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Background: dMaintenance of tight controls on circulating blood metabolites is crucial to normal,
healthy tissue and organismal function. A number of single nucleotide polymorphisms (SNPs) have been
associated with changes in the levels of blood metabolites. However, the impacts of the metabolite-
associated SNPs are largely unknown because they fall within non-coding regions of the genome.
Objective: dWe aimed to identify genes and tissues that are linked to changes in circulating blood
metabolites by characterizing genome-wide spatial regulatory interactions involving blood metabolite-
associated SNPs.
Method: dWe systematically integrated chromatin interaction (Hi-C), expression quantitative trait loci
(eQTL), gene ontology, drug interaction, and literature-supported connections to deconvolute the genetic
regulatory influences of 145 blood metabolite-associated SNPs.
Findings: dWe identified 577 genes that are regulated by 130 distal and proximal metabolite-associated
SNPs across 48 different human tissues. The affected genes are enriched in categories that include
metabolism, enzymes, plasma proteins, disease development, and potential drug targets. Our results
suggest that regulatory interactions in other tissues contribute to the modulation of blood metabolites.
Conclusions: dThe spatial SNP-gene-metabolite associations identified in this study expand on the list of
genes and tissues that are influenced by metabolic-associated SNPs and improves our understanding of
the molecular mechanisms underlying pathologic blood metabolite levels.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The interaction between genetic variation, environment and
lifestyle affects metabolite levels in humans [1]. The levels of these
metabolites are central to the development of diseases including
cholesterolaemia, cancer, coronary artery disease, angina pectoris,
and type 2 diabetes [2e8]. Despite decades of work targeting me-
tabolites of interest, the genetic networks and genes that modify
metabolic potential remain poorly characterized and their thera-
peutic and diagnostic utility remains unrealized.

Whole genome or exome sequencing, in combination with
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metabolomic techniques, have been used to identify the genetic
influencers of the human blood metabolome [9e14]. In arguably
the most comprehensive analysis to date, Shin and colleagues [9]
performed a genome-wide association study (GWAS) and identified
145 genetic loci (SNPs) that correlate with the levels of approxi-
mately 400 blood metabolites. As is typical of all GWAS studies,
>65% of the SNPs identified by Shin et al. were in non-coding re-
gions of the genome. Shin et al. predicted causal genes of the ge-
netic loci by scanning 500 kilobase (Kb) regions flanking the SNPs
for genes whose functions linked with the corresponding metab-
olite. While it is commonly accepted that GWAS SNPs are enriched
in regulatory elements, identifying the genes affected by the SNPs
using a nearest-relevant-gene approach is problematic because the
accumulating evidence supports long-range gene regulatory in-
teractions, including inter-chromosomal, between regulatory ele-
ments and genes [15e18]. Moreover, recent studies suggest that
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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long-range regulatory interactions may play a more significant role
in modifying disease outcomes than proximal interactions [19e21].
Long-range gene regulatory interactions can occur by several
mechanisms: 1) epistatic interactions between gene products; 2)
widespread action of a transcription factor or non-coding RNA; 3)
scanning (e.g. the spreading of silencing complexes along a chro-
mosome); or 4) chromatin looping (e.g. direct physical contact
between enhancers and gene promoters) [22]. We, and others, have
previously used genome structural data captured by proximity
ligation techniques (e.g. Hi-C [23]) and eQTL data (e.g. GTEx [24]) to
detect chromatin loops that bring long-range regulatory loci in
spatial proximity with their target genes [19,25e29].

Here, we set out to use the 3D genome organization to identify
target genes for the 145 blood metabolite-associated SNPs reported
by Shin et al. [9]. To achieve this, we interrogated chromatin
interaction (Hi-C) data from eight human cell lines [30]
(Supplementary Table 1) to identify genes that are in physical
contact with the SNPs [29]. Next, we designated functional SNP-
gene associations by interrogating expression quantitative trait
loci (eQTL) in 48 human tissues from the Genotype-Tissue
Expression (GTEx [24], www.gtexportal.org) database [29].
Finally, we employed an array of approaches including gene
ontology (KEGG, www.genome.jp), protein classification (Protein
Atlas, www.proteinatlas.org), drug target analysis (DGIdb, www.
dgidb.org), and literature text mining (PubMed®, www.ncbi.nlm.
nih.gov/pubmed) to annotate the genes that are involved in
modulating intermediate metabolites in human blood.

2. Methods

2.1. Data sources

The 145 metabolite-associated Single Nucleotide Poly-
morphisms (SNPs) investigated in this study are the genome-wide
significant hits from Shin et al. [9]. Genomic positions of SNPs were
obtained from the human hg19 genome build chromosome bed
files downloaded fromNCBI (See Data Availability). Gene synonyms
and full nameswere obtained fromNCBI’s gene information dataset
(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/
Homo_sapiens.gene_info.gz). We used the GENCODE transcript
model (See Data Availability) as reference for gene annotations,
which is the same reference used in GTEx. All isoforms of a gene
were collapsed into a single gene. The human genome used in this
study is the hg19 (GRChr37) build of the human genome release 75
(See Data Availability).

2.2. Identification of SNP target genes

The CoDeS3D [29] pipeline was used to identify target genes of
SNPs (Fig.1). In summary, we downloaded raw Hi-C data from eight
cell lines (i.e. GM12878, HeLa, HMEC, HUVEC, IMR90, K562, KBM7
and NHEK; Supplementary Table 1) [30] and processed them to
generate chromatin interaction (Hi-C) libraries according to the
methods outlined in Rao et al. [30]. For quality assurance, only Hi-C
reads with MAPQ score >30 were retained. We digested the hg19
human genomewithMboI (the same endonuclease used to prepare
the Hi-C libraries) to identify the restriction fragments that harbor
the metabolite-associated SNPs. The Hi-C libraries were queried to
identify gene fragments that are captured as spatially interacting
with the SNP-containing fragments. We eliminated SNP-gene
spatial interactions that were captured in only one replicate of
one cell line. The resulting spatial SNP-gene pairs were used to
query GTEx V7 tissue eQTL analysis databases for cis eSNP-eGene
pairs. eSNPs are the SNPs that correlate with a change in the
expression of genes in at least one of the 48 human tissues available
in the GTEx project. Trans eQTL associations were calculated using
the GTEx eQTL calculator API. A Benjamini-Hochberg correction
was performed on eSNP-eGene-associations from all tissues and
those with adjusted (Benjamini-Hochberg) p-values � 0.05 were
deemed significant.

2.3. Annotation of genes involved in metabolism

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
PATHWAY [55] (https://www.kegg.jp/kegg/pathway.html, accessed
on 01/07/2018) database was queried with a list of the eGenes to
identify their associated pathways (Supplementary 1). The
retrieved results were analyzed to identify their first level pathway
maps (e.g.metabolism, genetic information processing) and second
level maps (e.g. carbohydrate metabolism, transcription). See Code
Availability for the Python scripts used for this analysis.

2.4. Drug associations and protein classification

Data from The Human Protein Atlas [56] (https://www.
proteinatlas.org/, downloaded on 25/03/19) version 18.1 was
queried to obtain the protein classes of eGenes. The Drug Gene
Interaction database [57] (DGIdb, http://dgidb.org) was interro-
gated for information on drugs that target the gene products
(Fig. 1). The mechanisms of action of the drugs were also obtained.
See Code Availability for the Python scripts used for this analysis.

2.5. Literature support for associations

To find evidence for eSNP-eGene, eSNP-metabolite, or eGene-
metabolite associations in literature, we performed a text mining
algorithm as follows. We employed the Bio. Entrez python API (see
Code Availability) to search the underlying MEDLINE database to
retrieve the PubMed IDs for articles that contain, in their titles or
abstracts, exact matches of 1) eSNPs (rsIDs) and their linked eGenes
(or gene synonyms or full names); 2) eSNPs (rsIDs) and at least one
of the metabolites associated to the eSNP by Shin et al. [9]; or 3)
eGenes (or their synonyms or full names) and at least one of the
metabolites associated to the corresponding eSNP. We then iden-
tified intersecting articles for corresponding eSNP-eGene, eSNP-
metabolite, and eGene-metabolite associations. Articles supporting
gene-metabolite associations not reported in Shin et al. were
manually curated by at least two persons.

2.6. Urls

CoDeS3D pipeline: https://github.com/Genome3d/codes3d-v1.
The Drug Gene Interaction database: http://dgidb.org.
GTEx portal: https://www.gtexportal.org/home/
The KEGG PATHWAY database: https://www.kegg.jp/kegg/

pathway.html.
The Human Protein Atlas: https://www.proteinatlas.org/

2.7. Data and Code Availability

Supplementary tables are available at https://doi.org/10.17608/
k6.auckland.8116097.

Scripts used for data curation, analysis, and visualisation are
available at https://github.com/Genome3d/blood-metabolites-
regulation.git.

Human genome build hg19 (GRChr37) was downloaded from
ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/

SNP annotations (human genome, build hg19) were obtained
from ftp.ncbi.nih.gov/snp/organisms/human_9606_b150_GRCh37p
13/BED.
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Fig. 1. Methods workflow
Genes overlapping restriction fragments that spatially interact with fragments containing metabolite-associated SNPs were identified using Hi-C libraries. The resulting spatial SNP-
gene pairs were tested for tissue eQTL interactions in the GTEx database. Only significant (FDR � 0.05) tissue eSNP-eGene associations were further analyzed for pathways, drug
associations and literature text mining. The Python scripts are available on Github (https://github.com/Genome3d/blood-metabolites-regulation.git).
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Gene annotations (Transcript model from GENCODE) were
downloaded from https://storage.googleapis.com/gtex_analysis_
v6p/reference/gencode.v19.genes.v6p_model.patched_contigs.gtf.
gz.

3. Results

3.1. Metabolite-associated SNPs mark eQTLs

Shin et al. reported 145 metabolite-associated loci that are
marked by SNPs with genome-wide significance. 102 of these loci
were assigned predicted causal genes based on proximity to the
SNPs and an established association between the gene and
metabolite [9]. Notably, only 57 (~39%) of the loci were reported as
eQTLs by Shin et al. (Fig. 2a). Integrating genomic organization into
the analysis identified eQTLs for 130 (~90%) of the 145 metabolite-
associated SNPs (hereafter eSNPs), more than double that reported
by Shin et al. (Fig. 2a, Supplementary Table 2). None of the 15 non-
eQTL SNPs (Supplementary Table 3) in our study was reported as
being involved in an eQTL by Shin et al.

The 130 eSNPs we identified were associated with the expres-
sion of 577 genes (i.e. eGenes) through 612 unique eSNP-eGene
pairs (Fig. 2b). The eSNP-eGene pairs included 68.6% of the causal
SNP-gene pairs predicted by Shin et al. (Fig. 2b, Supplementary
Table 4). Notably, the eSNPs were associated with between 1 and
23 eGenes, with 3 eGenes as the mode (Fig. 2c), in a tissue specific
manner. This is consistent with previous reports on shared gene
regulatory sites [29,31,32]. Altogether, we identified 2757 eSNP-
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Fig. 2. Regulatory interactions involving metabolite-associated SNPs
a) 90% of metabolite-associated SNPs mark eQTLs involved in long-range regulatory interactions. b) 71 of 102 of the causal SNP-gene pairs predicted in Shin et al. are among the 612
eSNP-eGene pairs we identified. c) Bar plot of number of genes regulated per eSNP (mode ¼ 3). d) Violin plots of the normalized effect sizes (beta) of the eQTL interactions in
different tissues.
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eGene interactions in 48 different human tissues (Supplementary
Table 5) of which 621 overlapped Shin et al.‘s predictions
(normalized effect size range, �1.69778 to 1.05834), while 2136 are
novel (normalized effect size range, �1.15093 to 1.65858; Fig. 2d).

3.2. Metabolite regulatory interactions present in tissues other than
blood

We estimated the contribution of Hi-C cell lines and GTEx tis-
sues to the identification of the spatial eSNP-eGene interactions.
Cis-eQTL interactions are more likely to occur across multiple cell
lines but trans interactions are more cell line specific (Fig. 3a). The
contribution of Hi-C cell lines in the identification of eSNP-eGene
pairs was estimated by a Hi-C scoreddefined as the mean in-
teractions across replicates of a cell line. Themyelogenous leukemia
(K562) cell line contributed the most (total Hi-C score, 1023) to the
identification of spatial eSNP-eGene pairs while HMEC (a mam-
mary epithelial cell line) contributed the least (total Hi-C score,
402) (Fig. 3b). The thyroid had the greatest number (137) of eSNP-
eGene pairs while the amygdala and C1 vertebrae had the least (11)
(Fig. 3c). Although there is a strong correlation (Pearson’s product-
moment, 0.94, p-value < 2.2e-16) between the number of eQTLs
identified and the number of GTEx RNA-Seq samples per tissue, we
also observed variations in the proportions of tissue eQTL in-
teractions and RNA-Seq sample sizes. For example, the cerebellum,
for which there were 173 RNA-Seq samples, has the highest pro-
portion (0.34) of eQTL interactions identified per RNA-Seq sample.
This is almost 2x the proportion for skeletal muscle (i.e. 0.19), which
has the greatest number (564) of RNA-Seq samples. Altogether,
these observations reveal the cell line and tissue specificity of
metabolic regulatory interactions.
3.3. Metabolite-associated SNPs target genes in metabolic
pathways

We annotated the eGenes’ biochemical functions using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway data-
base. 218 (37.8%) of the eGenes are annotated as being involved in
�1 biochemical pathway (Supplementary Table 4). As expected, the
largest single set of annotations for the eGenes is metabolism
(n ¼ 95, Fig. 4a). The next most represented categories i.e. organ-
ismal systems (n ¼ 75) and human diseases (n ¼ 65) each share 12
genes with the metabolism category (Fig. 4a). Classification of the
eGenes using The Human Protein Atlas identified significant
enrichment (via bootstrapping of null sets) of enzymes, plasma
proteins, disease related genes and potential drug targets within
490 of the eGenes (Fig. 4b, Supplementary Table 4). The observed
enrichment in the metabolic pathway and protein classification
analyses is consistent with the eGene products acting as modifiers
of metabolic activity.

We screened the Drug Gene Interaction database (DGIdb) to
identify which of the eGenes encode potentially targetable prod-
ucts. Products of 147 (25.5%) of the eGenes are targets of at least one
drug (Fig. 4c, Supplementary Table 6). 68, 119, and 142 of the
druggable eGenes are also involved with metabolism, >1
biochemical pathway, and >1 protein class respectively. 101 of the
147 druggable eGenes have not been previously linked to genetic
variants associated with metabolism.

There were several notable examples of metabolite associated
geneeeSNP networks. For example, APOE, which has been associ-
atedwithmodulation of total cholesterol [33], was reported by Shin
et al. as an eGene and predicted as the causal gene of nearby (3 Kb)
cholesterol-associated rs445925. In addition to APOE (in suprapubic



Fig. 3. Tissue and cell line specificity of metabolic regulatory interactions
a. Trans-eQTL interactions are more cell line specific than cis interactions, which tend to be present across multiple cell lines. b. K562 cell line contributes most to the identification
of metabolism-associated eQTL interactions. c. The cerebellum has the most eQTL interactions identified per RNA-Seq sample.
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skin), our study revealed novel eQTL for rs445925 with BCAM (in
basal ganglia, 90 Kb away), RYR1 (in skeletal muscle, 6.3 Mb away),
and RERE (in suprapubic skin, on chromosome 1) (Fig. 5a).

We also identified network examples where eGenes linked to
multiple regulatory hubs. For example, Acyl-CoA Synthetase Me-
dium Chain Family Member 5 (ACSM5) associates with eQTL SNPs
rs11647589 (in 16 tissues, intronic in ACSM5), rs1394678 (in 14
tissues, 38.5 Kb from ACSM5, intronic in ACSM2A), and rs6497490
(in tibial artery, 24.9 Kb from ACSM5, intronic in ACSM2A).
rs11647589, rs1394678, and rs6497490 are associated with 3-
phenylpropionate, indolepropionate, and X-117478 (an unknown
metabolite) respectively (Fig. 5b). rs11647589, rs1394678 and
rs6497490 mark distinct eQTLs because they are not in linkage
disequilibrium (defined as LD>¼0.8 in the EUR population, Hap-
loReg v4.1 [34]).

3.4. Literature text mining supports eGene-metabolite associations

We conducted a stringent semi-automated literature text min-
ing to identify literature that supported links between the eGenes
and the metabolites with which the eSNPs are associated. First, we
queried the MEDLINE® database using PubMed® APIs for research
article titles or abstracts that contain the eSNP-eGene, eSNP-
metabolite, or eGene-metabolite pairs (Fig. 6a). We then manually
curated articles supporting eGene-metabolite pairs. The manual
curation confirmed literature support for 41 eGene-metabolite
pairs, 14 of which were not reported by Shin et al.
(Supplementary Table 7). 29 of the literature-supported associa-
tions include genes that are involved in at least one biochemical
pathway and whose products are druggable (Fig. 6b and c).

The literature supported the putative functional outcomes for
the rs445925-APOE, BCAM, RYR1, RERE network as follows: 1) BCAM
had a suggestive association in a GWAS meta-analysis of LDL
cholesterol response to statins [35]; 2) RYR1, together with other
nonalcoholic steatohepatitis related genes, has been linked to di-
etary cholesterol [36]; and 3) RERE was associated with circulating
blood CD34þ, which positively relates to total cholesterol [37].
Therefore, these eQTL associations do not only link SNPs to genes
that are relevant to cholesterol, they also reveal the tissues that
might be important for its metabolism.

The absence of literature support for eGene-metabolite associ-
ations does not equate to an absence of relationship. For example,
the intergenic SNP rs7809615 is associated with ratio of andros-
terone sulfate and 4-androsten-3beta,17beta-diol disulfate 2 levels
in the blood metabolite GWAS (Supplementary Table 2). Our
method, as well as that of Shin et al., links rs7809615 to CYP3A5
(Fig. 6c), which encodes a cytochrome P450 known to be active
against steroids such as testosterone [40]. We further observed that



Fig. 4. Functional annotation of eGenes associated with metabolite eSNPs
a) eGenes are enriched for metabolism (horizontal bars) in KEGG pathways analysis. The metabolism genes are also involved in other pathways (vertical bars). b) Protein clas-
sification of genes is significantly enriched for enzymes, plasma proteins, potential drug targets, disease related genes. Error bars represent one standard deviation of 10,000
bootstraps. c) 147 eGene products are druggable based on DGIdb analysis. 68.7% (101) of the druggable products are encoded by eGenes that were not previously linked to the
metabolite-associated SNPs.
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Fig. 5. eGene-metabolite associations
a) Cholesterol-associated rs445925 marks an eQTL that correlates with expression levels of APOE, BCAM, RYR1, and RERE. All four genes have literature (PMIDs) [33,35e37] sup-
porting their links with cholesterol. b) ACSM5 pairs as an eGene with rs11647589, rs6497490, and rs1394678, which were associated with 3-phenylpropionate, X-11478 (an un-
known metabolite), and indolepropionate respectively. The metabolism of 3-phenylpropionate and indolepropionate requires a Coenzyme A ligase such as ACSM5 [38,39].
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rs7809615 also links with CYP3A7 (Fig. 6c), which encodes another
P450. Although our stringent text mining did not find articles that
directly linked the two target eGenes, the STRING database (v10.5,
accessed 26/04/2019) reports a binding interaction between
CYP3A5 and CYP3A7.
4. Discussion

We systematically integrated evidence from chromatin in-
teractions, eQTL data, gene ontology, protein classifications, drug
interactions, and the published literature to identify and charac-
terize genes that are regulated by metabolite-associated SNPs. Our
results provide a step-change in our current understanding of the
variant-gene regulatory interactions of metabolism, particularly
those that rely on chromatin looping.

The integration of chromatin interaction and eQTL data in this
study enabled the mapping of long-range regulatory interactions
for ~90% of the metabolite-associated SNPs. This mapping was
robust to the different data sources that were used to identify the
eQTLs (GTEx [24]) and the blood metabolite associated SNPs (KORA
and Twins UK) [9]. The ~10% of metabolite-associated SNPs that
were not identified as eQTLs in our analysis can be explained by the
following: a) they tag other functional loci in linkage disequilibrium
but do not have any regulatory effect themselves; b) they are eQTLs
but their gene associations were missed due to the transient nature
of chromatin loops or the specificity in the developmental timing of
the linkage of these SNPs to their metabolites; or c) their underlying
regulatory mechanism does not require chromatin proximity (e.g. it
occurs by diffusion of regulatory factors or non-coding RNA, or the
variant impacts on post-transcriptional regulation). While we have
reproduced ~70% of SNP-gene regulatory mapping predicted in
Shin et al., we propose that the novel spatial eQTL associations
discovered in this study provide a useful resource to unravel the
holistic genetic architecture that underlies metabolism.

There are number of caveats to this study. Firstly, the integration
of heterogenous biological data has inherent limitations. For
example, the chromatin interaction information used in this study
is primarily from immortalized cell lines. By contrast, the eQTL



Fig. 6. Functional annotation of eGenes associated with metabolite eSNPs
a) There is more literature support for eGene-metabolite associations than for eSNP-eGene or eGene-metabolite associations. b) A schematic of eGenes that are in biochemical
pathways, encode druggable products, and whose relationship with their SNP metabolite has literature support. c) Ideogram of 119 druggable eGenes in b. Genes are colored green if
the SNP-gene association was reported in Shin et al., or blue if it is not. Numbers in brackets correspond to the locus number (in Supplementary Table 2) of the eSNPs that spatially
interact with the eGenes. The red-colored numbers indicate that the relationship between an eGenes and its SNP-associated metabolite (Supplementary Table 4) is supported in
literature via text mining. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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mapping used mRNA data obtained from donated tissues. The
problem of tissue averaging is well-known in mRNA studies [41].
However, the changes inmRNA levels that were associatedwith the
eQTLs we identified were large enough to affect the overall tran-
script profile of the tissue. Secondly, eQTL analysis implicitly as-
sumes mRNA levels are predictive of protein levels. There is good
correlation between mRNA and protein levels in differentially
expressed genes and cells in a steady state [42]. However, the
relationship betweenmRNA and protein levels is affected by factors
including modulation of translation rates and protein half-life,
protein synthesis delay, and protein transport [43]. To overcome
these limitations, future investigations would ideally use chromatin
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interaction, genotype, and gene expression information that is
generated from the same population of cells. This would overcome
cell population structural biases and delineate genotype-specific
chromatin rewiring and expression profiles.

The tissue SNP-gene mappings identified in this study are
consistent with known tissue-metabolite relationships. For
example, previous studies support our observation of cholesterol-
associated regulatory interactions in the basal ganglia [44,45],
skeletal muscle [46,47], and skin [48,49]. Similarly, our observation
of disproportionately high metabolism-associated eQTL in-
teractions per RNA-Seq sample in the cerebellum and testis agrees
with known metabolic dysfunction in these tissues (e.g. cerebellar
metabolism in patients with diaschisis [50], and the glucose
sensing mechanism of Sertoli cells that responds to homeostatic
conditions in the testis [51]). The detection of a metabolite-
associated eQTL interaction in a tissue therefore suggests a mod-
ulation in the production or utilisation of the metabolite in that
tissue.

We have identified regulatory interactions involving genes that
encode for proteins that do not directly act on the associated
metabolite. We propose that metabolite-associated eQTLs affect
metabolism bymodulating the expression of genes that encode the
protein components (i.e. enzymes, transcription factors, inhibitors,
transporters, receptors etc.) that are collectively responsible for
metabolism in a holistic sense, including the environment inwhich
it occurs. For example, spatial regulatory interactions with genes
that encode for plasma proteins could be important for metabolism
because plasma proteins aid in the transport and regulation of
metabolites, ion, lipids and hormones. Further investigation into
the metabolic roles of eQTL associations between metabolite-
associated SNPs and uncharacterised genes or genes in non-
metabolism ontological classes is therefore necessary. Collec-
tively, our observations are consistent with the understanding that
homeostatic metabolite levels in the blood are the sum of the rates
of import from the environment, production and degradation of
metabolites in all of the tissues that contact blood [52e54].

5. Conclusions

In conclusion, we have shown that blood metabolite-associated
SNPs mark expression quantitative trait loci that affect the
expression of proximal and distal genes in tissues that are relevant
to the associated metabolites in particular, and to metabolism in
general. The eSNP-eGene-metabolite connections identified in this
study reproduce and expand on the list of genes that are likely to be
influenced by metabolite-associated genetic variants and thus
provide a useful resource for further empirical study of the genetic
influences of the human metabolome.
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