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Abstract. Evaluation of the performance of the WRF model is carried out for simulating the 
surface winds and the diurnal cycle of wind speed for the small island developing state of Fiji at 
a 1.33 km by 1.33 km grid resolution using 1deg gridded data from NCEP-FNL. Simulations are 
performed for an austral summer (January 2017) and an austral winter (July 2017) month using 
the dynamical downscaling and the two-way nested approach. A set of physics parameterization 
schemes together with topo_wind = 1, 2 and ysu_topdown_pblmix = 1 physics settings 
associated with YSU PBL scheme are used to correct the surface winds and the diurnal cycle of 
wind speed. The results reveal that the WRF model is able to capture the surface winds and the 
diurnal cycle of wind speed on the windward side. Surface winds on the leeward side and the 
outer islands, show positive bias especially at nighttime for January and at both the day and night 
time for July. The statistical evaluation of all stations for January (July) showed a bias of 1.16 
m/s (1.89 m/s), RMSE of 2.40 m/s (3.14 m/s), STDE of 1.88 m/s (2.08 m/s) and diurnal cycle 
correlation of 0.74 (0.68) using topo_wind = 2 and ysu_topdown_pblmix = 1.  

Keywords:  WRF, surface winds, diurnal cycle, Fiji.

1.  Introduction 
Wind resource assessment is an integral part of determining the potential of wind energy for electrical 
power generation [1, 2]. When assessing the wind resource on a national basis, the application of 
mesoscale models is most suitable in comparison with other available methods [3]. However, such an 
assessment becomes a challenging task when applying mesoscale models like the WRF model at high 
spatial resolution, given the high computational cost [4]. For a small island state surrounded by vast 
expanses of the ocean, the weather and climate are mainly influenced by the land-sea interaction, which 
can create further modelling challenges. In addition, if such an island experiences wind flow from a 
predominant direction, the climate on either (leeward or windward) side of the islands could vary 
significantly, with the leeward (windward) side being much dryer (wetter). Moreover, additional 
difficulties may arise in the prediction of surface winds if the mesoscale model is unable to accurately 
capture significant differences in topography between the two sides [5].  

Two methods are available in the WRF model for correcting surface winds: firstly, topographic 
correction to represent extra drag from sub-grid topography and enhanced flow at hilltops based on the 
concept of a momentum sink term (𝑐𝑐𝑡𝑡) and makes use of the standard deviation of the subgrid-scale 
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orography (𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠) as well as the Laplacian of the topographic field (∆2ℎ) [6]. The momentum sink term 
(𝑐𝑐𝑡𝑡) stands for the correction of topography and modulates the surface drag associated with vegetation 
in the momentum-conservation equation: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ⋯− 𝑐𝑐𝑡𝑡
𝜕𝜕∗2

∆𝑧𝑧
𝜕𝜕
𝑉𝑉

              (1) 
Where 𝜕𝜕 stands for the zonal wind component at the first model level, 𝑉𝑉 is the wind speed also at the 
first model level, 𝜕𝜕∗ is the frictional velocity that comes from the surface-layer scheme, and ∆𝑧𝑧 is the 
thickness of the first model layer. A similar modification is also used for the meridional wind equation. 
The momentum sink term is defined using thresholds, so 𝑐𝑐𝑡𝑡 is larger over valleys and in areas with large 
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠, and tends to zero when ∆2ℎ <  −20 𝑚𝑚, assuming no drag over hills and mountaintops. It was 
found that this correction was successful in reducing the large biases found in surface wind speed over-
estimation in flat and valley regions [6]. 

Secondly, a simpler terrain variance-related correction, which determines the subgrid terrain variance 
and makes the surface drag, or roughness, used in the model, dependent on it; also included is additional 
consideration for stability and wind speed [7].  

The WRF model has been used to study various atmospheric parameters, which includes temperature 
and precipitation [8], relative humidity [9], low-level jets [10], wind speed and wind direction [11], 
extreme winds [12] and fire weather index [13] amongst many others over larger landmasses. The WRF 
model evaluation studies include evaluating winds and the vertical wind shear at a coastal site over 
western Denmark [14], performance evaluation for assessing wind resource in Greece [15], ability to 
reproduce surface wind direction over complex terrain in the Iberian Peninsula [16], configuration and 
evaluation for the study of the Hawaiian regional climate [17], model resolution required climatological 
downscaling over complex terrain along the Eastern Mediterranean [8], and wind simulation and wind 
energy estimates for Portugal [18]. Typically, for these studies low biases are found between the 
observed wind speeds and the simulated wind speeds. It was also found that the WRF model has a 
tendency to overestimate the low wind speeds and underestimate the higher wind speeds.   

To date, most downscaling studies for numerous atmospheric parameters have been conducted in the 
mid-latitude regions of the Northern Hemisphere and relatively few have examined semi-arid or tropical 
locations. 

In this study, we consider Fiji, which is a small island developing state (SIDS) located in the tropical 
southwest pacific, with a poorly exploited wind resource and limited knowledge of the wind energy 
potential. Fiji falls in the trade winds zone with a predominant southeast wind direction and has a tropical 
marine climate with austral summer (wet season, Nov -Apr) and austral winter (dry season, May - Oct). 
For a semi-arid tropical country, one of the most important wind resource parameters of the surface 
winds is the diurnal cycle of the wind speed, which is representative of the land and sea breeze along 
with the dominant seasonal winds. The WRF numerical weather prediction model can be used to create 
knowledge about mesoscale surface winds and the diurnal cycle of the wind speed for the SIDS of Fiji. 

This study aims to apply the dynamical downscaling method to the semi-arid tropical location of the 
southwest pacific region to evaluate the capability of the WRF model in simulating the surface winds 
(10 m) and the diurnal cycle of wind speeds, for the SIDS of Fiji, for an austral summer and an austral 
winter month.  

2.  Methodology 
2.1 Study area and measured wind data 
Figure 1 shows the study area (d03), which is the SIDS of Fiji between the latitudes of 15.5 °S to 19.5 
°S and longitudes of 177 °E to 179 °W. Fiji has more than 332 islands with a total land area of 18,333-
km2 spread over a sea surface area of 1.3 million km2. One-third (110) of these islands are inhabited. 
Around 87 % of the total land area is taken up by the two largest islands of Viti Levu (10,400 km2) and 
Vanua Levu (5,540 km2). The islands are of volcanic origin, mountainous and with maximum peaks of 
1300 m. This study focus on the two larger islands, and other islands that fall within d03. 



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062025

IOP Publishing

doi:10.1088/1742-6596/1618/6/062025

3

 
 
 
 
 
 

 
Figure 1. Map of the study area (d03) including locations of the 19 AWS (Source: Google Earth). 

 
Table 1. Details and position of the AWSs 

Station  
name 

Latitude  
(° S) 

Longitude 
(° E) 

Elevation  
(m a.s.l.) 

Elevation in WRF  
(m a.s.l.) 

Keiyasi  -17.8795 177.7552 89.8 79.7 
Koro Island  -17.3450 179.4184 108.8 174.7 
Korolevu  -18.2129 177.7304 25.7 39.8 
Labasa  -16.4333 179.4000 8.5 4.5 
Lomaivuna  -17.8714 178.3601 122.1 125.2 
Momi  -17.8952 177.2668 43.8 24.5 
Nadarivatu  -17.5676 177.9632 824.1 701 
Nadi  -17.7599 177.4448 20.7 11.7 
Nausori  -18.0464 178.5591 5.7 5.2 
Rakiraki  -17.3404 178.2214 8.1 0.7 
Saqani  -16.4749 179.7089 30.0 39.1 
Seaqaqa  -16.4758 179.1578 101.8 109.4 
Sigatoka  -18.1422 177.5039 6.7 37.8 
Tokotoko  -18.2186 178.1700 4.9 5.6 
Udu  -16.1411 -179.9947 43.7 0.9 
Viwa  -17.1494 176.9117 2.0 0.7 
Vunisea  -19.0469 178.1654 31.9 35.9 
Wainikoro  -16.3044 179.5586 15.1 28.8 
Yaqara  -17.4330 177.9774 20.0 8.8 
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Measured wind data at 10 m elevation is available from 19 Automatic Weather Stations (AWSs) 
located around Fiji for the months of January and July of 2017. The locations of the AWSs can be seen 
in Figure 1, where eleven stations are located on Viti Levu, five on Vanua Levu and three on the outer 
islands. The AWSs located on the windward side of the larger islands are Korolevu, Lomaivuna, 
Nausori, Saqani, Tokotoko and Udu. The AWSs located on the leeward side of the larger islands are 
Keiyasi, Labasa, Momi, Nadarivatu, Nadi, Rakiraki, Seaqaqa, Sigatoka, Wainikoro and Yaqara. The 
AWSs located on the outer islands are Koro Island, Viwa and Vunisea. Table 1 shows the summary of 
the characteristics of the AWSs from which the wind observations are retrieved. The elevation is given 
in meters above sea level (m a.s.l.). Also, included are the model terrain heights of the closest grid point 
to each of these AWS locations. 
 
2.2 Model and simulation setup 
The study used the Advanced Research WRF (ARW) [19, 20] atmospheric mesoscale model version 
3.9.1. The dynamical downscaling method was used for running the simulations using the WRF model. 
This method uses the output from General Circulation Models (GCM) as input initial and boundary 
conditions to drive a regional numerical model to simulate atmospheric parameters at a high spatial 
resolution via direct nesting, taking into account the local conditions [21, 22].  

The initial and boundary conditions for Fiji were obtained from 6-hourly NCEP-FNL (Final) 
Operational Global Analysis data at 1° × 1° grid resolution [23]. The static fields for topography was 
obtained from USGS GMTED2010, land-water masks, land use/land cover classification and albedo, 
etc., were obtained and interpolated from the 21-class MODIS and MODIS FPAR, all these made 
available from the National Center for Atmospheric Research (NCAR) database, at a resolution of 30-
arc-seconds. Time-varying SSTs were supplied to the model from NCEP-NOAA at 0.083° × 0.083° 
grid resolution.  

 

 
Figure 2. WRF domain d01, d02 and d03 with 20 km, 4 km and 1.33 km resolutions respectively. 
 
The NCEP-FNL data were downscaled by the WRF model using three domains as illustrated in 

Figure 2. The outermost domain hereafter referred to as d01, second d02 and the innermost as d03. The 
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grid size for the domains is reduced by a factor of 5 from 20 km in d01 to 4 km in d02 and by a factor 
of 3 from 4 km in d02 to 1.33 km in d01. The 20 km – 4 km – 1.33 km nested grids have been used 
because the islands are smaller and the topography changes every 100 – 500 m. The standard practice 
of using a 3:1 or 5:1 parent-grid ratio has been followed [19, 20]. A two-way nesting approach is applied, 
whereby the flow of information goes from the coarser domains to the finer domains, with feedback 
from the inner domains. The averaged values over the grid points from the inner domain are sent back 
to the parent domains to overwrite values at corresponding grid points. The two-way nesting approach 
was used so that the coarser grid results can be improved using the higher-resolution grid results of the 
inner domain in case of resource mapping for the outer domains. As in this way, the results from a better 
resolved topography of the finest grid is used to overwrite the results of the outer grids improving its 
results. The centre of d01 is at a latitude of 17.73 °S and longitude of 177.94 °E, which corresponds to 
the centre of Viti Levu. The Mercator projection is used as recommended for lower latitudes [19, 20]. 
The areas covered by each of the domains are: d01 = 2000 km × 2000 km, d02 = 604 km × 604 km 
and d03 = 399 km 399 km at horizontal resolutions of 20 km × 20 km, 4 km ×  4 km and 
1.33 km × 1.33 km respectively. The vertical structure of the three domains consist of 30 terrain-
following vertical coordinates, including eight levels below 1 km, as the interest is in the lower part of 
the atmosphere closer to surface. This was done to balance between the computational cost and the 
computational time. A timestep of 10 seconds is used in d03 to ensure numerical stability as 
recommended [19, 20]. 

The tropical suite of the physics parameterization scheme [19, 20] was used, which included the 
RRTMG longwave and shortwave radiation schemes [24], the WRF single-moment 6-class 
microphysics scheme [25], the New Tiedtke cumulus parameterization scheme [26], the Noah land 
surface model [27], the MM5 Similarity scheme [28] for the surface layer, and the Yonsei University 
Planetary Boundary Layer scheme [29].  These are well-tested physics parameterization schemes in 
WRF applications in the tropics [19, 20]. 

The monthly simulations were performed on the New Zealand eScience Infrastructure (NeSI) High 
Performance Computer – Mahuika for a simulation time of 3 days for the 34 day monthly simulations. 
The first 6.35 hours of simulation, which is equivalent to 3 days, are considered to be spin-up time for 
the simulations and are excluded from the analysis. Even though a period of one year is considered 
sufficient to capture diurnal and seasonal variations for wind resource assessments [30], in our case one 
month of either seasons is considered. This is done to evaluate if the model is able to simulate the surface 
winds and the diurnal cycle of wind speeds before longer simulations in the order of few years to 10 
years can be simulated. All the results discussed in the paper are 1-hourly values retrieved from the inner 
most domain (d03) at 10 meter height above the ground from the same points as the AWS locations. 
The grid cell containing the station in the domain is used to achieve this. Table 1 lists the model terrain 
height for the closest grid point to each of the 19 AWSs. 

Additional physics settings were used to correct the surface winds and the diurnal cycle of wind 
speed for January 2017 against ground-based measurements from AWSs. These included topo_wind = 
0/1/2, ysu_topdown_pblmix = 1, Varsso = 30 arc seconds, changing the surface layer scheme from MM5 
(sf_sfclay_physics = 91) to Modified MM5 (sf_sfclay_physics = 1) and doubling surface roughness for 
the dominant land use categories. The surface roughness was doubled in an attempt to see if there is any 
improvement in the model mean wind speed and the diurnal cycle of wind speed. Doubling the surface 
roughness made the surface winds almost constant throughout the entire day with limited diurnal 
variation. These were done to see what effect each of the settings had on the surface winds and the 
diurnal cycle of wind speed and if these could improve the model results. Then, the best setting was 
used to simulate the surface winds for July 2017. 
 
2.3 Model Evaluation 
The 10 m surface winds simulated by the model were validated using measurements from the 19 AWSs. 
The three statistical parameters used for evaluation are according to [31]. The Root Mean Squared Error 
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(RMSE) was used, which represents the deviation between the simulated 𝑀𝑀𝑖𝑖 and respective observed 𝑂𝑂𝑖𝑖 
data in the same place and time instant, and N is the total number of data points:  

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 �

1
2        (2) 

The Bias was used for the evaluation of the data tendency. A positive (negative) bias means the 
simulations overestimate (underestimate) the measured values: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
1
𝑁𝑁
�(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

             (3) 

The Standard Deviation Error (STDE) was used to evaluate the dispersion of the error between 
observed and simulated data:  

𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 = �
1
𝑁𝑁
�(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2 −

1
𝑁𝑁

(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

�

1
2

        (4) 

Priority is given to STDE, and this assumption comes from the fact that, even if a simulation has a 
high RMSE or Bias, if the STDE is low it means that the error is somewhat constant and can be seen as 
a kind of offset and the simulation physics is correct. If a simulation has a high STDE, the error is 
random and the simulation has low physical meaning, even if it has a relatively low RMSE or Bias [31, 
32]. 

The Pearson correlation coefficient was used to evaluate the diurnal cycle. The Pearson correlation 
coefficient is a statistical measure that calculates the strength of the relationship between the relative 
movement of two variables; in our case, the simulated and measured monthly averaged diurnal values. 

3.  Results 
Table 2 presents the evaluation of the surface winds and the diurnal cycle of wind speed for the different 
physics settings. The best model configuration tested was with the topo_wind = 2 and 
ysu_topdown_pblmix = 1 physics settings for d03 as it has the lowest STDE and Bias for the surface 
winds and the highest diurnal cycle correlation of wind speed for January 2017. 

 
Table 2. Evaluation of surface winds and the diurnal cycle for different physics settings 

Physics settings - Month Observed 
Mean 
(m/s) 

WRF 
Mean 
(m/s) 

Bias 
(m/s) 

RMSE 
(m/s) 

STDE 
(m/s) 

Diurnal 
Cycle 

Correlation 
(%) 

topo_wind = 1 
ysu_topdown_pblmix = 1 

Jan 2.23 3.47 1.24 2.40 1.88 0.64 

topo_wind = 2 
ysu_topdown_pblmix = 1 

Jan 2.23 3.39 1.16 2.40 1.88 0.74 

topo_wind = 1 
ysu_topdown_pblmix = 1 
Varrso = 30 s 

Jan 2.23 3.45 1.22 2.38 1.89 0.69 

topo_wind = 2 
ysu_topdown_pblmix = 1  
Modified MM5  

Jan 2.23 3.49 1.26 2.38 1.88 0.67 

Topo_wind = 0  
Major roughness categories 
doubled 

Jan 2.23 3.50 1.27 2.40 1.90 0.66 

topo_wind = 2 
ysu_topdown_pblmix = 1 

Jul 3.37 5.26 1.89 3.14 2.08 0.68 
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The WRF simulated average wind speed over all the locations in January (July) is 3.39 m/s (5.26 
m/s), with a bias of 1.16 m/s (1.89 m/s), RMSE of 2.40 m/s (3.14 m/s), STDE of 1.88 m/s (2.08 m/s) 
and diurnal cycle correlation of 0.74 (0.68). The observed and the model dominant wind direction is 
southeasterly. Since the STDE for both months studied is ≤ 2 m/s, this indicates that the model physics 
is correct [30, 31]. The mean value across all the AWSs is used in Table 2 to evaluate the overall model 
performance for the 19 AWSs and the 5 different scenarios for evaluating the surface winds and the 
diurnal cycle wind speed.   

Tables 3 and 4 present the individual statistical evaluation of surface winds and the diurnal cycle of 
wind speed respectively, for each AWS for January and July of 2017. AWSs located on the windward 
side and in relatively flat terrain have a lower bias and higher diurnal cycle correlation. AWSs located 
on the leeward side, outer islands and in complex terrain have a higher bias and a lower diurnal cycle 
correlation. This indicates that the terrain on the leeward side is not adequately resolved in the model. 

 
Table 3. Evaluation of surface winds and the diurnal cycle of wind speed for Fiji for Jan 2017 

Station 
Measured  
Mean (m/s) 

WRF Mean  
(m/s) 

Bias  
(m/s) 

RMSE 
 (m/s) 

STDE  
(m/s) 

Diurnal Cycle  
Correlation % 

Keiyasi 1.00 3.60 2.62 3.38 2.10 0.91 
Koro Island 2.62 3.50 0.87 2.08 1.89 0.59 
Korolevu  3.18 4.22 1.04 2.57 2.25 0.89 
Labasa 1.21 3.25 2.04 2.63 1.66 0.86 
Lomaivuna 1.69 1.97 0.27 1.29 1.26 0.95 
Momi 3.56 3.96 0.40 2.21 2.10 0.94 
Nadarivatu 1.67 3.90 2.22 2.99 2.00 -0.33 
Nadi 2.73 3.66 0.93 2.70 2.40 0.93 
Nausori 1.40 1.51 0.11 1.46 1.46 0.95 
Rakiraki 4.08 3.34 -0.73 2.31 2.20 0.74 
Saqani 1.65 3.43 1.78 2.34 1.53 0.45 
Seaqaqa 1.17 3.41 2.24 2.82 1.72 0.95 
Sigatoka 1.77 4.24 2.47 3.26 2.12 0.86 
Tokotoko 2.14 1.83 -0.31 1.17 1.13 0.97 
Udu 3.55 3.59 0.03 1.83 1.83 0.40 
Viwa  2.42 4.50 2.08 3.01 2.18 0.46 
Vunisea 2.30 3.70 1.40 2.98 2.50 0.84 
Wainikoro 1.00 3.10 2.09 2.55 1.46 0.93 
Yaqara 3.26 3.81 0.55 2.08 2.01 0.75 
Average 2.23 3.40 1.16 2.40 1.88 0.74 

 
Figures 3 and 4 present the wind speed diurnal cycles for austral summer (January) and austral winter 

(July) of 2017, for the windward and the leeward sides of the main islands and the outer islands. Long 
observational datasets available in the order of 5 – 8 years have similar diurnal cycle patterns for the 
months of January and July of 2017 used in this study. The WRF model is able to simulate the full 
diurnal cycle of wind speed on the windward side stations for both January and July. For the leeward 
side and the outer island stations, the model is able to simulate the daytime wind speed but there is a 
positive bias in the nighttime for January. For July, the modelled wind speeds for both the outer islands 
and the leeward side, show poor diurnal cycle predictions, and a positive bias for both the day and the 
nighttime. The possible reasons for the observed bias include the limitations of the model in terms of 
the errors associated with the coarse resolution input data used as initial and boundary conditions, 
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resolution of the domain, terrain and vegetation characteristics and the complexity of the terrain and its 
representation in the model. The choice of physical schemes can also contribute to errors in the model, 
as these schemes are based on assumptions, and these assumptions may fail, or give an inadequate 
response to certain synoptic forcing, limiting their application [33], for instance the PBL scheme works 
better during the day than at night [34]. 

 
Table 4. Evaluation of surface winds and the diurnal cycle of wind speed for Fiji for Jul 2017 

Station 
Measured  
Mean (m/s) 

WRF Mean 
 (m/s) 

Bias  
(m/s) 

RMSE  
(m/s) 

STDE  
(m/s) 

Diurnal Cycle  
Correlation % 

Keiyasi 1.10 5.63 4.53 4.99 2.11 0.46 
Koro Island 4.31 6.17 1.86 2.56 1.77 0.50 
Korolevu  3.24 6.14 2.90 3.63 2.17 0.83 
Labasa 2.20 5.24 3.05 3.84 2.34 0.83 
Lomaivuna 1.97 2.24 0.27 1.22 1.19 0.91 
Momi 4.68 5.84 1.16 2.61 2.34 0.87 
Nadarivatu 3.29 5.98 2.70 3.28 1.87 0.45 
Nadi 3.31 5.49 2.18 3.28 2.45 0.81 
Nausori 1.55 1.61 0.06 1.34 1.34 0.98 
Rakiraki 6.96 5.29 -1.67 2.93 2.41 0.84 
Saqani 2.83 5.50 2.67 3.31 1.95 0.43 
Seaqaqa 1.58 5.44 3.86 4.48 2.28 0.65 
Sigatoka 1.96 6.18 4.23 4.76 2.19 0.83 
Tokotoko 2.47 2.21 -0.25 1.38 1.36 0.90 
Udu 7.09 6.34 -0.75 2.59 2.48 0.71 
Viwa  4.85 6.08 1.23 3.37 3.14 0.83 
Vunisea 3.40 7.16 3.76 4.35 2.18 -0.12 
Wainikoro 2.27 5.22 2.95 3.57 2.01 0.87 
Yaqara 4.99 6.12 1.12 2.19 1.88 0.41 
Average 3.37 5.26 1.89 3.14 2.08 0.68 

 

 
Figure 3. Wind speed diurnal cycle for different locations in Fiji for Jan 2017. 
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Figure 4. Wind speed diurnal cycle for different locations in Fiji for Jul 2017. 

 
Figures 5 and 6 show the average 10 m wind speeds for the austral summer (January) and austral 

winter (July) of 2017. The winds in austral summer (austral winter) are lower (higher) in the order of 1 
– 4.5 m/s (1 – 8 m/s) over land areas. Higher wind speeds are observed in the windward side and western 
and eastern near-offshore areas of the larger islands, and in the channel (Bligh Waters) between the two 
larger islands.  

 

 
Figure 5. Average 10 m elevation wind speed of Fiji for a month of austral summer (Jan 2017). 
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Wakes generated by the islands topography are observed from islands during summer and mostly 
one island during winter. This is due to the presence of higher altitude topography on Viti Levu and the 
southeast trade winds, which are more persistent during austral winter. During austral summer, the trade 
winds are weaker and the wind climate is dominated by synoptic systems. 

The results of the simulations are useful for the wind industry as it presents the first validated 
mesoscale wind-resource maps for either months of the two different seasons for the SIDS of Fiji. The 
spatial distribution of the surface wind speeds indicates areas of lower, moderate and higher winds 
probable for potential wind resource sites, which can be further investigated once simulations in the 
order of 5 – 10 years are performed. It also shows that the SIDS of Fiji has areas of moderate and higher 
winds, which can be utilized for power generation using wind turbines. 
 

 
Figure 6. Average 10 m elevation wind speed of Fiji for a month of austral winter (Jul 2017). 

 
For the purpose of long term (i.e. in the order of 5 – 10 years) mesoscale wind resource assessment 

for a SIDS like Fiji, it is fundamental to predict correct surface winds and especially the diurnal cycle 
of wind speed. The diurnal cycle is a representation of the land and the sea breeze interaction of the 
tropical island location with the vast ocean component surrounding the islands. Once long term 
mesoscale wind-resource results are available, it can assist the SIDS of Fiji to identify potential wind 
resource sites, which can be utilized for future wind farm developments to assist the country towards its 
renewable electrical power generation.   

For a further study, a grid sensitivity study is currently underway to identify an appropriate model 
grid size that is able to capture the surface winds and especially the diurnal cycle of wind speed not only 
on the windward side but also on the leeward side. The AWSs on the leeward side are mostly located in 
complex terrain, thus, it would be interesting to see the effect of reduced grid sizes in the order of 
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1 km × 1  km and 0.8 km × 0.8 km resolutions on the surface winds and the diurnal cycle of wind 
speed over the SIDS of Fiji.  

4.  Conclusions 
An evaluation of the WRF model to simulate the surface winds and the diurnal cycle of wind speed has 
been carried out for the SIDS of Fiji at a high spatial resolution of 1.33 km by 1.33 km. The NCEP-FNL 
1deg atmospheric input data was used to drive the WRF model simulations via two-way nested approach 
for an austral summer (January) and an austral winter (July) month of 2017. A set of physics 
parameterization schemes were tested with additional physics settings associated with the YSU PBL 
scheme to correct the surface winds and the diurnal cycle of wind speed against measurements from 
AWSs. The results showed that the WRF model is able to accurately capture the surface winds and the 
diurnal cycle of wind speed on the windward side. Surface winds on the leeward side and the outer 
islands, show positive bias especially at night for January and both the day and night for July, despite 
adjusting some of the physics settings, showing the limitations of the model. The statistical evaluation 
of all the stations for January (July) showed a bias of 1.16 m/s (1.89 m/s), RMSE of 2.40 m/s (3.14 m/s), 
STDE of 1.88 m/s (2.08 m/s) and diurnal cycle correlation of 0.74 (0.68) using topo_wind = 2 and 
ysu_topdown_pblmix = 1.  

A grid sensitivity study is underway to further investigate if reducing the grid size of the model 
simulation domain can better capture the surface winds and especially the diurnal cycle of wind speed 
for not only the windward side but also the leeward side AWS locations. 

Acknowledgement 
This study is part of a PhD research project, for which the lead author is the recipient of scholarship 
funding from the New Zealand Ministry of Foreign Affairs and Trade (NZMFAT). The authors 
gratefully acknowledges the Fiji Meteorological Services for providing the ground-based wind data 
measurements from AWSs in Fiji and the New Zealand eScience Infrastructure (NeSI) for use of the 
high-performance computing facilities in this research. 

5.  References 
[1] Manwell J F, McGowan J G and Rogers A L 2009 Wind Energy Explained: Theory, Design and 

Application (Chichester: John Wiley & Sons) 
[2] Carvalho D, Rocha A, Gómez-Gesteira M and Silva Santos C 2014 Applied Energy 117 116-126 
[3] Foley A M, Leahy P G, Marvuglia A and McKeogh E J 2012 Renewable Energy 37(1) 1-8 
[4] Prein A F et al 2015 Reviews of Geophysics 53(2) 323-361 
[5] Lehner M and Rotach M W 2018 Atmosphere 9(7) 276 
[6] Jimenez P A and Dudhia J 2012 Journal of Applied Meteorology and Climatology 51 300-316 
[7] Mass and Ovens 2011 24th Conf. on Weather and Forecasting/20th Conf. on NWP 9B.6  
[8] El-Samra R, Bou-Zeid E and El-Fadel M 2018 Atmospheric Research 203 68-82 
[9] Kryza M, Walaszek K, Ojrzynska H, Szymanowski M, Werner M and Dore A J 2017 Pure and 

Applied Geophysics 174 511-526 
[10] Storm B, Dudhia J, Basu S, Swift A and Giammanco 2009 Wind Energy 12(1) 81-90 
[11] De Meij A, Vinuesa J-F, Maupas V, Waddle J, Price I, Yaseen B and Ismail A 2016 Renewable 

and Sustainable Energy Reviews 56 551-562 
[12] Larsén X G, Badger J, Hahmann A N, and Mortensen N G 2013 Wind Energy 16 1167-1182 
[13] Simpson C C, Pearce H G, Sturman A P and Zawar-Reza P 2013 International Journal of Wildland 

Fire 23 34-45 
[14] Caroline D, Andrea N H, Alfred P and Gregor G 2012 Wind Energy 17 39-55 
[15] Giannaros T M, Melas D and Ziomas I 2017 Renewable Energy 102 190-198 
[16] Jimenez P A and Dudhia J 2013 Journal of Applied Meteorology and Climatology 52 1610-1617 
[17] Zhang C, Wang Y, Lauer A and Hamilton K 2012 Monthly Weather Review 140(10) 3259-3277  
[18] Carvalho D, Rocha A, Gómez-Gesteira M and Santos C S 2014 Applied Energy 117 116-126  



The Science of Making Torque from Wind (TORQUE 2020)

Journal of Physics: Conference Series 1618 (2020) 062025

IOP Publishing

doi:10.1088/1742-6596/1618/6/062025

12

 
 
 
 
 
 

[19] Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Duda M G, Huang X Y, Wand W 
and Powers J G 2008 Technical Report NCAR/TN-475+STR 

[20] Wang W et al 2018 ARW User Guide V3.9 
[21] Hewitson B C and Crane R G 1996 Climate Research 7 85-95 
[22] Hong S-Y & Kanamitsu M 2014 Asia-Pacific Journal of Atmospheric Sciences 50(1) 83-104 
[23] NCEP/NWS/NOAA/U.S. Depart. of Com. 2015 Research Data Archive at NCAR CIS Laboratory 
[24] Iacono M J, Delamere J S, Mlawer E J, Shephard M W, Clough S A and Collins W D 2008 Journal 

of Geophysical Research 113 D13103 
[25] Hong S-Y and Lim J-O J 2006 Journal of Korean Meteorological Society 42 129–151 
[26] Zhang C and Wang Y 2017 Journal of Climate 30 5923-5941 
[27] Tewari M et al 2004 20th Conf. on Weather analysis and Forecasting/16th Conf. on NWP 11-15   
[28] Beljaars A C M 1994 Quarterly Journal of the Royal Meteorological Society 121 255-270 
[29] Hong S-Y, Noh Y and Dudhia J 2006 Monthly Weather Review 134(9) 2318–2341  
[30] Al-Yahyai S, Charabi Y and Gastli A 2010 Renewable and Sustainable Energy Reviews 14 3192-

3198 
[31] Carvalho D, Rocha A, Gómez-Gesteira M and Santos C 2012 Environmental Modelling & Software 

33 23-34 
[32] Emery C, Tai E and Yarwood G 2001 Environmental Final Report 31984-11 235 
[33] Awan N K, Gobiet A and Truhetz H 2011 Journal of Climate 24 3107-3123  
[34] Holtslag A A M et at 2013 Bulletin of American Meteorological Society 94(11) 1671-1706 
 
 


