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Abstract

It is known that arc-transitive group actions on finite cubic (3-valent) graphs fall
into seven classes, denoted by 1, 21, 22, 3, 41, 42 and 5, where k, k1 or k2 indicates
that the action is k-arc-regular, and with k2 indicating that there is no arc-reversing
automorphism of order 2 (for k = 2 or 4). These classes can be further subdivided
into 17 sub-classes, according to the types of arc-transitive subgroups of the full
automorphism group of the graph, sometimes called the ‘action type’ of the graph.
In this paper, we complete the determination of the smallest graphs in each of these
17 classes (begun by Conder and Nedela in J. Algebra 22 (2009), 722–740).
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1 Introduction

A graph X is arc-transitive (or symmetric) if its automorphism group acts transitively

on the ordered edges of X, and more generally, an arc-transitive group of automorphisms

of X is said to be k-arc-regular if it acts regularly on the k-arcs of X (namely the walks

of length k + 1 in which every consecutive vertices are distinct). By a classical theorem

of Tutte [11, 12], every arc-transitive group of automorphisms of a finite cubic (3-valent)

graph X is k-arc-regular for some k ≤ 5, and following some refinement of Tutte’s theorem

by Djoković & Miller [9] and Conder & Lorimer [6], it is known that such group actions

can be partitioned into seven non-empty ‘basic’ classes, denoted by 1, 21, 22, 3, 41, 42 and

5, where k, k1 or k2 indicates that the action is k-arc-regular, and k2 indicates that there

is no arc-reversing automorphism of order 2 (for k = 2 or 4).

Associated with each of those seven basic types is a finitely-presented group, denoted by

G1, G
1
2 , G 2

2 , G3, G
1
4 , G 2

4 andG5, respectively. Each of them is a ‘universal’ group for actions

of the given type, and is an amalgamated free product of the form V ∗AE, where V and E

denote the pre-images of the stabiliser of a vertex v and incident edge e = {v, w} of the given

graph X, and the intersection A = V ∩E is the pre-image of the stabiliser of the arc (v, w).
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For example, G1 is the modular group C3 ∗C1 C2, with presentation 〈h, a | h3 = a2 = 1〉,
and is isomorphic to PSL(2,Z). Similarly, G 1

2
∼= D3 ∗C2 V4

∼= PGL(2,Z).

Djoković & Miller used the corresponding amalgams to exhibit examples of graphs in

the five basic classes G1, G
1
2 , G3, G

1
4 and G5 in [9], and Conder & Lorimer found the first

(but relatively large) examples of graphs in the remaining two classes in [6]. A few years

later, Conder & Dobcsányi [5] used computational methods to find smooth finite quotients

of the universal groups, in order to completely determine all connected symmetric cubic

graphs of order up to 768, thereby completing and extending the ‘Foster census’ [2] of

connected symmetric cubic graphs of order up to 512. (More recently, this author has

extended it even further, to all such graphs of order up to 10000; see [4].) In particular,

this work led to the discovery of the smallest example of basic type 22, namely the graph

now known as F448C.

More recently, it was shown by Conder & Nedela [7] that the seven basic classes can be

further subdivided into 17 sub-classes, according to the types of arc-regular subgroups of the

full automorphism group of the graph. This combination of basic types forms what is now

sometimes called the ‘action type’ of the graph. For example, action type (42, 5) indicates

that the graph is 5-arc-transitive and admits arc-transitive groups of automorphisms of

types 42 and 5, but of none of the other five basic types.

In the analysis given in this classification in [7], the smallest known examples of graphs

in each of the 17 ‘action type’ classes were identified, and the authors showed that in 14

of those 17 cases, the smallest known was actually the smallest. Obvious cases are the

complete graph K4, the complete bipartite graph K3,3 the Petersen graph and Tutte’s 8-

cage, with action types (1, 21), (1, 21, 22, 3), (21, 3) and (41, 42, 5) respectively, while more

interesting cases included F448C, the Sextet graph S(17), the Biggs-Conway graph and

Wong’s graph, with action types (22), (41), (1, 41, 42, 5) and (42, 5) respectively.

The cases left open were the action types (42), (41, 5) and (5). In this paper, we complete

that piece of work by showing that the smallest examples in those cases are respectively a

311-fold cover of Tutte’s 8-cage F30, the 5-arc-transitive cubic graph of order 75600 (with

automorphism group S10) discovered by the author [3], and a new graph of order 83966400

with the Held simple group He of order 4030387200 as its automorphism group.

We deal with each of these cases in the next three sections, with the help of group

theory and a fair amount of computation using Magma [1]. As a result, we can complete

the partial table given in [7] by confirming one of the three entries that were left with a

question mark, and replacing the other two, to produce Table 1 below. Before proceeding,

we give a little further background in Section 2 that will help.
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k Action type Bipartite? Smallest example Unique minimal?

1 (1) Sometimes F026 No

2 (1, 21) Sometimes F004 (K4) No

2 (21) Sometimes F084 No

2 (22) Sometimes F448C No

3 (1, 21, 22, 3) Always F006 (K3,3) No

3 (21, 22, 3) Always F020B (GP(10,3)) No

3 (21, 3) Never F010 (Petersen) No

3 (22, 3) Never F028 (Coxeter) No

3 (3) Sometimes F110 No

4 (1, 41) Always F014 (Heawood) Yes

4 (41) Sometimes F102 (S(17)) No

4 (42) Sometimes 311-fold cover of Tutte’s 8-cage No

5 (1, 41, 42, 5) Always Biggs-Conway graph Yes

5 (41, 42, 5) Always F030 (Tutte’s 8-cage) No

5 (41, 5) Never S10 graph No

5 (42, 5) Never F234B (Wong’s graph) No

5 (5) Sometimes Held group graph No

Table 1: The 17 families of finite symmetric cubic graphs, classified by action type

2 Further background

Here we give further details about the universal groups for the seven basic types of arc-

transitive action on finite cubic graphs (and also on infinite cubic graphs with finite vertex-

stabiliser), which can be found in any of [5, 6, 7].

First, the universal groups themselves are as follows:

G1 is generated by two elements h and a, subject to the relations h3 = a2 = 1;

G 1
2 is generated by h, a and p, subject to h3 = a2 = p2 = 1, apa = p, php = h−1;

G 2
2 is generated by h, a and p, subject to h3 = p2 = 1, a2 = p, php = h−1;

G3 is generated by h, a, p, q, subject to h3 = a2 = p2 = q2 = 1, apa = q, qp = pq,

ph = hp, qhq = h−1;

G 1
4 is generated by h, a, p, q and r, subject to h3 = a2 = p2 = q2 = r2 = 1, apa = p,

aqa = r, h−1ph = q, h−1qh = pq, rhr = h−1, pq = qp, pr = rp, rq = pqr;

G 2
4 is generated by h, a, p, q and r, subject to h3 = p2 = q2 = r2 = 1, a2 = p, a−1qa = r,

h−1ph = q, h−1qh = pq, rhr = h−1, pq = qp, pr = rp, rq = pqr;
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G5 is generated by h, a, p, q, r and s, subject to h3 = a2 = p2 = q2 = r2 = s2 = 1,

apa = q, ara = s, h−1ph = p, h−1qh = r, h−1rh = pqr, shs = h−1, pq = qp, pr = rp,

ps = sp, qr = rq, qs = sq, sr = pqrs.

In each case, let S be the generating set for the universal group U (= Gk, G
1
k or G 2

k ).

Then the pre-image of the vertex-stabiliser V is generated by S \ {a}, the pre-image of the

edge-stabiliser E is generated by S \{h}, and the pre-image of the arc-stabiliser A = V ∩E
is generated by S \ {h, a}. The generator h induces a cyclic rotation (of order 3) about

the vertex v chosen for V to stabilise, while the generator a interchanges v with one of its

neighbours, and a has order 4 when U = G 2
2 or G 2

4 , and order 2 otherwise.

Next, every epimorphism from the universal group to a k-arc-regular group of auto-

morphisms of the graph X (with k being the same as for U) is faithful on each of these

pre-images, or ‘smooth’, and so we may abuse notation by denoting the pre-images of V ,

E and A also by V , E and A. The subgroup A of U has order 1, 2, 4, 8 or 16 when k = 1,

2, 3, 4 or 5 respectively, and |V | = 3|A| while |E| = 2|A| in each case. In fact, V ∼= C3, S3,

S3 × C2, S4 or S4 × C2 (of order 3, 6, 12, 24 or 48) and A ∼= 1, C2, V4, D4 or D4 × C2 (of

order 1, 2, 4, 8 or 16) when k = 1, 2, 3, 4 or 5 respectively.

Also, importantly, if U is any one of these universal groups, and θ : U → G is a smooth

epimorphism to a group G, then we may construct an arc-transitive cubic graph X upon

which G acts (faithfully) as an k-arc-regular group of automorphisms, again with the same

value of k. The vertices and edges of X can be taken as the (right) cosets in G of the

images of the subgroups V and E, with incidence given by non-empty intersection, and

then the action of G on X = (V,E) is given simply by right multiplication.

Finally in this section, we explain some notation that we use later in the paper, about

epimorphisms from a universal group U to a finite group G. We will refer to any such G as

a quotient of U , quite loosely, without always specifying the epimorphism or its kernel K

(for which U/K ∼= G). Also we will say that two such epimorphisms are equivalent if one

can be obtained from the other by composing it with an inner automorphism of G. (This

is the default way in which such epimorphisms are enumerated using the Homomorphisms

command in Magma.) Note that inequivalent epimorphisms can still have the same kernel

K, and hence give the same quotient G, when one can be obtained from the other by

composing it with a non-inner automorphism of G.

3 Action type (41,5)

The universal group G5 has three subgroups of index 2 and one subgroup N of index

4, namely the subgroups generated by {h, pq, a}, {h, pq, ap}, {h, p, aha} and {h, pq, aha},
respectively. The first two of these are isomorphic to the universal groups G 1

4 and G 2
4 ,

while the third is the pre-image of the stabiliser of a bipartition (when this exists), and the
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fourth is the intersection of any two of the three subgroups of index 2. Each of the three

subgroups of index 2 has abelianisation C2, and in particular, G 1
4 has a unique subgroup

of index 2, namely N .

To obtain a graph with action type (41, 5), we need a quotient Q of G 1
4 via a normal

subgroup K that is normal in G5 (so the 4-arc-regular action of Q = G 1
4 /K extends to a

5-arc-regular action of G5/K), but has the property that G5 = KG 2
4 (so the image of G 2

4

in G5/K does not have index 2, and then G5/K has no 4-arc-regular subgroup of type 42).

Note also that this implies that G 1
4 = G 1

4 ∩G5 = KG 1
4 ∩KG 2

4 = K(G 1
4 ∩G 2

4 ) = KN .

In particular, the quotient Q = G 1
4 /K has no subgroup of index 2, for otherwise its

pre-image in G 1
4 would have to be N (and contain K), which is impossible since KN = G 1

4 ,

rather than a subgroup of index 2 in G 1
4 . It follows that the quotient Q is perfect.

Hence we look for epimorphisms (up to equivalence) from the universal group G 1
4 to

a finite perfect group Q that can be extended via an automorphism of Q to give an epi-

morphism from G5 to a group containing Q as a subgroup of index 2, making the graph

5-arc-transitive.

A Magma computation (using its SimpleQuotientProcess function) shows that the

smallest simple quotients ofG 1
4 in ascending order are PSL(2, q) for q = 17, 31, 47, 79, 97, 113

and 127, followed by A10. In each of first seven of these cases, no such epimorphism from

G 1
4 to the simple quotient Q ∼= G 1

4 /K can be extended in the required way, and so to

obtain a perfect quotient of G 1
4 from one of these examples that works, one would need to

take at the very least the intersection of the kernel K with its other conjugate in G5, say

L, and then get the quotient G 1
4 /(K ∩L) ∼= G 1

4 /K×G 1
4 /L
∼= PSL(2, q)×PSL(2, q), which

has order at least |PSL(2, 17)|2 > 10!. It follows that the smallest suitable perfect quotient

of the group G 1
4 is A10.

Moreover, up to equivalence (in A10), there are just two epimorphisms from G 1
4 to

A10, but with the same kernel, and in each case, the required automorphism of A10 is an

outer automorphism, so the resulting graph has automorphism group S10. Similarly up to

equivalence in S10, there there is just one epimorphism from G5 to S10. (In fact there are

exactly two conjugacy classes of subgroups of index 10 in G5, with one giving this graph,

and the other giving Tutte’s 8-cage.) Hence we have the following:

Theorem 3.1 The smallest symmetric cubic graph with action type (41, 5) is a unique one

of order 75600 with automorphism group S10, as found in [4].

4 Action type (5)

As explained in the previous section, the group G5 has three subgroups of index 2 and one

subgroup N of index 4. Each of the three subgroups of index 2 has abelianisation C2, and
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hence in particular, the third subgroup B = 〈h, p, aha〉 has a unique subgroup of index 2,

namely the fourth subgroup N = G 1
4 ∩G 2

4 .

To obtain a graph with action type (5), we need a quotient Q = B/K via a normal

subgroupK that is also normal inG5, but has the property thatG5 = KG 1
4 andG5 = KG 2

4 ,

so that the image of neither G 1
4 nor G 2

4 in G5/K is a subgroup of index 2, and hence G5/K

has no 4-arc-regular subgroup, and no 1-arc-regular subgroup (by [7, Proposition 2.3]).

Note also that this gives B = B ∩ G5 = KB ∩KG 1
4 = K(B ∩ G 1

4 ) = KN . In particular,

the quotient Q = B/K has no subgroup of index 2, for otherwise its pre-image in B would

have to be N (and contain K), which is impossible since KN = B, rather than a subgroup

of index 2 in B. It follows that the quotient Q is perfect.

Hence we look for perfect quotients of the subgroup B that admit an automorphism

giving a 5-arc-transitive graph.

A Magma computation (using its SimpleQuotientProcess function) shows that the

smallest simple quotient of B is the Mathieu group M24, of order 244823040, but the

associated epimorphisms do not extend, and one has to go to M24×M24 and then M24 oC2

(as suggested in [7]) to get an example from that.

The next smallest simple quotient ofB is the Held simple group He, of order 4030387200.

(Incidentally, the group B also has A14 and A15 as quotients.) Moreover, two of the six

epimorphisms from B to the Held group He (up to equivalence) extend to epimorphisms

from G5 to He, via an inner automorphism of He in each case, while the other four do

not. Also the first two have the same kernel, and hence they give the same 5-arc-transitive

graph. It follows that there exists a unique symmetric cubic graph with action type (5),

having He as its full automorphism group, and with order 4030387200/48 = 83966400.

As there is no epimorphism from B to a smaller simple group that extends in this way,

we have the following.

Theorem 4.1 The smallest symmetric cubic graph with action type (5) is a unique one of

order 83966400, with automorphism group the Held simple group He.

5 Action type (42)

5.1 Initial remarks

This was the most challenging of the action types to deal with, as will soon become clear.

Once again, we note that the group G5 has three subgroups of index 2 and one subgroup

N of index 4, and this time, we use the facts that N = G 1
4 ∩G 2

4 is the unique subgroup of

index 2 in G 2
4 , and that N is perfect.

To obtain a graph with action type (42), we need a quotient Q = N/K via a normal

subgroup K that is also normal in G 2
4 but not in G 1

4 (and so not in G5). In particular, as
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N is perfect, so is Q. Hence we look for perfect quotients of N admitting an automorphism

that gives an arc-transitive graph of type 42 rather than one of type 41 or 5.

One way to do this is to look for small quotients Q = N/K that do not lead to a group

action of type 41, and hope that among them, there is one that gives a graph of type 42,

possibly after taking the larger quotient N/(K∩Kc) where c = ap ∈ G 2
4 \N . The Mathieu

group M24 (of order 244823040) is the smallest simple quotient of N satisfying the former

condition, but neither of the two epimorphisms from N to M24 (up to equivalence) extends

to one from G 2
4 to M24 or a group containing M24 as a subgroup of index 2.

Another way is to look for small quotients Q = N/K where K is normal in G5, and

then try to dig inside K for a normal subgroup L of larger index in N such that L is normal

in G 2
4 but not in G5, in which case G 2

4 /L gives a graph of type 42. This way works, as we

will see, but not all that easily.

Before proceeding, we set some notation that will be helpful. First, for a prime k, the

group PGL∗(2, k2) is the subgroup of index 2 in P ΓL(2, k2) ∼= Aut(PSL(2, k2) that is

not PGL(2, k2) or PΣL(2, k2), the group obtained from PSL(2, k2) by adjoining the field

automorphism x 7→ xk. Next, if G is a finite perfect group, then Cov(G) is the covering

group (or universal perfect central extension) of G, which is the largest perfect group C

containing a central subgroup Z for which C/Z is isomorphic to G, and then Z is the Schur

multiplier of G, which we will denote by SM(G); see [10, Ch. 11] and [8]. Finally, we will

say that a (normal) subgroup of N that is normal in G 2
4 is admissible.

5.2 The smallest known example

The smallest quotient Q = N/K of N with K normal in G5 is PSL(2, 9) ∼= A6, and gives rise

to Tutte’s 8-cage (of order 30). In this case, the subgroup K contains a normal subgroup

L of index 311 that is normal in G 2
4 but not in G 1

4 (or G5), and hence the quotient G 2
4 /L is

the automorphism group of a symmetric cubic graph of type 42, of order 30 ·311 = 5314410,

which is a 311-fold cover of Tutte’s 8-cage. Its automorphism group is an extension of the

elementary abelian group K/L ∼= C 8
3 by the quotient (G 2

4 /L)/(K/L) ∼= G 2
4 /K, which is

isomorphic to M10, the point-stabiliser in the Mathieu group M11 (and to a subgroup of

index 2 in PΓL(2, 9) ∼= Aut(S6), namely PGL∗(2, 9)).

In fact the author first discovered such a normal subgroup L (of index 311 in K) in

2012, but then re-discovered it in 2015, in answer to a question by Klavdija Kutnar about

symmetric cubic graphs of type 42 with twice odd order. It can be found as follows.

The subgroup K is free of rank 16, and hence it contains a characteristic subgroup

T = K ′K(3) of index 316 generated by the derived subgroup K ′ = [K,K] and the cubes of

all elements of K, so that K/T is elementary abelian of order 316. Now the quotient G 2
4 /T

has other elementary abelian normal subgroups lying inside K/T , including two of order 35,

and each of these has the form L/T where L has the properties we need. These subgroups
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can be found with the help of Magma, using either the NormalSubgroups function, or

Magma’s machinery for finding submodules of kG-modules (where k is a field and G is

a finitely-presented group), applied to the 16-dimensional Z3G
2
4 -module corresponding to

the elementary abelian normal 3-subgroup K/T . The two possibilities for the pre-image

of L in G 2
4 are interchanged by conjugation by a ∈ G5 \ G 2

4 , and the graphs of type 42

obtained from them are isomorphic to each other.

In the rest of this section (and to complete the paper), we explain why there is no

smaller cubic graph of type 42 than the one found above. A proof of this is not easy, so we

give only a skeleton argument, without full details. We find a large number of admissible

normal subgroups of N with interesting quotients, but in almost all cases, that subgroup

is also normal in G 1
4 .

5.3 Step 0: Starting hypotheses

We begin by letting G = G 2
4 /K be any quotient of G 2

4 of order at most 720·311 = 127545840

via a normal subgroup K that is not normal in G5 (and hence gives rise to a graph that

has type 42 rather than type 5). Then the derived group D = G′ = [G,G] of G has index

1 or 2 in G, and is perfect, and Ka 6= K. Under these conditions, either K is a subgroup

of N and D = N/K has index 2 in G, wth |D| ≤ 360 · 311 = 63772920 (as for the example

in §5.2), or G 2
4 = NK with G ∼= G 2

4 /K = NK/K ∼= N/(N ∩ K) being perfect, and

K/(N ∩ K) ∼= NK/N = G 2
4 /N

∼= C2, so K/(N ∩ K) is a central subgroup of order 2

in G 2
4 /(N ∩ K). (The latter happens when conjugation by p ∈ G 2

4 \ N induces an inner

automorphism of N/(N ∩K) ∼= G, and then G 2
4 /(N ∩K) ∼= G× C2.)

We aim to show that K and Ka are the two normal subgroups of index 360 · 311 in N

described in the previous subsection.

5.4 Step 1: Simple quotients of N

A computation in Magma using the SimpleQuotientProcess and Homomorphisms facili-

ties shows that

(a) N has 69 simple quotients of order at most 127545840, and

(b) the kernel of every epimorphism from N to each one of them is normal in G 1
4 , as noted

in the observation made earlier about M24, but

(c) for only nine of these simple quotients is the kernel J of at least one such epimorphism

admissible.

The nine simple quotients arising in (c) are isomorphic to A6 of order 360, PSL(3, 3) of

order 5616, PSL(2, 25) of order 7800, PSL(2, 121) of order 885720, A10 of order 1814400,

PSL(2, 169) of order 2413320, PSU(3, 7) of order 5663616, PSL(2, 361) of order 23522760,

and J3 of order 50232960. In just two of those nine cases, the simple quotient S of N has
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an inner automorphism that makes S also a quotient of G 2
4 , namely when S is PSL(3, 3)

or PSU(3, 7), and in all nine cases, there is just one admissible kernel – that is, just one

normal subgroup J of G 2
4 for which N/J is the given simple quotient S.

In other cases, the element ap ∈ G 2
4 \N interchanges the kernel J of one epimorphism

with another, and the intersection of those two kernels is an admissible subgroup of N ,

with quotient the direct product of two copies of the simple group S = N/J , giving the

wreath product S o C2 as a quotient of G 2
4 . In order for the latter quotient of G 2

4 to have

order at most 127545840, we require |S| <
√

63772920 ' 7985.9, and this gives only three

possibilities for S = N/J , namely PSL(2, 7), PSL(2, 17) and PSL(2, 23).

But also the direct products of two of the nine simple groups considered two paragraphs

above are quotients of N , and this gives three more possibilities worth considering, namely

A6×PSL(3, 3), A6×PSL(2, 25), and PSL(3, 3)×PSL(2, 25). Similarly, the direct product

A6 × PSL(2, 7) is a small quotient of N , but via a normal subgroup J that is not normal

in G 2
4 ; the core of J in G 2

4 is a subgroup K for which N/K ∼= A6 × PSL(2, 7)× PSL(2, 7),

of order 10160640, with N/K having index 2 in G 2
4 /K. This is the only direct product of

a triple of simple quotients of N that is small enough to consider.

The quotients of G 2
4 coming from the simple groups and direct products of simple

groups that are quotients of N small enough to be worthy of consideration are summarised

in Table 2, with J being a normal subgroup of N , and K being the core of J in G 2
4 , and

L being either K or the pre-image of a central subgroup of G 2
4 /K of order 2.

In all cases in this table, the relevant normal subgroups of N giving the entry in the

third column are all normal in G 1
4 as well, because of (b) above, and hence all the associated

graphs are 5-arc-transitive. It follows that the (perfect) derived subgroup D of our group

G from Step 0 cannot be a simple group or a direct product of simple groups, so D must

have at least one cyclic composition factor, and therefore at least one abelian chief factor.

We will consider such possibilities for D by digging below some the possibilities for J

or its core in G 2
4 given in Table 2.

5.5 Step 2: Non-trivial soluble normal subgroup S

Here we prove that G has a soluble normal subgroup S contained in D such that D/S is

one of the 19 groups given in the fourth column of Table 2.

To do this, we assume G is the smallest possible counter-example, and then let R be

the smallest normal subgroup of G contained in D = G′ such that D/R is a direct product

of simple groups. Also let G = G0 ≥ G1 > G2 > · · · > Gj > · · · > Gk−1 > Gk = {1} be a

chief series of normal subgroups of G, with G1 = D and Gj = R.

Then by choice of G (as the smallest counter-example), the subgroup M = Gk−1 is

insoluble, and so is isomorphic to a direct product Tm = T × T × · · · × T of (say) m
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N/J |N/J | N/K |N/K| |G 2
4 /L|

1 A6 360 A6 360 720

2 PSL(3, 3) 5616 PSL(3, 3) 5616 5616

3 PSL(3, 3) 5616 PSL(3, 3) 5616 11232

4 PSL(2, 25) 7800 PSL(2, 25) 7800 15600

5 PSL(2, 7) 168 PSL(2, 7)×PSL(2, 7) 28224 56448

6 PSL(2, 121) 885720 PSL(2, 121) 885720 1771440

7 A10 1814400 A10 1814400 3628800

8 A6×PSL(3, 3) 2021760 A6×PSL(3, 3) 2021760 4043520

9 PSL(2, 169) 2413320 PSL(2, 169) 2413320 4826640

10 A6×PSL(2, 25) 2808000 A6×PSL(2, 25) 2808000 5616000

11 PSU(3, 7) 5663616 PSU(3, 7) 5663616 5663616

12 PSU(3, 7) 5663616 PSU(3, 7) 5663616 11327232

13 PSL(2, 17) 2448 PSL(2, 17)×PSL(2, 17) 5992704 11985408

14 PSL(2, 7)×A6 60480 PSL(2, 7)×PSL(2, 7)×A6 10160640 20321280

15 PSL(2, 361) 23522760 PSL(2, 361) 23522760 47045520

16 J3 50232960 J3 50232960 50232960

17 PSL(2, 23) 2448 PSL(2, 23)×PSL(2, 23) 36869184 73738368

18 PSL(3, 3)×PSL(2, 25) 43804800 PSL(3, 3)×PSL(2, 25) 43804800 87609600

19 J3 50232960 J3 50232960 100465920

Table 2: Admissible quotients of N that are direct products of simple groups

copies of some non-abelian simple group T . Also |G/M | ≥ |G/R| ≥ 720, and hence

|M | ≤ b127545840/720c = 311 = 177147, while on the other hand, |T | ≥ 60, so m ≤ 2.

Next, conjugation of M by elements of D gives a homomorphism from D to Aut(M)

with kernel CD(M), and the latter subgroup intersects M trivially (since Z(M) = {1}),
so the normal subgroup MCD(M) of D is a direct product M × CD(M). Furthermore,

Aut(M) ∼= Aut(Tm) ∼= Aut(T ) o Sm. The latter contains Tm as a normal subgroup with

quotient Out(T ) oSm, which is soluble by Schreier’s conjecture (now known to be true, as a

consequence of the Classification of Finite Simple Groups) and the fact that m ≤ 2. Hence

D/(MCD(M)) is isomorphic to a subgroup of Out(T ) o Sm, and then since D is perfect,

it follows that D/(MCD(M)) is trivial, so D = M × CD(M). This, however, implies that

CD(M) is isomorphic to D/M , which has D/R as a quotient, and so D has a quotient

isomorphic to the direct product of M ∼= Tm and D/R, contradicting the choice of R.

This proves the claim. Equivalently, it shows that smallest normal subgroup S of G

contained in D = G′ such that D/S is a direct product of simple groups is soluble. We

now proceed to consider possibilities for S.
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5.6 Step 3: Eliminating some possibilities for D/S

By what we saw in Step 1, the soluble normal subgroup S of G is non-trivial, and therefore

|G/S| ≤ 127545840/2 = 63772920. This eliminates from consideration the possibilities for

D/S given in rows 17 to 19 of Table 2.

Next, if S is non-trivial but so small that Aut(S) is soluble or its order is not divisible

by the order of any simple quotient of D, then D/CD(S) is trivial, so S is central in D,

and it follows that S is isomorphic to a quotient of the Schur multiplier of D/S.

Before taking this further, we note that the Schur multipliers of A6, PSL(3, 3), PSU(3, 7)

and J3 are C6, C1, C1 and C3, respectively, while those of A10 and the groups PSL(2, q)

for q ∈ {7, 17, 25, 121, 169, 361} are all C2. Hence SM(PSL(2, q) × PSL(2, q)) ∼= C2 × C2

for q ∈ {7, 17, 23}, while SM(A6×PSL(3, 3)), SM(A6×PSL(2, 25)) and SM(PSL(2, 7)×
PSL(2, 7)× A6) are C6, C6 × C2 and C6 × C2 × C2, respectively.

We now find that D/S cannot be PSU(3, 7) or J3, because their Schur multipliers

are trivial and C3 (and if D/S ∼= J3 then |S| ≤ b127545840/|J3|c = 2). This eliminates

eliminates the 11th, 12th and 16th entries in Table 2 from consideration.

Similarly, if |D/S| is so large that S is central, and we know that SM(D/S) ∼= C2,

then |S| = 2, so the centre of D = N/K has order 2, and hence also the centre of N/(Ka)

has order 2, and then N/(K ∩ Ka) is an extension of its centre, of order 2 or 4, by a

quotient isomorphic to D/SL. But then the centre of N/(K ∩Ka) has order 2 as well, and

so K ∩Ka = K, which makes K normal in G5, contradiction. Accordingly, D/S cannot be

PSL(2, 121), A10, PSL(2, 169), PSL(2, 17)×PSL(2, 17) or PSL(2, 361), and this eliminates

the 6th, 7th, 9th, 13th and 15th entries in Table 2 from consideration.

Finally, suppose that D/S is PSL(2, 7) × PSL(2, 7) × A6, of order 10160640. Then

D is a quotient of Cov(D/S) by a subgroup of its centre SM(D/S) ∼= C2 × C2 × C6,

of index between 2 and b63772920/10160640c = 6. There are 22 such quotients, but a

Magma computation shows that only 8 of them are quotients of N , and in each case, the

corresponding kernel is normal in G 1
4 , so none of them gives a graph of type 42.

As a result, we conclude that D/S is isomorphic to A6, or PSL(3, 3), or PSL(2, 25), or

PSL(2, 7)× PSL(2, 7), or A6 × PSL(3, 3), or A6 × PSL(2, 25).

5.7 Step 4: The remaining cases

We now deal with the possibilities from rows 1, 2, 3, 4, 5, 8 and 10 of Table 2.

Row 1: Suppose D/S ∼= A6. Then |S| ≤ 311 = 177147.

If S is central in D, then it is a proper quotient of SM(A6) ∼= C6, and hence must be

C2, C3 or C6. In the first and third of those cases, however, that quotient is a group (of

order 720 or 2160 respectively) that is not a quotient of N : in both cases it has just one

involution, making an epimorphism from N impossible. Hence S ∼= C3, and D = N/K
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is an extension of C3 by A6. In this case, however, K is normal in G5 and G is the

automorphism group of the 5-arc-transitive triple cover of Tutte’s 8-cage, contradiction.

Thus S is non-central.

Next, suppose S is an elementary abelian k-group for some prime k, upon which

D/S ∼= A6 acts non-trivially. Then we can apply Magma’s module machinery (specifically

the GModuleH and PullBackH functions that are used in the LowIndexNormalSubgroups

function) to the corresponding action of G 2
4 on the pre-image K (= L) of S, and find the

following, without placing any restriction on |S|:
(a) if k = 2 then |S| = 216, and

(b) if k = 3 then |S| = 36, 37, 315 or 316 (one module each), or 311 (two modules), and

(c) if k = 5 or 7 then |S| = k16.

Now case (c) and the sub-cases of (b) with |S| = 315 or 316 can be eliminated immediately

as they would make |S| too large. Moreover, as the prime divisors of |G 1
4 /K| = 720 are 2,

3 and 5, all cases with k ≥ 7 can be eliminated too, because the sub-module dimensions

would be the same as for characteristic zero and hence for characteristic 7, giving |S| = k16.

Also case (a) and the sub-cases of (b) where |S| = 36 or 37 can be eliminated, because the

normal subgroup K of G 2
4 is normal in G5. This leaves only the possibility |S| = 311, and

for that one, the two modules for the action of G 2
4 on K produce the normal subgroups of

G 2
4 found in §5.2.

Finally, suppose S is neither central nor elementary abelian. Then S must contain a

characteristic subgroup T of index 3, 216, 36 or 37 that is normal in D, with D/T being an

extension of C3 by A6, or one of the quotients of N arising from case (a) or (b) above.

If |D/T | = 3 · 360 = 1080 then |T | ≤ 310 = 59049, and digging further (using Schur

multipliers and module actions) reveals just three further small possibilities, with |T | = 212,

213 and 214, but in all three cases the corresponding subgroup K is again normal in G5.

In the other three sub-cases, |T | is at most 2, 243 or 81, respectively, and then digging

further gives just one further small possibility, with (|D/T |, |T |) = (216 · 360, 2), but again

in this case the corresponding subgroup K is normal in G5. (The Schur multiplier method

also gives a potential example with (|D/T |, |T |) = (36 · 360, 3), but that is the same as the

case where S is elementary abelian of order 37, from case (b) above, and this can be taken

no further, given the upper bound on |G|.)
In summary, we find the following possibilities for S when N/K ∼= A6, under the extra

condition that |S| ≤ 311, but in advance of considering whether or not K is normal in G5:

• S is cyclic of order 3, or elementary abelian of order 216, 36 or 37, and in each of these

cases the kernel K is unique and gives a unique 5-arc-transitive graph;

• S is elementary abelian of order 311, associated with two possibilities for K, both of

which give the graph of type 42 found earlier;

• S is a group of order 217, 3 · 212, 3 · 213 or 3 · 214, and in each of these cases K is unique
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and gives a unique 5-arc-transitive graph.

In particular, we get no further examples than the two found already.

Rows 2 and 3: Suppose D/S ∼= PSL(3, 3). Then |S| ≤ b127545840/5616c = 22711.

In this case S cannot be central in D, because SM(PSL(3, 3)) is trivial.

Next, if S is an elementary abelian k-group (for some k), on which D/S ∼= PSL(3, 3)

acts non-trivially, then application of Magma’s module machinery shows that if k = 2 then

|S| = 212 or 213 (with S splitting as a direct product C2× (C2)
12 in the latter case), while if

k = 3 then |S| = 37 or 38, but again the corresponding subgroup K is normal in G5. There

are no possibilities for k ≥ 5 (given the upper bound on |G|), and also digging further

inside the perfect group N also gives no more examples. (The Schur multiplier method

gives potential examples with |S| = 2 · 212 and 3 · 37, but these are the same as the cases

where S is elementary abelian with order 213 and 38, respectively.)

The resulting possibilities for G, however, depend on whether G/S = D/S ∼= PSL(3, 3),

or |G :D| = 2 and G/S ∼= PSL(3, 3)×C2, and on the effect of the C2 factor on S in the latter

case. Just two possibilities arise when G/S = D/S ∼= PSL(3, 3), namely with S elementary

abelian of order 37 or 38, respectively. Similarly, when G/S ∼= PSL(3, 3) × C2 then there

are just two possibilities where S is an elementary abelian 2-group (of order 212 or 213).

On the other hand, when G/S ∼= PSL(3, 3)×C2 there are two possibilities for K for which

S is elementary abelian of order 37, and another two for which S is elementary abelian of

order 38 (with Z(G) being trivial and cyclic of order 6 for those last two). Furthermore, in

all of these eight cases, the kernel K is unique and gives a unique 5-arc-transitive graph.

Hence this case can be eliminated.

Row 4: Suppose D/S ∼= PSL(2, 25). Then |S| ≤ b63772920/7800c = 8176.

In this case S cannot be central, because Cov(PSL(2, 25)) ∼= SL(2, 25), which has a

unique involution and therefore cannot be a quotient of N . But also S cannot be an

elementary abelian k-group, because in that case the module approach shows that |S| ≥ 56

when k = 5, while |S| ≥ k25 for every other small prime k, and in both cases, |S| is too

large. Obviously digging deeper does not help, and so this case can be eliminated as well.

Row 5: Suppose D/S ∼= PSL(2, 7)× PSL(2, 7). Then |S| ≤ b63772920/(1682)c = 2259.

If S is central in D, then D is a quotient of Cov(D/S) ∼= SL(2, 7)×SL(2, 7). The latter,

however, has only one quotient of order greater than |D/S| = 1682 that is a quotient of

N , namely one of order 2 · 1682 obtained by factoring out the subgroup generated by the

product of the central involutions of the two copies of SL(2, 7), and the corresponding

kernel is normal in G 1
4 , so this does not give a graph of type 42.

On the other hand, if S is elementary abelian but non-central, then the same approach

as taken for rows 1 to 4 (using Magma’s module machinery) shows there is no possibility:

without imposing the bound |S| ≤ 2259, the smallest S would have order at least 314 or 76 or

k16 for some small prime k 6∈ {3, 7}. (Note: Here the index |G 2
4 :L| of the pre-image L of S
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in N is too large for the standard approach to work, but the normal subgroup L is generated

by conjugates of the element w = ahahahah−1ah−1ah−1ah−1ahah−1ah−1ahahah−1ah, so

we can add the relation wk = 1 to the defining relations for the group G 2
4 to make it work.)

Finally, if S is abelian-by-abelian, it must have an abelian subgroup T of index 2 that

is normal in D, with D/T being the quotient of N of order 2|D/S| found two paragraphs

above, but then the ‘module’ approach shows that |T/S| is again at least 314 or 76 or k16

for some small prime k 6∈ {3, 7}, and so this case can be eliminated.

Row 8: Suppose D/S ∼= A6 × PSL(3, 3). Then |S| ≤ b63772920/(360 · 5616)c = 31.

If S is central in D, then it must be a non-trivial quotient of SM(A6×PSL(3, 3)) ∼= C6,

so S ∼= C2 or C3. In this case, we may consider the kernel R of the projection from D to

A6, which is an extension of S by PSL(3, 3). Now because SM(PSL(3, 3)) is trivial, R is the

direct product of S with a subgroup L isomorphic to PSL(3, 3), and as L is characteristic

R, it is normal in D and hence can be factored out, giving a central extension of A6 as

a quotient of D and hence of N . By what we found above for row 1, however, this gives

S ∼= C3 and so the pre-image of L in N is normal in G5, and then it follows that the kernel

of the epimorphism from N to D is normal in G5 as well, contradiction.

Thus S is non-central, and hence must be isomorphic to either (C2)
4 or (C3)

3, the only

groups of order at most 31 with the property that the order of their automorphism group is

divisible by |A6| = 360 or |PSL(3, 3)| = 5616. We consider these two sub-cases separately.

If S ∼= (C2)
4, then S is central in the kernel R of the epimorphism from D to A6,

and then since SM(PSL(3, 3)) is trivial, R cannot be perfect. Indeed R must contain a

perfect characteristic subgroup L isomorphic to PSL(3, 3) with quotient R/L of order 16,

and so N has a quotient Q = D/L of order 16 · 360 = 5760, isomorphic to an extension

of (C2)
4 by A6. Cohomology computations in Magma show that if M is the A6-module

corresponding to the normal subgroup (C2)
4, then H2(A6,M) is trivial, so the extension

splits, and therefore Q = D/L is a unique group of order 5760, namely the non-central split

extension (C2)
4 o A6. The latter group, however, is not a quotient of N , contradiction.

Similarly, if S ∼= (C3)
3, then S is central in the kernel R of the epimorphism from D to

PSL(3, 3), and then since SM(A6) ∼= C6, we find that R cannot be perfect. Indeed R must

contain a perfect characteristic subgroup L isomorphic to A6 or a central C3-cover of A6,

with quotient R/L of order 27 or 9, and it follows that D has a quotient Q = D/L of order

27 ·5616 or 9 ·5616, isomorphic to an extension of (C3)
3 or (C3)

2 by PSL(3, 3). Now Q must

be perfect (being a non-trivial quotient of D), and as PSL(3, 3) has trivial Schur multiplier

and no faithful action on a group of order 32, we find that Q is a non-central extension of

(C3)
3 by PSL(3, 3). Again, cohomology computations in Magma show that this extension

splits, and therefore D/L = Q is a non-central split extension (C3)
3 o PSL(3, 3), but this

is not a quotient of N , contradiction.

Hence this case is eliminated too.
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Row 10: Suppose D/S ∼= A6 × PSL(2, 25). Then |S| ≤ b63772920/(360 · 7800)c = 22.

If S is central in D, then D must be a quotient of Cov(A6 × PSL(2, 25) by a proper

subgroup L of its centre (which is isomorphic to SM(A6 × PSL(2, 25)) ∼= C6 × C2). Now

although Cov(A6 × PSL(2, 25)) has nine such subgroups, the quotients by only three of

them are quotients of N , and in those three cases (with quotient of SM(A6 × PSL(2, 25))

by L being isomorphic to C2, C3 and C6, respectively), the corresponding kernel in N is

normalised by a ∈ G5 \N , so all three of them give 5-arc-transitive graphs, contradiction.

Thus S is non-central, and so must be isomorphic to (C2)
4, the only group of order at

most 22 whose automorphism group has order divisible by |A6| = 360 or |PSL(3, 3)| = 5616.

In this case S is central in the kernel R of the epimorphism from D to A6, and then since

SM(PSL(2, 25)) ∼= C2, we find that R cannot be perfect. Indeed R must contain a perfect

characteristic subgroup L isomorphic to PSL(2, 25) or a central C2-cover of PSL(2, 25),

with quotient R/L of order 16 or 8, and it follows that D has a quotient Q = D/L of order

16 ·360 or 8 ·360, isomorphic to an extension of (C2)
4 or (C2)

3 by A6. Now Q is perfect (as

a non-trivial quotient of D), and since A6 has Schur multiplier C6 and no faithful action

on a group of order 23, we find that Q must be a non-central extension of (C2)
4 by A6. But

this extension splits and therefore D/L = Q is not a quotient of N , by the same argument

as in the case for Row 8, contradiction.

Hence this final case can be eliminated too, leaving only the case arising from row 1.

5.8 Conclusion

Thus we obtain the following:

Theorem 5.1 The smallest symmetric cubic graph with type (42), and hence the smallest

with action type (42), is a unique one of order 5314410. This graph is a 311-fold cover of

Tutte’s 8-cage, with automorphism group an extension of an elementary abelian group of

order 311 by M10 (the point-stabiliser in the Mathieu group M11, also known as PGL∗(2, 9)).
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[5] M.D.E. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices. J.
Combin. Math. Comput. 40 (2002), 41-63.

[6] M.D.E. Conder and P.J. Lorimer, Automorphism groups of symmetric graphs of valency 3,
J. Combin. Theory Ser. B 47 (1989), 60–72.

[7] M. Conder and R. Nedela, A refined classification of symmetric cubic graphs, J. Algebra
322 (2009), 722–740.

[8] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, An Atlas of Finite
Groups, Oxford University Press, London, 1985.
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