ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

Arc-transitive graphs of valency twice a prime admit a semiregular automorphism*

Michael Giudici ${ }^{\dagger}$ (1)
Department of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
Gabriel Verret \ddagger ©
Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Received 1 January 2019, accepted 16 February 2020, published online 15 October 2020

Abstract

We prove that every finite arc-transitive graph of valency twice a prime admits a nontrivial semiregular automorphism, that is, a non-identity automorphism whose cycles all have the same length. This is a special case of the Polycirculant Conjecture, which states that all finite vertex-transitive digraphs admit such automorphisms.

Keywords: Arc-transitive graphs, polycirculant conjecture, semiregular automorphism.
Math. Subj. Class. (2020): 20B25, 05E18

1 Introduction

All graphs in this paper are finite. In 1981, Marušič asked if every vertex-transitive digraph admits a nontrivial semiregular automorphism [13], that is, an automorphism whose cycles all have the same length. This question has attracted considerable interest and a generalisation of the affirmative answer is now referred to as the Polycirculant Conjecture [4]. See [1] for a recent survey on this problem.

One line of investigation of this question has been according to the valency of the graph or digraph. Every vertex-transitive graph of valency at most four admits such an automorphism [7, 14], and so does every vertex-transitive digraph of out-valency at most three [9].

[^0]Every arc-transitive graph of prime valency has a nontrivial semiregular automorphism [10] and so does every arc-transitive graph of valency 8 [17]. Partial results were also obtained for arc-transitive graphs of valency a product of two primes [18]. We continue this theme by proving the following theorem.

Theorem 1.1. Arc-transitive graphs of valency twice a prime admit a nontrivial semiregular automorphism.

2 Preliminaries

If G is a group of automorphisms of a graph Γ and v is a vertex of Γ, we denote by G_{v} the stabiliser in G of v, by $\Gamma(v)$ the neighbourhood of v, and by $G_{v}^{\Gamma(v)}$ the permutation group induced by G_{v} on $\Gamma(v)$. We will need the following well-known results.

Lemma 2.1. Let Γ be a connected graph and $G \leqslant \operatorname{Aut}(\Gamma)$. If a prime p divides $\left|G_{v}\right|$ for some $v \in \mathrm{~V}(\Gamma)$, then there exists $u \in \mathrm{~V}(\Gamma)$ such that p divides $\left|G_{u}^{\Gamma(u)}\right|$.

Proof. Since p divides $\left|G_{v}\right|$, there exists an element g of order p in G_{v}. As $g \neq 1$, there are vertices not fixed by g. Among these vertices, let w be one at minimal distance from v. Let P be a path of minimal length from v to w and let u be the vertex preceding w on P. By the definition of w, we have that u is fixed by g, so $g \in G_{u}$. On the other hand, g does not fix the neighbour w of u, so $g^{\Gamma(u)} \neq 1$ hence $\left|g^{\Gamma(u)}\right|=p$ and the result follows.

Lemma 2.2. Let G be a permutation group and let K be a normal subgroup of G such that G / K acts faithfully on the set of K-orbits. If G / K has a semiregular element $K g$ of order r coprime to $|K|$, then G has a semiregular element of order r.

Proof. See for example [17, Lemma 2.3].
Lemma 2.3. A transitive group of degree a power of a prime p contains a semiregular element of order p.

Proof. In a transitive group of degree a power of a prime p, every Sylow p-subgroup is transitive. A non-trivial element of the center of this subgroup must be semiregular.

Recall that a permutation group is quasiprimitive if every non-trivial normal subgroup is transitive, and biquasiprimitive if it is transitive but not quasiprimitive and every nontrivial normal subgroup has at most two orbits.

3 Arc-transitive graphs of prime valency

In the most difficult part of our proof, the arc-transitive graph of valency twice a prime will have a normal quotient with prime valency. We will thus need a lot of information about arc-transitive graphs of prime valency, which we collect in this section. We start with the following result, which is [3, Theorem 5]:

Theorem 3.1. Let Γ be a connected G-arc-transitive graph of prime valency p such that the action of G on $\mathrm{V}(\Gamma)$ is either quasiprimitive or biquasiprimitive. Then one of the following holds:
(1) G contains a semiregular element of odd prime order;
(2) $|\mathrm{V}(\Gamma)|$ is a power of 2 ;
(3) $\Gamma=\mathrm{K}_{12}, G=\mathrm{M}_{11}$ and $p=11$;
(4) $|\mathrm{V}(\Gamma)|=\left(p^{2}-1\right) / 2 s$ and $G=\mathrm{PSL}_{2}(p)$ or $\mathrm{PGL}_{2}(p)$, where p is a Mersenne prime and s is a proper divisor of $(p-1) / 2$ but also a multiple of the product of the distinct prime divisors of $(p-1) / 2$;
(5) $|\mathrm{V}(\Gamma)|=\left(p^{2}-1\right) / s$ and $G=\mathrm{PGL}_{2}(p)$, where p and s are as in part (4), and Γ is the canonical double cover of the graph given in (4).
(Recall that the canonical double cover of a graph Γ is $\Gamma \times \mathrm{K}_{2}$.) We note that in cases (4) and (5), we must have $p \geqslant 127$, since this is the smallest Mersenne prime p such that $(p-1) / 2$ is not squarefree. This fact will be used at the end of Section 4.

Corollary 3.2. Let Γ be a connected G-arc-transitive graph of prime valency. Then one of the following holds:
(1) G contains a semiregular element of odd prime order;
(2) $|\mathrm{V}(\Gamma)|$ is a power of 2 ;
(3) G contains a normal 2-subgroup P such that $(\Gamma / P, G / P)$ is one of the graph-group pairs in (3-5) of Theorem 3.1.

Proof. Suppose that $|\mathrm{V}(\Gamma)|$ is not a power of 2. If G is quasiprimitive or biquasiprimitive on $\mathrm{V}(\Gamma)$, then the result follows immediately from Theorem 3.1 (with $P=1$ in case (3)). We thus assume that this is not the case and let P be a normal subgroup of G that is maximal subject to having at least three orbits on $\mathrm{V}(\Gamma)$. In particular, P is the kernel of the action of G on the set of P-orbits. Hence G / P acts faithfully, and quasiprimitively or biquasiprimitively on $\mathrm{V}(\Gamma / P)$. Since Γ has prime valency, is connected and G-arctransitive, [12, Theorem 9] implies that P is semiregular. We may thus assume that P is a 2-group. (Otherwise P contains a semiregular element of odd prime order.) If G / P contains a semiregular element of odd prime order, then Lemma 2.2 implies that so does G. We may assume that this is not the case. Similarly, we may assume that $|\mathrm{V}(\Gamma / P)|$ is not a power of 2. (Otherwise, $|\mathrm{V}(\Gamma)|$ is a power of 2.) It follows that Γ / P and G / P are as is (3-5) of Theorem 3.1.

We will now prove some more results about the graphs that appear in (3-5) of Theorem 3.1. Let us first recall the notion of coset graphs. Let G be a group with a subgroup H and let $g \in G$ such that $g^{2} \in H$ but $g \notin \mathrm{~N}_{G}(H)$. The graph $\operatorname{Cos}(G, H, H g H)$ has vertices the right cosets of H in G, with two cosets $H x$ and $H y$ adjacent if and only if $x y^{-1} \in H g H$. Observe that the action of G on the set of vertices by right multiplication induces an arc-transitive group of automorphisms such that H is the stabiliser of a vertex. Moreover, every arc-transitive graph can be constructed in this way [16, Theorem 2].

Lemma 3.3. The graphs in (3) and (4) of Theorem 3.1 have a 3-cycle.
Proof. Clearly K_{12} has a 3 -cycle so suppose that Γ is one of the graphs given in (4). Let G be as in Theorem 3.1 and let $v \in \mathrm{~V}(\Gamma)$. Then G is one of $\mathrm{PSL}_{2}(p)$ or $\mathrm{PGL}_{2}(p)$ and acts arc-transitively on Γ. In both cases, let $X=\mathrm{PSL}_{2}(p)$, so $G=X$ or $|G: X|=2$. By [3, Lemma 5.3], we have that $G_{v} \cong \mathrm{C}_{p} \rtimes \mathrm{C}_{s}$ if $G=\mathrm{PSL}_{2}(p)$, and $\mathrm{C}_{p} \rtimes \mathrm{C}_{2 s}$ if
$G=\mathrm{PGL}_{2}(p)$. By [5, pp. 285-286], $\mathrm{PGL}_{2}(p)$ has a unique conjugacy class of subgroups of order p and the normaliser of such a subgroup is isomorphic to $\mathrm{C}_{p} \rtimes \mathrm{C}_{p-1}$, which is the stabiliser in $\mathrm{PGL}_{2}(p)$ of a 1-dimensional subspace of the natural 2-dimensional vector space. The intersection of this subgroup with X is isomorphic to $\mathrm{C}_{p} \rtimes \mathrm{C}_{(p-1) / 2}$, which has odd order. It follows that if $|G: X|=2$, then G_{v} is not contained in X. Thus, in both cases, X is transitive on $\mathrm{V}(\Gamma)$. Since X is normal in $G, X_{v} \neq 1$ and Γ has prime valency, it follows that X is arc-transitive on Γ and so $\Gamma=\operatorname{Cos}(X, H, H g H)$ where $H \cong \mathrm{C}_{p} \rtimes \mathrm{C}_{s}$ and $g \in X \backslash \mathrm{~N}_{X}(H)$ such that $H g H$ is a union of p distinct right cosets of H.

Since H has a characteristic subgroup Y of order p, it follows that $\mathrm{N}_{X}(H)$ normalises Y and so $\mathrm{N}_{X}(H) \leqslant \mathrm{N}_{X}(Y) \cong \mathrm{C}_{p} \rtimes \mathrm{C}_{(p-1) / 2}$. Since $\mathrm{N}_{X}(Y) / Y$ is cyclic it follows that $\mathrm{N}_{X}(H)=\mathrm{N}_{X}(Y)$. Also note that $\mathrm{N}_{X}(H)$ is the stabiliser in X of a 1-dimensional subspace and so the action of X on the set of right cosets of $\mathrm{N}_{X}(H)$ is 2-transitive and the stabiliser of any two 1-dimensional subspaces is isomorphic to $\mathrm{C}_{(p-1) / 2}$. Let $x \in X$. The stabiliser in X of the coset $H x$ is H^{x} and so the orbit of $H x$ under H has length $\left|H: H \cap H^{x}\right|$. In particular, H fixes the coset $H x$ if and only if $x \in \mathrm{~N}_{X}(H)$, and so H fixes $\left|\mathrm{N}_{X}(H): H\right|=(p(p-1) / 2) / p s=(p-1) / 2 s$ points of $\mathrm{V}(\Gamma)$. Moreover, since the stabiliser of two 1-dimensional subspaces is isomorphic to $\mathrm{C}_{(p-1) / 2}$ it follows that if $x \notin \mathrm{~N}_{X}(H)$ then $H \cap H^{x} \cong \mathrm{C}_{(p-1) / 2}$ and so $\left|H: H \cap H^{x}\right|=p$. Thus the points of $\mathrm{V}(\Gamma)$ that are not fixed by H are permuted by H in orbits of size p and so for any $g \notin \mathrm{~N}_{X}(H)$ we have that $H g H$ is a union of p distinct right cosets of H.

For each $x \in \mathrm{~N}_{X}(H)$ define the bijection λ_{x} of $\mathrm{V}(\Gamma)$ by $H y \mapsto x^{-1} H y=H x^{-1} y$. Since X acts on $\mathrm{V}(\Gamma)$ by right multiplication, we see that λ_{x} commutes with each element of X. Moreover, λ_{x} is nontrivial if and only if $x \notin H$. Let $C=\left\{\lambda_{x} \mid x \in \mathrm{~N}_{G}(H)\right\} \leqslant$ $\operatorname{Sym}(\mathrm{V}(\Gamma))$. Since X acts transitively on $\mathrm{V}(\Gamma)$ and C centralises X, it follows from [6, Theorem 4.2A] that C acts semiregularly on $\mathrm{V}(\Gamma)$. Now $|C|=\left|\mathrm{N}_{X}(H): H\right|=(p-1) / 2 s$ and $X \times C \leqslant \operatorname{Sym}(\mathrm{~V}(\Gamma))$. Since $C \unlhd X \times C$, the set of orbits of C forms a system of imprimitivity for $X \times C$ and hence for X. Moreover, since C is semiregular, comparing orders yields that C has $|\mathrm{V}(\Gamma)| /|C|=p+1$ orbits. One of these orbits is the set of fixed points of H and H transitively permutes the remaining p orbits of C. In particular, it follows that C transitively permutes the nontrivial orbits of H and so the isomorphism type of Γ does not depend on the choice of the double coset HgH .

Let Z be the subgroup of scalar matrices in $\mathrm{SL}_{2}(p)$ and let \hat{H} be the subgroup of the stabiliser in $\mathrm{SL}_{2}(p)$ of the 1-dimensional subspace $\langle(1,0)\rangle$ such that $H=\hat{H} / Z$. Note that $\hat{h}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \in \hat{H}$ and let $\hat{g}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. In particular, letting $h=\hat{h} Z$ and $g=\hat{g} Z$ we have that $g \notin \mathrm{~N}_{X}(H)$ and so we may assume that $\Gamma=\operatorname{Cos}(X, H, H g H)$. Now $H g$ and $H g h$ are both adjacent to H and one can check that $g(g h)^{-1}=h g h \in H g H$ and so $\{H, H g, H g h\}$ is a 3 -cycle in Γ.

Definition 3.4. Let Γ be a graph and let S_{0} be a subset of $\mathrm{V}(\Gamma)$. Let $S=S_{0}$. If a vertex u outside S has at least two neighbours in S, add u to S. Repeat this procedure until no more vertices outside S have this property. If at the end of the procedure, we have $S=\mathrm{V}(\Gamma)$, then we say that Γ is dense with respect to S_{0}.

It is an easy exercise to check that denseness is well-defined.
Corollary 3.5. Let Γ be a graph in (3) or (4) of Theorem 3.1 and let $S_{0}=\{u, v\}$ be an edge of Γ. Then Γ is dense with respect to S_{0}.

Proof. Since Γ is arc-transitive of prime valency p, the local graph at v (that is, the subgraph induced on $\Gamma(v)$) is a vertex-transitive graph of order p and thus vertex-primitive. By Lemma 3.3, Γ has a 3 -cycle so the local graph has at least one edge and thus must be connected. It follows that, running the process described in Definition 3.4 starting at $S=S_{0}$, eventually S will contain all neighbours of v. Repeating this argument and using connectedness of Γ yields the desired conclusion.

The following is immediate from Definition 3.4.
Lemma 3.6. Let Γ be a graph and S_{0} be a set of vertices such that Γ is dense with respect to S_{0}. Then the canonical double cover of Γ, with vertex-set $\mathrm{V}(\Gamma) \times\{0,1\}$, is dense with respect to $S_{0} \times\{0,1\}$.
Proof. Let S_{i} be the sequence of subsets of $\mathrm{V}(\Gamma)$ obtained when running the procedure from Definition 3.4 starting with S_{0} and ending with S_{n} for some n. Since Γ is dense with respect to S_{0}, we have $S_{n}=\mathrm{V}(\Gamma)$. For $i \in\{1, \ldots, n\}$, let $v_{i}=S_{i} \backslash S_{i-1}$. (In other words, v_{1} is the first vertex added to S_{0} to get S_{1}, then v_{2} is added to S_{1} to get S_{2}, etc.)

Now, let $\Gamma^{\prime}=\Gamma \times \mathrm{K}_{2}$ be the canonical double cover of Γ and let $S_{0}^{\prime}=S_{0} \times\{0,1\} \subseteq$ $\mathrm{V}\left(\Gamma^{\prime}\right)$. We now run the procedure from Definition 3.4 starting at S_{0}^{\prime}. At the first step, we note that, since v_{1} was added to S_{0}, it must have at least two neighbours in S_{0}, say u_{1} and w_{1}. It follows that both $\left(v_{1}, 0\right)$ and $\left(v_{1}, 1\right)$ also have at least two neighbours in S_{0}^{\prime} (for example, $\left(u_{1}, 1\right)$ and $\left(w_{1}, 1\right)$, and $\left(u_{1}, 0\right)$ and $\left(w_{1}, 0\right)$, respectively). We thus add $\left(v_{1}, 0\right)$ and $\left(v_{1}, 1\right)$ to S_{0}^{\prime} to get $S_{1}^{\prime}=S_{0}^{\prime} \cup\left\{\left(v_{1}, 0\right),\left(v_{1}, 1\right)\right\}$. Note that $S_{1}^{\prime}=S_{1} \times\{0,1\}$. We then repeat this procedure, preserving the condition $S_{i}^{\prime}=S_{i} \times\{0,1\}$ at each iteration. At the end of this process, we have $S_{n}^{\prime}=S_{n} \times\{0,1\}=\mathrm{V}(\Gamma) \times\{0,1\}=\mathrm{V}\left(\Gamma^{\prime}\right)$ and so Γ^{\prime} is dense with respect to $S_{0} \times\{0,1\}$.

4 Proof of Theorem 1.1

Let p be a prime, let Γ be an arc-transitive graph of valency $2 p$ and let $G=\operatorname{Aut}(\Gamma)$. We may assume that Γ is connected. If G is quasiprimitive or bi-quasiprimitive, then G contains a nontrivial semiregular element, by [8, Theorem 1.2] and [10, Theorem 1.4]. We may thus assume that G has a minimal normal subgroup N such that N has at least three orbits. In particular, Γ / N has valency at least 2 .

If N is nonabelian, then G has a nontrivial semiregular element by [18, Theorem 1.1]. We may therefore assume that N is abelian and, in particular, N is an elementary abelian q-group for some prime q.

We may also assume that N is not semiregular that is, $N_{v} \neq 1$ for some vertex v. It follows from Lemma 2.1 that $1 \neq N_{v}^{\Gamma(v)} \unlhd G_{v}^{\Gamma(v)}$. As Γ is G-arc-transitive, we have that $G_{v}^{\Gamma(v)}$ is transitive and so the orbits of $N_{v}^{\Gamma \bar{v})}$ all have the same size, either 2 or p. Since N is a q-group, this size is equal to q. Writing d for the valency of Γ / N, we have that either $(d, q)=(2, p)$ or $(d, q)=(p, 2)$.

If $d=2$ and $q=p$, then it follows from [15, Theorem 1] that Γ is isomorphic to the graph denoted by $\mathrm{C}(p, r, s)$ in [15]. By [15, Theorem 2.13], Aut $(\mathrm{C}(p, r, s))$ contains the nontrivial semiregular automorphism ϱ defined in [15, Lemma 2.5].

We may thus assume that $d=p$ and $q=2$. In this case, if u is adjacent to v, then u has exactly $2=2 p / d$ neighbours in v^{N}. Let K be the kernel of the action of G on N-orbits. By the previous observation, the orbits of $K_{v}^{\Gamma(v)}$ have size 2 and thus it is a 2-group. It follows from Lemma 2.1 that K_{v} is a 2-group and thus so is $K=N K_{v}$.

Now, G / K is an arc-transitive group of automorphisms of Γ / N, so we may apply Corollary 3.2. If G / K has a semiregular element of odd prime order, then so does G, by Lemma 2.2. If $|\mathrm{V}(\Gamma / N)|$ is a power of 2 , then so is $|\mathrm{V}(\Gamma)|$ and, in this case, G contains a semiregular involution by Lemma 2.3. We may thus assume that we are in case (3) of Corollary 3.2, that is, G / K contains a normal 2 -subgroup P / K such that $(\Gamma / P, G / P)$ is one of the graph-group pairs in (3-5) of Theorem 3.1. Note that P is a 2 -group. Let M be a minimal normal subgroup of G contained in the centre of P. Note that M is an elementary abelian 2 -group. We may assume that M is not semiregular hence $M_{v} \neq 1$ and so by Lemma 2.1, $M_{v}^{\Gamma(v)} \neq 1$. Moreover, $|M| \neq 2$ as otherwise $M_{v}=M$ and we would deduce that M fixes each element of $\mathrm{V}(\Gamma)$, a contradiction. Since M is central in P, M_{v} fixes every vertex in v^{P}.

Note that the G-conjugates of M_{v} must cover M, otherwise M contains a nontrivial semiregular element. By the previous paragraph, the number of conjugates of M_{v} is bounded above by the number of P-orbits, that is $|\mathrm{V}(\Gamma / P)|$, so we have

$$
|M| \leqslant\left|M_{v}\right||\mathrm{V}(\Gamma / P)|
$$

Since Γ is connected and G-arc-transitive, there are no edges within P-orbits. As $M_{v}^{\Gamma(v)} \neq 1$, there exists $g \in M_{v}$ such that w and w^{g} are distinct neighbours of v. Let u be the other neighbour of w in v^{P}. Since M_{v} fixes every element of v^{P} it follows that u is also a neighbour of w and w^{g} and so $\left\{v, w, u, w^{g}\right\}$ is a 4-cycle in Γ. Thus the graph induced between adjacent P-orbits is a union of C_{4} 's.

If x is a vertex and y^{P} is a P-orbit adjacent to x, then there is a unique C_{4} containing x between x^{P} and y^{P}, and thus a unique vertex z antipodal to x in this C_{4}. We say that z is the buddy of x with respect to y^{P}. The set of buddies of v is equal to $\Gamma_{2}(v) \cap v^{P}$, which is clearly fixed setwise by G_{v}. Moreover, each vertex has the same number of buddies. Furthermore, since G_{v} transitively permutes the set of $p P$-orbits adjacent to v^{P}, either v has a unique buddy or it has exactly p buddies.

If v has a unique buddy z, then $\Gamma(v)=\Gamma(z)$, and so swapping every vertex with its unique buddy is a nontrivial semiregular automorphism. Thus it remains to consider the case where v has p buddies. We first prove the following.

Claim. If X is a subgroup of M that fixes pointwise both a^{P} and b^{P}, and c^{P} is a P-orbit adjacent to both a^{P} and b^{P}, then X fixes c^{P} pointwise.

Proof. Suppose that some $x \in X$ does not fix c. Now x fixes a^{P} pointwise, so c^{x} must be the buddy of c with respect to a^{P}. Similarly, c^{x} must be the buddy of c with respect to b^{P}. These are distinct, which is a contradiction. It follows that X fixes c and, since $X \leqslant M$, also c^{P}.

Let $s \geqslant 1$, let $\alpha=\left(v_{0}, \ldots, v_{s}\right)$ be an s-arc of Γ and let $\alpha^{\prime}=\left(v_{0}, \ldots, v_{s-1}\right)$. Now $\left|v_{s}{ }^{M_{v_{s-1}}}\right|=2$, so $\left|M_{v_{s-1}}: M_{v_{s-1} v_{s}}\right|=2$ and $\left|M_{\alpha^{\prime}}: M_{\alpha}\right| \leqslant 2$. Applying induction yields that

$$
\begin{equation*}
\left|M_{v_{0}}: M_{\alpha}\right| \leqslant 2^{s} . \tag{4.1}
\end{equation*}
$$

We first assume that Γ / P and G / P are as in (3) or (4) of Theorem 3.1. Let $\{u, v\}$ be an edge of Γ. By the previous paragraph, we have $\left|M_{v}: M_{u v}\right| \leqslant 2$. Recall that M_{v} fixes all vertices in v^{P}, so $M_{u v}$ fixes all vertices in $v^{P} \cup u^{P}$. Combining the claim with Corollary 3.5
yields that $M_{u v}=1$ and thus $\left|M_{v}\right|=2$. It follows that $|M| \leqslant\left|M_{v} \| \mathrm{V}(\Gamma / P)\right|$ so $|M| \leqslant$ $2|\mathrm{~V}(\Gamma / P)|$. Since M is minimal normal in G, it is an irreducible G-module over $\mathrm{GF}(2)$, of dimension at least two. In fact, since M is central in P, it is also an irreducible (G / P) module. Since G / P is nonabelian simple or has a nonabelian simple group as an index two subgroup, this implies that M is a faithful irreducible (G / P)-module over $\operatorname{GF}(2)$. If $G / P=\mathrm{M}_{11}$, then $|M| \geqslant 2^{10}$ [11, Theorem 8.1], contradicting $|M| \leqslant 2 \cdot 12=24$. If $G / P=\mathrm{PSL}_{2}(p)$ or $\mathrm{PGL}_{2}(p)$ then by [2, Section VIII], $|M| \geqslant 2^{(p-1) / 2}$. Recall that $p \geqslant 127$ and so this contradicts $|M| \leqslant 2\left(p^{2}-1\right) / 2 s<p^{2}-1$.

Finally, we assume that Γ / P is in (5) of Theorem 3.1, that is, Γ / P is the canonical double cover of a graph Γ^{\prime} which appears in (4) of Theorem 3.1. In particular, $\mathrm{V}(\Gamma / P)=$ $\mathrm{V}\left(\Gamma^{\prime}\right) \times\{0,1\}$. By Lemma 3.3, Γ^{\prime} has a 3 -cycle, say (u, v, w). By Corollary 3.5 and Lemma 3.6, Γ / P is dense with respect to $\{u, v\} \times\{0,1\}$. Now, let

$$
\bar{\alpha}=((u, 0),(v, 1),(w, 0),(u, 1),(v, 0))
$$

Since $\bar{\alpha}$ contains $\{u, v\} \times\{0,1\}, \Gamma / P$ is dense with respect to $\bar{\alpha}$. Note that $\bar{\alpha}$ is a 4 -arc of Γ / P. Let α be a 4 -arc of Γ that projects to $\bar{\alpha}$. Since Γ / P is dense with respect to $\bar{\alpha}$, arguing as in the last paragraph yields $M_{\alpha}=1$. On the other hand, if $v \in \mathrm{~V}(\Gamma)$ is the the initial vertex of α, then by (4.1), we have $\left|M_{v}: M_{\alpha}\right| \leqslant 2^{4}$ and thus $\left|M_{v}\right| \leqslant 2^{4}$. Since $|M| \leqslant$ $\left|M_{v}\right||\mathrm{V}(\Gamma / P)|$ it follows that $|M| \leqslant 2^{4}\left(p^{2}-1\right) / s$. As above, M is a faithful irreducible (G / P)-module over GF (2) of dimension at least two. Since $G / P=\mathrm{PGL}_{2}(p)$ we have from [2] that $|M| \geqslant 2^{(p-1) / 2}$, which again contradicts $|M| \leqslant 2^{4}\left(p^{2}-1\right) / s<2^{4}\left(p^{2}-1\right)$.

ORCID iDs

Michael Giudici (D) https://orcid.org/0000-0001-5412-4656
Gabriel Verret (D) https://orcid.org/0000-0003-1766-4834

References

[1] M. Arezoomand, A. Abdollahi and P. Spiga, On problems concerning fixed-point-free permutations and on the polycirculant conjecture-a survey, Trans. Comb. 8 (2019), 15-40, doi: 10.22108/toc.2018.112665.1585.
[2] R. Burkhardt, Die Zerlegungsmatrizen der Gruppen PSL(2, p ${ }^{f}$), J. Algebra 40 (1976), 75-96, doi:10.1016/0021-8693(76)90088-0.
[3] T. C. Burness and M. Giudici, Permutation groups and derangements of odd prime order, J. Comb. Theory Ser. A 151 (2017), 102-130, doi:10.1016/j.jcta.2017.04.007.
[4] P. J. Cameron, M. Giudici, G. A. Jones, W. M. Kantor, M. H. Klin, D. Marušič and L. A. Nowitz, Transitive permutation groups without semiregular subgroups, J. London Math. Soc. (2) 66 (2002), 325-333, doi:10.1112/s0024610702003484.
[5] L. E. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, Dover Publications, New York, 1958.
[6] J. D. Dixon and B. Mortimer, Permutation Groups, volume 163 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1996, doi:10.1007/978-1-4612-0731-3.
[7] E. Dobson, A. Malnič, D. Marušič and L. A. Nowitz, Semiregular automorphisms of vertextransitive graphs of certain valencies, J. Comb. Theory Ser. B 97 (2007), 371-380, doi:10.1016/ j.jctb.2006.06.004.
[8] M. Giudici, Quasiprimitive groups with no fixed point free elements of prime order, J. London Math. Soc. (2) 67 (2003), 73-84, doi:10.1112/s0024610702003812.
[9] M. Giudici, L. Morgan, P. Potočnik and G. Verret, Elusive groups of automorphisms of digraphs of small valency, European J. Combin. 46 (2015), 1-9, doi:10.1016/j.ejc.2014.11.004.
[10] M. Giudici and J. Xu, All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism, J. Algebraic Combin. 25 (2007), 217-232, doi:10.1007/s 10801-006-0032-5.
[11] G. D. James, The modular characters of the Mathieu groups, J. Algebra 27 (1973), 57-111, doi:10.1016/0021-8693(73)90165-8.
[12] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory $\mathbf{8}$ (1984), 55-68, doi:10.1002/jgt. 3190080107.
[13] D. Marušič, On vertex symmetric digraphs, Discrete Math. 36 (1981), 69-81, doi:10.1016/ 0012-365x (81)90174-6.
[14] D. Marušič and R. Scapellato, Permutation groups, vertex-transitive digraphs and semiregular automorphisms, European J. Combin. 19 (1998), 707-712, doi:10.1006/eujc.1997.0192.
[15] C. E. Praeger and M. Y. Xu, A characterization of a class of symmetric graphs of twice prime valency, European J. Combin. 10 (1989), 91-102, doi:10.1016/s0195-6698(89)80037-x.
[16] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426-438, doi:10.1007/ bf01304186.
[17] G. Verret, Arc-transitive graphs of valency 8 have a semiregular automorphism, Ars Math. Contemp. 8 (2015), 29-34, doi:10.26493/1855-3974.492.37d.
[18] J. Xu, Semiregular automorphisms of arc-transitive graphs with valency pq, European J. Combin. 29 (2008), 622-629, doi:10.1016/j.ejc.2007.04.008.

[^0]: *Authors are grateful to the anonymous referees for their helpful suggestions.
 ${ }^{\dagger}$ The research of the first author was supported by the ARC Discovery Project DP160102323.
 ${ }^{\ddagger}$ Gabriel Verret is grateful to the N.Z. Marsden Fund for its support (via grant UOA1824).
 E-mail addresses: michael.giudici@uwa.edu.au (Michael Giudici), g.verret@auckland.ac.nz (Gabriel Verret)

