|| & C tc-  for
t $ (0,L). Now, T(n)(t1) = (T'(t1/n))n, so if  n > t1/L, we have

                        ||T
(n)

(t1)|| &  [C n- / t1
-]n  & [C e-/ t1

-]n (n!)- & 'n (n!)-.

It follows that we can find a constant C1 such that

                       ||T
(n)

(t1)|| & C1 'n (n!)-        for each  n $ {0, 1, 2, 3,  .  .}.

The result follows, because of Theorem 1.
  

In some of the examples to follow, we use the following simple consequence of the above
result:

Corollary 7

Let T(t) be a differentiable semigroup and  N " 1. Suppose that there exist constants C and L
such that  ||T'(t)|| & C tcN  for  0 < t < L. Then T(t) is of Gevrey class - for  t > 0, for every  -
> N.

  

The following result gives a test for Gevrey regularity of semigroups using the behavior of
RB for only real, positive values of B. The result itself is similar to a result about analytic
semigroups  (see Theorem 5.5, p 65, of [18]).

Theorem 8

Let A be the infinitesimal generator of a strongly continuous semigroup T(t). Suppose that
there exist constants  C > 0, N " 1  and  A " 0  such that

             ||A (RB)n+1|| & C ncN BN-n-1    for  B > n A,    n $ {0, 1, 2, 3, . . .}.
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Then T(t) is of Gevrey class - for  t > 0, for every  - > N.

Proof

The proof of Theorem 8 is just a simple modification of the proof of the corresponding
result about semigroups, so we refer the reader to [18], (Theorem 5.5). We remark that
Theorem 8 is proved by showing that the conditions in the statement of it imply that the
conditions in the statement of Corollary 7 hold. Indeed, these two sets of conditions are
equivalent.

5.2  Examples of Gevrey Semigroups

Notation: For some of these examples, we use the following spaces:

(i) 2 is the Hilbert space of 'square summable' sequences on the positive integers, Z+.
The inner product on 2 is ( , )0 , where

                                          
 ({fn}, {gn})0  =  *

n=0

#
 fn gn .

(ii)  For an integer  k " 1, k denotes the Hilbert space of sequences {fn} on Z+ such that
{nk fn} $ 2. The inner product here is ( , )k, where

                                       
 ({fn}, {gn})k =  *

n=0

#
 n2k fn gn .

Example 1

Suppose  0 < + & 1, and consider on 2 the semigroup given by

                                    T(t) {fn} = {fn exp[(in - n+)t]}.

It is easy to see that T(t) is a strongly continuous semigroup. Moreover, it is easy to see that
it is a differentiable semigroup and

                              T'(t) {fn} = {(in - n+) fn exp[(in - n+)t]}.
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Further,

                               
 ||T' (t)|| &  su

n"0
p  2n e-n+ t & 2 (e + t)-1/+.

Corollary 7 shows that, for any  - > 1/+, T(t) is of Gevrey class - for  t > 0. We may easily
compute A, the infinitesimal generator of T(t):

                             DA = 1 ,      A {fn} = {(in - n+) fn exp[(in - n+)t]}.

RB , the resolvent of A is given by the expression

                                     
 R
B
 {fn} = 

 D
E
F  - in + n+

fn  Q
P
O
 ,

B

while the spectrum of A is  V(A) = {in - n+ : n $ Z+}. We note that while the semigroup is
uniformly bounded, the resolvent set of A clearly does not  contain any sector  {B : |arg B| <
J/2 + L}  for  L > 0, unless  + = 1. Thus, we get an example of a Gevrey semigroup which is
not  analytic.

To further illustrate the theory, we also use Theorem 8 to prove that T(t) is a Gevrey
semigroup. Clearly for real B

      
 ||A (R

B
)m+1|| &  su

n"0
p   

[(B + n+)2 + n2]
(m+1)/2

(n2 + n2+)1/2

                          
 &   su

n"0
p   

(B + n+)m+1
2  n

&  2  [(m+1)+]-1/+  B
-(m+1)+1/+

.

So an application of Theorem 8 yields the same conclusion obtained from Corollary 7.
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Example 2

Let  + > 1  and F be the space of functions  f : [0,1] . C  satisfying the conditions:

(i) f is continuous on [0,1].

(ii) f is infinitely differentiable on (1/2,1) and for each  n " 0  f(n) can be continued to be
continuous on [1/2,1] with  f(n)(1) = 0.

 *
n=0

#
    max

x$[1/2,1]
   |f

(n)
(x)|  < #.(iii) p(f) = (n!)-+

It is easily verified that F is a Banach space with norm given by

                                 
 || f || =  max

x$[0,1/2]
 |f(x)|   +  p(f).

We define a semigroup T(t) on F as follows:

                              
 [T(t) f](x) = 

 D
E
F

f(x+t)   if  x+t & 1

0          if  x+t > 1

T(t) is strongly continuous, infinitely differentiable for  t > 1/2  and is zero for  t > 1. If
t > 1/2  then

           
 ||T

(n)
(t) f || =  max

x$[0,1/2]
   | f

(n)
(x+t) |  &  max

x$[1/2,1]
   | f

(n)
(x) |  & (n!)+ p(f) & (n!)+ || f ||.

It follows that if - is any constant satisfying  - > +, then T(t) is of Gevrey class - for
t > 1/2.

  

Example 3

Suppose  0 < + & 1, and consider on 1 × 2  the operator A given by  DA = 2 × 1,
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 A 

 1
2
3

{fn}
{gn}

 4
5
6
 = 

 1
2
3

{gn}

{-n2 fn - n+ gn}

 4
5
6
.

A simple calculation shows that A generates a differentiable semigroup T(t) given by

           

 T(t) 
 1
2
3

{fn}
{gn}

 4
5
6
  =  

 1
2
3

{fn exp[-µnt] (cos[\nt] + \n

µn  sin[\nt])}

{fn exp[-µnt] (\n
-n2

 sin[\nt])}

 4
5
6

                                

 +  
 1
2
3

{gn exp[-µnt] \n
1  sin[\nt]}

{gn exp[-µnt] (cos[\nt] - \n

µn  sin[\nt] }

 4
5
6)

,

 where  µn = 2
1 n+ ,      \n = n 1 - 4

1 n2+ - 2 .

We remark that the semigroup describes the 'structural damping' of the wave equation in the
following system:

                                          
 
!t2
!

2w   +  _A
+/2

 
!t
!w   +  _A w  =  0,

                             w(0, t) = w(J, t) = 0,    w(x, 0) = w0(x),   v(x, 0) = v0(x),

 where   _A = - 
!x2
!

2
 .

This can be seen by writing the problem as a first order system involving w and  v = !w!t  ,

and then expanding:

              
 w(x, t) =  *

n=1

#
  fn(t) sin[nx] ,       v(x, t) =  *

n=1

#
  gn(t) sin[nx] .
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Now,

        

 T' (t) 
 1
2
3

{fn}
{gn}

 4
5
6
  =  

 1
2
3

{fn exp[-µnt] (\n
-n2

 sin[\nt])}

{fn exp[-µnt] ( \n

n2 µn sin[\nt] - n2 cos[\nt])}

 4
5
6

                             

 +  
 1
2
3

{gn exp[-µnt] (cos[\nt] - \n

µn  sin[\nt])}

{gn exp[-µnt] ( \n

2µn
2 - n2

 sin[\nt] - 2µn cos[\nt])}

 4
5
6

  .

From this, a short calculation reveals the fact that there exists a constant C such that

                          
 ||T' (t)|| & C   sup

n"0
   n exp[-µnt]  &  C 21/+ (e + t)-1/+.

We conclude, using Corollary 7, that for any  - > 1/+, T(t) is of Gevrey class - for  t > 0.
  

Remarks: The above example is a particular case of systems studied by R. Triggiani and S.
Chen ([1], [2], [3]), which involve the abstract differential equation

                                       
 
dt2
d2x  +  B dt

dx  +  A x  =  0

in a Hilbert space X. In this, A is supposed to be a strictly positive, self adjoint operator,
densely defined, with a compact resolvent. B is assumed to be comparable with AN in some
sense (0 & N & 1). These authors treat the problem as a first order system and show that the
solutions are obtained from a strongly continuous semigroup which,

(i) for  1/2 & N & 1,  is analytic ([2], [3]),

(ii) for   0 < N < 1/2, is differentiable, but not necessarily analytic ([1]),

(iii) for  N = 0, is a group.
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W. Littman has conjectured that in case (ii) the semigroup is in a Gevrey - class, where - is
some function of N. We verify this below for the case B = 2 0 AN, where 0 is a positive
constant satisfying a certain condition. We will see that the conclusion in this case follows
immediately from an estimate in [1]. The conjecture is also correct for the more general
operators B considered by Triggiani and Chen (see the remark after the example).

Example 4

Let A be as above and let B = 2 0 AN (0 < N < 1/2). It is shown in [1] that the operator

                         
 A
0N

 =  
 1
2
3

0 I

-A -2 0 AN
 4
5
6
  ,      DA0N

 = DA × D
A1/2

on the Hilbert space  E = DA1/2 × X, generates a differentiable semigroup of contractions.

The eigenvalues of A0N are given by

                                     Bn
+,-

  =  (-0 ± 02 - µn
1-2N  ) µn

N ,

where  0 < µ1 & µ2 & µ3 & . . . . . #  are the eigenvalues of A. It is shown ([1], Corollary
2.3) that if

                                           0
2 K µn

1-2N  for all  n,

then the resolvent RB of A0N satisfies:

                                 | ^ |2N || Ri^ || & constant   for all  ^ $ R.

We may immediately conclude from Theorem 4 that the semigroup is of Gevrey class - for
t > 0, - being any constant  > 1

2N .
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Remark: The more general case investigated in [1], in which '2 0 AN' is replaced in the
system above by 'B', also yields a Gevrey semigroup. Here, B is a self adjoint operator such
that  DB = DAN, and for some constants  0 < 01 < 02 < #,

           01 (AN x,x)X & (Bx,x)X & 02 (AN x,x)X         for all  x $ DB1/2 = DAN/2 .

If RB denotes the resolvent of the corresponding operator

                                               
 AB = 

 1
2
3

0 I
-A -B

 4
5
6
 ,          

then we may show that

 
 lim
| |̂.#

 sup  |̂ |  ||Ri |̂|  =  C  <  #.2N

                                                 (11)

Hence we can again conclude from Theorem 4 that the semigroup is of Gevrey class - for
t > 0, - being any constant  > 1

2N . The estimate is established as in [1], where a similar

estimate is proved (with 'log|^ |'  instead of '|^ |2N' in the estimate above). In their proof,

Triggiani and Chen drop the polynomial dependence of ||Ri^|| on ^ that they had established

for the case B = 2 0 AN, and use instead of it a logarithmic estimate, which is all that they

need to establish their estimate and obtain the differentiability of the semigroup. However, if

the polynomial dependence is retained in their calculations, (11) is obtained.
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Notation Index

Spaces

b(X,Y) Bounded linear mappings from X into Y.
Bs,+ 79
C Complex numbers.
Ck k-times differentiable functions.
Ck,+ Hölder spaces. See [7].
C#0 (,) Infinitely differentiable functions with compact support in ,.

DC Domain of the unbounded operator C.
Dm,n 90
Dm,n(R; B) 90
Es 94
/-(,) iv Gevrey Class -.

/-(,; B) iv Gevrey Class -.

/-(,; X,P) iv Gevrey Class - with respect to the seminorms P.
k 158

H 3
Hk(,), Hk

0(,) Sobolev spaces. See [7].
2 158 Square-summable sequences.

P 38 Set of seminorms.
P1 52 Set of seminorms.
R Real numbers.
0(A) Resolvent set of A.
R+ Positive real numbers.
V(A) Spectrum of A.
Ub,r 35
U 124
,(r), ,'(r) 35
Xd' 38
Y 47
Z Integers.
Z+ Positive integers.
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Operators

A 4 L 72
A(x) 75,78 L1, L2 3
B 54, 68 Lk 15
B 124 Transmutation operator. L~k 18
GB 47 Q 52
Hk 9 R(B) 5, 147 Resolvent.
J(t) 47, 67 S(t) 53, 68
K(t) 54, 68 U(t) 13

Functions

+(k), +- (k) 21 J 34, 62
+, N 120 K 54, 68, 131
ai ,bi 1 K0, K1 72, 134
B(d,k) 23 K~ 104
N(k), N- (k) 23 K~ 0, K~ 1 72, 142
b(s,t), c(s,t) 125 mj(k) 58
cj(x,k) 18 µj 16
d[
dt 122 Angular velocity. Mj 16

E(t) 119 Energy. ' 14
E0(t) 133 Energy. q(t) 124
g 28, 61 0, E, I 109 Variable elastic
g~ 20 properties.
/(k), /-(k) 24
g1, g2 60 rj 15
g~ 20 uj 15
In 135 W(x,k) 17 Wronskian.

Norms and Seminorms

|  |i,j(d",d') 28
|  |m,n 90 Norm on Dm,n.
|  | m,n

 s,+ 90 Norm on Dm,n(R; Bs,+).
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|  |s 94 Norm on Es.

Miscellaneous

clamped end conditions i Problem A 111
Euler-Bernoulli beam Problem B 123

-uniform i Problem C 130
-variable 1 SCOLE i

light damping assumption 14, 53


