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Abstract: A universal pharmacokinetic model was developed from pooled paediatric and adult data 

(40.6 postmenstrual weeks, 70.8 years, 3.1–152 kg). A three-compartment pharmacokinetic model 

with first-order elimination was superior to a two-compartment model to describe these pooled 

dexmedetomidine data. Population parameter estimates (population parameter variability%) were 

clearance (CL) 0.9 L/min/70 kg (36); intercompartmental clearances (Q2) 1.68 L/min/70 kg (63); Q3 

0.62 L/min/70 kg (90); volume of distribution in the central compartment (V1) 25.2 L/70 kg (103.9); 

rapidly equilibrating peripheral compartment (V2) 34.4 L/70 kg (41.8); slow equilibrating peripheral 

compartment (V3) 65.4 L/70 kg (62). Obesity was best described by fat-free mass for clearances and 

normal fat mass for volumes with a factor for fat mass (FfatV) of 0.293. Models describing 

dexmedetomidine pharmacokinetics in adults can be applied to children by accounting for size 

(allometry) and age (maturation). This universal dexmedetomidine model is applicable to a broad 

range of ages and weights: neonates through to obese adults. Lean body weight is a better size 

descriptor for dexmedetomidine clearance than total body weight. This parameter set could be 

programmed into target-controlled infusion pumps for use in a broad population. 

Keywords: anaesthesia; intravenous; dexmedetomidine; children; obesity; total intravenous 

anaesthesia (TIVA); target-controlled infusion; pharmacokinetics; pharmacodynamics 

 

1. Introduction 

Total intravenous anaesthesia (TIVA) has been widely practiced in adult anaesthesia since the 

introduction of propofol into routine clinical practice in 1982. Use of TIVA has expanded from drug 

delivery rates (mass infusion rates) that require frequent manual changes by the clinician to maintain 

the target concentration. Target-controlled infusion (TCI or “smart”) pumps produce a user-defined 

drug concentration in either the plasma (Cp) or at the effect site of action (Ce) [1]. 

Drug delivery is determined by known pharmacokinetic (PK) parameter sets (e.g., population 

clearance (CL) and volume (V) estimates) that are programmed into these target-controlled pumps. 

Adult parameter sets are published for propofol [2,3], remifentanil [4], sufentanil [5], alfentanil [6], 

dexmedetomidine [7], and ketamine [8]. Parameter sets for children have also been published for 

propofol [9,10], remifentanil [11], and dexmedetomidine [12]. However, propofol currently remains 

the only drug available for children in many TCI pumps. Due to this scarcity of paediatric PK models 

in commercially available TCI pumps, adult PK parameters (e.g., those described by Minto et al. for 

remifentanil [4]) continue to be used in TCI pumps for children, despite both V and CL (expressed as 

mL/min/kg) decreasing with increasing age [11,13]. 
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PK models that encompass a wide range of patient groups (e.g., children, adults and the obese) 

have been reported for propofol [14] and remifentanil [15]. These newer models use allometric theory, 

maturation concepts and consider fat mass in their description as “universal” models. One of the 

greatest advantages of these models is simplification of the administration of TCI by allowing a single 

model to be able to administer the drug in widely different groups of patients. Dexmedetomidine PK 

have been described in divergent groups of patients and conditions (e.g., healthy volunteers [7], 

children [12], normal weight and obese adult patients [16,17]). No universal model has been derived 

for its administration in TCI. 

Dexmedetomidine PK have also been described in children using allometric scaling [18,19]. If an 

adult dexmedetomidine PK model that was scaled for size using allometry was applicable to children 

older than 1 year, then it should be possible to construct a universal dexmedetomidine PK model 

using pooled data applicable to children and adults [20]. This model should also be applicable to 

obese adults by considering the nonlinear relationship between fat mass and dexmedetomidine 

clearance [21]. 

2. Methods 

2.1. Data Sources 

Data for development of the universal model were sought from five previously published 

studies of dexmedetomidine PK. 

1. Hannivoort Model: Hannivoort and colleagues [7] recruited 18 (9 male and 9 female) individuals 

18–72 years old with BMI scores between 18 and 30 kg/m2. Dexmedetomidine was delivered 

using the Dyck model [22] targeting concentrations of 1, 2, 3, 4, 6, and 8 ng/mL after an initial 

infusion of 6 µg/kg/h for 10 s. Each step was maintained for 30 min. Blood samples for 

dexmedetomidine assay were obtained at 2 minutes after the initial drug infusion, before each 

increase in target concentration and at 2, 5, 10, 20, 60, and 120 min after the drug infusion 

stopped. A large local database [23] was used to sample 18 individuals representative of the 

demographics in the Hannivoort population. Simulated predicted concentrations in these 18 

individuals given 2 mcg/kg loading dose over 10 min followed by infusion 1 mcg/kg for 2 h were 

used to develop the universal model. 

2. Potts Model: Potts and colleagues [12] recruited 45 children (22 males and 23 females) after 

cardiac surgery. Dexmedetomidine was administered (1–4 µg/kg) over 10 min. Three to four 

blood samples were obtained in the first 30 min after infusion. Samples were obtained at 1–2, 3–

4, and 6–10 h thereafter. These data were pooled with two other PK studies (n = 34) of 

dexmedetomidine [24,25]. These studies are summarised in Supplementary Materials Table S1. 

3. Cortinez Model: Cortinez and colleagues [16] recruited 20 obese (BMI >35 kg/m2) and 20 non-

obese individuals (BMI 18.5–30 kg/m2, 18–60 years old), undergoing elective laparoscopic 

surgery. Dexmedetomidine 0.5 µg/kg was given to all participants for 10 min. Subsequently, 

participants were randomised to two infusion regimens: 0.25 or 0.5 µg/kg/h. Doses were based 

on total body weight (TBW). Blood samples were obtained at 2, 5, 10, 15, 20, 30, 45, 60, 90, and 

120 min during dexmedetomidine infusion and at 0, 2, 5, 10, 20, 30, 60, 90, 120, 240, and 360 min 

after the infusion was stopped. 

4. Rolle Model: This study enrolled 40 adults (age 18 to 60 years, weights 47 to 126 kg, BMI 18–49 

kg/m2) scheduled for abdominal laparoscopic surgery [17]. Dexmedetomidine bolus of 0.5 

mcg/kg over 10 min was followed by an infusion of 0.5 mcg/kg/h. Venous blood samples were 

drawn at 0, 5, 10, 20, 30, 45, 60 min after the start of dexmedetomidine administration and 

thereafter every 30 min during anaesthesia maintenance. Once dexmedetomidine infusion was 

stopped at the end of surgery, samples were drawn at the end of dexmedetomidine infusion, 

and then 5, 10, 20, 30, 60, 90, 120, 240, 360 min, with a last sample between 720 and 1200 min. 

5. Talke Model: Talke and colleagues recruited 10 healthy individuals (21–36 years old and 52–89 

kg) [26]. Dexmedetomidine 4 µg/mL was administered for 15 min to target a plasma 
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concentration of 0.3 ng/ml. Blood samples were obtained at 1, 2, 3, 4, 5, 7.5, 10, and 15 min during 

drug infusion and 15, 30, and 60 min after the end of the infusion. 

2.2. Hannivoort Model Performance in Children Older Than 1 Year 

The adult PK model described by Hannivoort and colleagues [7] was used to simulate 

dexmedetomidine concentrations in the paediatric population at each time point where there was a 

concentration measurement in the data from Potts et al. [19] The predictive performance of this adult 

model was assessed using methods proposed by Sheiner and Beal [27]. The prediction error (pe) was 

calculated according to Equation (1). 

pe = �Cp-Co� (1) 

where C0 is the observed concentration and Cp is the concentration predicted by the adult model. 

Precision was evaluated using the root mean squared prediction error (rmse) (Equation (2)). 

mse = 
1

N
� pe

i 
2; rmse

N

i=1

= √mse (2) 

The mean prediction error was used to calculate bias (Equation (3)). 

me = 
1

N
� pe

i 

N

i=1

 (3) 

2.3. Pooled Data Analysis 

These five datasets (Hannivoort [7], Potts [19], Cortinez [28], Rolle [17], Talke [26]) were pooled 

to investigate the effects of size, age, and fat mass on descriptive PK and to construct a universal 

model applicable to infants, children, and adults including the obese. 

2.3.1. Pharmacokinetic Analyses 

Two and three-compartment PK models with first order elimination were used to describe 

dexmedetomidine PK. These models were parameterised in terms of CL, V, and intercompartmental 

clearance (Q). Allometric theory described the relationship between size, structure, and function and 

was used to quantify size-related changes in PK parameters [29]. PK parameters (e.g., CL, Q, V) were 

standardised to an adult measure of body size (size) with a standard weight of 70 kg using allometric 

scaling (Equation (4)) [30–32]. 

Fsize = �
size

70
�

EXP

 (4) 

CL = CLSTD × Fsize (5) 

where Fsize is a variable describing the fractional difference from a standard adult value and EXP is 

the allometric exponent, ¾ for functional processes such as clearance and 1 for volumes. Equation (5) 

shows how Fsize can be used to scale a standard value of CL (CLSTD) to predict the value in a given 

individual. 

Population parameter estimates were obtained using nonlinear mixed effects models 

(NONMEM 7.4 ICON Development Solutions, USA) with first-order conditional estimation and a 

convergence criterion set to 3 significant digits. 

Population parameter variability (PPV) was accounted for using an exponential model for the 

random effect variables (η). This assumes a log-normal distribution and avoids parameter estimates 

falling below biologically plausible values. Variables were assumed to have a mean of zero and 

variance denoted by ω2 (Equation (6)). 

Pi = PTV e
ηi (6) 
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where P is the parameter (e.g., CL) for the ith individual, PTV is the typical value for that parameter, 

and η is the random effects variable. 

Residual unidentified variability (RUV) was modelled using both proportional and additive 

residual errors (Equation (7)). The between subject variability (ηRUV,i) of the RUV was also estimated 

for both PK and PD data. The population mean parameters, between subject variance and residual 

variance, were estimated using the first-order conditional interaction estimate method using 

ADVAN13 TOL=9 of NONMEM. Convergence criterion was 3 significant digits. 

SDij = ���Obs
ij
.θ

RUV_CV�
2

+ (θ
RUV_SD

)2�.eηPPVRUV i  (7) 

where Obsij is the dexmedetomidine plasma concentration in the ith individual at the jth time. 

Individual predictions of dexmedetomidine concentration were calculated using Equation (8) with 

the random effects (�) fixed to 1. 

Y= Obsij  +  SDij ·ε (8) 

2.3.2. Covariate Analysis for Age and Size 

The influence of body composition on the PK parameters CL and V were investigated using total 

body mass (kg), fat-free mass (FFM, kg), and normal fat mass (NFM, kg). Measurements of FFM were 

available in the Cortinez and Rolle data [16,17] and were determined using dual X-ray 

absorptiometry. FFM was not available for the pooled paediatric data. Predictive equations 

(Equations (9) and (10)) derived by Al-Sallami and colleagues [33]) were used to calculate FFM in this 

population. 

FFM(males) = 

⎣
⎢
⎢
⎢
⎡

0.88 + 

⎝

⎜
⎛ (1-0.88)

�1 + �
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13.4�

-12.7

�
⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 × �
�9270 × Weight�

6680 + (216 × BMI)
� (9) 

FFM(females) = 

⎣
⎢
⎢
⎢
⎡

1.11 + 

⎝

⎜
⎛ (1-1.11)

�1 + �
Age
7.1 �

-1.1

�
⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

 × �
�9270 × Weight�

8780 + (244 × BMI)
� (10) 

For the adult data sourced from Talke [26], FFM was predicted using Equations (11) and (12). [34]. 

FFM(adult males) = �
�9270 × Weight�

6680 + (216 × BMI)
� (11) 

FFM(adult females) = �
�9270 × Weight�

8780 + (244 × BMI)
� (12) 

Normal fat mass (NFM) is a size descriptor based on allometric theory describing contributions 

from fat mass and FFM. NFM is FFM plus a component of fat mass, Equation (13), which can be 

described using the parameter Ffat; see [21].The effect of FFM on CL and V was assessed by fixing 

FFAT to zero (i.e., considering the effect of FFM alone). 

FAT = TBW - FFM (13) 

NFM = FFM + Ffat × FAT (14) 

Allometric body mass can be determined using a standard value for NFM known as NFMSTD. 

The standardised value for NFM can be defined using a FFM of 56.1 kg, expected for a male with a 

TBM of 70 kg and height of 1.76 m. Theory-based allometric scaling can be used to compare CL values 

for a child in terms of a standardised NFM value, most widely expressed for a 70 kg individual, with 

the allometric exponent of ¾. This is shown in Equation (15). 
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CLChild = CLSTD × �
NFMChild

NFMSTD
�

3 4⁄

    (15) 

The effects of size and body composition on drug PK can be predicted using NFM, allometric 

theory, and separation of body mass into its fat and fat-free components [35]. 

The maturation of dexmedetomidine CL was described using a maturation function (Equation 16) 

MF = 
PMAHill

TM50
Hill + PMAHill 

 (16) 

where MF is the maturation factor, PMA is postmenstrual age in weeks, TM50 is the maturation half-

time, and the Hill exponent relates to the steepness of the maturation profile [31]. 

2.3.3. Model Selection 

The minimum value of the objective function (OBJ (−2log-likelihood (−2LL))) provided by 

NONMEM served as a guide during model building. Model selection was also based on parameter 

plausibility and prediction-corrected visual predictive check (PC-VPC) plots [36]. For two nested 

models, a decrease in the minimum value of the objective function (ΔOBJ) of 3.84 points for an added 

parameter was considered significant at the 0.05 level. Shrinkage considers the quality of the observed 

data. The term η-shrinkage refers to the between subject variability. When the observed data are 

informative, η-shrinkage approaches zero, and when the data are less informative, it approaches 1. 

Bootstrap methods provided a means to evaluate parameter uncertainty [37]. A total of 1000 

bootstrap replications were used to estimate parameter means and confidence intervals. Results from 

the population models are presented as parameter estimates, together with their 95%CI. Between 

subject parameter variability is expressed as an apparent coefficient of variation obtained from the 

square root of the variance estimate (CV (%)). 

2.4. Model Simulation 

A dexmedetomidine plasma concentration > 0.6 mcg/L is estimated to produce adequate 

sedation in adult ICU patients [38]. A target of 1 mcg/L has been estimated for those adults and 

children out of the intensive care environment [39,40]. Since dexmedetomidine is commonly used at 

fixed infusion rates, we have simulated dexmedetomidine maintenance dose (mcg/kg/h) in a 

representative group of patients to achieve a target concentration of 1 mcg/L. Simulations were 

performed using typical values as estimates of volumes and clearances with the PKPD Tools software 

(freely available at http://pkpdtools.com/). 

3. Results 

The Hannivoort model [7], when used to predict dexmedetomidine concentrations in the 

paediatric cohort, had a precision of 22% and bias of 3.3%. The observed/predicted dexmedetomidine 

ratios for the Hannivoort model when used to predict concentrations in the population sourced from 

Potts are shown in Supplementary Materials Figure S1. An observed/predicted ratio of 1 would 

suggest that the model predictions are identical to observed concentrations. The PC-VPC shown in 

Figure 1 demonstrated that the Hannivoort three-compartment model [7] predicts concentrations 

observed by Potts et al. [19]. 
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Figure 1. Prediction-corrected visual predictive check (PC-VPC) for dexmedetomidine 

pharmacokinetics using the model by Hannivoort [7] with observed dexmedetomidine plasma 

concentrations sought from Potts [19]. Plots show median (solid) and 90% intervals (dashed lines). 

The left-hand plot shows all prediction-corrected observed dexmedetomidine concentrations. Right-

hand plot shows prediction-corrected percentiles (10%, 50%, and 90%) for observations (grey dashed 

lines) and predictions (red dashed lines) with 95% confidence intervals for prediction percentiles 

(median, pink shading; 5th and 95th blue shading). 

Parameter estimates for the pooled data analysis determining the “universal” model are shown 

in Table 1. 

Table 1. Dexmedetomidine population pharmacokinetic parameter estimates for the final universal 

model. Parameter estimates and population variability displayed as medians determined from 1000 

bootstrap estimates. 

Parameter Estimate PPV (%) 95% CI Sh% 

V1 (L/70 kg) 25.2 103.9 20.9, 31.3 16.4 

V2 (L/70kg) 34.4 41.8 24.3, 44.2 15.5 

V3 (L/70 kg) 65.4 61.6 53.4, 74.5 8.4 

CL (L/min/70 kg) 0.897 35.8 0.81, 1.02 4.1 

Q2 (L/min/70kg) 1.68 63.2 1.22, 1.97 12.5 

Q3 (L/min/70 kg) 0.62 89.7 0.45, 0.83 21.4 

FFATV 0.293 - 0.13, 0.55 - 

FFATCL 0 FIX - - - 

TM50 52.4 - 43.5, 68.8 - 

Hill 1 FIX - - - 

Additive Residual Error (µg/mL) 0.004 ηRUV 0.32 -  

Proportional Residual Error (%) 0.19 - 0.18, 0.20  

Volume of distribution: V; clearance: CL; intercompartmental clearance: Q; TM50: maturation halftime; 

Hill: exponent describing the steepness of the maturation profile. FFATV: factor on fat for volume; 

FFATCL: factor on fat for clearance. Residual unidentified variability: RUV; population parameter 

variability: PPV%. Sh% = shrinkage. Size is accounted for using theory-based allometric scaling to a 

70 kg individual with the allometric exponents of ¾ for CL and 1 for V. PPV% = √��������. 

There were 202 individuals with 2145 dexmedetomidine concentrations that were amenable for 

modelling in the pooled dexmedetomidine PK analysis. Violin plots illustrate the distribution of 

covariates in this pooled population (Figure 2). 
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Figure 2. Violin plot showing the distribution of age (years), fat-free mass (kg), weight (kg), and height 

(cm) in the pooled dexmedetomidine data used to develop the universal PK model. A box and 

whisker plot overlays the violins in blue. 

The three-compartment PK model proved superior to the two-compartment model for the 

pooled dexmedetomidine analysis (ΔOBJ 285.2). Use of allometric scaling was better than per 

kilogram scaling (ΔOBJ 25.331). Addition of maturation function for clearance further improved the 

model (ΔOBJ 20.058). The best model incorporated allometric scaling of CL and V with the changes 

in CL due to age accounted for with a maturation function. FFM proved to be a better PK size 

descriptor for clearance than TBW (ΔOBJ 40.9). Fat mass had an effect on volume (FfatV = 0.293). The 

PC-VPC for the universal dexmedetomidine model is shown in Figure 3. The maturation of 

dexmedetomidine CL is shown in Figure 4 when scaled using FFM and in Supplementary Figure S2 

when scaled using TBW. The slope of this maturation function, defined by the Hill exponent, was 

initially estimated as 1.15 (95%CI 0.79, 1.90). Fixing this parameter to unity resulted in a minimal objective 

function increase (ΔOBJ 2.1) and no change in model performance. 

 

Figure 3. Prediction-corrected visual predictive check (PC-VPC) for the universal dexmedetomidine 

PK model. Model developed using pooled paediatric [19] and adult [16,26] dexmedetomidine 

plasma concentrations. Plots show median (solid) and 90% intervals (dashed lines). The left-hand plot 

shows all prediction-corrected observed dexmedetomidine concentrations. Right-hand plot shows 

prediction-corrected percentiles (10%, 50%, and 90%) for observations (grey dashed lines) and 

predictions (red dashed lines) with 95% confidence intervals for prediction percentiles (median, pink 

shading; 5th and 95th blue shading). 
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Figure 4. Maturation of dexmedetomidine clearance when scaled using fat-free mass, determined 

from pooled published data. 

The ratio of the between subject variability (BSV) predictable from covariates (BSVP) to the total 

population parameter variability obtained without covariate analysis (PPVt) gives an indication 

about how important covariate information is (Table 2). BSVR is the random BSV estimated on a 

parameter when covariate analysis is included. The ratio of 0.867 achieved for clearance in this current 

study indicates that 86.7% of the overall variability in clearance is predictable from covariate 

information; most is attributable to allometric scaling (83.8%). The use of FFM for size had minor 

impact on clearance between subject variability (1.5%). The use of TBW, expressed as per kilogram 

(or using allometry with an exponent of 1), contributed only 32% of central volume of distribution 

between subject variability, but 82% on V2 between subject variability. 

Table 2. Effect of covariate analysis on variance (2). Impact of each covariate on CL when added 

sequentially to the model. 

Sequential Nested Model PPVt2 BSVR2 BSVP2 BSVP2/PPVt2 

Clearance  

no covariates 0.861 * 0.861 * 0 0 

TBW with allometric scaling (EXP = 3/4) 0.861 * 0.140 0.721 0.838 

TBW with PMA on CL 0.861 * 0.136 0.725 0.842 

FFM with PMA on CL 0.861 * 0.114 0.747 0.867 

Central compartment (V1)   

no covariates 1.5 * 1.5* 0 0 

TBW allometric scaling (EXP = 1) 1.5 * 1.02 0.48 0.320 

Peripheral compartment (V2)  

no covariates 1.46 * 1.46* 0 0 

TBW allometric scaling (EXP = 1) 1.46 * 0.25 1.209 0.823 

* = assumed from no covariate model estimate. PPVt is the total population variability,; BSVR is the 

random BSV estimated on a parameter when covariate analysis is included; BSVP is the population 

between subject variability; TBW is total body weight; PMA is postmenstrual age; FFM is fat free 

mass. 

Dexmedetomidine maintenance infusion rates that maintain a simulated plasma concentration 

of 1 mcg/L are shown in Figure 5 and Table 3. 
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Figure 5. Simulated per kilo (TBW) dexmedetomidine maintenance infusion rates to maintain plasma 

concentration of 1 mcg/L. Infusion rates are affected by the effects of maturation and size in metabolic 

clearance. Clearance in term neonates is 42% of adult values, reaching 80% by 3 years of age. 

Allometric relationships between size and clearance explain the decrease in infusion rates 

(mcg/kg/min) in patients older than 3 years. 

Table 3. Dexmedetomidine maintenance infusion rates, determined using simulation, that maintain 

plasma concentration of 1 mcg/L. The loading dose was given over 30 min and the maintenance 

infusion scheme was designed to maintain dexmedetomidine a plasma concentration of 1 mcg/L. 

Age Weight (kg) Height (cm) Clearance (L/min) Loading Dose (mcg/kg) Maintenance (mcg/kg/h) 

Term neonate 3.6 50 0.05 0.40 0.77 

3 months 6 62 0.08 0.38 0.80 

6 months 7.8 67 0.11 0.37 0.81 

1 year 10 75 0.15 0.37 0.88 

3 years 14 95 0.25 0.40 1.04 

6 years 21 115 0.36 0.39 1.02 

12 years 40 149 0.60 0.35 0.90 

20 years 70 175 0.87 0.31 0.75 

Infusion rates are affected by the effects of maturation and size on metabolic clearance. Clearance 

in term neonates is 42% of adult values, reaching 80% by 3 years of age. Allometric relationships 

between size and clearance explain the decrease in infusion rates (mcg/kg/min) in patients older than 

3 years. 

4. Discussion 

Size and age were the two main covariates to describe variability in the dexmedetomidine data. 

We have derived a universal population PK model for dexmedetomidine that is applicable to both 

children and adults with a wide range of weights. We have shown that an adult model describing 

dexmedetomidine PK is adequate for use in children out of infancy, justifying the use of allometric 

theory. Size changes between individuals were explained by normal growth and the impact of 

obesity. The influence of size on dexmedetomidine PK was investigated with different scalars (TBW, 

FFM, NFM) using allometry. FFM is a measure that closely approximates lean body weight (LBW). 

FFM was a better size descriptor than TBW for clearance, consistent with other reports that have 

demonstrated LBW to be a suitable size descriptor to scale doses in obese patients [17]. In addition 

NFM, a scalar that allows adding a fraction of fat mass to FFM, was the most suitable size descriptor 

to describe dexmedetomidine changes in volumes of distribution. 

Dexmedetomidine is metabolised in the liver by UGT1A4 and UGT2B10, aliphatic hydroxylation 

(CYP 2A6), and N–methylation (CYP2D6) [41]. There appears to be no evidence that 

dexmedetomidine interferes with the clearance of other medications that are substrates for CYP2D6 
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metabolism [42]. Dexmedetomidine is 93% protein-bound in children [24,41]. Most clinical PK studies 

of dexmedetomidine have been modelled using a two-compartment model. The rich data obtained 

in development of the Hannivoort model [7] made best use of a three-compartment model. 

Dexmedetomidine PK using pooled data were also better described with a three-compartment 

disposition model. 

The clearance estimate of 0.9 (90% CI 0.81, 1.02) L/min/70kg using FFM as a scaler (56.1 kg, 

expected for a male with a TBM of 70 kg and height of 1.76 m) was consistent with that from 

Hannivoort for adults (41.16 L/h/70kg) [7] and Potts for children (42.1 95% CI 38.7, 45.8 L/h/70 kg; 0.7 

L/min/70kg) [19]. The central compartment volume (V1) estimated in the Hannivoort study in healthy 

adults was small (1.78 L/70 kg), possibly due to the target concentration administration method and 

early blood sampling for assay [7]. Dexmedetomidine PK has been studied in adults, with similar 

three-compartment structural models yielding central volumes larger than 8 L [43–47]. A pooled 

study [19] in children obtained a V1 estimate of 56.3 L/70 kg, consistent with similar studies 

conducted in neonates, infants, and children [19,48–51]. Some of these data were sourced from 

children in intensive care, but estimates were similar to children out of intensive care and to adult 

intensive care patients. The central volume estimate for the current pooled analysis of 25.2 L/70 kg 

(CV% 104%; 95% CI 20.9, 31.3) is a more realistic value for a diverse population of patients than that 

reported by Hannivoort of 1.78 L/70 kg for healthy adults. 

Haemodynamic changes induced by dexmedetomidine can produce peripheral vasoconstriction 

and reflex bradycardia, with a consequent reduction of V1. Dexmedetomidine produces a biphasic 

haemodynamic response [18], with hypotension at low plasma concentrations and hypertension at 

higher plasma concentrations. Hypertension predominates at the concentrations above 2.0 ng/ml that 

were frequently observed in the Hannivoort study. While vasoconstriction may contribute to the 

small V1 observed in the aforementioned study [7], a more important consideration is the 

haemodynamic instability induced by rapid infusion. It is for this reason that loading dose was 

estimated using simulated infusion over 30 min. Clearance is the main determinant of infusion rate. 

Consequently, infusion rates are affected by maturation and size. Clearance in term neonates is 42% 

of adult values, reaching 80% by 3 years of age. Allometric relationships between size and clearance 

explain the decrease in infusion rates (mcg/kg/min) in patients older than 3 years. Most enzyme 

systems responsible for metabolic dexmedetomidine clearance (e.g., glucuronidation (UGT 2B10, 

UGT1A4)) and by the cytochrome P450 (CYP 2A6) system [52]) are immature at birth and mature 

within the first few years of life. Consequently, drug CL is reduced at birth, but by the age of 1–2 

years, it is greater than that observed in older children and adolescents (when expressed as per 

kilogram per unit of time). 

We investigated the effect of body composition on dexmedetomidine PK using the distinction 

between fat and FFM. Measurements of FFM were only available from the Rolle [17] and Cortinez 

[28] data; FFM was predicted for all other individuals. There is unaccounted variability associated 

with these predictions, often attributed to the population characteristics and reference FFM measure 

by which the predictive formulae are derived. Estimates based on those proposed by Al-Sallami [33] 

are based on a population of children 3–11 years old and have not been validated in children under 

3 years, an inconsistency also currently common to remifentanil universal models. 

Supplementary Materials: The following are available online at www.mdpi.com/2077-0383/9/11/3480/s1, Table S1: 

Study characteristics from the pooled paediatric data used to develop the original dexmedetomidine Potts PK 

model. Data represent count or mean (range). Table adapted from Potts [19]. Figure S1: Time profiles of the 

observed/predicted ratios of dexmedetomidine plasma concentrations determined using the model by Hannivoort 

et al. [7]. Observed data were sourced from Potts 2009 [19]. Each blue line represents a single participant. The 

broken grey lines demonstrate the acceptable range of dexmedetomidine observed/predicted ratios. The solid black 

line represents optimal predictive performance of the model (i.e., identical observed and predicted values). The red 

line demonstrates the median observed/predicted ratio and was determined with a loess smoothing function. 

Figure S2: Maturation of dexmedetomidine clearance when scaled using total body weight. 
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