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a b s t r a c t 

This dataset consists of video files that were created to test 

the accuracy of background segmentation algorithms con- 

tained in the C ++ wrapper ‘BGSLibrary’ v3.0.0 developed by 

Andrews Sobral. The comparison is based on segmentation 

accuracy of the algorithms on a series of indoor color-depth 

video clips of a single person’s head and upper body, each 

highlighting a common factor that can influence the accu- 

racy of foreground-background segmentation. The algorithms 

are run on the color image data, while the ‘ground truth’ is 

semi-automatically extracted from the depth data. The cam- 

era chosen for capturing the videos features paired color- 

depth image sensors, with the color sensor having specifi- 

cations typical of mobile devices and webcams, which cover 

most of the use cases for these algorithms. The factors cho- 

sen for testing are derived from a literature review accom- 

panying the dataset as being able to influence the efficacy 

of background segmentation. The assessment criteria for the 

results were set based on the requirements of common use 

cases such as gamecasting and mobile communications to al- 

low the readers to make their own judgements on the merits 

of each algorithm for their own purposes. 
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pecifications Table 

Subject Computer Science - Computer Vision and Pattern Recognition 

Specific subject area Foreground-background segmentation of the head and upper body. 

Type of data Table Figures Video clips 

How data were acquired Intel RealSense Depth Camera D435 featuring a global shutter, large color 

pixels of 3 um square, and a depth sensor using disparity mapping from stereo 

infra-red cameras. Custom acquisition software found at GitHub repository 

https://github.com/scloke/SegTest . Testing was performed on a system using 

Microsoft Windows 10 with a four-core Intel Xeon E3 processor running at 

3.5 GHz using Visual Basic and Visual C ++ 2019 in a 64-bit address space with 

32 GB RAM allocated and an NVIDIA GeForce GTX 1060 6GB graphics card 

installed. Image processing was done using the libraries in EmguCV 3.2.0 and 

Accord.Net 3.8.0. The system speed was rated at 475 million floating points per 

second (MFLOPS) using the Intel processor diagnostic tool 2.10, 64-bit version. 

Data format Raw Analyzed 

Parameters for data collection The following camera settings were used: structured light projector on, 

autofocus enabled, autoexposure disabled, automatic white balancing disabled, 

backlight compensation disabled, and powerline frequency compensation 

disabled. Capture resolution was 640 × 480 pixels at 30 frames per second 

(fps) for color data and 90 fps for depth data, with the depth data processed 

using temporal and spatial smoothing with hole-filling to reduce artefacts. 

Synthetic paired color and depth frames were motion interpolated from the 

source frames to generate video clips without any inter-frames. The clips were 

then saved to Audio Video Interleave (AVI) files using FFMPEG, with 

dimensions of 640 × 480 pixels at 30 fps. Color clips were encoded using the 

lossy MPEG-4 Part 2 codec at a bit rate of 4 megabit per second (Mbps) except 

for the noise clips which were encoded at 12 Mbps to preserve the noise 

artefacts. The clips were captured at night under controlled bidirectional 

diagonal and side lighting with Philips Hue White & Color Ambiance bulbs set 

to the ‘Energize’ preset with a color temperature of 6410 K, calculated from the 

Mired Color Temperature supplied by the Philips Hue Software Development 

Kit. The camera was placed 120 cm in front of either a plain green screen 

(standard), a cream-colored screen (camouflage), or with the screen removed 

(complex), having the subject standing 60 cm in front of the screen, with no 

intervening objects. This resulted in a foreground area that was consistently 

about half the total background size, which is sufficiently balanced to not 

distort the measures of segmentation efficacy, and yet not too big which 

would prevent the face detection routine from working properly. 

Description of data collection One of the chosen factors listed in Table 2 was then applied. All clips were 

40 s long with the first 10 s showing just the background. The subject entered 

the scene at the 10 s mark and stood in the center of the frame while keeping 

a neutral expression, with the face and upper body fully visible. The 

comparison period was set to all frames between the 20 and 40 s mark 

inclusive. The brightness for all clips was normalized by applying the 

appropriate constant gamma correction to keep the average pixel brightness 

throughout the clip at 50% of the maximum brightness. For lighting change 

factors, the lighting conditions were altered mid-way through the comparison 

period. For the ‘Ghost Images’ clip, the comparison period was set to one 

second after the transition. This is because most algorithms for detection and 

removal of moving objects, ghosts, and shadows operate in less than a second. 

The comparison period for the ‘Sleeping Foreground’ clip was set to 10 s after 

the transition to allow enough time for the object to be incorporated into the 

background model. In clips where a subject was present, the face location was 

determined using libfacedetection by Shiqi Yu, and a seed point and depth 

obtained from the center of the bounding rectangle. The ‘ground truth’ 

( continued on next page )

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/scloke/SegTest
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foreground was then extracted from a floating range flood fill starting at the 

seed point, with a maximum difference of 2 cm between adjacent pixels. Since 

the depth data from disparity mapping is coarse and lacks edge accuracy, an 

automated GrabCut algorithm was used to refine the edges of the foreground. 

The ‘ground truth’ clips were verified by visually inspecting at 4 fps, and 

adjustments were made with manual GrabCut assistance where the areas of 

inaccuracy exceeded 5% of the foreground ( Fig. 1 ). For clips without a subject, 

the depth data was ignored and the ‘ground truth’ foreground was set to zero. 

The segmentation foreground was obtained by processing the color data using 

the appropriate ‘BGSLibrary’ algorithm with default settings, except for the 

‘GMG’ and ‘GMM KaewTraKulPong’ routines which require an earlier version of 

OpenCV. To speed up processing, the segmentation routines were run in four 

isolated parallel threads in ‘release’ mode. The ‘ground truth’ and segmentation 

clips were saved to AVI files encoded with the lossless FFV1 codec. 

Data source location Institution: University of Auckland City/Town/Region: Auckland Country: New 

Zealand Latitude and longitude (and GPS coordinates, if possible) for collected 

samples/data: −36.86, 174.77 

Data accessibility With the article (Figures and Tables) Repository name: Mendeley Data Data 

identification number: 10.17632/yw5k28z97d.1 Direct URL to data: 

http://dx.doi.org/10.17632/yw5k28z97d.1 (Video clips) 

Value of the Data 

• While there have been many routines developed for foreground-background portrait segmen-

tation, evaluation of these routines is usually done with video clips under standard condi-

tions. Little is known about their performance under some of the factors which affect seg-

mentation efficacy. 

• This data will be useful to researchers who are developing and testing algorithms for portrait

segmentation. 

• Color and ‘ground truth’ video clips are available for each of the factors described. A new

algorithm can be tested by applying it to the color video clip and generating the segmented

video. This can then be compared against the ‘ground truth’ to obtain any of the metrices of

segmentation efficacy. 

• Alternatively, the custom software available at https://github.com/scloke/SegTest can be 

adapted to run the efficacy test automatically, capture new clips, and generate corresponding

‘ground truth’ clips. 

• The custom software also contains C ++ headers which can be used to directly interface

OpenCV image structures with the algorithms in BGSLibrary’. 

1. Data Description 

Background segmentation is the process whereby an object of interest in the foreground of

an image, often a person, is separated from the background. Typical applications are news and

weather casting, game livestreaming, video conferencing and chat software, photo augmentation

(Snapchat filters and beauty apps), and technical help desks [1] . 

Accurate segmentation is quite difficult to achieve, and the method of choice depends on the

application and the factors governing the process. In this article, the term ‘factor’ is defined as a

characteristic of a particular use case that will influence the efficacy of foreground-background

segmentation of an algorithm. 

The data consists of a comparison of background segmentation algorithms contained in the

C ++ wrapper ‘BGSLibrary’ v3.0.0 developed by Andrews Sobral [ 2 , 3 ]. The comparison is based

on segmentation efficacy and speed of the algorithms when applied on a series of indoor color-

depth video clips of a single person’s head and upper body, each highlighting a common factor

as determined from the literature review [4] . The algorithms are run on the color image data,

http://dx.doi.org/10.17632/yw5k28z97d.1
https://github.com/scloke/SegTest
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Fig. 1. Manual GrabCut correction of raw ’ground truth’ images. 

Note: The raw ‘ground truth’ image on the left shows a filling defect on the right hairline and an incorrectly segmented 

part of the desk adjacent to the left shoulder. The colored polygons manually mark out areas for the GrabCut algorithm 

to correct, being region of interest (orange), true foreground (white), and true background (black). 
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hile the ‘ground truth’ is semi-automatically extracted from the depth data. The purpose of

his article is to provide a reference resource for those who are developing applications that

equire background segmentation of the head and upper body. 

Fig. 1 demonstrates the process whereby the automatic extraction of ‘ground truth’ images

s corrected after inspection of the video frames at 4 fps with changes made using a manual

rabCut process. In previous segmentation datasets, the ‘ground truth’ was extracted manually

ith teams of data processors hand-drawing boundaries between domains [5] . This was not

easible for the present dataset given the thousands of individual frames for the video clips, so

 semi-automated process was used to refine the raw ‘ground truth’ images obtained from the

epth camera. 

Fig. 2 shows a representative frame at the mid-point of the analysis period from videos after

egmentation with some of the BGSLibrary algorithms under standard conditions, with median

1 scores shown. This is so that visual inspection can pick up large areas of over and under-

egmentation, and whether these areas are well demarcated from the main head and body

egment. From these we can see that only the GMM Zivkovic and KDE algorithms have well-

efined outlines with only small areas that have been misclassified, thus establishing the cut-

ff for good segmentation at an F1 score of 0.95 and higher. Similarly, the Eigenbackground,

daptive-Selective Background Learning, and Adaptive SOM routines gave recognizable outlines

or the head and upper body, with misclassified areas that are clearly separated from the main

egion. Hence, this establishes the cutoff for adequate segmentation at an F1 score of 0.80–0.95.

Table 1 shows a classification scheme for segmentation methods based on the approach used,

hich was derived from a new systematic literature review [4] . Table 2 lists the factors which af-

ect segmentation efficacy that were obtained from the same review. The folders and files in the

ata repository were named using the labels in the second table. While there is a rich literature

ource for segmentation methods, and some of these articles provide good in-class comparisons

ith related routines, there is a need for an updated and comprehensive cross-class review for

his topic, the last of which was published more than five years ago [ 3 , 6–9 ]. 

Table 3 and Table 4 give the summary results for efficacy and processing time respectively for

ach of the algorithms under the conditions listed in Table 2 . The efficacy results are calculated

rame-by-frame and the results listed consist of the median value with a 10–90th percentile

ange. Processing time is given as the average for all frames during the assessment period. 

Table 5 gives a qualitative assessment of each routine’s performance according to a set of

riteria. This table allows routines to be chosen based on the requirements for a particular use

ase. It is expected that most readers would utilize this table when evaluating the merits of each

outine, with the previous two tables included for reference if further details are needed. 
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Fig. 2. Comparison of segmentation results with the ’ground truth’ for the clip taken under standard conditions at the 

15 s mark, showing median F1 scores ( Table 3 ). 

 

 

 

 

 

 

 

 

 

1.1. Video clips 

The video clips in the Mendeley Data repository are organized into folders with names ac-

cording to the labels in Table 2 . The individual clips are named according to the segmentation

methods listed in Table 1 . Tables 3 and 4 give the segmentation efficacy and processing time for

each method, with one of the factors applied. Table 5 gives an assessment of the segmentation

algorithms according to a set of criteria. 

The ‘ground truth’ video clips were saved to AVI files encoded with the lossless FFV1 codec

so that the individual frames can be extracted for analysis. These files can be viewed using VLC

media player (cross-platform), Media Player Classic (Windows 10), or any player which can use

the FFV1 video codec. 

2. Experimental Design, Materials and Methods 

2.1. Common factors affecting segmentation efficacy 

There are several common factors which affect indoor segmentation efficacy: 1) image noise,

2) camera jitter and movement, 3) automatic camera settings, 4) illumination and shadows, 5)



6 S.C. Loke, B.A. MacDonald and M. Parsons et al. / Data in Brief 33 (2020) 106385 

Table 1 

Classification of foreground-background segmentation methods for the head and upper body. 

Non-Temporal 

Histogram Thresholding 

Cluster-Based 

Region-Based 

Deep Learning 

Graph-Cut 

Active Contours 

Depth Maps 

Temporal 

Complex recursive 

Single Gaussian 

Distributions 

Gaussian Average Simple 

Gaussian 

Gaussian 

Mixture Models 

GMM Stauffer GMM 

KaewTraKulPong GMM Zivkovic 

1 GMM Zivkovic 2 GMM 

Bender 

Non-Parametric GMG VuMeter KDE IMBS KNN 

Background Subtractor 

SuBSENSE Pixel-Based Adaptive 

Segmenter ViBe Codebook 

PAWCS 

Histogram 

Density 

Estimates 

Texture BGS Multi-Layer BGS 

Spatial 

Correlates 

Texture-Based Foreground 

Detection with MRF MultiCue 

BGS LOBSTER Eigenbackground 

SL-PCA 

Fuzzy 

Integration 

Fuzzy Sugeno Integral Fuzzy 

Choquet Integral Fuzzy 

Gaussian Type-2 Fuzzy 

GMM-UM Type-2 Fuzzy 

GMM-UV Type-2 Fuzzy 

GMM-UM with MRF Type-2 

Fuzzy GMM-UV with MRF 

Self-Organizing 

Neural 

Adaptive SOM Fuzzy Adaptive 

SOM 

Simple recursive Weighted Moving Mean 

Weighted Moving Variance 

Adaptive Background Learning 

Adaptive-Selective Background 

Learning Temporal Mean 

Adaptive Median Temporal 

Median Sigma Delta 

Non-recursive Static Frame Difference Frame 

Difference 

Note: The list of segmentation methods is taken from the C ++ wrapper ‘BGSLibrary’ v3.0.0 by Andrews Sobral [ 2 , 3 ]. 

Some methods fall into more than one class or utilize a hybrid approach. In these cases, the class listed best describes 

the novelty of the approach. This library contains only temporal segmentation methods since it is designed to process 

video sequences. 

b  

d

2

 

p  
ackground initialization, 6) color camouflage, and 7) ghost images, sleeping foregrounds, and

ynamic backgrounds [10–12] . 

.2. Algorithm comparison 

This experiment was carried out to assess the suitability of the algorithms in the C ++ wrap-

er ‘BGSLibrary’ v3.0.0 developed by Andrews Sobral for head segmentation, given that it is a
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Table 2 

Simulated factors and modifications to the capture and processing conditions. 

Factor Clips Labels Capture and Processing Conditions 

None 1 STD • Standard capture conditions 

Gaussian Noise 4 GAU10 

GAU20 

GAU30 

GAU40 

• Gaussian noise added independently to each color channel with a 

mean of zero, standard deviation of 10, 20, 30, 40, and pixel values 

clipped to between 0 and 255 

Uniform Noise 4 UNI05 

UNI10 

UNI15 

UNI20 

• Uniform noise added independently to each color channel, 

distributed uniformly between 0 and 255, and replacing the value 

with a probability of 5%, 10%, 15%, and 20% 

Camera Jitter 1 JIT • Jitter simulated by periodically vibrating the supporting tripod 

with a soft mallet 

Illumination 2 GLO 

LOC 

• Global illumination changes by brightening lights 

• Local illumination changes by turning half the lights on one side 

off

Shadows 1 SHA • Half the lights on one side were turned off throughout the clip 

Background Initialization 2 INI00 

INI02 

• Zero initialization was simulated by trimming the clip to show the 

subject at the start 

• Short initialization was simulated by trimming the first portion of 

the clip to show 2 s of clear background 

Color Camouflage 2 CAMSM 

CAMCX 

• Cream-colored screen used for simple camouflage 

• No screen used, and background shows a house interior in daylight 

Ghost Images 1 GHO • Patterned cloth is layered over part of the background at the start, 

and dropped at the 10 s mark 

• No subject is present, and the depth data is ignored 

• Comparison period begins one second after the patterned cloth 

completely leaves the image 

Sleeping Foreground 1 SLP • Patterned cloth is lowered to cover part of the background at the 

10 s mark 

• No subject is present, and the depth data is ignored 

• Comparison period begins 10 s after the patterned cloth is lowered 

Dynamic Background 1 DYN 

• A stand fan is placed in front of the background and turned on 

• No subject is present, and the depth data is ignored 

• Comparison period begins 10 s after the clip starts 

∗ Where the depth data is ignored, the comparison period starts one second after the transition for the factor or 10 s 

after the clip starts where no transition occurs. 

Note: These factors were chosen based on the literature review. 

 

 

 

 

 

 

 

mature library that has been continually updated over the past eight years and now includes

over 40 routines [ 2 , 3 ]. 

The camera chosen for this features paired color-depth image sensors, with the color sensor

having specifications typical of mobile devices and webcams, which cover most of the use cases

for these algorithms. The factors chosen for testing are derived from the literature review as

being able to influence the efficacy of background segmentation. The assessment criteria for

the results were set based on the requirements of common use cases such as gamecasting and

mobile communications to allow the readers to make their own judgements on the merits of

each algorithm for their own purposes. 
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Table 3 

Efficacy of segmentation algorithms from the ‘BGSLibrary’ under specific factors as F1 scores or false positive rates. 

F1 Score False Positive Rate Each cell gives efficacy as:10th 

CentileMedian90th Centile STD GAU10 GAU20 GAU30 GAU40 UNI05 UNI10 UNI15 UNI20 JIT GLO LOC SHA INI00 INI02 CAMSM CAMCX GHO SLP DYN 

Frame Difference 0.0 0 0 

0.002 

0.027 

0.593 

0.603 

0.634 

0.593 

0.603 

0.634 

0.592 

0.603 

0.634 

0.593 

0.603 

0.633 

0.113 

0.125 

0.175 

0.119 

0.128 

0.168 

0.119 

0.128 

0.169 

0.114 

0.125 

0.175 

0.0 0 0 

0.008 

0.105 

0.0 0 0 

0.0 0 0 

0.018 

0.0 0 0 

0.0 0 0 

0.113 

0.0 0 0 

0.0 0 0 

0.118 

0.0 0 0 

0.001 

0.003 

0.0 0 0 

0.001 

0.004 

0.0 0 0 

0.002 

0.214 

0.0 0 0 

0.001 

0.127 

0.001 

0.002 

0.002 

0.0 0 0 

0.0 0 0 

0.004 

0.0 0 0 

0.0 0 0 

0.001 

Static Frame Difference 0.862 

0.881 

0.900 

0.832 

0.848 

0.863 

0.838 

0.852 

0.871 

0.833 

0.849 

0.865 

0.839 

0.850 

0.867 

0.792 

0.808 

0.822 

0.795 

0.809 

0.823 

0.796 

0.810 

0.825 

0.797 

0.812 

0.826 

0.822 

0.861 

0.884 

0.477 

0.801 

0.809 

0.476 

0.932 

0.944 

0.758 

0.800 

0.809 

0.254 

0.285 

0.371 

0.869 

0.879 

0.892 

0.601 

0.664 

0.674 

0.473 

0.485 

0.488 

0.452 

0.453 

0.455 

0.424 

0.432 

0.433 

0.002 

0.008 

0.012 

Weighted Moving Mean 0.0 0 0 

0.0 0 0 

0.014 

0.463 

0.470 

0.494 

0.464 

0.471 

0.493 

0.463 

0.471 

0.495 

0.464 

0.471 

0.494 

0.028 

0.031 

0.046 

0.028 

0.032 

0.047 

0.028 

0.031 

0.048 

0.028 

0.031 

0.047 

0.0 0 0 

0.002 

0.058 

0.0 0 0 

0.0 0 0 

0.002 

0.0 0 0 

0.0 0 0 

0.070 

0.0 0 0 

0.0 0 0 

0.069 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.0 0 0 

0.135 

0.0 0 0 

0.0 0 0 

0.085 

0.001 

0.002 

0.003 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Weighted Moving Variance 0.0 0 0 

0.0 0 0 

0.019 

0.564 

0.572 

0.582 

0.565 

0.572 

0.582 

0.565 

0.572 

0.582 

0.565 

0.572 

0.582 

0.040 

0.045 

0.066 

0.042 

0.045 

0.067 

0.042 

0.045 

0.069 

0.040 

0.044 

0.067 

0.0 0 0 

0.004 

0.073 

0.0 0 0 

0.0 0 0 

0.002 

0.0 0 0 

0.0 0 0 

0.120 

0.0 0 0 

0.0 0 0 

0.109 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.001 

0.182 

0.0 0 0 

0.0 0 0 

0.108 

0.001 

0.002 

0.003 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.0 0 0 

0.0 0 0 

GMM Zivkovic 1 0.0 0 0 

0.003 

0.042 

0.518 

0.548 

0.620 

0.518 

0.548 

0.621 

0.518 

0.548 

0.620 

0.518 

0.547 

0.621 

0.041 

0.048 

0.092 

0.042 

0.048 

0.090 

0.042 

0.048 

0.085 

0.042 

0.048 

0.092 

0.001 

0.005 

0.090 

0.0 0 0 

0.001 

0.039 

0.0 0 0 

0.002 

0.152 

0.0 0 0 

0.002 

0.119 

0.0 0 0 

0.002 

0.006 

0.0 0 0 

0.002 

0.006 

0.001 

0.004 

0.204 

0.0 0 0 

0.003 

0.115 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.0 0 0 

0.009 

0.0 0 0 

0.0 0 0 

0.001 

Adaptive Background Learning 0.018 

0.045 

0.792 

0.598 

0.613 

0.773 

0.598 

0.613 

0.776 

0.599 

0.613 

0.777 

0.599 

0.613 

0.777 

0.085 

0.114 

0.741 

0.086 

0.115 

0.744 

0.087 

0.115 

0.742 

0.086 

0.114 

0.743 

0.023 

0.066 

0.750 

0.0 0 0 

0.007 

0.659 

0.007 

0.035 

0.772 

0.008 

0.074 

0.764 

0.014 

0.027 

0.055 

0.016 

0.032 

0.060 

0.018 

0.059 

0.710 

0.014 

0.040 

0.701 

0.003 

0.003 

0.004 

0.0 0 0 

0.004 

0.092 

0.001 

0.001 

0.002 

Adaptive-Selective Background 

Learning 

0.888 

0.903 

0.924 

0.883 

0.898 

0.916 

0.884 

0.899 

0.917 

0.882 

0.898 

0.917 

0.883 

0.900 

0.917 

0.875 

0.896 

0.919 

0.876 

0.896 

0.920 

0.876 

0.896 

0.921 

0.877 

0.896 

0.920 

0.852 

0.871 

0.907 

0.470 

0.755 

0.787 

0.516 

0.878 

0.907 

0.859 

0.879 

0.907 

0.057 

0.071 

0.100 

0.883 

0.893 

0.899 

0.768 

0.807 

0.844 

0.616 

0.619 

0.641 

0.439 

0.440 

0.442 

0.403 

0.409 

0.415 

0.0 0 0 

0.001 

0.001 

KNN Background Subtractor 0.0 0 0 

0.002 

0.021 

0.561 

0.576 

0.631 

0.561 

0.576 

0.628 

0.561 

0.576 

0.631 

0.561 

0.576 

0.630 

0.031 

0.037 

0.077 

0.032 

0.038 

0.077 

0.032 

0.038 

0.075 

0.032 

0.037 

0.076 

0.0 0 0 

0.004 

0.077 

0.0 0 0 

0.0 0 0 

0.022 

0.0 0 0 

0.0 0 0 

0.047 

0.0 0 0 

0.001 

0.072 

0.0 0 0 

0.001 

0.003 

0.0 0 0 

0.001 

0.003 

0.0 0 0 

0.001 

0.128 

0.0 0 0 

0.001 

0.093 

0.0 0 0 

0.001 

0.001 

0.0 0 0 

0.0 0 0 

0.004 

0.0 0 0 

0.0 0 0 

0.001 

Adaptive Median 0.593 

0.743 

0.835 

0.464 

0.634 

0.773 

0.464 

0.632 

0.777 

0.463 

0.632 

0.777 

0.464 

0.635 

0.776 

0.566 

0.730 

0.825 

0.568 

0.731 

0.826 

0.569 

0.729 

0.825 

0.571 

0.731 

0.826 

0.589 

0.750 

0.818 

0.0 0 0 

0.0 0 0 

0.532 

0.109 

0.686 

0.757 

0.001 

0.501 

0.677 

0.003 

0.004 

0.009 

0.010 

0.615 

0.724 

0.045 

0.609 

0.687 

0.559 

0.681 

0.746 

0.001 

0.132 

0.386 

0.0 0 0 

0.145 

0.340 

0.0 0 0 

0.0 0 0 

0.0 0 0 

GMM Stauffer 0.012 

0.039 

0.557 

0.605 

0.641 

0.815 

0.606 

0.642 

0.813 

0.606 

0.640 

0.819 

0.606 

0.642 

0.818 

0.034 

0.059 

0.749 

0.034 

0.059 

0.753 

0.034 

0.060 

0.746 

0.035 

0.060 

0.754 

0.026 

0.069 

0.673 

0.001 

0.011 

0.739 

0.009 

0.044 

0.715 

0.010 

0.077 

0.714 

0.006 

0.010 

0.029 

0.007 

0.015 

0.032 

0.013 

0.049 

0.762 

0.007 

0.033 

0.483 

0.0 0 0 

0.001 

0.003 

0.001 

0.005 

0.148 

0.0 0 0 

0.0 0 0 

0.0 0 0 

GMM Zivkovic 2 0.015 

0.979 

0.986 

0.574 

0.964 

0.967 

0.574 

0.966 

0.969 

0.574 

0.965 

0.967 

0.574 

0.965 

0.968 

0.042 

0.951 

0.955 

0.042 

0.951 

0.955 

0.041 

0.953 

0.956 

0.041 

0.950 

0.954 

0.045 

0.965 

0.980 

0.015 

0.742 

0.762 

0.129 

0.983 

0.985 

0.019 

0.862 

0.883 

0.008 

0.018 

0.082 

0.010 

0.026 

0.987 

0.033 

0.825 

0.856 

0.011 

0.465 

0.490 

0.001 

0.428 

0.436 

0.001 

0.416 

0.422 

0.0 0 0 

0.0 0 0 

0.0 0 0 

( continued on next page ) 
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Table 3 ( continued ) 

F1 Score False Positive Rate Each cell gives efficacy as:10th 

CentileMedian90th Centile STD GAU10 GAU20 GAU30 GAU40 UNI05 UNI10 UNI15 UNI20 JIT GLO LOC SHA INI00 INI02 CAMSM CAMCX GHO SLP DYN 

Temporal Mean 0.0 0 0 

0.0 0 0 

0.005 

0.454 

0.465 

0.487 

0.454 

0.465 

0.488 

0.454 

0.465 

0.488 

0.454 

0.465 

0.487 

0.019 

0.021 

0.033 

0.019 

0.022 

0.031 

0.019 

0.022 

0.031 

0.019 

0.021 

0.033 

0.0 0 0 

0.0 0 0 

0.027 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.017 

0.0 0 0 

0.0 0 0 

0.018 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.056 

0.0 0 0 

0.0 0 0 

0.036 

0.001 

0.002 

0.002 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Gaussian Average 0.008 

0.661 

0.884 

0.492 

0.609 

0.877 

0.492 

0.613 

0.877 

0.493 

0.611 

0.878 

0.493 

0.611 

0.877 

0.018 

0.644 

0.881 

0.018 

0.640 

0.880 

0.018 

0.646 

0.882 

0.018 

0.644 

0.881 

0.023 

0.713 

0.869 

0.0 0 0 

0.109 

0.644 

0.010 

0.512 

0.812 

0.009 

0.547 

0.802 

0.007 

0.012 

0.031 

0.007 

0.026 

0.516 

0.031 

0.645 

0.784 

0.010 

0.667 

0.793 

0.001 

0.002 

0.405 

0.0 0 0 

0.038 

0.383 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Temporal Median 0.006 

0.018 

0.937 

0.550 

0.560 

0.940 

0.550 

0.560 

0.941 

0.550 

0.560 

0.940 

0.550 

0.560 

0.941 

0.015 

0.026 

0.937 

0.015 

0.027 

0.939 

0.015 

0.026 

0.939 

0.015 

0.026 

0.935 

0.008 

0.031 

0.909 

0.0 0 0 

0.001 

0.463 

0.001 

0.011 

0.857 

0.001 

0.024 

0.792 

0.003 

0.010 

0.022 

0.005 

0.011 

0.027 

0.008 

0.034 

0.785 

0.003 

0.024 

0.795 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.001 

0.274 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Eigenbackground SL-PCA 0.854 

0.872 

0.892 

0.835 

0.852 

0.870 

0.838 

0.854 

0.880 

0.838 

0.856 

0.873 

0.839 

0.854 

0.874 

0.820 

0.843 

0.860 

0.828 

0.844 

0.861 

0.829 

0.845 

0.862 

0.824 

0.842 

0.859 

0.797 

0.835 

0.858 

0.486 

0.887 

0.892 

0.512 

0.956 

0.965 

0.802 

0.837 

0.843 

0.211 

0.240 

0.324 

0.849 

0.858 

0.871 

0.680 

0.784 

0.802 

0.487 

0.498 

0.501 

0.455 

0.457 

0.458 

0.423 

0.433 

0.435 

0.0 0 0 

0.0 0 0 

0.002 

Texture BGS 0.529 

0.551 

0.604 

0.178 

0.195 

0.239 

0.172 

0.192 

0.240 

0.172 

0.193 

0.237 

0.168 

0.188 

0.242 

0.238 

0.284 

0.388 

0.234 

0.283 

0.384 

0.257 

0.301 

0.391 

0.261 

0.307 

0.396 

0.530 

0.548 

0.614 

0.197 

0.237 

0.538 

0.491 

0.520 

0.612 

0.572 

0.593 

0.663 

0.017 

0.034 

0.093 

0.529 

0.538 

0.548 

0.651 

0.662 

0.683 

0.646 

0.669 

0.715 

0.423 

0.424 

0.426 

0.407 

0.411 

0.414 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Type-2 Fuzzy GMM-UM 0.0 0 0 

0.0 0 0 

0.655 

0.0 0 0 

0.0 0 0 

0.324 

0.0 0 0 

0.0 0 0 

0.324 

0.0 0 0 

0.0 0 0 

0.331 

0.0 0 0 

0.0 0 0 

0.328 

0.0 0 0 

0.0 0 0 

0.219 

0.0 0 0 

0.0 0 0 

0.216 

0.0 0 0 

0.0 0 0 

0.226 

0.0 0 0 

0.0 0 0 

0.234 

0.0 0 0 

0.0 0 0 

0.310 

0.0 0 0 

0.0 0 0 

0.010 

0.0 0 0 

0.0 0 0 

0.535 

0.0 0 0 

0.0 0 0 

0.386 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.007 

0.0 0 0 

0.0 0 0 

0.262 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.010 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Type-2 Fuzzy GMM-UV 0.054 

0.118 

0.737 

0.696 

0.718 

0.857 

0.693 

0.720 

0.858 

0.696 

0.721 

0.859 

0.694 

0.718 

0.859 

0.370 

0.417 

0.812 

0.377 

0.423 

0.813 

0.374 

0.421 

0.810 

0.369 

0.412 

0.809 

0.101 

0.175 

0.821 

0.028 

0.104 

0.639 

0.048 

0.138 

0.855 

0.066 

0.204 

0.818 

0.031 

0.044 

0.072 

0.040 

0.071 

0.109 

0.060 

0.127 

0.729 

0.036 

0.097 

0.825 

0.001 

0.004 

0.019 

0.015 

0.038 

0.278 

0.004 

0.005 

0.006 

Type-2 Fuzzy GMM-UM with MRF 0.0 0 0 

0.0 0 0 

0.395 

0.0 0 0 

0.0 0 0 

0.139 

0.0 0 0 

0.0 0 0 

0.137 

0.0 0 0 

0.0 0 0 

0.137 

0.0 0 0 

0.0 0 0 

0.142 

0.0 0 0 

0.0 0 0 

0.104 

0.0 0 0 

0.0 0 0 

0.103 

0.0 0 0 

0.0 0 0 

0.109 

0.0 0 0 

0.0 0 0 

0.115 

0.0 0 0 

0.0 0 0 

0.192 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.299 

0.0 0 0 

0.0 0 0 

0.146 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.002 

0.0 0 0 

0.0 0 0 

0.202 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.008 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Type-2 Fuzzy GMM-UV with MRF 0.011 

0.037 

0.677 

0.522 

0.536 

0.694 

0.524 

0.536 

0.695 

0.523 

0.537 

0.696 

0.524 

0.537 

0.692 

0.035 

0.070 

0.639 

0.033 

0.069 

0.640 

0.034 

0.071 

0.648 

0.034 

0.073 

0.646 

0.025 

0.062 

0.728 

0.002 

0.009 

0.438 

0.008 

0.044 

0.803 

0.012 

0.074 

0.698 

0.006 

0.011 

0.022 

0.007 

0.015 

0.029 

0.009 

0.031 

0.593 

0.006 

0.018 

0.635 

0.0 0 0 

0.0 0 0 

0.003 

0.002 

0.009 

0.150 

0.0 0 0 

0.001 

0.001 

Fuzzy Sugeno Integral 0.100 

0.164 

0.634 

0.096 

0.183 

0.395 

0.099 

0.183 

0.394 

0.097 

0.183 

0.394 

0.098 

0.182 

0.398 

0.094 

0.165 

0.655 

0.093 

0.166 

0.656 

0.094 

0.166 

0.655 

0.095 

0.166 

0.653 

0.102 

0.152 

0.652 

0.150 

0.194 

0.698 

0.078 

0.143 

0.237 

0.052 

0.141 

0.588 

0.006 

0.011 

0.027 

0.024 

0.126 

0.156 

0.147 

0.184 

0.668 

0.041 

0.306 

0.644 

0.0 0 0 

0.006 

0.248 

0.008 

0.051 

0.252 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Fuzzy Choquet Integral 0.125 

0.171 

0.603 

0.173 

0.269 

0.499 

0.174 

0.267 

0.495 

0.174 

0.268 

0.499 

0.173 

0.268 

0.499 

0.128 

0.176 

0.665 

0.127 

0.177 

0.669 

0.127 

0.177 

0.668 

0.127 

0.177 

0.666 

0.119 

0.156 

0.646 

0.174 

0.309 

0.706 

0.099 

0.139 

0.408 

0.064 

0.151 

0.574 

0.008 

0.013 

0.030 

0.054 

0.139 

0.163 

0.160 

0.198 

0.660 

0.050 

0.441 

0.604 

0.001 

0.011 

0.283 

0.012 

0.077 

0.296 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Simple Gaussian 0.719 

0.768 

0.810 

0.708 

0.751 

0.787 

0.707 

0.760 

0.791 

0.708 

0.754 

0.789 

0.714 

0.755 

0.791 

0.686 

0.723 

0.746 

0.687 

0.726 

0.747 

0.691 

0.729 

0.751 

0.692 

0.729 

0.751 

0.693 

0.762 

0.808 

0.486 

0.916 

0.963 

0.486 

0.820 

0.853 

0.690 

0.749 

0.781 

0.307 

0.351 

0.424 

0.779 

0.799 

0.836 

0.611 

0.699 

0.747 

0.482 

0.495 

0.498 

0.462 

0.470 

0.481 

0.433 

0.441 

0.462 

0.005 

0.013 

0.019 

( continued on next page ) 
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Table 3 ( continued ) 

F1 Score False Positive Rate Each cell gives efficacy as:10th 

CentileMedian90th Centile STD GAU10 GAU20 GAU30 GAU40 UNI05 UNI10 UNI15 UNI20 JIT GLO LOC SHA INI00 INI02 CAMSM CAMCX GHO SLP DYN 

Fuzzy Gaussian 0.738 

0.782 

0.807 

0.720 

0.761 

0.783 

0.721 

0.768 

0.787 

0.720 

0.762 

0.784 

0.725 

0.765 

0.787 

0.700 

0.734 

0.754 

0.699 

0.736 

0.755 

0.703 

0.739 

0.757 

0.703 

0.737 

0.757 

0.713 

0.774 

0.802 

0.495 

0.916 

0.941 

0.465 

0.833 

0.856 

0.707 

0.767 

0.788 

0.287 

0.320 

0.372 

0.786 

0.800 

0.816 

0.605 

0.669 

0.704 

0.483 

0.495 

0.497 

0.461 

0.464 

0.472 

0.431 

0.438 

0.450 

0.004 

0.011 

0.016 

GMM Bender 0.034 

0.071 

0.927 

0.625 

0.672 

0.944 

0.626 

0.673 

0.945 

0.626 

0.673 

0.944 

0.625 

0.673 

0.946 

0.101 

0.156 

0.892 

0.101 

0.156 

0.894 

0.101 

0.158 

0.894 

0.101 

0.155 

0.889 

0.048 

0.102 

0.872 

0.003 

0.027 

0.795 

0.019 

0.078 

0.954 

0.030 

0.129 

0.873 

0.024 

0.044 

0.082 

0.026 

0.048 

0.079 

0.035 

0.116 

0.770 

0.019 

0.057 

0.493 

0.0 0 0 

0.001 

0.003 

0.002 

0.015 

0.411 

0.001 

0.001 

0.002 

Adaptive SOM 0.859 

0.927 

0.935 

0.910 

0.961 

0.968 

0.910 

0.961 

0.967 

0.908 

0.959 

0.966 

0.910 

0.960 

0.966 

0.878 

0.949 

0.964 

0.879 

0.951 

0.965 

0.877 

0.950 

0.965 

0.875 

0.950 

0.964 

0.808 

0.907 

0.930 

0.485 

0.807 

0.875 

0.600 

0.971 

0.976 

0.818 

0.884 

0.894 

0.108 

0.129 

0.169 

0.947 

0.950 

0.952 

0.824 

0.943 

0.948 

0.484 

0.492 

0.494 

0.452 

0.453 

0.455 

0.424 

0.428 

0.429 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Fuzzy Adaptive SOM 0.897 

0.919 

0.934 

0.943 

0.954 

0.964 

0.942 

0.955 

0.965 

0.940 

0.953 

0.963 

0.944 

0.956 

0.964 

0.881 

0.909 

0.923 

0.888 

0.906 

0.919 

0.889 

0.906 

0.919 

0.880 

0.905 

0.918 

0.830 

0.868 

0.903 

0.480 

0.807 

0.821 

0.528 

0.959 

0.968 

0.808 

0.846 

0.852 

0.130 

0.164 

0.240 

0.988 

0.989 

0.990 

0.798 

0.916 

0.928 

0.479 

0.490 

0.493 

0.452 

0.453 

0.454 

0.422 

0.432 

0.433 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Texture-Based Foreground 

Detection with MRF 

0.024 

0.111 

0.499 

0.714 

0.744 

0.902 

0.715 

0.743 

0.894 

0.716 

0.744 

0.910 

0.715 

0.745 

0.921 

0.535 

0.615 

0.687 

0.537 

0.603 

0.698 

0.534 

0.611 

0.693 

0.524 

0.608 

0.681 

0.094 

0.192 

0.608 

0.026 

0.068 

0.401 

0.022 

0.118 

0.685 

0.064 

0.243 

0.710 

0.002 

0.015 

0.057 

0.012 

0.042 

0.108 

0.046 

0.145 

0.694 

0.005 

0.078 

0.745 

0.015 

0.036 

0.121 

0.001 

0.007 

0.396 

0.0 0 0 

0.001 

0.001 

Multi-Layer BGS 0.0 0 0 

0.001 

0.172 

0.239 

0.302 

0.726 

0.237 

0.298 

0.726 

0.240 

0.300 

0.726 

0.237 

0.303 

0.725 

0.033 

0.062 

0.266 

0.029 

0.061 

0.264 

0.031 

0.060 

0.264 

0.031 

0.061 

0.266 

0.0 0 0 

0.003 

0.234 

0.0 0 0 

0.0 0 0 

0.267 

0.0 0 0 

0.0 0 0 

0.671 

0.0 0 0 

0.0 0 0 

0.513 

0.0 0 0 

0.0 0 0 

0.007 

0.0 0 0 

0.0 0 0 

0.007 

0.0 0 0 

0.001 

0.550 

0.0 0 0 

0.0 0 0 

0.410 

0.0 0 0 

0.0 0 0 

0.001 

0.0 0 0 

0.0 0 0 

0.013 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Pixel-Based Adaptive Segmenter 0.539 

0.714 

0.978 

0.398 

0.577 

0.944 

0.406 

0.582 

0.948 

0.418 

0.596 

0.947 

0.410 

0.584 

0.952 

0.266 

0.440 

0.790 

0.262 

0.443 

0.789 

0.247 

0.434 

0.788 

0.252 

0.432 

0.794 

0.400 

0.678 

0.966 

0.326 

0.435 

0.759 

0.238 

0.543 

0.977 

0.0 0 0 

0.119 

0.914 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.456 

0.582 

0.685 

0.084 

0.337 

0.914 

0.403 

0.654 

0.879 

0.174 

0.275 

0.405 

0.313 

0.366 

0.409 

0.0 0 0 

0.0 0 0 

0.0 0 0 

VuMeter 0.0 0 0 

0.0 0 0 

0.080 

0.0 0 0 

0.0 0 0 

0.185 

0.0 0 0 

0.0 0 0 

0.199 

0.0 0 0 

0.0 0 0 

0.193 

0.0 0 0 

0.0 0 0 

0.193 

0.0 0 0 

0.0 0 0 

0.071 

0.0 0 0 

0.0 0 0 

0.069 

0.0 0 0 

0.0 0 0 

0.071 

0.0 0 0 

0.0 0 0 

0.074 

0.0 0 0 

0.0 0 0 

0.217 

0.0 0 0 

0.0 0 0 

0.304 

0.0 0 0 

0.0 0 0 

0.558 

0.0 0 0 

0.0 0 0 

0.522 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.517 

0.0 0 0 

0.0 0 0 

0.370 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.005 

0.0 0 0 

0.0 0 0 

0.0 0 0 

KDE 0.492 

0.993 

0.994 

0.650 

0.960 

0.972 

0.661 

0.956 

0.974 

0.657 

0.961 

0.974 

0.655 

0.959 

0.973 

0.505 

0.971 

0.979 

0.507 

0.972 

0.980 

0.505 

0.972 

0.980 

0.504 

0.971 

0.979 

0.406 

0.992 

0.994 

0.079 

0.932 

0.946 

0.881 

0.990 

0.994 

0.821 

0.964 

0.969 

0.110 

0.121 

0.132 

0.111 

0.993 

0.995 

0.653 

0.959 

0.982 

0.594 

0.854 

0.858 

0.002 

0.435 

0.439 

0.092 

0.413 

0.414 

0.002 

0.003 

0.004 

IMBS 0.002 

0.481 

0.997 

0.625 

0.812 

0.993 

0.625 

0.812 

0.993 

0.624 

0.814 

0.993 

0.624 

0.818 

0.993 

0.004 

0.908 

0.996 

0.004 

0.912 

0.996 

0.004 

0.911 

0.996 

0.004 

0.912 

0.996 

0.028 

0.281 

0.997 

0.003 

0.103 

0.984 

0.008 

0.945 

0.995 

0.003 

0.831 

0.959 

0.0 0 0 

0.008 

0.029 

0.0 0 0 

0.017 

0.049 

0.052 

0.453 

0.976 

0.001 

0.745 

0.803 

0.0 0 0 

0.0 0 0 

0.453 

0.001 

0.383 

0.412 

0.0 0 0 

0.0 0 0 

0.0 0 0 

MultiCue BGS 0.011 

0.044 

0.929 

0.760 

0.915 

0.931 

0.766 

0.919 

0.931 

0.762 

0.916 

0.931 

0.765 

0.905 

0.932 

0.411 

0.887 

0.922 

0.381 

0.886 

0.926 

0.402 

0.883 

0.924 

0.431 

0.890 

0.925 

0.183 

0.320 

0.928 

0.0 0 0 

0.238 

0.302 

0.0 0 0 

0.874 

0.916 

0.214 

0.859 

0.912 

0.0 0 0 

0.0 0 0 

0.031 

0.213 

0.287 

0.453 

0.360 

0.883 

0.911 

0.200 

0.617 

0.651 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.120 

0.352 

0.420 

0.0 0 0 

0.0 0 0 

0.0 0 0 

( continued on next page ) 
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Table 3 ( continued ) 

F1 Score False Positive Rate Each cell gives efficacy as:10th 

CentileMedian90th Centile STD GAU10 GAU20 GAU30 GAU40 UNI05 UNI10 UNI15 UNI20 JIT GLO LOC SHA INI00 INI02 CAMSM CAMCX GHO SLP DYN 

Sigma Delta 0.016 

0.057 

0.946 

0.571 

0.592 

0.929 

0.570 

0.591 

0.931 

0.571 

0.591 

0.927 

0.572 

0.592 

0.929 

0.120 

0.168 

0.881 

0.121 

0.171 

0.878 

0.121 

0.171 

0.882 

0.122 

0.169 

0.877 

0.023 

0.082 

0.958 

0.0 0 0 

0.007 

0.743 

0.007 

0.065 

0.970 

0.006 

0.067 

0.900 

0.011 

0.025 

0.055 

0.013 

0.030 

0.061 

0.017 

0.062 

0.928 

0.014 

0.045 

0.851 

0.0 0 0 

0.002 

0.093 

0.0 0 0 

0.005 

0.276 

0.001 

0.001 

0.002 

SuBSENSE 0.002 

0.004 

0.396 

0.531 

0.546 

0.718 

0.560 

0.568 

0.711 

0.529 

0.542 

0.705 

0.534 

0.544 

0.726 

0.0 0 0 

0.0 0 0 

0.005 

0.0 0 0 

0.0 0 0 

0.006 

0.0 0 0 

0.0 0 0 

0.007 

0.0 0 0 

0.0 0 0 

0.003 

0.016 

0.020 

0.453 

0.0 0 0 

0.734 

0.914 

0.0 0 0 

0.0 0 0 

0.963 

0.543 

0.709 

0.969 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.004 

0.005 

0.005 

0.014 

0.017 

0.898 

0.0 0 0 

0.0 0 0 

0.194 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.142 

0.0 0 0 

0.0 0 0 

0.0 0 0 

LOBSTER 0.940 

0.973 

0.986 

0.921 

0.964 

0.985 

0.924 

0.963 

0.985 

0.921 

0.962 

0.984 

0.921 

0.964 

0.985 

0.880 

0.945 

0.983 

0.885 

0.947 

0.983 

0.891 

0.948 

0.984 

0.892 

0.945 

0.983 

0.909 

0.956 

0.987 

0.500 

0.933 

0.984 

0.440 

0.836 

0.918 

0.683 

0.774 

0.872 

0.008 

0.017 

0.042 

0.918 

0.950 

0.970 

0.646 

0.706 

0.800 

0.666 

0.739 

0.789 

0.368 

0.400 

0.420 

0.375 

0.399 

0.406 

0.0 0 0 

0.0 0 0 

0.0 0 0 

PAWCS 0.0 0 0 

0.111 

0.979 

0.539 

0.606 

0.980 

0.533 

0.625 

0.981 

0.532 

0.598 

0.981 

0.521 

0.593 

0.980 

0.0 0 0 

0.0 0 0 

0.089 

0.0 0 0 

0.0 0 0 

0.300 

0.0 0 0 

0.0 0 0 

0.442 

0.0 0 0 

0.0 0 0 

0.094 

0.0 0 0 

0.094 

0.980 

0.317 

0.927 

0.973 

0.0 0 0 

0.108 

0.985 

0.0 0 0 

0.122 

0.966 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.0 0 0 

0.334 

0.636 

0.0 0 0 

0.047 

0.973 

0.0 0 0 

0.0 0 0 

0.831 

0.0 0 0 

0.0 0 0 

0.313 

0.0 0 0 

0.015 

0.420 

0.0 0 0 

0.0 0 0 

0.0 0 0 

TwoPoints 0.545 

0.700 

0.860 

0.346 

0.530 

0.796 

0.338 

0.512 

0.791 

0.343 

0.526 

0.795 

0.341 

0.511 

0.793 

0.441 

0.635 

0.821 

0.462 

0.645 

0.821 

0.420 

0.627 

0.818 

0.418 

0.632 

0.818 

0.554 

0.703 

0.853 

0.407 

0.532 

0.720 

0.348 

0.652 

0.819 

0.026 

0.276 

0.797 

0.011 

0.017 

0.032 

0.469 

0.597 

0.678 

0.306 

0.527 

0.787 

0.415 

0.629 

0.725 

0.001 

0.012 

0.235 

0.005 

0.134 

0.365 

0.001 

0.001 

0.001 

ViBe 0.696 

0.728 

0.769 

0.498 

0.594 

0.700 

0.497 

0.592 

0.702 

0.493 

0.595 

0.712 

0.496 

0.596 

0.694 

0.617 

0.705 

0.768 

0.608 

0.707 

0.772 

0.632 

0.708 

0.770 

0.635 

0.709 

0.771 

0.689 

0.739 

0.792 

0.460 

0.586 

0.656 

0.348 

0.723 

0.757 

0.561 

0.669 

0.749 

0.002 

0.004 

0.010 

0.667 

0.693 

0.714 

0.607 

0.688 

0.770 

0.660 

0.721 

0.755 

0.036 

0.146 

0.284 

0.018 

0.073 

0.246 

0.0 0 0 

0.0 0 0 

0.0 0 0 

Codebook 0.146 

0.461 

0.728 

0.636 

0.738 

0.797 

0.636 

0.739 

0.797 

0.635 

0.737 

0.796 

0.635 

0.739 

0.802 

0.260 

0.582 

0.742 

0.260 

0.587 

0.746 

0.257 

0.581 

0.747 

0.260 

0.576 

0.742 

0.229 

0.514 

0.717 

0.135 

0.492 

0.867 

0.206 

0.465 

0.737 

0.221 

0.624 

0.751 

0.143 

0.210 

0.318 

0.125 

0.208 

0.390 

0.289 

0.588 

0.731 

0.129 

0.455 

0.568 

0.004 

0.021 

0.469 

0.044 

0.246 

0.454 

0.002 

0.005 

0.010 

Note: The segmentation algorithms are listed in Table 1 while the labels for the factors are listed in Table 2 . Two routines were not formally tested (GMM KaewTraKulPong and GMG) 

as they required an earlier version of OpenCV. The efficacy measures are calculated on a per-frame basis, and the three numbers listed in each cell are 10th centile, median, and 90th 

centile. 
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Table 4 

Processing times of segmentation algorithms from the ‘BGSLibrary’ in milliseconds per frame. 

Processing Time Per Frame (ms/frame) 

STD GAU10 GAU20 GAU30 GAU40 UNI05 UNI10 UNI15 UNI20 JIT GLO LOC SHA INI00 INI02 CAMSM CAMCX GHO SLP DYN 

Frame Difference 2.3 1.4 2.3 3.4 5.3 7.5 10.1 14.6 2.2 1.9 2.0 1.6 4.4 1.8 1.9 1.9 2.6 5.0 5.9 6.6 

Static Frame Difference 2.2 1.4 2.2 3.2 5.2 7.4 10.0 14.1 2.3 1.8 2.0 1.8 4.2 1.7 1.8 1.8 2.4 4.9 5.8 6.5 

Weighted Moving Mean 20.6 16.9 18.8 20.7 22.7 25.0 29.9 39.5 21.6 16.7 18.7 16.7 20.3 17.9 17.8 17.2 18.4 21.3 22.9 24.2 

Weighted Moving 

Variance 

56.5 55.0 51.6 56.4 59.1 70.1 77.7 96.5 55.6 50.5 54.3 50.1 55.8 53.1 53.1 52.3 54.0 57.7 64.7 61.7 

GMM Zivkovic 1 12.7 15.2 14.6 16.4 15.9 16.0 16.9 18.7 13.0 12.7 12.5 11.6 13.4 12.4 11.9 12.8 13.9 13.6 14.6 14.4 

Adaptive Background 

Learning 

14.1 14.9 13.8 16.4 18.3 27.5 30.4 37.0 13.4 15.0 13.7 14.1 18.1 15.2 14.9 15.8 17.3 19.4 21.8 22.1 

Adaptive-Selective 

Background Learning 

6.4 5.3 6.5 8.6 10.5 15.5 18.6 24.7 6.0 5.9 6.1 5.1 8.7 5.5 5.6 6.1 6.3 9.4 11.9 11.4 

KNN Background 

Subtractor 

50.2 61.4 53.8 53.6 54.5 54.9 56.1 77.0 56.3 47.7 51.6 50.0 48.7 49.3 52.0 52.1 52.1 49.6 51.4 49.5 

Adaptive Median 4.0 4.6 4.2 4.5 4.9 5.8 6.9 9.2 4.3 4.1 4.1 4.0 4.5 4.1 4.3 4.2 4.4 4.8 5.1 5.2 

GMM Stauffer 43.8 62.7 56.2 53.5 56.1 56.0 57.6 78.9 62.0 44.7 43.3 46.1 45.4 31.7 46.4 47.6 49.3 46.7 47.1 32.6 

GMM Zivkovic 2 12.6 15.1 14.1 13.3 14.4 15.7 16.0 23.5 16.0 13.0 14.5 14.2 13.8 12.2 13.1 14.7 15.9 14.1 13.5 13.6 

Temporal Mean 9.1 10.1 9.6 9.3 10.0 10.5 11.3 13.7 9.9 10.0 9.6 9.3 10.6 9.3 9.3 10.7 10.7 10.5 10.7 10.6 

Gaussian Average 8.4 9.3 8.9 8.7 9.6 10.1 10.8 12.8 9.2 9.2 8.6 8.6 9.8 8.8 8.5 9.8 9.7 9.5 9.8 10.1 

Temporal Median 39.4 39.3 37.5 38.2 37.3 39.2 39.3 42.2 41.9 37.1 37.9 38.0 36.8 37.6 38.0 43.9 39.3 36.7 38.5 38.2 

Eigenbackground 

SL-PCA 

44.6 44.6 41.0 42.9 43.2 47.3 49.7 54.2 47.1 43.4 43.2 43.5 44.6 43.9 42.9 49.4 45.9 44.1 47.1 47.4 

Texture BGS 334.1 314.2 314.3 305.2 305.0 321.7 311.2 338.6 348.1 325.6 330.1 328.9 319.3 329.9 337.6 343.0 345.7 303.4 309.3 335.9 

Type-2 Fuzzy GMM-UM 47.1 45.3 44.8 45.6 44.1 51.3 51.6 56.5 59.4 45.4 42.6 46.0 42.7 37.0 46.3 49.3 47.8 45.5 47.5 42.3 

Type-2 Fuzzy GMM-UV 55.0 62.9 62.4 60.9 62.0 65.0 64.6 70.3 68.7 55.4 54.7 54.8 54.0 53.3 59.0 61.9 59.9 56.7 57.1 55.1 

Type-2 Fuzzy GMM-UM 

with MRF 

84.6 82.1 76.9 78.1 77.0 85.7 85.0 92.2 90.3 79.9 74.4 78.1 76.3 71.7 82.0 84.8 82.9 79.3 82.1 70.8 

Type-2 Fuzzy GMM-UV 

with MRF 

92.1 97.4 96.2 91.9 92.0 98.4 97.8 103.0 102.1 86.4 84.0 87.2 85.1 80.7 89.8 92.9 88.4 88.6 87.9 81.3 

Fuzzy Sugeno Integral 183.1 163.8 177.3 171.1 166.3 175.6 176.5 186.8 196.0 177.8 173.8 175.4 172.1 167.0 182.9 182.0 187.7 173.1 175.6 170.6 

Fuzzy Choquet Integral 178.9 172.0 174.4 167.3 169.6 180.7 176.8 195.4 190.3 177.1 170.7 171.7 171.6 175.2 186.0 178.9 187.3 175.3 174.9 173.0 

Simple Gaussian 9.0 9.8 11.3 10.7 11.9 13.0 14.3 16.4 11.3 10.2 8.7 9.8 10.7 9.3 10.1 10.8 10.4 10.7 10.8 12.0 

Fuzzy Gaussian 18.8 19.1 19.0 19.8 20.1 21.5 22.9 25.1 20.1 19.3 17.2 17.6 19.6 20.2 18.2 18.6 18.5 19.9 20.2 22.9 

GMM Bender 21.7 22.6 21.9 22.4 23.2 27.6 26.6 31.0 25.1 23.3 22.3 22.5 24.3 22.7 24.9 24.0 25.3 23.5 23.5 24.9 

( continued on next page ) 
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Table 4 ( continued ) 

Processing Time Per Frame (ms/frame) 

STD GAU10 GAU20 GAU30 GAU40 UNI05 UNI10 UNI15 UNI20 JIT GLO LOC SHA INI00 INI02 CAMSM CAMCX GHO SLP DYN 

Adaptive SOM 40.7 41.1 41.8 40.9 43.3 45.2 46.0 53.1 45.8 40.7 33.3 36.8 44.6 52.9 43.0 45.2 36.1 44.2 43.8 53.0 

Fuzzy Adaptive SOM 53.1 49.9 51.9 53.1 53.1 54.3 56.5 63.0 59.5 52.5 55.0 50.8 56.3 56.6 53.4 55.8 59.3 56.7 57.4 59.0 

Texture-Based 

Foreground Detection 

with MRF 

242.1 237.8 233.0 248.0 274.4 328.2 359.5 404.7 295.3 250.5 239.6 244.3 300.2 244.0 251.9 265.0 255.1 304.2 303.8 307.3 

Multi-Layer BGS 208.1 249.4 249.2 251.9 265.2 285.5 302.6 328.2 276.3 207.2 214.4 208.1 228.6 187.3 220.2 235.1 210.2 230.3 235.9 211.1 

Pixel-Based Adaptive 

Segmenter 

124.3 114.0 112.3 112.7 121.0 112.1 119.8 134.9 118.0 118.2 160.5 115.2 105.0 86.5 140.1 115.5 125.5 147.3 158.3 93.8 

VuMeter 13.3 14.1 14.9 15.1 16.8 19.1 21.7 24.5 15.7 14.2 13.8 14.4 18.7 14.0 14.0 15.2 15.4 18.6 20.5 19.6 

KDE 31.0 39.9 41.5 41.9 47.0 43.4 42.8 47.4 48.2 28.6 54.7 34.9 31.3 18.8 31.5 32.1 38.3 36.4 33.1 18.3 

IMBS 42.9 54.6 58.6 65.5 81.3 94.2 112.3 129.7 67.6 42.9 42.2 54.2 50.9 29.5 33.4 52.3 49.5 50.6 46.9 35.5 

MultiCue BGS 36.9 37.2 40.5 43.0 53.4 64.5 71.0 83.9 47.5 34.7 34.6 33.3 44.3 30.3 40.0 40.1 35.9 38.4 48.6 39.6 

Sigma Delta 11.2 10.9 11.2 12.2 14.8 17.8 18.1 21.0 12.4 11.0 10.4 10.6 11.8 11.1 12.0 12.2 10.3 12.7 13.2 15.4 

SuBSENSE 346.5 376.0 417.3 423.8 416.9 365.9 379.7 379.7 453.3 297.7 400.7 317.8 328.2 288.3 313.2 325.0 299.4 287.6 311.1 279.3 

LOBSTER 256.0 240.4 282.0 282.7 280.6 228.0 230.4 264.2 279.5 223.5 234.3 192.4 203.0 212.5 244.4 197.2 204.9 197.0 189.9 221.2 

PAWCS 542.8 855.7 651.6 650.3 649.5 829.9 829.1 904.0 692.2 711.5 667.1 753.3 703.6 597.5 763.5 789.0 840.6 722.4 758.2 567.3 

TwoPoints 4.0 4.1 5.0 5.9 7.6 8.8 11.2 14.9 4.6 3.9 3.7 3.6 6.0 3.8 3.9 3.9 4.6 6.6 7.9 8.4 

ViBe 8.7 9.5 7.8 8.3 9.2 11.4 12.1 14.5 9.0 10.4 15.5 11.7 9.5 5.6 12.1 9.7 11.0 10.1 8.9 6.3 

Codebook 20.2 48.7 34.6 35.2 37.0 50.6 51.1 52.5 40.8 27.7 24.1 33.1 29.1 20.6 30.9 41.0 32.8 21.3 26.2 16.1 

Note: The segmentation algorithms are listed in Table 1 while the labels for the factors are listed in Table 2 . Two routines were not formally tested (GMM KaewTraKulPong and GMG) 

as they required an earlier version of OpenCV. The processing time is calculated as an average of all frames during the comparison period for that clip. 
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Table 5 

An assessment of segmentation algorithms from the ‘BGSLibrary’ according to pre-set criteria. 

High 

Efficacy Consistency 

Processing 

Speed (30 

fps) 

Processing 

Speed 

(10 

fps) Noise Jitter 

Global 

Illumi- 

nation 

Local 

Illumi- 

nation Shadows 

No 

Initial- 

ization 

short 

initial- 

ization 

color 

camou- 

flage 

Complex 

Back- 

ground 

Ghost 

Images 

Sleeping 

Back- 

ground 

Dynamic 

Back- 

ground 

Frame Difference X X X I X 

Static Frame 

Difference 

X X X X X X X X X 

Weighted Moving 

Mean 

X X X I X 

Weighted Moving 

Variance 

X X I X 

GMM Zivkovic 1 X X X I X 

Adaptive 

Background 

Learning 

X X X I X 

Adaptive-Selective 

Background 

Learning 

X X X X X X X X X X 

KNN Background 

Subtractor 

X X I X 

Adaptive Median X X I X 

GMM Stauffer X X I X 

GMM Zivkovic 2 X X X X X X X X I X 

Temporal Mean X X X I X 

Gaussian Average X X I X 

Temporal Median X X I X 

Eigenbackground 

SL-PCA 

X X X X X X X X X 

Texture BGS X 

Type-2 Fuzzy 

GMM-UM 

X X I X 

Type-2 Fuzzy 

GMM-UV 

X X I 

Type-2 Fuzzy 

GMM-UM with 

MRF 

X X I X 

Type-2 Fuzzy 

GMM-UV with 

MRF 

X X I X 

Fuzzy Sugeno 

Integral 

I X 

( continued on next page ) 
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Table 5 ( continued ) 

High 

Efficacy Consistency 

Processing 

Speed (30 

fps) 

Processing 

Speed 

(10 

fps) Noise Jitter 

Global 

Illumi- 

nation 

Local 

Illumi- 

nation Shadows 

No 

Initial- 

ization 

short 

initial- 

ization 

color 

camou- 

flage 

Complex 

Back- 

ground 

Ghost 

Images 

Sleeping 

Back- 

ground 

Dynamic 

Back- 

ground 

Fuzzy Choquet 

Integral 

I X 

Simple Gaussian X X X X 

Fuzzy Gaussian X X X X X 

GMM Bender X X X I X 

Adaptive SOM X X X X X X X X X X 

Fuzzy Adaptive SOM X X X X X X X X X X 

Texture-Based 

Foreground 

Detection with 

MRF 

I X 

Multi-Layer BGS X I X 

Pixel-Based 

Adaptive 

Segmenter 

X 

VuMeter X X X I X 

KDE X X X X X X X X X X X 

IMBS X X X X I X 

MultiCue BGS X X X X X X X 

Sigma Delta X X I X 

SuBSENSE X I X 

LOBSTER X X X X X X X X 

PAWCS X I X 

TwoPoints X X I X 

ViBe X X I X 

Codebook X X 

Note: X – fulfills criteria, I – integrates into background. 
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.3. Methodology 

A series of video clips was captured with an Intel RealSense Depth Camera D435 featuring

 global shutter, large color pixels of 3 um square, and a depth sensor using disparity mapping

rom stereo infra-red cameras. The following camera settings were used: structured light projec-

or on, autofocus enabled, autoexposure disabled, automatic white balancing disabled, backlight

ompensation disabled, and powerline frequency compensation disabled. 

Capture resolution was 640 × 480 pixels at 30 frames per second (fps) for color data and

0 fps for depth data, with the depth data processed using temporal and spatial smoothing

ith hole-filling to reduce artefacts. Synthetic paired color and depth frames were motion in-

erpolated from the source frames to generate video clips without any inter-frames. The clips

ere then saved to Audio Video Interleave (AVI) files using FFMPEG, with dimensions of 640 ×
80 pixels at 30 fps. Color clips were encoded using the lossy MPEG-4 Part 2 codec at a bit rate

f 4 megabit per second (Mbps) except for the noise clips which were encoded at 12 Mbps to

reserve the noise artefacts. 

The clips were captured at night under controlled bidirectional diagonal and side lighting

ith Philips Hue White & Color Ambiance bulbs set to the ‘Energize’ preset with a color tem-

erature of 6410 K, calculated from the Mired Color Temperature supplied by the Philips Hue

oftware Development Kit. The camera was placed 120 cm in front of either a plain green screen

standard), a cream-colored screen (camouflage), or with the screen removed (complex), having

he subject standing 60 cm in front of the screen, with no intervening objects. This resulted in a

oreground area that was consistently about half the total background size, which is sufficiently

alanced to not distort the measures of segmentation efficacy, and yet not too big which would

revent the face detection routine from working properly. The factors listed in Table 2 were then

pplied. 

All clips were 40 s long with the first 10 s showing just the background. The subject entered

he scene at the 10 s mark and stood in the center of the frame while keeping a neutral expres-

ion, with the face and upper body fully visible. The comparison period was set to all frames

etween the 20 and 40 s mark inclusive. The brightness for all clips was normalized by apply-

ng the appropriate constant gamma correction to keep the average pixel brightness throughout

he clip at 50% of the maximum brightness. 

For lighting change factors, the lighting conditions were altered mid-way through the com-

arison period. For the ‘Ghost Images’ clip, the comparison period was set to one second after

he transition. This is because most algorithms for detection and removal of moving objects,

hosts, and shadows operate in less than a second. The comparison period for the ‘Sleeping

oreground’ clip was set to 10 s after the transition to allow enough time for the object to be

ncorporated into the background model. 

In clips where a subject was present, the face location was determined using libfacedetection

y Shiqi Yu, and a seed point and depth obtained from the center of the bounding rectangle [13] .

he ‘ground truth’ foreground was then extracted from a floating range flood fill starting at the

eed point, with a maximum difference of 2 cm between adjacent pixels. Since the depth data

rom disparity mapping is coarse and lacks edge accuracy, an automated GrabCut algorithm was

sed to refine the edges of the foreground. The ‘ground truth’ clips were verified by visually

nspecting at 4 fps, and adjustments were made with manual GrabCut assistance where the

reas of inaccuracy exceeded 5% of the foreground ( Fig. 1 ). For clips without a subject, the depth

ata was ignored and the ‘ground truth’ foreground was set to zero. 

The segmentation foreground was obtained by processing the color data using the appro-

riate ‘BGSLibrary’ algorithm with default settings, except for the ‘GMG’ and ‘GMM Kaew-

raKulPong’ routines which require an earlier version of OpenCV (see Table 1 ). To speed up pro-

essing, the segmentation routines were run in four isolated parallel threads in ‘release’ mode.

he ‘ground truth’ and segmentation clips were saved to AVI files encoded with the lossless FFV1

odec. 
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Testing was performed on a system using Microsoft Windows 10 with a four-core Intel Xeon

E3 processor running at 3.5 GHz using Visual Basic and Visual C ++ 2019 in a 64-bit address

space with 32 GB RAM allocated and an NVIDIA GeForce GTX 1060 6GB graphics card installed.

Image processing was done using the libraries in EmguCV 3.2.0 and Accord.Net 3.8.0. The system

speed was rated at 475 million floating points per second (MFLOPS) using the Intel processor

diagnostic tool 2.10, 64-bit version. 

Processing time was calculated as the average time taken to process each frame over the

comparison period. 

Accuracy was defined as follows: 

Accuracy = 

1 

N 

( ∑ 

t∈ ( 20 , 30 ) 

T P t + T N t 

T P t + T N t + F P t + F N t 

) 

(1) 

In Eq. (1) , TP (true positives) represent correctly classified foreground pixels, TN (true nega-

tives) represent correctly classified background pixels, FP (false positives) represent incorrectly

classified foreground pixels, FN (false negatives) represent incorrectly classified background pix-

els, N represents the total number of frames, and t represents the frame time. The ‘ground truth’

is used as the reference for both TP and TN pixels, while the comparison was the segmentation

result from the ‘BGSLibrary’ algorithm. A lower result for the accuracy indicates greater deviation

from the ‘ground truth’. 

Precision and recall were defined as follows: 

P recision = 

1 

N 

( ∑ 

t∈ ( 20 , 30 ) 

T P t 

T P t + F P t 

) 

(2) 

In Eq. (2) , precision refers to the proportion of the segmented foreground that has been cor-

rectly segmented. 

Recall = 

1 

N 

( ∑ 

t∈ ( 20 , 30 ) 

T P t 

T P t + F N t 

) 

(3) 

In Eq. (3) , recall refers to the proportion of the segmented foreground that correlates with

the ‘ground truth’ foreground. 

The F1 score (also known as the balanced F-score or Dice coefficient) was then calculated as

the harmonic mean of both precision and recall: 

F 1 = 

1 

N 

( ∑ 

t∈ ( 20 , 30 ) 

2 × P recisio n t × Recal l t 

P recisio n t + Recal l t 

) 

(4) 

The F1 score can range between 0 – 1 and a lower result indicates greater deviation from the

‘ground truth’. 

The False Positive Rate (FPR) was defined as: 

F P R = 

1 

N 

( ∑ 

t∈ ( 20 , 30 ) 

F P t 

T N t + F P t 

) 

(5) 

In Eq. (5) , the FPR refers to the proportion of the negative ‘ground truth’ that is wrongly

segmented as foreground. 

In general, accuracy is used when the proportion of true results is the key issue, while the

F1 score is employed when negative results are more important since it magnifies the effect of

incorrect classification. While accuracy is an easy measure to understand, it has the drawback

of giving a distorted representation of efficacy when there is a big imbalance in the number of

negatives and positives. For face and head segmentation, missing portions of the face or addition

of background features to the face are both undesirable, so the F1 score should be the preferred

measure of segmentation efficacy. 
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For the three factors where no subject was present and the ‘ground truth’ consists of com-

lete background, the preferred measure would be the FPR since all errors consist of false pos-

tives. For the ‘Ghost Images’ and ‘Dynamic Background’ factors, a low FPR indicates the al-

orithm has the ability to rapidly remove ghost images and cope with dynamic background

bjects respectively. However, for the ‘Sleeping Foreground’ factor, a low FPR indicates that

he stationary foreground object has been absorbed into the background model and no longer

hows up. 

Segmentation efficacy should be calculated on a per-image basis to distinguish algorithms

hat vary in performance depending on image content, and ought to include a measure of spread

n addition to centrality. This is especially important when evaluating algorithms that have a

emporal component, as the segmentation result can change even though the images in the clip

ay be broadly similar. 

.4. Simulated factors 

Gaussian and Uniform noise was added to the standard clip according to the method used by

ópez-Rubio, with four levels of each type [11] . Jitter was simulated using a soft rubber mallet

o strike the supporting tripod at regular intervals to induce vibrations. This was done to mimic

oth instability in the camera support as well as residual alignment differences that remain after

otion compensation during pre-processing. 

The two types of sudden illumination changes which are common in indoor settings come

rom switching overhead lights or drawing curtains (global change), and from opening and clos-

ng room doors which lead to an external light source (directional or local change). This was

imulated by dimming and brightening all lights at once (global change), or by doing so with

he lights from one direction only (local change). In contrast, the effect of shadows from uneven

llumination was simulated by keeping the lights from one direction turned off throughout the

lip duration. There was no temporal variance in the illumination, compared to the local change

here the lighting was altered partway through the clip. 

The requirement for background initialization was simulated by trimming the standard clip to

how the subject in a stable stance (no initialization), or with two seconds of clear background

short initialization) at the start. In both cases, the comparison period was shifted to 10 s after

he clip start to align with standard clip processing. 

Simple color camouflage was simulated by using a cream-colored background screen, which

as similar in color to the subject’s skin. The subject also changed clothing to match the back-

round color. This color was not exactly matched as it would be an unfair test since even hu-

ans would have difficulty differentiating the subject’s outline under such conditions. For com-

lex color camouflage, this was simulated by removing the background screen to show a typical

ndoor scene under daylight. The lighting for the subject was still controlled using the same

idirectional studio lights, and portions of the background were of similar color to the subject’s

lothing, skin, and hair. 

For the final three factors, no subject was present and the ‘ground truth’ was set to complete

ackground. Simulation of ‘Ghost Images’ was achieved by draping a complex patterned cloth

ver part of the background screen and dropping it at the 10 s mark. The comparison period

as adjusted to start one second after the cloth completely left the image frame to test whether

he algorithm could rapidly remove ‘Ghosts’. 

Simulation of ‘Sleeping Foreground’ was done by lowering the same patterned cloth over part

f the background screen at the 10 s mark. The comparison period was set to start 10 s after

he cloth was completely lowered and had achieved a stable position. This was to assess the

lgorithm’s tendency to absorb stationary foreground objects into the background. A ‘Dynamic

ackground’ was simulated using a running stand fan placed in the same position where the

ubject would normally stand. This was to test the algorithm’s ability to cope with background

bjects that display regular repetitive motion. 
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2.5. Comparison results 

The results for comparison testing of efficacy and processing speed for the algorithms in the

‘BGSLibrary’ were summarized in Table 3 and Table 4 respectively. The measure of segmenta-

tion efficacy used was the F1 score, except for the three factors without a foreground subject

where the FPR was used instead. Efficacy was calculated on a per-frame basis and the results

displayed in each cell were for the 10th centile, median, and 90th centile frames, thus showing

both centrality and spread. Processing speed was calculated as the average for all frames during

the comparison period. 

2.6. Assessment criteria 

The results were assessed according to the following criteria: 1) high efficacy to properly seg-

ment the head and upper body, 2) consistency, 3) processing speed short enough for real-time

segmentation, and 4) tolerance to the factors tested ( Table 5 ). Good segmentation is defined as a

well-demarcated outline for the foreground object with at most small areas that are incorrectly

classified but can be separated from the true foreground. Adequate segmentation is defined as

a recognizable outline for the foreground object, with larger areas of incorrect classification that

can still be separated from the foreground. From Fig. 2 , it can be estimated that good segmenta-

tion corresponds to a F1 score of 0.95 and above, while adequate segmentation corresponds to

a F1 score from 0.80 to 0.95. 

To satisfy the criteria for high efficacy, the median F1 score should be 0.95 and above under

standard processing conditions, while the segmentation should be consistent enough that the

10th centile F1 score does not go below 0.80. For full real-time processing with a frame rate of

30 fps, each frame should require a maximum of 33 ms. With a more relaxed constraint of 10

fps if the intervening frames can be motion interpolated, the segmentation time for each frame

should be a maximum of 100 ms. An algorithm is considered to tolerant to the factor tested if it

can still segment adequately with a median F1 score above 0.80. 

To establish a cutoff for the ‘Ghost Images’ and ‘Sleeping Foreground’ factors, we need to refer

to Table 3 where the maximum FPR is approximately 0.45, corresponding to the full coverage of

the patterned cloth over the background. We can then assume that an FPR of less than 5% of the

maximum value at the 90th centile (FPR = 0.020) indicates that the tested algorithm can rapidly

deal with ‘Ghosts’ which are no longer visible during the whole comparison period. Similarly,

an FPR less than 5% maximum at the 10th centile indicates that the static foreground object has

started to integrate into the background during the comparison period. 

For the ‘Dynamic Background’ factor, the highest median FPR is for the ‘Simple Gaussian’ and

‘Fuzzy Gaussian’ algorithms. On viewing both, the ‘Fuzzy Gaussian’ clip has less noise and the

maximum FPR representing the area of the moving fan blades can be derived from integrating

the segmented foreground over the comparison period of the clip and removing pixel noise with

a small kernel median filter. This value was found to be 0.0563, and we can similarly assume

that a median FPR less than 5% of this value (FPR = 0.003) indicates that the algorithm can ade-

quately deal with dynamic backgrounds by removing the spinning fan blades. 

2.7. Limitations 

There are several limitations to the methodology of the comparison testing. The first is that

the ‘ground truth’ could not be consistently derived from the depth data since the disparity

maps were coarse and unstable, even after extensive pre-processing with temporal and spatial

smoothing with hole-filling. While the use of automated GrabCut improved this significantly,

there was still a need to manually inspect each frame for quality. Areas which were prone to

incorrect segmentation had to be marked out and corrected manually ( Fig. 1 ). This imposed a
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estriction on the amount of movement the subject could make, since excessive motion would

equire the markings to be updated every few frames instead of being allowed to propagate for

uch longer. 

The next limitation is that the camera was static and true motion was not tested. This is

mportant since many use cases require a mobile camera. However, this was unavoidable since

he quality of the disparity maps would deteriorate even further with movement. 

Another limitation is that while the ‘memory effect’ was demonstrated for several of the

outines, it is possible that extending the test period may have detected it in more of them.

xamination of the full clips for the routines which satisfied the stability criterion did indicate

hat towards the end of the clips there was deterioration in segmentation efficacy for some of

hem. 

One more limitation is that there is only a single subject in all the video clips. While this

oes make the testing conditions consistent and improves the comparability of the results be-

ween factors, having more subjects with different combinations of hair and skin color will make

he results more generalizable. 

The final limitation is that only temporal segmentation routines were tested formally. It is

ossible that the non-temporal routines may eventually prove to be more suited to head and

pper body segmentation. There is however no equivalent to the ‘BGSLibrary’ for non-temporal

lgorithms, and this is a gap in the current body of research. 

.8. Future directions 

The first step would be to use a better depth camera to retake the test video clips, and the

pcoming Intel RealSense L515 which uses solid state light detection and ranging (LiDAR) tech-

ology seems to be a big improvement on the D435 model used in this study. It has a depth

rror standard deviation of only 2.5 mm at 1 m distance from the target, gives cleaner contour

utlines, has a higher resolution, and scans fast enough to cope with motion. This would remove

he need for manual intervention when determining the ‘ground truth’ and would allow testing

f both subject and camera motion. 

Another step would be to gather and test non-temporal segmentation algorithms in a new

ibrary using the same methodology. Although it will require a lot of effort, this is necessary if

e wish to identify suitable routines for head and upper body segmentation, since the routines

rom the ‘BGSLibrary’ are poorly suited for this. 

The third step would be to expand the series of clips to cover background segmentation of

he face only, since some use cases do not require the whole head and upper body. Examples of

his would be face expression analysis and computation of facial action units. 
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