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Abstract 11 

Multiple international agencies have recently raised environmental and health concerns 12 

regarding plastics in nanoforms (nanoplastics), but there is insufficient knowledge of their 13 

properties to allow for an accurate risk assessment to be conducted and any risks managed. For 14 

this reason, research into the toxicity of nanoplastics has focused strongly on documenting their 15 

impacts on biological organisms. One scope of this review is to summarise the recent findings 16 

on the adverse effects on biological organisms and strategies which can be adopted to advance 17 

our understanding of nanoplastic properties and their toxicity. Specifically, a mechanistic 18 

approach has already been employed in nanotoxicology, which focuses on the cause-and-effect 19 

relationships to establish a tool that predicts the biological impacts based on nanoparticle 20 

characteristics. Identifying the chemical and biological bases behind the observed biological 21 

effects (such as in vitro cellular response) is a major challenge, due to the intricate nature of 22 

nanoparticle-biological molecule complexes and an unawareness of their interaction with other 23 

biological targets, particularly at interfacial level. An exemplary case includes protein corona 24 

formation and ecological molecule corona (eco-corona) for nanoplastics. Therefore, the second 25 

scope of this review is to discuss recent findings and importance of (for both non-plastic and 26 

plastic nanoparticles) coronae formation and structure. Finally, we discuss the opportunities 27 

provided by model system approaches (model protein corona and lipid bilayer) to deepen the 28 

understanding of the above-mentioned perspectives, and corroborate the findings from in vitro 29 

experiments. 30 
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Highlights: 35 

• Nanoplastics disrupt the ecological function of biofilms, causing adverse effects in 36 

aquatic organisms, and bioaccumulate.  37 

• The strategy adopted in non-plastic nanotoxicology field is critically discussed, and 38 

considerations specific to nanoplastic field is discussed.  39 

• There is a major knowledge gap regarding corona formation (both protein and eco-40 

corona) around nanoparticles, especially nanoplastics, particularly at interfacial level.  41 

• Cellular interactions with nanoplastics (and nanoplastic-corona complexes), at 42 

interfacial level are important to understand, and the use of model membranes allows 43 

corroboration with observed in vitro effects 44 

  45 
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1. Introduction 62 

Plastics in nano-scale (nanoplastics) are visually less impactful than their bulk forms or 63 

microplastics, yet, their small size makes them more challenging to remediate and facilitates 64 

their entry into biological systems, past innate defence mechanisms.1 The World Health 65 

Organisation (WHO) noted that there was a lack of evidence that microplastics in drinking 66 

water cause significant human health problems, but could not reach a conclusion about the 67 

safety of nanoplastics due to the insufficient number of studies.2 With increasing awareness 68 

around the globe, the nanoplastic research field emerged in the area of environmental science, 69 

investigating the origin and distribution of nanoplastics.3-5 There is now a major focus on 70 

investigating the biological impacts of nanoplastics, in line with concerns raised in major 71 

reports by government agencies.6-8 The first part of this review reports on the updated 72 

knowledge of the potential adverse effects of nanoplastics on biological organisms. It also 73 

describes the current mechanistic approach taken in the nano-toxicological field to better 74 

understand the cause-and-effect. Second scope of the review includes the findings on corona 75 

formation, structure, and importance of considering this to explore the underlying mechanisms 76 

of nanoplastic toxicology. Finally, it critically discusses the strategy that interfacial scientists 77 

use to fill in the knowledge gap and contribute to the mechanistic approach which can also be 78 

applied to the nanoplastic field. 79 

Global plastic production has increased dramatically since the 1950s.9 Concerns regarding 80 

marine plastic pollution were first raised in the 1970s, in response to their mass production and 81 

careless disposal.10 Today, the international production of plastics exceeds 320 million tonnes 82 

per year and the growth in plastic manufacture is projected to double in 20 years, in the absence 83 

of further restrictions and altering the habit of plastic usage.11, 12 The release of plastic from 84 

landfills into the ocean was estimated to be around 10 million metric tonnes in 2010, increasing 85 

by an order of magnitude by 2015.13 The excessive spread of plastics has led to their unexpected 86 

discovery in places with small human influence, including the Mariana Trench, Antarctica and 87 

the Arizonan deserts.14-17 88 

The plastics released in the environment undergo dynamic chemical and physical changes; 89 

photo-oxidation, slow biodegradation, and physical weathering can reduce their size range to 90 

the microplastics, and eventually, the nanoplastics, boosting their accumulation in the 91 

environment18-21. Increasingly, researchers have realised the impact of plastic size on 92 

environmental accumulation and potential toxicity to living organisms17, 22-25. Although 93 
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multiple studies have shown the potential toxicity of microplastics23, 25, 26, few studies have 94 

compared the impact of nanoplastics to microplastics (Figure 1.1). Since the characterisation 95 

of plastic particles in the environment is only emerging, a rigorous definition of the term 96 

"nanoplastic" is yet to be established.27 By extrapolating the definition of non-plastic 97 

nanoparticles28, some authors have defined the size of nanoplastics to be in the range of 1 nm 98 

to 100 nm29, 30. Many authors set the upper size to 1000 nm31-36, following the meaning of the 99 

prefix “nano”. The latter system of nomenclature (1-1000 nm) is followed in this review. 100 

 101 

Figure 1.1. Number of journal articles published per year containing the keyword “microplastics” (left) or “nanoplastics” 102 
(right) from 2010-2019. This data was acquired from Web of Science (www.webofknowledge.com, data accessed on 15 Sep 103 
2020). 104 

Nanoplastic pollution is thought to occur from the careless release of waste products (primary 105 

micro/nano plastics), including pigments, cleansing scrubs, cosmetic products, and textile 106 

fibres into aquatic environments – nanoplastics emitted as a by-product of 3D printing are a 107 

new growing concern, considering the popularity of 3D printers.5, 22 Secondary 108 

micro/nanoplastics, which result from the degradation of bulk plastics, are also thought to be 109 

the source of micro/nano plastics in the environment.10-13, 26-28 For instance, the fragmentation 110 

of polystyrene down to the nanoscale can occur within four weeks inside a weathering 111 

chamber21. A recent study49 also highlighted the fact that micro- and nanoplastics occur by 112 

mechanical milling of agricultural plastics. Normal waste water treatment systems are unable 113 

to separate nanoplastic waste from water, allowing it to pass through to rivers and oceans.37 114 

In response to this growing environmental threat, a number of studies have been conducted in 115 

recent years. The German Federal Institute (GFI), in 2016, requested the European Food Safety 116 

http://www.webofknowledge.com/
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Authority (EFSA) to critically assess the presence of microplastics and nanoplastics in 117 

seafood.38 Despite the large number of reports on microplastics, no information existed about 118 

nanoplastics found in commercial goods.39-44 More recently, Wang et al.45 reviewed the micro- 119 

and nanoplastics found in food chains and their implications for human health. However, few 120 

of these studies directly observed nanoplastics in the environment and in the consumer goods. 121 

The scarcity of reporting on nanoplastics arises, in a large part, from the technical and analytical 122 

challenges, e.g., the small contrast between nanoplastics and food matrices when using imaging 123 

techniques. The development of nanoplastic detection techniques in seafood is a current 124 

challenge.38 125 

2. Interactions with biological organisms 126 

In comparison with their bulk analogues (bulk plastics), nanoplastics (and nanoparticles, more 127 

generally) are uniquely elusive to biological defence systems, including barriers such as tissues, 128 

mucous, and cell membranes.46, 47 Numerous factors (e.g., particle size, elemental composition 129 

and surface groups) affect their likelihood of crossing biological barriers, including the nature 130 

of interactions.47-50 Biological entities of different levels of complexity can be affected, with 131 

examples including biofilms51, marine organisms52-71, mammals72, and humans73-76.  132 

2.1. Nanoplastics in bacteria and biofilms 133 

With the wide spread of the nanoplastics in the aquatic environments and abundance, bacteria 134 

have been target organisms to study. Bacteria play important roles in essential nutrient cycles 135 

and carbon fixation.77, 78 The study of the bacterial interactions with nanoplastics (and 136 

microplastics) is also motivated by their frequent use as an indicator in assessing 137 

ecotoxicology.79 138 

Association of nanoplastics and microplastics have been correlated with harming the 139 

functionality of bacteria80-82 and eco-toxicity81, 83, although causes remain unclear. Miao et al.81 140 

reported the ecotoxicity is dependent on the polystyrene plastic particle size. With the size 141 

range tested in their study (100 nm – 9000 nm), only negligible effects (such as generation of 142 

reactive oxygen species (ROS)) were observed for large particles (500 nm and larger). In other 143 

work83, the surface group of nanoplastics (100 nm) showed stronger toxicity to the biofilm 144 

compared to the ones with negatively charged surface. Notably, the biofilm formation was 145 

shown to be surface group dependent, and the extent and the trend of which group showed a 146 

stronger potent was specific to particular bacterial species. It has been known that the positive 147 
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charge is an important characteristic to target the negatively charged bacterial membrane, as 148 

demonstrated in development of antibacterial peptides.84 However, drawing a parallel 149 

comparison may be too simplistic with limited understanding of the mechanism. Careful 150 

assessments at different biological complexity levels (from simple lipid bilayer to in vivo 151 

experiments) are essential in identifying the underlying causes (namely, which of nanoplastic 152 

properties are important in causing the bacterial toxicity). 153 

2.2. Nanoplastics in marine organisms 154 

Adverse effects on marine organisms have been documented since the early stages of 155 

nanoplastic research.5, 85, 86 A frequently used model organism, D. magna, demonstrated 156 

malformation of body parts87 and impaired reproduction26 as a result of interaction with 157 

polystyrene nanoplastics. Liu et al. 88 also  showed that the adverse effects caused by 158 

polystyrene nanoplastics on D. magna persisted over generations. 159 

Aquatic invertebrates, such as bivalves68, 89 and crustaceans,90 are other frequently used model 160 

organisms. Reports indicated that exposure to functionalised polystyrene nanoplastics led to a 161 

decline in fertilisation and embryogenesis of Pacific oysters89 and deformed larval phenotypes 162 

of blue mussel.68 The toxicity on their gametes and embryos was demonstrated (with EC50 = 163 

4.9 µg mL-1 and 0.15 µg mL-1, respectively), although microplastics showed limited effects. 164 

Similarly, for crustaceans, developmental alteration has been reported.59  165 

Fish have been common targets for studying nanoplastic toxicity, as highlighted in recent 166 

reviews.66, 91-94 Of the biological impacts, notably, bioaccumulation has been demonstrated – 167 

polystyrene (PS) nanoplastics can propagate through a model food chain.87, 95 When the PS 168 

nanoplastics reached the higher trophic level tested (fish), behavioural disorder was observed 169 

attributing to neurotoxicity.87, 96 Intriguingly, almost all PS nanoplastics affected the brain 170 

function of the fish in different ways, including the cationic PS nanoplastics, which researchers 171 

previously believed had much shorter lifetimes inside biological media.97 As with other 172 

biological organisms, underlying mechanisms of nanoplastic toxicity is not fully understood. 173 

However, there has been studies98-100 demonstrating oxidative stress has been linked to 174 

underlying toxicity mechanisms. In addition to the toxicity, studies101, 102 have also shown 175 

nanoplastics alter the nutritional metabolism by fish. Above all, these studies highlighted that 176 

nanoplastic concentrations can be considerable when reaching higher trophic levels despite low 177 

environmental concentration; that nanoplastics possess the ability to pass through the 178 

brain/blood barrier; and that effects may pass on to offspring. 179 
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2.3. Nanoplastics and human health 180 

Much of the understanding around the effect of nanoplastics on human health originates from 181 

in vitro experiments and extrapolations from non-plastic nanotoxicology research.73-76 182 

Considering their ubiquitous occurrence, three plausible routes of exposure are via: (1) dermal 183 

absorption; (2) oral inhalation; and (3) ingestion. Through the use of, for example, cosmetic 184 

items applied to the skin, nanoplastics may penetrate through dermal barriers.103 Due to the 185 

lack of experimental evidence on the atmospheric distribution of nanoplastics, studies on 186 

exposure via oral inhalation remains within occupational settings, where bulk plastics undergo 187 

mechanical and milling stress104, 105. Besides these, oral ingestion (likely through drinking 188 

water and food matrices) is considered the major exposure route for humans.106 While this is 189 

plausible, there is yet to be a study experimentally confirming nanoplastic uptake from dietary 190 

contamination – although this has already been established for microplastics104. 191 

Following ingestion or inhalation, nanoplastics encounter mucosal barriers. Mucosal barriers 192 

play the main role in rejecting foreign objects, while maintaining efficient nutritional uptake. 193 

Nanoparticles (although not specifically nanoplastics) have been shown to be absorbed through 194 

this barrier via pinocytosis and vesicular phagocytic processes.49 Thus far, it has been found 195 

that particles smaller than 1.0 𝜇𝜇m have a greater tendency to be found within lymphatic tissues 196 

and their likelihood of entering the bloodstream (and ultimately, organs) is significantly higher 197 

compared to their larger analogues.46 In particular, particles smaller than 100 nm circumvent 198 

biological barriers easily, as they are misidentify as a physiological molecule by the barriers, 199 

and make use of inherent entry mechanisms to cross them.107  200 

Choi et al. demonstrated the translocation of various nanoparticles (CdSe, silica, and PS) from 201 

the lung to other parts of body, for a range of sizes and functional groups.97 The study found 202 

that non-cationic nanoparticles less than 34 nm translocate from the lungs to the mediastinal 203 

lymph, and nanoparticles smaller than 6.0 nm disperse even more rapidly, reaching other 204 

organs by entering the bloodstream. For gold nanoparticles (functionalised both negatively and 205 

positively), the number of particles, sized 20 nm or below, in the bloodstream and organs 206 

increased significantly when compared with particle sizes above 80 nm.108 Factors contributing 207 

to adverse effects. 208 

Following the translocation and localisation of nanoplastics in specific parts of an organism, 209 

numerous biochemical events take place, which may contribute towards adverse effects either 210 

singly or in combination. Thus far, interaction with nanoplastics have resulted in the following: 211 
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alterations in gene expression109, 110 and transcription factors111; oxidative stress100, 112; 212 

membrane damage64; DNA fragmentation64; protein modification113; and cytotoxicity114.  213 

The high surface area of nanoparticles cause excess generation of reactive oxygen species 214 

(ROS)115; in in vivo organisms (zebrafish)100 and in vitro human epithelial cells112. Typical 215 

ROS include hydrogen peroxide, peroxynitrite, lipid hydroperoxide, and superoxide, which can 216 

damage cellular membranes, proteins, and DNA.116  217 

Reproductive impairment was a major consequence of nanoplastic exposure in aquatic 218 

organisms54, 117. Recent studies have shown that polystyrene nanoplastics (100 nm and smaller) 219 

are able to interact with chromosomes, causing aberrations112, 114. Transcriptional responses 220 

have also been instigated following the interactions with nanoplastics.110, 111 In spite of these 221 

documented biological responses, the underlying causes remain uncertain. 222 

Table 2.1. This table summarises the biological impacts of nanoplastics are summarised and classified by different biological 223 
organisms listed in this article.  224 

Target biological organisms 
and molecules 

Biological effects References 

Bacteria Enzymatic activity 
Toxicity 

Riboflavin secretion 
metabolism 

80 
81 
83 
84 

Bivalves and crustaceans Phenotype deformation 
Fertilization and embryogenesis 

Development defect 

68 
89 
59 

Fish Bioaccumulation 
Neurotoxicity 

Oxidative stress 
Altered metabolism 

87, 96 
87, 96, 97 

98-100 
101-102 

 225 

3. Predictive approach and uncovering the molecular and physical mechanism 226 

The nanoplastic research has thus far focused on assessing the in vivo and in vitro toxicity as 227 

highlighted in this review. As with any other potential toxins, the ultimate goal is to anticipate 228 

the scale and types of hazards with the physicochemical properties of nanoplastics through 229 

structure and activity relationships (referred “predictive model” in Figure 3.1). Accurate 230 

prediction of hazards enables to identify higher risk nanoplastics and their effects, which allow 231 

informed decision-making to mitigate harm. Here, we outline the scientific challenges that 232 

should be overcome and need to be carefully considered in future research. Specifically, we 233 
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make a comparison with the progress in this field of research concerning the safety of 234 

engineered nanomaterials (hereafter, referred as the nanotoxicology). 235 

 236 

Figure 3.1. A predictive model for classical toxicology. Based on the chemical identity, structure activity relationship (SAR) 237 
predicts the affected biochemical processes, which would then anticipate the physiological effects. 238 

In the late 2000s to early 2010s, the nanotoxicology field primarily focused on identifying the 239 

toxicological profiles using standard assays.118 Qiu et al.119 described that the next stage of the 240 

research was to understand the underlying chemical mechanisms and to establish causal 241 

relationships between the physicochemical properties of nanoplastics and the affected 242 

biochemical processes. Currently, nanoplastic toxicology is only beginning to proceed to this 243 

stage.73 As highlighted by Qiu et al.119, determining the individual contribution of each of  244 

nanoplastics physicochemical property (e.g., particle material, shapes, size, surface groups) is 245 

important, and these parameters need to be explored systematically in measuring their 246 

biological impact (e.g., cytotoxicity, ROS generation, and cellular uptake). 247 

 248 

Figure 3.2. A series of events nanoplastics experience in biological organism; plastic types and physicochemical properties of 249 
nanoplastics influence the further corona formation, and further biochemical processes are determined by the nature of the 250 
nanoplastic/corona complexes. 251 

Further, the nanoplastic surface enables the formation of complexes with macromolecules 252 

present in biological fluids, creating additional contributing factors and complicate the 253 
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establishment of the causal relationships.120 The chemical identity and intrinsic properties of 254 

the particle affect the formation of these complexes (discussed more in detail in 4 and 4.1), and 255 

it is these complexes that determine biochemical processes.120 A schematic of interconnected 256 

factors and a series of events, nanoplastics experience is shown in Figure 3.2.  There is currently 257 

little knowledge about how the individual components of protein corona (e.g. component, 258 

shapes, protein structures, nanoplastic/corona complex,) contribute to biological interactions, 259 

and the importance of each property in this. 260 

3.1. An important role of interface and knowledge gap 261 

To explore the relationship between the complex of nanoplastic-biological molecules and their 262 

biological outcome (or “disrupted biochemical processes” in Figure 4.1), the formation of this 263 

complex structure has been investigated. The prediction of further interactions with other 264 

biological (macro)molecules and assemblies can however be only established with interfacial 265 

understanding.120, 121 266 

Fundamentally, the interaction of nanoparticles with biological entities, e.g., a cell membrane, 267 

can be predicted by considering colloidal theories of multiple forces.121 If the nanoparticles 268 

stay pristine on a surface, the attractive or repulsive interaction can be described by the well-269 

known Derjaguin–Landau–Verwey–Overbeek (DLVO) theory.122 The physical implication is 270 

that the surface character of the nanoparticles themselves dominates the colloidal behaviour 271 

(e.g., shape, size, surface charge, surface pattern). Pogodin et al.123 expressed the significance 272 

of such properties by demonstrating the enhanced penetration of nanoparticles with a specific 273 

surface pattern (which may appear to be a marginal factor) through cellular membranes. As 274 

mentioned earlier, studies concerning the interfacial aspect, have infrequently considered the 275 

surface alteration due to the biological complex formation, both theoretically and 276 

experimentally. 277 

4. Corona formation – protein and eco-molecules 278 

The nanoparticles in biological fluid participate in the complex formation with biological 279 

molecules. The case is best exemplified by a protein corona.120  Nanoplastics are not exempted 280 

from this scenario, and experimentally demonstrated by us in the previous work.124, 125 Because 281 

the nanoparticle’s surface properties can be altered drastically by such a surface layer, the 282 

particle’s “biological identity” should consider the full complexity of the surface structure. 283 
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Both in vitro126, 127 and model systems128 have demonstrated that the formation of such 284 

nanoparticle/biological molecule complexes affect the biological interactions of nanoparticles. 285 

When proteins participate in the nanoparticle/biomolecule complex, a “protein corona” is 286 

formed129. For example, the human plasma system is abundant in proteins such as serum 287 

albumin, immunoglobulin G (IgG), and fibrinogen, which readily surround the surface of 288 

nanoparticles.130, 131 Other proteins, such as apolipoprotein, may be much less abundant in the 289 

plasma system, but have higher affinities to the nanoparticle surface.132 These proteins can, 290 

over time, competitively adsorb on the surface, displacing the already-adsorbed proteins.133 It 291 

is important to note that abundant proteins with low affinities are not fully replaced by the 292 

proteins with higher affinities; they are also retained on the nanoparticle surface.133 293 

During this competitive adsorption process, the corona proteins form two distinctive structures, 294 

“hard” and “soft” coronae (Figure 1.3). Proteins that are adsorbed tightly on the surface form 295 

the “hard” corona, while those that are loosely bound are called “soft”. This identification 296 

method relies on the isolation of nanoparticle/protein particulates. It has been found that a few  297 

proteins (e.g. human serum albumin, apolipoprotein, and IgG) participate in the hard corona 298 

formation in human plasma system134. However, protein typing cannot distinguish between 299 

unbound proteins and soft corona, leaving the identification of soft corona proteins to a future 300 

challenge.  301 
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 302 

Figure 4.1. Schematic of protein corona formed around a nanoparticle, depicting two types of coronae, hard and soft. The 303 
figure is adopted with permission from an ACS publication and the original article can be found at 304 
https://pubs.acs.org/doi/10.1021/ar500190q.135 305 

The presence of protein corona may or may not extend the lifetime of nanoparticles within 306 

biological organisms. Two classes of proteins play a crucial role, opsonins and dysopsonins. 307 

Opsonins act as an immunological barrier and are prone to cause phagocytosis due to their 308 

surface adsorption, thereby, shortening the lifetime of the external objects in the plasma 309 

system.136 Major examples include immunoglobulins and their complementary proteins. 310 

Dysopsonins, on the other hand, are known to prolong their lifetime in the bloodstream. 311 

Albumin, the most abundant serum protein (constitutes 55% of plasma protein), belongs to this 312 

group, and is frequently found on the surface of the nanoparticles.132, 137  313 

Corona formation can result in a loss of or alterations to the intrinsic functionality of 314 

proteins.138, 139 Proteins participating in the hard corona, in particular, bind tightly to the 315 

nanoparticle surface, which can facilitate partial unfolding of their secondary structure.138 316 

Norde listed the thermodynamic forces driving the protein binding and protein conformational 317 

changes on solid surfaces: (1) electrostatic interactions between protein and solid surface; (2) 318 

dispersion force (van der Waals interactions), weak attractive force involving dipoles; and (3) 319 

enthalpic and entropic adjustment via conformational change responding to protein surface 320 

dehydration.140 However, there are cases of stabilisation of the secondary structure upon 321 

protein corona formation.141 There is also a case where the functionality of a soft corona protein 322 

was reported to be affected139 even in the absence of structural alterations. 323 

https://pubs.acs.org/doi/10.1021/ar500190q
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The corona structure also provides a platform for the corona proteins to modify their quaternary 324 

structure to undesirable forms.142 Linse et al.143 observed the enhanced formation of 𝛽𝛽 2-325 

microglobulin oligomers, following their interaction with polymeric nanoparticles. Crucially, 326 

oligomeric states can then form amyloid-like protein aggregates, which are thought to be 327 

responsible for haemodialysis-associated amyloidosis (specifically for 𝛽𝛽2-microglobulin).144 328 

The formation of oligomers alone can have a strong biological relevance, as in Alzheimer-329 

related symptoms145. Conversely, nanoparticles can also inhibit the fibrillation of amyloid 330 

proteins146. These findings collectively highlight the case-by-case nature of the influence that 331 

nanoparticles have on protein quaternary structures.  332 

Overall, the presence of protein corona is not necessarily deleterious. A benchmark study by 333 

Lesniak et al.127 demonstrated a reduction in nanoparticle cellular adhesion and uptake due to 334 

the presence of protein corona. There were also reports that the nanoparticles with protein 335 

corona (compared to bare nanoparticles) weakened cytotoxicity,147, 148 however, some report 336 

the opposite effect in vitro.149 Since the cellular uptake is dependent on the types of proteins in 337 

corona, caution is advised in using the one-size-fit-all explanation for the role of protein 338 

corona.150 Fleischer and Payne126 showed the uptake mechanism is also affected by the 339 

secondary structure of the corona proteins, and is not influenced only by protein types. Notably, 340 

the above examples primarily use non-nanoplastics, and this case-by-case nature highlights the 341 

importance of testing out different combinations of nanoplastics (of different composition, size, 342 

and shape) and protein types. 343 

4.1. Eco-corona around nanoplastics  344 

Analogous to a protein corona, any molecules in the environment that participate in the corona 345 

structure satisfy the criteria for being an “eco-molecule” and for the resulting structure to be an 346 

environmental or eco-corona.151 Eco-corona formation becomes a critical parameter in the 347 

predictive model, considering the ubiquity of nanoplastics in the environment. However, 348 

relevant studies have only recently appeared for microplastics152; few have considered this for 349 

nanoplastic research. 350 

Research exploring the relevance of eco-corona (or often referred as adsorbed molecules) have 351 

targeted the molecules that are typically used in environmental toxicity research. The scopes 352 

of these studies are diverse and showed early evidences of; adsorption of organic pollutant on 353 

nanoplastics increases mobility (of pollutant molecules’) in terrestrial environemnts153, 154, 354 

microplastics facilitated bioaccumulation of pollutant molecules155, 156,  presence of  eco-355 
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corona affects the nanoplastic toxicity to fish57, and synergetic toxicity with metal ions157. It 356 

has also been hypothesised that micro and nanoplastics could act a “Trojan horse” and transport 357 

the eco-toxic molecules to biological organisms (as seen in the case of bioaccumulation). The 358 

mechanism behind should be tackled at interfacial level. As demonstrated with proteins133, the 359 

corona molecules undergo competitive adsorption and establish equilibrium with molecules in 360 

bulk solution. Same is applied for eco-corona, and therefore, the effect of eco-corona with 361 

further protein corona formation and chemical association becomes an important target of the 362 

future research. 363 

Notably, the studies so far only assumed the classes of ecological molecules interacting with 364 

micro and nanoplastics for testing their ecological and biological impacts. To the best 365 

knowledge, these molecules constituting the eco-corona around micro and nanoplastics in 366 

nature have yet to be identified, and remain a critical challenge.  367 

 368 

Figure 4.2. Comparative illustration of protein corona (top) and environmental or eco-corona (bottom) formed around a 369 
nanoparticle. Reprinted with permission from Pulido-Reyes et al. 370 
(https://setac.onlinelibrary.wiley.com/doi/full/10.1002/etc.3924) copyright (2017) John Wiley and Sons. 371 

  372 

https://setac.onlinelibrary.wiley.com/doi/full/10.1002/etc.3924
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5. Opportunities for the interfacial scientist 373 

Recalling the challenges of associating biological responses to nanomaterial properties, it is 374 

imperative for a predictive model (Figure 1.2) to understand the molecular and biological 375 

identities. However, due to the number of contributing factors involved, attempts to investigate 376 

this using in vivo and in vitro systems may impose many technical challenges. One approach 377 

is to simplify the bio-nano interface by creating model systems. This allows a systematic 378 

investigation of different parameters and resolution of molecular details at the interface. This 379 

approach has been implemented in the non-nanoplastic field, and has recently started to be 380 

adopted in nanoplastic research also.124, 125, 158-160 We outline findings from both, non-381 

nanoplastic and nanoplastic studies, that have focused on formation and structure of corona 382 

and its cellular interactions using model cellular membrane. 383 

5.1. Uncovering corona formation and structure 384 

A successful analytical approach to this complex challenge would identify the types of proteins 385 

in the hard corona in vitro and in vivo, both in steady state and resolved over time.132 In contrast, 386 

model systems offer the possibility of further insight, including protein structural change, 387 

protein corona structure124, 125, and adsorption behaviour.161-163 For instance, the effect of 388 

corona formation (with varying particle size and electrostatic interactions) on participating 389 

protein secondary structure and binding constants was documented using spectroscopy 390 

techniques.164 Similarly, a number of reports recorded a (partial) conformation change124, 125, 391 
138, 158, or, in some cases, stabilisation of the secondary structure126. Various factors are thought 392 

to contribute to this interaction; nanoparticle material, surface coating, coating density and 393 

pattern, particle size, shape, etc. To date, there is yet to be a unified theory connecting these 394 

physicochemical properties of nanoparticles, protein types, to these experimentally observed 395 

effects. 396 

While the model system studies enable us to explore the physical parameters of individual 397 

proteins and nanoparticles, multi-component analysis is still a challenging task. Computational 398 

simulations have provided insight into the competitive adsorptions of proteins and nanoparticle 399 

behaviour, in multi-component systems.133, 165, 166 Vilanova et al. 133 combined coarse grain 400 

modelling with binding constants for human serum albumin (HSA), transferrin, and fibrinogen 401 

to silica nanoparticles, experimentally obtained using fluorescence correlation spectroscopy. 402 
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Recently, computational modelling has been used for simulating nanoplastic interaction with 403 

proteins, predicting the affected structure as well as theorising the causes and effects.158  404 

To carefully assess the relation between nanoplastic (or nanoparticle) properties and their 405 

toxicological profiles, the physicochemical properties of the complex formed with the protein 406 

corona (sometimes referred to as “biological identity”134) have to be considered167, along with 407 

the particle characteristics. Thus, the structural evaluation of protein corona complexes have 408 

also been of considerable interest, and small-angle scattering techniques have supported this.124, 409 
125, 161, 168 This method (especially when used with contrast-matching techniques)124, 125 410 

provides an opportunity to understand individual components of a complex system when 411 

appropriate structural model is utilised. The structure of nanoplastic/protein corona complex 412 

and corona protein structure (soft and hard) was only recently evaluated using this technique 413 

(Figure 5).124, 125 414 

 415 

Figure 5.1. The structure of polystyrene nanoplastic complex with soft and hard protein corona, modelled based on the small-416 
angle neutron scattering curves. The figure was adopted from ref 110 with permission from the AIP publishing. 417 

It is worthwhile noting that studies have mainly documented the interaction of nanoparticles 418 

with proteins. However, the nanoplastic exposure in humans and other organisms would 419 

inevitably occur in environmental matrices which contain a molecular cocktail and form an 420 

eco-corona. To our knowledge, few studies have shown the significance of eco-corona.169-171 421 

The types of molecules found on nanoplastics from the environment, eco-corona structure, their 422 

influence on further protein corona formation, and subsequent biological interactions are yet to 423 
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investigated– there is still a considerable knowledge void. We believe that the research articles 424 

introduced in this review embody methodologies worth exploring.  425 

5.2. Implications of nanoplastics and corona-complex  426 

Ignorance about biological identities and their biological impact remain one of the challenges 427 

to complete the scheme of the predictive model (Figure 4.1). Chiefly, the question of how and 428 

which components of nanoplastic/corona complex affects further interactions with biological 429 

entities such as cells, are largely unaddressed. Contributory factors could include nanoplastic 430 

material, protein type found in soft and hard corona, morphology of nanoplastic/corona 431 

complex, structure of participating proteins (from secondary to quaternary). These factors can 432 

be tested by in vitro experiments, which investigate detailed cellular interactions and their 433 

responses in the form of cellular uptake, localisation, cytotoxicity, oxidative stress, 434 

chromosomal aberration, etc. While these experiments yield insightful information, the 435 

mechanism relating to the interactions with individual components remain open to question. In 436 

the past, model systems such as lipid bilayers have demonstrated their use for studying 437 

interactions with other biologically active molecules such as proteins, peptides and drug 438 

candidate molecules, as well as the lipid bilayer undergone oxidative stress 172-176. Furthermore, 439 

the sparsely-tethered lipid bilayer in particular has shown to be a better mimicry of the natural 440 

cellular membrane – effectively being used to study the above mentioned aspects.172, 176-180 441 

A model lipid bilayer has also been applied to study the cellular interactions with nanoparticle 442 

systems.181-186 These studies demonstrate that the aforementioned physicochemical properties 443 

of nanoparticles can affect the structural integrity and membrane fluidity, both of which are 444 

vital in maintaining cellular functions. In some cases, these bilayer properties were sensitive to 445 

surface patterning of nanoparticles.123, 187  While many studies focused on bare nanoparticles, 446 

few have shed light on the nanoparticle/corona complex188, in fact, the number of studies are 447 

even more limited than for nanoplastic/corona complex.128  448 
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 449 

Figure 5.2. Simulated interactions between model phospholipid bilayer and polyethylene nanoparticles of different shapes. 450 
The figure was reproduced from Ref 138  with permission from European Chemical Society Publishing.  451 

Proteins participating in the corona formation can drastically change cellular interactions 452 

(compared to nanoparticles), although the cause is open for debate – whether it is attributed to 453 

protein structural change, formation of new morphologies (nanoparticle/corona complex), or a  454 

combination of the two. As discussed, the participating corona proteins can lose their structural 455 

integrity which may disrupt the lipid bilayer upon contact (while their native form is 456 

membrane-inert).189 To complicate matters, it is also affected by the nanoparticle 457 

physicochemical properties and the protein types, all of which need to be carefully assessed. A 458 

lack of evidence and variables explored (particularly with nanoplastics) prevents further 459 

assessment. Studies found in the literature have been limited to using polystyrene as a model 460 

nanoplastic and commonly found proteins (e.g. serum albumin and lysozyme). Evidence 461 

suggests that less abundant proteins constitute the protein corona132, and types of corona 462 

proteins (or the combination of which) affect their cellular response.190 Based on the 463 

methodologies employed by the studies highlighted here, future studies should consider the 464 

usage of other polymer material and more specialised proteins.  465 

6. Summary and future outlook 466 

The present work reviewed recent findings relating to the potential impact of nanoplastics on 467 

biological organisms (i.e. microbial, aquatic, and implications for humans). Collectively, these 468 

studies support the potential of nanoplastics to disrupt the ecological function of biofilms, cause 469 

adverse effects in aquatic organisms, and to bioaccumulate. There is no evidence yet that shows 470 
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major nanoplastic uptake by humans, however this should not be considered final. The potential 471 

effects for humans are largely discussed on the basis of in vitro experiments and theories 472 

extrapolated from non-plastic nanoparticles. We highlight an approach taken in 473 

nanotoxicology, that attempts to establish a link between physicochemical properties of 474 

nanoparticles and their impact (e.g. physiological effects) on the basis of chemistry and 475 

biology. This mechanistic approach allows for future decision-making to mitigate the harm 476 

caused by nanoplastics as it can be tailored to the level of risk predicted. We highlight the main 477 

gaps in the nanoplastic field: 1. Lack of understanding behind the influence of physicochemical 478 

properties (plastic types, size, shape, etc) of nanoplastics on corona formation (both protein 479 

and eco-corona), 2. The impact of eco-corona on protein corona formation, 3. The biological 480 

impact of eco-corona and protein corona around nanoplastics (from cellular to model 481 

organisms), 4. Identification of molecules participating in eco-corona in nature. While these 482 

questions can be addressed in part via in vitro experiments, molecular details are difficult to 483 

obtain. These are important parameters which can attribute the observed biological 484 

consequences to the nanoplastic (and nanoplastic/corona complex) properties. The 485 

methodologies employed in interface science are particularly useful in addressing these 486 

questions, from understanding the formation and structure of protein corona in nanoplastic 487 

property and a protein-type-dependent manner to resolving the lipid bilayer interaction with 488 

molecular resolution. Nanoplastic-specific studies attempting to explore these points are scarce 489 

and leaves significant opportunities for future research. 490 
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