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ABSTRACT: This study provides the first quantitative assessment of observed long-term changes in summer-season timing

and length in the Southern Hemisphere (SH) and its subregions over the past 60 years, enabling a global completeness by

complementing such characteristics previously reported for the Northern Hemisphere (NH). Using an objective algorithm

that is based on temperature indices, relative measures of summer onset, withdrawal, and duration are determined at each

land location over the period 1953–2012. Significant widespread summer-season lengthening, due to earlier onset and

delayed withdrawal, has occurred across the SH, a longer period for extreme heat-wave events and wildfires to potentially

occur. The asymmetric magnitude (onset vs withdrawal) in summer-season lengthening is slightly less over the SH than over

the NH. Contributions of anthropogenic and natural factors to the observed trends in summer-season characteristics were

investigated using phase 5 of the CoupledModel Intercomparison Project (CMIP5) multimodel simulations integrated with

observed external forcings [anthropogenic plus natural (ALL)], greenhouse gas forcing only (GHG), and natural forcing

only [solar and volcanic activities (NAT)]. Overall, consistent with theNH, increased greenhouse gases were themain cause

of observed changes in the SH, with negligible contribution from other external forcings. ALL and GHG simulations also

reproduced a slight tendency for earlier summer onset to contribute more to summer lengthening. Proportions of observed

regional trends in summer-season indices attributable to trends in long-term internal variability in the SH, namely, the

interdecadal Pacific oscillation (IPO) and southern annular mode (SAM), suggests such variability can only explain up to

;12%, supporting the dominant role of greenhouse gas forcing.

KEYWORDS: Summer/warm season; Southern Hemisphere; Anthropogenic effects; Climate change; Seasonal variability;

Climate models

1. Introduction

As the warmest season of the year, the heat in summer also

often translates to drier temperatures in many land regions

outside of the tropics. This hot, dry time of year places pressure

on water demands because of the increased likelihood or in-

tensification of droughts (Lehmann et al. 2018; AghaKouchak

et al. 2014; Kong et al. 2020), and when humans and ecosystems

experience heat waves, one of the deadliest forms of extreme

weather events worldwide (e.g., Mora et al. 2017). Overall,

summer imposes compounded and increased harm to both

humans and the environment (Zscheischler and Seneviratne

2017; Pfleiderer et al. 2019). For example, about 30% of the

world is already exposed to heat that is intense enough to kill

people for 20 ormore days each year (Mora et al. 2017). Recent

observations suggest that the frequency, duration, and inten-

sity of summer heat-wave events are further increasing over

land regions across the globe (e.g., Coumou and Rahmstorf

2012; Cowan et al. 2014; Pfleiderer et al. 2019). Despite various

limitations in simulating regional changes (Hao et al. 2013),

climate models project these trends to continue with increasing

anthropogenic forcing (Meehl and Tebaldi 2004; Coumou and

Robinson 2013). Therefore, any change in the seasonal cycle

that alters the summer season, such as a lengthening of the

summer season (e.g., Peña-Oritz et al. 2015; Park et al. 2018),

will simply provide a larger window for these extreme summer

heat-wave events to develop and occur. Changes to the seasonal

cycle driven by climate change will have large socioeconomic

and ecological impacts (Bertram et al. 2001; Christidis et al.

2007;Mueller et al. 2015).A lengthening of the summer season is

likely to lead to further increases in the risk of situations that

place growing pressure on water demands with an increasing

world population and prolong or intensify droughts conditions.

Increase in either duration or intensity of drought conditions

may also drive increase in the risk of conditions that are as-

sociated with widespread wildfire events (Jolly et al. 2015;

Abatzoglou et al. 2019), which have had devastating impacts

in many regions during recent years, such as the United States

(e.g., Williams et al. 2019) and Australia (e.g., Dowdy 2018).

In recent years, global heat records are increasingly being

broken as a result of anthropogenic forcing (Coumou et al.

2013; Pfleiderer et al. 2019). The link between global climate

change, due to increasing greenhouse gases, and the increase in

temperature and/or heat waves is well established (IPCC 2013,

and references therein). Observed phase and amplitude

changes over recent decades in the seasonal cycle are well

documented to be a result from both external forcings and

large-scale atmospheric variability (e.g., Mann and Park 1996;
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Wallace and Osborn 2002; Stine et al. 2009; Dwyer et al. 2012;

Qian and Zhang 2015; Cornes et al. 2017). Yet there are still

knowledge gaps in terms of the impact of such forcing on dif-

ferent characteristics of the ‘‘meteorological’’ seasons (i.e., the

12 months of the year being divided up into four seasons with

3 months each). In particular, the contributions from anthro-

pogenic and natural forcings to observed long-term variations

in summer-season timing and length over global land areas

remain unclear.

Building on the attribution of several regional changes in

growing- and/or summer-season length and timing to anthro-

pogenic forcing (e.g., Christidis et al. 2007; Stine et al. 2009;

Qian et al. 2012; Mueller et al. 2015; Peña-Oritz et al. 2015),

Park et al. (2018) recently examined the timing and length of

the summer season over the entireNorthernHemisphere (NH)

land areas. Similar to studies that quantified changes in the

seasonal cycle by seasonal indicators or through threshold

crossing statistics, Park et al. (2018) undertook an objective

analysis using temperature-based indices (devised from pre-

vious studies of growing-season length) to determine relative

measures of summer onset, withdrawal, and duration at each

NH land location. Overall, the observations for the past 60

years (1953–2012) show lengthening of the summer season as a

result of both an earlier onset and delayed withdrawal of

summer across the NH. Further, the summer onset advance

contributed more to the observed increase in summer-season

length in many regions than the delay of summer withdrawal,

possibly linked to changes in the phase of the seasonal cycle

(e.g., Stine et al. 2009; Dwyer et al. 2012) and the influence of

internal climate variability (e.g., Christidis et al. 2007; Stine and

Huybers 2012). Subsequently, it was found that increased

greenhouse gases were the main cause of the observed changes

and multidecadal variability explained no more than 10% of

the observed trends in summer-season length, mainly over the

high latitudes. To date, such information is lacking for Southern

Hemisphere (SH) land areas.

To complete a global examination of the observed long-term

variations in summer-season timing and length, we build on

Park et al. (2018) who previously reported on such character-

istics for the NH. Here, we have conducted a complementary

systematic analysis of similar long-term variations in summer-

season timing and length over land of the SH and its subregions

during the past 60 years (1953–2012). Using a revised objective

algorithm based on temperature indices, we determine the

relative measures of summer onset, withdrawal, and duration

at each land location. Following this, contributions of anthro-

pogenic and natural factors to the observed trends in summer-

season characteristics were investigated through comparisons

with multimodel simulations integrated with different external

forcings. Overall, this study enables a global completeness by

providing the first quantitative assessment of the observed

changes in summer-season length in the SH. The remainder of

the paper is structured as follows. Section 2 describes the data

and the method used to obtain summer-season characteristics

based on an objective algorithm. In section 3, the long-term

variations in summer-season timing and length over land of the

SH and its subregions and the contributions of anthropogenic

and natural factors to the observed trends in summer-season

characteristics are examined. Section 4 contains a summary

and conclusions.

2. Data and methods

a. Observations and model data

Gridded observations of daily temperatures over the SH

land were obtained from the Berkeley Earth project (http://

berkeleyearth.org/data/; Rohde et al. 2013) dataset for the

period of 1953–2012. Daily mean temperatures were provided

with a resolution of 18 longitude 3 18 latitude and are con-

structed utilizing over 39 000 unique stations, which provides

increased coverage of land areas in the SH relative to other

datasets that are available [e.g., Hadley Centre’s Global

Historical Climatology Network Daily (HadGHCND) dataset

(Caesar et al. 2006)] with reduced uncertainty (Rohde et al.

2013). In addition, consistent with Park et al. (2018), we limit

the analysis domain to extratropical areas where a distinct

annual cycle occurs (cf. Christidis et al. 2007) and also exclude

Antarctica. Therefore, the overall analysis domain covers the

land regions over 23.58–608S. Note that, for all maps in the

results, the land size for New Zealand has been magnified by a

factor of 2 to aid in the visualization, and the maps show

original values (i.e., values are not multiplied by a factor of 2).

Daily mean historical temperature simulations were ob-

tained from the multimodel dataset of phase 5 of the Coupled

Model Intercomparison Project (CMIP5) experiments (Taylor

et al. 2012), which were carried out under the observed ex-

ternal forcings. A list of the model simulations used in this

study is provided in Table 1. Overall, three experiments

available for the analysis period were used to compare with the

observed results: 1) anthropogenic (greenhouse gases and

aerosols emissions) plus natural (solar plus volcanic activities)

forcing runs (ALL; 24 models) constructed by merging his-

torical simulations (1953–2005) with future projections based

on the representative concentration pathway 4.5 (RCP4.5)

scenario (2006–12); 2) greenhouse gas–only forcing (GHG; 6

models); and 3) natural-only forcing (NAT; 8 models). For the

GHG and NAT simulations, the period 1952–2011 was used

due to the end date of the individual forcing simulations yet has

no influence on the overall trends for the analysis period.

All model data (summer-season indices; see below) were

interpolated to the same resolution as the observations (OBS)

using a bilinear interpolationmethod (‘‘remapbil’’ algorithm from

the Climate Data Operators; https://code.zmaw.de/projects/cdo/

embedded/index.html) with the same land–sea mask being ap-

plied. Note that models have differing land–sea masks from the

observations, particularly along the coast and in coarser models.

Sensitivity tests found that the use of each model’s land mask

did not affect the main results based on regional averages

(not shown).

b. Summer-season indices

Summer-season indices in the SH were defined based on a

relative threshold that is applied for each grid, following the

method of Park et al. (2018) in the NH. To reduce the influence

of day-to-day temperature fluctuations, the daily temperature
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data were first smoothed. However, here we apply a fourth-

harmonic function as opposed to a third-degree polynomial for

each grid box where no data were missing for the given year

(Fig. 1a). The equation for the fourth-harmonic fit ~T(t) can be

expressed as

~T(t)5T
0
1 �

4

k51

[A
k
cos(v

k
t)1B

k
sin(v

k
t)] , (1)

where t indicates day of the year (t 5 1, . . . , 365), k is the

number of the harmonic, and vk 5 2pk/365; T0 depicts annual

mean of the given year, and coefficientsAk andBk are obtained

from a Fourier transform. The choice to use a fourth-harmonic

function is due to it providing a better fit to the overall daily

seasonal cycle with less root-mean-square error (RMSE), that

is, better representing interseasonal fluctuations than a third-

degree polynomial fit. Overall, the harmonic smoothing per-

formed best at eliminating smaller-time-scale noise, and trends

in the indices were robust to the smoothing method chosen,

suggesting any influence from spurious oscillations (e.g., Gibbs

oscillations) to be negligible.

The local gridpoint temperature threshold for the summer

season was simply defined as the 75th percentile of tempera-

ture values averaged over 1953–2012 (i.e., the warmest quar-

ters of the year) (Trenberth 1983). An example of this local

threshold for one location is provided in Fig. 1a (red horizontal

line) and the spatial distribution of local temperature thresh-

olds for SH land areas is shown in Fig. 1b. Similar to the NH,

there is a general dependency on latitudes, as highlighted by

the latitudinal profile of the zonal mean (right panel in Fig. 1b),

with thresholds increasing toward lower latitudes. However,

the influence of altitude is also evident over some continents

(e.g., the west coast of South America). Summer onset is de-

fined as the calendar date when the smoothed temperature

curve begins to exceed the local temperature threshold, and

summer withdrawal is defined as the date when the tempera-

ture decreases below that threshold. Summer duration is de-

fined simply as the number of days from summer onset to

summer withdrawal (Fig. 1a). Hereinafter, summer onset

(ONS), withdrawal (WIT), and duration (DUR) are referred

to as ‘‘summer-season indices.’’

Overall, sensitivity tests conducted in terms of the use of

different local thresholds criteria or datasets found that results

do not change significantly. For example, Park et al. (2018)

tested comparisons of the summer-season indices obtained

from either different percentile thresholds (e.g., 70th or 80th

percentile) or an absolute threshold of a daily maximum tem-

perature [e.g., Klein Tank and Können (2003)]. Here, the

fourth-harmonic function fitting was also compared with those

obtained from the third-degree polynomial fitting previously

used for the NH by Park et al. (2018) (cf. Figs. 1a and 1c). In

addition, thresholds and trends in the SH summer-season in-

dices were calculated using the HadGHCND dataset, which,

however, provide less coverage in the SH. Note, some local

thresholds (Figs. 1a,c) and/or individual summer-season dates

(i.e., a maximum difference of62 days, not shown) were found

to be slightly different across the two filtering methods or da-

tasets. Nevertheless, both the spatial patterns of the climatol-

ogy and the trends of summer-season indices were largely

similar between the following results, as were the results from

using different thresholds and filtering methods or dataset,

indicating the robustness of the applied methods used.

However, asymmetry in contributions from summer onset and

withdrawal to the overall summer-season lengthening was

found to be slightly sensitive to the smoothing method and will

be discussed later.

c. Attribution analysis

To identify causes of the observed changes in summer-

season indices, we estimated contributions of external forcing

and natural large-scalemultidecadal variability to the observed

trends in the SH and its subregions. Long-term natural vari-

ability of the ocean such as the interdecadal Pacific oscillation

(IPO) has been shown to affect decadal variability of land

temperatures (e.g., Salinger et al. 2001; Meehl et al. 2012).

Here, the IPO index was obtained from the National Oceanic

and Atmospheric Administration (NOAA) Earth System

Research Laboratory (ESRL), and is based on the difference

between the sea surface temperature anomalies averaged over

the central equatorial Pacific and the average in the northwest

and southwest Pacific (Henley et al. 2015). Defining the IPO

using the tripole index accounts for variability in the South

Pacific, often not considered using other indices based on

principal component analysis over the North Pacific. Overall,

TABLE 1. List of CMIP5 models and experiments. Number of

ensemble members for each model is shown for ALL, GHG, and

NAT experiments and the total number of models is shown for

each experiment. Expansions for model acronyms are available

online (https://www.ametsoc.org/PubsAcronymList).

Model ALL GHG NAT

1 ACCESS1.0 1 — —

2 ACCESS1.3 1 3 3

3 BCC_CSM-1.1(m) 1 — —

4 BNU-ESM 1 — —

5 CanESM2 3 5 5

6 CCSM4 3 — —

7 CNRM-CM5 1 5 6

8 CSIRO Mk3.6.0 9 10 10

9 EC-EARTH 1 — —

10 GFDL CM3 2 — —

11 GISS-E2-R 1 — —

12 HadCM3 9 — —

13 HadGEM2-AO 1 — —

14 HadGEM2-ES 2 4 4

15 INM-CM4.0 1 — —

16 IPSL-CM5A-LR 3 4 3

17 IPSL-CM5A-MR 1 — 3

18 MIROC4h 2 — —

19 MIROC5 3 — —

20 MIROC-ESM 1 — —

21 MPI-ESM-LR 3 — —

22 MPI-ESM-MR 3 — —

23 MRI-CGCM3 1 — –

24 NorESM1-M 1 — 1

Total Model (runs) 24 (55) 6 (31) 8 (35)
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the IPO tripole index time series bears a close resemblance

(i.e., correlations .0.92) to previously published PC-based

indices (Henley et al. 2015). A small but positive trend in the

IPO for the 60 years is observed (over a negative–positive–

negative phase transition during the period), therefore, po-

tentially contributing to the observed trend in summer-season

indices. The southern annular mode (SAM) is associated more

with influencing interannual variability of land temperatures

(e.g., Hendon et al. 2007; Min et al. 2013; Harris and Lucas

2019), yet an overall positive trend in the SAM index has also

been observed over recent decades (Clem et al. 2020). Therefore,

SAM contributions to the observed trend in summer-season in-

dices were also assessed using the difference in normalized zonal-

mean sea level pressure between 408 and 658S (Gong and Wang

1999). Note, the positive SAM trend is also predominantly at-

tributed to external forcing such as greenhouse gas increases and

stratospheric ozone losses (e.g., Arblaster and Meehl 2006;

Gerber and Son 2014). Other modes of variability, such as the

Atlantic multidecadal oscillation and El Niño–Southern Oscilla-

tion (ENSO), did not contribute to any trends in the observed

summer-season indices and therefore not presented. All monthly

indices were averaged over each summer season [December–

March (DJFM)].

Following Park et al. (2018), we employed a stepwise re-

gression method to determine the relative contributions of

external forcing and multidecadal climate variability on the

FIG. 1. (a) Example of the definitions of the summer-season indices (onset, withdrawal, and

duration). The horizontal red line indicates the local temperature threshold (75th percentile).

Also shown is the comparison of fit to daily temperatures using a fourth harmonic (solid) and

third-degree polynomial (dashed) curve. (b) The spatial distribution of local temperature

thresholds across the Southern Hemisphere using a fourth harmonic curve fit. (c) The differ-

ence (fourth harmonic minus third-degree polynomial) between thresholds as calculated using

the two curve fits. Zonal mean distributions are displayed to the right in (b) and (c).
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three summer-season indices over the whole SH and its sub-

regions. Overall, this involved calculating the proportion of the

observed trend attributable to external (ALL, including an-

thropogenic plus natural) forcing. First, the following equation

is calculated:

Y
OBS

5b
1
X

ALL
1 « , (2)

where YOBS is the observed area-averaged time series of the

summer-season index, XALL is the multimodel mean (ALL

forcing runs) of the area-averaged time series of the summer-

season index, b1 is the regression coefficient, and « is the re-

sidual. The residual « represents the observed changes without

external forcing, or simply the internal variability. Subsequently, a

simple linear regression onto the climate variability index (IPO or

SAM index) was then taken to estimate its contribution to the

residual such that

«5b
2
X

index
1 y , (3)

where Xindex represents either the observed IPO or SAM in-

dex, b2 is the regression coefficient, and the residual of this

equation is denoted by y.

The proportion of the observed trend attributable to ALL

forcing (P1) was estimated by dividing the linear trend of the

ALL regressed term [D(b1XALL)] by the linear trend of the

observed summer-season indices (DYOBS):

P1 5 D(b
1
X

ALL
)/DY

OBS
. (4)

Similarly, the proportion of the trend attributable to the cli-

mate variability index Xindex (P2) was calculated as

P2 5 D(b
2
X

index
)/DY

OBS
. (5)

For example, if the IPO index is selected as Xindex, the trend

attributable to IPO can be obtained. This method was also

applied to the SAM index. Here, we only assessed linear re-

sponses and do not consider nonlinear responses in summer-

season indices.

The significance of the estimated contributions of ALL

forcing and IPO or SAM to the observed trends was assessed

by utilizing each model run (ALL forcing runs) as pseudo

observations because each model run, not multimodel mean, is

comparable to the observations as a single realization (Paik

et al. 2017). For each pseudo observation, we estimated the

contributions of ALL and IPO/SAM in the same way as we did

for the observations. More specifically, we repeated the pro-

cedure from Eq. (2) to Eq. (5) using each ALL forcing run and

estimated trends attributable to ALL forcing (P1) and to each

type of the simulated multidecadal climate variability (P2).

Here the only difference is that multimodel mean forALL runs

is calculated excluding the selected run and that the IPO or

SAM index defined from the selected run is used. After re-

peating this calculation across all model runs, we then assessed

the 5%–95% uncertainty ranges of P1 and P2. This way of

estimating uncertainty ranges is fundamentally identical to

those employed in formal detection and attribution methods

(e.g., Allen and Stott 2003). Previous studies have shown that

the CMIP5 models simulate reasonably well spatial and

temporal characteristics of the IPO (Meehl et al. 2016; Henley

et al. 2017) and the SAM (Gillett and Fyfe 2013; Swart

et al. 2015).

3. Results

a. Observed summer-season changes

Figure 2 shows the spatial patterns of observed climatolog-

ical means for the summer indices over the SH. There is an

evident contrast of later onset (e.g., mid-to-late December)

and withdrawal (e.g., mid-to-late March) in summer at the coast

compared to earlier summer beginning (e.g., late November)

and end (e.g., late February to early March) farther inland on

each continent, ormore northern regions. Presumably due to the

latitude, size, and island nature of New Zealand, coastal-inland

contrast in summer-season indices is weaker compared to the

other landmasses, with the most delayed onset and withdrawal

on average. However, the duration for each landmass remained

somewhat consistent. On average, summer started on 7 December

and ended on 6March, lasting;90 days in total. The overall range

in the summer duration over the SH is about 1.5weeks (i.e., ranging

from 85 to 96 days).

The spatial distribution of the respective trend patterns in

the three summer-season indices over the period 1953–2012 is

presented in Fig. 3. Areas filled with hatching denote where a

local trend is not significant (at the 5% level). Over the 60-yr

period, summer onset now begins on average about two weeks

earlier (15 days) and summer withdrawal occurs about two

weeks later (13 days). Consequently, this has seen the duration

of summer increase by almost one month on average (28 days).

However, spatial variations reveal several notable differences.

Southern Africa and southern America experience larger

trends in earlier summer onset over more northern regions,

whereas the larger trends occur over the southern regions of

Australia. Interestingly, the two islands of New Zealand are

found to have opposite trends in not only onset, but all three

summer-season indices, yet note that trends are only significant

mostly in the far north and far south of the North and South

Islands, respectively. For example, in New Zealand summer

begins about 14 day earlier on the northern island (situated

roughly ;348–418S) but begins about 7 days later on the

southern island (situated roughly ;408–478S). Similarly, the

summer season ends later on the northern island and earlier on

the southern island of NewZealand, respectively (Fig. 3b). The

remainder of the landmasses show clear delays in summer

withdrawal, except for parts of Western Australia, where

a small region of significant earlier summer withdrawal is

found (Fig. 3b).

Overall, the largest extensions in the duration of the SH

summer season (Fig. 3c) are apparent over the western and

northern regions of southern Africa, central-to-eastern

Australia, and northern regions of southern America. Again,

New Zealand experiences oppositely signed trends in summer

duration, extending in the north and decreasing in the south,

most of which are not significant. Domain-averaged trends

were also calculated over the four main landmass regions in the

SH (Fig. 4a) to further assess contributions from the regional
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trends in onset and withdrawal to the regional lengthening

trends over the period 1953–2012 (Fig. 4b). The domain-

averaged trends of all three summer-season indices are larg-

est over the southern Africa region, with a lengthening in

summer of about 47 days (60 yr)21. Understandably, New

Zealand shows the weakest mean trends, about 4 days

(60 yr)21, due to oppositely signed trends of the two islands.

Similarly, trends in southern America summer-season indices,

including lengthening, are stronger than that for Australia

because of small regions of oppositely signed trends over

Australia (Fig. 3). Further, larger contributions from either the

summer onset trend or summer withdrawal trend are not as

apparent in the SH, implying that summer duration was ex-

tended only marginally more by an earlier start (contributing

;54% to the extension) than a delayed ending. This is in

contrast to the NH, where all regions exhibit a stronger sum-

mer onset trend than the withdrawal trend, hence summer

duration was extended more so by the earlier start (contrib-

uting ;60% to the extension) than by the delayed ending

to summer. Additional tests found that the asymmetry in

summer-season lengthening was sensitive to the smoothing

method used to initially fit the daily temperature data. For

example, earlier onset trends in the NH (calculated using a

third-degree polynomial fit) became slightly weaker when

applying a fourth harmonic fit, explaining a similar ;54% of

the duration trend in both hemispheres. Additionally, the onset

contribution in the SH increases to ;57% when applying a

third-degree polynomial fit. Therefore, ONS contributes 54%–

57% to the summer lengthening in the SH. Larger land–sea

ratio in the NH seems to be related to its stronger sensitivity of

summer-season lengthening to the smoothing methods than in

the SH, which warrants further investigation.

To assess possible links between observed long-term

changes and variability in the summer-season temperature

with the summer-season indices, we calculated the relationship

between summer-season duration and observed temperatures

during the SH summer period (Fig. 5). Over the 60-yr period

1953–2012, in line with global warming, all of the regions that

exhibit significant summer [December–February (DJF)] tem-

perature trends in the SH show warming of .0.288C (60 yr)21

FIG. 2. The spatial patterns of the observed climatology (1953–2012 averages) for (a) summer

onset, (b) summer withdrawal, and (c) summer duration. Area means are given in the top-right

corner of (a)–(c).
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(Fig. 5a), with a pattern similar to those for the summer-season

indices (Fig. 3), except for where summer duration decreased.

Regions that do exhibit a decrease in summer duration (e.g.,

WesternAustralia and southernNewZealand), however, show

warming trends that are relatively weak and/or not significant

(cf. Fig. 3c and Fig. 5a). In the NH, regions where summer

duration has decreased (e.g., part of the eastern United States)

also coincided with weak negative trends in the summer tem-

perature (see Fig. 5a of Park et al. 2018). Overall, the inter-

annual variability of the summer-season indices were found to

be highly correlated with DJF mean temperatures at the local

scale (Fig. 5b), and to a lesser extent the long-term change. For

example, the temporal correlation between the summer du-

ration and DJF mean temperatures was strong over the ma-

jority of the SH land regions (area mean of 0.71), yet there was

no distinct relationship with latitude, coastal-inland, or mag-

nitude of the DJF temperature change. Minimal change in

correlations was found when the temporal correlation was

calculated using detrended data (Fig. 5b, bottom panel). This

suggests that the long-term trend in DJF temperatures

contributed little to the temporal correlation and the results

are not simply because summer-season thresholds are ex-

ceeded more easily because temperatures have increased.

Interestingly, summer-season indices in New Zealand were

found to be widely correlated with temperature changes

(.0.69), with no difference between the two islands, such as

was evident in the trend of summer-season indices.

b. Simulated summer-season changes in CMIP5

To understand the influences of external forcing factors on

the observed summer-season indices over the past 60 years, we

employ the multimodel dataset of CMIP5 and their ALL,

GHG, and NAT forcing simulations (Table 1) as discussed in

section 2. The ALL forcing simulation, which incorporates

anthropogenic (greenhouse gases and aerosols emissions) plus

natural (solar plus volcanic activities) forcing represents well

the overall mean climatological patterns of the observed

summer-season onset and withdrawal (cf. Fig. 6 and Fig. 2).

Spatial patterns of the individual CMIP5 models’ bias for

summer onset and withdrawal are provided in Fig. S1 in the

FIG. 3. The spatial distribution of the observed trends over 1953–2012 for (a) summer onset,

(b) summer withdrawal, and (c) summer duration. Hatching indicates grids that are not sta-

tistically significant trends at the 5% level. Area means are given in the top-right corner of

(a)–(c).

15 DECEMBER 2020 WELLER ET AL . 10545

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/24/10539/5017644/jclid200084.pdf by U
N

IVER
SITY O

F AU
C

KLAN
D

 user on 16 N
ovem

ber 2020



online supplemental material. The models represent the two

key features of the observations, being that of later onset and

withdrawal in summer at the coast as compared with farther

inland, and overall delayed responses across of all New

Zealand compared to the other landmasses. Interestingly, this

oceanic thermal capacity that leads to the coastal-inland con-

trast is found to be stronger in the models than in the obser-

vations. This is opposite to that found in the NH where the

FIG. 4. (a) The SH regional domains used in this study and abbreviations for the corre-

sponding regions, and (b) regional trends of summer onset (blue bars), withdrawal (red bars),

and duration (sum of blue and red bars).

FIG. 5. (a) Spatial pattern of the observed trends in summer mean (DJF) temperatures.

Hatching indicates grids with trends that are not statistically significant (at the 5% level).

(b) Spatial patterns of the temporal correlation coefficients between the raw (top half of panel)

and detrended (bottom half of panel) DJF temperature and the summer duration index (DUR)

over 1953–2012. Area mean correlations are given in the bottom-right corner of each half panel.
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coastal-inland contrast was weaker inmodels (Park et al. 2018).

This is presumably due to the smaller land regions in the SH;

therefore, model grid spacing is larger relative to the total land

size, as evidenced by the overly strong influence of this oceanic

mechanism in New Zealand. Therefore, biases in both summer-

season onset and withdrawal are positive (i.e., more delayed)

at the coasts and negative (i.e., earlier) farther inland (bottom

rows of Figs. 6a,b). This overall bias in the SH was consistent

whenusing a different observational dataset (i.e., HadGHCND),

yet resulted in similar summer-season durations as in the ob-

servations of ;90 days (not shown).

To attribute the anthropogenic and natural contributions to

the trends in the observed summer-season indices, we next

construct multimodel mean trend patterns of the summer onset

and withdrawal from the ALL, GHG, and NAT simulations,

and are compared with the observations (Fig. 7). In the dif-

ferent forcing simulation maps, regions where there is less than

80% intermodel agreement in the sign of trends are hatched,

and the area mean trends are provided in the top-right corners.

The ALL and GHG forcing simulations show broad spatial

agreement to the observations and among models for both

onset and withdrawal, except for regions where the trends are

FIG. 6. CMIP5 multimodel mean spatial patterns of the climatology and bias (ALL minus

observations) for (a) summer onset and (b) summer withdrawal. Area means are given in the

top-right corner of each half panel.
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mostly not significant in the observations (i.e., Western

Australia and southern New Zealand). Trends in ALL overall

are slightly weaker (by about 2 days) and much stronger (by

about 6 days) in GHG relative to the observations where they

are significant. Therefore, anthropogenic forcing due to the

GHG increases likely played a critical role in the SH summer

expansion. However, minimal change in the summer-season

indices is simulated in NAT, and there is no intermodel con-

sensus, suggesting natural (solar plus volcanic activities)

forcing alone cannot explain any of the observed trends in

summer-season lengthening in the SH during the 60-yr period.

Here, we assess whether theminimal asymmetry observed in

the SH summer-season lengthening is simulated by the models

by comparing the sum of the trends in summer onset and

withdrawal from the observed and simulated spatial patterns

(Fig. 8). Negative values indicate regions where the trends of

change in summer onset are greater than those of withdrawal,

and positive values indicate the reverse. Based on the overall

FIG. 7. CMIP5 multimodel mean spatial patterns of trends in (a) summer onset and

(b) summer withdrawal for the ALL, GHG, and NAT experiments. The observed trends (OBS)

with hatching the same as in Fig. 3 are provided at the top of each panel for comparison. Hatching

for the CMIP5 experiments indicates grids where there is less than 80% intermodel agreement in

the sign of trends. Area means are given in the top-right corner of each quarter panel.
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observed trends of summer-season indices averaged in the SH

(top row of Fig. 8), earlier summer onset contributed only

slightly more to the summer duration extension than later

summerwithdrawal, with an areamean of22.2 days. However,

there are some regions across each landmass that do show

larger contributions from delayed summer withdrawal to the

summer duration extension. Observations show that earlier

onset is stronger than delayed withdrawal in western regions of

Australia, with a stronger delayed response than earlier onset

to the northeast. This pattern is also captured by the ALL

forcing simulations remarkably well, yet with reduced magni-

tude. More so, the ALL forcing simulations are found overall

to have earlier summer onset contribute slightly more to the

summer duration extension than later summer withdrawal on

average, with an area mean of 21.0 days over the whole SH.

The GHG forcing simulations have an area mean (22.6 days)

that is more comparable to the observations, yet the spatial

patterns are inconsistent, and often of opposite sign. Interestingly,

the NAT forcing simulations do not exhibit asymmetric be-

havior at all, suggesting that anthropogenic forcing may be

responsible for the earlier summer onset contributing more

to the summer duration extension than a later summer

withdrawal.

To better understand some of the regional features in the

observations that the models do not capture when including

both anthropogenic and natural forcings (the ALL simula-

tions), we here also consider possible large-scale influence

from factors such as multidecadal variability associated with

the IPO and SAM that occurs over the SH. The IPO is a large-

scale, long-period oscillation that influences climate variability

over the Pacific basin, and therefore may have an influence on

the trends obtained over southern America, New Zealand, and

Australia. Over the 60-yr period analyzed (i.e., 1953–2012),

a positive trend in the IPO has occurred, transitioning from a

negative phase in the earlier period (e.g., 1950s to late 1970s)

to a general positive phase in the later period. Similarly, the

SAM has tended toward more positive values over the same

period (and linked to external forcing) and may have an in-

fluence on the trends over the southern portions of all SH

landmasses. Figure 9 shows a comparison of the domain-

averaged trends in summer-season indices from the observa-

tions (black bars) with those from ALL (green bars), GHG

(red bars), and NAT (blue bars) simulations in order to assess

which regional trends may be more attributable to external

forcing or internal long-term variability such as the IPO. In

addition to the multimodel averaged trends, the multimodel

5%–95% range is also shown using error bars to assess con-

sistency with the observations. Overall, the observed trends in

all three summer-season indices display the same relationship

with the ALL forcing at the regional scale. For example, ALL

forcing simulations slightly underestimate the trends for the

entire SH, southern Africa, and southern America, reproduce

the regional trend in Australia, and overestimate the trend in

New Zealand. Apart from WIT for New Zealand, for all re-

gions across the three summer-season indices, the observed

trends all fall within the multimodel 5%–95% range, of which

all ranges are positive. Note the ALL forced ONS trends in

New Zealand range from 0 to 23 days, indicating large inter-

model uncertainty. The ALL simulations overall capture the

larger increase in the southern Africa and southern America

domains relative to elsewhere. The GHG simulations also

display this feature of the regional-scale differences, being

larger in southern Africa and southern America, compared to

elsewhere. Interestingly, the majority of the observed trends

FIG. 8. Spatial patterns of the sum of trends in summer onset and withdrawal for theOBS and

CMIP5 multimodel means (ALL, GHG, and NAT experiments). Area means are given in the

top-right corner of each quarter panel.
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fall within the GHG multimodel 5%–95% ranges, except too-

strong trends for theAustralia andNewZealand domains. This

latter feature in these two regions suggests that they could be

influenced from aerosol cooling influences, as well as large-

scale variability in the Pacific basin, such as the IPO, as it one of

the dominant modes of multidecadal climate variability on

both sides of the Pacific basin. For example, it is known to exert

significant modulating effects on the impacts due to the ENSO

on both Australia and New Zealand (e.g., Power et al. 1999;

Salinger et al. 2001), and also suggested to have large contri-

butions to accelerated warming periods over the twentieth

century (Meehl et al. 2016). Last, trends from the NAT simu-

lations fail to explain the observed changes. Only by taking into

account the multimodel 5%–95% ranges do the observed

trends fall within those of the NAT trends for New Zealand,

yet the range crosses the zero line, deeming this unreliable.

Therefore, this suggests that the long-term lengthening in the

SH summer season, including both earlier onset and delayed

withdrawal, is predominantly due to anthropogenic forcing

associated with increasing greenhouse gases with insignificant

impact of natural forcing associated with solar and volcanic

activities. To test the sensitivity of the model trends to intermodel

differences in climate sensitivity, we repeated the analysis using

only the six models that had all simulations of ALL, GHG, and

NAT forcing experiments (Fig. S2 in the online supplemental

material) and found the difference to be negligible.

c. Quantitative attribution of forced and internal
contributions

As detailed in section 2c of the methods, we also quantita-

tively attribute the observed trends in summer-season indices

over the SH and its subregions in terms of the proportions

associated with external forcing (i.e., anthropogenic plus nat-

ural) and with internal long-term variability (Fig. 10). For the

whole SH, the proportion of the trend for all three summer-

season indices attributable to external forcing (ALL green

bars) was slightly less than 1 (a range of 0.88–0.93 across the

three indices), therefore, explaining the majority of the ob-

served trends in the SH. Similarly, at the regional scales, the

proportions of trends explained byALL forcing were generally

less than 1, and in all cases, 5%–95% confidence intervals es-

timated from individual ALL runs (see section 2c) include the

contribution of ALL forcing to the observed trend. Therefore,

most of the observed trends could be robustly explained by

external (anthropogenic plus natural) forcing at both the

hemisphere and regional scale. The exception is New Zealand,

where the proportion of the summer onset trend explained by

ALL was larger, and smaller for summer withdrawal. In ad-

dition, the 5%–95% confidence interval for New Zealand

summer withdrawal includes zero, representing large uncer-

tainty due to the weak observed trend. Therefore, there may

be a modest contribution of internal variability to the residual

trends in this region. In addition, in some cases relatively large

intermodel uncertainties in the proportion of trends attribut-

able to external forcings were found at the regional scale, such

as the southern Africa where 5%–95% confidence intervals for

WIT were ;0.7, ranging from 0.71 to 1.44.

Indeed, contributions from the IPO and SAM influence

were found at the regional scales (orange and yellow bars in

Fig. 10, respectively). The strongest IPO influences were found

over Australia and New Zealand, with weak IPO influence

found over southern Africa, southern America, and less so at

the hemisphere scale. The individual proportion of the trends

attributable to the IPO ranged from 20.1 to 10.3 for the

Australia and New Zealand regions helping to explain the

larger uncertainty in the ALL forcing contribution. Overall,

the largest contribution from IPO variability was to summer

onset in New Zealand of about 112%. Similarly, the contri-

bution of the IPO to withdrawal and duration in New Zealand

was18% and19%, respectively, and all three residual portions

in the summer-season indices representing positive contribu-

tions of the IPO to the observed trends in the summer-season

FIG. 9. Regional domain-averaged trends in (a) summer onset,

(b) summer withdrawal, and (c) summer duration from OBS

(black), and multimodel means for the ALL (green), GHG (red),

and NAT (blue) experiments. Error bars represent the 5%–95%

percentile ranges estimated using all individual runs for each

experiment.
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lengthening. The SAM influences were generally much smaller

than that for the IPO, yet individual proportions of the trends

attributable to the SAM ranged from20.1 to10.16 dependent

on summer-season index. Overall, the largest contribution from

SAM variability was to summer onset and duration in New

Zealand of about 15%.

4. Summary and conclusions

Increasing risk of conditions associated with widespread

excessive heating events observed during recent decades

(Coumou and Rahmstorf 2012; Willett and Sherwood 2012;

Cowan et al. 2014; Zscheischler and Seneviratne 2017;

Pfleiderer et al. 2019) is only projected to increase further in

the future (Meehl and Tebaldi 2004; Coumou and Robinson

2013; Argüeso et al. 2016; Tebaldi and Wehner 2018). For

example, extreme heat waves are becoming more frequent and

intense in many major cities worldwide (e.g., Coumou et al.

2013; Mora et al. 2017), and there has been an increase

in catastrophic wildfire events (IPCC 2013; Jolly et al. 2015;

Abatzoglou et al. 2019). Such events are generally tied to the

‘‘meteorological’’ summer season (e.g., Min et al. 2019).

Over the 60-yr period during 1953–2012, statistically signif-

icant lengthening of the SH summer season was identified

across the majority of land regions. Overall, on average the SH

summer season was found to have increased by nearly one

month. However, the summer onset advance contributed only

marginally (i.e., 54%–57%) more than a summer withdrawal

delay to the observed increase in summer-season length in

many regions. This is slightly less than that found for the NH,

where the summer onset advance was found to contribute

54%–60% to the increase in the summer-season lengthening.

Concerning the SH subregion trends, southern Africa dis-

played the strongest domain-averaged summer onset trends, yet

parts of southeastern Australia and northern South America

also exhibited strong trends toward earlier summer onset.

Similarly, the strongest domain-averaged summer withdrawal

trends were over southern Africa, and strong trends toward

delayed withdrawal are also exhibited in northern South

America. However, in Australia the strongest delayed with-

drawal responses were observed in the northeast and signifi-

cant earlier summerwithdrawals over the northwest (Fig. 3b). The

stronger trends of summer lengthening were consequently found

more in southwestern Africa, central-to-eastern Australia, and

southwestern to northern South America (Fig. 3c). Interestingly,

the regions of central-to-eastern Australia and the Amazon have

recently experienced extreme prolonged drought conditions and

catastrophic wildfire events (Dowdy 2018). However, some cau-

tion is needed in areas with limited observational coverage.

In general, the ALL and GHG simulations were consistent

with the observed trend patterns of global and regional

lengthening of the summer season, except over southern New

Zealand (Fig. 7). Contributions due to natural-only [solar and

volcanic activities (NAT)] simulations were not significant.

Therefore, the observed long-term changes in the summer-

season timing and lengthening are consistent with changes

associated with anthropogenic forcing caused primarily by in-

creased greenhouse gas emissions over the SH and its subregions.

Overall, the ALL simulations had a slight underestimation of the

observed trends in both summer onset and withdrawal, with

strong intermodel agreement (Figs. 7 and 9). In addition, both the

ALL and GHG forcing simulations were found to have earlier

summer onset contribute slightly more on average to the summer

duration extension than later summer withdrawal. This asym-

metric behavior in the models is stronger in the SH than that for

the NH, yet the asymmetry in observations was found to be

slightly weaker in the SH.

Contrasting regional trends in the summer-season timing

and length were found over the two islands of New Zealand.

Domain-averaged trends for the individual islands found

the North Island exhibited a significant tendency toward

a lengthening of the summer season [17.5 days (60 yr)21;

p value5 0.0447], mainly a result of earlier summer onset, and

significant long-term temperature change during summer

FIG. 10. Attributable trend ratios to the observed total trends of ALL forcing (green bars), IPO (orange bars), and SAM (yellow bars)

for (a) summer onset, (b) summer withdrawal, and (c) summer duration. Error bars represent the 5%–95% percentile ranges of the

attributable trend ratios estimated from individual models.
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[0.668C (60 yr)21; p value5 0.0238]. Whereas the South Island

exhibited a tendency toward a shorter summer season [22.3 days

(60 yr)21; p value . 0.1] and a long-term temperature change

[0.068C (60yr)21; p value. 0.1], which are seemingly contributed

to by both a delayed onset and earlier withdrawal on the summer

season. This is presumably due to the vastly different mean cli-

mates and topography of the two islands, differing influence due

to internal variability, and the different summer mean tempera-

ture changes over the past 60 years where only the North Island

has exhibited a significant summer warming (Fig. 5a).

Consistent differences between observed and ALL simula-

tions in regions surrounding the Pacific basin suggest that they

could be influenced from forcing other than external, such

large-scale internal variability. Overall, the ALL forcing ex-

plains the majority of the observed lengthening trend of the

summer season over the SH, and the 5%–95% confidence in-

tervals (which were estimated from individual model runs)

include the observed trends, indicating the robustness of the

external contribution to the long-term changes. In addition, the

IPO and SAM contribute only a small amount to the observed

trends, up to ;12% and ;5%, respectively, depending on the

regions and summer-season indices. The contribution of the IPO

and SAMwas largest for New Zealand, where observations and

ALL forcing trends showed the least agreement, and observed

long-term changes are smallest. Causes of the observation–

model inconsistency could be further explored using downscal-

ing simulations due to the small landmasses, and often poorly

resolved topography by themodels. Further, regions that exhibit

an earlier end to summer and/or shortening of the summer

season (e.g., southern New Zealand and Western Australia)

require further investigation, potentially with observations of

higher spatial resolution or individual weather stations.
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