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ABSTRACT. This paper presents a phenomenon which sometimes occurs in
tetravalent bipartite locally dart-transitive graphs, called a Base Graph — Con-
nection Graph dissection. In this dissection, each white vertex is split into
two vertices of valence 2 so that the connected components of the result are
isomorphic. Given the Base Graph whose subdivision is isomorphic to each
component, and the Connection Graph, which describes how the components
overlap, we can, in some cases, provide a construction which can make a graph
having such a decomposition. This paper investigates the general phenomenon
as well as the special cases in which the connection graph has no more than
one edge.

1. INTRODUCTION

We start with an informal introduction to the topic of this paper. Precise def-
initions and statements will follow in later sections. Our investigation stems from
our desire to understand edge-transitive tetravalent graphs and to construct an
extensive census of such graphs (see [7] and the accompanying paper [§]).

It is easy to see that if I' is a connected graph and G < Aut(T") acts transitively
on the edges of I', then either G acts transitively on the vertices of I', or I is
bipartite with each set of the bipartition being an orbit of G. It the latter case,
we say that I' is G-bi-transitive, or just bi-transitive if we do not need to mention
G explicitly. Observe that in a G-bi-transitive graph I', the stabilizer G, of each
vertex v is transitive on the neighbourhood I'(v). For that reason, G-bi-transitive
graphs are sometimes known as locally G-arc-transitive graphs.

Bi-transitive graphs are one of the most studied highly symmetrical families of
graphs, with most of the work concentrating on the case where the action of G,
on T'(v) is quasi-primitive, primitive or even doubly-transitive (see for example
1, @3, @, 5, 111 [12]).

In this paper we present a construction, called the BGCG construction, whose
output is a tetravalent graph I' which is G-bi-transitive for some G < Aut(T),
such that the stabilizer G, of some vertex v acts imprimitively on I'(v) (we shall
call such graphs tetravalent bi-transitive locally imprimitive). It transpires that
such graphs make up a very important and difficult-to-handle family of tetravalent
edge-transitive graphs, hence our interest in them.
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The BGCG construction is comprehensive in the sense that every tetravalent bi-
transitive locally imprimitive graph can be constructed by applying the construction
to a suitable smaller tetravalent dart-transitive graph. Since bi-transitive graphs
are bipartite, we shall also think of them as being properly colored by two colors,
black and white. We shall then call them 2-colored graphs.

The comprehensiveness of the BGCG construction is shown by exhibiting its
inverse operation, called dissection, which takes a suitable 2-colored bi-transitive
graph as an input and returns a smaller dart-transitive graph. We first start with
a few illustrative examples showing the idea behind dissection, while the precise
details and results about the two constructions are in Section Bl

Consider a connected tetravalent 2-colored graph. Suppose that at each white
vertex, we separate that vertex and its four incident edges into two vertices, each
incident with two of the four edges. This process is called a dissection and it may
or may not disconnect the graph. The result is a graph, still bipartite, in which the
black vertices have valency 4 and the white vertices have valency 2. The resulting
graph is thus a subdivision X* of some tetravalent (not necessarily connected) graph
X. If the original graph is G-bi-transitive with G, acting imprimitively on I'(v) for
every white vertex v and if the decomposition of the edges incident to v forms a
suitably chosen system of imprimitivity of G,, then X will be dart-transitive.

Example 1.1. Consider the circulant graph Cio(1,3), shown in Figure as a
2-colored graph. If its white vertices are dissected as in Figure the result is KZ,
as seen in Figure Each white vertex of C10(1,3) corresponds to a pair of edges
of K5.

Given the correct pairing of edges in Ky, the graph Cio(1,3) can be recon-
structed. This is done by first subdividing each edge of K5 to form Kf, and then
identifying those pairs of new vertices that correspond to paired edges of K5. This
(re-)construction of Cyo(1,3) is called a BGCG construction. (See Example [5.3])

(b) Dissected

FIGURE 1. Dissection of Cio(1,3)

Example 1.2. Consider the rose window graph Ro(4, 1) (see [13] for the definition
of rose window graphs), shown in Figure If its white vertices are dissected as
in Figure 2D] the resulting graph has two components, as can be seen in Figure [3]
and each of these is isomorphic to Kg, as in Figure
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(a) Rio(4,1) (b) Dissected

FIGURE 2. Dissection of Ryg(4,1)

FIGURE 4. The components as copies of K

The BGCG construction and the corresponding dissection will be defined and
discussed in precise terms in Section After a section of preliminary matters,
we will present these two notions in a broader setting of bi-transitive graphs of
arbitrary valence.
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2. PRELIMINARIES

Although we are mainly interested in simple graphs, it will be convenient to
allow graphs to have parallel edges. Let us start this section with a quick overview
of notions pertaining to such graphs.

In this paper, a graph will be a triple I = (V| E, J) where V and E are finite sets
and 0 is a mapping from E to (V(QF)) ={X C V() | |X]| =2}. The set V will be
called the vertez-set of T' and denoted V(I'), while its elements are called vertices.
The set F will be called the edge-set of I' and denoted E(I"), while its elements are
called edges. For an edge e, the elements of d(e) are called endvertices of e and two
vertices u,v € V(T') are called adjacent provided there exists e € E(T") such that
d(e) = {u,v}. Similarly, two edges e1,es € E(T') are adjacent if d(e1) N I(ez) # 0.
Two edges e1,ea € E(I') with d(e1) = J(ez) are called parallel. A graph T' is
simple provided it has no parallel edges or, equivalently, provided the function 9
is injective. In this case, E(T') can be identified with a subset of (V{)). A simple
graph will thus often be given in the usual way, as a pair (V, FE) where E C (V(QF)).

A dart of T' (sometimes called an arc) is an ordered pair (e,v) where e € E(T")
is its underlying edge and v € O(e) is its initial vertez. In a simple graph, a dart
(e,v) is uniquely determined by the ordered pair (v, u), where d(e) = {u,v}. We
will thus often refer to darts in simple graphs as ordered pairs of adjacent vertices.

The neighbourhood of a vertex v in T', denoted T'(v), is the set of edges e of T’
such that v € d(e), and the wvalency of v is the cardinality of I'(v). If " is simple,
then every edge in I'(v) determines uniquely an adjacent vertex of v, hence in this
case, I'(v) can be interpreted as the set of vertices adjacent to v. A graph will be
called k-valent if all of its vertices have valency k. A 4-valent graph will sometimes
be called tetravalent.

A symmetry g of a graph T’ (sometimes called an automorphism) is a permu-
tation of V(I') U E(T") which preserves V(I') and E(I') and such that, for every
e € E, 0(e9) = 0(e)?. Note that we use superscript notation for the action of a
permutation: if Q is a set, if w € Q, and if & € Sym(Q2), then w® is the image of w
under . It is then convenient to define the product af3 so that w®® = (w*)?. The
symmetries of I" form a group under this product, denoted Aut(T"). If T is simple,
then a symmetry of I' is uniquely determined by its action on V(I'). In this case,
we will often think of Aut(I") as a group of permutations on V(I').

There are obvious induced actions of Aut(T') on the vertices, edges and darts
of . These actions are not necessarily faithful. If G < Aut(T"), we say that T' is
G-vertex- (or G-edge- or G-dart-) transitive provided that G acts transitively on
the vertices (or edges or darts). When G = Aut(T'), the prefix G in the above
notation is sometimes omitted.

A 2-colored graph is a graph together with a proper coloring of its vertices in black
and white (that is, each edge has one black and one white endvertex). Clearly, a
2-colored graph is bipartite. Note that, if a bipartite graph is connected, then, up to
permuting the colors, it admits a unique 2-coloring and hence Aut(I') must preserve
the partition of V(T") into colors. A 2-colored graph I" will be called G-bi-transitive
if it is G-edge-transitive and G is a color-preserving group of symmetries of I'. A
2-colored graph I' will be called simply bi-transitive if there exists a G such that I" is
G-bi-transitive. If T' is regular (i.e. all vertices have the same valency), bi-transitive
and has no symmetry which reverses color, we say the graph is semisymmetric.
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To subdivide an edge e with endpoints {u, v} is to remove e, introduce a vertex
z and two new edges: e; with endpoints {u,z} and e; with endpoints {z,v}. If
X is a graph, then the subdivision of X, denoted X*, is a 2-colored graph formed
from X by coloring each vertex of X black and then subdividing each edge of X
and coloring the new vertices white.

The subdivided double of X, denoted SDD(X), is formed from X* by “doubling”
every black vertex, that is, by replacing every black vertex by two new black vertices,
each inheriting all the neighbours of the old vertex. If X is simple, tetravalent and
dart-transitive, then SDD(X) is always semisymmetric (see [9] for details).

3. GENERAL DISSECTION AND BGCG CONSTRUCTION

While our primary interest is in the BGCG construction applied to tetravalent
graphs, we first start with a more general treatment. Let I' be a 2-colored graph
in which every white vertex has even valence. A split at white vertices of I is a
partition of E(T') such that each part consists of exactly two edges and these two
edges have a white endvertex in common. If X is a graph, a separating relation for
X is an equivalence relation M on E(X) such that no two adjacent edges of X are
M-related.

Construction 3.1 (D1sSECTION). The input of this construction is a pair (I, A)
such that I' is a simple 2-colored graph with no isolated white vertices and A is a
split at white vertices of T'. The output is a pair (X, M) where X = Dis(T', A) is a
graph and M = Mate(T', A) is a separating relation for X.

The vertex-set of X is the set of black vertices of I". For each part {e1,ea} of A,
we create an edge e in X such that §(e) consists of the black endvertex of e; and
the black endvertex of e5. Note that, since I' is simple, these two black vertices are
distinct. We shall say that the edge e of X arises from v, where v is the (white)
common endvertex of e; and e; in I'. We say that two edges of X are M-related
whenever they arise from the same white vertex of I'. This is clearly an equivalence
relation on E(X). Since T is simple, it follows that M is separating. Moreover, if v
is a vertex of X, then v has the same valency in X as it has in I'. o

Note that, if (X, M) = (Dis(T', A), Mate(I', A)), then X might be disconnected
even if I' is connected and, moreover, if I' has 4-cycles, then X may not be simple,
as in the next example.

Example 3.2. This example concerns the wreath graph W(n, 2), which is the simple
graph with vertex set Z,, X Zo, and (4, j) and (k, 1) adjacent if and only if i —k = +1.
This family of graphs will be of some importance to us later. Let I' = W(6, 2), which
is shown in Figure

We will define two relations on E(W(6,2)). In the first of these two relations, we
say that two edges of I' are related if they have a white endvertex in common and
their other endvertices have the same first coordinate. This equivalence relation
induces a split Ay of I'. The corresponding dissection (in fact, its subdivision) is
shown in Figure @ Note that Dis(I", A1) has three components, each isomorphic to
the dipole with 4 parallel edges.

Another option is to declare two edges of I related if they have a white endvertex
in common and their other ends have the same second coordinate. This equivalence
relation induces a split A, of I and the subdivision of the corresponding dissection
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FIGURE 5. T'=W(6,2)

FIGURE 6. Subdivision of Dis(T', A1)

is shown in Figure (7] In this case, Dis(I', Ag) has two components, each a doubled
3-cycle, that is, a simple 3-cycle with every edge replaced by two parallel edges.

FIGURE 7. Subdivision of Dis(T', Ag)

Let us now present a construction, which, as will be shown in Lemma is in
some sense an inverse of Construction [B.1]

Construction 3.3 (BGCG). The input of this construction is a pair (X, M)
where X is a graph and M is a separating relation for X. The output of this
construction is a pair (I'; A) where I' = BGCG(X, M) is a simple 2-colored graph
with no isolated white vertices and A = Split(X, M) is a split at white vertices of
r.

Consider the subdivision X* of X. Note that every black vertex of X* has the
same valency in X* as it has in X and that every white vertex of X* has valency
2.
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Since there is a one-to—one correspondence between the edges of X and the
white vertices of X*, the equivalence relation M on E(X) can be considered as an
equivalence relation on the white vertices of X*. We extend M to an equivalence
relation on V(X™*) by declaring that a black vertex of X* is M-related to itself only.
For a vertex v of X*, let [v] denote its M-equivalence class.

Let ' = X*/M, by which we mean the quotient graph of X* with respect to
the equivalence relation M. Explicitly, vertices of I' are equivalence classes of M
and, for each edge e of X* with d(e) = {u,v}, we create an edge [e] of I" with
A(lel) = {[u], [v]}-

Since the M-equivalence classes on V(X*) are monochromatic, I" inherits a 2-
coloring from X* in a natural way. Clearly, I' has no isolated white vertices. More-
over, since M is a separating relation for X, it follows that I' is simple and that
black vertices of I' have the same valency as they have in X. We now define A, a
split at white vertices of I'. Say that two edges of X* are R-related if they have
a white endvertex in common. This is clearly an equivalence relation and, since
white vertices of X* have valency 2, the R-equivalence classes have cardinality two.
By definition, each edge of I' was induced by an edge of X* and hence R induces
an equivalence relation on the edges of I' which is a split at white vertices of I'. ¢

Lemma 3.4. Let T" be a simple 2-colored graph with no isolated white vertices and
let A be a split at white vertices of T'. Let (X, M) = (Dis(T, A), Mate(T", A)). Then
BGCG(X, M) =T.

Proof. Let us first define a function ¢ from the vertex set of BGCG(X, M) to the
vertex set of I". Observe first that, by definition, the black vertices of BGCG(X, M)
are precisely the black vertices of X = Dis(I',A), which are precisely the black
vertices of I'. Hence we may let the restriction of ¢ on the black vertices of
BGCG(X, M) to be the identity function.

Note that, since I" has no isolated white vertices, there is a natural bijective
correspondence between the M-equivalence classes and the white vertices of T'.
On the other hand, a white vertex v of BGCG(X, M) can be viewed as an M-
equivalence class of the edges of X, which then corresponds to a white vertex of I'.
We shall define this white vertex of I' to be the p-image of v. It is now a matter of
straightforward computation to check that ¢ is an isomorphism of graphs. O

Let us now consider the symmetries of the constructed graphs.

Lemma 3.5. Let X be a graph, let G < Aut(X) and let M be a G-invariant sep-
arating relation for X. Then there is a natural action of G as a color-preserving
group of symmetries of BGCG(X, M) and this action is faithful on vertices. More-
over, if X is G-dart-transitive, then BGCG(X, M) is G-bi-transitive.

Proof. Let T' = BGCG(X, M) and let g € G. Note that T' is simple and hence a
symmetry of T' is uniquely determined by its action of V(I'). The black vertices
of ' correspond to the vertices of X, while the white vertices of I' correspond to
M-equivalence class of E(X). Since M is G-invariant, this shows that there is a
natural color-preserving action of G on I'. We show that this action is faithful. Let
g € G such that g fixes all vertices of I'. It follows that g fixes all black vertices of
X and that g also fixes the M-equivalence classes setwise. Since no two adjacent
edges of X are M-related, it follows that ¢ = 1. Finally, by definition, edges of I"
are induced by darts of X from which the last claim follows. O
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It is also true that I' = BGCG(X, M) may have “unexpected” symmetries, i.e.,
symmetries that do not correspond to symmetries of X. In particular, I' might
have symmetries which reverse the colors of the vertices.

Lemma 3.6. LetT' be a simple 2-colored graph, let G be a group of color-preserving
symmetries of I, and let A be a G-invariant split at white vertices of I'. Let
(X, M) = (Dis(T', A),Mate(T", A)). Then there is an action of G as a group of
symmetries of X, such that M is G-invariant. Moreover, if T is G-bi-transitive,
then X 1is G-dart-transitive.

Proof. Since I is simple, we can think of G as a permutation group on V(I'). Let g €
G and let v € V(X). Recall that V(X) is the set of black vertices of I" and hence v9
is well-defined. Now, let e € E(X) and let a and b be the endvertices of e. The edge
e of X arose from a white vertex w of I' and {{a,w}, {b,w}} € A. It follows that
w9 is a white vertex of I" and, since A is G-invariant, that {{a?, w9}, {09, w?}} € A.
Define e9 to be the edge of X which arose from w9 corresponding to {a9,b9}. Tt is
not too hard to check that g is a symmetry of X and that the only element of G
which fixes every vertex and every edge of X is the identity. In particular, G acts
as a group of symmetries of X. Since two edges of X are M-related whenever they
arose from the same white vertex of I, it follows that M is G-invariant. Finally, by
definition, each edge of X corresponds to an element of A which is a pair of edges of
I'. By viewing an edge of X as a pair of darts, we obtain a natural correspondence
between darts of X and edges of I'. It follows that if I' is G-edge-transitive, then
X is G-dart-transitive. O

4. LOCALLY IMPRIMITIVE BI-TRANSITIVE GRAPHS

Let T be a simple graph, let v be a vertex of I" and let G < Aut(I"). We denote by
G, the stabilizer of the vertex v in G and by GE(U) the permutation group induced
by the action of G, on I'(v). If T is G-bi-transitive, then GL™) is transitive. If,

in addition, GE(U) is imprimitive for some vertex v, then we say that I' is G-locally
imprimitive.

As mentioned in the introduction, our original interest in the BGCG construction
came from our desire to understand tetravalent G-locally imprimitive graphs. We
start with Theorem [I.T] where we prove that a BGCG construction, when applied to
a G-dart-transitive graph admitting an appropriate G-invariant separating relation,
indeed yields a G-locally imprimitive graph. We then continue with Theorem
where we prove that every G-locally imprimitive graph can be obtained in that way.

Even though later we focus exclusively on tetravalent graphs, these two theorems
apply to bi-transitive graphs of possibly higher valences.

Theorem 4.1. Let X be a k-valent G-dart-transitive graph and let M be a G-
invariant separating relation for X such that each M -equivalence class has cardi-
nality d. Let T' = BGCG(X,M). Then T is a simple G-bi-transitive 2-colored
graph with black vertices having valency k and white vertices having valency 2d.

Moreover, for every white vertex v of I', the group GE(U) s imprimitive.

Proof. Let A = Split(X, M). As we saw in Construction T" is a simple 2-colored
graph with no isolated white vertices and with black vertices having valency k, while
A is a split at white vertices of I'. By Lemma [3.5] there is a natural bi-transitive
action of G on I". Finally, since M-equivalence classes have cardinality d, it follows
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that any white vertex v of I' has valency 2d and that Gy ) g imprimitive with d
blocks of size 2. O

Example 4.2. Let H be the Heawood graph, shown in Figure Let M be the
equivalence relation on edges of H of being parallel in this diagram of H. Clearly, M
is a separating relation and M-equivalence classes have cardinality three. (One such
class is {{14,1},{10,5},{8,7}}.) The group of symmetries of H which preserve M
is transitive on darts hence, by Theorem BGCG(H, M) is a simple bi-transitive
2-colored graph with 14 black vertices having valency 3 and 7 white vertices having
valency 6. The graph BGCG(H, M) also arises from the chiral map {3,6}2 1 on the
torus (the triangle embedding of K7 in the torus, see [2]); vertices of the graph are
vertices and faces of the map, and two vertices of the graph are adjacent when the
corresponding face and vertex of the map are incident.

FI1cURE 8. The Heawood graph

We shall now present a construction that assigns a split at a white vertex for
every bi-transitive locally imprimitive graph of valence {4, k}.

Construction 4.3. The input of this construction is a simple G-bi-transitive 2-
colored graph I' with black vertices of valency k£ and white vertices of valency 4,
and a system of imprimitivity A(v) for Gy ™) for some white vertex v. The output
is a split A = Pairs(I', G, A(v)) at white vertices of T'.

Observe first that since GE(”) is imprimitive, the permutation group GE(U) is
permutation isomorphic to one of the groups Z3, Z4 or D4 in their natural transitive
actions on four points. Observe that, in all three cases, there exists a normal
subgroup N of G, such that A(v) = {eV : e € T'(v)}. For g € G, let A(v)? denote
the set {D? : D € A(v)}.

Since G is transitive on the set of all white vertices, we can choose g, € G for
each white vertex w such that v9» = w. Let A(w) = A(v)9» and note that, since
N is normal in G,, A(w) does not depend on the choice of gy, .

We say that two edges of I" are A-related if they have a common white endvertex
v and they are in the same block of A(v). It is not hard to see that A is a split at
white vertices of T o

Theorem 4.4. Let T be a simple G-bi-transitive 2-colored graph. Suppose that black
vertices of I' have valency k while white vertices have valency 4, and that there exists
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a white vertex v of I' such that GE(”) is imprimitive. Let A(v) be an imprimitivity

system of GYY. Then T = BGCG(X, M) where X is a k-valent (not necessarily
simple) G-dart-transitive graph and M is a G-invariant separating relation for X
such that each M -equivalence class has cardinality 2. In fact, X and M can be
chosen to be Dis(T, A) and Mate(T', A), respectively, where A = Pairs(T, G, A(v)).

Proof. Let A = Pairs(I', G, A(v)), let X = Dis(I', A) and let M = Mate(T', A).
Then X is a k-valent graph and M is a separating relation for X. Since I' is
4-valent, the M-equivalence classes have cardinality 2. By Lemma |3.4 we have
BGCG(X,M) = T'. By Lemma there is a natural action of G as an dart-
transitive group of symmetry of X and M is G-invariant. (I

5. THE TETRAVALENT CASE

For the rest of this paper, we consider the case in which I' is tetravalent. In
order to understand the BGCG construction, we first consider the dissection. Let
T be a simple tetravalent G-bi-transitive 2-colored graph and let A(v) be a block
of imprimitivity for GE(“), for some white vertex v. Let A = Pairs(T', G, A(v)), let
X =Dis(T", A) and let M = Mate(T', A). Note that, in view of Theorem 4.4} T" can
be reconstructed as BGCG(X, M).

Recall also that X might be disconnected. Since X is dart-transitive, connected
components of X are all isomorphic to a fixed dart-transitive graph, B, called the
base graph of T' (with respect to G and A(v)); hence X = kB for some positive
integer k.

The connection graph C of T' (also with respect to G and A(v)), is the graph
whose vertices are the connected components of X and two such components By,
By are adjacent in C' whenever an edge from B; is M-related to some edge from Bs.
Note that the connection graph C' is simple by definition, even when component
B has many edges M-related to edges in By .

Let us emphasize that the base graph and the connection graph really do depend
on the choice of the system of imprimitivity A(v) and not just on I" and G. For

example, if GE(U) ~ 72

, then any partition of I'(v) into blocks of size 2 is a system of
imprimitivity for GEW and different partitions might give rise to different splits A
and thus to different graphs X. This phenomenon can be observed in the examples
considering the wreath graph I' = W(6, 2) in section

Now, we consider the BGCG construction. That is, given a tetravalent, dart-
transitive graph B and a dart-transitive graph C of order k, we would like to find
every separating relation M on kB such that BGCG(kB, M) is an edge-transitive
graph with connection graph isomorphic to C'. This is our long-term goal.

Examining the Census [7] shows many examples of graphs which can be con-
structed this way; or we could say that these graphs admit dissections. We have
seen in Examples [I.I] and [I.2] constructions in which the base graph B is K5
and the connection graphs are K; and Ky respectively. Continuing these ex-
amples, we see in [7] graphs constructed from B = K5 and C = C,, (for n €
{3,...,12}), K¢, K5 5, K11, K5 5,5 and others. Further, there are constructions us-
ing base graphs B = K32 (which is the skeleton of the Octahedron), Ky 4, the
graph C30C; shown in Figure [0] below, and in fact almost all small tetravalent
graphs.
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For the rest of this paper, we will concentrate on the case when C = Kj or Ko,
that is, those for which the graph X consists of one or two copies of B.

5.1. The connection graph is K;. The simplest case arises when the connection
graph of T' (with respect to some G and A(v)) is Ky. Then T' is isomorphic to
BGCG(X, M) for some connected tetravalent G-dart-transitive graph X (which,
being connected, equals the corresponding base graph B) and a G-invariant sepa-
rating relation M for X = B such that each M-equivalence class has size 2. We
thus introduce the following terminology.

Definition 5.1. A dart-transitive pairing of the edges of a tetravalent graph B is a
separating relation P on E(B) with equivalence classes, called pairs, of size 2, such
that the group of all symmetries of B that preserve P (this group will be denoted
by Aut(B,P)) is transitive on darts of B.

Note that when B is simple, then any dart-transitive relation with sets of size
2 is a separating relation, and so is a dart-transitive pairing. We summarize the
discussion above in the following theorem:

Theorem 5.2. Let B be a tetravalent graph and let P be a separating relation for
B. Then P is a dart-transitive pairing if and only if BGCG(B, P) is edge-transitive.

To illustrate the concept of a dart-transitive pairing, we return to Example

Example 5.3. Let B be the complete graph on Zs. Assign the color i 4 j € Zs to
the edge {i,j} of B. Note that each color is assigned to exactly two edges. Let P
be the equivalence relation on E(B) of having the same color. It is not too hard to
see that Aut(B,P) contains the affine functions over Zs. In particular, Aut(B, P)
is transitive on darts, and thus P is a dart-transitive pairing of B.

We can now construct the graph BGCG(B, P), which happens to be isomorphic
to the circulant graph Ci(1,3). In fact, this example is simply the inverse of the
dissection considered in Example

Example 5.4. Let B = C30C3, that is, B is the cartesian product of two 3-cycles.
The graph B can be visualized as the skeleton of the map {4,4}3, as shown in

Figure [0

1 2 3

10 13 16 10
4 5 6

11 14 17 11
7 8 9

12 15 18 12
1 2 3

FIGURE 9. The map {4,4}3

The group H of orientation-preserving symmetries of the map is generated by
the rotation about the central face

R=(112310)(4 159 16)(5 14 8 17)(6 13 7 18)(2 11)
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and the rotation about the lower right corner of the central face
S=(113410)(2 146 12)(3 155 11)(7 16)(8 17 9 18).
The group H is transitive on the darts of the graph. Consider this pairing:

P = {{1,17},{2,11},{3,14}, {4, 18}, {5, 12}, {6, 15}, {7, 16}, {8, 10}, {9, 13} }.

For each edge e, the stabilizer H, fixes exactly one other edge €’; P is the collection
of all pairs of the form {e,e’}. Then P is preserved by H and thus is a dart-transitive
pairing of B. Therefore, BGCG(B, P) is a bi-transitive graph on 18 vertices; it is
the skeleton of the toroidal map {4, 4} 3.

Because these pairings are so important, a natural question now arises:

Question 5.5. Given a connected tetravalent dart-transitive graph B, how can one
efficiently find all dart-transitive pairings of B, up to conjugacy in Aut(B)?

In general, all dart-transitive pairings of a given dart-transitive graph B can be
obtained by using the following approach:
(1) Find all minimal dart-transitive subgroup G < Aut(B) (up to conjugacy in
Aut(B));
(2) For each minimal dart-transitive subgroup G, find all systems of imprimi-
tivity for the action of G on the edges of B with blocks of size 2;
(3) Reduce the set of imprimitivity systems modulo conjugacy in Aut(B).

For groups in which the stabilizer of a dart has “small” order (less than 50, say),
this approach is efficient. Applying it to graphs of small size and with small vertex-
stabilizer yields a variety of dart-transitive pairings; see examples in Table [2] near
the end of this paper.

The difficulty in implementing the algorithm might occur in step 1; namely, if
Aut(B) has large order, then finding dart-transitive subgroups of Aut(B) might
take an unreasonably long time. We first address Question [5.5] in some special
cases. Suppose that the graph B is not simple. Then it is not too hard to see that
B is either the bouquet, that is, a vertex with two loops attached to it, or the dipole
with 4 parallel edges, or a doubled cycle. The bouquet and the dipole cannot have
separating relations, and so neither has a dart-transitive pairing. A doubled cycle
has a dart-transitive pairing if and only if its length is even, in which case it has,
up to isomorphism, a unique one (pairing diametrically opposed edges). Applying
the BGCG construction to this pairing yields a wreath graph.

Fortunately, connected simple tetravalent dart-transitive graphs with large dart-
stabilizers are much better understood than they used to be. In [6], it was shown
that there exists a sublinear function f such that, apart from a certain exceptional
family, the dart-stabilizer of a simple tetravalent graph of order m has order at
most f(n). The exceptional family of graphs was first described in [10], and the
ones with the largest vertex-stabilizers are also the simplest members: the wreath
graphs, W(n,2). We consider them extensively in the next section.

6. WREATH GRAPHS AND THEIR DART-TRANSITIVE PAIRINGS

In this section, we consider the troublesome family W(n, 2) of graphs, determine
all of their dart-transitive pairings and the graphs resulting from applying the
BGCG construction to them.



BASE GRAPH - CONNECTION GRAPH 13

Consider the graph T' = W(n,2). If n = 4, then W(n,2) is isomorphic to
the complete bipartite graph Ky 4, and thus its symmetry group is isomorphic to
Sym(4) ! Sym(2). For all other values of n, the collection of pairs of the form
{(¢,0),(4,1)},7i € Zy, forms a system of imprimitivity for Aut(W(n,2)). In par-
ticular, Aut(W(n,2)) is generated by symmetries p, u, and 7; for i € Z,, where
(4,5)? = (i + 1,7), (5, )* = (—i,4) for all i € Z,, j € Zs, and where 7; inter-
changes (i,0) and (4, 1) leaving all other vertices fixed. Thus, the symmetry group
Aut(W (n,?2) is isomorphic to Zs 1 D,, and so its order is n - 2" +1.

We will find it useful to have labels for the edges of W(n,2) themselves. Let
a; = {(i,0),(i + 1,0)}, b; = {(4,0), (¢ + 1,1}, ¢; = {(3,1),(i + 1,1)}, and d; =
{(i,1), (i + 1,0)}, as in Figure [10] Finally, we let C; = {a;,b;, ¢;,d;}.

FIGURE 10. Labels for edges of W(n,2)

First, if P is a pairing on I' and if G, the group of symmetries preserving the
pairing, is to be dart-transitive then G must contain:

(1) A symmetry which sends each pair {(7,0), (¢,1)} to {(: + 1,0), (i +1,1)}.
Without loss of generality, we can assume this symmetry p* is p or p’ = p7p.

(2) A symmetry which sends each pair {(¢,0), (i,1)} to {(—%,0), (—i,1)}. This
©* must be p times some product of the 7;’s.

(3) A symmetry 7* which fixes (0,0) and interchanges (1,0) with (1,1). Then
7* must itself be a product of the 7;’s.

In searching for dart-transitive pairings, we first note the obvious one, labelled
“Po’ in Table [1} in which each a; is paired with ¢;, and each b; with d;. This is
invariant under all of Aut(T).

Any other pairing must pair each edge in C; with some edge in C;4,, where
n is even and equal to 2m. We can indicate the 4 pairs within C; U C;1,, using
labels [1,1],[2, 4], [3,14], [4,4]. We can assume without any loss of generality that the
edges ag, bo, co, dg belong to pairs [1,0],[2,0],[3,0], [4, 0] respectively, and that for
i=0,1,...,m—2[c,i]p* = [¢,i+ 1] for all ¢ € {1,2,3,4}. Then for some o € Dy,
we must have [¢,m — 1]p* = [c0o, 0] for all ¢ € {1,2,3,4}, and this o (together with
the choice of p*) completely determines the pairing.

All eight of these pairings are dart-transitive; the requisite symmetries p*, u*, 7*,
as well as the size of the group G that they generate, are given in Table [l Not all
of them are distinct: pairings 6, 7, 8 are isomorphic to pairings 1, 2, 3, respectively.
In each case, the isomorphism is given by the symmetry 77573 ... 7.

The column labelled ‘K5’ gives the result of the construction BGCG(W (n, 2), K1, P;).
We provide some notation for these entries:

(1) PX(n, k), introduced in [10], has vertex set Z, x Z5, and its edges are all
{(%,jx), (i + 1,25 )where j and j’ are bits and x is a bitstring of length
k—1. PX(n,1) is isomorphic to the wreath graph W(n, 2), and PX(n, 2) is
isomorphic to the rose window graph Ra,(n +2,n + 1); see [13].
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P; o m | p* w* T* |G| K Ky

Po - - p I3 Ty 2n2"™ | W(2n,2) SDD(W(n, 2))
Py 1d any | p I T1Tm+1 4m2™ | SDD(W(m,2) | SDD(W(n,2))
7)2 (24) odd 1% 12 T1737T5 -« - Tn—1 16m {4, 4}[m,4] {4, 4}[,1,4]

P3| (12)(34) | any | p | pumiT2T3...Tm T1Tm+1 4m2™ | PX(n,2) PX(2n,2)

Py (1234) odd | p1o | uT2TaTe - - - Tn—2 | TIT3T5 -+ - Tn—1 16m Cgm(l,Qm—‘r 1) {4, 4}[,1’4]

P5 (4321) odd PTO | UT2T4Te - - . Tp—2 | T17375 ... Tp—1 16m Cgm(]., 2m — ].) {4, 4}[n4]

Ps | (13)(24) | any | p 1 T1Tm+1 4m2™ | SDD(W(m,2) | SDD(W(n,2))
P7 (13) odd 1% 1% T17375 « . . Tp—1 16m {4,4}[7”74] {4, 4}[7%4]

Ps | (14)(23) | any | p | pTiTeTs...Tm TITm+1 4m2™ | PX(n,?2) PX(2n,2)

TABLE 1. All dart-transitive pairings in wreath graphs

(2) The graph {4, 4}, is the skeleton of the map formed from the tessellation
{4,4} of the plane into squares meeting 4 at each vertex by factoring out
the translation group T generated by translations(b, b) and (—c¢, ¢).

(3) The graph {4,4}<p c>is similarly formed, using the group T generated by
(b,¢) and (e, b)

In Table [I} we avoid some separation into cases by using these facts:

(1) Ifm =1 (mod 4), then {4,4} 4 m) = Cgm(1,2m—1) and {4,4} <ri2.m—2> =
Csm(1,2m + 1)

(2) If m =3 (mod 4), then {4,4}4,mm] = Cgpm(1,2m+1) and {4,4} <y 2,m—2> =
Csm(1,2m — 1)

The final column of the table will be referred to in the next section.

7. THE CONNECTION GRAPH IS Ks

Suppose now that the connection graph of T' (with respect to some G and A(v))
is K. If B is the corresponding base graph, then T is isomorphic to BGCG(X, M)
for some G-invariant separating relation M on a graph X having exactly two com-
ponents, each isomorphic to B.

Let By and Bj be the components of X and let ¢pg: B — By and ¢1 : B — By
be isomorphisms. Given x an edge or vertex of B and ¢ € {0,1}, we give the label
(,4) to x¥:.

Since the relation M on E(X) is invariant under the dart-transitive group G
and since {E(By), E(B)} is clearly a G-invariant partition of E(X), it follows that
either each equivalence class of M is contained in one of E(By) and E(B;), or each
equivalence class of M intersects both E(By) and E(B;). In the former case, the
corresponding graph BGCG(X, M) 2T is disconnected, which we have ruled out.
Hence the latter possibility occurs. This allows us to define a permutation x on the
set E(B) such that the equivalence classes of M are of the form {(e,0), (e",1)}.

To be explicit, if we denote by e the white vertex {(e,0), (", 1)}, then (u,0) is
adjacent to e if u € e and (v,1) is adjacent to e if v € e”.

Conversely, given the graph B and a permutation x on E(B), let 2B be the
disjoint union of two copies of B indexed by {0,1}. One can then define a relation
M on E(2B) by letting the edge (e, 0) be M-related to (e, 1). This relation M is a
separating relation on 2B. We then define BGCG(B, Kg, k) to be BGCG(2B, M).
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Example 7.1. If  is the identity permutation then BGCG(B, Kz, k) = SDD(B).

Lemma 7.2. Let B be a connected tetravalent simple graph. Let A = Aut(B) and
let k and k' be permutations on E(B) such that, when A is viewed as a permutation

group on E(B), we have k' € AkA. Then BGCG(B, Ka, k) =2 BGCG(B,Ka, /).

Proof. Let T' = BGCG(B,Ka, k) and IV = BGCG(B,Ks, k') and let v,+" € A such
that, as permutations of E(B), we have x' =y 1xv/, so that k7' = vx'.

Let ¢ be the mapping from V(T') to V(I'') defined by (u,0)? = (u?,0), (v,1)% =
(v7",1), for v € V(B) and e® = ¢ for ¢ € E(B). Suppose that (u,0) and (v,1) are
adjacent to e. Since v € e, it follows that v7 € (%)Y = ¥ = (¢7)%. Thus ¢ is
an isomorphism. O

We will say that x is a push of B provided that the corresponding partition of
edges given by P = {{(e,0), (e",1)} | e € E(B)} is a dart-transitive pairing of the
graph 2B, in other words, if Aut(2B,P) is transitive on darts of 2B.

The idea of a dart-transitive pairing, which is essential in the case when X
is connected, is also useful here in the 2-component case: given a dart-transitive
pairing P of B, we construct a push xp of 2B by letting e*” be the other edge of B
in the same P-class as e. (Note that such a push kp is an involution without fixed
points.) It is not hard to see that, if B is connected, then so is BGCG(B, Ko, kp).

The final column of Table [I]shows the result of BGCG(W (n, 2),Ka, kp,) for each
dart-transitive pairing P;.

A further curious fact: for even values of m, even though the pairings P4 and Ps5
are not dart-transitive, the graphs BGCG(W (2m, 2), K3, P4) and BGCG(W (2m, 2), K3, Ps)
are edge-transitive; both are isomorphic to {4,4}<pt2,n—2>.

In Section [7.3] we will consider graphs obtained via dart-transitive pairings of
edges in small graphs other than wreath graphs. Not every push comes from a dart-
transitive pairing, though, and so we need to consider pushes of X more generally.

We now prove two results which determine what conditions on B and a permu-
tation x of E(B) will insure that x is a push.

Theorem 7.3. Let B be a connected tetravalent dart-transitive simple graph and
let k be a permutation of E(B) satisfying these two conditions:

(1) there exist dart-transitive subgroups Go and G1 of Aut(B) such that, when
viewed as permutation groups on E(B), we have (Go)* = G;
(2) there exist 19,71 € Aut(B) such that, when viewed as permutations on
E(B), we have 19 = KT1k.
Then k is a push of B. Conversely, if k is a push of B then it satisfies these
conditions.

Proof. We first show that if the conditions hold, then the pairing of edges of 2B
induced by & (that is, the collection P of all pairs of the form {(0,e), (1,e")}) is
invariant under some dart-transitive group of symmetries of 2B.

In a simple graph, the action of the symmetry group on the vertices is faithful. If
the graph is also connected and has at least two edges, then the action on edges is
also faithful. This implies that, given g € Gy, there exists a unique element g* € G
such that, when viewed as permutations of E(B), we have g* = ¢g* = k™1 gk.

For every g € Gy, let § act on 2B by (z,0)9 = (29,0) and (z,1)9 = (297, 1),
for every z € V(X)UE(X). Let G = {g | g € Go}. Clearly, G is closed un-
der composition and is thus a subgroup of Aut(2B) preserving the two connected
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components of 2B. Let e € E(B). Then (e,0) is in the same pair as (e*,1), but
also, (e,0)9 = (e9,0) is in the same pair as (e9%,1) = (e*,1)9. This shows that G
preserves P. Finally, note that, since Gy and G are both dart-transitive on B, the
group G acts dart-transitively on each component.

Let 3 be the permutation of V(2B) U E(2B) defined by (z,0)? = (2™,1) and
(x,1)% = (2™,0) for every 2 € V(B)UE(B). It is easy to check that 3 is a symmetry
of 2B preserving P that exchanges the two components. It follows that the group
generated by G and 3 preserves P and is dart-transitive. Thus & is a push of B.

Conversely, we wish to show that any push x of B satisfies the two conditions of
the theorem. Let M be the separating relation on 2B corresponding to . Since k
is a push, M is invariant under some dart-transitive group G of 2B. Let GT be the
subgroup of G which preserves By (and so also By). For each g € GT, define gq, g1
by (z,0)9 = (z%,0), (z,1)7 = (z91,1). Let Go = {golg € G} and G1 = {gq1]g €
GT}. Since G preserves M, we have {(e,0),(e®,1)}9 = {(e%,0), (e"9*,1)} € M,
and hence, in the action on edges, gok = kg1, and thus G§j = G;.

Now let 8 be any element of G which exchanges By and Bj, and define 79,7
by (x,0)% = (z™,1) and (x,1)® = (z™,0) for every z € V(B) UE(B). Since G
preserves M, each {(e,0), (e®, 1)} = {(e™, 1), (¢"™,0)} € M, and so, in the action
on edges, T = KT1K. O

Corollary 7.4. Let B be a connected tetravalent dart-transitive simple graph, let
A = Aut(B), and let k be a permutation of E(B) satisfying these two properties:

(1) there exists some dart-transitive subgroup H of A such that, when viewed
as a permutation group on E(B), H is normalized by k; and
(2) there exists T € A, such that k?> = T, when T is viewed as a permutation of
E(B).
Then  is a push of B and BGCG(B, Ko, k) is bi-transitive. In a converse direction,
let X = 2B, suppose that k' is a permuation of E(B) and let T' = BGCG(X, k'). If
I is connected and bi-transitive then the permutation k' is in the double coset Ak A
for some k which satisfies these two conditions.

Proof. By applying Theorem with 71 =idg, 79 = 7, and Gy = G; = H, we see
that any  satisfying these two conditions is a push of B and hence, by Theorem [4.1]
BGCG(B, K3, k) is bi-transitive.

Conversely, let 8 be any symmetry of I' which interchanges the two components
of X. If k is a push then the conditions of Theorem [7.3 are satisfied. Let ¢ be any
isomorphism of B onto component By of X. Then we can choose ¢1 : B — Bj to be
of3. Following the last paragraph of the proof of Theorem [7.3] this choice forces 9
to be the identity on B, and so 7; ! = x2 in its action on edges. Now let H = ANA".
It follows that H is normalized by k. Since G; < A and G; = G§ < A®, G; must
be a subgroup of H, and so H is transitive on darts of B. [

7.1. Other pushes of wreath graphs. Let us now provide examples of pushes
of the wreath graphs which do not arise from dart-transitive pairings of edges.

Example 7.5. Suppose n is even and let B = W(n,2). Let p,u, 7, b; and d; be
as in Section [6l Let

R = (bo do)(bl dl) s (bn—l dn—l)a
viewed as a permutation of E(B). Since k is an involution, it certainly satisfies
(2) of Corollary Let a« = 1972+ Tp—2 and let H = (p,p,a). Note that
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af = my13---Th—1 € H and thus H is dart-transitive. It is easy to see that, as
permutations of E(B), x commutes with both p and p. With a little more effort,
one can see that o = o € H and thus k normalises H. By Corollary K is a
push of B.

Example 7.6. Suppose n is divisible by 4 and write n = 2m, with m even. Let
B =W(n,2) and let p, u, 7, b; and d; be as in Section@ Let

m—1

K= H (0i bitm)(di dim),

i=0
viewed as a permutation of E(B). Since x is an involution, it certainly satisfies (2)
of Corollary As in Example let o = 7972+~ Th—2 and let H = (p, u, a).
Again, H is dart-transitive and x centralizes (p, ). Computatlon shows that o =
ap™ € H and thus s normalises H. By Corollary [7.4] « is a push of B.

Example 7.7. Suppose n is odd and write n = 2m + 1. Let B = W(n,2) and let
0, Iy Tiy @i, b, ¢; and d; be as in Section@ Let

k= (ao bo)(co do) H az; ¢2:)(b2i da;),
i=1

viewed as a permutation of E(B). Since k is an involution, it certainly satisfies
(2) of Corollary Let H = {p,u,71). Clearly, H is dart-transitive. We now
show that H is normalised by k. Let 7 = 7974 - - - T2y, The reader can check that
p® = p” € H. Similarly, it is not hard to check that u" = pro71 - 7,—1. Finally,
as a permutation of E(B), we have 11 = (ag bo)(co dp)(ar d1)(c1 b1). In particular,
71 commutes with £ and thus x normalises H. By Corollary [74] « is a push of B.
We offer without proof the claim that BGCG(B,Ka, k) is isomorphic to the rose
window graph Ry, (2n +2,2n + 1).

7.2. Non-involutory pushes. Note that all the pushes of wreath graphs given in
Section are involutions and thus trivially satisfy condition (2) of Corollary
We now give an example of a non-involutory push.

Example 7.8. Consider the graph B of Example [5.4] shown in Figure[J] and the
permutation

k=(1439)(5786)(10 15 12 16)(13 17 18 14).

on its edges. Computation shows that R = R~ and S* is rotation about the top
center face in the figure. Thus x normalizes H, and k2 = R2; hence & satisfies the
conditions of Corollary and is thus a push for B. This example shows that a
push need not be an involution; in fact, every element of the double coset of Aut(B)
containing « has order 4 or 8.

7.3. Non-wreath base graphs. To show the variety possible, we have exam-
ined all the connected dart-transitive tetravalent simple graphs B of order at most
16 that are not isomorphic to a wreath graph and, for each of these, computed
all their dart-transitive pairings up to conjugacy in Aut(I'). For each graph B
and dart-transitive pairing P, we then constructed the graphs BGCG(B,P) and
BGCG(B, K3, sp). The results are summarized in Table [2] (Instead of describing
the pairings explicitly, we have simply numbered them. The notation for the graphs
follows [7].)
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B P BGCG(B,P) BGCG(B,Ka, rp)

K 1 Cio(1,3) Rio(4,1)
DW(3,3) |1 DW(6, 3) {4,4}60
Cio(1,3) |1 SDD(K5) SDD(Cio(1, 3))
Re(1,2) 1 | SDD(Octahedron) HC(FB)
Re(1,2) 2 R12(8,7) HC(F8)
Re(1,2) 3 | SDD(Octahedron) SDD(Rg(5,4))
Ci3(1,5) |1 Ca6(1,5) Ro6(10, 1)

L(Petersen) | 1 PS(6,5;2) HC(F10)

Cis(1,4) |1 Cao(1, 11) Rs0(22,1)
Rs(6,5) | 1 Ri6(10,9) PL(SoP(4,4))
Rs(6,5) | 2 SDD(K4.4) PL(SoP(4,4))
Rs(6,5) | 3 SDD(K4.4) SDD(Rs(6,5))
Rs(6,5) | 4| MSY[4,8,3,4 | AMC[8,8, (36):(45)]
Rs(6,5) | 5 {4,4}44 AMC[8.8, (3 6):(45)]

TABLE 2. Dart-transitive pairings in small non-wreath graphs

8. FINAL QUESTIONS

(1) Given a connected tetravalent dart-transitive graph, we have already con-
sidered the problem of finding all of its dart-transitive pairings (see Ques-
tion and the follow-up). As we have seen in the discussion following
Lemma [7.2] this also yields many of the pushes of the graph. How do we
find the other pushes? Corollary appears to give an answer but its
practical implementation appears to be difficult. Is there a way to define a
‘canonical’ representative k' of AxA which satisfies the conditions?

(2) In subsection we exhibit a number of pushes of the wreath graph. Of
course, the pushes arising from the dart-transitive pairings shown in section
also exist. Are those all?

(3) After K; and Ko, the next simplest connection graphs to consider are k-
cycles, with £ > 3. How can one decide if a graph B is suitable as a base
graph for a BGCG construction with connection graph being a k-cycle?

(4) Given a graph B and a natural number k, how can we determine the dart-
transitive pairings of kB?
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