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This dataset consists of video files that were created to test
the accuracy of background segmentation algorithms con-
tained in the C++ wrapper ‘BGSLibrary’ v3.0.0 developed by
Andrews Sobral. The comparison is based on segmentation
accuracy of the algorithms on a series of indoor color-depth
video clips of a single person’s head and upper body, each
highlighting a common factor that can influence the accu-
racy of foreground-background segmentation. The algorithms
are run on the color image data, while the ‘ground truth’ is
semi-automatically extracted from the depth data. The cam-
era chosen for capturing the videos features paired color-
depth image sensors, with the color sensor having specifi-
cations typical of mobile devices and webcams, which cover
most of the use cases for these algorithms. The factors cho-
sen for testing are derived from a literature review accom-
panying the dataset as being able to influence the efficacy
of background segmentation. The assessment criteria for the
results were set based on the requirements of common use
cases such as gamecasting and mobile communications to al-
low the readers to make their own judgements on the merits
of each algorithm for their own purposes.
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Specifications Table

Subject

Specific subject area
Type of data

How data were acquired

Data format
Parameters for data collection

Description of data collection

Computer Science - Computer Vision and Pattern Recognition
Foreground-background segmentation of the head and upper body.

Table Figures Video clips

Intel RealSense Depth Camera D435 featuring a global shutter, large color
pixels of 3 um square, and a depth sensor using disparity mapping from stereo
infra-red cameras. Custom acquisition software found at GitHub repository
https://github.com/scloke/SegTest. Testing was performed on a system using
Microsoft Windows 10 with a four-core Intel Xeon E3 processor running at

3.5 GHz using Visual Basic and Visual C++ 2019 in a 64-bit address space with
32 GB RAM allocated and an NVIDIA GeForce GTX 1060 6GB graphics card
installed. Image processing was done using the libraries in EmguCV 3.2.0 and
Accord.Net 3.8.0. The system speed was rated at 475 million floating points per
second (MFLOPS) using the Intel processor diagnostic tool 2.10, 64-bit version.
Raw Analyzed

The following camera settings were used: structured light projector on,
autofocus enabled, autoexposure disabled, automatic white balancing disabled,
backlight compensation disabled, and powerline frequency compensation
disabled. Capture resolution was 640 x 480 pixels at 30 frames per second
(fps) for color data and 90 fps for depth data, with the depth data processed
using temporal and spatial smoothing with hole-filling to reduce artefacts.
Synthetic paired color and depth frames were motion interpolated from the
source frames to generate video clips without any inter-frames. The clips were
then saved to Audio Video Interleave (AVI) files using FFMPEG, with
dimensions of 640 x 480 pixels at 30 fps. Color clips were encoded using the
lossy MPEG-4 Part 2 codec at a bit rate of 4 megabit per second (Mbps) except
for the noise clips which were encoded at 12 Mbps to preserve the noise
artefacts. The clips were captured at night under controlled bidirectional
diagonal and side lighting with Philips Hue White & Color Ambiance bulbs set
to the ‘Energize’ preset with a color temperature of 6410K, calculated from the
Mired Color Temperature supplied by the Philips Hue Software Development
Kit. The camera was placed 120cm in front of either a plain green screen
(standard), a cream-colored screen (camouflage), or with the screen removed
(complex), having the subject standing 60 cm in front of the screen, with no
intervening objects. This resulted in a foreground area that was consistently
about half the total background size, which is sufficiently balanced to not
distort the measures of segmentation efficacy, and yet not too big which
would prevent the face detection routine from working properly.

One of the chosen factors listed in Table 2 was then applied. All clips were

40 s long with the first 10 s showing just the background. The subject entered
the scene at the 10 s mark and stood in the center of the frame while keeping
a neutral expression, with the face and upper body fully visible. The
comparison period was set to all frames between the 20 and 40 s mark
inclusive. The brightness for all clips was normalized by applying the
appropriate constant gamma correction to keep the average pixel brightness
throughout the clip at 50% of the maximum brightness. For lighting change
factors, the lighting conditions were altered mid-way through the comparison
period. For the ‘Ghost Images’ clip, the comparison period was set to one
second after the transition. This is because most algorithms for detection and
removal of moving objects, ghosts, and shadows operate in less than a second.
The comparison period for the ‘Sleeping Foreground’ clip was set to 10 s after
the transition to allow enough time for the object to be incorporated into the
background model. In clips where a subject was present, the face location was
determined using libfacedetection by Shiqi Yu, and a seed point and depth
obtained from the center of the bounding rectangle. The ‘ground truth’

(continued on next page)
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foreground was then extracted from a floating range flood fill starting at the
seed point, with a maximum difference of 2 cm between adjacent pixels. Since
the depth data from disparity mapping is coarse and lacks edge accuracy, an
automated GrabCut algorithm was used to refine the edges of the foreground.
The ‘ground truth’ clips were verified by visually inspecting at 4 fps, and
adjustments were made with manual GrabCut assistance where the areas of
inaccuracy exceeded 5% of the foreground (Fig. 1). For clips without a subject,
the depth data was ignored and the ‘ground truth’ foreground was set to zero.
The segmentation foreground was obtained by processing the color data using
the appropriate ‘BGSLibrary’ algorithm with default settings, except for the
‘GMG’ and ‘GMM KaewTraKulPong’ routines which require an earlier version of
OpenCV. To speed up processing, the segmentation routines were run in four
isolated parallel threads in ‘release’ mode. The ‘ground truth’ and segmentation
clips were saved to AVI files encoded with the lossless FFV1 codec.

Data source location Institution: University of Auckland City/Town/Region: Auckland Country: New
Zealand Latitude and longitude (and GPS coordinates, if possible) for collected
samples/data: —36.86, 174.77

Data accessibility With the article (Figures and Tables) Repository name: Mendeley Data Data
identification number: 10.17632/yw5k28z97d.1 Direct URL to data:
http://dx.doi.org/10.17632/yw5k28z97d.1 (Video clips)

Value of the Data

» While there have been many routines developed for foreground-background portrait segmen-
tation, evaluation of these routines is usually done with video clips under standard condi-
tions. Little is known about their performance under some of the factors which affect seg-
mentation efficacy.

« This data will be useful to researchers who are developing and testing algorithms for portrait
segmentation.

+ Color and ‘ground truth’ video clips are available for each of the factors described. A new
algorithm can be tested by applying it to the color video clip and generating the segmented
video. This can then be compared against the ‘ground truth’ to obtain any of the metrices of
segmentation efficacy.

« Alternatively, the custom software available at https://github.com/scloke/SegTest can be
adapted to run the efficacy test automatically, capture new clips, and generate corresponding
‘ground truth’ clips.

» The custom software also contains C++ headers which can be used to directly interface
OpenCV image structures with the algorithms in BGSLibrary’.

1. Data Description

Background segmentation is the process whereby an object of interest in the foreground of
an image, often a person, is separated from the background. Typical applications are news and
weather casting, game livestreaming, video conferencing and chat software, photo augmentation
(Snapchat filters and beauty apps), and technical help desks [1].

Accurate segmentation is quite difficult to achieve, and the method of choice depends on the
application and the factors governing the process. In this article, the term ‘factor’ is defined as a
characteristic of a particular use case that will influence the efficacy of foreground-background
segmentation of an algorithm.

The data consists of a comparison of background segmentation algorithms contained in the
C++ wrapper ‘BGSLibrary’ v3.0.0 developed by Andrews Sobral [2, 3]. The comparison is based
on segmentation efficacy and speed of the algorithms when applied on a series of indoor color-
depth video clips of a single person’s head and upper body, each highlighting a common factor
as determined from the literature review [4]. The algorithms are run on the color image data,
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Raw ‘Ground Truth’ Overlayed on the Color Image Corrected ‘Ground Truth’

Fig. 1. Manual GrabCut correction of raw 'ground truth’ images.

Note: The raw ‘ground truth’ image on the left shows a filling defect on the right hairline and an incorrectly segmented
part of the desk adjacent to the left shoulder. The colored polygons manually mark out areas for the GrabCut algorithm
to correct, being region of interest (orange), true foreground (white), and true background (black).

while the ‘ground truth’ is semi-automatically extracted from the depth data. The purpose of
this article is to provide a reference resource for those who are developing applications that
require background segmentation of the head and upper body.

Fig. 1 demonstrates the process whereby the automatic extraction of ‘ground truth’ images
is corrected after inspection of the video frames at 4 fps with changes made using a manual
GrabCut process. In previous segmentation datasets, the ‘ground truth’ was extracted manually
with teams of data processors hand-drawing boundaries between domains [5]. This was not
feasible for the present dataset given the thousands of individual frames for the video clips, so
a semi-automated process was used to refine the raw ‘ground truth’ images obtained from the
depth camera.

Fig. 2 shows a representative frame at the mid-point of the analysis period from videos after
segmentation with some of the BGSLibrary algorithms under standard conditions, with median
F1 scores shown. This is so that visual inspection can pick up large areas of over and under-
segmentation, and whether these areas are well demarcated from the main head and body
segment. From these we can see that only the GMM Zivkovic and KDE algorithms have well-
defined outlines with only small areas that have been misclassified, thus establishing the cut-
off for good segmentation at an F1 score of 0.95 and higher. Similarly, the Eigenbackground,
Adaptive-Selective Background Learning, and Adaptive SOM routines gave recognizable outlines
for the head and upper body, with misclassified areas that are clearly separated from the main
region. Hence, this establishes the cutoff for adequate segmentation at an F1 score of 0.80-0.95.

Table 1 shows a classification scheme for segmentation methods based on the approach used,
which was derived from a new systematic literature review [4]. Table 2 lists the factors which af-
fect segmentation efficacy that were obtained from the same review. The folders and files in the
data repository were named using the labels in the second table. While there is a rich literature
source for segmentation methods, and some of these articles provide good in-class comparisons
with related routines, there is a need for an updated and comprehensive cross-class review for
this topic, the last of which was published more than five years ago [3, 6-9].

Table 3 and Table 4 give the summary results for efficacy and processing time respectively for
each of the algorithms under the conditions listed in Table 2. The efficacy results are calculated
frame-by-frame and the results listed consist of the median value with a 10-90th percentile
range. Processing time is given as the average for all frames during the assessment period.

Table 5 gives a qualitative assessment of each routine’s performance according to a set of
criteria. This table allows routines to be chosen based on the requirements for a particular use
case. It is expected that most readers would utilize this table when evaluating the merits of each
routine, with the previous two tables included for reference if further details are needed.
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0.71 Pixel-Based
Adaptive Segmenter

0.90 Adaptive-Selective
Background Learning

F3

0.93 Adaptive SOM

0.98 GMM Zivkovic 2 0.99 KDE 1.00 Ground Truth

Fig. 2. Comparison of segmentation results with the 'ground truth’ for the clip taken under standard conditions at the
15 s mark, showing median F1 scores (Table 3).

1.1. Video clips

The video clips in the Mendeley Data repository are organized into folders with names ac-
cording to the labels in Table 2. The individual clips are named according to the segmentation
methods listed in Table 1. Tables 3 and 4 give the segmentation efficacy and processing time for
each method, with one of the factors applied. Table 5 gives an assessment of the segmentation
algorithms according to a set of criteria.

The ‘ground truth’ video clips were saved to AVI files encoded with the lossless FFV1 codec
so that the individual frames can be extracted for analysis. These files can be viewed using VLC
media player (cross-platform), Media Player Classic (Windows 10), or any player which can use
the FFV1 video codec.

2. Experimental Design, Materials and Methods
2.1. Common factors affecting segmentation efficacy

There are several common factors which affect indoor segmentation efficacy: 1) image noise,
2) camera jitter and movement, 3) automatic camera settings, 4) illumination and shadows, 5)
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Table 1
Classification of foreground-background segmentation methods for the head and upper body.

Non-Temporal
Histogram Thresholding
Cluster-Based
Region-Based
Deep Learning

Graph-Cut
Active Contours
Depth Maps
Temporal
Complex recursive
Single Gaussian Gaussian Average Simple
Distributions Gaussian
Gaussian GMM Stauffer GMM
Mixture Models KaewTraKulPong GMM Zivkovic
1 GMM Zivkovic 2 GMM
Bender
Non-Parametric GMG VuMeter KDE IMBS KNN

Background Subtractor
SuBSENSE Pixel-Based Adaptive
Segmenter ViBe Codebook
PAWCS

Histogram Texture BGS Multi-Layer BGS

Density

Estimates

Spatial Texture-Based Foreground

Correlates Detection with MRF MultiCue
BGS LOBSTER Eigenbackground
SL-PCA

Fuzzy Fuzzy Sugeno Integral Fuzzy

Integration Choquet Integral Fuzzy
Gaussian Type-2 Fuzzy
GMM-UM Type-2 Fuzzy
GMM-UV Type-2 Fuzzy
GMM-UM with MRF Type-2
Fuzzy GMM-UV with MRF

Self-Organizing Adaptive SOM Fuzzy Adaptive

Neural SOM

Simple recursive Weighted Moving Mean
Weighted Moving Variance
Adaptive Background Learning
Adaptive-Selective Background
Learning Temporal Mean
Adaptive Median Temporal
Median Sigma Delta
Non-recursive Static Frame Difference Frame

Difference

Note: The list of segmentation methods is taken from the C++ wrapper ‘BGSLibrary’ v3.0.0 by Andrews Sobral [2, 3].
Some methods fall into more than one class or utilize a hybrid approach. In these cases, the class listed best describes
the novelty of the approach. This library contains only temporal segmentation methods since it is designed to process
video sequences.

background initialization, 6) color camouflage, and 7) ghost images, sleeping foregrounds, and
dynamic backgrounds [10-12].

2.2. Algorithm comparison

This experiment was carried out to assess the suitability of the algorithms in the C++ wrap-
per ‘BGSLibrary’ v3.0.0 developed by Andrews Sobral for head segmentation, given that it is a



S.C. Loke, B.A. MacDonald and M. Parsons et al./Data in Brief 33 (2020) 106385 7

Table 2
Simulated factors and modifications to the capture and processing conditions.
Factor Clips Labels Capture and Processing Conditions
None 1 STD - Standard capture conditions
Gaussian Noise 4 GAU10 » Gaussian noise added independently to each color channel with a
GAU20 mean of zero, standard deviation of 10, 20, 30, 40, and pixel values
GAU30 clipped to between 0 and 255
GAU40
Uniform Noise 4 UNIO5 « Uniform noise added independently to each color channel,
UNI10 distributed uniformly between 0 and 255, and replacing the value
UNI15 with a probability of 5%, 10%, 15%, and 20%
UNI20
Camera Jitter 1 JIT « Jitter simulated by periodically vibrating the supporting tripod
with a soft mallet
[llumination 2 GLO « Global illumination changes by brightening lights
LOC « Local illumination changes by turning half the lights on one side
off
Shadows 1 SHA - Half the lights on one side were turned off throughout the clip
Background Initialization 2 INIOO « Zero initialization was simulated by trimming the clip to show the

INIO2 subject at the start
Short initialization was simulated by trimming the first portion of
the clip to show 2 s of clear background

Color Camouflage 2 CAMSM « Cream-colored screen used for simple camouflage
CAMCX « No screen used, and background shows a house interior in daylight
Ghost Images 1 GHO « Patterned cloth is layered over part of the background at the start,
and dropped at the 10 s mark
« No subject is present, and the depth data is ignored
- Comparison period begins one second after the patterned cloth
completely leaves the image
Sleeping Foreground 1 SLP « Patterned cloth is lowered to cover part of the background at the
10 s mark
« No subject is present, and the depth data is ignored
« Comparison period begins 10 s after the patterned cloth is lowered
Dynamic Background 1 DYN - A stand fan is placed in front of the background and turned on

.

No subject is present, and the depth data is ignored
Comparison period begins 10 s after the clip starts

* Where the depth data is ignored, the comparison period starts one second after the transition for the factor or 10 s
after the clip starts where no transition occurs.
Note: These factors were chosen based on the literature review.

mature library that has been continually updated over the past eight years and now includes
over 40 routines [2, 3].

The camera chosen for this features paired color-depth image sensors, with the color sensor
having specifications typical of mobile devices and webcams, which cover most of the use cases
for these algorithms. The factors chosen for testing are derived from the literature review as
being able to influence the efficacy of background segmentation. The assessment criteria for
the results were set based on the requirements of common use cases such as gamecasting and
mobile communications to allow the readers to make their own judgements on the merits of
each algorithm for their own purposes.



Table 3
Efficacy of segmentation algorithms from the ‘BGSLibrary’ under specific factors as F1 scores or false positive rates.

Each cell gives efficacy as:10th F1 Score False Positive Rate
CentileMedian90th Centile STD  GAU10 GAU20 GAU30 GAU40 UNIO5 UNI10 UNI15 UNI20 JIT GLO LOC SHA INIOO INIO2 CAMSM CAMCX GHO SLP DYN
Frame Difference 0.000 0.593 0.593 0.592 0593 0.113 0.119 0119 0.114 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

0.002 0.603 0.603 0.603 0.603 0.125 0.128 0.128 0.125 0.008 0.000 0.000 0.000 0.001 0.001 0.002 0.001 0.002 0.000 0.000
0.027 0.634 0.634 0.634 0633 0.175 0168 0.169 0175 0.105 0.018 0.113 0118 0.003 0.004 0.214 0127 0.002 0.004 0.001
Static Frame Difference 0.862 0.832 0.838 0.833 0.839 0.792 0.795 0.796 0.797 0.822 0.477 0476 0.758 0.254 0.869 0.601 0473 0.452 0424 0.002
0.881 0.848 0.852 0.849 0.850 0.808 0.809 0.810 0.812 0.861 0.801 0.932 0.800 0.285 0.879 0.664 0485 0.453 0432 0.008
0.900 0.863 0.871 0.865 0.867 0.822 0.823 0.825 0.826 0.884 0.809 0.944 0809 0.371 0892 0.674 0488 0455 0433 0.012
Weighted Moving Mean 0.000 0.463 0.464 0.463 0464 0.028 0.028 0.028 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
0.000 0470 0471 0471 0471 0.031 0.032 0.031 0.031 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.014 0494 0493 0495 0494 0.046 0.047 0.048 0.047 0.058 0.002 0.070 0.069 0.001 0.001 0.135 0.085 0.003 0.001 0.000
Weighted Moving Variance 0.000 0.564 0.565 0.565 0.565 0.040 0.042 0.042 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
0.000 0.572 0.572 0.572 0572 0.045 0.045 0.045 0.044 0.004 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.000
0.019 0.582 0.582 0.582 0.582 0.066 0.067 0.069 0.067 0.073 0.002 0.120 0.109 0.001 0.001 0.182 0108 0.003 0.001 0.000
GMM Zivkovic 1 0.000 0.518 0.518 0.518 0.518 0.041 0.042 0.042 0.042 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
0.003 0.548 0.548 0.548 0.547 0.048 0.048 0.048 0.048 0.005 0.001 0.002 0.002 0.002 0.002 0.004 0.003 0.000 0.000 0.000
0.042 0.620 0.621 0.620 0.621 0.092 0.090 0.085 0.092 0.090 0.039 0.152 0119 0.006 0.006 0.204 0.115 0.001 0.009 0.001
Adaptive Background Learning 0.018 0.598 0.598 0.599 0.599 0.085 0.086 0.087 0.086 0.023 0.000 0.007 0.008 0.014 0.016 0.018 0.014 0.003 0.000 0.001
0.045 0.613 0.613 0.613 0613 0.114 0115 0.115 0114 0.066 0.007 0.035 0.074 0.027 0.032 0.059 0.040 0.003 0.004 0.001
0.792 0.773 0.776 0.777 0.777 0.741 0.744 0.742 0.743 0.750 0.659 0.772 0.764 0.055 0.060 0.710 0.701  0.004 0.092 0.002
Adaptive-Selective Background 0.888 0.883 0.884 0.882 0.883 0.875 0.876 0.876 0.877 0.852 0470 0.516 0.859 0.057 0.883 0.768 0.616 0.439 0.403 0.000

Learning 0.903 0.898 0.899 0.898 0.900 0.896 0.896 0.896 0.896 0.871 0.755 0.878 0.879 0.071 0.893 0.807 0.619 0.440 0.409 0.001
0924 0916 0917 0917 0917 0919 0920 0.921 0.920 0.907 0.787 0907 0.907 0100 0.899 0.844 0.641 0.442 0415 0.001
KNN Background Subtractor 0.000 0.561 0.561 0.561 0.561 0.031 0.032 0.032 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.002 0.576 0.576 0.576 0.576 0.037 0.038 0.038 0.037 0.004 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
0.021 0.631 0.628 0.631 0.630 0.077 0.077 0.075 0.076 0.077 0.022 0.047 0.072 0.003 0.003 0.128 0.093 0.001 0.004 0.001
Adaptive Median 0.593 0464 0.464 0463 0464 0.566 0.568 0.569 0.571 0.589 0.000 0.109 0.001 0.003 0.010 0.045 0.559 0.001 0.000 0.000
0.743 0.634 0.632 0.632 0.635 0.730 0.731 0.729 0.731 0.750 0.000 0.686 0.501 0.004 0.615 0.609 0.681 0.132 0.145 0.000
0.835 0.773 0.777 0.777 0.776 0.825 0.826 0.825 0.826 0.818 0.532 0.757 0.677 0.009 0.724 0.687 0.746 0.386 0.340 0.000
GMM Stauffer 0.012 0.605 0.606 0.606 0.606 0.034 0.034 0.034 0.035 0.026 0.001 0.009 0.010 0.006 0.007 0.013 0.007 0.000 0.001 0.000
0.039 0.641 0.642 0.640 0.642 0.059 0.059 0.060 0.060 0.069 0.011 0.044 0.077 0.010 0.015 0.049 0.033 0.001 0.005 0.000
0.557 0.815 0.813 0.819 0.818 0.749 0.753 0.746 0.754 0.673 0.739 0.715 0.714 0.029 0.032 0.762 0483 0.003 0.148 0.000
GMM Zivkovic 2 0.015 0.574 0.574 0.574 0.574 0.042 0.042 0.041 0.041 0.045 0.015 0.129 0.019 0.008 0.010 0.033 0.011 0.001 0.001 0.000
0.979 0.964 0966 0.965 0.965 0.951 0951 0.953 0950 0.965 0.742 0.983 0.862 0.018 0.026 0.825 0465 0.428 0.416 0.000
0.986 0.967 0.969 0.967 0.968 0.955 0.955 0.956 0954 0.980 0.762 0.985 0.883 0.082 0987 0.856 0490 0.436 0.422 0.000

(continued on next page)
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Table 3 (continued)

Each cell gives efficacy as:10th F1 Score False Positive Rate
CentileMedian90th Centile STD  GAU10 GAU20 GAU30 GAU40 UNIO5 UNI10 UNI15 UNI20 JIT GLO LOC SHA INIOO INIO2 CAMSM CAMCX GHO SLP DYN
Temporal Mean 0.000 0.454 0454 0.454 0454 0.019 0.019 0.019 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

0.000 0465 0.465 0465 0465 0.021 0.022 0.022 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
0.005 0.487 0.488 0.488 0.487 0.033 0.031 0.031 0.033 0.027 0.000 0.017 0.018 0.000 0.000 0.056 0.036 0.002 0.000 0.000
Gaussian Average 0.008 0.492 0.492 0493 0493 0.018 0.018 0.018 0.018 0.023 0.000 0.010 0.009 0.007 0.007 0.031 0.010 0.001 0.000 0.000
0.661 0.609 0.613 0.611 0.611 0.644 0.640 0.646 0.644 0.713 0109 0.512 0.547 0.012 0.026 0.645 0.667 0.002 0.038 0.000
0.884 0.877 0.877 0.878 0.877 0.881 0.880 0.882 0.881 0.869 0.644 0.812 0.802 0.031 0516 0.784 0793 0.405 0.383 0.000
Temporal Median 0.006 0.550 0.550 0.550 0.550 0.015 0.015 0.015 0.015 0.008 0.000 0.001 0.001 0.003 0.005 0.008 0.003 0.000 0.000 0.000
0.018 0.560 0.560 0.560 0.560 0.026 0.027 0.026 0.026 0.031 0.001 0.011 0.024 0.010 0.011 0.034 0.024 0.000 0.001 0.000
0.937 0.940 0.941 0.940 0941 0.937 0939 0.939 0935 0.909 0463 0.857 0.792 0.022 0.027 0.785 0.795 0.000 0.274 0.000
Eigenbackground SL-PCA 0.854 0.835 0.838 0.838 0.839 0.820 0.828 0.829 0.824 0.797 0.486 0.512 0.802 0.211 0.849 0.680 0487 0.455 0.423 0.000
0.872 0.852 0.854 0.856 0.854 0.843 0.844 0.845 0.842 0.835 0.887 0.956 0.837 0.240 0.858 0.784 0498 0.457 0433 0.000

Texture BGS 0:529 0:178 0:172 0:172 0:168 0:238 0:234 0:257 0:261 0:530 0:197 0:491 0:572 0:017 0:529 0:651 0:646 0:423 0:407 0:000
Type-2 Fuzzy GMM-UM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Type-2 Fuzzy GMM-UV 0.054 0.696 0.693 0.696 0.694 0.370 0377 0.374 0369 0.101 0.028 0.048 0.066 0.031 0.040 0.060 0.036 0.001 0.015 0.004
Type-2 Fuzzy GMM-UM with MRF 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0.000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000 0:000
Type-2 Fuzzy GMM-UV with MRF 0:011 0:522 0:524 0:523 0:524 0:035 0:033 0:034 0:034 0:025 0:002 0:008 0:012 0:006 0:007 0:009 0:006 0:000 0:002 0:000
Fuzzy Sugeno Integral 0:100 0:096 0:099 0:097 0:098 0:094 0:093 0:094 0:095 0:102 0:150 0:078 0:052 0:006 0:024 0:147 0:041 0:000 0:008 0:000
Fuzzy Choquet Integral 0125 0173 0174 0174 0173 0.128 0127 0.127 0127 0.119 0174 0.099 0.064 0.008 0.054 0.160 0.050 0.001 0.012 0.000

Simple Gaussian 0.719 0.708 0.707 0.708 0.714 0.686 0.687 0.691 0.692 0.693 0.486 0486 0.690 0.307 0.779 0.611 0482 0462 0433 0.005

(continued on next page)
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Table 3 (continued)

Each cell gives efficacy as:10th F1 Score False Positive Rate
CentileMedian90th Centile STD  GAU10 GAU20 GAU30 GAU40 UNIO5 UNI10 UNI15 UNI20 JIT GLO LOC SHA INIOO INIO2 CAMSM CAMCX GHO SLP DYN
Fuzzy Gaussian 0.738 0.720 0.721 0.720 0.725 0.700 0.699 0.703 0.703 0.713 0.495 0.465 0.707 0.287 0.786 0.605 0483 0461 0.431 0.004
0.782 0.761 0.768 0.762 0.765 0.734 0.736 0.739 0.737 0.774 0916 0.833 0.767 0.320 0.800 0.669 0.495 0464 0.438 0.011
0.807 0.783 0.787 0.784 0.787 0.754 0.755 0.757 0.757 0.802 0941 0.856 0.788 0.372 0816 0.704 0497 0472 0450 0.016
GMM Bender 0.034 0.625 0.626 0.626 0.625 0.101 0.101 0.101 0.101 0.048 0.003 0.019 0.030 0.024 0.026 0.035 0.019 0.000 0.002 0.001
0.071 0.672 0.673 0.673 0.673 0.156 0156 0.158 0.155 0.102 0.027 0.078 0.129 0.044 0.048 0.116 0.057 0.001 0.015 0.001
0.927 0.944 0945 0.944 0946 0.892 0.894 0.894 0.889 0.872 0.795 0954 0.873 0.082 0.079 0.770 0493 0.003 0411 0.002
Adaptive SOM 0.859 0.910 0910 0.908 0910 0.878 0.879 0.877 0.875 0.808 0.485 0.600 0.818 0.108 0.947 0.824 0.484 0452 0.424 0.000
0.927 0.961 0961 0.959 0960 0.949 0951 0.950 0.950 0.907 0.807 0.971 0.884 0.129 0950 0.943 0492 0453 0.428 0.000
0.935 0.968 0.967 0.966 0.966 0.964 0.965 0.965 0964 0.930 0.875 0.976 0.894 0.169 0952 0.948 0494 0455 0.429 0.000
Fuzzy Adaptive SOM 0.897 0.943 0942 0.940 0944 0.881 0.888 0.889 0.880 0.830 0.480 0.528 0.808 0.130 0988 0.798 0479 0452 0.422 0.000
0919 0.954 0.955 0.953 0956 0.909 0.906 0.906 0.905 0.868 0.807 0.959 0.846 0.164 0989 0.916 0490 0453 0.432 0.000
0934 0.964 0965 0.963 0964 0.923 0919 0.919 0918 0.903 0.821 0.968 0.852 0.240 0.990 0.928 0493 0454 0.433 0.000
Texture-Based Foreground 0.024 0.714 0.715 0.716 0.715 0.535 0.537 0.534 0.524 0.094 0.026 0.022 0.064 0.002 0.012 0.046 0.005 0.015 0.001 0.000
Detection with MRF 0111 0.744 0.743 0.744 0.745 0.615 0.603 0.611 0.608 0.192 0.068 0.118 0243 0.015 0.042 0.145 0.078 0.036 0.007 0.001
0499 0.902 0.894 0.910 0921 0.687 0.698 0.693 0.681 0.608 0.401 0.685 0.710 0.057 0.108 0.694 0.745 0.121 0.396 0.001
Multi-Layer BGS 0.000 0.239 0237 0.240 0.237 0.033 0.029 0.031 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.001 0.302 0.298 0.300 0.303 0.062 0.061 0.060 0.061 0.003 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
0172 0.726 0.726 0.726 0.725 0.266 0.264 0.264 0.266 0.234 0.267 0.671 0.513 0.007 0.007 0.550 0.410 0.001 0.013 0.000
Pixel-Based Adaptive Segmenter 0.539 0.398 0.406 0.418 0.410 0.266 0.262 0.247 0.252 0.400 0326 0.238 0.000 0.000 0.456 0.084 0403 0174 0.313 0.000
0.714 0.577 0.582 0.596 0.584 0.440 0.443 0434 0432 0.678 0435 0.543 0119 0.000 0582 0.337 0.654 0275 0.366 0.000
0.978 0.944 0948 0.947 0952 0.790 0.789 0.788 0.794 0.966 0.759 0.977 0914 0.000 0.685 0.914 0.879 0.405 0.409 0.000
VuMeter 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.080 0.185 0.199 0.193 0193 0.071 0.069 0.071 0.074 0.217 0304 0.558 0.522 0.000 0.000 0.517 0370 0.000 0.005 0.000
KDE 0.492 0.650 0.661 0.657 0.655 0.505 0.507 0.505 0.504 0.406 0.079 0.881 0.821 0.110 0111 0.653 0.594 0.002 0.092 0.002
0.993 0.960 0.956 0.961 0.959 0.971 0972 0.972 0971 0.992 0932 0.990 0964 0.121 0993 0.959 0.854 0435 0.413 0.003
0994 0.972 0974 0.974 0973 0.979 0980 0.980 0979 0.994 0946 0.994 0969 0.132 0995 0.982 0.858 0439 0.414 0.004
IMBS 0.002 0.625 0.625 0.624 0.624 0.004 0.004 0.004 0.004 0.028 0.003 0.008 0.003 0.000 0.000 0.052 0.001 0.000 0.001 0.000
0.481 0.812 0812 0.814 0.818 0.908 0912 0911 0912 0.281 0103 0.945 0.831 0.008 0.017 0453 0.745 0.000 0.383 0.000
0997 0.993 0993 0.993 0993 0.996 0.996 0.996 0.996 0.997 0.984 0.995 0.959 0.029 0.049 0976 0.803 0453 0.412 0.000
MultiCue BGS 0.011 0.760 0.766 0.762 0.765 0.411 0381 0.402 0.431 0.183 0.000 0.000 0.214 0.000 0.213 0360 0.200 0.000 0.120 0.000
0.044 0915 0919 0.916 0905 0.887 0.886 0.883 0.890 0.320 0.238 0.874 0.859 0.000 0.287 0.883 0.617 0.000 0.352 0.000
0.929 0.931 0931 0.931 0932 0.922 0926 0.924 0925 0.928 0302 0.916 0912 0.031 0453 0911 0.651 0.000 0.420 0.000

(continued on next page)
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Table 3 (continued)

Each cell gives efficacy as:10th F1 Score False Positive Rate
CentileMedian90th Centile STD GAU10 GAU20 GAU30 GAU40 UNIO5 UNI10 UNI15 UNI20 JIT GLO LOC SHA INIOO INIO2 CAMSM CAMCX GHO SLP DYN
Sigma Delta 0.016 0.571 0.570 0.571 0.572 0.120 0.21 0.121 0.22 0.023 0.000 0.007 0.006 0.011 0.013 0.017 0.014 0.000 0.000 0.001
0.057 0.592 0591 0.591 0592 0168 0.171 0171 0.169 0.082 0.007 0.065 0.067 0.025 0.030 0.062 0.045 0.002 0.005 0.001
0.946 0.929 0931 0.927 0929 0.881 0.878 0.882 0.877 0958 0.743 0.970 0.900 0.055 0.061 0.928 0.851 0.093 0.276 0.002
SuBSENSE 0.002 0.531 0.560 0.529 0.534 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.543 0.000 0.004 0.014 0.000 0.000 0.000 0.000
0.004 0.546 0.568 0.542 0.544 0.000 0.000 0.000 0.000 0.020 0.734 0.000 0.709 0.000 0.005 0.017 0.000 0.000 0.000 0.000
0396 0.718 0.711 0.705 0.726 0.005 0.006 0.007 0.003 0.453 0.914 0.963 0.969 0.000 0.005 0.898 0194 0.000 0.142 0.000
LOBSTER 0.940 0.921 0924 0.921 0921 0.880 0.885 0.891 0.892 0.909 0.500 0.440 0.683 0.008 0918 0.646 0.666 0.368 0.375 0.000
0.973 0964 0.963 0.962 0964 0.945 0.947 0948 0945 0.956 0933 0.836 0.774 0.017 0950 0.706 0.739 0.400 0.399 0.000
0.986 0.985 0985 0.984 0985 0.983 0.983 0.984 0.983 0987 0.984 0918 0.872 0.042 0970 0.800 0789 0.420 0.406 0.000
PAWCS 0.000 0.539 0.533 0.532 0.521 0.000 0.000 0.000 0.000 0.000 0.317 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.111 0.606 0.625 0.598 0.593 0.000 0.000 0.000 0.000 0.094 0.927 0.108 0.122 0.000 0334 0.047 0.000 0.000 0.015 0.000
0.979 0.980 0981 0.981 0.980 0.089 0.300 0.442 0.094 0980 0.973 0.985 0.966 0.000 0.636 0.973 0.831 0313 0420 0.000
TwoPoints 0.545 0.346 0338 0.343 0341 0441 0462 0420 0418 0554 0407 0.348 0.026 0.011 0469 0306 0415 0.001 0.005 0.001
0.700 0.530 0.512 0.526 0.511 0.635 0.645 0.627 0.632 0.703 0.532 0.652 0276 0.017 0597 0.527 0629 0.012 0.134 0.001
0.860 0.796 0.791 0.795 0.793 0.821 0.821 0.818 0.818 0.853 0.720 0.819 0.797 0.032 0.678 0.787 0.725 0.235 0.365 0.001
ViBe 0.696 0.498 0.497 0.493 0496 0.617 0.608 0.632 0.635 0.689 0.460 0.348 0.561 0.002 0.667 0.607 0.660 0.036 0.018 0.000
0.728 0.594 0.592 0.595 0.596 0.705 0.707 0.708 0.709 0.739 0.586 0.723 0.669 0.004 0.693 0.688 0721 0.146 0.073 0.000
0.769 0.700 0.702 0.712 0.694 0.768 0.772 0.770 0.771 0.792 0.656 0.757 0.749 0.010 0714 0.770 0.755 0.284 0.246 0.000
Codebook 0.146 0.636 0.636 0.635 0.635 0.260 0.260 0.257 0.260 0.229 0.135 0.206 0221 0.43 0.125 0289 0129 0.004 0.044 0.002
0461 0.738 0.739 0.737 0.739 0.582 0.587 0.581 0.576 0.514 0.492 0.465 0.624 0.210 0.208 0.588 0.455 0.021 0246 0.005
0.728 0.797 0.797 0.796 0.802 0.742 0.746 0.747 0.742 0.717 0.867 0.737 0.751 0.318 0.390 0.731 0.568 0.469 0.454 0.010

Note: The segmentation algorithms are listed in Table 1 while the labels for the factors are listed in Table 2. Two routines were not formally tested (GMM KaewTraKulPong and GMG)
as they required an earlier version of OpenCV. The efficacy measures are calculated on a per-frame basis, and the three numbers listed in each cell are 10th centile, median, and 90th

centile.
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Table 4
Processing times of segmentation algorithms from the ‘BGSLibrary’ in milliseconds per frame.

Processing Time Per Frame (ms/frame)
STD GAU10 GAU20 GAU30 GAU40 UNIO5 UNI10 UNI15 UNI20 JIT GLO LOC SHA INIOO INIO2 CAMSM CAMCX GHO  SLP DYN

Frame Difference 23 14 23 34 53 75 10.1 146 22 19 2.0 1.6 4.4 1.8 1.9 19 2.6 5.0 5.9 6.6
Static Frame Difference 2.2 14 2.2 3.2 52 74 10.0 141 23 18 20 18 4.2 17 18 18 24 4.9 5.8 6.5
Weighted Moving Mean 20.6 169 188 207 227 250 299 395 216 167 187 167 203 179 17.8 17.2 18.4 213 229 242
Weighted Moving 56,5 550 516 564 591 70.1 777 965 556 505 543 501 55.8 531 53.1 523 54.0 57.7 647 617
Variance

GMM Zivkovic 1 12.7 15.2 14.6 16.4 15.9 16.0 16.9 18.7 13.0 12.7 12.5 11.6 134 124 11.9 12.8 13.9 13.6 14.6 14.4
Adaptive Background 141 14.9 13.8 16.4 18.3 275 304 37.0 134 15.0 13.7 141 18.1 15.2 14.9 15.8 17.3 19.4 21.8 221
Learning

Adaptive-Selective 6.4 53 6.5 8.6 105 155 186 247 6.0 5.9 6.1 51 8.7 5.5 5.6 6.1 6.3 9.4 119 114
Background Learning

KNN Background 50.2 61.4 53.8 53.6 54.5 549 56.1 770 56.3 47.7 51.6 50.0 48.7 49.3 52.0 521 521 49.6 514 49.5
Subtractor

Adaptive Median 4.0 4.6 4.2 4.5 49 5.8 6.9 9.2 43 41 41 4.0 4.5 41 43 4.2 44 4.8 5.1 5.2
GMM Stauffer 438 627 562 535 561 560 576 789 620 447 433 461 454 317 464 476 493 46.7 471 32.6
GMM Zivkovic 2 126 151 14.1 133 144 157 160 235 160 13.0 145 142 138 122 131 14.7 15.9 14.1 135 136
Temporal Mean 9.1 101 9.6 9.3 10.0 10.5 11.3 13.7 9.9 10.0 9.6 9.3 10.6 9.3 9.3 10.7 10.7 10.5 10.7 10.6
Gaussian Average 8.4 9.3 8.9 8.7 9.6 10.1 108 128 92 9.2 8.6 8.6 9.8 8.8 85 9.8 9.7 9.5 9.8 10.1
Temporal Median 394 393 375 382 373 392 393 422 419 371 379 380 368 376 380 439 39.3 367 385 382
Eigenbackground 446 446 410 429 432 473 497 542 471 434 432 435 446 439 429 494 45.9 441 471 474
SL-PCA

Texture BGS 3341 3142 3143 3052 3050 321.7 3112 338,66 3481 3256 3301 3289 3193 3299 3376 3430 345.7 3034 3093 3359

Type-2 Fuzzy GMM-UM 47.1 453 44.8 45.6 441 513 51.6 56.5 59.4 45.4 42.6 46.0 42.7 37.0 46.3 49.3 47.8 45.5 475 42.3
Type-2 Fuzzy GMM-UV 55.0 62.9 62.4 60.9 62.0 65.0 64.6 70.3 68.7 55.4 54.7 54.8 54.0 533 59.0 61.9 59.9 56.7 571 55.1
Type-2 Fuzzy GMM-UM 84.6 821 76.9 781 77.0 85.7 85.0 92.2 90.3 799 74.4 781 76.3 71.7 82.0 84.8 829 79.3 821 70.8
with MRF

Type-2 Fuzzy GMM-UV 92.1 974 96.2 91.9 92.0 98.4 97.8 103.0 1021 864 84.0 87.2 85.1 80.7 89.8 92.9 88.4 88.6 879 813
with MRF

Fuzzy Sugeno Integral 183.1 163.8 1773 1711 1663 1756 1765 1868 1960 1778 1738 1754 1721 1670 1829 182.0 187.7 1731 1756 1706
Fuzzy Choquet Integral 1789 1720 1744 1673 1696 180.7 1768 1954 1903 1771 1707 171.7 1716 1752 186.0 1789 187.3 1753 1749 173.0

Simple Gaussian 9.0 9.8 11.3 10.7 119 13.0 14.3 16.4 113 10.2 8.7 9.8 10.7 9.3 10.1 10.8 10.4 10.7 10.8 12.0
Fuzzy Gaussian 18.8 19.1 19.0 19.8 201 215 229 251 201 193 17.2 17.6 19.6 20.2 18.2 18.6 18.5 19.9 202 229
GMM Bender 217 226 219 224 232 276 266 310 251 233 223 225 243 227 249 240 253 235 235 249

(continued on next page)
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Table 4 (continued)

Processing Time Per Frame (ms/frame)

STD GAU10 GAU20 GAU30 GAU40 UNIO5 UNI10 UNI15 UNI20 JIT GLO LOC SHA INIOO INIO2 CAMSM CAMCX GHO  SLP DYN
Adaptive SOM 407 411 418 409 433 452 460 531 458 407 333 368 446 529 430 452 36.1 442 438 530
Fuzzy Adaptive SOM 53.1 49.9 51.9 53.1 53.1 54.3 56.5 63.0 59.5 52.5 55.0 50.8 56.3 56.6 53.4 55.8 59.3 56.7 574 59.0
Texture-Based 2421 2378 233.0 2480 2744 3282 3595 404.7 2953 250.5 239.6 2443 3002 2440 2519 265.0 255.1 3042 303.8 3073
Foreground Detection
with MRF
Multi-Layer BGS 208.1 2494 2492 2519 2652 2855 302.6 3282 2763 2072 2144 2081 2286 1873 2202 235.1 210.2 2303 2359 2111
Pixel-Based Adaptive 1243 1140 1123 1127 121.0 1121 119.8 1349 1180 1182 160.5 1152 105.0 86.5 1401 1155 125.5 1473 1583 938
Segmenter
VuMeter 133 141 149 151 168 191 217 245 157 142 138 144 187 140 140 152 15.4 186 205 196
KDE 31,0 399 415 419 470 434 428 474 482 286 547 349 313 188 315 321 38.3 364 331 183
IMBS 429 546 586 655 813 942 1123 1297 676 429 422 542 509 295 334 523 495 50.6 469 355
MultiCue BGS 36.9 372 40.5 43.0 534 64.5 71.0 839 475 34.7 34.6 333 443 303 40.0 40.1 359 384 48.6 39.6
Sigma Delta 1.2 10.9 1.2 12.2 14.8 17.8 18.1 21.0 124 11.0 10.4 10.6 11.8 111 12.0 12.2 10.3 12.7 13.2 154
SuBSENSE 346.5 376.0 4173 4238 4169 3659 379.7 379.7 4533 2977 4007 3178 3282 2883 3132 3250 299.4 2876 3111 2793
LOBSTER 256.0 2404 282.0 2827 2806 2280 2304 2642 2795 2235 2343 1924 203.0 2125 2444 1972 204.9 1970 1899 2212
PAWCS 542.8 8557 6516 6503 649.5 8299 8291 9040 6922 7115 6671 753.3 703.6 5975 7635 789.0 840.6 7224 7582 5673
TwoPoints 4.0 41 5.0 5.9 76 8.8 112 149 46 39 3.7 3.6 6.0 3.8 39 39 4.6 6.6 79 84
ViBe 8.7 9.5 7.8 8.3 9.2 114 12.1 145 9.0 104 155 117 9.5 5.6 121 9.7 11.0 10.1 8.9 6.3
Codebook 202 487 346 352 370 506 511 525 408 277 2441 331 29.1 206 309 410 32.8 213 262 161

Note: The segmentation algorithms are listed in Table 1 while the labels for the factors are listed in Table 2. Two routines were not formally tested (GMM KaewTraKulPong and GMG)

as they required an earlier version of OpenCV. The processing time is calculated as an average of all frames during the comparison period for that clip.
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Table 5

An assessment of segmentation algorithms from the ‘BGSLibrary’ according to pre-set criteria.

Processing
Processing Speed Global Local short Sleeping  Dynamic
High Speed (30 (10 Mumi- Mumi- initial- Ghost Back- Back-
Efficacy Consistency  fps) fps) Noise Jitter nation nation Shadows ization Images  ground ground
Frame Difference X X X I X
Static Frame X X X X X X X X X
Difference
Weighted Moving X X X I X
Mean
Weighted Moving X X | X
Variance
GMM Zivkovic 1 X X X I X
Adaptive X X X I X
Background
Learning
Adaptive-Selective X X X X X X X X X
Background
Learning
KNN Background X X I X
Subtractor
Adaptive Median X X | X
GMM Stauffer X X 1 X
GMM Zivkovic 2 X X X X X X X I X
Temporal Mean X X X | X
Gaussian Average X X 1 X
Temporal Median X X | X
Eigenbackground X X X X X X X X X
SL-PCA
Texture BGS X
Type-2 Fuzzy X X | X
GMM-UM
Type-2 Fuzzy X X I
GMM-UV
Type-2 Fuzzy X X 1 X
GMM-UM with
MRF
Type-2 Fuzzy X X I X
GMM-UV with
MRF
Fuzzy Sugeno | X
Integral

(continued on next page)
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Table 5 (continued)

High
Efficacy

Consistency

Processing
Speed (30
fps)

Processing

Speed
(10
fps)

Noise Jitter

Global
Mumi-
nation

Local
[lumi-
nation

No
Initial-

Shadows ization

short
initial-
ization

color
camou-
flage

Complex
Back-
ground

Ghost
Images

Sleeping Dynamic
Back- Back-
ground  ground

Fuzzy Choquet
Integral
Simple Gaussian
Fuzzy Gaussian
GMM Bender
Adaptive SOM
Fuzzy Adaptive SOM
Texture-Based
Foreground
Detection with
MRF
Multi-Layer BGS
Pixel-Based
Adaptive
Segmenter
VuMeter
KDE
IMBS
MultiCue BGS
Sigma Delta
SuBSENSE
LOBSTER
PAWCS
TwoPoints
ViBe
Codebook

XX X

> X X

XX X X X

> X X X

> XX

KX X

o ox X

KX X

I X

XX X X

> X

>

PO XK K X X X

Note: X - fulfills criteria, I - integrates into background.
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2.3. Methodology

A series of video clips was captured with an Intel RealSense Depth Camera D435 featuring
a global shutter, large color pixels of 3 um square, and a depth sensor using disparity mapping
from stereo infra-red cameras. The following camera settings were used: structured light projec-
tor on, autofocus enabled, autoexposure disabled, automatic white balancing disabled, backlight
compensation disabled, and powerline frequency compensation disabled.

Capture resolution was 640 x 480 pixels at 30 frames per second (fps) for color data and
90 fps for depth data, with the depth data processed using temporal and spatial smoothing
with hole-filling to reduce artefacts. Synthetic paired color and depth frames were motion in-
terpolated from the source frames to generate video clips without any inter-frames. The clips
were then saved to Audio Video Interleave (AVI) files using FFMPEG, with dimensions of 640 x
480 pixels at 30 fps. Color clips were encoded using the lossy MPEG-4 Part 2 codec at a bit rate
of 4 megabit per second (Mbps) except for the noise clips which were encoded at 12 Mbps to
preserve the noise artefacts.

The clips were captured at night under controlled bidirectional diagonal and side lighting
with Philips Hue White & Color Ambiance bulbs set to the ‘Energize’ preset with a color tem-
perature of 6410K, calculated from the Mired Color Temperature supplied by the Philips Hue
Software Development Kit. The camera was placed 120cm in front of either a plain green screen
(standard), a cream-colored screen (camouflage), or with the screen removed (complex), having
the subject standing 60 cm in front of the screen, with no intervening objects. This resulted in a
foreground area that was consistently about half the total background size, which is sufficiently
balanced to not distort the measures of segmentation efficacy, and yet not too big which would
prevent the face detection routine from working properly. The factors listed in Table 2 were then
applied.

All clips were 40 s long with the first 10 s showing just the background. The subject entered
the scene at the 10 s mark and stood in the center of the frame while keeping a neutral expres-
sion, with the face and upper body fully visible. The comparison period was set to all frames
between the 20 and 40 s mark inclusive. The brightness for all clips was normalized by apply-
ing the appropriate constant gamma correction to keep the average pixel brightness throughout
the clip at 50% of the maximum brightness.

For lighting change factors, the lighting conditions were altered mid-way through the com-
parison period. For the ‘Ghost Images’ clip, the comparison period was set to one second after
the transition. This is because most algorithms for detection and removal of moving objects,
ghosts, and shadows operate in less than a second. The comparison period for the ‘Sleeping
Foreground’ clip was set to 10 s after the transition to allow enough time for the object to be
incorporated into the background model.

In clips where a subject was present, the face location was determined using libfacedetection
by Shiqi Yu, and a seed point and depth obtained from the center of the bounding rectangle [13].
The ‘ground truth’ foreground was then extracted from a floating range flood fill starting at the
seed point, with a maximum difference of 2 cm between adjacent pixels. Since the depth data
from disparity mapping is coarse and lacks edge accuracy, an automated GrabCut algorithm was
used to refine the edges of the foreground. The ‘ground truth’ clips were verified by visually
inspecting at 4 fps, and adjustments were made with manual GrabCut assistance where the
areas of inaccuracy exceeded 5% of the foreground (Fig. 1). For clips without a subject, the depth
data was ignored and the ‘ground truth’ foreground was set to zero.

The segmentation foreground was obtained by processing the color data using the appro-
priate ‘BGSLibrary’ algorithm with default settings, except for the ‘GMG’ and ‘GMM Kaew-
TraKulPong’ routines which require an earlier version of OpenCV (see Table 1). To speed up pro-
cessing, the segmentation routines were run in four isolated parallel threads in ‘release’ mode.
The ‘ground truth’ and segmentation clips were saved to AVI files encoded with the lossless FFV1
codec.
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Testing was performed on a system using Microsoft Windows 10 with a four-core Intel Xeon
E3 processor running at 3.5GHz using Visual Basic and Visual C++ 2019 in a 64-bit address
space with 32 GB RAM allocated and an NVIDIA GeForce GTX 1060 6GB graphics card installed.
Image processing was done using the libraries in EmguCV 3.2.0 and Accord.Net 3.8.0. The system
speed was rated at 475 million floating points per second (MFLOPS) using the Intel processor
diagnostic tool 2.10, 64-bit version.

Processing time was calculated as the average time taken to process each frame over the
comparison period.

Accuracy was defined as follows:

TP + TN ) M

1
A =
caray =1y (te(z o o) TP+ TNe + FR + FN

In Eq. (1), TP (true positives) represent correctly classified foreground pixels, TN (true nega-
tives) represent correctly classified background pixels, FP (false positives) represent incorrectly
classified foreground pixels, FN (false negatives) represent incorrectly classified background pix-
els, N represents the total number of frames, and t represents the frame time. The ‘ground truth’
is used as the reference for both TP and TN pixels, while the comparison was the segmentation
result from the ‘BGSLibrary’ algorithm. A lower result for the accuracy indicates greater deviation
from the ‘ground truth’.

Precision and recall were defined as follows:

.. 1 TR
p — 2
recision = & ( E B 1 FD ) (2)
te(20, 30)

In Eq. (2), precision refers to the proportion of the segmented foreground that has been cor-
rectly segmented.

1 TP
Recall = N( > TPH-FNr> (3)
te(20, 30)

In Eq. (3), recall refers to the proportion of the segmented foreground that correlates with
the ‘ground truth’ foreground.

The F1 score (also known as the balanced F-score or Dice coefficient) was then calculated as
the harmonic mean of both precision and recall:

1 2 x Precision; x Recall
h = N( > : ) (4)

te (30, 30) Precision; + Recall;

The F1 score can range between 0 - 1 and a lower result indicates greater deviation from the
‘ground truth’.
The False Positive Rate (FPR) was defined as:

1 FP;
FPR = — Y —m (5)
N <te(20, 30) TN + Fpt)

In Eq. (5), the FPR refers to the proportion of the negative ‘ground truth’ that is wrongly
segmented as foreground.

In general, accuracy is used when the proportion of true results is the key issue, while the
F1 score is employed when negative results are more important since it magnifies the effect of
incorrect classification. While accuracy is an easy measure to understand, it has the drawback
of giving a distorted representation of efficacy when there is a big imbalance in the number of
negatives and positives. For face and head segmentation, missing portions of the face or addition
of background features to the face are both undesirable, so the F1 score should be the preferred
measure of segmentation efficacy.
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For the three factors where no subject was present and the ‘ground truth’ consists of com-
plete background, the preferred measure would be the FPR since all errors consist of false pos-
itives. For the ‘Ghost Images’ and ‘Dynamic Background’ factors, a low FPR indicates the al-
gorithm has the ability to rapidly remove ghost images and cope with dynamic background
objects respectively. However, for the ‘Sleeping Foreground’ factor, a low FPR indicates that
the stationary foreground object has been absorbed into the background model and no longer
shows up.

Segmentation efficacy should be calculated on a per-image basis to distinguish algorithms
that vary in performance depending on image content, and ought to include a measure of spread
in addition to centrality. This is especially important when evaluating algorithms that have a
temporal component, as the segmentation result can change even though the images in the clip
may be broadly similar.

2.4. Simulated factors

Gaussian and Uniform noise was added to the standard clip according to the method used by
Lépez-Rubio, with four levels of each type [11]. Jitter was simulated using a soft rubber mallet
to strike the supporting tripod at regular intervals to induce vibrations. This was done to mimic
both instability in the camera support as well as residual alignment differences that remain after
motion compensation during pre-processing.

The two types of sudden illumination changes which are common in indoor settings come
from switching overhead lights or drawing curtains (global change), and from opening and clos-
ing room doors which lead to an external light source (directional or local change). This was
simulated by dimming and brightening all lights at once (global change), or by doing so with
the lights from one direction only (local change). In contrast, the effect of shadows from uneven
illumination was simulated by keeping the lights from one direction turned off throughout the
clip duration. There was no temporal variance in the illumination, compared to the local change
where the lighting was altered partway through the clip.

The requirement for background initialization was simulated by trimming the standard clip to
show the subject in a stable stance (no initialization), or with two seconds of clear background
(short initialization) at the start. In both cases, the comparison period was shifted to 10 s after
the clip start to align with standard clip processing.

Simple color camouflage was simulated by using a cream-colored background screen, which
was similar in color to the subject’s skin. The subject also changed clothing to match the back-
ground color. This color was not exactly matched as it would be an unfair test since even hu-
mans would have difficulty differentiating the subject’s outline under such conditions. For com-
plex color camouflage, this was simulated by removing the background screen to show a typical
indoor scene under daylight. The lighting for the subject was still controlled using the same
bidirectional studio lights, and portions of the background were of similar color to the subject’s
clothing, skin, and hair.

For the final three factors, no subject was present and the ‘ground truth’ was set to complete
background. Simulation of ‘Ghost Images’ was achieved by draping a complex patterned cloth
over part of the background screen and dropping it at the 10 s mark. The comparison period
was adjusted to start one second after the cloth completely left the image frame to test whether
the algorithm could rapidly remove ‘Ghosts’.

Simulation of ‘Sleeping Foreground’ was done by lowering the same patterned cloth over part
of the background screen at the 10 s mark. The comparison period was set to start 10 s after
the cloth was completely lowered and had achieved a stable position. This was to assess the
algorithm’s tendency to absorb stationary foreground objects into the background. A ‘Dynamic
Background’ was simulated using a running stand fan placed in the same position where the
subject would normally stand. This was to test the algorithm’s ability to cope with background
objects that display regular repetitive motion.
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2.5. Comparison results

The results for comparison testing of efficacy and processing speed for the algorithms in the
‘BGSLibrary’ were summarized in Table 3 and Table 4 respectively. The measure of segmenta-
tion efficacy used was the F1 score, except for the three factors without a foreground subject
where the FPR was used instead. Efficacy was calculated on a per-frame basis and the results
displayed in each cell were for the 10th centile, median, and 90th centile frames, thus showing
both centrality and spread. Processing speed was calculated as the average for all frames during
the comparison period.

2.6. Assessment criteria

The results were assessed according to the following criteria: 1) high efficacy to properly seg-
ment the head and upper body, 2) consistency, 3) processing speed short enough for real-time
segmentation, and 4) tolerance to the factors tested (Table 5). Good segmentation is defined as a
well-demarcated outline for the foreground object with at most small areas that are incorrectly
classified but can be separated from the true foreground. Adequate segmentation is defined as
a recognizable outline for the foreground object, with larger areas of incorrect classification that
can still be separated from the foreground. From Fig. 2, it can be estimated that good segmenta-
tion corresponds to a F1 score of 0.95 and above, while adequate segmentation corresponds to
a F1 score from 0.80 to 0.95.

To satisfy the criteria for high efficacy, the median F1 score should be 0.95 and above under
standard processing conditions, while the segmentation should be consistent enough that the
10th centile F1 score does not go below 0.80. For full real-time processing with a frame rate of
30 fps, each frame should require a maximum of 33 ms. With a more relaxed constraint of 10
fps if the intervening frames can be motion interpolated, the segmentation time for each frame
should be a maximum of 100 ms. An algorithm is considered to tolerant to the factor tested if it
can still segment adequately with a median F1 score above 0.80.

To establish a cutoff for the ‘Ghost Images’ and ‘Sleeping Foreground’ factors, we need to refer
to Table 3 where the maximum FPR is approximately 0.45, corresponding to the full coverage of
the patterned cloth over the background. We can then assume that an FPR of less than 5% of the
maximum value at the 90th centile (FPR = 0.020) indicates that the tested algorithm can rapidly
deal with ‘Ghosts’ which are no longer visible during the whole comparison period. Similarly,
an FPR less than 5% maximum at the 10th centile indicates that the static foreground object has
started to integrate into the background during the comparison period.

For the ‘Dynamic Background’ factor, the highest median FPR is for the ‘Simple Gaussian’ and
‘Fuzzy Gaussian’ algorithms. On viewing both, the ‘Fuzzy Gaussian’ clip has less noise and the
maximum FPR representing the area of the moving fan blades can be derived from integrating
the segmented foreground over the comparison period of the clip and removing pixel noise with
a small kernel median filter. This value was found to be 0.0563, and we can similarly assume
that a median FPR less than 5% of this value (FPR=0.003) indicates that the algorithm can ade-
quately deal with dynamic backgrounds by removing the spinning fan blades.

2.7. Limitations

There are several limitations to the methodology of the comparison testing. The first is that
the ‘ground truth’ could not be consistently derived from the depth data since the disparity
maps were coarse and unstable, even after extensive pre-processing with temporal and spatial
smoothing with hole-filling. While the use of automated GrabCut improved this significantly,
there was still a need to manually inspect each frame for quality. Areas which were prone to
incorrect segmentation had to be marked out and corrected manually (Fig. 1). This imposed a
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restriction on the amount of movement the subject could make, since excessive motion would
require the markings to be updated every few frames instead of being allowed to propagate for
much longer.

The next limitation is that the camera was static and true motion was not tested. This is
important since many use cases require a mobile camera. However, this was unavoidable since
the quality of the disparity maps would deteriorate even further with movement.

Another limitation is that while the ‘memory effect’ was demonstrated for several of the
routines, it is possible that extending the test period may have detected it in more of them.
Examination of the full clips for the routines which satisfied the stability criterion did indicate
that towards the end of the clips there was deterioration in segmentation efficacy for some of
them.

One more limitation is that there is only a single subject in all the video clips. While this
does make the testing conditions consistent and improves the comparability of the results be-
tween factors, having more subjects with different combinations of hair and skin color will make
the results more generalizable.

The final limitation is that only temporal segmentation routines were tested formally. It is
possible that the non-temporal routines may eventually prove to be more suited to head and
upper body segmentation. There is however no equivalent to the ‘BGSLibrary’ for non-temporal
algorithms, and this is a gap in the current body of research.

2.8. Future directions

The first step would be to use a better depth camera to retake the test video clips, and the
upcoming Intel RealSense L515 which uses solid state light detection and ranging (LiDAR) tech-
nology seems to be a big improvement on the D435 model used in this study. It has a depth
error standard deviation of only 2.5mm at 1 m distance from the target, gives cleaner contour
outlines, has a higher resolution, and scans fast enough to cope with motion. This would remove
the need for manual intervention when determining the ‘ground truth’ and would allow testing
of both subject and camera motion.

Another step would be to gather and test non-temporal segmentation algorithms in a new
library using the same methodology. Although it will require a lot of effort, this is necessary if
we wish to identify suitable routines for head and upper body segmentation, since the routines
from the ‘BGSLibrary’ are poorly suited for this.

The third step would be to expand the series of clips to cover background segmentation of
the face only, since some use cases do not require the whole head and upper body. Examples of
this would be face expression analysis and computation of facial action units.

Ethics Statement
The only human subject was the first author for which informed consent was sought and

obtained. The study has ethics approval from the University of Auckland Human Participants
Ethics Committee (Ref. 021497).

Funding

This study was paid for using PRESS account funding from the University of Auckland (ID
663710048).


https://doi.org/10.13039/501100001537

S.C. Loke, B.A. MacDonald and M. Parsons et al./Data in Brief 33 (2020) 106385 21

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-
tionships which have, or could be perceived to have, influenced the work reported in this article.

References

[1] Q. Hu, H. Sun, P. Li, R. Shen, B Sheng, Illumination-aware live videos background replacement using antialiasing
optimization, Multimed. Tools Appl. 77 (2018) 24477-24497.

[2] S Andrews, An OpenCV C++ Background Subtraction Library, 2012.

[3] A. Sobral, A Vacavant, A comprehensive review of background subtraction algorithms evaluated with synthetic and
real videos, Comput. Vis. Image Understand. 122 (2014) 4-21.

[4] S.C. Loke, B.A. MacDonald, M. Parsons, B Wiinsche, Review and Comparison of Algorithms for Background Segmen-
tation of the Head and Upper Body, 2020 Unpublished.

[5] P. Arbelaez, M. Maire, C. Fowlkes, ] Malik, Contour detection and hierarchical image segmentation, IEEE Trans. Pat-
tern Anal. Mach. Intell. 33 (2010) 898-916.

[6] R. Acevedo-Avila, M. Gonzalez-Mendoza, A Garcia-Garcia, A statistical background modeling algorithm for real-time
pixel classification, Comput. Sist. 22 (2018).

[7] L. Feng, H. Li, Y. Gao, Y Zhang, A color image segmentation method based on region salient color and fuzzy c-means
algorithm, Circ. Syst. Sig. Process. (2019) 1-25.

[8] Y. Wang, B. Luo, J. Shen, M Pantic, Face mask extraction in video sequence, Int. J. Comput. Vis. 127 (2019) 625-641.

[9] T Bouwmans, Traditional and recent approaches in background modeling for foreground detection: an overview,
Comput. Sci. Rev. 11 (2014) 31-66.

[10] A. Darwich, P.-.A. Hébert, A. Bigand, Y Mohanna, Background subtraction based on a new fuzzy mixture of Gaussians
for moving object detection, J. Imag. 4 (2018) 92.
[11] EJ. Lépez-Rubio, E. Lopez-Rubio, M.A. Molina-Cabello, R.M. Luque-Baena, E.J. Palomo, E Dominguez, The effect of

noise on foreground detection algorithms, Artif. Intell. Rev. 49 (2018) 407-438.

[12] B. Yin, J. Zhang, Z Wang, Background segmentation of dynamic scenes based on dual model, IET Comput. Vis. 8
(2014) 545-555.

[13] S. Yu, J. Wu, S. Wu, D Xu, Lib Face Detection, 2016.


http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0001
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0001
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0001
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0001
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0001
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0001
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0002
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0002
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0003
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0003
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0003
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0004
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0004
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0004
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0004
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0004
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0005
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0005
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0005
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0005
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0005
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0006
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0006
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0006
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0006
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0007
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0007
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0007
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0007
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0007
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0008
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0008
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0008
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0008
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0008
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0009
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0009
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0010
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0010
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0010
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0010
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0010
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0011
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0011
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0011
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0011
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0011
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0011
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0011
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0012
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0012
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0012
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0012
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0013
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0013
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0013
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0013
http://refhub.elsevier.com/S2352-3409(20)31271-3/sbref0013

	Testing dataset for head segmentation accuracy for the algorithms in the ‘BGSLibrary’ v3.0.0 developed by Andrews Sobral
	Specifications Table
	Value of the Data
	1 Data Description
	1.1 Video clips

	2 Experimental Design, Materials and Methods
	2.1 Common factors affecting segmentation efficacy
	2.2 Algorithm comparison
	2.3 Methodology
	2.4 Simulated factors
	2.5 Comparison results
	2.6 Assessment criteria
	2.7 Limitations
	2.8 Future directions

	Ethics Statement
	Funding
	Declaration of Competing Interest
	References


