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Abstract 

Soft sediments cover most of the ocean seafloor and dominate estuarine and coastal habitats. 

Most of our current knowledge on the functioning of these ecosystems is derived from 

experimental studies conducted at scales that are much smaller than those most relevant to 

society. The results of these experiment can be hard to extrapolate beyond their scope and 

the outcomes can be affected by the way we scale them. Moreover, heterogeneity and 

processes interacting across scales of space and time can further hinder our ability to extend 

the generality of experimental studies. Besides, due to the challenge of extensive sampling 

marine ecosystems, large scale ecosystem models mainly rely on physical attributes and often 

overlook the role of the underlying biodiversity. 

In this dissertation, I investigate at the existence of species–ecosystem functions 

relationships in heterogeneous marine landscapes and their persistence across different 

spatial scales. In particular, I look into the role of key, functionally important infaunal species 

and of their interactions for sediment biogeochemistry and then up-scale this information to 

create ecologically nuanced maps of ecosystem functions at the landscape level. After 

providing a general introduction (Chapter 1), I begin by investigating the interaction between 

two functionally important but different species (Macomona liliana and Macroclymenella 

stewartensis) on sediment biogeochemistry in a laboratory experiment (Chapter 2). I then 

explore the importance of transitional areas, where the distribution of these two species 

overlap, for the overall ecosystem functioning and I weight the role of the two key species 

compared to that of the rest of the community (Chapter 3). Finally, I use this information to 

create models that relate ecosystem functions rates to key species and extrapolate the models 

through a high-resolution drone survey of the distribution of those species (Chapter 4). As we 

then demonstrate, scaling these ecological relationships without adequately taking into 

account the role of biodiversity and heterogeneity would lead to inaccurate results that are 

more sensitive to scaling methods chosen than to the ecological characteristics of the system 

(Chapter 5). 

I demonstrated that interspecific interactions and the heterogeneity of processes 

generate differences of orders of magnitudes in the delivery of functions. Most of these 

interactions happen in transition areas, where patches of different species overlap, creating 

ecological boundaries. The contribution of these areas to the overall functioning of 

heterogeneous systems is significant and needs to be taken into account to accurately 

estimate functioning at coarse scales. Our findings show how rise in the last decades of new 

remote sensing technologies and artificial intelligence allows the extrapolation of this complex 

information to larger extents and the creation of ecologically meaningful maps of ecosystems.  
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Preface 

This thesis contains two chapters that have been published in a peer-reviewed journal 

(Chapter 2 and Chapter 3). Chapter 4 and Chapter 5 have been submitted to a peer-reviewed 

journal. These studies are included in the thesis with only very minor modifications. There is 

therefore some necessary repetition between chapters, which I have done my best to keep to 

a minimum. 

I was the principal contributor and primary author of all chapters presented in this dissertation. 

My main supervisors – Simon F. Thrush – provided guidance and advice throughout. My co-

supervisor – Teri O’Meara – contributed to Chapter 2. Other contributors are recognised in the 

acknowledgements for each chapter. 

Chapter 2 was written in collaboration with Simon F. Thrush and Teri O’Meara. This chapter 

has been published as: Schenone S, O’Meara TA, Thrush SF (2019). Non-linear effects of 

macrofauna functional trait interactions on biogeochemical fluxes in marine sediments change 

with environmental stress. Marine Ecology Progress Series; 624: 13–21 

Chapter 3 was written with the guidance and support of Simon F. Thrush. This chapter has 

been published as: Schenone S, Thrush SF. (2020). Unraveling ecosystem functioning in 

intertidal soft sediments: the role of density-driven interactions. Sci Rep 10:11909. 

Chapter 4 was written in collaboration with Mihailo Azar, César Adrián Victoria Ramírez, 

Alfonso Gastelum Strozzi, Patrice Delmas and Simon F. Thrush. It has been submitted for 

peer-review. 

The ideas and study design for Chapter 5 were conceived together with my main supervisor, 

Simon F. Thrush. This chapter has recently been submitted to a peer-reviewed journal. 
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1.1 | A puzzling world 

Soft-sediments habitats are the most widespread ecosystem on earth, they cover 70% of the 

ocean seafloor and dominate estuarine and coastal environments (Snelgrove, 1997). These 

ecosystems are incredibly complex and dynamic. Yet, sediments are often considered as a 

homogeneous habitat and far from being as diverse and appealing as algal forests or coral 

reefs, because much of the spatial complexly and resident organisms are out of sight. 

However, sediments create a three-dimensional environment where physical, chemical and 

biological processes interact generating heterogeneity and influencing processes that lead to 

ecosystem functions (Snelgrove et al., 2014). The continuous exchange of matter and energy 

across the sediment-water interface boosts biogeochemical fluxes that support most marine 

ecosystems (Gardner et al., 2006; Savage et al., 2012). Our understanding of these important 

processes has improved over the years and studies have addressed the role of biodiversity 

for ecosystem functioning (Dornhoffer et al., 2015; Mermillod-Blondin et al., 2004; Woodin et 

al., 2016; Zeppilli et al., 2016). The organisms living in sediments, in fact, are known to drive 

many critical ecosystem functions, in particular the breakdown and transformation of organic 

material and the associated release of nutrients, facilitating their recycling, dispersion through 

the sediment-water interface and transfer through food webs (Thrush et al., 2017). 

Important questions still remain. To what extent do key species alone drive ecosystem 

functioning? How much do the interactions between these important and sometimes very 

different species vary and influence functioning? How does this translate to heterogeneous 

landscapes, where the mosaic of habitat patches creates important transition zones and what 

is their contribution to overall ecosystem functioning? What is the net effect of large, 

functionally important species compared to that of the rest of the community? How do these 

processes measured at fine scales (< 1 m2) translate to coarser (> 1 km2) scales? How much 

do functions vary across the landscape? How can we use new technologies, like drones and 

Artificial Intelligence, to benefit landscape ecology research? Despite our efforts to untangle 

these complicated dynamics, in studies of landscapes at scales that are meaningful to society 

this dimension of ecological complexity is generally lost. Due to the challenges of extensively 

sampling marine environments, large scale practices like habitat mapping, ecosystem 

services assessment and modelling rely on physical parameters and overlook the underlying 

role of biodiversity and that of patchiness in species distributions and functional performance 

(Lavorel et al., 2017). This is particularly true for benthic soft-sediment environments where 

the dominant habitats are coarsely aggregated into sand or mud. 

In this thesis, I look at the multi-scale and heterogeneous nature of benthic habitats as an 

opportunity to address these important gaps (Fig. 1.1). Only through a knowledge of the 
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processes that drive and sustain ecosystems that is well grounded in their ecological roots we 

are able to get to an accurate estimate of the functions and services they provide. This 

knowledge offers real-world assessments and a sensitivity to change that ultimately supports 

us in ecologically sustainable management and prioritize conservation. The biodiversity crisis 

that affects the world (Smith et al., 2000) adds urgency to bridging these gaps to understand 

how changes in biodiversity will influence ecosystem function at different scales and the 

delivery of services that support life and economies. 

 

Fig. 1.1 Soft sediment ecosystems exhibit heterogeneity of structures and processes that can be 
studied at different scales. Clock-wise from the top left corner: small biogenic structures on the sediment 
surface; incubation chambers are used to measure biogeochemical fluxes at the sediment-water 
interface; drones can be used to obtain to sample remotely at different resolutions; spatially explicit 
information at the landscape level is crucial to manage and protect ecosystems. 

 

1.2 | Heterogeneous landscapes 

Environmental heterogeneity is ubiquitous in natural systems and is one of the most important 

factors to influence population dynamics and community structure (Chesson, 2000; Dutilleul 

and Legendre, 1993; Oliver et al., 2010; Yang et al., 2015; Zajac et al., 2003). Simplistically, 

heterogeneity refers to the characteristic of being composed of dissimilar or diverse parts and 
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is different from variability, which refers to the different values of a variable of one kind (Kolasa 

and Rollo, 1991). Heterogeneity is a complex concept and some distinctions need to be made. 

The first major distinction is between spatial and temporal heterogeneity. The idea of spatial 

heterogeneity is relatively straightforward as it evokes visual differences when a quantitative 

or qualitative of a descriptor, such as vegetation cover, assumes different values at different 

locations. Temporal heterogeneity is conceptually similar to spatial heterogeneity and it refers 

from one point in space sampling many points in time (Dutilleul and Legendre, 1993). Most of 

the landscape ecology research focuses primarily on the role of spatial heterogeneity. Another 

important distinction is that between functional and measured heterogeneity. The former is 

referred to as the heterogeneity that influences the organisms, and is not the same for different 

groups of organisms that live in the same environment, while the latter is the heterogeneity 

measured by the observer, which may be inadequate to describe all the effects on 

communities (Kolasa and Rollo, 1991). 

 In benthic habitats, much of the heterogeneity is generated by the biota and its 

interaction with the environment. This results in patchy spatial distributions of communities 

and ecosystem functions across multiple spatial scales. Although this heterogeneity is a 

powerful indicator of ecological health (Hewitt et al., 2010), it confounds the simple up-scaling 

of ecosystem function measurements and thus the estimate of ecosystem services at scales 

most relevant to society (Hewitt et al., 2007). Despite the recognition of the importance of 

heterogeneity, most ecosystem studies are conducted within a single ecosystem, and 

homogeneous sites are generally chosen to minimize the complications associated with 

spatial heterogeneity (Lovett et al., 2005). For example, Canavan et al. (2007) inferred 

nitrogen cycling of coastal fresh water sediments from measures performed at a single site in 

a coastal freshwater lake. However, understanding patterns, causes, and consequences of 

spatial heterogeneity in ecosystem function is crucial to advance our comprehension of the 

natural world  (Chapter 3; Turner and Chapin, 2005). In their book, Lovett et al. (2005) point 

out that understanding the relationship between spatial heterogeneity and ecosystem 

processes is especially important i) when it is necessary to know the average rate of a process 

over an area that is spatially heterogeneous and ii) when one wants to understand or predict 

the spatial pattern of process rates, using the spatial pattern or spatial scale of variation as a 

response variable of direct interest. Therefore, rather than a confounding factor to avoid when 

performing ecological studies, researchers should see heterogeneity an opportunity to 

investigate and understand the underlying processes that drive ecosystems. 
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1.3 | The problem of scale 

Heterogeneity, like everything else in ecology, is scale-dependent (Wiens, 2000). The concept 

of scale is intrinsic to ecology and usually refers to the spatial or temporal dimension of a 

phenomenon. The processes that characterize and impact landscapes occur at many spatial 

and temporal scales. For example, Kotliar and Wiens (1990) argued the response of 

organisms to habitat patches changes with scale and developed a hierarchical model to 

classify patch structure across a range of scales. However, scale is not a property of nature 

alone but, rather, is something associated with observation and analysis (Allen and Starr, 

1982). A simple, yet effective visualization of this concept applied to the recycling of nitrogen 

is given by Kolasa and Pickett (1991) (Fig. 1.2).  

Fig 1.2 The process of nitrogen recycling observed at different scales. From (Allen and Hoekstra, 1991). 

 

In ecology, scale most frequently refers to its basic components that dictate the 

sampling design of studies: “grain” and “extent”. Grain concerns the level of resolution of a 
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study and determines the smallest and largest entities that can be seen. In contrast, the extent 

is generally referred to as the total spatial or temporal expanse of a study (Wiens, 1989). The 

importance of these concepts lies in their influence on empirical ecological studies. The 

sampling design, in fact, dictates the scale of the processes we can observe and our ability to 

understand their drivers. Therefore, choosing a scale that is not appropriate to the ecological 

process in question can limit our ability to accurately hypothesize and determine the underlying 

causes (De Knegt et al., 2010; Legendre et al., 2002). 

Since processes can occur at many spatial and temporal scales and the processes 

operating at large-scale are not always the same as those operating at small-scale, translating 

information from one scale to another can be an arduous task. Moreover, environmental 

heterogeneity is known to increase with scale, complicating this process even further (Hewitt 

et al., 2007; Lohrer et al., 2015; Peterson, 2000; Snelgrove et al., 2014; Thrush et al., 1997). 

Nevertheless, developing ways to use the results of small-scale experimental studies to 

understand larger-scale phenomena (Chapter 4) is essential to predict large-scale effects and 

has been a central topic of ecology for many decades. Chapter 5 elaborates on the different 

methods that have been proposed in the literature for the purpose of up-scaling experimental 

results. There does not appear to be one right way to relate patterns and processes across 

scales and the choice is dictated by the properties of the system studied. In marine benthic 

ecosystems, however, heterogeneity has a profound influence on patterns and processes and 

has to be accounted for in the scaling process (Thrush et al., 1997). 

 

1.4 | The challenges of marine systems 

Coastal zones only cover about 8% of the world surface but are estimated to contribute to 

approximately 43% of the total economic value of global ecosystem service (Costanza et al., 

1997). These are highly productive ecosystems that deliver multiple functions that range from 

the recycling of nutrients and decomposition of organic matter to the sustenance of food webs. 

For example, continental shelves mineralize more than 50% of the global organic matter, 

recycling nutrients that fuel ocean primary productivity (Middelburg et al., 1997; Sundbäck et 

al., 2003). Despite the recognition of their importance, the functions and processes that 

maintain coastal and marine habitats in general are still poorly understood. The collection of 

samples in these systems is a costly and time-consuming process and measurements are 

mainly performed at single points or on transects. For example, Stevens and Connolly (2004) 

sampled 41 sites in a staggered 5 km spaced array to characterize the habitats of Moreton 

Bay, Australia. This scarcity of data results in the inadequate knowledge of the distribution of 

communities and habitats and the ecosystem functions that they provide (Townsend et al., 
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2014). The use of remote sensing in recent times has enhanced our ability to collect data over 

large areas in a short period of time. While satellite images and acoustic techniques provide 

data at relatively coarse resolution, drone and kite aerial photography and underwater tow 

cameras have the ability to collect data at higher resolution (Bryson et al., 2013). This is 

particularly important when characterising ecological systems. Currently, large scale benthic 

habitat characterisation relies primarily on physical attributes and therefore overlooks the role 

of the underlying biodiversity on ecosystem functioning and ecosystem services. This problem 

has been referred to as the “lack of biophysical realism” (Lavorel et al., 2017; Seppelt et al., 

2011). As I show in Chapter 2 and 3 in fact, species richness and the presence of functionally 

important species can be strongly related to the ecological functions and the supply of 

ecosystem services. This notion is supported by the body of literature on ecosystem function 

(Cardinale et al., 2012; Fourqurean et al., 2012; Ieno et al., 2006; Mermillod-Blondin et al., 

2005). Therefore, ecological research and the study of ecosystem services needs to focus on 

finding ways to close this gap in biophysical realism. 

 

1.5 | Advances in remote sensing and artificial intelligence 

In the previous paragraph I mention some of the advantages that the use of remote sensing 

technologies brings to ecology. The rise of remote sensing techniques and new technological 

advances, in fact, have revolutionized ecological research by providing both spatial and 

temporal perspectives on ecological phenomena that could not be achieved otherwise 

(Anderson and Gaston, 2013). For a long time, satellites have been the most exploited remote 

sensing platform. However, despite the improvements obtained in recent years, they provide 

data at relatively coarse spatial resolution, not suitable to study small scale processes. For 

example, high-resolution satellites can provide resolution of 0.5-10 m per pixel (e.g., 

QuickBird, IKONOS) (Wang et al., 2010). Freely available satellite images usually have lower 

resolutions of around 30 m per pixel (e.g., Landsat, MODIS). The advent of unmanned aerial 

vehicles (UAVs) has emerged as a solution to this problem. UAVs, commonly known as 

drones, can achieve higher resolution than satellites and occupied aircraft and at the same 

time reduce costs as well as providing more flexibility (Johnston, 2019; Ridge et al., 2020). 

The use of drones in environmental research has increased over the last decade and drone 

imagery has proved successful in a number of studies and habitats, from the mapping of 

coastal morphology, to the monitoring of coral and oyster reefs (Casella et al., 2017; Long et 

al., 2016; Ridge et al., 2020). 

 Another technological advance that has demonstrated potential in addressing 

important issues of environmental and ecological research is the progress in deep learning 
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architectures. Deep learning is a type of machine learning based on artificial neural networks 

inspired by the structure and function of the brain. Its aim is to train a computer to perform 

tasks, such as identifying images, learning by examples (LeCun et al., 2015). An emerging 

class of algorithms in particular, known as convolutional neural networks (CNNs), have shown 

breakthrough performance in image classification (Brodrick et al., 2019). Even though training 

these artificial intelligences may require the classification of thousands of images, their benefit 

for biodiversity and ecological research is undeniable and they have proven effective in both 

terrestrial and marine studies (Gray et al., 2019; Ridge et al., 2020; Weinstein, 2018). In 

Chapter 4, I present a method developed for mapping ecosystem functions that uses drone 

imagery and machine learning to extrapolate the results of function models, detecting biogenic 

features in more than 7000 pictures. 

 

1.6 | From Functions to Services 

Ecosystem functions occur in the context of biological, physical and chemical properties and 

the interaction of processes. Ecosystem services (ES), represent the benefits human 

populations derive, directly or indirectly, from ecosystem functions (Costanza et al., 1997). 

This drawn attentions attention  to biodiversity contributes human wellbeing (de Bello et al., 

2010). A common practice for ES research is to use the general definition given by the 

Millennium Ecosystem Assessment that “ecosystem services are the benefits people obtain 

from ecosystems” (Millenium Ecosystem Assessment, 2005). However, despite the attention 

ES have received, understanding of their ecological foundation is still limited, with negative 

consequences on our ability to target management and conservation efforts (Kremen, 2005). 

This issue is particularly relevant due to the current threats posed to ecosystems. Due the 

increasing anthropogenic pressures, in fact, our planet is experiencing a growing loss of 

biodiversity and changes in the functioning of ecosystems (Smith et al., 2000). Therefore, the 

sustainable management of ES requires knowledge of the effects that species have on 

ecosystem functioning at different scales and of the consequences of their loss. Ultimately, 

our ability to capture the spatial and temporal dynamics of ecosystem functions will influence 

the assessment of the services that ecosystem provide. 

 In this perspective, ES maps are critically important tools for ecosystems management, 

particularly since the introduction of Geographic Information System (GIS) (Maes et al., 2012). 

Maps should support the quantification of service delivery and distribution at different scales. 

ES maps are a key element to improve the recognition and implementation of ES into 

institutions and decision-making (Daily and Matson, 2008). Other important features of maps 

are that they can be used to assess spatial trade-offs and synergies among ES, as well as to 
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prioritize areas that will allow to achieve multiple conservation goals (Martínez-Harms and 

Balvanera, 2012). Many mapping approaches have been proposed, from the estimate of the 

value of ES in monetary terms from land-cover or habitat maps (e.g. Kreuter et al., 2001; Troy 

and Wilson, 2006; Turner et al., 2007), to the quantification of ES in biophysical units, without 

including monetary valuation (e.g. Egoh et al., 2008; Naidoo et al., 2008; Townsend et al., 

2014). In general, however, despite processes and functions being part of biodiversity, most 

of the efforts into the mapping of ES does not quantify the underlying role of biodiversity in 

providing services. This problem is even more pronounced in marine habitats, since their 

complexity and highly dynamic nature, translates into the lack of spatially explicit information. 

Despite the recognition of this gap, only very few studies have addressed the creation of maps 

of ecosystem functions in marine systems (e.g., Eyre and Maher, 2011; Gogina et al., 2017; 

Harborne et al., 2006). Therefore, more research is needed to both understand the link 

between biodiversity – interpreted not just as biological communities – and ecosystem 

functioning and create new methods to translate this knowledge to larger scales. 

 

1.7 | Thesis outline 

In Chapter 2, I explore the effect of 2 key bioturbators for benthic biogeochemical fluxes. 

Specifically, I study the tellinid bivalve Macomona liliana and the maldanid polychaete 

Macroclymenella stewartensis, two infaunal organisms that dominate patches in New Zealand 

intertidal flats in terms of both abundance and biomass, but that are functionally very different. 

In this chapter I focus on the effect of these two species on benthic biogeochemical fluxes 

when they are incubated in single-species treatments vs their effect when both species are 

incubated together and interactions occur. The effect of environmental stress is also taken into 

account 

 In Chapter 3, I build on the results from Chapter 2 and investigate the role of these two 

species in the natural environment and of their interactions in transitional areas, at the 

interface between their patches. The study was performed in the Whangateau Harbour, a 

pristine estuary where both M. liliana and M. stewartensis are abundant. I use regression 

analysis to identify which biotic and abiotic variables drive ecosystem functioning and variance 

partitioning to tease apart the role of these two key species from that of the rest of the 

macrofaunal community in driving ecosystem function. 

 In Chapter 4, I use the information from the previous chapters to develop models that 

link ecosystem function to the presence and abundance of the biogenic features that key 

bioturbators leave on the sediment surface. Then, through the images of the sandflats 

collected in a drone survey, I use the density of such surface features to extrapolate 
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predictions of denitrification, ammonium efflux and organic matter degradation across the 

whole landscape. This chapter represents the most important outcome of my research and 

ends with the creation of biologically nuanced maps of ecosystem function of the northern 

sandflats of the Whangateau Harbour. 

Fig 1.3 Picture of the drone as it performs the aerial survey of Whangateau Estuary 

 

 In Chapter 4 I combine high resolution information on the spatial patterns of important 

species with models of functions built from field data to estimate functions at large scale. 

However, not all landscapes can be extensively mapped for easily quantifiable features and 

other methods of translating information between scales need to be developed. Therefore, in 

Chapter 5 I compare the performance of different scaling approaches in estimating large scale 

ecosystem functioning in heterogeneous landscapes. 

 Finally, in Chapter 6, I synthesise the research outlined in this thesis, outline 

conclusions, and offer directions for future research. Together, the research presented in this 

thesis demonstrates that biodiversity and the interaction between its components drive 

ecosystem functioning in marine benthic ecosystems and the location where these 

interactions take place play a significant role in the overall functioning. Given the importance 

of the biophysical component of ecosystems, estimate of ecosystem services that do not take 

it into account are inaccurate and lack of realism. Finally, we show how for some ecosystems 

it is possible create biologically meaningful models and maps of functioning. I hope that my 

thesis will shed light on some crucial aspects of ecological and landscape research and will 
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create the basis for a better characterization of soft-sediment habitats and the ecosystem 

services they provide, that reflect their underlying complexity and heterogeneity. 
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Chapter 2 – Non-linear effects of 

macrofauna functional trait interactions 

on biogeochemical fluxes in marine 

sediments change with environmental 
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2.1 | Abstract 

Biogeochemical fluxes in marine sediments are profoundly influenced by species that 

bioturbate and bioirrigate the sediments. However, functional traits associated with these 

activities encompass a wide range of behaviours that have different consequences for the 

movement of particles and solutes. Interactions between infaunal species of different 

functional groups and benthic biogeochemical fluxes may be context-specific, requiring 

multiple studies; yet, to date these experiments are rare. In a laboratory experiment, we 

incubated specimens of Macomona liliana, a facultative deposit-feeding bivalve, and 

Macroclymenella stewartensis, a head-down conveyor-belt feeding polychaete, both 

separately and together, and measured fluxes of nutrients and oxygen. Both species are 

common in New Zealand estuaries and often coexist. The addition of thin surface layers of 

mud generated 3 treatment levels (0, 3 and 6 mm thickness). The presence of M. liliana and 

M. stewartensis enhanced benthic fluxes compared to control treatments. Oxygen uptake and 

nitrogen cycling stimulation due to their interaction were modelled, based on the results of 

single-species treatments, and then compared to results of multiple-species treatments with 

no animals. The effect of the interaction of the 2 organisms proved to be stronger than the 

additive effect of each species. This study demonstrated the central role of functional trait 

inter-actions for ecosystem functioning and its non-linear nature, highlighting the importance 

of testing actual effects against prediction based on trait analysis and the incorporation of 

these community effects in future research and models of ecosystem function and service 

delivery across marine habitats. 

 

2.2 | Introduction 

Soft sediments cover 70% of the ocean seafloor and dominate estuarine and coastal habitats, 

where infaunal organisms profoundly influence biogeochemical processes and ecosystem 

functioning (Snelgrove, 1997; Thrush et al., 2004). These habitats support primary production 

in coastal seas, and through remineralization can contribute between one-third and half of the 

nutrients required for primary producers in the water column (Mortazavi et al. 2012). However, 

the human-induced decline in biodiversity and resulting loss of benthic bioturbators threatens 

the ecosystem services these habitats provide. Thus, it is critical to understand the role of 

these species in ecosystem functioning and the mechanisms through which they affect 

processes. This information is also fundamental to create more realistic mathematical models 

of biogeochemical processes. These models are often based on general assumptions and 

lack a real understanding and explanation of the role of the underlying biodiversity, leading to 

potentially biased results and misleading conclusions (Snelgrove et al., 2018). 
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The role of macrobenthic organisms’ functional traits in marine ecosystem functioning 

has been addressed in previous studies (Dornhoffer et al., 2015; Mermillod-Blondin et al., 

2004; Volkenborn et al., 2012; Woodin et al., 2016). Different bioturbation and bioirrigation 

modes have been shown to affect ecosystem functions such as carbon mineralization (eg. 

Banta et al. 1999) and nutrient cycling differently (Mermillod-Blondin et al., 2004; Pelegrí and 

Blackburn, 1995). Michaud et al. (2005) demonstrated how different species representing 2 

functional groups in a Macoma balthica community have different effects on the oxygen (O2) 

uptake at the sediment−water interface and concluded that future studies should also account 

for the interactions among these species to fully understand their importance for ecosystem 

functioning. Despite the importance of the link between functional biodiversity and ecosystem 

processes, there are few specific and empirical studies. Previous studies have indicated that 

the effects of functional biodiversity on ecosystem processes are not additive and suggested 

that functional biodiversity and species-specific traits, rather than species richness per se, can 

be important in explaining ecosystem processes (Godbold et al., 2009; Harvey et al., 2013; 

Ieno et al., 2006; Mermillod-Blondin et al., 2005; Norling et al., 2007). 

The combination of real-time porewater pressure recording and O2 imaging has 

improved our mechanistic knowledge of the behaviour-related hydraulic activity of a number 

of worms and bivalves (Volkenborn et al. 2010, 2012). The use of this technique has 

demonstrated the relationship between both positive and negative pressurizations, mostly due 

to feeding, excretion and burrowing, and the O2 dynamics in the sediment. However, the link 

between the functional traits of macrofauna, their behaviours and the biophysical interaction 

of different species is often overlooked when predicting changes in ecosystem functioning. 

Direct measurements of ecosystem functions in the presence of different species are 

especially important where synergistic effects are possible. This may explain the variability 

observed in field-measured ecosystem processes driven by bioturbation (Woodin et al., 2016) 

and help untangle the complex relationships between biodiversity and ecosystem functioning. 

The aim of this study was to assess how the interaction between different functional 

traits affects nutrient cycling and ecosystem functioning. We hypothesized that when different 

functional groups coexist, the results may not be linear due to non-additive effects. Therefore, 

we chose 2 deposit feeders with very different traits (Fig. 2.1) that co-occur and are abundant 

in New Zealand intertidal sandflats: the bivalve Macomona liliana, a facultative de posit feeder 

and bio-irrigator, and the polychaete Macroclymenella stewartensis, a head-down conveyor-

belt feeder. To assess how their interaction enhances biogeochemical processes, we 

measured nutrient and dissolved gas fluxes. In particular, due to the different mechanisms of 

bioturbation and bioirrigation exhibited by the 2 organisms, our hypothesis was that the 

interaction would be synergistic and would enhance benthic fluxes. Moreover, we investigated 
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how the effect of surface mud deposition, one of the most common and important stressors in 

New Zealand estuaries (Thrush et al. 2004), alters this relationship. Recent studies have 

demonstrated that thick (>1 cm) deposits can reduce macrofauna-mediated ecosystem 

functioning (Cummings et al., 2003; Mestdagh et al., 2018) and impact the recovery of the 

macrobenthos, often leading to completely defaunated sediment and habitat change (Hewitt 

et al., 2003; Norkko et al., 2002; Thrush et al., 2003). Al though often non-lethal, thinner (<1 

cm) deposits also negatively affect macrobenthic community structure and modify the 

behaviour and functional role of benthic organisms (Cummings et al., 2009; Loher et al., 2004; 

McCartain et al., 2017; Needham et al., 2010; Woodin et al., 2012). The deposition of thin clay 

layers on the sediment surface can also impact the diffusion of nutrients and solutes across 

the sediment−water interface (Berkenbusch et al., 2002; Cummings et al., 2009); furthermore, 

it occurs with greater frequency and over greater spatial scales than the deposition of thicker 

layers (Foster and Carter, 1997; Wheatcroft, 2000). Hence, we determined whether the 

presence of a mud layer can alter the interaction between different species and its effect on 

benthic fluxes. 

Fig. 2.1 Functional groups of the target species. (A) Macomona liliana feeds on the surface through a 
long inhalant siphon leaving bird-like feeding traces and (C) behaves as a biodiffuser. (B) 
Macroclymenella stewartensis creates volcano-like fecal mounds on the sediment surface and (D) 
behaves as an upward conveyor (modified from Kristensen et al. 2012) 
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2.3 | Materials and Methods 

Study species 

Macomona liliana (tellinid bivalve) is a deposit feeder common in New Zealand intertidal 

sandflats, where adults live within the sediment to depths of 10 cm (Hewitt et al. 1996). Adult 

M. liliana alter the sediment and its biogeochemical properties, playing an important role in 

community dynamics and benthic fluxes (Thrush et al. 1992; Woodin et al. 2012). This species 

feeds through a long inhalant siphon to ingest surface deposits and excretes through an 

exhalent siphon at depth in the sediment (Pridmore et al. 1991). 

 The polychaete Macroclymenella stewartensis (maldanid) is a conveyor-belt feeder 

that feeds head-down at depth in the sediment and defecates at the sediment surface. It also 

irrigates its burrow, pumping in oxygenated water for respiratory purposes. This species is 

commonly found in New Zealand sandflats, both in subtidal (Thrush et al. 1995; Wong & 

O’Shea, 2010) and intertidal (Pridmore et al. 1990; Thrush et al. 1989; Turner et al. 1995) 

habitats and naturally co-occurs with M. liliana (authors’ pers. obs.). 

 

Specimen collection and preparation 

 Sediment and target species were collected at low tide in the Whangateau Harbour (36° 18’ 

40’’ S, 174° 46’ 42’’E), on the north-east coast of New Zealand, between April and May 2017. 

The sediment at the collection site consists mainly of fine sand (median grain size: 211 μm; 

fine sand fraction: 50.6%; mud fraction: 3.9%) with an average organic content (% loss on 

ignition) of 0.71%. Both M. liliana and M. stewartensis are present and dominate the 

macrofaunal community. Specimens of both species were hand collected. The sediment was 

collected on 30 March 2017 and sieved through a 500 μm mesh to remove macrofauna. 

Sediments were homogenized prior to addition to experimental aquaria. Cylindrical buckets 

(25 cm diameter, 27 cm deep) were filled to a depth of 13 cm with sieved sediments and left 

for 4 wk with flow-through seawater to allow for equilibration. Prior to the 4 wk equilibration, 

the mud layer settled on top of the sediment was removed by feeding the aquaria with a 

seawater flow higher than the resuspension rate of mud and lower than that of underlying 

sandy sediment and allowing the mud to overflow for 24 h. This created uniform sediment 

conditions to which we could add our mud addition treatments (see next sub-section). 
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Experimental design 

We used 4 species treatments: (1) M. liliana only; (2) M. stewartensis only; (3) a combination 

of the same density of the two and (4) a control without macrofauna. These animal treatments 

were crossed with 3 mud layer treatments (surface thickness levels: 0, 3 and 6 mm). The 

average animal length and wet weight were, respectively, 40 mm and 2.3 g for M. liliana and 

103 mm and 0.2 g for M. stewartensis. Species density in the microcosms for both M. liliana 

and M. stewartensis was 101.9 ind. m−2, which reflects the natural density of the 2 species 

observed in the ecological monitoring of other intertidal sandflats (Hailes & Hewitt, 2012) and 

is consistent with density ranges found in previous studies of New Zealand estuaries (e.g. 

Thrush et al. 1989, Pridmore et al. 1990, Turner et al. 1995). The same density of each species 

was used in the combined treatment. To create the 3 mud level treatments, 3 and 6 mm mud 

layers were added to all medium and high mud treatments by adding, respectively, 150 and 

300 ml of mud. The chosen thicknesses mimicked field conditions following depositional 

events, known to alter macrobenthic community structure (Loher et al., 2004). Mud (<63 μm) 

was obtained by sieving sediment collected at Whangateau Harbour. For the duration of the 

experiment, microcosms were maintained under the same laboratory conditions (water 

temperature: 19°C; salinity: 36). Organisms were left for 24 h in the experimental microcosms 

for acclimation before the first set of measurements was performed. Individuals that did not 

burrow within 30 min were replaced with new individuals. During 3 consecutive days, we 

randomly incubated 2 microcosms of each treatment per day (n = 6); all incubations lasted for 

4 h in the dark. At the end of the experiment we recorded the wet weight (without shells) of 

the organisms in each microcosm. 

 

Benthic flux measurements 

 O2, N2, dissolved inorganic nitrogen (DIN; NH4
+ + NO2

− + NO3
−) and dissolved inorganic 

phosphorus (DIP; PO4
3−) fluxes were measured using dark, dome-shaped plastic incubation 

chambers (17 cm diameter) placed on the sediment surface. All chambers had Luer stopcock 

ports for sample collection, and pressure was equilibrated using a vent port open to the 

surrounding reservoir. Water samples were collected at the beginning of each incubation and 

after 4 h, following the procedure described by O’Meara et al. (2017). O2 and N2 concentrations 

were determined by membrane-inlet mass spectrometry (MIMS) with a Pfeiffer Vacuum QMS 

200 quadrupole mass spectrometer (Kana et al., 1994). Consumption and production rates 

were calculated from the concentration difference between initial and final samples. DIN and 

DIP concentrations were determined by flow injection analysis (FIA) with a Lachat Quick-
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Chem 8000 automated ion analyser (Thrush et al. 2017). The difference between the 

concentrations in the final and initial samples was used to calculate net DIN and DIP fluxes. 

 

Data analysis 

Preliminary analysis of the data was performed using 2-way ANOVA to investigate the effects 

of each species and sediment layer and their interaction on measured fluxes. Post hoc 

pairwise comparisons to identify the source of any significant differences were performed 

using Sidak’s tests. 

 The effect of the interaction between the 2 species was then modelled based on the 

results of single-species treatments (hereafter called ‘modelled’). To do so, for each sediment 

composition level (0, 3 and 6 mm surficial mud layer) the per gram (wet weight of animal 

tissue) rates of O2, N2 and DIN change were calculated for the single-species treatments and 

then summed to match the biomass composition of the multiple-species treatment. A simple 

additive effect was assumed to represent the modelled interaction with no synergistic or 

antagonistic effect, which was then compared to the actual results of multiple- species 

treatments (hereafter called ‘real’). Permutational multivariate analysis of variance 

(PERMANOVA) was used to test for differences between the modelled interaction and the real 

interaction (source factor, 2 levels), the effect of increasing mud levels (treatment factor, 3 

levels) and the interaction between the 2 factors. A post hoc test was then conducted using 

pairwise permutation MANOVAs to test the effect of the mud layer treatments within modelled 

and real. All analyses were conducted in R v.3.4.1 (RC Team 2013). Semiparametric tests 

were calculated using the R packages ‘vegan’ (Oksanen et al. 2013) and RVAideMemoire 

(Hervé, 2019). Results were considered significant at p ≤ 0.05; however, in a few cases we 

obtained p-values between 0.05 and 0.08. 

 

2.4 | Results 

 NO2
−, NO3

− and PO4
3− levels were close to the detection limit of the instruments and therefore 

considered to be negligible. For the statistical analysis of DIN fluxes, only NH4
+ was taken into 

account. Preliminary analysis indicated that the presence of macrofauna stimulated benthic 

fluxes compared to control treatments (Fig. 2.2 and the Table A1 in the Appendix A). The 

presence of a thick mud layer also had a positive effect on fluxes in single-species treatments. 

NH4
+ efflux and sediment O2 uptake were higher with a 6 mm mud layer than with 0 and 3 mm 

layers. NH4
+ efflux, however, decreased with the increasing mud layer thickness in the multi-

species combination. Denitrification rates were consistent between treatments. Furthermore, 
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when the rates were normalized for biomass, the effect of Macroclymenella stewartensis on 

fluxes was always found to be stronger than that of Macomona liliana (Table 2.1). 

Fig 2.2 Measured rates of benthic processes expressed as mean (±SD) changes in the concentrations 
of (A) oxygen, (B) ammonium and (C) nitrogen. Numbers on the x-axis correspond to: (1) Macomona 
liliana; (2) Macroclymenella stewartensis; (3) combination of both M. liliana and M. stewartensis; (4) 
control 

 

Comparison between the modelled and real interaction (source factor) showed 

differences with sediment composition (Fig. 2.3, Table 2.2). The analysis of variance indicated 

a significant treatment (p = 0.001) and source × treatment (p = 0.001) effect on sediment O2 

uptake. Pairwise multiple comparison analyses showed that the difference between modelled 

and real was only significant in the 0 mm treatment (p = 0.037). Source and source × treatment 
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had a significant effect on NH4
+ efflux (p = 0.003 and p = 0.001 respectively). However, both 

measured O2 and NH4
+ fluxes changed from being higher (in the 0 and 3 mm mud treatments) 

to being lower (in the 6 mm treatment) than those predicted. Real denitrification rates instead 

were lower than modelled rates, and the difference was statistically significant (p = 0.07). 

 Treatment 
O2 (µmol 

O2 g-1 h-1) 

NH4 (µmol 

NH4 g-1 h-1) 

N2 (µmol 

N2 g-1 h-1) 

 

 0 mm     
 M. liliana -12.8 ± 6.5 1.5 ± 0.6 15.2 ± 1.6  
 M. 

 

-123.5 ± 

 

-6.6 ± 4.8 200 ± 62.4  
 3 mm     
 M. liliana -15 ± 7.3 0.3 ± 0.4 19.7 ± 5.4  
 M. 

 

-125.2 ± 

 

2.5 ± 1.1 179.2 ± 

 

 
 6 mm     
 M. liliana -35.5 ± 

 

1.51 ± 0.4 15.7 ± 9.2  
 M. 

 

-870.4 ± 

 

17.6 ± 6.3 166.4 ± 77  
Table 2.1 Mean (±SD) measured fluxes of O2, NH4+ and N2 in the single-species incubations normalized 
to faunal biomass (g wet weight, excluding shell material) for the 3 different mud level treatments 

 

 Within the modelled interaction, O2 uptake and NH4
+ efflux were significantly higher in 

6 mm compared to both 0 and 3 mm but no significant differences were observed for 

denitrification rates. Within the real interaction, however, NH4
+ efflux followed an opposite path, 

with rates in the 6 mm treatment significantly lower than those in both 0 and 3 mm. Sediment 

O2 uptake and denitrification rates, on the contrary, were not different between treatments. 

 Factor df SS MS F.Model R2 p-value  

 (a) O2        
 Source 1 590 589.5 2.406 0.01605 0.138  
 Treatment 2 20953 10476.3 42.750 0.57030 0.001  
 Source x Treatment 2 7845 3922.7 16.007 0.21654 0.001  
 Res 30 7352 245.1  0.20011   
 Total 35 36739   1   
 (b) NH4        
 Source 1 1856.6 1865.6 16.278 0.11942 0.003  
 Treatment 2 823.3 411.7 3.609 0.05295 0.047  
 Source x Treatment 2 9445.7 4722.8 41.407 0.60754 0.001  
 Res 30 3421.8 114.1  0.22009   
 Total 35 15547.4   1   
 (c) N2        
 Source 1 651.45 651.45 8.9466 0.21685 0.007  
 Treatment 2 11.04 5.52 0.0758 0.00368 0.933  
 Source x Treatment 2 157.2 78.60 1.0794 0.05233 0.355  
 Res 30 2184.47 72.82  0.72715   
 Total 35 3004.15   1   

Table 2.2 Results of the PERMANOVA showing the differences between ‘modelled’ and ‘real’ 
interactions. Significant results (p ≤ 0.05) are indicated in bold 
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Fig. 2.3 Mean (±SD) rates of change in the concentrations of (A) oxygen, (B) ammonium and (C) 
nitrogen. Black bars: results from the calculated interaction; grey bars: real interaction. The x-axis refers 
to the thickness of the added mud layer in the treatment 

 

2.5 | Discussion 

Through the manipulation of sediment and macrofauna composition in a controlled laboratory 

setup, it is possible to detect the effects of single species on benthic fluxes (e.g. Bertics et al. 

2010; Bertics et al. 2012; Volkenborn et al. 2007). The present study, however, differed from 

previous studies in the literature as it directly addressed the interaction between species with 

different functional traits on biogeochemical fluxes. Although microcosm experiments are a 

simplified representation of natural conditions and are carried out in a highly controlled setup, 
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they provide a mechanistic understanding of ecosystem functioning, thus being a pivotal tool 

to untangle the relationship between ecological processes and the underlying biodiversity. 

 Our study confirmed the well-documented stimulation of sediment biogeochemical 

processes caused by burrowing infauna. Mermillod-Blondin et al. (2004) compared the 

influences of bioturbation activities by 3 dominant species of shallow-water habitats on 

sediment processes and found amphipods and polychaetes had a stronger effect than 

bivalves, due to the creation of irrigated biogenic structures. Another study (Braeckman et al., 

2010), comparing the role of 2 polychaete and 1 bivalve species in biogeochemical fluxes, 

showed similar results, suggesting that the maldanid polychaetes stimulated benthic 

respiration, nutrient release and denitrification more than bivalves. In agreement with these 

findings, our study indicated that the per gram effects of Macroclymenella stewartensis on 

sediment O2 uptake, denitrification and NH4
+ efflux were always greater than those of 

Macomona liliana. This difference can be explained by the different behaviours of the 2 

organisms. M. stewartensis is a tube builder and periodically flushes its burrow with overlaying 

water. Because of this characteristic, according to Levin et al. (1997) maldanid worms also 

have the capacity to redistribute labile organic matter deep within the sediment column. The 

biodiffuser M. liliana instead creates oxygenated pockets at depths of around 10 cm in the 

sediment, bringing oxygenated fluids into contact with suboxic or anoxic sediment and 

pressurizing the surrounding porewater (Volkenborn et al., 2012). Moreover, based on 

previous literature (Meyhöfer, 1985; Volkenborn et al. 2010) and the direct observation of the 

surface features created by the 2 species in our experimental aquaria, M. stewartensis is likely 

to exhibit higher activity rates than M. liliana. Observed benthic respiration and denitrification 

rates are within the range of those observed in other New Zealand estuaries (e.g. Gongol & 

Savage, 2016) although, to the best of our knowledge, no other studies have directly 

measured the specific effect of the polychaete M. stewartensis on sediment bio geochemistry. 

However, literature on nereid polychaetes (eg. Pelegrí & Blackburn, 1995) reported 

denitrification rates similar to those of M. stewartensis in our study. 

 The analysis of the interaction between our 2 species produced context-dependent 

outcomes. The PERMANOVA indicated differences between the modelled (additive) and real 

interaction for all of the measured variables. Excluding denitrification rates, which seemed to 

be unaffected by the different mud layers, the 2 sets of data also showed different responses 

to the increasing mud contents. Modelled rates, predicted from the single-species results, 

increased greatly in the 6 mm treatment compared to the 0 and 3 mm treatments. The higher 

input of organic matter due to the higher mud concentration can, in fact, be responsible for the 

increased O2 consumption and NH4
+ efflux rates observed in the modelled interaction 

(Williams et al. 1985; Provoost et al. 2013); however, this increase was not present in the real 
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interaction. As a result of the interaction, real NH4
+ efflux decreased with increasing mud 

content and sediment O2 uptake did not change. These results support our hypothesis, 

demonstrating that the nature of the interaction between different functional traits is not 

additive and thus cannot be predicted from the sum of the components. In agreement with our 

predictions, this interaction was found to be synergistic, with the exception of denitrification 

rates, which showed antagonistic effects. This is in contrast to previous studies on the effects 

of functional biodiversity on ecosystem processes, which reported lower fluxes of both benthic 

O2 and nutrients for multiple-species than for additive single-species treatments (Ieno et al., 

2006; Mermillod-Blondin et al., 2005; Norling et al., 2007; Waldbusser et al., 2004). Our study, 

however, not only focused on the interaction between very functionally different organisms, 

but also demonstrated how the presence of a stressor (the deposition of a mud layer on the 

sediment surface) can change the nature of the interaction to such an extent as to shift it from 

synergistic to antagonistic. In addition, our results indicate that the deposition of a mud layer 

has different effects on processes that occur at different depths in the sediment. While eliciting 

a strong effect on O2 uptake in single-species treatments, it had no detectable effect on the 

multiple-species treatment, leading to the conclusion that the interaction provides some 

resilience to this stressor. Denitrification rates in both single- and multiple-species treatments, 

however, were not affected, suggesting that denitrification may not have been carbon-limited 

during our experiment and that the organic carbon was more rapidly utilized in aerobic 

processes. Furthermore, we demonstrated that simple additive models of functional trait 

effects on nitrogen cycling could largely underestimate the processes involved, such as 

denitrification and remineralization, by not including interactions in the models. 

 This study was limited to 2 species and constant densities in a highly controlled 

environment, and it is therefore necessary to use caution when extrapolating the results to 

explain real-world ecosystem functioning. The nature and the degree of the interactions could 

be affected both by abiotic factors, such as water flow and sediment grain size and porosity 

(Biles et al., 2003), and biotic factors, such as the functional traits involved and patchiness of 

the organisms (McIntosh, 1991). Plasticity in the behaviours of the animals (i.e. switching 

feeding modes) may also have played an important role. In fact, similar to other tellinid 

bivalves, M. liliana may have the potential to suspension feed under some circumstances. 

However, this behaviour has not been observed in previous studies—and was not observed 

in the context of the experiment—and feeding traces on the sediment –water interface 

highlight the importance of surface deposit feeding. To understand the importance of the 

interactions between different functional traits at large scales, it is of critical importance to 

further investigate the role of species density. By controlling the distance between the 

organisms and therefore the probability and extent of their interaction, species density is likely 
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to control the strength of the effect of the interaction on ecosystem functioning. However, our 

results provide mechanistic insight into the nature of ecological processes. This information is 

critical to mathematical models, which often underestimate the role and importance of 

biodiversity, and to the formulation of new theories and studies that address ecosystem 

functioning. This may be particularly important for ecological boundaries and habitat transition 

areas, the contributions of which to overall functioning are still unclear and poorly studied 

(Cadenasso et al., 2003). Lohrer et al. (2013) demonstrated that habitat transitions influence 

facilitation in a marine soft-sediment ecosystem and suggested that these areas should be 

included in future studies rather than avoided. Our findings agree with this concept and support 

the importance of ecological boundaries and the interaction between functional traits for 

ecosystem functioning. Moreover, they suggest that the loss of functional diversity can have 

significant consequences for ecosystem function. 
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3.1 | Abstract 

Although they only occupy a relatively small portion of the surface of the planet, coastal 

habitats are some of the most productive and valued ecosystems in the world (Barbier et al., 

2011). Among these habitats, tidal flats are an important component of many harbours and 

estuaries, but their deterioration due to human activities poses a serious threat to biodiversity 

and ecosystem function (Douglas et al., 2017; Edgar and Barrett, 2000). Benthic communities 

are usually arranged in patches dominated by key species with overlapping distributions. 

Understanding the ecological consequences of interactions between these species in 

transition zones where their habitats overlap is necessary in order to quantify their contribution 

to overall ecosystem functioning and to scale-up and generalize results (Lohrer et al., 2013). 

Spatial transition in abundance and the interaction of multiple factors that drive ecosystem 

function are complex processes that require real-world research. Through a multi-site 

mensurative experiment, we show that transition areas drive non–linear effects on 

biogeochemical fluxes that have important implications for quantifying overall functioning. In 

our study the main drivers of ecosystem function were the abundance of two large but 

functionally very different species rather than biodiversity per se. Furthermore, we 

demonstrate that the use of the biogenic features created by specific infaunal species at the 

sediment-water interface is a better predictor of ecosystem functioning than the density of the 

species per se, making this approach particularly appealing for large scale, mapping and 

monitoring studies. 

 

3.2 | Introduction 

Coastal habitats only occupy about 10% of the ocean’s surface area but make a 

disproportionate contribution to key earth-system processes. Humanity has benefited from 

and evolved around coastal ecosystems but this has come at a cost of massive exploitation 

and intense deterioration of these systems. Nevertheless, recent reviews of the global value 

of estuarine and coastal ecosystems highlight these ecosystems still deliver many critical 

ecosystem services (Barbier et al., 2011).   

The global distribution of tidal flats occupies at least 127,921 km2 (Murray et al., 2019). 

These soft sediment environments are complex ecosystems containing strong physical 

gradients that affect the distribution of species and physico-chemical conditions. These 

features interact with biology resulting in patchy spatial distributions of communities and 

ecosystem functions across multiple spatial scales. Such patchiness is often not as apparent 

as in other ecosystems where above ground structures define patches (e.g. terrestrial and 

marine forests). This heterogeneity is a powerful indicator of ecological health but confounds 
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the simple up-scaling of ecosystem function measurements and thus the estimate of 

ecosystem services at scales most relevant to society (Hewitt et al., 2007). When patches 

dominated by specific community types overlap, they create interface areas where 

communities and habitat features grade into one another, with largely unexplored 

consequences for ecological functioning (Cadenasso et al., 2003). These areas of transition 

between contrasting patches of habitat can lead to interactive effects and emergent properties 

and therefore cannot be fully characterized by solely characterizing the adjacent patches 

(Lohrer et al., 2013). 

Fig. 3.1 The top panels are examples of pictures of the sediment surface inside the experimental 
incubation chambers, showing in red the annotation of the feeding tracks of Macomona liliana (A) and 
in light blue that of the sediment mounds created by Macroclymenella stewartensis (B). In the bottom 
panels, close-up pictures of the biogenic features of both M. liliana (C) and M. stewartensis (D) are 
included for reference. 

 

Due to the complexity of interactions involved in driving rates and processes in these 

heterogeneous marine sediments, empirical measurement is essential, but exceedingly 

challenging. To resolve this fundamental problem we focused on resolving the shifts in multiple 

ecosystem functions associated with two co-occurring and functionally important species that 

differentially influence a variety of sedimentary rates and processes (Schenone et al., 2019; 
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Chapter 2). Adult Macomona liliana (tellinid bivalve) are ecosystem engineers that alter the 

sediment and its biogeochemical properties, playing an important role in community dynamics 

and benthic fluxes (Thrush et al., 1992). The polychaete Macroclymenella stewartensis 

(maldanid) is a head–down conveyor belt feeder that feeds at depth in the sediment and 

defecates at the surface. As a result of their biological activity, both species create distinctive 

microtopographic features on the sediments surface providing opportunities to quickly assess 

major changes in abundance and identify how these species partition the habitat in the 

transition zones (Fig. 3.1). Using in-situ benthic incubation chambers and an organic matter 

degradation assay we measured the fluxes of dissolved oxygen (O2) and ammonium (NH4
+) 

as well as the organic matter degradation rate at the sediment surface (Co) and the extinction 

coefficient of organic matter degradation with sediment depth (k). By quantifying these 

ecosystem functions at different locations with varying densities of target species, we were 

able to demonstrate how the co–occurrence of both species at high densities tends to 

decrease biogeochemical fluxes as compared to patches dominated by either species and 

how this negative effect changed with the relative density of the two organisms. These sandflat 

communities are species rich (c 100-150 macrofauna species) and yet, using a methodology 

originally developed to understand the variation in community data (“variance partitioning”; 

Borcard et al., 1992), we were able to tease apart the role of these large species that leave 

signatures on the sediment surface from the role of the community (biodiversity) in driving 

ecosystem function. 

3.3 | Results 

Exploring the importance of the single biotic and abiotic components, each ecosystem function 

was driven by different variables (Table 3.1). However, the presence of M. liliana and M. 

stewartensis and their interaction were consistently important predictors, while the 

environmental variable that was most consistently retained in the models was sediment 

porosity. Our ecological functions models, except for O2 consumption and denitrification, 

identified an important interaction effect.  
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Factor N2 NH4+ O2 Co k 
M. liliana 14.78 24.41 10.28 0.14 3.47 
M. stewartensis 12.32 0.46 7.75 20.73 
M. liliana x M. stewartensis 8.51 19.37 24.78 
Porosity 7.14 22.62 21.16 17.92 3.05 
Mud % 6.82 
Grain size 5.31 12.91 16.65 
Organic matter 7.01 2.44 

Total explained 34.24 75.14 46.8 45.18 68.88 
Table 3.1 Important variables for each predictive model – identified by backwards variable selection – 
and their relative importance (%). 

Changes in the relative abundance of M. liliana and M. stewartensis, measured from the 

change in the density of their biogenic features, modified the nature of their effect on multiple 

ecosystem functions (Fig. 3.2). NH4
+ efflux showed the highest rates when only one of the two 

species was present at the highest density (i.e., 30 to 45 ind m-2 for M. stewartensis or  130 to 

145 ind m-2 for M. liliana). Lowest NH4
+ efflux occurred when both organisms where present 

at the highest densities. Simultaneous, low densities of both organisms also led to low NH4
+ 

efflux. Both organic matter degradation parameters showed a similar response to the 

interaction, with high Co and low k present in areas of high densities of M. liliana with and low 

densities of M. stewartensis and vice versa, and low Co and high k when both organisms were 

present at high density simultaneously. Finally, even though backwards variable selection 

retained the density of both organisms but not the interaction term in the final statistical model 

explaining denitrification, we investigated the changes in denitrification rates with changing 

densities of M. liliana and M. stewartensis. Denitrification was highest when the densities of 

M. liliana were highest and those of M. stewartensis lowest. An increase in M. stewartensis,

or a decrease in M. liliana densities, led to a decrease in net denitrification rates. Net nitrogen

fixation was predicted at average to high densities of the polychaete in presence of the lowest

densities of the bivalve.
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 Fig. 3.2 Contour plots showing the modelled effect of the interaction between M. liliana and M. 
stewartensis on ecosystem functions as their densities change. Clockwise from upper left: ammonium 
efflux (NH4+), organic matter degradation at the sediment surface (Co), denitrification (N2), extinction 
coefficient of organic matter degradation with sediment depth (k). Note the scale is different for different 
functions. 

 

Although best results were obtained using untransformed data, all models included 

significant polynomial terms emphasising non-linear rates across the sandflats. Organic 

matter degradation seemed to be mainly driven by linear relationships and the only non–linear 

relationship of organic matter degradation at the sediment surface (Co) was with porosity (Fig. 

3.3). Denitrification, NH4
+ efflux and O2 consumption had different non–linear predictors, 

however M. stewartensis showed a non–linear relationship with ecosystem functions more 

consistently than the other predictors. 

-1 -1

-1
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Fig. 3.3 The red lines represent the shape of the non–linear relationships between biological and 
environmental variables (on the top) and the ecosystem functions (on the right). Where the red line is 
missing, the relationship was either linear or not significant. 

Partitioning the variation in the ecological functions between the biogenic features of 

M. liliana and M. stewartensis, the measured environmental variables and the rest of the

macrofaunal community showed that biogenic features explained the largest portion (21%, p

= 0.001) of variance, followed by the environmental variables (17%, p = 0.008) and

macrofauna (11%, p = 0.053) (Fig. 3.4). These biogenic features are signatures on the

sediment surface of the activity of Macomona (feeding traces) and Macroclymenella (faecal

mounds) and offer an estimate of their abundance and biological activity. However, most of

the variation explained by macrofauna was shared with the biogenic features and

environmental variables, while the non–shared portion explained purely by macrofauna

accounted for only 2% of the total variation (p = 0.346). Consistently, when we analysed the

variance partitioning of one function at a time, macrofauna was only important in explaining

NH4
+ efflux, the organic matter extinction coefficient (k) and surface organic matter

degradation (Co) (23, 21 and 16% respectively). The non–shared portion of variance purely

attributable to macrofauna was not significant for any of these functions.



32 

Fig. 3.4 Results of the variance partitioning of the functions data between biogenic features of M. liliana 
and M. stewartensis, environmental variables and the rest of the macrofaunal community. [a] is the 
fraction explained purely by M. liliana and M. stewartensis, [b] is the fraction explained purely by 
environmental variables, [c] is the fraction explained purely by the rest of the macrofaunal community 
and [d], [e], [f], [g] are the fractions of explained variance shared by two or more of the sets of variables. 
The adjR2 values indicate the total variance explained by a set of variables. Note the size of the circles 
is not correlated with the variance explained. 

3.4 | Conclusions 

Our results confirmed the importance of specific, large but functionally different, species for 

ecosystem functioning and in particular, highlighted the importance of studying transition 

zones where their interaction can significantly alter benthic fluxes. Looking at the two species 

individually, our findings were consistent with previous studies on their effect on 

biogeochemical fluxes (Banta et al., 1999; Braeckman et al., 2010; Dornhoffer et al., 2015; 

Mermillod-Blondin et al., 2004). However, the presence of non–linear relationships and 

significant interactions indicates that these effects can change with the density of the 

organisms. As hypothesized based on our previous mesocosm experiments (Schenone et al., 

2019; Chapter 2), the co–occurrence of both species at high densities reduced fluxes. 

However, this negative effect changed with the relative density of the two organisms and 

became positive when one of the two species was dominant. Several studies report the 

positive effects of M. liliana on nitrogen fluxes and primary production (Thrush et al., 1992; 

Woodin et al., 2012, 2016). However, our findings suggest that such effects can be completely 

negated in transitional areas with high densities of M. stewartensis. These transition zones 

are a common component of the tidal flat landscape and can occupy a vast portion of the 

ecosystem (Pridmore et al., 1990; Thrush et al., 1989; Turner et al., 1995; Zajac et al., 2003), 
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therefore exerting an important influence on overall ecosystem functioning at large scales. 

Tellinid bivalves and maldanid worms are cosmopolitan organisms that inhabit intertidal and 

subtidal marine soft–sediments all over the world (Kobayashi et al., 2018; Volkenborn et al., 

2012; Waldbusser et al., 2004; Woodin et al., 2016). Although, different systems are likely to 

host different sets of key species, with different functional traits, the implications of the results 

of our experiment are of global importance in linking ecosystem function measurements to the 

mapping of ecosystem services. The latter is often very coarse scale with little consideration 

for the spatial or temporal variation in function. Our results, with a 200-fold change in functions 

across intertidal flats, highlight the need for much quantification of the drivers of ecosystem 

function. 

The unprecedented and pioneering use of variance partitioning in biodiversity–

ecosystem functioning research allowed us to distinguish between the impact of the whole 

macrofaunal community (see Table B1 for complete macrofaunal families list and 

abundances) and that of our surface feature–forming species. Our findings indicate that even 

though community composition is important in explaining ecosystem functioning, our two 

target species held more explanatory power than the rest of the macrofaunal community. This 

is consistent with the “passengers and drivers” model, which proposes that in most 

ecosystems certain species have a disproportionate ecological impact (“drivers”) while others 

have a negligible effect (“passengers”) (Walker, 1992). However, while all the functions that 

we measured are linked to sediment biogeochemistry, driver and passenger species may be 

different when the entire multifunctionality of sediments is considered. Our results suggest that 

the sampling or the entire macrofaunal community is not always necessary. While our models 

generally identified M. liliana and M. stewartensis as important variables to explain fluxes, the 

variance partitioning showed that macrofaunal community only explained a small portion of 

the variation in ecosystem functions and most of the explained variation was shared with (i.e. 

already explained by) the other sets of variables. Therefore, the sampling of surface features 

of key species and a few easily measurable environmental variables can be sufficient to 

predict ecosystem functioning, which makes this approach particularly appealing for large–

scale, mapping and monitoring studies. 

In this context, our study also demonstrates the potential of using surface features to 

scale up ecosystem functioning measurements. The density of the small biogenic surface 

features, in fact, is not only a good surrogate for species distribution and density but also 

contains an intrinsic measure of the activity of the infaunal organisms, which in return affects 

ecosystem functions (Volkenborn et al., 2010). More active (e.g. feeding, excreting) individuals 

indeed have a bigger impact on sediment biogeochemistry than less active ones and this 

results in a greater number of biogenic features. Counting biogenic structures is not only non–
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invasive and faster than sampling macrofauna but can easily be applied over large scales 

through remote sensing. 

Our analysis opens up new ways to use the information provided by functionally 

important species and their surface features to up–scale ecological processes measurements 

and map ecosystem functions at the landscape level. We indeed need more research to focus 

on the quantification of ecosystem services at scales that are relevant to society and on the 

underlying role of living organisms in the provision of these services. 

3.5 | Methods 

Study location and sampling design 

Field sampling took place in the intertidal zone of the Whangateau Harbour, New Zealand, in 

April 2018. The extensive intertidal flats are predominantly composed of medium to coarse 

grain sand with a relatively low percentage of mud (<6%). The flats are largely mid-intertidal, 

with little difference in elevation and tidal inundation. Sampling was conducted at four sites in 

different parts of the harbour (“Tramcar Bay”, 36°18.59' S, 174°46.71' E; “Lews Bay”, 36°18.72' 

S, 174°46.42' E; “Horseshoe Island”, 36°19.02' S, 174°46.17' E and “Point Wells”, 36°19.21' 

S, 174°45.59' E). 30 stations distributed across sites to maximise information at different scale 

were sampled. Sampling covered a wide range of densities of both target species and 

encompassed patches dominated by each species and transitional areas. 

Benthic flux measurements 

To measure the changes in the concentration of solutes we used opaque benthic incubation 

chambers and rapid organic matter assay (ROMA). At each sampling station we deployed one 

dark benthic chamber as described in (Thrush et al., 2017). The chambers incubated a volume 

of approximately 30 L of sea water and the incubations lasted for approximately 4h, during 

high tide. Water was sampled from the chambers at the beginning and the end of the 

incubation period. We deployed dark, 1 L plastic bottles filled with ambient sea water, secured 

to the sediment surface in proximity of the chambers. Ambient water external to the chambers 

was also sampled at the beginning and the end of the incubations. Samples for O2 and N2 

were transferred into 12 ml glass vials and stored in a portable ice chest until stored in a fridge. 

Samples for dissolved inorganic nitrogen (DIN; NH4
+ + NO2

- + NO3
-) were pressure–filtered 

through a Whatman GF/C glass fibre filter into 50 ml polyethylene centrifuge tubes and kept 
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on ice prior to freezing. Since NO2
-, NO3

- and PO4
3- levels were close to the detection limit of 

the instruments, only NH4
+ was used in the statistical analysis of DIN fluxes. 

For the ROMA, ten days prior to the incubations one ROMA plate was deployed at 

each sampling station (see O’Meara et al., 2018 for a description of the methodology). The 

plates were then incubated in the sediment for ten days prior to the flux measurements, then 

collected and stored in a portable ice chest until they were analysed on the same day. 

Sediment and macrofauna 

At low tide, before the incubations, sediment characteristics were sampled next to each 

chamber. Benthic macrofauna was sampled at each sampling station (1 x 13 cm dia. x 15 cm 

deep cores), sieved over a 500 µm mesh and preserved in 70% isopropyl alcohol. Specimens 

of Austrovenus stutchburyi and Paphies australis in the samples were counted in the field and 

returned to the sediment alive due to local restrictions on their harvesting. Using a tripod to 

maintain a constant angle and distance, the sediment surface contained within each chamber 

base was vertically photographed to count M. liliana feeding tracks and M. stewartensis 

sediment mounds. After the incubations the sediment contained in the chambers was 

excavated to a depth of 15 cm and sieved over an 800 µm mesh to count the total number of 

M. liliana and M. stewartensis individuals.

Laboratory analyses 

O2 and N2 concentrations were determined by membrane–inlet mass spectrometry (MIMS) 

with a Pfeiffer Vacuum QMS 200 quadrupole mass spectrometer (Kana et al., 1994). DIN 

concentrations were determined by flow injection analysis (FIA) with a Lachat Quick–Chem 

8000 automated ion analyser (Thrush et al., 2017). Sediment porosity and organic matter 

content were determined from dried (48 h at 60 °C) and ashed (4 h at 500 °C) sediment 

samples respectively. Sediment grain size was measured with a Malvern Mastersizer–S. 

Preserved and stained macrofaunal samples were sorted under a dissecting microscope. All 

organisms were counted and identified to the lowest possible taxonomic level (usually 

species). Carbon consumption was measured by the change in agar volume in each well on 

the ROMA plate using an agar–to–carbon conversion factor of 0.026. Using linear regression 

to analyse the relationship between the natural log of organic matter degradation rate and the 

depth of the wells, we were able to calculate two parameters: the organic matter degradation 

rate at the sediment surface (Co) and the extinction coefficient (k) (O’Meara et al., 2018). 
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Image analysis 

The density of biogenic features within the surface area delimited by the experimental 

chambers was calculated from the pictures taken before the start of the benthic flux 

incubations. Features of both M. liliana and M. stewartensis were manually counted. 

Data analysis 

The relationship between surface features and actual densities of M. liliana and M. 

stewartensis in the sediment was assessed via linear regression. Variance partitioning 

(Borcard et al., 1992; Legendre and Legendre, 2012) was then computed using the R ‘vegan’ 

package to compare the portion of the multivariate functions data explained by the density of 

surface features and the density of target species respectively. The significance of each 

portion was tested using Redundancy Analysis (RDA). M. liliana and M. stewartensis densities 

were highly correlated with the densities of surface features they produced (R2 = 0.74 and 

0.88 respectively). However, using variance partitioning we distinguished between how much 

of the variation in functioning was explained by the density of biogenic features compared to 

that explained by the actual density of M. liliana and M. stewartensis in the sediment. The 

former explained 21% of the variation in the functions data while the latter only explained 9% 

(Fig. 3.5). Therefore, we chose the densities of biogenic features produced by M. liliana and 

M. stewartensis over their actual densities in our analysis.

The variables were then divided into 3 sets of variables: “biogenic features”, (i.e. the 

density of the surface features of M. liliana and M. stewartensis); “env. variables”, (i.e. all the 

sampled environmental variables); “macrofauna”, (i.e. the information on the macrofaunal 

community, excluding M. liliana and M. stewartensis). Using variance partitioning, we 

calculated how much of the variability in multifunctionality (i.e. the entire set of functions) was 

explained by each set of variables. To explore the differences in the partitioning of the variation 

for each single function we then used partial linear regression on denitrification, NH4
+ efflux, 

O2 consumption and organic matter degradation separately. 

Generalised linear modeling with incorporated nonlinearities and backwards variable 

selection was then used to determine which of the biotic and abiotic variables better predicted 

ecosystem functions. Best models were selected based on the residual by predicted plots, 

residual normal plots and partial leverage plots. For each model, we determined the relative 
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importance of each predictor variable using the lmg metric in the ‘relaimpo’ R package 

(Grömping, 2006). When the models identified significant interactions, two–dimensional 

contour plots were created to investigate the effect of the interaction on the ecosystem function 

of interest. All statistical analyses were performed with R v3.6.1 (Team, 2013). 

Fig. 3.5 Variance partitioning of the multivariate functions data between the density of surface biogenic 
features and actual density of M. liliana and M. stewartensis. 
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4.1 | Abstract 

Mapping ecosystem functions and services has gained considerable importance, particularly 

for its applications in ecosystem management and conservation. While practices for terrestrial 

ecosystems are well established and mainly rely on land cover, marine ecosystems face 

challenges that hinder our ability to quantify and understand the distribution of ecosystem 

services. In particular, soft-sediment marine habitats are complex and heterogeneous but data 

on the distribution of communities and habitats in these systems in scarce. Mapping relies 

primarily on the sampling of abiotic variables and physical attributes, easier to obtain at broad 

scale, and therefore underestimates the role of the underlying biodiversity. In our study, we 

develop a mapping procedure that can handle situations where only a limited amount of data 

can be collected. We combined field measurements of species abundance and benthic fluxes 

to create models and then used data from a drone survey of the distribution of selected 

sediment microtopographic features linked to specific species to extrapolate these measures. 

This method quantifies ecosystem functions at broad spatial scales and with high resolution 

leading to the creation of ecologically nuanced maps that target the underlying mechanisms 

of ecosystem functioning. 

4.2 | Introduction 

Coastal ecosystems, found along continental margins around the globe, occupy about 

10% of the ocean surface and are regions of remarkable biological productivity (Burke et al., 

2001). This has made them centres of human activity for millennia, resulting in the over 

exploitation and intense deterioration of these habitats. Despite their global decline, estuarine 

and coastal ecosystems still deliver many critical ecosystem services (Barbier et al., 2011). 

Mapping benthic habitats and the ecosystem services they provide will allow for better 

decisions, more sensitive to current environmental status and nuanced to specific 

management interventions (Carpenter et al., 2009; Huang et al., 2011; Martínez-Harms and 

Balvanera, 2012). Maps allow us to identify areas of high ecosystem service supply and 

ecological importance and are a powerful tool to prioritize management and conservation 

efforts. Given its importance, the mapping of ecosystem services has become popular and 

there has been an increase in the number of studies that aim to quantify their spatial 

distribution at landscape and regional scales (Burkhard et al., 2012; Martínez-Harms et al., 

2016; Seppelt et al., 2011; Sousa et al., 2016). Maps predominantly rely on land cover data 

and landscape elements since increasing the amount of ecological complexity expressed by 

maps requires an increasing amount of data. However, in marine ecosystems this process 
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faces some important challenges that hinder our ability to accurately quantify ecological 

processes at large scales. 

Coastal bioturbated sediments are highly complex systems where the interactions 

between organisms and their biogeochemical environment affect ecological functions. These 

interactions and the spatio-temporal variations in a range of physical conditions result in high 

heterogeneity in the distribution of benthic organisms and ecosystem functions (Brunier et al., 

2020). Such heterogeneity, when underestimated, leads to significant errors in extrapolations 

aimed at upscaling ecosystem functioning. Because heterogeneity of the environment usually 

increases with scale, extrapolations that do not incorporate this heterogeneity are subject to 

inaccuracy, particularly in generating maps of the delivery of services at scales relevant to 

management (Allen and Hoekstra, 1991; Godbold et al., 2011; Hewitt et al., 2007; Needham 

et al., 2011; Peterson, 2000). The characterisation of the broad scale functioning of an 

ecosystem, therefore, necessarily requires a good knowledge of processes that happen at 

different spatial scales and that are often more tractable to measure at small scales (Lohrer et 

al., 2015). 

Due to the challenge of extensively sampling marine ecosystems, large scale benthic 

habitat mapping relies on physical attributes (Huang et al., 2011; Roff and Taylor, 2000). 

Sampling of simple abiotic variables, the use of acoustic techniques and remote sensing are 

common approaches that rely on topographic features and substrate properties to classify 

habitat types (e.g. Jordan et al. 2005, Lundblad et al. 2006, Wilson et al. 2007). However, 

species richness and the presence of functionally important species, have been shown to be 

positively correlated with the ecological functions and the supply of ecosystem services 

(Cardinale et al., 2012; Fourqurean et al., 2012; Ieno et al., 2006; Mermillod-Blondin et al., 

2005; Schenone et al., 2019). Hence, these broad-scale sampling procedures, overlook or 

underestimate the role of the underlying biodiversity for ecosystem functioning and thereby 

ecosystem services (Lavorel et al., 2017). 

To overcome the challenge of data scarcity, the search for techniques that allow broad 

scale, high resolution sampling should be pursued in concert with the development of 

methodologies that can extrapolate information from a limited amount of ecosystem function 

data with confidence. New developments in remote sensing techniques facilitate cost effective 

mapping at scales that can capture small biogenic features on intertidal flats, giving to the 

possibility to collect data over large areas in a short period of time (Anderson and Gaston, 

2013). An accurate description of these features and their size, and of the variations in habitat 

characteristics requires data at fine resolution. While satellite images and acoustic techniques 

provide data at relatively coarse resolution, drone and kite aerial photography and underwater 
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towed cameras have the ability to collect data at higher resolution (Bryson et al., 2013). 

However, to date remote sensing mainly provide information on physical and topographic 

structures, leaving the acquisition of ecological function data to more arduous field 

measurement. 

In our study we sought to map the distribution and rates of denitrification, ammonia 

efflux and organic matter degradation in the intertidal flats of the Whangateau Estuary. To do 

so, we combined the information provided by two co-occurring and functionally important 

species that create distinctive microtopographic features on the sediments surface with 

measurements of benthic fluxes. Both the tellinid bivalve Macomona liliana and the maldanid 

polychaete Macroclymenella stewartensis alter the sediment and its biogeochemical 

properties and differentially influence a variety of sedimentary rates and processes (Schenone 

et al., 2019). These two organisms and their interspecific interactions are more important in 

explaining ecosystem functions than the rest of the macrofaunal community and 

environmental variables and therefore can be used to predict functioning (Chapter 3). 

Moreover, the biogenic features that these animals create on the sediment surface are a good 

surrogate of their abundance and distribution, and a better predictor of ecosystem functioning 

than the actual density of the organisms because the biogenic features are a better measure 

of activity (Chapter 3). Here we developed an automated biogenic features detection tool by 

training a convolutional neural network to count the number of M. liliana and M. stewartensis 

sediment features (Fig. 4.1) from drone collected images and combined this information with 

benthic fluxes models to create our maps. 

Fig. 4.1 Biogenic features on the sediment surface. M. liliana (left) leaves bird footprint-like feeding 
tracks and M. stewartensis (right) creates volcano-shaped mounds. 
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4.3 | Methods 

Study location. Whangateau Harbour is a sandspit estuary located on the east coast 

of the North Island of New Zealand (36°18′58″ S, 174°46′11″ E). Considered to be one of the 

most valued estuaries within the Auckland region, it is made up of a unique mix of high-value, 

high-quality habitats contained within a relatively small area. The harbour has an area of 

approximately 750 hectares (~7.5 km2), with approximately 85.4% of this being intertidal 

(Kelly, 2009). The extensive intertidal flats are predominantly composed of medium to coarse 

grain sand with a relatively low percentage of mud (<6%). Both of our target species are 

abundant in Whangateau and dominate vast patches of the landscape as well as transitional 

areas where their distributions overlap. 

Fig. 4.2 Locations of the sampling of the 2018 experiment in the Whangateau harbour. From the top 
right to the bottom left corner, the sites are Tramcar Bay (black filled circle), Lews Bay (triangle), 
Horseshoe Island (plus) and Point Wells (circle cross). 

Experimental design. We used data on M. liliana and M. stewartensis, sediment 

characteristics, nitrogen and oxygen fluxes and organic matter degradation from a 2018 

mensurative experiment in the Whangateau Estuary to quantify the relationships between 

multiple ecosystem functions and sediment biogenic features (see Chapter 3). Encompassing 

the heterogeneity in M. liliana and M. stewartensis distributions, we sampled 30 stations at 

different locations within the estuary including patches dominated by each species and 
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transitional areas where their distributions overlapped. The sampling strategy was designed 

to incorporate variation at different spatial scales (Fig. 4.2). At each sampling station, we 

deployed opaque benthic incubation chambers and rapid organic matter assay (ROMA, 

O’Meara et al. 2017) plates and measured 4 ecosystem functions: denitrification, ammonia 

(NH4
+) efflux, organic matter degradation at the sediment surface (Co) and the extinction 

coefficient of organic matter degradation with sediment depth (k). Concurrently, we sampled 

the sediment characteristics and macrofaunal community, as well as M. liliana and M. 

stewartensis surface features at each station. 

Modelling Ecosystem Functions. Generalised linear modelling was used to model 

the relationship between the density of M. liliana and M. stewartensis biogenic features and 

each one of the ecological functions measured. The independent variables included in the 

models where the density of M. liliana and M. stewartensis surface features and their 

interaction. Nonlinearities were incorporated into the models using log transformations and 

polynomial terms. The choice of the independent variables was supported by our previous 

study (Chapter 3), which demonstrated that in the Whangateau Harbour, the presence of 

surface features of M. liliana and M. stewartensis better explains the variation in the ecosystem 

functions than the rest of the macrofaunal community and the measured environmental 

variables. Multiple regression models were built from all possible combinations of independent 

variables. Backwards variable selections was then used to identify variables that could be 

deleted without a significant loss of fit (α = 0.15). To avoid over fitting we restricted polynomials 

to 2–degrees and then examined the retention of predictor variables within the final models by 

the Akaike information criterion (AIC) and the Bayes Information Criteria (BIC) (Zuur et al., 

2007). Best models were selected based on the residual by predicted plots, residual normal 

plots and partial leverage plots. All statistical analyses were performed with R v3.6.1(Team, 

2013). 

Drone survey. We combined the biological, environmental and ecosystem function 

data with a drone survey of the intertidal sandflats to up–scale these measurements and map 

functions in the harbour. The survey took place between November and December 2018 and 

comprised nearly 50 transects, both across and along the shore, generating a total of 7083 

pictures (average ground footprint = 5 m2) (Fig. C1). The survey was carried out within the 

habitats of M. liliana and M. stewartensis. A DJI Inspire 1 Pro (SZ DJI Technology Co., Ltd., 

China) was used with a Zenmuse X5 camera. For flight planning and control we used the open 

source software Litchi (VC Technology Ltd., UK). Each transect was divided in slow sections, 

where pictures were recorded, and fast sections, where the drone would fly quickly without 

recording. In the slow sections, the drone was set to fly at 2m above the ground at a speed of 
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1.03m s-1 and to take pictures every 2 seconds. The resulting image overlap was always ≥ 

50%. An integrated GPS recorded the geographical coordinates of each picture. 

Image processing & neural network. Convolutional Neural Networks (CNN) are a 

popular Deep Learning approach in object detection, and in particular as a counting technique 

when paired with an unmanned aerial vehicle (UAV) (Hong et al., 2019; Kellenberger et al., 

2018). An image acquired by a UAV system is fed into the CNN where the output is the image 

with bounding boxes drawn around the potential biogenic features of interest. The core design 

of a CNN consists of a series of linked convolutional layers that exist in a hierarchical structure, 

where at each layer a convolutional kernel (matrices of mathematical weights) passes over an 

image and creates a feature map (Krizhevsky et al., 2012; LeCun et al., 1998). The training 

phase of a CNN iteratively adjusts the weights in each layer so a bias is formed towards the 

desired features for detection, for example; the colour red or a certain shape or edge. The 

quality of the detection is therefore based on the quality of the training set. To be robust, CNNs 

require an abundance of data, for animal features counting, this is typically vignettes of the 

desired animal or feature. For animal classification, Shahinfar et al. (2020) found that 150 - 

500 were enough for 70% accuracy, where the features were required to be as unique as 

possible. 

We used RCNN (Girshick et al., 2014), a framework used for object detection and 

classification, to detect M. liliana feeding tracks and M. stewartensis faecal mounds, from 

images gathered by the UAV. Images processed were of 4608 by 2592 pixel resolution and in 

full colour. Region proposal was performed using Selective Search (Uijlings et al., 2013), and 

feature extraction the VGG16 CNN architecture (Simonyan and Zisserman, 2015), 

implemented in Keras. Training was performed on a workstation equipped with two GTX-1080 

Ti GPUs. The data set included 1142 M. liliana and 296 M. stewartensis samples of which the 

training-test ratio was 80:20 percent. For training, these features were resized to 224 by 224 

pixel vignettes. To improve detection rates we used a transfer-learning approach (Shin et al., 

2016), where weightings from a VGG16  pretrained model were applied as starting weights 

and then further modified by during training. 

The final trained model was then applied to the test set of data and its accuracy 

(𝐹𝐹1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) was evaluated using the following metrics: 

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
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𝑅𝑅𝑆𝑆𝑆𝑆𝐴𝐴𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

𝐹𝐹1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗
𝑅𝑅𝑆𝑆𝑆𝑆𝐴𝐴𝑅𝑅𝑅𝑅 ∗ 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃
𝑅𝑅𝑆𝑆𝑆𝑆𝐴𝐴𝑅𝑅𝑅𝑅 + 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃

 

where 𝑇𝑇𝑇𝑇 is the number of true positives, 𝑇𝑇𝑇𝑇 is true negatives, 𝐹𝐹𝑇𝑇 is false positives 

and 𝐹𝐹𝑇𝑇 is false negatives. 

 Mapping Ecosystem Functions. The mapping process took place in 2 steps. First, 

interpolating the abundances of M. liliana and M. stewartensis calculated with the neural 

network analysis, to map the distribution and abundance of both species over the range of the 

estuary intertidal flats; ii) secondly, using the relationships between our target species and 

ecosystem functions, we combined the two species distribution layers and calculated the 

predicted ecosystem functions delivery at each point of the map. Given the importance of the 

interaction between the two species for ecosystem functioning, we also mapped the degree 

of the overlap in their distribution to better define transition areas and the formula: 

I =  �
Macomona

MacomonaMax
� ∗ �

Macroclymenella
MacroclymenellaMax

� 

where I is the degree of overlap and takes values between 0 and 1, and MacomonaMax and 

MacroclymenellaMax are the maximum values of density of M. liliana and M. stewartensis 

respectively in the data. 

 All spatial analysis and mapping was performed using ArcMap 10.7.1 software (ESRI, 

2019). Spatial autocorrelation was examined via semivariograms using the Geostatistical 

Wizard tool. First we evaluated the presence and direction of global trends and anisotropy, 

and then we investigated the species distribution data using the Trend Analysis tool. We 

investigated the presence of global trends across the whole data, then assessed the presence 

of local trends by dividing the data into 4 geographical areas and looking at each area 

individually. Ordinary kriging with 1 x 1 m resolution was then used to interpolate the data and 

map the distribution of M. liliana and M. stewartensis based on their biogenic features. 

Interpolation by kriging allowed us to generate full-coverage standard error maps for each 

species to show where predicted values were weakest. These two layers where then 

combined using the Raster Calculator tool based on the ecosystem function models and 4 

ecosystem function maps were created. 
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4.4 | Results 

The predictive models explained a minimum of 25% to a maximum of 58% of variance in 

ecosystem functions (Table C1). The model that explained the biggest amount of variance 

was organic matter degradation extinction coefficient (k; 58%), followed by ammonium efflux 

(NH4
+; 42%), organic matter degradation at the sediment surface (Co; 32%) and denitrification 

(N2; 25%). All models included both response variables (Macomona liliana and 

Macroclymenella stewartensis) and their interaction with the exception of N2, where the 

interaction was not significant. While Co and k relationships with M. liliana and M. stewartensis 

were linear, N2 and NH4
+ showed non-linear relationships. Namely, a negative logarithm of M. 

stewartensis with N2 and a second degree polynomial of both M. liliana and M. stewartensis 

with NH4
+. 

 The CNN built to detect M. liliana and M. stewartensis features on the sediment surface 

in the drone photographs had an 𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴 of 0.77, a 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃 of 0.57 and a 𝑅𝑅𝑆𝑆𝑆𝑆𝐴𝐴𝑅𝑅𝑅𝑅 of 0.89, 

resulting in an overall 𝐹𝐹1𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of 0.69. The resulting species distribution maps for M. liliana 

and M. stewartensis didn’t show clear along or across shore trends but revealed the patchy 

distribution of both species (Fig. 4.3 and Fig. C2). M. liliana tended have slightly more 

homogeneous distribution compared to M. stewartensis, particularly in the western portion of 

the map (Point Wells), with denser patches generally connected by areas of medium density. 

M. stewartensis formed a bigger patch close to the centre of the map (Horseshoe Island) and 

then smaller patches heterogeneously distributed and poorly connected (see Figure 4.2). 

However, the plots revealed low densities of both species towards the southern portion of the 

map. The standard error associated with the predictions was generally between 4 and 34 for 

M. liliana and between 1 and 6 for M. stewartensis. However, values greater than respectively 

25 for M. liliana and 4 for M. stewartensis only occurred around the edges of the maps (Fig. 

C3). 
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Fig. 4.3 The distribution and density of (A) M. liliana and (B) M. stewartensis and (C) degree of co-
existence in transition areas 

Mapping transitional areas revealed that they occupy roughly 40% of the mapped intertidal 

sandflats of the Whangateau Harbour. In about 80% of these areas, M. liliana and M. 

stewartensis coexist at the highest densities. The remaining transitional areas give rise to 

areas where neither the densities of M. liliana or M. stewartensis are strongly elevated at the 

same time. The ecosystem functions maps are tightly related to the distribution of transition 

areas and to the intensity of the interaction between the two key species (Fig. 4.4). 



 

48 
 

 

Fig. 4.4 Distribution and delivery of the modelled ecosystem functions. On the top, A shows the 
denitrification expressed as the N2 flux in µmol N2 m-2 h-1 and B show the efflux of NH4+ in µmol NH4+ 
m-2 h-1; On the bottom the maps show two different parameters of the organic matter degradation: Co in 
g C m-2 day-1 (C) and k (D). 

  

Areas with the highest density of M. liliana promoted high rates of denitrification while areas 

of low M. liliana density or low overlap (M. stewartensis present at density > 20 m-2 but M. 

liliana present density < 40 m-2) lead to nitrogen fixation. While denitrification happens 

throughout the whole mapped portion of the estuary, 35% of the surface area delivered almost 

60% of the function. NH4
+ efflux exhibits reverse geographical patterns, where areas of 

overlapping distribution with high densities of both M. liliana and M. stewartensis show a 

pronounced negative effect on NH4
+ efflux. Organic matter degradation, both in terms of 

degradation at the sediment surface (Co) and degradation extinction coefficients (k), are highly 

influenced by the interaction between our target species and its distribution matches with that 

of transition areas with high overlap and areas of high density of M. liliana. The same areas 

showed low degradation extinction coefficients values. This indicates that these regions 

exhibit very high carbon turnover rates in the first few centimetres of the sediment and that 
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these rates don’t decay quickly with sediment depth. Conversely, areas with low densities of 

both organism produces lower rates of carbon degradation at the sediment surface and higher 

degradation extinction coefficients, which indicates less carbon is consumed and up to a 

smaller depth in the sediment. 

4.5 | Discussion 

The combination of data on density of key species, ecosystem function measurements 

and drone imagery provided a detailed understanding of the distribution and quantification of 

important ecological functions that underpin critical ecosystem services at the landscape 

scale. Through our models we were able to identify areas of the estuary that are hot spots of 

different ecological processes and areas that contribute less. To our knowledge, to date only 

one other study has addressed the patchiness in functional performance and the location of 

functional hot and cold spots across heterogeneous landscapes (Thrush et al., 2017). While 

the areas of greater N2 and NH4
+ efflux mainly seem to coincide, these same areas exhibit the 

lowest rates of organic matter degradation. In particular, hotspots of denitrification are 

associated with high densities of M. liliana, while NH4
+ efflux shows a stronger negative effect 

of the presence high densities of M. stewartensis. Conversely, hotspots of organic matter 

degradation, both in terms of its rates at the surface and its persistence with sediment depth, 

occur where the overlap between the distribution of the two species is minimum. This 

information can be used to target management and conservation actions. For example, the 

aim of maintaining denitrification, a regulating ecosystem services that is particularly important 

in New Zealand, could be achieved prioritizing areas that, due to the high densities of M. 

liliana, show high rates of this process. The procedure used in our study allowed us to collect 

relevant measurements of ecological functions and combine them with an extensive 

distribution/activity data with minimum effort and cost. This allowed us to overcome one of the 

main problems associated with mapping marine ecosystem services, namely the lack of high-

resolution spatial information for habitat and species distribution (Lavorel et al., 2017). The 

use of drones to acquire information on species distribution can be easily adjusted to meet the 

needs of the experimental design by changing parameters such as height, sampling effort etc. 

Another problem that we addressed is the lack of biophysical realism, which results in 

the inadequate integration in ecosystem models of the role of biodiversity for ecosystem 

functioning and ecosystem services (Seppelt et al., 2011). Although the positive relationship 

between biodiversity and ecosystem functioning is recognized, these relationships are still 

poorly understood and most large scale marine ecosystem services mapping relies primarily 

on physical attributes (Bergström et al., 2015; Huang et al., 2011; Roff and Taylor, 2000). Our 
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study provides a guideline for future ecosystem services studies. First, it shows the potential 

of combining field collected data and remote sensing to create combined functioning models. 

Secondly, it guides future research toward the selection of variables that not only are easy to 

collect, but also add meaningful biological information to ecosystem models and maps, filling 

the gap in biophysical realism. Although our models only explain a part of the variation and 

our maps have a degree of uncertainty associated with their estimates, the quantification of 

the distribution and delivery of ecosystem functions that they provide represent an important 

improvement in our understanding of ecosystem services. Our maps succeed in their purpose 

of detecting spatial changes in ecosystem functions delivery at scales relevant to management 

and conservation and providing a much more ecologically relevant broad-scale quantification 

of ecosystem functioning than previously achieved. 

Remote sensing has the clear advantage of collecting a high amount of data with 

minimum effort and in a snapshot of time. Moreover, drone photogrammetry can be tailored 

to collect data at resolutions sufficient to capture small (cm-scale) biogenic features on 

intertidal flats. Although being the ideal measure, direct sampling of the benthic communities 

and their ecological functions would be impractical. Therefore, the choice of surrogate 

measure that can provide information on the distribution of key species and on the ecological 

functions that they perform is crucial. The use of biogenic surface features as a surrogate for 

species density has two main advantages. On the one hand it provides a faithful estimate of 

the real density of the organisms that generated them. On the other hand it increases the 

explanatory power of ecosystem functioning models due to an intrinsic measure of their rate 

of activity (Chapter 3). One of the limits of maps it that they are a static representation of the 

spatial patterns of species and functions distribution. The distribution and density of both target 

species of our study are likely to incur in seasonal variations (Thrush et al., 1994; Turner et 

al., 1995). Similarly, disturbance events can alter benthic communities (Hinchey et al., 2006; 

Norkko et al., 2002; Thrush and Dayton, 2002). However, given the relationships between key 

species density and ecosystem functions, drone photogrammetry can be easily applied to 

monitor changes over time or the response to disturbance, adding a temporal component to 

our maps. 

The successful management of ecosystems is inherently data intensive and requires 

detailed information on a variety of aspects of an ecosystem. The need for ecological 

knowledge and good relevant data, together with the increased anthropogenic pressures on 

the marine environment and the potential for multiple-use conflicts, have led to an increased 

interest in marine spatial planning (Douvere and Ehler, 2009). Different studies, both in 

terrestrial and marine ecosystems, suggest how estimating ecosystem services can inform 

spatial planning decisions (Arkema et al., 2015; Bateman et al., 2013; Birch et al., 2010; 
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Goldstein et al., 2012). At the landscape level, the main challenge is how to decide on the 

optimal allocation and management of the many different land use options. Ecosystem 

functions and services have become an important concept in policy making, as decision 

makers have to deal with an explicit demand for services from a broad range of stakeholders 

(Bills and Gross, 2005; de Groot et al., 2010; Hein et al., 2005). A precise quantification and 

understanding of the distribution of natural communities and of the ecosystem services they 

provide is therefore crucial to make informed decisions and to accurately estimate their value. 

The methodology that we propose and the maps that we created provide tools to support 

marine spatial planning efforts and ecological research, incorporating a true understanding of 

the underlying ecological mechanisms instead of relying on less informative physical 

attributes. Moreover, our mapping procedure is feasible in a variety of coastal environments 

and can be easily tailored to meet the requirements of different systems. The approach we 

have developed is directly relevant to assessing the ecosystem services of intertidal flats, 

which currently collectively cover 127,921 km2 of our planet (Murray et al., 2019). The basic 

approach could also be applied to subtidal habitats, exploiting incubation chambers or remote 

sampling techniques to quantify ecosystem functions and video surveys or autonomous 

underwater vehicles to upscale the measurements. 
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Chapter 5 – Scaling-up ecosystem 

functions of coastal heterogeneous 

sediments: experimenting with high 

resolution data 
Stefano Schenone, Simon F. Thrush 

This work has been submitted to Landscape Ecology and is currently in review.
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5.1 | Abstract 

Context Scaling up experimental results to large scale-natural systems that are most 

relevant to society is one of the most pressing problems in ecology. Different techniques have 

been proposed, from the simple multiplication of the small-scale average to the use of scaling 

factors to the investigation of the spatial patterns in the data. These techniques have proved 

useful for scaling studies in fields such as biology, physiology, physics and economics. 

However, the use of scaling in ecology is less common and hindered by its intrinsic 

heterogeneous nature. 

Objectives We aimed to demonstrate that the use of different scaling approaches leads to 

considerably different results and that not accounting for heterogeneity decreases our ability 

to accurately extrapolate measurements of ecosystem functions. 

Methods We used high resolution data on the distribution and quantification of a set of 

ecosystem functions in a 1,695,158 m2 area of the Whangateau Estuary, New Zealand. 

Experimenting with the data, we compared the performance of three different scaling 

approaches: direct scaling, spatial allometry and semivariogram/kriging. 

Results Our analysis shows that the different methods can lead to results that differ by 

an order of magnitude: direct scaling underestimated functions while allometry overestimated 

them. The use of structure functions and kriging produced more accurate results. 

Conclusions Our work demonstrates the effectiveness using models that link ecosystem 

functioning to biological attributes that can be measured remotely to accurately study 

heterogeneous landscapes and the weakness of ignoring spatial heterogeneity within 

landscapes. Integrating measures of heterogeneity through the spatial structure of the data, 

although data intensive, leads to results that are more realistic and relevant to resource 

management. 

5.2 | Introduction 

Some of the most pressing problems in ecology exist at large spatial and temporal 

scales. However, predicting the effects of broad scale anthropogenic impacts on ecosystem 

functions is hindered by the need to scale-up processes that are more tractable to measure at 

small scales (Hewitt et al., 2007). Our knowledge of the functioning of marine ecosystems, in 

fact, mainly derives from small scale laboratory and field studies. Extrapolating the results of 

these experiments is not a trivial task because they may not apply to larger scales that are 

most relevant to society. Moreover, environmental heterogeneity is known to increase with 
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scale, making extrapolations that do not incorporate heterogeneity prone to inaccuracy (Hewitt 

et al., 2007; Lohrer et al., 2015; Peterson, 2000; Snelgrove et al., 2014; Thrush et al., 1997). 

Scaling is defined as the process of translating information between or across spatial 

and temporal scales or organizational levels. Although the importance of scaling in ecology 

has been recognized in recent decades, how to conduct scaling across heterogeneous 

ecosystems remains a challenging question (Wu et al., 2006). In marine environments, the 

high heterogeneity and the lack of high resolution data due to the challenges related to 

extensively sample marine ecosystems further complicate this process. One of the simplest 

ways to transfer information between two scales is to assume that the broader–scale system 

behaves like the average value of the finer-scale system. In this case, scaling is obtained 

simply by multiplying the sample–scale average with the total study area. This process is often 

referred to as “lumping” or “direct scaling” and assumes that the relationship describing the 

system is linear (King, 1991; Miller et al., 2004). As a consequence of the oversimplifying 

assumptions however, this simple upscaling procedure could produce large scaling errors. 

Allometric scaling is one of the most common approaches found in scaling literature. 

Allometry is based on the underlying concept of incomplete similarity or fractality, which 

implies that the fundamental features of a system exhibit an invariant, hierarchical organization 

that holds over a wide range of spatial scales (Barenblatt, 1996; Brown et al., 2002; Li, 2000). 

One of the main advantages of this approach is that it is characterized by relatively simple 

mathematical or statistical scaling functions, generally in the form of a power law. 

Nevertheless, the underlying ecological processes may be complex. A common example is 

the relationship between the metabolic rate of organisms, 𝐼𝐼, and their body mass, which can 

be expressed by the equation: 𝐼𝐼 = 𝐼𝐼0𝑀𝑀𝑏𝑏, where 𝑀𝑀 is body mass, 𝐼𝐼0 is a taxon dependent 

normalization, and 𝑏𝑏 = 3/4 for animals and plants (Brown et al., 2004). Although most of the 

allometric equations do not directly address the problem of spatial scaling, space can be 

incorporated into a scaling relationship through, for example, population density or home 

range (Wu et al., 2006). In particular, allometry as a general method can be applied to spatial 

scaling when the independent variable is spatial scale instead of body mass (“spatial 

allometry”; Schneider, 2001). While the benefit of using allometric scaling is recognized for a 

variety of fields, from physiology to economics, these simple power law may not be adequate 

to describe the upscaling of ecosystem functions (Brock, 1999; Marquet et al., 2005). 

Moreover, in seafloor landscapes heterogeneity and non–linear processes can be hard to 

measure and take into account and can greatly hinder the scaling process. 

Most ecological data are inherently composed of several levels of spatial structure: 

large-scale trends (species responses to climate conditions, migrations, etc.), multi scale 
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patterns or patchiness (physical conditions, dispersal mechanisms, facilitation, etc.), and 

errors (Klopatek and Gardner, 1999). Structure functions attempt to describe spatial structures 

in the data and allow us to quantify spatial dependence and partition it amongst distance 

classes (Legendre and Legendre, 2012). For example, previous work has demonstrated the 

feasibility of variograms to quantify spatial heterogeneity and explore spatial patterns and 

describe phenomenon as a function of space (Garrigues et al., 2006; Lausch et al., 2013). 

Successively, geostatistical techniques, such as kriging, that employ knowledge of the spatial 

covariance (as contained in the variogram) can then be used to produce a spatial model 

(Klopatek and Gardner, 1999). To be able to accurately describe these structure and 

incorporate as much heterogeneity as possible, a high amount of data is usually necessary. 

Such high-resolution information on the spatial arrangement of the data, however, provides 

information about patterns at different scales. While spatial analysis deals with the problems 

associated with spatial heterogeneity, synergistic effects arising from the interaction between 

species with different functionalities are also likely to confound the upscaling of ecological 

processes (Chapter 3). 

Another complication posed to scaling in marine systems consists in the difficulty of 

extensively sampling marine environments and the consequent scarcity of data (Townsend et 

al., 2014). To accurately describe the relationship of a variable to changes in scale in these 

complex systems often requires more data than it is practical to obtain. In our study, we 

addressed the issue of whether various methods successfully used to scale up metabolic, 

ecophysiological and other ecological relationships are suitable to upscale species–

ecosystem function relationships in heterogeneous marine landscapes, where the data 

available is usually limited (Table 5.1). We used a high–resolution map of ecosystem functions 

to compare the use of different scaling approaches (direct scaling, allometric scaling, 

variogram/kriging). While such high resolution maps can be used to estimate ecosystem 

functions at scale, the ability to identify scaling relationships is crucial to help design and 

estimates across landscapes that cannot otherwise be extensively mapped. The performance 

of each approach in predicting ecosystem functioning for the landscape was compared to 

actual values obtained by summing contributions to function across the map (Chapter 4). We 

hypothesized that in coastal bioturbated landscapes traditional scaling approaches, that fail to 

take into account the effect of heterogeneity and the functional interactions between different 

organisms, would produce a poor representation of broad-scale ecosystem functioning. 
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Approach Complexity Data 
intensity Underpinning theory Scaling 

function 

Direct scaling Very low Low Geometric similarity Linear 

Spatial allometry Low Low Incomplete self-
similarity/fractality Power law 

Variogram/kriging High High Autocorrelation/covariance Variable 
     Table 5.1 Characteristics of the scaling methods used in this study 

5.3 | Methods 

Experimental design. For this study, we used data from a 2018 mensurative 

experiment that we carried out in the Whangateau Estuary (New Zealand) to quantify the 

relationships between multiple ecosystem functions and the density of two key species: 

Macomona liliana and Macroclymenella stewartensis. Both M. liliana (tellinid bivalve) and M. 

stewartensis (maldanid polychaete) are ecosystem engineers that alter the sediment and its 

biogeochemical properties and differentially influence a various sedimentary rates and 

processes; details of the sites and the sampling design are presented in Chapter 3. Briefly, to 

measure fluxes, we deployed opaque benthic incubation chambers and rapid organic matter 

assay (ROMA, O’Meara et al. 2017) plates. Concurrently, we sampled the sediment 

characteristics and macrofaunal community, as well as M. liliana and M. stewartensis surface 

features at each station. Surface features of M. liliana and M. stewartensis have been proven 

to be a reliable proxy of their density and to explain more variance in ecosystem functioning 

than their density itself (Chapter 3). Finally, we combined ecosystem functioning models that 

explained the relationship between field measured biogeochemical fluxes and the density of 

key species, with a drone survey of the distribution of those species in the estuary to map the 

delivery of ecosystem functions at a 1 x 1 m resolution (Chapter 4). In the present study, we 

sampled these high resolution raster datasets as described below to build the different scaling 

relationships. 

Study location. Whangateau Harbour is a sandspit estuary located on the east coast 

of the North Island of New Zealand. Considered to be one of the most valued estuaries within 

the Auckland region, it is made up of a unique mix of high-value, high-quality habitats 

contained within a relatively small area. The harbour has an area of approximately 750 

hectares (~7.5 km2), with approximately 85.4% of this being intertidal (Kelly, 2009). The 

extensive intertidal flats are composed of predominantly medium to coarse grain sand with a 

relatively low percentage of mud (< 6%). Both our target species are abundant in Whangateau 
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and dominate vast patches of the landscape as well as transitional areas where their 

distributions overlap. A map of the habitats of Whangateau was first developed in 2000 and 

successively updated in 2010 (Hartill et al., 2000; Townsend et al., 2010). These maps show 

that our study area is entirely covered by sandflat habitat (Fig. 5.1). The extent of the study 

covers the intertidal sandflats of the northern Whangateau Estuary and coincides with the area 

of the estuary mapped in our 2018 study (Chapter 4). 

Fig. 5.1 Habitat map of the Whangateau estuary (modified from Townsend et al., 2010). The black 
contours highlight our study area. 

Scaling. To test our hypothesis, we compared the performance of different scaling 

approaches and assessed their results against those originally obtained in the survey of the 

estuary. We considered the rates of 3 ecosystem functions: denitrification (expressed as the 

release of N2 from the sediment), ammonia (NH4
+) efflux and organic matter degradation at 
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the sediment surface (Co). These functions are the result of important biogeochemical 

sedimentary processes and underpin crucial supporting and regulating ecosystem services, 

such as the cycling of nutrients and organic matter. Respectively, we tested i) a linear model 

that uses the plot average value to calculate the value at the target scale just by means of 

multiplication (direct scaling); ii) a power law model based on the notion of self-similarity 

(allometric scaling); iii) a model based on the spatial structure of the data (variogram/kriging). 

Direct scaling. To upscale and calculate the delivery of each ecosystem function at the 

scale of interest we first calculated the plot average of each function and then multiplied it by 

the extent of the study (1,695,158 m2). Initially, since the study covered and area that has 

been classified as one habitat type – sandflat habitat (Fig 5.1) – one average for each function 

was produced using all data. Then, to produce a more accurate calculation, the data was 

divided into 4 sites based on the variability highlighted in the maps and the total upscaled 

value of each function was calculated by the sum of the site average multiplied by the area of 

the site. 

Allometric scaling. We tested the presence of fractal-like relationships in the form of 

the power law equation: 

𝑌𝑌 = 𝑌𝑌0𝐴𝐴𝑏𝑏 

log𝑌𝑌 =  log𝑌𝑌0 + 𝑏𝑏 log𝐴𝐴 

where 𝑌𝑌 is the ecosystem function of interest, 𝑌𝑌0 is a scaling constant equal to the plot average 

value of the function, 𝐴𝐴 is space in m2, and 𝑏𝑏 is the scaling exponent.  

To do so, we sampled the raster data from the ecosystem function maps and 

calculated fluxes across 10 squared surfaces of different sizes that shared the same centroid. 

The areas of the squares were respectively 1 m2, 625 m2, 2500 m2, 5625 m2, 10000 m2, 15625 

m2, 22500 m2, 30625 m2, 40000 m2 and 50625 m2. Four replicates were calculated in random 

haphazardly chosen locations. The average values from the 4 replicates for each surface size 

were plotted against the surface area to check for the presence of disjunctions that could 

indicate multi-fractality. The allometric model was then fitted to the data and was evaluated 

graphically and by means of the r2 value. Finally, using the scaling exponent calculated from 

the model, we estimated the value of each function at the extent scale from the plot–average 

value. 

Variogram/kriging. To understand whether the use of information about the special 

structure of ecosystem functions would help improving their upscaling and accuracy and 

prediction, we used a systematic sampling design and calculated functions in 50 evenly 

distributed points on the maps. First, we checked for the presence of global trends and 
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anisotropy in the data. Then, for each function we calculated the empirical semivariogram. 

Finally we used anisotropic kriging to interpolate and extrapolate the data to the study area. 

The kriging results were used to calculate the up-scaled values of the functions. 

The geostatistical processing was performed using ArcMap 10.7.1 software (ESRI, 2019). All 

other statistical analyses were performed with R v3.6.1 (Team RC 2013). 

5.4 | Results 

Approach N2 (kg h-1) NH4+ (kg h-1) Co (tonnes h-1) 
Direct scaling 2.07 0.18 7.51 
     Direct scaling with 4 sites 3.23 0.36 13.5 
Spatial allometry 2.36 32.06 11,567.5 
Variogram/kriging 14.94 1.54 80.26 

Mapped estimate 13.02 1.19 77.22 
Table 5.2 Summary of the results of the different scaling methods and comparison with the values 
calculated from the map of functions in Chapter 4. 

Direct scaling underestimated the delivery of all ecosystem functions and allometry 

underestimated denitrification but overestimated ammonium (NH4
+) efflux and organic matter 

degradation (Table 5.2 and Fig. 5.2). Direct scaling predicted 6.3 times less denitrification than 

the expected value, 6.7 times less NH4
+ efflux and 10.3 times less organic matter degradation 

(Co) across the sandflat habitat. Dividing the habitat into 4 sites and calculating the sum of the 

predicted value for each site provided a slightly better estimate of functions but still 

underestimated the functional contribution of the sandflat (4 times less denitrification, 3.3 times 

less NH4
+ efflux and 5.7 times less organic matter degradation). 
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Fig. 5.2 Comparison of the scaling approaches. The top 3 panels show the relationship between spatial 
scale and, from left to right, denitrification, ammonia efflux and organic matter degradation obtained 
through direct scaling. The middle panels show the power law relationships between area and the 
logarithm of the functions obtained through allometric scaling. The bottom panels show the models used 
for kriging. 

Allometric scaling calculated denitrification was 2.5 times lower than the expected 

value. NH4
+ efflux was instead 26.5 times higher and Co was 149.8 times higher. No multi-

fractality was observed and all 3 functions showed very similar scaling exponents, respectively 

1.18, 1.35 and 1.2. 

The use of structure functions and kriging provided a much more accurate estimate of 

functions. This method was able to detect and account for anisotropy in the data and predicted 

a total flux of 14.94 kg of N2 h-1, 1.54 kg of NH4
+ h-1 and 80.26 tonnes of C h-1. The actual 

values calculated from the results of Chapter 4 were respectively 13.02 kg of N2 h-1, 1.19 kg 

of NH4
+ h-1 and 77.22 tonnes of C h-1. 

5.5 | Discussion 

Experimenting with extensive, high–resolution data on the spatial distribution and 

delivery of ecosystem functions allowed us to compare the performance of different scaling 

methods in predicting those functions. Our results show that different methods can lead to 

differences in the estimates of functions of an order of magnitude. Direct scaling, one of the 
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simplest scaling methods, showed very poor performance and underestimated all functions 

by more than 80%. This approach merely consists in the multiplication of the plot-scale 

average with the total study area (King 1991, Miller et al. 2004). By doing so, it assumes that 

the relationships describing the system are linear and it can lead to considerable bias because 

it does not account for additional variability and ignores nonlinear changes that often occurs 

with changes in scale (Rastetter et al., 1992; Turner and Gardner, 2015). For it to provide a 

more accurate estimate of function would require an excessive amount of sampling and prior 

knowledge of the system studied to tailor the sampling strategy. To improve the prediction and 

incorporate some measure of heterogeneity it is possible to divide the study area into a 

tractable number of discrete elements based on some characteristics, for example land use 

or different habit type (Turner and Gardner, 2015). However, when we applied this concept to 

our study, the predictions only improved by 2-5%. 

Sampling the three functions at different scales showed the emergence of allometric 

relationships, with similar scaling exponents of 1.18, 1.35 and 1.2 for respectively 

denitrification, ammonium efflux and organic matter degradation, suggesting a common 

pattern in the relationship between ecosystem functioning and scale. Allometric scaling still 

fails to accurately predict functioning at larger scales and results in underestimated 

denitrification and overestimated ammonium efflux and organic matter degradation estimates. 

However, the fluxes measured across polygons of increasing area showed a clear allometric 

gowth and the fitted models always had r2 > 0.9. This may indicate the presence of multi-

fractality at scales bigger than those measured. For several decades allometry has focused 

primarily on the body size (or mass) of organisms as the fundamental variable (e.g. Calder, 

1983; McMahon et al., 1983; Schmidt-Nielsen, 1984; Taylor et al., 1982). In biology, allometric 

studies have proved successful scaling up metabolic and physiological relationships (e.g. 

Brown et al., 2000; Labarbera, 1989; Schmid et al., 2000). However, the effect of scale on 

ecosystem functions is still poorly understood and fractal theory has never been applied to 

biodiversity–ecosystem functioning research in marine systems. The reason why the 

estimates of functions from allometric scaling still differ from the actual estimates can be 

sought in the lack of measures of heterogeneity and in the oversimplification. This approach, 

in fact, aims to describe the complex nature of these habitats with a rather simple 

mathematical function. Although this simplification represent one of the limits of the method, it 

is also its major appeal due to the need to find easy ways to describe complex phenomena, 

which would otherwise be impossible to describe when the data is scarce. 

The approach that led to the most accurate estimates of ecosystem functions was the 

investigation of spatial structures through variograms/kriging. Spatial statistics are increasingly 

being used in the context of extrapolation, and they have great potential to improve the 



 

62 
 

accuracy of predictive models (Miller et al., 2004). Probably one of the most commonly used 

methods in this context, kriging relies on autocorrelation functions to generate spatially explicit 

predictions (Webster and Oliver, 2001). Although it resulted in rather accurate results, this 

process requires a larger amount of data compared to the other methods. A good estimation 

of the parameters of the variogram, in fact, is crucial for the subsequent kriging steps (Fortin, 

1999). Therefore, estimating functions at the landscape scale would typically require that at 

least ~50 sites are sampled. However, when prior knowledge on the study area is available or 

can be easily obtained (trough remote sensing for example), it can be used to tailor the 

sampling design. Other methods are available to scale up the results of experiments and can 

be applied to spatial ecology (Klopatek and Gardner, 1999; Wu et al., 2006). Most approaches, 

however, are derived from and very similar to those used in this study. Therefore, when 

applied to heterogeneous systems, such as coastal landscapes, similar differences in 

estimates can be expected. 

Soft sediment habitats are often considered to be homogeneous but are in fact highly 

complex ecosystems and contain strong physical gradients that affect the distribution of 

species and functional performance. This results in the patchy spatial distributions of 

communities and ecosystem functions across multiple spatial scales. Such patchiness is often 

not as apparent as in other ecosystems where above ground structures define patches (e.g. 

terrestrial and marine forests). Moreover, ecosystem functioning is driven by the biological 

activity of species and by their interactions. If we fail to sample the spatial heterogeneity of 

these systems and to include the role of the underlying biodiversity in the scaling process, we 

end up miscalculating the results of important ecological processes that support critical 

ecosystem services.  

Scaling ecosystem functions can allow the quantification of the ecosystem services 

they underpin. The choice of the scaling method therefore can deeply influence the 

assessment of their ecological, cultural or economic value. For example, the value of Nitrogen 

removal via denitrification in U.S. dollars has been estimated between $13/kg N and $98.70/kg 

N (Piehler and Smyth, 2011; Watanabe and Ortega, 2011). Using the more conservative value 

of $13/kg N, the estimate of the annual cost to replace the removal of N through denitrification 

in our study site would be of $US 1,701,367 using kriging to up-scale and $US 235,731 using 

direct scaling. If the only way we can value seafloor ecosystems is to monetise their services, 

this analysis shows substantive value for resource managers in gathering good ecological 

data, addressing scale, and understanding ecological complexity.  Although these are just 

approximate calculations that do not take into account changes in rates due for example to 

seasonal changes, they provide a useful indication that the inappropriate use of scaling can 

lead to differences of more than $US 1,000,000 in the estimate of ecosystem services. Coastal 
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ecosystems are dynamic and change is often driven by multiple stressors and cumulative 

anthropogenic effects. Therefore, the way we estimate functioning and service delivery needs 

to be sensitive to such changes. A map of a sandflat based on purely sedimentological 

features will not change even if we kill all of the resident macrofauna. A habitat characterisation 

that recognises the important scales of ecological variability is essential for effective 

management. 

The data used in this study was obtained from maps of ecosystem functions with a 1 

x 1 m resolution and therefore relies on their accuracy (Chapter 4). Such maps were created 

combining high resolution remote sensing data on the distribution of key species and 

ecosystem functioning models that relate functions to the abundance of those species and 

measures of uncertainty were provided. Our findings support the importance of the 

methodology we developed to create these biologically nuanced ecosystem functioning maps 

to overcome the challenge of integrating ecological variability in habitat description. The use 

of empirical and theoretical models that link ecosystem functioning to biological attributes that 

can be measured remotely over large areas will in fact improve our understanding of 

heterogeneous landscape and overcome the problems associated with extensive sampling. 

However, we showed that, since not all landscapes can be extensively mapped and linked to 

easily quantifiable features, the ability to properly identify and use scaling relationships is 

crucial to landscape ecology.  
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Chapter 6 – Conclusions 
Stefano Schenone 
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6.1 | Synthesis 

In this thesis I used a mix of controlled laboratory experiments, mensurative field studies, large 

scale surveys and modelling to investigate how key species living in intertidal soft-sediments 

drive ecosystem functions at multiple scales and how to use this information to map the 

delivery of these functions. In Chapter 2, I showed that key burrowing infaunal species have 

the ability to enhance and drive biogeochemical fluxes at the sediment-water interface. How 

and to what extent depends on the nature of their functional traits. This is consistent with 

previous literature on the effect of biodiversity on ecosystem functions (Bertics et al., 2010; 

Mermillod-Blondin et al., 2004; Volkenborn et al., 2007; Woodin et al., 2016). I also showed 

that their individual effects on biogeochemical processes interact synergistically and 

furthermore that these effects change with environmental stress (mud deposition). 

Overlooking these synergistic effects can lead to significant errors when extrapolating the 

results of experiments on ecosystem functioning. These findings led me to hypothesise that 

transition areas between patches dominated by specific species play an important role in the 

overall functioning of heterogeneous benthic ecosystems. This hypothesis was supported by 

previous studies on the effect of transition zones on populations and functions (Lohrer et al., 

2013; Zajac et al., 2003). However, it is still too common for ecologists to avoid patch transition 

areas in the design of experiments and the inference they draw from them. In Chapter 3, I built 

on the results from the previous chapter and demonstrated that in the intertidal sandflats of 

Whangateau harbour the key species Macomona liliana and Macroclymenella stewartensis 

are much more important for ecosystem functioning the rest of the macrofaunal community 

and environmental variables. I also showed that in patch transition areas, where the 

distribution of these species overlap, fluxes are different from patches dominated by either 

species. The functioning of these transition areas changes with the density of two species, 

which controls their interactions. This implies that across the sandflat landscape transition 

areas play an important role in the balance of ecosystems functioning that because of the 

synergistic interactions cannot be assumed from studies in patches where individual species 
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dominate (Fig. 3.2). This allowed me to develop ecosystem function models based on the 

density of key species that explained up to 70% of the variation in function. At the same time, 

I was able to link the density of these species to the biogenic features that they produce on 

the sediment surface as a result of their activity. My results showed that the biogenic traces 

left by Macomona and Macroclymenella are not merely surrogates for animal density but 

actually better measures because they reflect activity rates. These findings have important 

implications for ecological studies. Sampling surface features of key species – and potentially 

some easily measurable environmental variables – can be used to extrapolate the results of 

experiments to larger scales. Chapter 4 is the natural development of this idea. Combining 

species-functions models with the survey of the distribution of biogenic features, I was able to 

up-scale and map ecosystem function over the extensive sandflats of the estuary 

(1,695,158m2). These high-resolution maps are well grounded in the underlying ecology and 

give spatially explicit information on ecosystem functioning that can be used to assess the 

delivery of ecosystem services. They offer the opportunity to distinguish between areas of high 

delivery of functions and to identify hotspots of multiple functions. Finally in Chapter 5, I 

recognized that scaling information across spatial scales can be a complicated process, but it 

is incredibly important to gain an understanding of ecosystem functioning across scales. 

Moreover, it is not always possible to extensively map habitats and obtain high resolution 

spatial information and therefore it is necessary to determine which methods are more useful 

in scaling up the results of experiments. However, there does not appear to be one right way 

relate functions across scales. The choice of the approach has to be driven by the ecosystem 

under study. Simply multiplying the results obtained at small scale (< 1 m2), although still 

commonly applied, leads to significant aggregation errors in heterogeneous systems (Attard 

et al., 2019; Boerema et al., 2016; Ewers Lewis et al., 2018). Heterogeneity increases with 

scale and extrapolations that do not incorporate measures of heterogeneity lead to results that 

can be inaccurate by multiple orders of magnitude. Although geostatistical methods give more 

reliable results, their use requires a large amount of data. Spatial allometry, based on the 

fractal theory, shows the emergence of some interesting features in the relationship between 
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functions and scale and has the potential to reveal common patterns in the relationship 

between ecosystem functioning and scale (see Chapter 5). My results help untangling the 

complex spatial dynamics that drive ecosystem functioning and proposes new ways of 

bridging the gap between large-scale landscape ecology and functional ecology. 

 

6.2 | Limitations 

In this thesis I focused my attention on one estuary and two of the most functionally 

important organisms that are found in the sandflats: the tellinid bivalve Macomona liliana and 

the maldanid polychaete Macroclymenella stewartensis. While the effect of M. liliana on 

sediment biogeochemistry had been studied before, my work is to my knowledge the first 

published study on the effect of M. stewartensis. However, its functioning and consequences 

on the sediment are consistent with those observed in studies of other maldanid worms (e.g., 

Dobbs and Whitlatch 1982; Levin et al. 1997). Although my work demonstrated the key role of 

these two species, other estuaries and other habitats are likely to host different key species 

and their effects on ecosystem functions will depend on their functional traits and 

environmental setting. While other species, or in fact measures of biodiversity, may play 

dominant functional roles in other systems, this does not undermine the validity of the 

framework I proposed and will not stop other researchers from applying it to their ecosystems 

of interest. 

The ecosystem function models I developed to link the biogenic features of M. liliana 

and M. stewartensis to the delivery of functions do not explain 100% of the variability in the 

data. The models explained on average 50% of the variance with the best model – the 

ammonium efflux model – explaining up to 75% of variation. This means that, on average, 

50% of the variation was due to factors that were measured and included in the model or can 

be attributed to error. Other studies have shown similar levels of variance explained for 

ecosystem functions of soft sediments, using combinations of variables related to different 
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aspects of biodiversity and habitat characteristics (e.g., Thrush et al. 2017). While my 

explanation of functioning was not complete, it still represents a jump forward into a 

characterization of these habitats that is based on a few tractable variables of their underlying 

biodiversity that can be measured across large scales, rather than sets of physical parameters. 

Moreover, since there is no guarantee that all habitats show characteristic biogenic features 

that can be used for mapping, Chapter 5 deals with the implementation of approaches that 

can overcome this constraint and shows that autocorrelation and geostatistical methods, 

although require more data than simpler methods, can lead to accurate estimates of functions 

over large scales from limited measurements. 

 

6.3 | Future directions and applications 

The framework I developed can be further expanded to include temporal scales. The 

use of drones and artificial intelligence technologies make it cost-effective to measure changes 

in the estuaries through time and create dynamic mapping that is sensitive to seasonal 

variations and can be used to monitor temporal changes in species activity levels, patch 

structure and model functional contributions. However, this will need further verification and 

testing. It could also be used to assess long-term changes in ecosystem functioning due to 

major stress events and anthropogenic impacts. Another interesting feature to investigate is 

the addition to the ecosystem functioning models of more biogenic structure forming species 

and to link the morphology of the structures to the functional traits of the organisms that 

generated them. The shape of these structures could also be linked to their specific interaction 

with hydrodynamics. This trait-feature-function relationship would help investigate those 

habitats where a thorough empirical sampling of macrofauna is impractical. Finally, 

information on different functions could be synthetized to create maps of multifunctionality, 

combining the value of different functions that are potentially divergent into one indicator (e.g., 

linked to bioturbation vs sediment stability). Such maps would give further insights into the 
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contributions of different patches of habitats to ecosystem services and would strongly benefit 

the sustainable management of natural resources and space.  

 Coastal and estuarine ecosystems, at the transition between land and sea, are some 

of the most productive and heavily used natural systems in the world (Barbier et al., 2011). 

The ecosystem services derived from these habitats range from food production and 

contaminant processing to recreational used and cultural identity. This wide range of benefits 

and the number of people that live near and impact them, make them particularly valuable. 

Ecosystem management needs to ensure the sustainable exploitation of marine resources as 

well as the protection of habitats, taking account of potential multiple-use conflicts and impacts 

over large spatial scales to preserve their ability to deliver functions. This is the foundation of 

ecosystem-based management (McLeod and Leslie, 2009; Thrush and Dayton, 2010). To be 

successful, management requires spatially explicit information at all important ecological 

levels, which has led to an increased interest in marine spatial planning (Douvere and Ehler, 

2009). In this thesis, I developed ideas and methodologies that incorporate a true 

understanding of the underlying ecological mechanisms and spatial arrangement of species, 

functions and services to support marine spatial planning efforts and ecological research. 

Precise quantification and understanding of the distribution of natural communities and of the 

ecosystem services they provide, in fact, is crucial to make informed decisions and to 

accurately estimate their value to support sustainable management. 

 Knowledge of the drivers and location of functions is necessary to predict the 

consequences of anthropogenic pressures and environmental change on ecosystems. One of 

the consequences of human impacts on both terrestrial and marine ecosystems is landscape 

homogenisation (Hewitt et al., 2010; Thrush and Dayton, 2002; Western, 2001). In particular, 

homogenisation of benthic soft-sediment habitats is caused by physical destruction, removal 

of species and smothering by terrigenous deposits. This phenomenon is predicted to affect 

biodiversity by reducing species richness and heterogeneity, leading to potential regime shifts 

(Hewitt et al., 2010; Thrush et al., 2006). Under these scenarios, the complexity that supports 



 

70 
 

the healthy functioning of benthic habitats is endangered and we could expect a shift towards 

a more homogeneous distribution of ecosystem functions across the landscape and the 

consequent loss of functional hotspots. Studies that incorporate various degrees of 

heterogeneity help predict the long term consequences of species loss and habitat 

homogenisation. Detailed knowledge on the location of functions can therefore inform 

conservation efforts targeted at preserving the diversity and functioning of ecosystems. 

 

6.5 | Concluding remarks: portraying the hidden diversity 

 Soft sediments cover most of the ocean seafloor and dominate estuarine and coastal 

habitats (Snelgrove, 1997). Given the vast extent that these habitats occupy, sampling and 

characterizing them individually is impractical. Therefore, the use of maps and models has 

gained importance and popularity (Huang et al., 2011; Raineault et al., 2012). Unlike their 

terrestrial counterparts, coastal soft sediment habitats are most frequently characterized by 

their physical and topographic attributes rather than the underlying species and biodiversity 

and are often coarsely aggregated into just sand or mud habitat categories (Hillman et al., 

2020). Seppelt et al. (2011) defined this problem as the “lack of biophysical realism”. Mapping 

and modelling must evolve in order to describe these incredibly complex and functionally 

important habitats, where features are often not visually easy to detect and patch boundaries 

are fuzzy (see Evrard et al. 2008). Furthermore, the current biodiversity crisis and habitat loss 

that most coastal ecosystems are experiencing, highlights the critical urgency in investigating 

drivers of ecosystem functionality at different scales. In this thesis, I demonstrated that even 

within a single habitat, the heterogeneity of processes generates differences of orders of 

magnitudes in the delivery of functions, which is totally overlooked in traditional habitat 

characterization, and I open the way to closing the biophysical realism gap. Closing the gap 

between our fine-scale knowledge of these habitats and their coarse-scale characterization is 

possible and should be pursued. Integrating different research approaches and extending 
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empirical research across multiple scales, as I have done here, is challenging, but critical if 

we are to better understand and protect soft-sediment habitats for the generations to come. 
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Supplementary tables 

Table A1. Results of the 2 way ANOVA showing the preliminary analysis of effects of each species and 
sediment layer on measured fluxes. Significant results are indicated in bold text (˙p < 0.1, *p < 0.05, **p 
< 0.01, ***p < 0.001). N2 flux data was log-transformed prior to analysis. 

 Factor df SS MS F.Model p-value  

 (a) O2       
 Species 3 12845.941 4281.980 30.267 <0.001***  
 Treatment 2 8496.382 4248.191 30.028 <0.001***  
 Species x Treatment 6 5093.557 848.926 6.001 <0.001***  
 Res 36 5093.019 141.473    
 Total 47 31528.899 670.828    

 Pairwise comparison (Holm-Sidak)  Diff of Means  t p-value  

 Species within 0mm       
 (1) vs. (3)   51.963 6.178 <0.001***  
 (2) vs. (3)   53.475 6.358 <0.001***  
 (4) vs. (3)   56.062 6.666 <0.001***  
 (1) vs. (2)   1.512 0.180   0.858  
 (1) vs. (4)   4.099 0.487   0.949  
 (2) vs. (4)   2.586 0.308   0.943  
 Species within 3mm       
 (1) vs. (3)   22.968 2.731   0.048*  
 (2) vs. (3)   26.481 3.149   0.020*  
 (4) vs. (3)   21.033 2.501   0.067˙  
 (1) vs. (2)   3.513 0.418   0.897  
 (1) vs. (4)   1.934 0.230   0.819  
 (2) vs. (4)   5.448 0.648   0.890  
 Species within 6mm       
 (1) vs. (3)   39.946 4.750 <0.001***  
 (2) vs. (3)   1.932 0.230   0.820  
 (4) vs. (3)   47.796 5.683 <0.001***  
 (1) vs. (2)   38.015 4.520 <0.001***  
 (1) vs. (4)   7.850 0.933   0.586  
 (2) vs. (4)   45.864 5.453 <0.001***  

 Treatment within (1)       
 0mm vs. 3mm   1.734 0.206   0.838  
 0mm vs. 6mm   19.758 2.349   0.071˙  
 3mm vs. 6mm   18.024 2.143   0.076˙  
 Treatment within (2)       
 0mm vs. 3mm   0.267 0.0318   0.975  
 0mm vs. 6mm   59.285 7.049 <0.001***  
 3mm vs. 6mm   59.553 7.081 <0.001***  
 Treatment within (3)       
 0mm vs. 3mm   27.262 3.241   0.005**  
 0mm vs. 6mm   7.742 0.920   0.363  
 3mm vs. 6mm   35.003 4.162 <0.001***  
 Treatment within (4)       
 0mm vs. 3mm   7.767 0.923   0.362  
 0mm vs. 6mm   16.008 1.903   0.183  
 3mm vs. 6mm   8.241 0.980   0.556  

 Factor df SS MS F.Model p-value  
 (b) NH4+       
 Species 3 11121.266 3707.089 52.311 <0.001***  
 Treatment 2 173.169 86.585 1.222   0.307  
 Species x Treatment 6 6890.554 1148.426 16.205 <0.001***  
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 Res 36 2551.195 70.867    
 Total 47 20736.185 441.195    

 Pairwise comparison (Holm-Sidak)  Diff of Means  t p-value  
 Species within 0mm       
 (1) vs. (3)   31.538 5.298 <0.001***  
 (2) vs. (3)   67.580 11.353 <0.001***  
 (4) vs. (3)   58.968 9.906 <0.001***  
 (1) vs. (2)   36.043 6.055 <0.001***  
 (1) vs. (4)   27.430 4.608 <0.001***  
 (2) vs. (4)   8.613 1.447   0.157  
 Species within 3mm       
 (1) vs. (3)   34.748 5.837 <0.001***  
 (2) vs. (3)   36.105 6.065 <0.001***  
 (4) vs. (3)   35.638 5.987 <0.001***  
 (1) vs. (2)   1.358 0.228   0.994  
 (1) vs. (4)   0.890 0.150   0.986  
 (2) vs. (4)   0.468 0.0785   0.938  
 Species within 6mm       
 (1) vs. (3)   6.273 1.054   0.509  
 (2) vs. (3)   7.235 1.215   0.547  
 (4) vs. (3)   26.802 4.503 <0.001***  
 (1) vs. (2)   0.962 0.162   0.872  
 (1) vs. (4)   33.075 5.556 <0.001***  
 (2) vs. (4)   34.037 5.718 <0.001***  
 Treatment within (1)       
 0mm vs. 3mm   20.700 3.477   0.004**  
 0mm vs. 6mm   1.335 0.224   0.824  
 3mm vs. 6mm   19.365 3.253   0.005**  
 Treatment within (2)       
 0mm vs. 3mm   13.985 2.349   0.024*  
 0mm vs. 6mm   35.670 5.992 <0.001***  
 3mm vs. 6mm   21.685 3.643   0.002**  
 Treatment within (3)       
 0mm vs. 3mm   17.490 2.938   0.006**  
 0mm vs. 6mm   39.145 6.576 <0.001***  
 3mm vs. 6mm   21.655 3.638   0.002**  
 Treatment within (4)       
 0mm vs. 3mm   5.840 0.981   0.333  
 0mm vs. 6mm   6.980 1.173   0.435  
 3mm vs. 6mm   12.820 2.154   0.110  

 Factor df SS MS F.Model p-value  
 (c) N2       
 Species 3 2.523 0.841 0.803   0.500  
 Treatment 2 0.192 0.0962 0.0919   0.912  
 Species x Treatment 6 0.835 0.139 0.133   0.991  
 Res 36 37.679 1.047    
 Total 47 41.229 0.877    
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Supplementary tables 

Table B1. Macrobenthic families and their abundance in the core at each of the 30 sampling stations. 

 Taxa 
Sampling station  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  

 Trochidae 6 7 5 7 3 4 3 3 3 2 4 3 3 2 0  
 Buccinidae 2 3 1 1 2 2 1 3 2 2 2 1 1 1 0  
 Nassaridae 3 4 2 4 2 2 3 2 2 2 3 3 2 1 3  
 Batillariidae 84 61 43 52 43 39 37 40 31 26 23 22 28 24 21  
 Veneridae 5 6 8 3 10 9 9 17 18 46 38 38 32 36 27  
 Tellinidae 3 5 4 2 2 4 3 6 5 3 2 5 2 4 5  
 Nuculidae 5 4 9 5 4 6 6 11 8 6 8 15 10 21 28  
 Actinidae 5 6 5 4 10 5 16 25 27 72 48 35 43 19 1  
 Nereididae 14 12 10 12 7 9 11 8 8 6 7 11 9 15 16  
 Spionidae 15 13 17 18 12 14 12 20 18 63 31 35 42 29 24  
 Paraonidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 Sabellidae 3 1 0 1 0 0 0 0 0 0 2 0 0 0 0  
 Lysianassidae 2 4 3 6 4 9 3 7 6 6 4 3 2 2 0  
 Epitoniidae 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0  
 Hymenosomatida

 

0 0 0 0 1 1 0 1 2 0 0 1 0 0 0  
 Capitellidae 0 0 1 0 2 0 0 3 1 0 0 2 0 1 4  
 Maldanidae 0 0 0 1 0 0 0 1 1 1 1 1 1 3 2  
 Haminoeidae 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0  
 Lottiidae 0 1 2 0 2 1 0 1 1 3 2 2 0 3 2  
 Ostracoda 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0  
 Chitonidae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 Orbiniidae 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0  
 Sphaeromatidea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 Mesodesmatidae 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0  
                  

 Taxa Sampling station  

 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
 Trochidae 3 7 1 0 0 0 1 0 1 4 7 8 2 1 1  
 Buccinidae 2 1 0 0 1 0 1 2 0 2 4 3 2 2 1  
 Nassaridae 2 3 2 0 1 0 0 1 2 0 2 1 2 0 0  
 Batillariidae 19 15 17 0 1 1 2 4 7 19 21 25 23 16 14  
 Veneridae 34 28 26 4 3 1 6 3 3 25 24 19 28 32 24  
 Tellinidae 3 4 6 2 0 1 2 3 2 2 3 5 1 3 2  
 Nuculidae 19 26 25 0 1 0 0 0 2 2 5 6 0 0 2  
 Actinidae 18 13 11 5 5 1 7 4 3 36 28 29 39 24 18  
 Nereididae 11 18 14 15 11 12 17 12 9 11 13 8 18 17 10  
 Spionidae 38 35 30 0 1 0 0 0 0 16 22 21 20 28 22  
 Paraonidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 Sabellidae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
 Lysianassidae 3 1 1 0 0 1 0 0 1 0 1 1 0 0 0  
 Epitoniidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 Hymenosomatida

 

0 0 0 0 0 0 0 0 1 2 0 1 1 1 0  
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 Capitellidae 1 3 3 0 1 0 0 0 0 1 5 4 1 3 2  
 Maldanidae 0 2 1 0 0 1 0 0 0 0 1 0 0 1 2  
 Haminoeidae 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  
 Lottiidae 2 3 2 0 0 1 0 2 0 1 0 1 0 0 0  
 Ostracoda 1 0  1 0 0 1 0 0 0 1 0 0 3 2  
 Chitonidae 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
 Orbiniidae 0 0 0 2 0 1 0 0 1 0 1 2 0 0 1  
 Sphaeromatidea 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0  
 Mesodesmatidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
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Supplementary tables 

Table C1. Summary of the statistics of our four ecosystem functions models 

 Function AIC BIC R2 P Variables Coefficients P  

           N2 365.17 370.78 0.25 0.02 Intercept 64.275 0.182  
      M. liliana 5.141 0.022*  
      Log( M. stewartensis) -56.774 0.043*  
          
 NH4+ 197.03 206.84 0.47 0.006 Intercept 10.619 0.001***  
      M. liliana 9.060 0.296  
      M. liliana2 18.185 0.005**  
      M. stewartensis 26.64 0.037*  
      M. stewartensis2 -2.489 0.683  
      M. liliana x M. stewartensis -0.102 0.015*  
          
 Co 196.20 203.21 0.35 0.015 Intercept 7.036 0.015*  
      M. liliana 0.383 0.044*  
      M. stewartensis 1.106 0.085  
      M. liliana x M. stewartensis -0.119 0.005**  
          
 k -83.97 -76.97 0.58 0.001 Intercept -0.036 0.159  
      M. liliana -0.004 0.013*  
      M. stewartensis -0.012 0.05*  
      M. liliana x M. stewartensis 0.002 0.001***  
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Supplementary figures 

 
Fig C1. Location of the drone transects conducted to video sediment surface features related to M. 
liliana and M. stewartensis. The black lines represent the tracks followed by the drone. 
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Fig C2. The semivariogram models of the data on M. liliana (top) and M. stewartensis (bottom). The 
models were used for kriging. 
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Fig C3. Standard error maps of the predictions of the density of M. liliana (A) and M. stewartensis (B) 
generated with kriging. 

 



RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=4e613507-4b8d-4bbb-833a-52c23d70dc9e[22/05/2020 11:33:05 PM]

SPRINGER NATURE LICENSE
TERMS AND CONDITIONS

May 22, 2020

This Agreement between Mr. Stefano Schenone ("You") and Springer Nature ("Springer
Nature") consists of your license details and the terms and conditions provided by Springer
Nature and Copyright Clearance Center.

License Number 4834080623658

License date May 22, 2020

Licensed Content
Publisher

Springer Nature

Licensed Content
Publication

Springer eBook

Licensed Content Title
Role of Heterogeneity in Scaling of Ecological Systems Under
Analysis

Licensed Content Author Timothy F. H. Allen, Thomas W. Hoekstra

Licensed Content Date Jan 1, 1991

Type of Use Thesis/Dissertation

Requestor type academic/university or research institute

Format print and electronic

Portion figures/tables/illustrations

Number of
figures/tables/illustrations

1

98 



RightsLink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=4e613507-4b8d-4bbb-833a-52c23d70dc9e[22/05/2020 11:33:05 PM]

Will you be translating? no

Circulation/distribution 1 - 29

Author of this Springer
Nature content

no

Interspecific interactions and spatial heterogeneity: using key
species to up-scale and map ecosystem functioning

University of Auckland

Oct 2020

Figure 3.1

Mr. Stefano Schenone
17 Hillside Crescent

Leigh, 0985
New Zealand
Attn: Mr. Stefano Schenone

0.00 USD

Title

Institution name

Expected presentation 
date

Portions

Requestor Location

Total

99 


	Co-authorship forms.pdf
	co-authorship-form_Ch5.pdf
	co-authorship-form_Ch4.pdf
	co-authorship-form_Ch3.pdf
	co-authorship-form_Ch2.pdf

	Doctoral Thesis_Schenone.pdf
	Doctoral Thesis_Schenone - final.pdf
	Copyright.pdf




