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Abstract 

Leonuketal (8) is a seco-labdane natural product isolated from Leonurus japonicus, or Chinese 

liverwort, a herb used in traditional Chinese medicine. Leonuketal (8) exhibits vasorelaxant 

properties against KCl-induced contraction of rat aorta with an EC50 value of 2.32 mM, and bears 

a complex tetracyclic structure.  The carbon skeleton of 8 is derived from scission of the labdane 

B-ring, thus designating 8 a member of an interesting sub-class of diterpenoid natural products 

termed seco-labdanes. The architectural complexity of leonuketal (8) makes it an attractive 

target for total synthesis; herein the evolution of a synthetic strategy towards that end is 

described.  

 

The initial retrosynthetic strategy was targeted towards ester 315 and ketal-g-lactone 247. 

Access to 247 was secured by an efficient two step protocol, but construction of the caged 

bicyclic portion of leonuketal (8) proved more challenging. A sterically demanding [4+2]-

cycloaddition using 251 and 252 followed by reductive-cyclisation and esterification delivered 

314 with epimeric stereochemistry at C3. Unfortunately, strategic epimerisation of 314 could 

not be effected despite extensive study, and the correct stereochemical configuration for the total 

synthesis of leonuketal (8) was not obtained. 

 

The revised approach centred around alkyne 408, and after in-depth investigation, access to late-

stage intermediate 486 was obtained. Au(I)-catalysed hydroalkoxylation of 487 was employed 

for construction of the caged spiroketal motif of 8, and fragment coupling was achieved by an 
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alkylation reaction. Key alkyne 408 was synthesised by a Ti(III)-mediated cyclisation of 

epoxynitrile 350 to give ketone 380, followed by inversion of the C3 alcohol, and an unusual 

Shapiro-type reaction. 

 

This approach provided a foundation for the total synthesis of leonuketal (8), allowing the 

assembly of the tetracyclic framework, and leaving only the installation of the C3 

hydroxypropanone moiety to complete the synthesis. Elaboration of the described strategies to 

provide synthetic access to 8 is an ongoing pursuit of this research group. 
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1.1 Natural Products: Medicine and Synthesis 

Plants, fungi, and bacteria have evolved a variety of adaptations for the preservation of species 

and the propagation of genetic information. One such adaptation is the production of natural 

products (specifically, secondary metabolites) for precise and specific interaction with 

biological macromolecules.[1,2] As a class of organic compounds, natural products display an 

inspiring degree of chemical diversity and complexity ï a testament to the power of evolutionary 

processes. 

Natural products display a broad range of bioactivities due to both their function in the producing 

organism and the similarities between the structural domains of biological macromolecules 

across species.[3,4] Consequently, natural products have proven an invaluable source of 

medicines, with 26% of newly approved drugs between 1981 and 2004 being natural products 

or natural product analogues, and a further 21% being synthetic natural product mimics or 

synthetic drugs with a natural product pharmacophore.[5] Despite the historical successes of 

natural products as treatments of human disease, contemporary medicinal chemistry has moved 

away from natural products in favour of high-throughput and combinatorial methods for hit 

identification.[6] This is due to typically scarce natural sources of these compounds, as well as 

their structural complexity rendering synthetic preparation labour-intensive and 

uneconomical.[6]  

The value of natural products to humankind in the treatment of disease and the challenge posed 

by their complex structures has made their synthesis a key pursuit of organic chemistry. Target 

orientated synthesis of natural products has not only provided material for clinical use, but also 

a framework within which organic chemistry as a fundamental science has flourished.[7] New 

synthetic methods and mechanistic understandings have resulted from sustained effort towards 

the total synthesis of natural products. However, efficient preparation of such complex 

molecules is still challenging, and the advancement of synthetic organic chemistry to meet this 

demand remains an important problem.[8]   

1.2 Terpenoid Natural Products 

Terpenoids are the largest class of secondary metabolites comprised of over 40,000 reported 

compounds with diverse structures and important bioactivities including anticancer, 

antimicrobial, and antiviral activity.[9,10] Accordingly, terpenoids have garnered significant 
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interest of the synthetic and medicinal communities resulting in a rich body of literature 

describing their synthesis.[11ï13] 

Terpenoids are comprised of repeating isoprene (C5H8) units and are classified by the number 

of units incorporated into their structures; specifically, hemi- (C5), mono- (C10), sesqui- (C15), 

di- (C20), sester- (C25), tri - (C30), tetra- (C40) and polyterpenoids (C45+). The biosynthesis of 

terpenoids involves the cationic polyene cyclisation of an unsaturated linear precursor formed 

by iterative coupling of isoprene units in the form isopentenyl pyrophosphate (IPP). 

Subsequently, oxidative functionalisation of the scaffold, and often rearrangement of the cyclic 

skeleton lead to a large diversity of structures (Scheme 1A).[14] Notable examples of this class 

of compounds are briefly discussed below. 

Taxol (1) is a diterpenoid isolated from the stem bark of the western yew tree, Taxus brevifolia, 

and displays remarkable anti-tumour and anti-leukemic activities (Scheme 1B).[15] Rigorous 

synthetic and semi-synthetic studies toward a commercially viable preparation of taxol (1) 

followed its isolation report in 1971, culminating in both the first total synthesis by the Holton 

group in 1994, and FDA approval for the treatment of ovarian cancer in 1992.[16ï19] 

Artemesinin (2) is a sesquiterpene antimalarial treatment isolated by Youyou in 1972, for which 

she was awarded the 2015 Nobel Prize in Medicine (Scheme 1B).[20] Artemesinin (2) contains 

an unusual endoperoxide moiety, which has been shown to be essential to its antimalarial 

activity. This bioactivity is proposed to arise from reduction of the endoperoxide of 2 by Fe(II) 

in infected cells, leading to the generation of cytotoxic oxygen-centred radical species and 

eventual cell death.[21] 

Ingenol (3), first isolated from Euphorbia ingens in 1968, is a diterpenoid natural product 

bearing a highly strained in,out-[4.4.1]bicycloundecane core (Scheme 1B).[22] The angelate ester 

4 of ingenol gained first-in-class FDA approval in 2012 for the treatment of actinic keratosis, a 

precancerous skin condition, and additional indications of ingenol esters include anticancer and 

anti-HIV activity.[23ï25] The formidable challenge posed by the structure ingenol (3) and its 

impressive bioactivity have made the natural product the subject of rigorous study by synthetic 

chemists.[26,27] 

Cyclopamine (5) is a structurally interesting steroidal (triterpene) alkaloid bearing a rearranged 

skeleton (Scheme 1B).[28] Cyclopamine (5) derives its name from the ability to induce cyclopia 

in lambs, a congenital disorder characterised by failure of the embryo to divide the orbits of the 

eye into separate cavities.[29,30] More recently, 5 has been demonstrated to antagonise the G-
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protein-coupled receptor Smoothened, a major component of the Hedgehog signaling pathway 

that is upregulated in several cancers including basal cell carcinoma.[31ï33] A major hurdle in 

bringing cyclopamine (5) to the clinic has been the metabolic instability of the allylic tert-alkyl 

ether moiety, a problem that was overcome through total synthesis. By investigation of a 

synthetic strategy aimed at analogue generation, Giannis and co-workers found exo-

cyclopamine 6, an exocyclic olefin regioisomer of 5, to have a markedly improved stability 

profile and tenfold greater potency (Scheme 1B).[34,35] 

Englerin (7) is a sesquiterpenoid identified by the National Cancer Institute during a screen of 

natural product extracts for cytoxicity against a panel of cancer lines (Scheme 1B). Englerin (7), 

displayed preferential selectivity for renal tumor cells with nanomolar potency.[36] The most 

elegant synthesis of englerin (7) was achieved by Chain and co-workers in only 8 steps through 

utilisation of simple carbonyl chemistry.[28,37] 

Leonuketal (8), is a diterpenoid isolated from Leonurus japonicus by Peng and co-workers in 

2015 (Scheme 1B).[38] Leonuketal (8) bears a caged spiroketal moiety embedded in a tetracyclic 

skeleton and displays significant vasorelaxant activity. The formidable structure and interesting 

bioactivity displayed by leonuketal (8) prompted us to pursue a total synthesis. 
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Scheme 1. Terpenoid natural products 
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1.3 seco-Labdane Diterpenes 

Natural products bearing the carbon framework depicted by structure 9 (Scheme 2A) form an 

important subclass of diterpenoids designated as labdanes or labdanoids.[39] Labdanes arise 

biosynthetically from the protonation-induced cationic cyclisation of geranylgeranyl 

pyrophosphate (10), typically proceeding via a chair-chair transition state to afford a trans-

decalin ring system (11).[39] Established biological activities of labdane diterpenes include 

antimicrobial, antituberculosis and anticancer.[40]  

A small subset of labdanes feature cleavage of one or more carbon-carbon bonds in the decalin 

skeleton and are referred to as seco-labdanes. The characteristic bond cleavage event is typically 

oxidative (e.g. Baeyer-Villiger reaction) and often leads to an increase in functionality of the 

molecule (Scheme 2B). Subsequent reactions facilitated by the increase in oxidation state, such 

as ketalisation or aldol processes, lead to further structural complexity and diversity. 

  

Scheme 2. Labdane and seco-labdane biogenesis 

1.3.1 2,3-seco-Labdanes 

The earliest explicit report of a seco-labdane diterpene came from Grant and co-workers in their 

isolation of 2,3-seco-dicarboxylic acid 13 from the heartwood of the New Zealand endemic 

silver pine (D. colensoi) in 1965 (Scheme 3A).[41] Carboxylic acid 13 likely arises from 

oxidative cleavage of the A-ring of a simple labdane precursor. The authors note that 13 may 

naturally occur as the mono- or diester form, given isolation of the natural product involved 

treatment with aqueous base.[41] Interestingly, the authors had earlier reported the isolation of 
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colensone (14) from the same source, which they identified as a nor-diterpenoid (Scheme 

3A).[42] In the following 1965 report, colensone (14) was suggested to be biosynthetically 

derived from dicarboxylic acid 13 by Claisen condensation, followed by decarboxylation to 

reconstruct the labdane A-ring with one less carbon (Scheme 3A).[41] Based on this observation, 

colensone (14) can be considered the earliest reported 2,3-seco-labdane. In addition to the 

isolation of dicarboxylic acid 13, lactone 15 was isolated and suggested to be the Baeyer-Villiger 

oxidation product of colensone (14); therefore, a 2,3;3,4-seco-labdane (Scheme 3A).[41] 

Interestingly, Kiyosawa and co-workers isolated 16, an isomer of dicarboxylic acid 13 with 

inverted stereochemistry at all but one chiral centre, and the mono-ester form 17 from the 

resinous wood of E. agollocha in 1998 (Scheme 3B).[43] The natural occurrence of this isomer 

of 13 arises from the antipodal chair-chair transition state for construction of the trans-decalin 

labdane core.[43] Additionally, related natural products lactone 18 and exocoecarin (19) were 

isolated from the same source (Scheme 3B).[43,44] 

In 2001, Tokuda and co-workers reported the biological testing of 2,3-seco-labdanes lactone 18, 

excoecarin F (19), and alcohol 20 (Scheme 3B).[45] In an initial in vitro screening of the 

compounds, only alcohol 20 displayed appreciable inhibitory effect on the induction of Epsteinï

Barr virus by tumour promotor 12-O-tetradecanoyl-phorbol-13-acetate (TPA). This suggested 

alcohol 20 may serve as an effective anti-tumour agent in two-stage carcinogenesis. Hence, 

alcohol 20 was investigated in an in vivo carcinogenesis test of mouse skin tumours, where the 

inhibitory effects were compared with both a positive control group and a group treated with 

known anti-tumour agent glycyrrhetic acid. The group treated with both the tumour initiator and 

promotor as well as alcohol 20 showed formation of papilloma in less than 20% of mice, 

compared to 100% in the case of the positive control group and 43% in the case of the group 

treated with glycyrrhetic acid.  

In 2000, Rao and co-workers reported the isolation the 2,3-seco-labdane rhizphorin A (21) from 

Rhizophora mucronata, a mangrove plant growing along tidal shores and creeks of India 

(Scheme 3C).[46] The proposed structure featured the same oxidative cleavage of the A ring 

observed in 13ï20. The structure of rhizophorin A (21) would later be revised as exocolide A 

(22) by Basha and co-workers during their investigation of Excoecaria agallocha, leading also 

to the isolation of exocolides B-D (23ï25) (Scheme 3C).[46] Excolides AïD (22ï25) were found 

to be inactive against MDA-MB-231, A-549, HeLa, and K-562 human cancer cell lines.[47] 
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Continued investigation into the isolation of diterpenes from E. agallocha led to the isolation of 

two new 2,3-seco-labdanes epoxides 26 and 27, as well as previously reported alcohol 20, by 

Fujiwara and co-workers in 2003 (Scheme 3D).[48] The structure of the epoxides were confirmed 

by semi-synthesis through epoxidation of dicarboxylic acid 16. 

Later work reported by Fujiwara et al in 2003 detailed the isolation of bis-seco-labdanes 28 and 

29  from E. agallocha, bearing an interesting ester dimerisation of a 2,3-seco-labdane 

resembling excoecarin F (19) (Scheme 3B).[49] 

 

Scheme 3. 2,3-seco-Labdane diterpenoids 



Introduction 

 

 

1 0  

1.3.2 3,4-seco-Labdanes 

Krebs and co-workers reported the isolation of 3,4-seco-labdane maravuic acid (30) in 1995 

from the bark of Croton matourensis, using a supercritical carbon dioxide fluid extraction 

method.[50] Maravuic acid (30) bears an unusually high degree of unsaturation and the A-ring 

fission which characterises 3,4-seco-labdanes is likely to have arisen from Baeyer-Villiger 

oxidation of a ketone precursor, followed by elimination. Related seco-labdane 31 was isolated 

from E.agollocha in 1998 by Kiyosawa and co-workers, and likely arises from a similar Baeyer-

Villiger oxidation as maravuic acid (30).[51] 

Further 3,4-seco-labdanes 32ï34 were isolated from related species Croton stipuliformis in 2008 

by Fujimoto and co-workers (Scheme 4).[52] seco-Labdanes 32ï34 bear the same carboxylic acid 

and exo-methylene remnants of the A-ring of the labdane core. Interestingly, 34 bearing a similar 

furanyl motif to 35 and 36 was isolated from the leaves of Callicarpa nudiflora and bears the 

antipodal stereochemical configuration around the core cyclohexane ring (Scheme 4). 

Eight 3,4-seco-labdanes 37ï44 were isolated from Callicarpa nudiflora in 2018 by Guo and 

co-workers.[53] seco-Labdanes 37ï44 all display the characteristic oxidative A-ring fission to 

afford a carboxylic acid (or ester), yet differ in oxidation pattern of carbons 11ï16. Of the 

isolated labdanes, 38, 40, and 42ï44 were found to inhibit nitric oxide production in murine 

microglial BV-2 cells. 

Scheme 4. 3,4-seco-Labdane diterpenoids 



Introduction 

 

 

1 1  

1.3.3 6,7-seco-Labdanes 

Saudin (45) is a 6,7-seco-labdanoid diterpene isolated from the leaves of the toxic plant Clutia 

richardiana in 1985 by Cassady et al. (Scheme 5A).[54] As a potent inducer of hypoglycaemia, 

saudin (45) holds promise as a treatment for diabetes and has been the subject of interest from 

the synthetic and medicinal chemistry communities. The total synthesis, bioactivity, and 

biosynthesis of 45 is discussed in further detail in section 1.5.2. Additional saudinolide 

diterpenes 46ï47 were isolated by El-Feraly and co-workers in 1999 also from the same source, 

although biological testing of the compounds was not reported.[55] 

Following the isolation of 45, Cassady and co-workers reported the isolation of richardianidin 

1 and 2 (49, 50) bearing a contracted B-ring.[56] The authors propose the B-ring modification 

arises from oxidative cleavage of the 6,7-bond of the labdane decalin framework, followed by 

aldol condensation to reform the B-ring bearing one less carbon.[56] Later, McPhail and co-

workers reported isolation of 51ï56, bearing the same carbocyclic framework with varying 

oxidation patterns (Scheme 5A).[57] Interestingly, 6,7:9,10-bisseco-labdanes 57 and 58 were 

isolated alongside 53ï56 and feature an additional 9,10 bond cleavage alongside reformation of 

a C-C bond between C9 and C10. As a result, 57 and 58 display complex entirely unique 

carbocyclic frameworks.[57,58] 

Clutiolides A-C (57ï59), isolated from the roots of Clutia, abyssinica in 1990, feature two 

lactone rings formed after oxidative cleavage of the labdane B-ring (Scheme 5B).[59] The 

isolation, biosynthesis and synthetic studies of clutiolides (57ï59) is discussed in further detail 

in section 1.5.4. 
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Scheme 5. 6,7-Seco-labdane diterpenoids 

1.3.4 7,8-seco-Labdanes 

In 1984, Robinson and co-workers reported the isolation of five labdane diterpenes from 

Koanophyllon conglobatum, including 7,8-seco-labdane 60 (Scheme 6).[60] Interestingly, 60 

bears both a ketone and a vinyl group across the 7,8 bond fission, suggesting a biosynthetic Grob 

fragmentation to effect B-ring cleavage.  

Later, Robinson and co-workers reported investigation of Helichrysum ambiguum resulting in 

the isolation of 28 new diterpenes.[61] Of them, 61ï65 were 7,8-seco-labdanes bearing 

interesting ketal motifs (Scheme 6). 

Recently, Zhao and co-workers reported the isolation of the hypophyllin labdanes, including 66, 

bearing a contracted B-ring (Scheme 6).[62] In a similar fashion to reported 6,7-seco-labdanes 

richardianidins 1 and 2 (49 and 50, respectively) and related compounds, the authors proposed 

oxidative cleavage of the labdane B-ring, followed by intramolecular aldol reaction for the 

formation of the contracted B-ring.[62] 
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7,8-seco-Labdanes 67ï82 (referred to here as the Pallavicinia diterpenoids) are structurally 

complex natural products, which, despite lacking notable bioactivity, have inspired several 

remarkable total syntheses (Scheme 6).[63ï67] Isolated from Pallavicinia subciliata, pallavicinin 

(70) bears a complex tetracyclic skeleton and is the earliest reported member of this family.[66] 

Neopallavicinin (72), 71 and 73 bear the same carbocyclic core and were isolated in later years 

from the same source.[65,68] Pallavicinolides A-C (67ï69) were isolated in 1998 from 

Pallavicinia subciliata and display an annulated tetracyclic structure, which unlike other 

members of this family, contains no bridging ring atoms.[68] In 2012, pallambins A-D (74ï77) 

were isolated from Pallavicinia ambigua bearing analogous tetrahydrofuran and lactone rings 

to pallavicinin A (70), yet displaying structurally distinct caged carbocyclic portions.[63] The 

pallambins (74ï77) were found to be inactive in cytotoxicity assays against HeLa, Hep G2, U87 

and A172 cell lines; however, 74-77 all displayed modest ability to reverse adriamycin-induced 

resistance of K562/A02 cell lines.  Most recently, pallamolides A-E (78ï82) were isolated from 

Pallavicinia ambigua.[67] Interestingly, olefin geometric isomers pallamolides B-C (79-80, pair 

A) and D-E (81-82, pair B) existed as tautomeric pairs and were thus isolated as inseparable 

mixtures. The tautomeric mixture of pallamolides D-E (81-82, pair B) displayed modest 

antifungal activity in hyphal formation inhibition assays (MIC80 = 32 mg/mL). The biosynthesis 

and total synthesis of the Pallavicinia diterpenoids are discussed in greater detail in section 

1.5.1. 
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Scheme 6. 7,8-Seco-labdane diterpenoids 

1.3.5 8,9-seco-Labdanes 

Niemeyer and co-workers reported the isolation of unique 5,5-spiroketal containing 8,9-seco-

labdanes 83ï84 from H. parvifolius in 1991 (Scheme 7).[69] Interestingly, 85 was isolated from 

Jungermannia infusca in 1998 and contains similar structural elements to 83ï84; specifically, a 

ketone at C9, the spirocentre of 83ï84, and an analogous allylic alcohol motif. In addition to 85, 

86 was also isolated from the same source, potentially arising from intramolecular aldol reaction 

of 85.[70,71] 

Chapecoderins A-C (87ï89) are a group of biogenetically related 8,9-seco-labdanes isolated 

from the leaves of Echinodorus macrophyllus by Ohsaki in 2000 (Scheme 7).[72] The isolation, 

bioactivity, biosynthesis and total synthesis of the chapecoderins is discussed in detail in section 

1.5.3. 

Leonuketal (8) is a 6,7-seco-labdane diterpenoid isolated by Peng and co-workers from 

Leonurus japonicus, or Chinese liverwort. Leonuketal (8) bears an unusual tetracyclic structure 

and displays significant vasorelaxant activity. The isolation, bioactivity, and biosynthesis of 

leonuketal (8) are discussed in detail in section 1.4.[38] 












































































































































































































































































































































































































































































































































