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Abstract

We prove that every finite arc-transitive graph of valency twice a prime admits a non-
trivial semiregular automorphism, that is, a non-identity automorphism whose cycles all
have the same length. This is a special case of the Polycirculant Conjecture, which states
that all finite vertex-transitive digraphs admit such automorphisms.
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1 Introduction
All graphs in this paper are finite. In 1981, Marušič asked if every vertex-transitive digraph
admits a nontrivial semiregular automorphism [13], that is, an automorphism whose cycles
all have the same length. This question has attracted considerable interest and a generali-
sation of the affirmative answer is now referred to as the Polycirculant Conjecture [4]. See
[1] for a recent survey on this problem.

One line of investigation of this question has been according to the valency of the graph
or digraph. Every vertex-transitive graph of valency at most four admits such an automor-
phism [7, 14], and so does every vertex-transitive digraph of out-valency at most three [9].
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Every arc-transitive graph of prime valency has a nontrivial semiregular automorphism [10]
and so does every arc-transitive graph of valency 8 [17]. Partial results were also obtained
for arc-transitive graphs of valency a product of two primes [18]. We continue this theme
by proving the following theorem.

Theorem 1.1. Arc-transitive graphs of valency twice a prime admit a nontrivial semiregu-
lar automorphism.

2 Preliminaries
If G is a group of automorphisms of a graph Γ and v is a vertex of Γ, we denote by Gv the
stabiliser in G of v, by Γ(v) the neighbourhood of v, and by GΓ(v)

v the permutation group
induced by Gv on Γ(v). We will need the following well-known results.

Lemma 2.1. Let Γ be a connected graph and G 6 Aut(Γ). If a prime p divides |Gv| for
some v ∈ V(Γ), then there exists u ∈ V(Γ) such that p divides |GΓ(u)

u |.

Proof. Since p divides |Gv|, there exists an element g of order p in Gv . As g 6= 1, there
are vertices not fixed by g. Among these vertices, let w be one at minimal distance from v.
Let P be a path of minimal length from v to w and let u be the vertex preceding w on P .
By the definition of w, we have that u is fixed by g, so g ∈ Gu. On the other hand, g does
not fix the neighbour w of u, so gΓ(u) 6= 1 hence |gΓ(u)| = p and the result follows.

Lemma 2.2. Let G be a permutation group and let K be a normal subgroup of G such
that G/K acts faithfully on the set of K-orbits. If G/K has a semiregular element Kg of
order r coprime to |K|, then G has a semiregular element of order r.

Proof. See for example [17, Lemma 2.3].

Lemma 2.3. A transitive group of degree a power of a prime p contains a semiregular
element of order p.

Proof. In a transitive group of degree a power of a prime p, every Sylow p-subgroup is
transitive. A non-trivial element of the center of this subgroup must be semiregular.

Recall that a permutation group is quasiprimitive if every non-trivial normal subgroup
is transitive, and biquasiprimitive if it is transitive but not quasiprimitive and every non-
trivial normal subgroup has at most two orbits.

3 Arc-transitive graphs of prime valency
In the most difficult part of our proof, the arc-transitive graph of valency twice a prime will
have a normal quotient with prime valency. We will thus need a lot of information about
arc-transitive graphs of prime valency, which we collect in this section. We start with the
following result, which is [3, Theorem 5]:

Theorem 3.1. Let Γ be a connectedG-arc-transitive graph of prime valency p such that the
action of G on V(Γ) is either quasiprimitive or biquasiprimitive. Then one of the following
holds:

(1) G contains a semiregular element of odd prime order;
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(2) |V(Γ)| is a power of 2;

(3) Γ = K12, G = M11 and p = 11;

(4) |V(Γ)| = (p2−1)/2s and G = PSL2(p) or PGL2(p), where p is a Mersenne prime
and s is a proper divisor of (p−1)/2 but also a multiple of the product of the distinct
prime divisors of (p− 1)/2;

(5) |V(Γ)| = (p2 − 1)/s and G = PGL2(p), where p and s are as in part (4), and Γ is
the canonical double cover of the graph given in (4).

(Recall that the canonical double cover of a graph Γ is Γ×K2.) We note that in cases
(4) and (5), we must have p > 127, since this is the smallest Mersenne prime p such that
(p− 1)/2 is not squarefree. This fact will be used at the end of Section 4.

Corollary 3.2. Let Γ be a connected G-arc-transitive graph of prime valency. Then one of
the following holds:

(1) G contains a semiregular element of odd prime order;

(2) |V(Γ)| is a power of 2;

(3) G contains a normal 2-subgroup P such that (Γ/P,G/P ) is one of the graph-group
pairs in (3–5) of Theorem 3.1.

Proof. Suppose that |V(Γ)| is not a power of 2. If G is quasiprimitive or biquasiprimitive
on V(Γ), then the result follows immediately from Theorem 3.1 (with P = 1 in case
(3)). We thus assume that this is not the case and let P be a normal subgroup of G that
is maximal subject to having at least three orbits on V(Γ). In particular, P is the kernel
of the action of G on the set of P -orbits. Hence G/P acts faithfully, and quasiprimitively
or biquasiprimitively on V(Γ/P ). Since Γ has prime valency, is connected and G-arc-
transitive, [12, Theorem 9] implies that P is semiregular. We may thus assume that P
is a 2-group. (Otherwise P contains a semiregular element of odd prime order.) If G/P
contains a semiregular element of odd prime order, then Lemma 2.2 implies that so does
G. We may assume that this is not the case. Similarly, we may assume that |V(Γ/P )| is
not a power of 2. (Otherwise, |V(Γ)| is a power of 2.) It follows that Γ/P and G/P are as
is (3–5) of Theorem 3.1.

We will now prove some more results about the graphs that appear in (3–5) of Theo-
rem 3.1. Let us first recall the notion of coset graphs. Let G be a group with a subgroup
H and let g ∈ G such that g2 ∈ H but g /∈ NG(H). The graph Cos(G,H,HgH) has
vertices the right cosets of H in G, with two cosets Hx and Hy adjacent if and only if
xy−1 ∈ HgH . Observe that the action of G on the set of vertices by right multiplication
induces an arc-transitive group of automorphisms such that H is the stabiliser of a vertex.
Moreover, every arc-transitive graph can be constructed in this way [16, Theorem 2].

Lemma 3.3. The graphs in (3) and (4) of Theorem 3.1 have a 3-cycle.

Proof. Clearly K12 has a 3-cycle so suppose that Γ is one of the graphs given in (4). Let
G be as in Theorem 3.1 and let v ∈ V(Γ). Then G is one of PSL2(p) or PGL2(p) and
acts arc-transitively on Γ. In both cases, let X = PSL2(p), so G = X or |G : X| = 2.
By [3, Lemma 5.3], we have that Gv ∼= Cp o Cs if G = PSL2(p), and Cp o C2s if
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G = PGL2(p). By [5, pp. 285–286], PGL2(p) has a unique conjugacy class of subgroups
of order p and the normaliser of such a subgroup is isomorphic to Cp o Cp−1, which is
the stabiliser in PGL2(p) of a 1-dimensional subspace of the natural 2-dimensional vector
space. The intersection of this subgroup with X is isomorphic to Cp o C(p−1)/2, which
has odd order. It follows that if |G : X| = 2, then Gv is not contained in X . Thus, in both
cases, X is transitive on V(Γ). Since X is normal in G, Xv 6= 1 and Γ has prime valency,
it follows that X is arc-transitive on Γ and so Γ = Cos(X,H,HgH) where H ∼= Cp oCs
and g ∈ X\NX(H) such that HgH is a union of p distinct right cosets of H .

Since H has a characteristic subgroup Y of order p, it follows that NX(H) normalises
Y and so NX(H) 6 NX(Y ) ∼= Cp o C(p−1)/2. Since NX(Y )/Y is cyclic it follows
that NX(H) = NX(Y ). Also note that NX(H) is the stabiliser in X of a 1-dimensional
subspace and so the action of X on the set of right cosets of NX(H) is 2-transitive and
the stabiliser of any two 1-dimensional subspaces is isomorphic to C(p−1)/2. Let x ∈ X .
The stabiliser in X of the coset Hx is Hx and so the orbit of Hx under H has length
|H : H ∩ Hx|. In particular, H fixes the coset Hx if and only if x ∈ NX(H), and so H
fixes |NX(H) : H| = (p(p − 1)/2)/ps = (p − 1)/2s points of V(Γ). Moreover, since
the stabiliser of two 1-dimensional subspaces is isomorphic to C(p−1)/2 it follows that if
x /∈ NX(H) then H ∩Hx ∼= C(p−1)/2 and so |H : H ∩Hx| = p. Thus the points of V(Γ)
that are not fixed by H are permuted by H in orbits of size p and so for any g /∈ NX(H)
we have that HgH is a union of p distinct right cosets of H .

For each x ∈ NX(H) define the bijection λx of V(Γ) by Hy 7→ x−1Hy = Hx−1y.
Since X acts on V(Γ) by right multiplication, we see that λx commutes with each element
of X . Moreover, λx is nontrivial if and only if x /∈ H . Let C = {λx | x ∈ NG(H)} 6
Sym(V(Γ)). Since X acts transitively on V(Γ) and C centralises X , it follows from [6,
Theorem 4.2A] thatC acts semiregularly on V(Γ). Now |C| = |NX(H) : H| = (p−1)/2s
and X × C 6 Sym(V(Γ)). Since C E X × C, the set of orbits of C forms a system of
imprimitivity for X × C and hence for X . Moreover, since C is semiregular, comparing
orders yields that C has |V(Γ)|/|C| = p + 1 orbits. One of these orbits is the set of
fixed points of H and H transitively permutes the remaining p orbits of C. In particular, it
follows that C transitively permutes the nontrivial orbits ofH and so the isomorphism type
of Γ does not depend on the choice of the double coset HgH .

Let Z be the subgroup of scalar matrices in SL2(p) and let Ĥ be the subgroup of the
stabiliser in SL2(p) of the 1-dimensional subspace 〈(1, 0)〉 such that H = Ĥ/Z. Note that

ĥ =

(
1 0
1 1

)
∈ Ĥ and let ĝ =

(
0 1
−1 0

)
. In particular, letting h = ĥZ and g = ĝZ

we have that g /∈ NX(H) and so we may assume that Γ = Cos(X,H,HgH). Now Hg
and Hgh are both adjacent to H and one can check that g(gh)−1 = hgh ∈ HgH and so
{H,Hg,Hgh} is a 3-cycle in Γ.

Definition 3.4. Let Γ be a graph and let S0 be a subset of V(Γ). Let S = S0. If a vertex u
outside S has at least two neighbours in S, add u to S. Repeat this procedure until no more
vertices outside S have this property. If at the end of the procedure, we have S = V(Γ),
then we say that Γ is dense with respect to S0.

It is an easy exercise to check that denseness is well-defined.

Corollary 3.5. Let Γ be a graph in (3) or (4) of Theorem 3.1 and let S0 = {u, v} be an
edge of Γ. Then Γ is dense with respect to S0.
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Proof. Since Γ is arc-transitive of prime valency p, the local graph at v (that is, the sub-
graph induced on Γ(v)) is a vertex-transitive graph of order p and thus vertex-primitive.
By Lemma 3.3, Γ has a 3-cycle so the local graph has at least one edge and thus must
be connected. It follows that, running the process described in Definition 3.4 starting at
S = S0, eventually S will contain all neighbours of v. Repeating this argument and using
connectedness of Γ yields the desired conclusion.

The following is immediate from Definition 3.4.

Lemma 3.6. Let Γ be a graph and S0 be a set of vertices such that Γ is dense with respect
to S0. Then the canonical double cover of Γ, with vertex-set V(Γ)× {0, 1}, is dense with
respect to S0 × {0, 1}.

Proof. Let Si be the sequence of subsets of V(Γ) obtained when running the procedure
from Definition 3.4 starting with S0 and ending with Sn for some n. Since Γ is dense with
respect to S0, we have Sn = V(Γ). For i ∈ {1, . . . , n}, let vi = Si \Si−1. (In other words,
v1 is the first vertex added to S0 to get S1, then v2 is added to S1 to get S2, etc.)

Now, let Γ′ = Γ×K2 be the canonical double cover of Γ and let S′0 = S0 × {0, 1} ⊆
V(Γ′). We now run the procedure from Definition 3.4 starting at S′0. At the first step, we
note that, since v1 was added to S0, it must have at least two neighbours in S0, say u1 and
w1. It follows that both (v1, 0) and (v1, 1) also have at least two neighbours in S′0 (for
example, (u1, 1) and (w1, 1), and (u1, 0) and (w1, 0), respectively). We thus add (v1, 0)
and (v1, 1) to S′0 to get S′1 = S′0 ∪ {(v1, 0), (v1, 1)}. Note that S′1 = S1 × {0, 1}. We then
repeat this procedure, preserving the condition S′i = Si × {0, 1} at each iteration. At the
end of this process, we have S′n = Sn × {0, 1} = V(Γ) × {0, 1} = V(Γ′) and so Γ′ is
dense with respect to S0 × {0, 1}.

4 Proof of Theorem 1.1
Let p be a prime, let Γ be an arc-transitive graph of valency 2p and let G = Aut(Γ).
We may assume that Γ is connected. If G is quasiprimitive or bi-quasiprimitive, then G
contains a nontrivial semiregular element, by [8, Theorem 1.2] and [10, Theorem 1.4]. We
may thus assume that G has a minimal normal subgroup N such that N has at least three
orbits. In particular, Γ/N has valency at least 2.

If N is nonabelian, then G has a nontrivial semiregular element by [18, Theorem 1.1].
We may therefore assume that N is abelian and, in particular, N is an elementary abelian
q-group for some prime q.

We may also assume that N is not semiregular that is, Nv 6= 1 for some vertex v. It
follows from Lemma 2.1 that 1 6= N

Γ(v)
v E G

Γ(v)
v . As Γ is G-arc-transitive, we have that

G
Γ(v)
v is transitive and so the orbits of NΓ(v)

v all have the same size, either 2 or p. Since N
is a q-group, this size is equal to q. Writing d for the valency of Γ/N , we have that either
(d, q) = (2, p) or (d, q) = (p, 2).

If d = 2 and q = p, then it follows from [15, Theorem 1] that Γ is isomorphic to the
graph denoted by C(p, r, s) in [15]. By [15, Theorem 2.13], Aut(C(p, r, s)) contains the
nontrivial semiregular automorphism % defined in [15, Lemma 2.5].

We may thus assume that d = p and q = 2. In this case, if u is adjacent to v, then u has
exactly 2 = 2p/d neighbours in vN . Let K be the kernel of the action of G on N -orbits.
By the previous observation, the orbits of KΓ(v)

v have size 2 and thus it is a 2-group. It
follows from Lemma 2.1 that Kv is a 2-group and thus so is K = NKv .
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Now, G/K is an arc-transitive group of automorphisms of Γ/N , so we may apply
Corollary 3.2. If G/K has a semiregular element of odd prime order, then so does G, by
Lemma 2.2. If |V(Γ/N)| is a power of 2, then so is |V(Γ)| and, in this case, G contains
a semiregular involution by Lemma 2.3. We may thus assume that we are in case (3) of
Corollary 3.2, that is, G/K contains a normal 2-subgroup P/K such that (Γ/P,G/P ) is
one of the graph-group pairs in (3–5) of Theorem 3.1. Note that P is a 2-group. LetM be a
minimal normal subgroup of G contained in the centre of P . Note that M is an elementary
abelian 2-group. We may assume that M is not semiregular hence Mv 6= 1 and so by
Lemma 2.1, MΓ(v)

v 6= 1. Moreover, |M | 6= 2 as otherwise Mv = M and we would deduce
that M fixes each element of V(Γ), a contradiction. Since M is central in P , Mv fixes
every vertex in vP .

Note that the G-conjugates of Mv must cover M , otherwise M contains a nontriv-
ial semiregular element. By the previous paragraph, the number of conjugates of Mv is
bounded above by the number of P -orbits, that is |V(Γ/P )|, so we have

|M | 6 |Mv||V(Γ/P )|.

Since Γ is connected and G-arc-transitive, there are no edges within P -orbits. As
M

Γ(v)
v 6= 1, there exists g ∈ Mv such that w and wg are distinct neighbours of v. Let

u be the other neighbour of w in vP . Since Mv fixes every element of vP it follows that
u is also a neighbour of w and wg and so {v, w, u, wg} is a 4-cycle in Γ. Thus the graph
induced between adjacent P -orbits is a union of C4’s.

If x is a vertex and yP is a P -orbit adjacent to x, then there is a unique C4 containing
x between xP and yP , and thus a unique vertex z antipodal to x in this C4. We say that z
is the buddy of x with respect to yP . The set of buddies of v is equal to Γ2(v) ∩ vP , which
is clearly fixed setwise by Gv . Moreover, each vertex has the same number of buddies.
Furthermore, since Gv transitively permutes the set of p P -orbits adjacent to vP , either v
has a unique buddy or it has exactly p buddies.

If v has a unique buddy z, then Γ(v) = Γ(z), and so swapping every vertex with its
unique buddy is a nontrivial semiregular automorphism. Thus it remains to consider the
case where v has p buddies. We first prove the following.

Claim. If X is a subgroup of M that fixes pointwise both aP and bP , and cP is a P -orbit
adjacent to both aP and bP , then X fixes cP pointwise.

Proof. Suppose that some x ∈ X does not fix c. Now x fixes aP pointwise, so cx must be
the buddy of c with respect to aP . Similarly, cx must be the buddy of c with respect to bP .
These are distinct, which is a contradiction. It follows that X fixes c and, since X 6 M ,
also cP .

Let s > 1, let α = (v0, . . . , vs) be an s-arc of Γ and let α′ = (v0, . . . , vs−1). Now
|vsMvs−1 | = 2, so |Mvs−1

: Mvs−1vs | = 2 and |Mα′ : Mα| 6 2. Applying induction yields
that

|Mv0 : Mα| 6 2s. (4.1)

We first assume that Γ/P andG/P are as in (3) or (4) of Theorem 3.1. Let {u, v} be an
edge of Γ. By the previous paragraph, we have |Mv : Muv| 6 2. Recall that Mv fixes all
vertices in vP , soMuv fixes all vertices in vP∪uP . Combining the claim with Corollary 3.5
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yields that Muv = 1 and thus |Mv| = 2. It follows that |M | 6 |Mv||V(Γ/P )| so |M | 6
2|V(Γ/P )|. Since M is minimal normal in G, it is an irreducible G-module over GF(2),
of dimension at least two. In fact, since M is central in P , it is also an irreducible (G/P )-
module. Since G/P is nonabelian simple or has a nonabelian simple group as an index
two subgroup, this implies that M is a faithful irreducible (G/P )-module over GF(2). If
G/P = M11, then |M | > 210 [11, Theorem 8.1], contradicting |M | 6 2 · 12 = 24. If
G/P = PSL2(p) or PGL2(p) then by [2, Section VIII], |M | > 2(p−1)/2. Recall that
p > 127 and so this contradicts |M | 6 2(p2 − 1)/2s < p2 − 1.

Finally, we assume that Γ/P is in (5) of Theorem 3.1, that is, Γ/P is the canonical
double cover of a graph Γ′ which appears in (4) of Theorem 3.1. In particular, V(Γ/P ) =
V(Γ′) × {0, 1}. By Lemma 3.3, Γ′ has a 3-cycle, say (u, v, w). By Corollary 3.5 and
Lemma 3.6, Γ/P is dense with respect to {u, v} × {0, 1}. Now, let

α = ((u, 0), (v, 1), (w, 0), (u, 1), (v, 0)).

Since α contains {u, v} × {0, 1}, Γ/P is dense with respect to α. Note that α is a 4-arc of
Γ/P . Let α be a 4-arc of Γ that projects to α. Since Γ/P is dense with respect to α, arguing
as in the last paragraph yields Mα = 1. On the other hand, if v ∈ V(Γ) is the the initial
vertex of α, then by (4.1), we have |Mv : Mα| 6 24 and thus |Mv| 6 24. Since |M | 6
|Mv||V(Γ/P )| it follows that |M | 6 24(p2 − 1)/s. As above, M is a faithful irreducible
(G/P )-module over GF(2) of dimension at least two. Since G/P = PGL2(p) we have
from [2] that |M | > 2(p−1)/2, which again contradicts |M | 6 24(p2 − 1)/s < 24(p2 − 1).
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