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ABSTRACT Mild traumatic brain injury (mTBI) is a significant issue worldwide. Public awareness of the
dangers of mTBI has increased sharply in recent years, yet there is no easy-to-use tool available for early
detection and post injurymanagement. Computational models of the head impact, usually in the form of finite
element analysis, are a method of choice for characterizing how mechanical impacts lead to brain damage
by causing high strains in certain regions of the brain. However, those models require a prohibitively large
amount of computational power as well as pre and post processing expertise, making them unrealistic to be
used in clinical settings. In this study, we propose a framework that combines finite element analysis with
a machine learning based approach where a large number of pre-computed FE results are used to train a
statistical model. We analyzed a number of different head impact scenarios in which a football player would
sustain a minor brain injury and computed brain internal strain patterns. These pre-computed strain patterns
were then used to train a partial least squares regression model to be able to predict the general strain pattern
and the location and magnitude of peak strains. Our models were able to predict the overall distribution
pattern, including the location of the peak strain, with an average error of 3%. The peak strain magnitudes
were also predicted accurately with the average error of 9% at almost real time speed (less than 10 seconds).
This model may play an important role in developing a diagnostic tool for mTBI that can predict the severity
of head impacts.

INDEX TERMS Diffusion tensor imaging, finite element analysis, magnetic resonance imaging, mild
traumatic brain injury, partial least squares regression.

I. INTRODUCTION
Traumatic brain injury (TBI) is a growing health and socio-
economical problem, and yet its mechanism is still poorly
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understood. Proper management of TBI is essential to avoid
short-term and long-term risks ranging from brain haemor-
rhage to dementia. Proper quantification of the mechanism
by which energy from head impacts is transferred onto the
brain and its tissues, is critical for understanding mechanisms
of TBI and developing effective diagnostic and treatment
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options. One of the best and probably the only way of inves-
tigating such mechanical energy transfer process is to use
in silico models that can recapitulate the actual dynamic
loading environments of head impacts. In silico numerical
models have been in use since the 1970s by approximating the
brain and head as a fluid filled spherical shell [1]. Since then
models have been refined significantly to include important
anatomical and mechanical details in order to improve their
ability to mimic the tissue’s response to mechanical loading
events. A large number of high resolution finite element mod-
els of the brain exist in the literature that contain viscoelas-
tic/hyperelastic material behaviours and internal geometries
of the main anatomical substructures including the falces and
ventricles [2]–[10]. Current state-of-the-art brain models can
provide rich information on tissue deformation patterns after
the input of the head impact data that are often obtained
from wearable head sensors that measure angular and linear
accelerations of the head during an impact.

A major drawback with such advancements and refine-
ments in numerical models is that most require extremely
high computational power. The early models of brain trauma
had thousands of elements [3], [11], which has now increased
to the order of millions [12], in order to scale for the MR
voxel resolution. Such high computational cost is one of the
major obstacles for computational models of head impacts to
be used most commonly in clinical settings. Despite advance-
ments in high performance computing, high fidelity finite
element models can only be applied to small and limited
subject numbers. However, to make an actual impact, one
needs to translate computational tools to medical applications
and large-scale visualisation. One possible way forward is to
use population-based models [13], [14]. This is done by using
large sets of pre-computed or measured data to train a model
using machine learning or multivariate regression models.
This concept has been demonstrated in multiple applications
such as development of a surrogate knee model for predicting
joint contact force [15], human femur cortical shell thickness
predictions [16], shape prediction of the lower limb from a
few sparse landmarks [17] and real time prediction of internal
strain patterns in the human Achilles tendon during various
activities [18]. In this article, we describe how this approach
can be applied to the simulation of mild TBI (mTBI) as
a result of a direct impact to the head, using high fidelity
finite element computations customized using anatomical
and structural parameters derived on a subject-specific basis.

II. METHOD
The overall workflow of our framework that combines FE
analysis with statistical modelling for more efficient predic-
tion of brain deformation pattern in TBI is described in Fig 1.
Our framework is made up of two major steps – 1) subject-
specific FE analysis of mTBI cases to predict brain defor-
mation patterns after the head impact; 2) statistical model
training with the results from FE analysis for rapid prediction
of brain deformation patterns.

FIGURE 1. Overall framework that combines subject-specific FE analysis
with a machine learning based statistical model training method for rapid
prediction of brain damage pattern after TBI.

The FE modelling involves subject-specific analysis of
brain deformation after mTBI. This generates spatial map of
strain, which is the input to our statistical model training.
Once trained, our statistical model will predict the spatial map
of strain after mTBI given the spatial location and velocity of
the impact only (Fig 1).

A. SUBJECT-SPECIFIC FE ANALYSIS OF THE BRAIN WITH
EMBEDDED WHITE MATTER FIBRE TRACTS
A subject-specific finite element model of the human brain
was generated from magnetic resonance imaging (MRI) data
of our previous research [19] where a longitudinal study with
male Canadian football players was performed to measure
the changes in brain structure measured with MRI. Briefly,
MRI data (T1 high resolution anatomical image and diffu-
sion tensor imaging (DTI)) from football players (all male,
average age = 20.3 ±1.4) was acquired longitudinally over
the course of the season at three time points – 1) prior to
the pre-season training camp within 2 months before the first
contact practice (‘‘PRE’’); 2) post training following 14-day
training camp and the first two games of the season (‘‘PTC’’);
3) post season (‘‘POST’’). We used one subject’s MRI at the
PRE time point – T1 imaging for the geometry extraction and
DTI for the white matter fibre tract information to generate a
subject-specific FE model.

The generic human brain model was obtained from the
International Union of Physiological Sciences (IUPS) Phys-
iome project [20], [21] (Fig 2). The Physiome brain model
contains the scalp, skull and the brain. We then extended this
to include major compartments of the brain – the cerebrum,
cerebellum and the brainstem.

This generic FE model of the human brain and skull were
fitted to match the geometry of the subject from T1 MRI
images. This was necessary as the generic mesh came from
the Visible Human dataset [22] and had a different brain
shape and size from the subject’s brain. We used a least
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FIGURE 2. The brain and skull model used in this study. The major
structures such as cerebrum, cerebellum and brain stems are
differentiated using the material mapping method as described in the
text.

squares fitting algorithm that we developed, which morphed
the generic model to match the subject-specific geometry
from MRI [20]. The contact between the brain and the skull
was modelled using a frictional contact with friction coeffi-
cient of 0.2 [23].

The brain tissue was modelled as an anisotropic mate-
rial. Especially, the white matter fibre tract orientation plays
an important role as it influences the pattern of deforma-
tion along the major fibre direction [24]. This structural
feature was incorporated using an orthogonal curvilinear
material coordinate system (see Figure 3). Specifically, a ref-
erence material coordinate system that is both curvilinear and
orthogonal was defined using the finite element coordinate
system. Then the structure-based material coordinate system
which is aligned to the white matter fibre tract direction from
DTI results was defined. The initial FE reference material
coordinate systemwas rotated using three sequential rotations
(Cardan sequence from Euler angle) that align the reference
FE coordinate system to the final DTI based material coor-
dinate system. Since DTI vectors were available for every
voxel, the Euler angles that align the reference coordinate to
the final material coordinate were computed at each and every
voxel. These Euler angles were then fitted as a finite element
field (a node based interpolation field) as described in [25].
The fitted fibre field was used to inform the deformation of
the brain. We have used this method to describe deformation
patterns of various fibre based tissue structures such as carti-
lage [26], skin [27] and tendon [28] in our previous studies.

FIGURE 3. Embedding the white matter fibre orientation to the FE model
using the microstructurally based coordinate system.

In terms of material properties, we adopted an anisotropic
hyperelastic constitutive relation that accounts for the
anisotropy and nonlinear behavior of the brain tissue due to
the white matter axonal fibres [29]. Here, the strain energy

function has two terms that represent ground substancematrix
with embedded white matter fibre tracts.

W = F1 (I1)+ F2(λ) (1)

where I1 is the first invariant of the right Cauchy stretch tensor
and λ is the stretch ratio along the local fibre direction. The
function F1 describes the behaviour of the ground substance
matrix and F2 represents the behaviour of collagen fibers.
The ground substance was described with the neo-Hookean
material model.

F1 =
C1

2
(I1 − 3)+

C2

2
(I2 − 3) (2)

The strain energy of the white matter fibers was rep-
resented as a piecewise function that characterized their
non-linear stress/strain behaviour using the following [30],

λ
∂F2
∂λ
= 0, for 0 ≤ λ < 1,

λ
∂F2

∂λ
= C3

[
eC4(λ−1) − 1

]
, for 1 ≤ λ (3)

The parameter values C1, ∼ C4, were obtained from
Champagne et al. [19] and given below (Table 1).

TABLE 1. Material coefficients for the white matter fibre tracts included
in the model.

Other major tissues in the brain were modelled separately,
which included the dura matter, falx and scalp. The subarach-
noid space, which is located between the arachnoid and pia
membranes and is occupied by cerebrospinal fluid (CSF) was
also modelled. These materials were separately incorporated
into the model using our automatic material property assign-
ment algorithm that maps different regions in the MRI to the
different elements in the FE model [31]. This method estab-
lishes mapping between the imagingmodality fromwhich the
FEmodel was developed and by checking the location of each
Gauss points within the MR imaging coordinate system, it
automatically assigns the correct material value from theMRI
to the model. This method allowed us to have different tissue
types within our model by assigning different material values
to different Gauss points. The material values used for these
tissues were obtained from the literature as shown in Table 2.

Regarding the boundary condition, we used the
dynamic contact mechanics algorithm developed by
Champagne et al. [19], which allowed us to model TBI
by impacting the head with an impactor as described in
Zhang et al. [7]. We simulated both frontal and occipital
impacts. In those two impact situations, the axis of the
impactor was aligned with the mid-sagittal plane in the
anterior-posterior direction. The rigid impactor was defined
to have an initial velocity of 6.33m/sec. This loading condi-
tion closely mimics a typical head impact scenario in which a
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TABLE 2. Material coefficients for other brain materials included in the
model.

football player would sustain a minor brain injury [35], [36].
Since the impact duration was very short (∼15ms), a free
boundary condition was used at the head/neck junction.
We simulated both frontal and occipital impacts.

All FE simulations were performed with the open-source
based computational framework developed as a part
of the IUPS project. (http://physiomeproject.org/software/
opencmiss).

Since we have used hyperelastic material descriptions to
model the brain, we used the final strain value at the end
of the simulation as the peak strain in that impact scenario.
These results from 20 different impact scenarios were input
to the statistical model training as described in the following
section.

B. STATISTICAL MODEL TRAINING
We trained a Partial Least Squares Regression (PLSR) model
by using the data obtained from FEA simulations of 20 dif-
ferent brain impact scenarios. For this study, the goal is to
demonstrate the efficacy of our framework for one player’s
geometry. Hence only special location of the impact and
impact velocities are required as the geometry is the same
for all simulations. Specifically, we used 10 different impact
velocities up to 6.33m/sec and 2 different impact locations
(frontal, occipital).

PLSR is a linear regression model that predicts response
variables from predictor variables [37]. The two fundamen-
tal equations in PLSR are the predictor matrix (X ) and the
response matrix (Y ) given by

Xnm = TnlPTml + E, (4)

and

Ynp = UnlQTpl + F, (5)

where T and U are the projection matrices (also known as
scores), and P and Q are the transposed orthogonal loading
matrices (where the rows are created from eigenvectors or
principal components), and E and F are the error terms.
X and Y are estimated using linear regression through

Y = XB̃+ B̃o, (6)

where B̃ is the least squares regression estimate and B̃o is the
prediction error.

In our study, the predictor variables are the initial velocity
and the impact location. The response variables are the stress
and strain within the brain. The accuracy of model prediction
was tested by doing a ‘leave-one-out’ analysis where one
simulation from 20 was left out of the PLSR model and
predicted independently, and then repeated for each scenario.
Specifically, the root mean squares (RMS) errors between
PLSR predictions and FEmodel predictions were determined
by comparing the strain values from PLSR and FE models
at every Gauss point within the model. We report maximum
error magnitudes and locations as well as the RMS errors.

Statistical model training was done with the PLSR
plugins from the Python SciPy (www.scipy.org) and scikit-
learn (machine learning) modules and these methods are
encapsulated in the Musculoskeletal Atlas Project, an open
source toolkit for musculoskeletal model development
(https://simtk.org/projects/map).

III. RESULTS
The principal strain pattern predicted by our model under
different frontal and occipital impact scenarios all display
heterogeneous distribution patterns, indicating that brain
structures play an important role in strain distribution
(Figures 4 & 5). In both frontal and occipital loading cases,
the location of impact played an important role as the initial
high strain was developed around the impact area – the frontal
lobe for the frontal impact (Figure 4) and the occipital lobe
for the occipital lobe (Figure 5). However, the subsequent
strain transfer pattern followed the internal tissue structure
closely as can be seen for both impact cases, especially in the
coronal view of Figures 4 & 5. In particular, some areas in
the brain consistently developed higher strains than others.
These are most prominent in the regions of the white matter
fibre tract patterns, especially the corpus callosum region as
well as the sulcal region, which is in agreement with previous
studies [3], [5], [38]–[42]. The magnitude of impact velocity
also played an important role as the peak strain increased
alongwith the increase in the impact velocity (Figures 4 & 5).

FIGURE 4. FE simulation of principal strain for frontal impact at various
impact velocities. The sagittal view shows that the initial strain is
developed along the location of the impact (frontal lobe). The coronal
view reveals that the white matter fibre tracts, especially around the
corpus callosum area are highly strained (bottom row).

179460 VOLUME 8, 2020



V. B. Shim et al.: Rapid Prediction of Brain Injury Pattern in mTBI by Combining FE Analysis With a Machine-Learning Based Approach

FIGURE 5. FE simulation of principal strain for occipital impact at various
impact velocities. The sagittal view shows that the initial strain is
developed along the location of the impact (occipital lobe). The coronal
view reveals that the white matter fibre tracts, especially around the
corpus callosum area are highly strained (bottom row).

Our PLSR trained model was able to predict the general
principal strain distribution patterns as well as the location
and magnitude of peak strains as can be seen in Figure 6.
Qualitative comparisons of both frontal and sagittal plane
views of the results in Figure 6 shows that the PLSR trained
model was able to capture the overall strain distribution pat-
tern including the locations of the peak strains very closely.

FIGURE 6. Comparison of FE simulated strain pattern and PLSR predicted
strain pattern. General agreements can be seen both in the location and
magnitude of maximum strains.

These results were compared more quantitatively. We used
two different measures to estimate the accuracy of our PLSR
model prediction. First is the average error, which was cal-
culated by computing the difference between FE and PLSR
results in all Gauss points in the models. The second measure
was employed to see how well the PLSR model predict the
magnitude of the maximum strain, an important measure for
damage criteria in brain injuries. This was done by comparing
the maximum strain values from the FE and PLSR results for
all simulations performed. The results are shown in Figure 7.
As can be seen, the average error between the PLSR and
FE models were around 3%. When only the maximum strain
magnitudes are compared, the average error between PLSR
and FEmodels were between 7-9%, indicating that our PLSR
prediction captures both the overall strain distribution pattern
and the peak strains magnitude and locations well.

IV. DISCUSSIONS
In this study, we have shown that pre-computing FE sim-
ulations of head impacts during TBI can be used to train

FIGURE 7. Comparison of average error between FE results and PLSR
predictions as well as the comparison of maximum strain prediction.

machine learning based models, which then can serve as
a surrogate model for rapid prediction of brain damage
patterns after TBI. Specifically, we used the partial least
squares regression (PLSR) method, which captures the pre-
computed FE simulation results into a statistical look-up
table. This is then used to map the FE simulation results
to a surrogate model, which predicted the final strain dis-
tribution pattern with just a few parameters. In our case,
we used the impact locations and impact velocity to predict
the final strain distribution. And with these two parameters,
we were able to predict the final strain distribution pattern,
including the location of maximum strain, with the average
accuracy of 3%. In terms of the magnitude of maximum
strain prediction, the PLSRmodel prediction was within 10%
of the actual maximum strain magnitude from the FE
results.

Finite element analysis of the mechanical response of the
brain during impact has been a popular choice of the method
in traumatic brain injury research. Dozens of FE models have
been developed in the past that used a variety of different
types of elements, constitutive relationships, loading condi-
tions [43]. The unique feature of our brain model against
those available in the literature is that it is a structurally based
model that incorporated white matter fibre directions directly
into the model. Others have also recognized the importance
of white matter fibre direction in brain deformation patterns
and implemented the anisotropy due to the white matter fibre
distribution using fractional anisotropy values in their con-
stitutive relationships [24], [44]. Our approach differs from
the previous work in that we incorporated the white matter
fibre orientation as an embedded feature of the FEmesh using
the microstructure based coordinate system. This allowed us
to perform anisotropic FE analysis more efficiently. Another
novel feature of our model is the use of our automatic material
property mapping algorithm [31]. This allowed us to have a
direct correspondence between numerical integration points
within elements (called Gauss points) and every voxel in the
MRI images, which led to the location dependent material
property assignment to our model. Therefore, rather than
having separate element groups for different structures in
the brain, we used a holistic approach where the material
properties were assigned to Gauss points according to its
location within the brain – for example, Gauss points that
fall into the falx/tentorium region of the brain are assigned
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with the falx/tentorium material properties. This means that
we can expand the material types depending on the availabil-
ity of the material descriptions for different regions of the
brain.

Our FE predictions show general agreements with the
results reported in the literature from other mTBI studies.
When comparing the results from McAllister et al[42], who
reported strain distributions from 10 male football athletes
with mTBI, our results match very well both quantitatively
and qualitatively. Their mTBI results showed that the peak
maximumprincipal strain occur in the corpus callosum region
as in our predictions. The magnitude of the peak strain values
reported by McAllister and colleagues also matched with
our predictions, indicating a general agreement between our
results and theirs. One major difference is the high level of
strain that we predicted in the sulcal regions in the brain
(Figures 4 & 5), which is not shown in the strain plots from
McAllister and colleagues. However, the high strain in the
sulcal region from our study is supported by another mTBI
study by Ghajari et al. [5] who reported distinct patterns of
high sulcal strains from their models of mTBI of American
football players. Although our strain level is lower than what
they predicted (0.2∼0.3 vs 0.4∼0.6), the peak strains in
the sulcal region from their models qualitatively match the
predictions from ours. This can be attributed to the modelling
approach that emphasized the folding in the brain. Ghajari
and colleagues explicitly modelled the major sulci and gyri
of the brain. We have implicitly modelled the folded structure
of the brain by using the material coordinate system which
followed the direction of white matter fibre tracts, thereby
creating the distinction between white and grey matters in the
brain. This resulted in the high sulcal strains that are not seen
in the models without this feature such as McAlister et al.
Therefore, the predictions from our model match qual-
itatively with other similar mTBI cases reported in the
literature.

The major contribution of our study is the incorporation
of a machine learning based algorithm into our framework
to enable rapid prediction of brain damage patterns. One of
the biggest challenges in the management of mTBI is the
lack of objective diagnostic tools. There has been a rapid
growth both in terms of public awareness as well as com-
mercial market size in concussion related diagnostic projects.
However, there is still no diagnostic product that can measure
the severity of mTBI in a way that offers prognostic infor-
mation about the short and long-term outcomes. A sophis-
ticated computational head injury model can estimate brain
strain distribution, hence the possible damage patterns with
a good degree of accuracy. But this simply takes too long
(typically requiring hours on high-end workstations) to be
used in a clinically meaningful way. We provide a solu-
tion to this problem by pre-computing various head impact
scenarios with sophisticated FE models first and then use
these results to train machine-learning based models for
a rapid prediction of brain strain distribution. Specifically,
we use a statistical model training based on PLSR method

which was able to predict the maximum strain locations and
magnitude with an accuracy of 95% and computational time
of less than 10 seconds. This will be a good candidate for
developing an objective diagnostic tool for brain concussion
that incorporate maximum peak strain as a marker for brain
damage.

While our PLSRmodel predicted the maximum strain with
a sufficient accuracy, there are a number of limitations in
our studies. First, we used hyperelastic material descriptions
in our model. The method of choice for head impact FE
simulation is to use hyper-viscoelastic material descriptions
to incorporate time dependent material property changes after
the impact. Since we have used only hyperelastic material
descriptions, our model is limited to analyzing the strain
behavior right after the impact and will not be suitable for
quantifying damage patterns any time after that initial impact
duration. However, this was good enough for our application
as we are mainly interested in the maximum peak strain
amplitude and locations as a damage marker. Yet, future
studies will include viscoelastic material descriptions to have
the time dependent strain profile as a damage marker for both
chronic as well as acute injuries to the brain. Another lim-
itation is the relatively small number of training simulations
used in our PLSRmethod. In particular, we used the geometry
from one subject only, which limited our training variables
to be impact locations and velocities. More simulations may
be required for different impact type and velocities as well
as geometries. Furthermore, we used the FE simulations as
the gold standard to train and test our results, thus the model
predictions need to be interpreted with this in mind. However,
the strain values and locations predicted by our FE model are
in agreement with previously reported values as discussed
above, which gives us confidence in our results. Moreover,
we have conducted a thorough animal study with our sheep
model where we impacted the sheep brain and analyzed the
damage pattern by harvesting the brain damage data and
performing immunohistochemistry analysis [45]. This will
provide the ultimate testing dataset that can be used to train
and validate our model. This result will be reported in our
future publications.

In conclusion, we have developed a novel framework that
combined FE simulations with a machine learning based
approach that allowed us to rapidly predict brain defor-
mation patterns with a sufficient accuracy. This framework
may play an important role as a diagnostic tool for mild
TBI.
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New Zealand, to establish Mātai, with the goal of making a difference
to lives in her community. She has successfully translated a variety of
her MRI methodologies to clinical practice through her streamlined image
reconstruction methods, leading to better detection of brain disorders and
disease. She is a Pioneer of fast, high-resolutionMRImethods, and amplified
MRI (a new method of visualising brain motion). Her key research interests
include application of novel imaging technologies for the early detection of
concussion/mild traumatic brain injury (mTBI) and obstructive disorders of
the brain.

ALLEN A. CHAMPAGNE received the B.S. and
B.A. degrees in biology and exercise and sport
science from the University of North Carolina
at Chapel Hill, Chapel Hill, NC, USA, and the
Ph.D. degree in 2019. He is currently pursuing the
M.D. degree with Queen’s University, Kingston,
ON, Canada. He is a former American Football
Student-Athlete and Morehead-Cain Scholar from
the University of North Carolina at Chapel Hill.
His research interests include integrating novel

neuroimaging modalities, helmet accelerometers, film analysis, computer
models of head impacts, and motion capture to characterize the effects of
head trauma on brain health, while uncovering the relationship between
impact biomechanics and sport-specific mechanisms of injury in athletes.

NICOLE S. COVERDALE received the B.S. and
M.S. degrees from Brock University, in 2007 and
2010, respectively, and the Ph.D. degree in inte-
grative physiology of exercise from Western Uni-
versity, London, ON, Canada, in 2015. She is
currently a Postdoctoral Fellow with the Cen-
tre for Neuroscience Studies, Queen’s University,
Kingston, ON, Canada. She is also the Director
of scientific operations at Performance Phenomics
Inc., Toronto, ON, Canada.

DOUGLAS J. COOK received the M.D., Ph.D.,
and Residency degrees from the University of
Toronto, ON, Canada. He is currently an Associate
Professor of neurosurgery with the Department of
Surgery and a member of the Centre for Neu-
roscience Studies, Queen’s University, Kingston,
ON, Canada. He undertook fellowship training at
Stanford University, CA, USA, in cerebrovascular
and skull base surgery. His research program is
primarily concerned with understanding the dis-

ruption of network dynamics and physiology following neurological injury
and in the process of recovery. His Laboratory utilizes non-human primate
models of stroke and human models of traumatic brain injury. Multimodality
MRImarkers of physiology, network connectivity, and structural integrity are
integrated to provide a complete assessment of brain health and focal deficits.
His Laboratory has multiple industry, academic, and military collaborations
related to stroke and TBI therapy. The laboratory is funded through multiple
grants, including CFI, CIHR, NSERC, CHRP, OCE, OBI, Brain Canada, and
NIH.

TAE-RIN LEE received the B.S. and M.S. degrees
in mechanical engineering and the Ph.D. degree in
nano engineering from SungkyunkwanUniversity.
He did his Postdoctoral studies at Northwestern
University and The Methodist Hospital Research
Institute. He is currently the Director of the Wear-
able and Healthcare Convergence Laboratory,
Advanced Institute of Convergence Technology,
Seoul National University.

ALAN D. WANG is currently an Associate
Professor with TheUniversity of Auckland. He has
more than ten years of research experience in
radiology informatics and integrated medicine,
especially in advancing the role of medical infor-
matics in health care. His research interests include
medical imaging informatics, computational life
science, and biomedical statistics and simula-
tion. He has developed computational methods for
mobile health, tissue segmentation, lesion detec-

tion, function localization, multi-modal data visualization, and personalized
prognosis based on statistical learning theories. He has experience in analyz-
ing huge cohorts of patient data with applications of early diagnosis, disease
understanding, and effective treatment of patients with degenerative diseases.
He serves as an Editorial Board Member and an Active Reviewer for several
international journals.

179464 VOLUME 8, 2020



V. B. Shim et al.: Rapid Prediction of Brain Injury Pattern in mTBI by Combining FE Analysis With a Machine-Learning Based Approach

SHAOFAN LI received the Ph.D. degree in
mechanical engineering from Northwestern Uni-
versity, in 1997. He is currently a Professor with
the Department of Civil and Environmental Engi-
neering, UC Berkeley. He was a recipient of
numerous awards, including the United States
Association of Computational Mechanics Fellows
Award in 2008, the Distinguished Fellow Award
of ICCES in 2014, and the International Associa-
tion for Computational Mechanics Fellow Award

in 2017. He is the Editor-in-Chief of CMES–Computer Modeling in Engi-
neering and Science and the Journal of Micromechanics and Molecular
Physics.

JUSTIN W. FERNANDEZ received the Bachelor
of Engineering degree (Hons.) in engineering sci-
ence in 1999 and the Ph.D. degree in bioengineer-
ing from The University of Auckland, in 2004.
He is currently an Associate Professor with the
Department of Engineering Science and the Auck-
land Bioengineering Institute, The University of
Auckland. From 2005 to 2010, he completed an
ARC Postdoctoral Fellowship in mechanical engi-
neering with Melbourne University and was a

Research Scientist with CSIRO, Monash University. He is also a Principal
Investigator with the Musculoskeletal Modelling Group, where he leads
research into computational biomechanics, orthopaedics, sports science, and
forensics. His work integrates gait analysis, wearable sensors, large popu-
lation data, statistical models, and computational mechanics. His research
interest includes clinician engagement.

VOLUME 8, 2020 179465


