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Abstract

Leonuketal 8) is asecalabdane natural product isolated friu@onurus japonicysor Chinese
liverwort, a herb used in traditional Chinese medicine. Leonuk&}axhibits vasorelaxant
properties against K&hduced contraction of rat aorta with andg@alue of 2.32vM, and bears

a complex tetracyclic structur@hecarbon skeleton @ is derived from scission of the labdane
B-ring, thus designatin§ a member ban interesting sublass of diterpenoid natural products
termedsecolabdanes. The architectural complexity of leonukedalnjakes it an attractive
target for total synthesishereinthe evolution of a synthetic strategy towards that end is

described.

labdane seco-labdane

leonuketal (8)

The initial retrosynthetic strategy was targeted towards &sdt&rand ketaig-lactone 247.
Access t0247 was secured by an efficient two step protocol, but construction of the caged
bicyclic portion of leonuketal8) proved more challenging. A sterically demanding [4+2]
cycloaddition usin@51and252followed by reductivecyclisationand esterificatiomelivered

314 with epimeric stereochemistry aBQJnfortunately, strategic epimerisation 84 could

not be effectedespite extensive study, and tharred stereochemical configuratidar the total

synthesis of leonuketaB) was not obtained.
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The revisedpproach centred arouatkyne408 and after irdepth investigation, access to kate
stage intermediaté86 was obtainedAu(l)-catalysechydroalkoxylationof 487 was employed

for construction of the caged spiroketal motif8pfand fragment coupling was achieved by an



alkylation reaction.Key alkyne 408 was synthesised by a Ti(Hhediated cyclisation of
epoxynitrile350to give ketone380, followed by inversion of the & alcohol, and an unusual

Shapiretype reaction.
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This approach provided a foundatioor fthe total synthesis of leonuketd),(allowing the
assembly of the tetracyclic frameworland leaving only the installation of the C3
hydroxypropanone moiety to compdhe synthesis. Elaboration of the described strategies to

provide synthetic acce$s 8 is an ongoing pursuit of this research group.
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Introduction

1.1 Natural Products: Medicine and Synthesis

Plants fungi, and bacteridave evolved a variety of adaptatidos the preservation of species
and the propagation of genetic information. Guneh adaptatiors the production of natural
products ¢pecifically secondary metabolites) for precise and specific interaction with
biological macromoleculéd?! As a class of organic compounds, natymaiducts display an
inspiring degree offemical diversity and complexitya testament to the power of evolutionary

processes

Natural products display a broad range of bioactivities dhettotheir function in thproducing
organismand the similaritis between the structural domains of biological macromolecules
across specidd¥ Consequently,natural products hav@roven an invaluable source of
medicineswith 26% ofnewly approved drugs between 1981 and 2004 being natural products
or natural product analoguesnd a further21% being synthetic natural product mimics o
synthetic drugswith a natural product pharmacophdteDespitethe historical successes of
natural productastreatmensg of human disease, contemporary medicinal chemiigtsynoved

away from natural products favour of highthroughput and combinatorial methods for hit
identification® This is due tdypically scarce natural sources of these compouasisvell as

their structural complexity rendering synthetic preparation labcumtensive and

uneconomicaf’

The valueof natural products tbumankind in the treatment of diseasel the challenge posed
by their complex structures hasdetheir synthesisa key pursuit of organic chemistryl.arget
orientated synthesf natural products has not only provided materiakforical use but also
a framework within whictorganic chemistryas a fundamental scienbasflourished!”! New
syntheticmethods and mechanistic understandimaye resulted fronsustaired effort towards
the total synthesis of natural productdowever, efficient preparation ofsuch complex
molecules is stilthalenging,andthe advancement afynthetic organic chemistry to meet this

demandemainsan important problerf!

1.2 Terpenoid Natural Products

Terpenoids ar¢he largest class of secondary metabolttesprised of over 40,000 reported
compounds with diverse structsreand important bioactivies including anticancer,

antimicrobial and antiviral activity®!% Accordingly, rpenoidshave garneed significant
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interest of the synthetic and medicinal communities resulting mch body of literature

describingheir synthesi§' 13l

Terpenoids are comprised i@peating isopren@CsHsg) units andareclassified by thenumber
of unitsincorporated into their structurespecifically, hemi (Cs), mone (Cio), sesqui (Cis),
di- (Cz0), sester (Czs), tri- (Cao), tetra- (Cao) and polyterpenoids(Css+). The biosynthesis of
terpenoids involvethe cationic polyene cyclisation of an unsaturated linear precimsoed
by iterative coupling of isopreneunits in the form isopentenyl pyrophosphatédPP)
Subsequely, oxidative functionalisation of the scaffold, anfienrearrangement of the cyclic
skeletonleadto a large diversity of structuréSchemelA).* Notabk examples of this class

of compoundsre briefly discussed below

Taxol (1) is aditerpenoidsolated fromhestem bark of thevestern yew tree€laxusbrevifolia,
and displays remarkable antiumour and antieukemic activities(SchemelB).[** Rigorous
synthetic and sermsynthetic studiesoward a commerciallyviable preparation oftaxol (1)
followed its isolation report in 197Jculminaing in boththefirst total synthesi®y theHolton

groupin 1994,and FDA approval for the treatment of ovarian canc@@@5 19

Artemesinin(2) is a sesquiterperantimalariatreatmentsolatedby Youyou in 1972for which
shewasawarded th€015Nobel Prize in Medicin¢SchemelB).2°! Artemesinin(2) contains
an unusual endoperoxidaoiety, whichhas been shown to be essentialttoantimalarial
activity. This bioactivityis proposedd arisefrom reduction of the endoperoxide by Fe(ll)
in infected cellsleading to thegeneration of cytimxic oxygencentred radicakpeciesand
eventual cell deatkY

Ingenol (3), first isolated fromEuphorbia ingensn 1968, & a diterpenoid natural product
bearing a highly straindd,out[4.4.1]bicycloundecane cot8chemelB).??l The angelate ester

4 of ingenolgainedfirst-in-classFDA approval in 2012 for the treatment of actinic keratosis, a
precancerosi skin conditionand additional indications of ingenol esters include anticancer and
anti-HIV activity.?*25 The formidable challenge posed the structurdngenol @) and its
impressive bioactivithave made the natural product the subject of rigorous study by synthetic

chemistd26:27]

Cyclopaming(5) is astructurally inteesting steroida(triterpene)alkaloid bearing a rearranged
skeleton(SchemelB).?8l Cyclopamine §) derives its name frorthe ability to inducecyclopia
in lambs acongenital disordecharacterised by failure of the embryo to divide the orbits of the

eye intoseparate caviti€$**! More recently,5 has been demonstrated to antagonise the G
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protan-coupled receptor Smoothenedmajor component ohé Hedgehog signaling pathway
thatis upregulated in several cancers including basal cell carcif¥itaA major hudle in
bringing cyclopaming5) to the clinic has been the metabolic instability of the alk@it-alkyl
ether moiety, a problerthat was overcome through total synthedy. investigation of a
synthetic strategy aimed at analogue generat@mnnis and ceworkers found exo
cyclopamine6, an exocyclic olefin regioisomer & to have a markedly improved stability

profile and tenfold greater potentchemelB).!343%)

Englerin {7) is a sesquiterpenoidentified by the National Cancer Institudaring ascreen of
natural product extracter cytoxicity againsa panebf cancer line¢SchemelB). Englerin(7),
displayed preferential selectivity for renal tumor cells with nanomudaency*®! The most
elegant synthesisf englerin {) wasachievedy Chain and cevorkersin only 8 steps through
utilisation of simple carbonyl chemisti’:>7]

Leonuketal ), is a diterpenoid isolated frofreonurusjaponicusby Peng and cavorkers in
2015(SchemelB).I*8 Leonuketal ) bearsacaged spiroketal moiety embedded in a tetracyclic
skeletonand displays significant vasorelaxant activithieTformidable structure amateresting

bioactivity displayed by leonuket#B) prompted us to pgue a total synthesis
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A. Terpenoid biosynthesis
/‘\/\OPP
)\/\ -OPP ® +IPP /k/\/k/\ n times
— S~ —_—T—
YopPP X X"opp X N-Topp

-H+
(\)\ (\)\ n+1
o
PP = xToRy
Oo

©)
%o £ ;
Q:; \ﬂ\ -~——— cyclisation - oxidation - rearrangement

B. Notable examples

leonuketal (8)
taxol (1) diterpenoid
diterpenoid

artemesinin (2)
sesquiterpene

ingenol (3)R=H cyclopamine (endo, 5) englerin (7)
ingenol mebutate (4) R = ﬁ exo-cyclopiamine 6 sesquiterpenoid
diterpenoid triterpenoid

Schemel. Terpenoid natural products
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1.3secolL abdane Diterpenes

Natural products bearing the carbon framewaepicted by structur® (Scheme2A) form an
important subclass of diterpenoids designated as labdanes or labd&hdialsdanes arise
biosynthetically from the protonatieanduced cationic cyclisation of gerangéranyl
pyrophosphatg10), typically proceedingvia a chairchair transition statéo afford a trans-
decalin ring systen{11).®! Established biological activities of labdane diterpenes include

antimicrobial, antituberculosis and anticané¢”

A small sulset of labdanes feature cleavage of one @encarborcarbon bonds in the decalin
skeletorand are referred to ascelabdanesThe characteristic bond cleavage event is typically
oxidative (e.g. BaeyeVilliger reaction) and often leads to an increase in functionality of the
molecule(SchemeB). Subsequenteactions facilitated by the increase in oxidation state, such

as ketalisation or ald@rocessedead to further structural complexanddiversity.

A. labdane biogenesis

chair-chair OPP OPP OPP
transition state _ P
—_— —_— —
Enz-H = I~
B-Enz H
10 .
labdadienyl pyrophosphate labdane skeleton (9)
(12)
B. seco-labdane biogenesis
oxidative C-C bond cleavage — ?ﬁi
9 seco-labdanes

[increased diversity and complexity]

Scheme2. Labdane andecelabdane biogenesis

1.3.12,3secelLabdanes

Theearliestexplicit report ofasecelabdane diterpene came frddnantand ceworkersin their
isolation of2,3-secadicarboxylic acid13 from the heartwood ofhe New Zealand endemic
silver pine D. colensg) in 1965 (SchemesA).*Y Carboxylic acid13 likely arises from
oxidative cleavage of the-Ang of a simple labdanergcursor. The authorsotethat 13 may
naturally occurasthe mone or diester formgivenisolation of the natural product involved

treatment withaqueous badé!! Interestingly,the authorshad earlier reported thisolation of
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colensone(14) from the same sourcevhich they identied as a nor-diterpenoid(Scheme
3A).*2 In the following 1965 reportoolensone (14) was suggested tbe biosynthetically
derived from dtarboxylic acid 13 by Claisencondensationfollowed by decarboxylation to
reconstruct the labdane-ng with one less carbofBchemedA).*! Based on this observatipn
colensone(14) can be considered the earliest repor2e@lsecoelabdane.In addition to the
isolation ofdicarboxylic acidL3, lactonel5was isolated and suggested to be theyBa¥illiger

oxidation product otolensone(14); therefore, a 2,3;3;4ecoelabdangSchemesA).[1]

Interestingly,Kiyosawa and cavorkersisolated16, an isomer ofdicarboxylic acidl3 with
inverted stereochemistry at all but one chiral cerdare]l the monester form17 from the
resinous wood oE. agollochain 1998(Scheme3B).*®! The natural occurrence of this isomer
of 13 arises from the antipodahairchair transition statéor construction of thérans-decalin
labdane cor&® Additionally, related natural productactonel8 and eocoecarin(19) were

isolatedfrom the samsource(SchemesB).[4344]

In 2001, Tokuda and eworkers repoddthebiologicalteging of 2,3secelabdanes lactonEs,
excoecarin F19), and alcohol 20 (Scheme3B).*! In an initial in vitro screening of the
compoundspnly alcohol20displayedappreciablénhibitory effect ortheinduction ofEpsteiri
Barr virusby tumour promotorl2-O-tetradecanoyphorbotl13-acetatg TPA). This suggested
alcohol 20 may serve as an effectianti-tumour agentin two-stage carcinogenesis. Hence,
alcohol20 wasinvestigatedn an in vivo carcinogenes test of mouse skitumours where the
inhibitory effecs werecompared with both positive control group and group treated with
knownanti-tumouragentglycyrrhetic acidThe group treated with both the tumour initisaod
promotor as well as alcoh@0 showedformation of papilloma iness than 20%of mice,
comparedo 100% in the case of the positive control group 4B% in the case of the@up
treated with glycyrrhetic acid.

In 2000, Rao and eworkers repoedthe isolation the 2;3ecoelabdane rhizphorin A1) from
Rhizophora mucronataa mangrove plangrowing along tidal shores and creeks of India
(Scheme3C).*®1 The proposed structure featured the same oxidative cleavage of the A ring
observed ifl3i 20. The structure of rhizophorin A1) would later be reviseds exocolide A

(22) by Basha and cworkersduring their investigation dExcoecaria agallochgeadingalso

to the isolation of exocoliddd-D (23i 25) (Scheme3C).*8! ExcolidesAi D (22i 25) were found

to be inactive againdDA-MB-231, A-549, HeLaandK-562human cancer cell liné¥’
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Continued investigation into the isolation of diterpenes fibragallochded to the isolation of
two new 2,3secelabdanes epoxidez6 and27, as well as previously reported alcol26 by
Fujiwara and cavorkers in 200§SchemeD).1*8 The structure of the epoxides were confirmed

by semisynthesis through epoxidation ditarboxylic acidl6.

Later work reported by Fujiwaet alin 2003 detailed the isolation of ksecelabdane®8 and
29 from E. agallocha bearing an interesting ester dinsation of a 2,3secolabdane
resemblingexcoecarin FA9) (Scheme3B).[*°]

A. Grant et al.

colensone (14) 15
2,3-seco 2,3-seco 2,3:3,4-seco
[1965, D. colensoi] [1962, D. colensoi] [1965, D. colensoi]

B. Kiyosawa et al.

16R=H 18
17 R = Me [1998, E. agollocha]
[1998, E. agollochal

excoecarin F (19)
[1999, E. agollocha]

C. Rhizorphin A and related excolides

original, 2000 revised, 2015

(¢} 0]

rhizorphin A (21)/excolide A (22) excolide B (23) excolide C (24) excolide D (25)
[R. mucronata; E. agollochal) [2015, E. agollocha] [2015, E. agollocha] [2015, E. agollocha]

D. Fujiwara et al. E. bis-seco-Labdanes

26 C14-R, 27 C14-S
[2003, E. agollochal

bis-seco-labdanes
[2003, E. agollocha]

Scheme3. 2,3-secolLabdane diterpenoids
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1.3.23,4-secolLabdanes

Krebs and ceworkers reported the isolation 8f4-secelabdane maravuic aci®@) in 1995
from the bark ofCroton matourensjsusing asupercritical carbon dioxide fluid extraction
method®" Maravuic acid 80) bearsan unusually high degree of unsaturation and thag
fission which characterises 3s#¢colabdaness likely to havearisen from BaeyeYilliger
oxidationof a ketone precursdigllowed by eliminationRelatedsecoelabdane31 was isolated
from E.agollochan 1998by Kiyosawa and cevorkers,and likely arises from a similar Baeyer

Villiger oxidationas maravuic acid3Q).5

Further 3,4se®-labdane82 34were isolated from related spec@®ton stipuliformign 2008
by Fujimoto and cavorkers(Schemet).®? secoLabdane82i 34bear the same carboxylic acid
andexomethyleneremnants of the Aing of the labdane core. Interestingd bearing a similar
furanyl motif to35 and36 was isolated from the leaves @Gallicarpa nudifloraand bearshe

antipodal stereochemicabnfiguration around the core cyclohexane ({Bghemet).

Eight 3,4-secolabdanes37i 44 were isolated fronCallicarpa nudiflorain 2018 by Guo and
co-workers®® secolLabdanes7i 44 all display the characteristic oxidative-riag fission to
afford a carboxylic acid (or ester), yet differ in oxidation pattefrcarbons 1116. Of the
isolated labdanes8, 40, and42i 44 were found tanhibit nitric oxide production in murine

microglial BV-2 cells.

3,4-seco-Labdanes

maravuic acid (30) 31 35R=H
[1995, C. matourensis] [1998, E. agollocha]) 36 R =Me
[2013, C. nudiflora)

Q
o OMe o]
! $Z OMe X |
RO o o
! OH OMe OH o~ A~
H
[2018, C. nudifioral 37.R=H 38 R=H  40,R=H  42,R=H 43.R=H 44
39,R=Me  41,R=Me [2018, C. nudifiora]

Schemed. 3,4-secolLabdane diterpenoids
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1.3.36,7-secoLabdanes

Saudin 45) is a 6,7secelabdanoid diterpene isolated from the leaves of the toxic Qlatia
richardianain 1985by Cassadt al (SchemebA).5 As a potent inducer of hypoglycaemia,
saudin @5) holds promise as a treatment for diabeteshasdbeen the subject of interest from
the synthetic and medicinal chemistry communiti€ke total synthesjsbioactivity, and
biosynthesisof 45 is discussed in further detail in sectidn5.2 Additional saudinolide
diterpenedgl6i 47 were isolatedyy El-Feraly and ceworkers in 199&lso from the same source,
although biological testing of the compounds wasrepbrted>S!

Following the isolation oft5, Cassady and eworkers reportedhe isolation ofichardianidin

1 and 2 49, 50) bearing a contracted-Bng.*® The authors propose therBig modification
arises fromoxidative cleavage of the 6bnd of the labdane decalin framework, followed by
aldol condensation to reform therBig bearing one less carbBf. Later, McPhailand ce
workersrepored isolation of 511 56, bearing the same carbocyclic framework with varying
oxidation pattern§Scheme5A)." Interestingly, 6,7:9,0-bissecdabdaness7 and 58 were
isolated alongsidB3i 56 and feature an additional 9,10 bond cleavage alongside reformation of
a GC bond between C9 and C1As a result,57 and 58 display complex entirely unique

carbocyclic framework87-58l

Clutiolides A-C (571 59), isolated from the roots dflutia, abyssinican 199Q featuretwo
lactone ringsformed after oxidative cleavage of the labdaneing (Scheme5B).5®! The
isolation, biosynthesiand synthetic studies clutiolides(57i 59) is discussed in furthatetail

in sectionl1.5.4

11
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A. Saudin and related labdanes

saudin (45) richardianidin 1 49 R = H

[1985, C. richardiana] 51 R=0H
[1988, 1994, 1996, C.richardiana]

0 Oy -Ouo )
/ o
0o Hine \7 o
S I (0) (0)

47R=H;48 R =0OH
[1999, C. richardiana])

TEo )

TREA ) 7
oac S @ Co,Me O
o
richardianidin 2 50 R = H cluytene A (57) cluytene C (58) 53 R = a-OH
52 R =0OH [1994, C. richardiana)] [1994, C. richardiana] 54 = 3-H
[1988, 1996, C.richardiana] [1994, C. richardiana])

— B. clutiolides

c
CO,Me o) COzMe °
55 56 57 58 XY = CH,-CHy;
[1994, C. richardianal [1994, C. richardiana] [1990, C. abyssinica] 59 XY = CH=CH

[1990, C. abyssinica]

Schemeb. 6,7-Secalabdane diterpenoids

1.3.47,8secolLabdanes

In 1984, Robinson and ewmorkers repoed the isolation of five labdane diterpenfiem
Koanophyllon conglobatuyrincluding 7,8secelabdane60 (Scheme6).f% Interestingly, 60
bears both a ketone and a vinyl group across the 7,8 bond fesigestin@biosynthetiodGrob

fragmentation to effect 8ing cleavage.

Later, Robinson and eaorkers repoed investigation oHelichrysum ambiguumesulting in
the isolation of 28 new diterpen@d. Of them, 61i 65 were 7,8secclabdanes bearing

interesting ketal mot# (Schemeb).

Recently, Zhao and emorkers repoedthe isolation of the hypophyllin labdanes, includéty
bearing a contracted-Bng (Scheme).1%2 In a similar fashion to reported 6gecelabdanes
richardianidirs 1 and 2(49 and50, respectively and related compoundée authors propode
oxidative cleavage of the labdaneriBg, followed by intramolecular aldokactionfor the

formation of the contracted-Bng.[6%

12
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7,8secolLabdanes7i 82 (referred to here as theallavidnia diterpenoids) are structurally
complex natural productsvhich, despite lacking notable bioactivitlyave inspired several
remarkable total synthes¢8chemes).[63671 |solated fromPallavicinia subciliata pallavicinin

(70) bears a complex tetracyclic skeleton and is the earliest repoemder of this familyf®!
Neopallavicinin {2), 71 and73 bear the same carbocyclic core and were isolated in later years
from the same sourd®®® Pallavicinolides AC (67i69) were isolated in 1998 from
Pallavicinia subciliata and display an annulatetracyclic structure, which unlike other
members of this family, contains no bridging ring atdifidn 2012, pallambins A (74i 77)
wereisolated fromPallavicinia ambiguabearing analogous tetrahydrofuran and lactone rings
to pallaviénin A (70), yet displayingstructurallydistinct caged carbocyclic portioRé. The
pallambins 741 77) were found to be inactive in cytotoxicity assays adaileka, Hep G2, U87
and A172 cell lines; however4-77 all displayed modest ability to reverse adriamyiciduced
resistance of K562/A02 cell lineddost recently, pallamolides-& (78 82) were isolated from
Pallavicinia ambigua®’! Interestingly,olefin geometric isomensallamolides BC (79-80, pair

A) and DE (81-82, pair B) exised as tautomeric pairs and were thus isolaethseparable
mixtures. The tautomeric mixture of pahleolides DE (81-82, pair B) displayed modest
antifungal activity in hyphal formation inhibition assays (MJ€ 32ng/mL). Thebiosynthesis
and total synthesis of thRallavicinia diterpenoids are discussed greaterdetail in section
151

13
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Scheme6. 7,8 Secalabdane diterpenoids
1.3.58,9-secolLabdanes

Niemeyer and cavorkers reported the isolation of unique-Sgroketal containing 8;8eco
labdanes83i 84 from H. parvifoliusin 1991(Scheme?).[%% Interestindy, 85 wasisolated from
Jungermannia infusca 1998andcontains similar structural elements3@& 84; specifically,a
ketone at ©, the spirocentre &3/ 84, andananalogous allylic alcohol motif. In addition &,

86 wasalsoisolatedfrom the same sourcpotentially arising from intramolecular aldol reaction
of 8517071

Chapecoderins & (871 89) are a groupf biogenetically related 8;8ecelabdanes isolated

from the leaves dEchinodorus macrophyllusy Ohsaki in 200§Scheme?).[’? The isolation,
bioactivity, biosynthesis and total synthesis of the chapecoderins is discussed in detail in section
15.3

Leonuketal 8) is a 6,7secolabdane diterpenoid isolated by Peng andwookers from
Leonurugaponicus or Chinese liverwort. Leonuketd)(bears an unusual tetracyclic structure
and displayg significant vasorelaxant activity. The isolation, bioactiviégynd biosynthesisf

leonuketal 8) are discussed in detail in sectiba [38l
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