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1. Introduction

Hypoxic–ischemic (HI) insults before and during birth, second-
ary to events such as placental abruption or umbilical cord
occlusion, are a significant contributor to neonatal brain injury
(hypoxic–ischemic encephalopathy; HIE).[1,2] The preterm

newborn is at greater risk of HIE.[1] In con-
trast to an overall incidence of 1–3/1000
live births at term in high-income coun-
tries, preterm babies born before 37 weeks
have an HIE incidence of around 37.3/1000
babies born before 37 weeks of gestation,
rising to an overall rate of HIE of 120/
1000 in infants born before 28 weeks
of gestation.[1,3] Survivors face life-long
neurodevelopmental problems, including
learning and cognitive impairments,
behavioral problems, cerebral palsy, and
epilepsy.[4] The burden for individuals
and their families and health and education
economic costs are substantial.[4,5] To
develop effective treatments or to appropri-
ately utilize existing treatments requires
that we fully understand how brain injury
evolves and to identify biological markers
(biomarkers) that allow us to determine
phases of injury.

Key to effective therapy is the knowledge
that injury evolves in different phases over
time—a latent phase of recovery of oxida-

tive metabolism, which is followed by a secondary loss of cerebral
energy metabolism during which time most brain cell injury
occurs, followed by a tertiary phase of both repair and ongoing
injury.[1,3,6] Therapeutic hypothermia (TH) is currently the only
established treatment for HIE in babies born >36 weeks of ges-
tation with moderate–severe HIE, and this treatment is now
being cautiously explored for use in preterm babies.[1,2] The cur-
rent clinical protocol for TH was based on our preclinical studies
in term and preterm fetal sheep, which established that this ther-
apy is only effective if started within 6 h after the end of an HI
insult and continued for �3 days.[1–3] However, current clinical
data show that many babies do not benefit from TH.[2] This in
part reflects late recruitment of babies (typically 4–5 h) into treat-
ment. However, it also reflects the fact that birth cannot always be
taken as time zero. Many babies may also have experienced
HI insults before birth, so that injury may have already evolved
beyond the 6 h window of opportunity for TH efficacy.[2,3,6] Thus,
to determine which infants will benefit from TH, and any
new therapies that optimally start in the latent phase, we need
biomarkers to allow us to determine phases of injury.

Electroencephalogram (EEG) recordings can provide useful
diagnostic and prognostic biomarkers of evolving HI injury.[7,8]

We have previously shown, in preterm fetal sheep EEG record-
ings, that epileptiform transients such as sharp waves and
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There is a lack of reliable prognostic biomarkers for hypoxic-ischemic (HI) brain
injury in preterm infants. Herein, spectrally detailed wavelet scalograms (WSs),
derived from the 1024 Hz sampled electroencephalograms (EEG) of preterm fetal
sheep after HI (n¼ 7), are infused into a high-performance deep convolutional
neural network (CNN) pattern classifier to identify high-frequency spike transient
biomarkers. The deep WS-CNN pattern classifier identifies EEG spikes with
remarkable accuracy of 99.81¼ 0.15% (area under curve, AUC¼ 1.000), cross-
validated across 5010 EEG waveforms, during the first 6 h post-HI (42 h total), an
important clinical period for diagnosis of HI brain injury. Further, a feature-fusion
strategy is introduced to extract the spectrally dominant features of the raw EEG
epochs to form robust 3D input matrix sets to be infused into the deep 2D-CNNs
for pattern classification. The results show that the proposed WS-CNN approach
is less sensitive to the potential morphological variations of spikes across all
subjects compared to other deep CNNs and spectral-fuzzy classifiers, allowing
the user to flexibly choose an approach depending on their computational
requirements. Collectively, the data provide a reliable framework that could help
support well-timed diagnosis of at-risk neonates in clinical practice.
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high-frequency microscale spike transients in the gamma fre-
quency band (80–120 Hz), superimposed on a suppressed EEG
background, are key EEG waveforms and are predictive of neural
outcome during the first 6 h of recovery from an HI insult
(see Figure 1).[6,8–11] Similar EEG transients are also seen clini-
cally and are associated with adverse neurological outcomes.[12]

Current studies on the application of automated convolutional
neural network (CNN)-based strategies in clinical neonatal EEG
studies have primarily focused on developing consistently inter-
pretable determinations of seizures and other EEG features, but
not microseizures or post-HI EEG biomarkers.[13–17] Our team
has previously shown various successful fusion strategies for
automatic detection of post-HI microscale EEG transients.[8,10]

Further, we have undertaken preliminary examination of the
wavelet-scalogram (WS) CNN structure to robustly identify
post-HI sharp waves from an EEG background and artifact dur-
ing the latent phase after the HI insult with 95.34% accuracy.[17]

In the current study, we evaluated, for the first time, how
application of spectrally rich WSs to our post-HI experimental
EEG data could be used as inputs to a pattern classifier in the
form of a 17-layer deep 2D-CNN for the accurate identification
of microscale gamma spike transients in the latent phase. Our
study showed that the WSs, generated through continuous wave-
let transform (CWT) of the gamma spike transients over a broad
scale-range of 1–19, using a reverse biorthogonal basis wavelet
(rbio2.8), provide spectrally rich feature maps for the 17-layer
deep WS-CNN pattern classifier to accurately (99.81� 0.15%)
classify gamma spike transients from EEG background
noise and other artifacts. Further, we introduced a spectral-based
feature extraction strategy to create robust input matrices to
be infused into a deep CNN classifier and compared the
results against the WS-CNN and conventional 1D-CNN
approaches. The set of deep CNN-based approaches in this
study provided a reliable platform for data exploration of
real-world clinical datasets without the requirement of manual
intervention.

2. Results

2.1. Cross-Dataset Results of the WS-CNN Classifier

The overall accuracy was 99.81� 0.15% (range 99.6–100%), con-
firming the reliability of the developedWS-CNN pattern classifier
for the identification and classification of post-HI microscale
gamma spike transients in the fetal electrocorticogram (ECoG)
recordings collected at 1024Hz (Table 1 and Figure 2).
Results of the sevenfold cross-validation, using the entire 6 h
of data across all sheep (42 h total), showed that the performance
of the WS-CNN classifier slightly deceased to 99.03� 1.66%,
98.54� 1.43%, and 97.70� 1.99% for the network architectures
with 17, 13, 9, and 5 layers of depth, respectively (Table S1–S3 of
Appendix A, Supporting Information). Average values of 1.000,
0.997, 0.995, and 0.976 were calculated for the overall perfor-
mance of the WS-CNN pattern classifier using 17, 13, 9, and
5 layers of depth, respectively. The results show predictable
reductions in total accuracy along with increasing variability
(as seen in the increasing standard deviation) as the number
of layers decreased (Figure 2H). The receiver-operator (ROC)
curves and the corresponding AUC values in Figure 2A–G show
how the performance of the WS-CNN classifier from sevenfold
cross-validation analysis changed across the fetal data as the
number of layers decreased.

2.2. Cross-Dataset Results of the WF-CNN Classifier

The sevenfold cross-validated performance validation of the
11-layer WF-CNN pattern classifier resulted in an overall accuracy
of 99.44� 0.44% (range: 98.7–100%) when tested on the total
42 h of data. Reducing the original depth of 11-layer WF-CNN
architecture (eight convolutional layers) down to 9, 7, and 5 layers
(corresponding to 6, 4, and 2 convolutional layers, respectively)
resulted in overall accuracies of 99.33� 0.36%, 98.07� 1.92%,
and 97.96� 1.48%, respectively (Tables S4–S7 in Appendix B,
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Figure 1. This figure shows examples of EEG activity following an hypoxic-ischemic insult in preterm fetal sheep. A) Raw data example from one fetal
sheep from 2 h before hypoxia-ischemia induced by umbilical cord occlusion (UCO) until 12 h postinsult showing profoundly suppressed EEG intensity
during the latent phase followed by high-amplitude seizures. B,C) Examples of microscale HI gamma spike transients sampled from the EEG record
at 55 min postinsult.
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Table 1. Results of the WS-CNN classifier for post-HI spike transient identification in experimental data (entire 6 h and 17 layers). TP: true-positive, TN:
true-negative, FP: false-positive, and FN: false-negative.

Trained and
validated on
sheep no.

No. of patterns in the
Train and Validation

Dataset

Tested on
sheep no.

No. of
patterns in
the test-set

TP hits TN hits FP hits FN hits Sensitivity
[%]

Selectivity
[%]

Precision
[%]

Accuracy
[%]

2,3,4,5,6,7 4567 1 443 173 269 1 0 100 99.6 99.4 99.8

1,3,4,5,6,7 4751 2 259 110 149 0 0 100 100 100 100

1,2,4,5,6,7 4731 3 279 82 196 0 1 98.8 100 100 99.6

1,2,3,5,6,7 3372 4 1638 824 807 7 0 100 99.1 99.2 99.6

1,2,3,4,6,7 4088 5 922 454 467 0 1 99.8 100 100 99.9

1,2,3,4,5,7 4466 6 544 231 313 0 0 100 100 100 100

1,2,3,4,5,6 4085 7 925 209 714 2 0 100 99.7 99.1 99.8

Overall performance of the 17-layer WS-CNN in the entire 6 h 99.81� 0.15

A B C
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Figure 2. A–G) ROC curves and the corresponding area under curve (AUC) values from sevenfold cross-validation of the results along 6 h of 1024Hz data
across seven preterm fetal sheep (sheep 1–7, 42 h total) using 17, 13, 9, and 5 layers in the proposed WS-CNN classifier. H) The data for each WS-CNN
classifier are presented as mean� SD in the boxplot demonstrating reduced accuracy and increased variability with fewer layers.
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Supporting Information). Average AUC values of 0.998, 0.998,
0.997, and 0.996 were calculated for the overall performance of
the WF-CNN pattern classifier using 11, 9, 7, and 5 layer of depth,
respectively. Results of the confusionmatrix as well as ROC curves
and the corresponding AUC values of the WF-CNN classifier are
shown in Figure S1 and Table S4–S7, Supporting Information).

2.3. Cross-Dataset Results of the 1D-CNN Classifier

The sevenfold cross-validated performance validation of the
11-layer 1D-CNN pattern classifier resulted in an overall accuracy
of 99.27� 0.50% (range: 98.5–100%). Reducing the original
depth of the 11-layer 1D-CNN architecture (with eight convolu-
tional layers) down to 9, 7, and 5 layers (corresponding to 6, 4,
and 2 convolutional layers, respectively) resulted in overall accu-
racies of 98.07� 2.62%, 96.83� 2.83%, and 95.86� 3.74%,
respectively. The average AUC values of 0.998, 0.998, 0.995,
and 0.993 were calculated for the overall performance of the
1D-CNN pattern classifier using 11, 9, 7, and 5-layer architectures,
respectively. The results of the confusion matrix, as well as ROC
curves and the corresponding AUC values of the 1D-CNN classi-
fier, are shown in Figure S2 and Table S8–S11 of Appendix C,
Supporting Information.

2.4. Cross-Dataset results of the Spectral-Fuzzy Classifiers

As expected, the WT-Type-I-Fuzzy and FFT-Type-I-FLC
approaches resulted in high overall performance of 99.04� 0.53%
and 98.42� 0.71% respectively for the identification of individual
microscale spike transients when evaluated at the best threshold
value, cross-validated across the sampled data (Table S12 and S13
of Appendix D, Supporting Information).

3. Discussion

Our article presents, for the first time, a series of high-
performance deep convolutional pattern classifiers infused with

spectrally rich feature map input matrices of EEG segments
(i.e., WSs) to automatically identify microscale gamma spike
transients during the first 6 h (the latent phase) of recovery after
an HI insult in preterm fetal sheep. Performance comparisons of
our classifiers (Table 2) show that the 17-layer deepWS-CNN pat-
tern classifier, fed with reverse biorthogonal scalograms of ECoG
data, performed the best, with an accuracy of 99.81� 0.15%
(AUC: 1.000) when tested over 5010 ECoG scalogram images.
In contrast, the performance of a set of smaller WS-CNN archi-
tectures with a lower number of convolutional layers decreased
with higher variations in the standard deviations as the number
of layers decreased. However, we showed that the spectrally
detailed scalograms can provide robust feature maps for the deep
WS-CNN pattern classifier to desirably classify post-HI gamma
spike transients regardless of their polarity.

The article also showed the novel use of a spectral-based strat-
egy to extract the spectrally dominant features of the raw ECoG
epochs to form robust input matrix sets to be infused into the
deep 2D-CNN (WF-CNN) for the classification of spike transi-
ents. Our data show that the 11-layer WF-CNN pattern classifier
can competitively identify the spike transients compared to the
WS-CNN approach, with 99.44� 0.44% accuracy (AUC: 0.998).
This suggests that the minimal spectral features in the input
matrices can provide sufficiently rich features for the 2D-CNN
to build computationally simpler feature maps for acute classifi-
cation that run faster with less required memory. However, this
would be at the expense of a negligible loss of accuracy drop,
compared to the WS-CNN approach. This was then followed
closely by the results of an 11-layer 1D-CNN pattern classifier
with an overall accuracy of 99.27� 0.50% (AUC: 0.998). The per-
formance of the 1D-CNN classifier considerably decreased, com-
pared to the WS-CNNs and WF-CNNs, when shallower
architectures were used.

The cross-validation results of the 17-layer WS-CNN approach
recognized this strategy to be the least sensitive to the potential
morphological variations of spike transients across all subjects,
resulting in only �0.15% standard variation in the overall

Table 2. Comparison of the evaluated performance of the proposed strategies in the current article.

Strategy No. of layers Sensitivity [%] Selectivity [%] Precision [%] Accuracy [%]

WS-CNN 17 layers 99.80� 0.41 99.77� 0.31 99.67� 0.39 99.81� 0.15

13 layers 97.90� 4.16 99.68� 0.31 99.54� 0.38 99.03� 1.66

9 layers 97.50� 3.54 99.06� 1.28 98.83� 1.24 98.54� 1.43

7 layers 98.77� 1.36 96.71� 3.31 95.63� 3.88 97.70� 1.99

WF-CNN 11 layers 99.91� 0.15 98.57� 1.40 99.93� 0.11 99.44� 0.44

9 layers 99.10� 1.39 99.10� 0.86 99.60� 0.51 99.33� 0.37

7 layers 96.07� 5.72 98.80� 0.91 97.84� 2.95 98.07� 1.92

5 layers 97.63� 2.35 96.86� 4.71 98.73� 1.12 97.96� 1.48

1D-CNN 11 layers 99.51� 0.96 99.13� 0.75 98.87� 1.04 99.27� 0.50

9 layers 94.94� 7.18 99.91� 0.11 99.83� 0.30 98.07� 2.62

7 layers 96.67� 5.32 96.54� 4.26 96.00� 3.47 96.83� 2.84

5 layers 90.89� 9.79 99.44� 0.88 98.67� 2.08 95.86� 3.75

WT-Type-I-FLC N/A 99.16� 0.44 98.92� 0.79 N/A 99.04� 0.53

FFT-Type-I-FLC N/A 98.51� 0.62 98.32� 0.85 N/A 98.42� 0.71
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performance of all >99.6% across all subjects. Greater standard
deviations of �0.44% and �0.51% with lower overall perfor-
mance were observed for some subjects when the deepest
WF-CNN and 1D-CNN approaches were used (also see
Table 2). We postulate that there are two reasons for the increase
in the overall standard deviation when the deepest 1D-CNN and
WF-CNN were used compared to the WS-CNN. First, the differ-
ent feature extraction strategies used in each of these techniques
can provide different levels of information at different resolu-
tions. For example, the WS method provides more information
compared to the WF and 1D raw data. Second, the embedded
morphological uncertainties of the spike transients can add
ambiguity in the extracted features at different levels when each
of the proposed feature extraction techniques is used, causing the
biggest standard deviation for the 1D data when raw data were
directly fed to the CNN. Results from Bayesian estimation analy-
sis further justify how the deepest WS-CNN would statistically
outperform the other classifiers, either in other classes or with
shallower structures within the same class (see Figure S4 and
S5 of Appendix G, Supporting Information).

Results from Table 2 further suggest that shallower CNN
architectures are much more sensitive to the morphological var-
iations of spike transients, highlighting the robust capabilities of
deeper CNN architectures to handle uncertainty within the data.
The 1D-CNN scheme, directly fed with the raw EEG time-series,
was proposed to utilize/assess the standalone feature extraction/
generation property of the CNNs on its own, compared to the
WS-CNN and WF-CNN techniques, where robust spectral fea-
ture-extraction approaches were combined to reinforce the per-
formance of the 2D-CNNs. Results indicate that the combination
of deeper neural networks with successful feature extraction
strategies can be a powerful tool in handling the embedded
uncertainties within the data, which could ultimately lead to
much better accuracies that could be relied on in real practice.
In this work, classifiers were trained on spikes aligned at the cen-
ter of the analyzing windows. We suggest that this is a beneficial
property of the proposed classifiers as it provides more realistic
signal processing of the data in an online environment.

In real-time practice, a sliding window of specified size can be
run over streaming data and the algorithm highlights regions
with higher similarity probabilities to spike transients. This prop-
erty will be limited by the selected length for the sliding window;
where a window with either too wide or too narrow a length
would highly influence the classifiers’ outputs. Therefore, we
would recommend choosing a window size that closely repre-
sents the target waveform in any application. Moreover, as an
influencing factor, background noise contamination may impact
the overall performance and needs to be controlled as required by
the individual needs of an application. In this work, only 50 Hz
noise was removed from the original EEG time-series to allow
generalization of the technique to a more challenging environ-
ment; such as spectrally complex clinical data.

We suggest that careful architecture design, through avoiding
significant image-size reductions between the layers of
deeper networks, has helped to avoid overfitting. Readers are
encouraged to investigate this from the results shown in
Figure 2H and Figure S1H, Supporting Information, when
deeper structures used for performance evaluation demonstrate
no performance drop for the deeper architectures compared to

the shallower networks, confirming that the chosen strategy to
avoid large size reductions was valid when designing the nets.

In addition, our study further compared the results of the
deep CNN approaches with other spectral-based techniques,
such as the WT-Type-I-Fuzzy and FFT-Type-I-FLC classifiers.
However, unlike the comprehensive confusion matrix measures
for the CNN-based classifiers, the nature of the fuzzy-based
approaches only allowed the evaluation of sensitivity and
selectivity in the absence of other performance measures
(i.e., precision) for the WT-Type-I-Fuzzy and FFT-Type-I-FLC clas-
sifiers, which resulted in overall accuracies of 99.04� 0.53%
and 98.42� 0.71%, respectively. However, while the overall accu-
racies of these techniques are numerically close to the accuracies
of the deep CNN classifiers, their reliability is arguably less,
especially when applied to the highly complex clinical data envi-
ronment. In fact, the spectrally complex nature of EEG in a
challenging clinical environment that has an abundance of
high-frequency spectrums and background artifacts could lead
to lower precision results in the spectral-based techniques.
This in turn would cause a significant drop in the overall perfor-
mance of the later fuzzy-based techniques. Thus, collectively
our data show that WS-CNN, WF-CNN, and 1D-CNN pattern
classifiers robustly outperform the fuzzy-based approaches,
despite their small differences in the numerical overall perfor-
mance results.

Overall, we expect the proposed high-performance EEG pat-
tern classifiers in this work to have the potential to also accurately
detect similar morphology waveforms in clinical data. HI insults
leading to brain injury are treatable, but the current standard
therapy, therapeutic hypothermia, is only effective when started
within a specific window of time in the evolution of brain injury.
Our EEG pattern classifiers will allow us to determine the phase
of injury and thus whether infants will benefit from treatment.

4. Methods and Computational Approach

4.1. Definition of HI Microscale Spike Transients

We have previously described the appearance of microscale
gamma spike transients after an HI insult.[8,10,11] Briefly, they
are EEG epileptiform waveforms characterized as events with
a pointed peak, with amplitude of >20 μV and duration of
<12.5ms (equivalent to the frequency range of >80Hz) (see
Figure 1). To evaluate the performance of the classifier and
for consistency between all methods individual microscale
gamma spikes (i.e., excluding spike complexes) with an ampli-
tude of at least 14 μV were assessed for automatic classification
against manual quantifications. Gamma spike transients were
identified manually by an expert (HA). A total of 5010 manually
annotated ECoG patterns (scalogram images), within a total of
42 h of data, including 2085 microscale post-HI spike transients
and 2925 nonspike events, were used for training, validation, and
testing of the deep CNN-based pattern classifiers.

4.2. CNNs for Evaluation of the Post-HI EEG

Recent artificial neural network (ANN) architectures with deeper
learning structures include a much higher number of nodes and
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neurons that can better mimic the intricate connectivity of the
human brain. CNN architectures are generally categorized under
deep learning with significant classification abilities. To date,
CNN-based analysis has not been utilized for the identification
of post-HI perinatal EEG microscale transients. However, recent
studies have investigated the use of CNNs for automatic analysis
of brain data, including prediction of epileptic seizures,[18] epi-
lepsy classification,[19] EEG artifact identification,[20] and detec-
tion of high-frequency EEG oscillations.[21] However, there has
been limited work to date using CNNs for the identification
and classification of seizure-like patterns in EEG,[22–25] grading
the severity of HIE,[26] and in particular neonatal EEG seizure
detection through multichannel EEG recordings.[14,15] The litera-
ture suggests that 1D time-series can also be directly fed into
various formats of CNN architectures for seizure identification[23]

and epilepsy detection.[27] Feature extraction through wavelet
transform of data (time-frequency images) has been shown to
enhance the performance of the conventional CNN approaches.

To date, to the best of our knowledge, our previous study is the
only published data on the use of CNN for automatic identifica-
tion of HI biomarkers where the proposed WS-CNN pattern clas-
sifier achieved an overall performance of 95.34% for the
classification of HI sharp wave in a limited dataset of fetal sheep
HI EEG recordings (trained and tested on 2 and 1 h recordings
from two different sheep).[17] By contrast, the current study inves-
tigated the validity of a series of deep CNN-based pattern classi-
fiers, with different depth configurations, for the identification of
gamma spike transients post-HI insult.

4.3. WS-CNN Classifier

4.3.1. Scalogram Image Preparation

We have previously shown that the rbio2.8 mother wavelet can
serve as an optimal wavelet basis for the time-localization of
gamma spike transients when used as the transfer function in
a CWT.[8] We have also shown that the spectral features of the
rbio2.8 mother wavelet are well aligned with the spectral features
of the HI gamma spike transients.[10] In this work, the normal-
ized/zero-meaned raw 1024Hz sampled ECoG was used for sca-
logram feature extraction. The CWTs of the zero-meaned ECoGs,
using the rbio2.8 mother wavelet at scales 1–19, are initially used
to generate scalogram images of an arbitrary ECoG section.
Gamma spike transients observed within the raw fetal ECoG,
30–210min postinsult, are shown in Figure 3A–D. The 2D
WSs of the spikes in Figure 3A–Dwere constructed using rbio2.8
CWT at scales 1–19 and are shown in Figure 3E–H, respectively.
Examples of the nonspike events from the same ECoG sections,
as well as their corresponding scalograms, are shown in
Figure 3I–L and M–P, respectively.

These figures show how the spectrally rich rbio2.8 CWT of
ECoG sections at scales 1–19 can provide distinct feature maps
in the form of high-resolution scalogram images for deep train-
ing of the WS-CNN pattern classifier to distinguish between
gamma spikes and background ECoG and artifact. CWT scalo-
gram images from the labeled data were stored for the training
of the WT-CNN pattern classifier. To generalize the approach
and assess its capabilities for use on clinical data; which undergo

less processing, both clean and noisy data were used to train, test,
and validate the WS-CNN pattern classifier.

4.3.2. The Proposed Deep WS-CNN Classifier: Model Setup and
Architecture

Analysis of high-frequency events in the ECoG data requires
extra levels of algorithm proficiency due to the complex nature
of the signal. The approach taken in this study was designed
to tackle the issue by combining the opposite “decomposition”
and “combination” functionalities of wavelets and the CNN
architecture, respectively. Our study, in particular, validates
the performance of our previously developed 17-layer deep
WS-CNN pattern classifier architecture[17] for the automatic iden-
tification of gamma spike transients in the ECoG datasets from
seven fetal sheep post-HI.

The 2D WSs from the reverse biorthogonal wavelet (rbio2.8
over the scale range 1–19) provide spectrally detailed decompo-
sition representations of ECoG patterns for the CNN classifier to
combine/convolve the high-resolution elements for final deci-
sion-making between a high-frequency gamma spike transient
and background activities and/or artifact. A detailed summary
of the proposed CNN architecture is shown in Table 3.

Figure 4 shows the graphical flow chart of the proposed WS-
CNN architecture. Scalogram input images of size 303� 404� 3
were fed into the WS-CNN classifier, which were then processed
through a 17-layer deep structure, including seven convolutional
layers (with rectified linear activation units (ReLUs) and batch
normalization), seven max pool, three fully connected layers
(with output sizes of 1536, 24, and 2), and finally a softmax
and a classification layer, consecutively. The sizes of the kernel
filters at each layer were chosen arbitrarily to derive an adequate
amount of features from the data. The stride values were also set
to 1 and 2 for the convolution and max-pooling layers, respec-
tively, to adjust the mathematical computations. The number
of filters at each convolutional block was set to 16, 32, 48, 72,
96, 128, and 256, respectively (Figure 5A). Stepping through
the CNN layers yields higher decompositions, while using a
larger number of filters at the deeper layers allows performance
of an opposite functionality by “combining/convolving” the ele-
ments back for a more accurate classification.

Initially, an input image was convolved in a convolutional layer
with the kernel filters/matrixes to generate “feature maps” in its
output.

Stride parameters of a convolutional layer are used to control the
amount of jump/overlap that is considered across the input image
for the next convolutional filtering step. A convolutional layer is
usually followed by an ReLU layer to eliminate nonlinearity.
This was performed by using an activation function that maps
the outputs of the previous layer into a thresholded representation.
An ReLU layer was followed by a max-pool layer to reduce the
dimension of the matrixes from the convolutional/ReLU layers.
The size reduction significantly contributed to the simplification
of the computational burden and helped to avoid overfitting.
The maximum values from each ReLU block (feature maps) were
selected in a max-pool operation. The output nodes from the last
max-pool layer are directly linked to all of the input neurons of a
fully connected block that multiplies its inputs by a weight matrix
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and adds them up with a bias vector. Features from the previous
layers throughout the entire image were combined in a fully con-
nected block to detect embedded patterns and helped with final
classification. A softmax function was then used to evaluate the
probability distribution of the output classes from the last fully con-
nected layer. Finally, a classification layer calculated the cross-
entropy loss of the softmax outputs and allocated each value to
one of the categories (classes) (see Figure 5A).[28]

The effects of reducing the number of layers in the proposed
deep classifying architecture were investigated using a lower
number of 13, 9, and 5 layers from the original 17-layer structure.
To do so, the seven blocks of convolutional, ReLU, and max-pool
layers in the original architecture (14 convolutional layers) were
redesigned, with careful tuning of the inner convolutional layers
to avoid massive image-size reductions, to form 5, 3, and 2 blocks
in the new architectures (corresponding to 10, 6, and 4

convolutional layers, respectively). The new architectures were
designed only with removing of the convolutional blocks and
not with reducing/changing of the size/number of filters in
the convolutional blocks. However, the output of the final con-
volutional block was always designed to match the original size
of 2� 3 in all cases.

4.3.3. Training and Testing of the WS-CNN Classifier

The stochastic gradient descent with momentum (SGDM) strat-
egy was used to minimize the loss function E(θ) through updat-
ing of the weights and bias parameters, where θ represents the
parameters vector

θlþ1 ¼ θl � α∇EðθlÞ þ γðθl � θl�1Þ (1)

A B C D

E F G H

I J K L

M N O P

Figure 3. Examples of microscale spike transients taken from the 1024 Hz EEG recordings of preterm fetal sheep A–D) 1–2.5 h after an HI insult as well as
I–L) nonspike events, along with E–H) andM–P) their corresponding WSs using CWT with Rbio2.8 basis function of scales 1–19. The example WS images
in (E–H) and (M–P) were used for training, validation, and testing of the deep WS-CNN classifier.
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Initial values of 0.01 and 0.09 were assigned to the learning
rate, α, and momentum, γ, respectively. In the SGDM updating
algorithm α is designed to control the learning speed and γ is
used to control the convergence through reducing the oscilla-
tions of the parameters during upgrading steps on the steepest
descent optimization path. Further tuning of the learning rate
and momentum was not investigated due to the congenial per-
formance results of the classifier. The classifier was trained over
a total of 180 epochs with a training-validation distribution share
of 80% to 20%, respectively. All the training sets were passed
through the net during each epoch.

The batch size parameter was set to 128. The batch size indi-
cates the number of training examples at each training iteration,
where a higher chosen batch size value requires more memory
space. The dataset from the remaining sheep, which was not

used in the training process, was allocated for testing of the
net. The substitution of the root mean square propagation
(RMSProp) and Adam updating algorithms with the SGDM opti-
mizer was observed to cause more convergence fluctuations and
a much slower training process, for each, respectively. Thus, the
aforementioned updating algorithms were not investigated fur-
ther for result production. Figure 6 shows a schematic of data
distribution for training, validation, and testing of the net. A total
of 5010 manually annotated ECoG scalogram images, within a
total of 42 h of data, including 2085 microscale HI gamma spike
transients and 2925 nonspike events, were used for training, val-
idation, and testing of the deep WS-CNN classifier. The net was
trained over a total of 180 epochs, taking almost 31 h to train
using the aforementioned core configuration.

4.4. WF-CNN Classifier

4.4.1. Spectral Feature Fusion

The superior compatibility of the reverse biorthogonal wavelet
rbio2.8 basis function for gamma spike detection in comparison
to other wavelet basis functions would allow us to extract mini-
mal features from a spike transient to be used in a 2D-CNN.[10]

Here, for the first time, we also show an approach that, instead of
the full-range spectral features (scalograms) as in the WS-CNN
approach, only extracts the spectrally dominant features of the
raw ECoG epochs, using wavelet and Fourier spectrums (WF),
to form robust input matrix sets. In this method, the CWT coef-
ficients of each zero-meaned ECoG segment (72� 1) using
rbio2.8 at scale 7 (Figure S3E–H of Appendix F, Supporting
Information) as well as the inverse Fourier transform time-series
of the data (IFFT: spectral components within 80–120Hz pre-
served—Figure S3I–L, Supporting Information) along with the
original raw ECoG segment (Figure S3A–D, Supporting
Information), were combined to form robust 3D input-matrix
sets of size 72� 3� 1 (Figure S3M,N, Supporting Information)
to be fed directly into the deep 2D-CNN classifier (WF-CNN).
Such a strategy creates consistent profiles that facilitate the inter-
nal feature extraction within the CNN algorithm to generate even
more robust feature maps for classification between spikes and
nonspikes.

4.4.2. The Proposed Deep WF-CNN Classifier: Model Setup and
Architecture

Compared to the WS-CNN, here we introduce an 11-layer 2D
WF-CNN classifier that could be considered to be computation-
ally more efficient due to the much simpler input matrix of fea-
tures, instead of the computationally intensive scalograms used
in the WS-CNN. In fact, the WS block in Figure 4, or more spe-
cifically, the scalograms in Figure 5A, are replaced with an input
matrix of size 72� 3� 1 containing the CWT, IFFT, and raw
ECoG data (see Figure S3M, Supporting Information). The struc-
ture of the 2D-CNN used in the WF-CNN is shown in Table S14
of Appendix E, Supporting Information. Compared to the 17-
layer designed structure for the WS-CNN, a maximum feasible
depth of 11 layers was designed, according to the limitations
related to the size of the inputs for the WF-CNN as well as

Table 3. The architecture of the proposed deep WS-CNN classifier.

Layers Type No. of neurons
(output layer)

Kernel
size

Stride Padding No. of
filters

0–1 Conv. 303� 404 3 1 1 16

1–2 Max_pool 151� 202 [3 2] 2 0

2–3 Conv. 151� 202 3 1 1 32

3–4 Max_pool 75� 101 [3 2] 2 0

4–5 Conv. 75� 101 3 1 1 48

5–6 Max_pool 37� 50 3 2 0

6–7 Conv. 37� 50 3 1 1 72

7–8 Max_pool 18� 25 [3 2] 2 0

8–9 Conv. 18� 25 3 1 1 96

9–10 Max_pool 9� 12 [2 3] 2 0

10–11 Conv. 9� 12 3 1 1 128

11–12 Max_pool 4� 6 [3 2] 2 0

12–13 Conv. 4� 6 3 1 1 256

13–14 Max_pool 2� 3 2 2 0

14–17 Fully_connected 1536

Fully_connected 24

Fully_connected 2

Output Softmax and Classification

Micro-scale Gamma 
Spike Transient 

Detection

Softmax & 
Classifier

Fully connected 
layers

CNN classifier
(Conv, ReLU, Pooling)

Wavelet 
Scalograms

Normalization 
and zero mean

Raw EEG       
segments 
(1024Hz)

CNN layers

Figure 4. The schematic of our proposed procedure for gamma spike tran-
sient identification.
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the inevitable design considerations that should have been taken
into account for optimal tuning of the inner convolutional layers
to avoid massive size reductions within the inner layers. Similar
to the WS-CNN, an SGDM updating strategy was used for sev-
enfold cross-validation of the WF-CNN. Our recent assessments
using limited data indicated that this approach is capable of iden-
tifying both sharps and spikes in the recordings of fetal sheep
models.[29,30] Here we validated the technique using a much
larger dataset, while we also assessed how the size of the network
influences the overall performance. Using the procedure
described for the WS-CNN pattern classifier, the article investi-
gates the effects of reducing the original 11-layer, 2D-CNN struc-
ture down to 9, 7, and 5 layers by using 4, 3, 2, and 1 block(s) of
convolutional, ReLU, and max-pool layers in each architecture,
respectively.

4.5. 1D-CNN Classifier

Here we also investigate the performance of a 1D-CNN classifier
applied directly to the ECoG time-series as the input. ECoG seg-
ments of length 72� 1 (for both spike and nonspike events) were
fed into an 11-layer deep 1D-CNN structure for classification. In
the proposed 1D-CNN structure, the WS generating block in
Figure 4 is bypassed from the previously detailed WS-CNN pat-
tern classifier. The designed architecture of the proposed 1D-
CNN pattern classifier is detailed in Table S15 of Appendix E,
Supporting Information, while the CNN block in this approach
is shown in Figure 5B. The maximum depth of 11 layers was
designed, inevitably, based on the limited length of the input
ECoG segment and considering a stride value of 2 for all

Figure 5. The architecture of our proposed A) WS-CNN and B) 1D-CNN spike pattern classifiers.

Data division – Cross validation strategy

Cross-validated data from 6 fetal sheep
80% training – 20% validation

Test-set from an 
unseen sheep

4
sheep

3
sheep

2
sheep

1
sheep

5
sheep

6
sheep

7
sheep

Figure 6. Allocations of the ECoG datasets for training, validation, and testing of the proposed WS-CNN, the WF-CNN and 1D-CNN pattern classifiers
(see Table 1).
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max-pooling layers. Our recent assessments indicated that the
1D-CNN classifier is well capable of identifying high-amplitude
stereotypic epileptiform seizures in a limited dataset of fetal
sheep;[31] therefore, here we evaluated the technique for high-fre-
quency gamma spikes. Using a similar procedure to that
described for the WS-CNN pattern classifier, the article investi-
gates the effects of reducing the original 11-layer 1D-CNN struc-
ture down to 9, 7, and 5 layers using 8, 6, 4, and 2 convolutional
layers in each architecture, respectively.

4.6. Wavelet Type-I Fuzzy Classifier

In 2018, we introduced a successful WT-Type-I-Fuzzy approach
for the identification of HI microscale gamma spike transients in
the latent phase of HI ECoG.[8] In this work, the performance of
the WT-Type-I-Fuzzy classifier was also assessed for the quanti-
fication of individual microscale spike transients over the entire
6 h post-HI ECoG. In brief, data were initially continuous wavelet
transformed using the Rbio 2.8 mother wavelet at scale 7 and
then passed to the fuzzy classifier for final reasoning
(see ref. [8] for detailed information). In this approach, the
WT-Type-I-Fuzzy classifier was separately cross-validated on data
from each individual sheep.

4.7. Spectral Fourier-Fuzzy Classifier

We recently introduced a spectral-based fuzzy approach (FFT-
Type-I-FLC classifier) for the identification of HI microscale
gamma spike transients in the latent phase recordings of post-
HI ECoG activity.[10] In this work, the performance of the
FFT-Type-I-FLC was also assessed for the quantification of indi-
vidual microscale spike transients over the entire 6 h of post-HI
ECoG recordings. In brief, data were initially Fourier/inverse
Fourier transformed preserving the spectral components in
the 80–120Hz frequency band and then passed to the type-I
fuzzy classifier for final reasoning (see ref.[10] for detailed infor-
mation). In this approach, the FFT-Type-I-FLC classifier was sep-
arately cross-validated on data from each individual sheep.

4.8. Computing Infrastructure

The deep WS-CNN and WF-CNN classifiers were trained using
New Zealand eScience Infrastructure (NeSI) high-performance
computing facilities that offer the Cray CS400 cluster. The clas-
sifiers were trained using 12 CPUs (six hyperthreaded cores) on
an Intel Xeon Broadwell node (E5-2695v4, 2.1 GHz) with 18 GB
of memory (1.5 GB RAM memory per CPU). The algorithms
were executed using Matlab programming software.

4.9. Performance Evaluation Metrics

4.9.1. K-Fold Cross-Validation for the Deep CNN-Based Classifiers

The performance of the WS-CNN, WF-CNN, and 1D-CNN clas-
sifiers was evaluated using a subject-based k-fold cross-validation
strategy (sevenfold) to assure the validation, consistency, and reli-
ability of the proposed pattern classifiers across all subjects. This
strategy helps to assess the degree of reliability of the classifiers

in dealing with potential morphological variations of the transi-
ents across all datasets. Typically, k-fold cross-validation is used
within a single dataset where the entire dataset is subpartitioned.
Here, as in our previous works,[8,10] we performed cross-valida-
tion across a seven-sheep dataset where the data from each six
sheep was subpartitioned for training and validation, while data
from a remaining sheep was used for testing of the classifier (sev-
enfold cross-validation). This procedure was repeated seven
times by swapping the test data set each time.

4.9.2. K-Fold Cross-Validation for the Spectral-Fuzzy Classifiers

A subject-based k-fold cross-validation strategy was also used for
the performance evaluation of the WT-Type-I-Fuzzy and FFT-
Type-I-FLC approaches. However, the two later classifiers were
individually tested over the entire 6 h data set for each sheep.
This was permutated across all seven fetal sheep by replacing
the test set with the data from a new unseen sheep. At each fold-
ing step, the average of selectivity and sensitivity measures was
used to evaluate the overall performance of the classifiers.

5. Conclusion

Reliable, high-performance biomarkers are essential if we are to
improve the outcomes for newborns after perinatal HI insults. In
part, improved outcomes will require better determination of the
phase of brain injury so that we know whether babies may benefit
from treatment, and potentially in the future, the type of inter-
vention that is most likely to be beneficial. The current standard
therapy of TH has a very narrow window of opportunity for effi-
cacy: the first 6 h of post-HI recovery. Cot-side EEG recordings
offer a quick, easily applied method for extracting continuous
biomarker data, although, problematically, data are often col-
lected at very low frequency. Our study has shown, using a pre-
clinical animal HI model with 1024Hz sampling, that the deep
WS-CNN and WF-CNN structures reliably outperform the con-
ventional 1D-CNN and spectral-fuzzy classifiers, and that the
greater the number of convolutional layers within the architec-
ture, the better is the performance. In conclusion, our study pro-
vides a reliable framework that could help with a well-timed
diagnosis of at-risk neonates in clinical practice.

6. Experimental Section
All procedures were approved by the Animal Ethics Committee of the

University of Auckland (R1942) and conducted in accordance with the
Code of Ethical Conduct for animals in research established by the
Ministry of Primary Industries, Government of New Zealand. The experi-
ments are reported in accordance with the ARRIVE guidelines for reporting
animal research.

Surgical and Experimental Procedures: This study was conducted in pre-
term fetal sheep after surgical recovery (i.e., they were studied in utero
without the confounding effects of anesthesia). Fetuses rather than neo-
nates were used because at this time there is no neonatal preterm model
with a gyrencephalic brain similar to that of humans, and utilizing a whole-
body HI insult similar to that seen at birth.[32,33]

Seven singleton Romney/Suffolk fetuses at 98–99 days of gestation (full
term �147 days gestation) were used in this study. The methods are as
previously described.[11,33–36] Briefly, ewes were then anesthetized by an
intravenous injection of propofol (5 mg kg�1; AstraZeneca Limited,
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Auckland, New Zealand) and intubated, and general anesthesia was main-
tained using 2–3% isoflurane in O2 (Bomac Animal Health, NSW,
Australia). Ewes were given an intramuscular injection of the antibiotic
oxytetracycline (20mg kg�1; Phoenix Pharm, Auckland, New Zealand)
for prophylaxis. Maternal fluid balance was maintained via a constant
saline infusion (�250ml h�1). Animals were constantly monitored by
trained anesthetic technicians throughout surgery.

Fetuses were surgically instrumented with catheters and electrodes as
previously described.[35] Specific to this study. polyvinyl catheters
(SteriHealth, Dandenong South, VIC, Australia) were placed in a brachial
and femoral arteries for blood sampling and blood pressure. Electrodes
(AS633-3SSF wire; Cooner Wire, Chatsworth, CA) were subcutaneously
placed over the right shoulder and at the level of the left fifth intercostal
space to measure the fetal electrocardiogram (ECG) for EEG recordings
and HI insult. Two pairs of left/right electrodes (AS633-5SSF; Cooner
Wire) were placed bilaterally onto the parasagittal cortical dura (5 and
10mm anterior to bregma and 5mm lateral) via burr holes for recording
of the ECoG, which were then sealed. ECoG recordings reduce signal arti-
facts and therefore the signal can be technically referred to as an “ECoG.”
A reference electrode was also sewn over the occiput. An inflatable silicone
occluder (OC16HD, 16mm, In Vivo Metric, Healdsburg, CA, USA) was
loosely placed around the umbilical cord to allow postsurgical occlusion
of the umbilical cord to induce fetal HI. When fetal procedures were com-
plete, the fetus was returned to the amniotic sac and the uterus and mater-
nal surgical sites were closed. The maternal laparotomy skin incision was
infiltrated with a local analgesic, 10 ml of 0.5% bupivacaine plus adrenaline
(AstraZeneca, Auckland, NZ), for analgesia. A maternal saphenous vein
was cannulated for postoperative care.

Ewes and their fetuses recovered from their surgery for 4–5 days before
experiments began. Ewes were housed together in separate metabolic
cages with access to concentrated pelleted food and water ad libitum.
Rooms were temperature-controlled (16� 1 �C, humidity 50� 10%) with
a 12:12 h light:dark cycle. Antibiotics were given intravenously to the ewe
each day for 4 days: 600mg benzylpenicillin sodium (Novartis, Auckland,
New Zealand) and 80mg gentamicin (Pfizer, Auckland, New Zealand).
Fetal vascular catheters were continuously infused with heparinized saline
(20 Uml�1 at 0.2 ml h�1) to maintain patency. The fetal condition was
assessed via recordings of all fetal physiological variables, and daily arterial
samples were drawn to monitor pH and blood gases (ABL800 Flex ana-
lyzer, Radiometer, Auckland, New Zealand), glucose, and lactate (YSI 2300
Analyzer, YSI Ltd., Yellow Springs, Ohio, USA).

Fetuses were studied at 103–104 days of gestation. At this age, the fetal
brain is the equivalent in neuronal maturation to a human brain of around
28–30 weeks of gestation.[33] They underwent complete inflation of the
umbilical cord occluder to induce a severe HI insult for 25min or until
blood pressure fell below 8mmHg or there was asystole (25min (n¼ 4),
19min (n¼ 1), 15min (n¼ 2)). All occlusions started at 09.00 h. A suc-
cessful occlusion was defined by measurements of fetal blood pressure,
heart rate, and blood samples for pH and blood gas analysis. At the com-
pletion of the experiment at 7 days post-HI, fetuses and their ewes were
killed by an overdose of pentobarbital sodium intravenously to the ewe (9 g
of Pentobarb 300; Chemstock International, Christchurch, New Zealand).

Measurements: Fetal mean arterial blood pressure, heart rate, and ECoG
were continuously recorded by a computer using a custom data acquisi-
tion software (LabVIEW for Windows; National Instruments, Austin, TX).
Specifically for this study, the fetal ECoG was initially amplified with a gain
of �10 000, then passed through a fifth-order low-pass Butterworth anti-
aliasing filter and a first-order high-pass filter with cut-off frequencies set at
512 and 1.6 Hz, respectively. Data were then digitized at a sampling rate of
4096 Hz and filtered by a low-pass filter with a digital IIR Type 2 Chebyshev
filter with a cut-off frequency of 512 Hz and resampled to 1024 Hz for anal-
ysis of the raw EEG waveforms. Data were finally decoded into Matlab for
microscale transient analysis. The first 6 h post-HI ECoG for all animals
(total: 42 h) was used for analysis. Depending on the amount of 50 Hz
noise contamination of the signal, the data were initially passed through
a 100th-order digital bandpass finite impulse response (FIR) filter with a
normalized stop-band frequency (ω) between 0.05 and 0.13
(25.60 Hz<f< 66.56 Hz), if needed. The data were not further denoised

but normalized and zero-meaned only so that the classifiers could be
trained on a more challenging environment that could mimic spectrally
complex clinical data.
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