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Abstract

We construct two infinite families of locally toroidal chiral polytopes of type
{4, 4, 4}, with 1024m2 and 2048m2 automorphisms for every positive integer m,
respectively. The automorphism groups of these polytopes are solvable groups, and
when m is a power of 2, they provide examples with automorphism groups of order 2n

where n can be any integer greater than 9. (On the other hand, no chiral polytopes
of type [4, 4, 4] exist for n ≤ 9.) In particular, our two families give a partial answer
to a problem proposed by Schulte and Weiss in [Problems on polytopes, their groups,
and realizations, Periodica Math. Hungarica 53 (2006), 231-255].
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1 Introduction

Abstract polytopes are combinatorial structures with properties that generalise those of
classical polytopes. In many ways they are more fascinating than convex polytopes and
tessellations. Highly symmetric examples of abstract polytopes include not only classical
regular polytopes such as the well known Platonic solids, and more exotic structures such
as the 120-cell and 600-cell, but also regular maps on surfaces (such as Klein’s quartic);
see [7, Chapter 8] for example.

Roughly speaking, an abstract polytope P is a partially ordered set endowed with a
rank function, satisfying certain conditions that arise naturally from a geometric setting.
Such objects were proposed by Grünbaum in the 1970s, and their definition (initially as
‘incidence polytopes’) and theory were developed by Danzer and Schulte.

An automorphism of an abstract polytope P is an order-preserving permutation of
its elements, and every automorphism of P is uniquely determined by its effect on any
maximal chain in P (which is known as a ‘flag’ in P). The most symmetric examples
are regular, with all flags lying in a single orbit. The comprehensive book written by
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Peter McMullen and Egon Schulte [14] is nowadays seen as the principal reference on this
subject.

An interesting class of examples which are not quite regular are the chiral polytopes.
For these, the automorphism group has two orbits on flags, with any two flags that differ
in a single element lying in different orbits. Chirality is a fascinating phenomenon that
does not have a counterpart in the classical theory of traditional convex polytopes. The
study of chiral abstract polytopes was pioneered by Schulte and Weiss (see [18, 19] for
example), but it has been something of a challenge to find and construct finite examples.

For quite some time, the only known finite examples of chiral polytopes had ranks
3 and 4. In rank 3, these are given by the irreflexible (chiral) maps on closed compact
surfaces (see Coxeter and Moser [7]). Some infinite examples of chiral polytopes of rank
5 were constructed by Schulte and Weiss in [20], and then some finite examples of rank 5
were constructed just over ten years ago by Conder, Hubard and Pisanski [5].

Many small examples of chiral polytopes are now known. These include all chiral
polytopes with at most 4000 flags, and all that are constructible from an almost simple
group Γ of order less than 900000. These have been assembled in collections, as in [3, 10],
for example. In early 2009 Conder and Devillers devised a construction for chiral polytopes
whose facets are simplices, and used this to construct examples of finite chiral polytopes
of ranks 6, 7 and 8 [unpublished].

At about the same time, Pellicer devised a quite different method for constructing finite
chiral polytopes with given regular facets, and used this construction to prove the existence
of finite chiral polytopes of every rank d ≥ 3; see [16]. A few years later, Cunningham and
Pellicer proved that every finite chiral d-polytope with regular facets is itself the facet of
a chiral (d+ 1)-polytope; see [9].

The work of Conder and Devillers was later taken up by Conder, Hubard, O’Reilly
Regueiro and Pellicer [4], to prove that all but finitely many alternating groups An and
symmetric groups Sn are the automorphism group of a chiral 4-polytope of type {3, 3, k}
for some k (dependent on n). This has recently been extended to every rank greater than
4 by the same authors as [4].

Also Conder and Zhang in [6] introduced a new covering method that allows the
construction of some infinite families of chiral polytopes, with each member of a family
having the same rank as the original, but with the size of the members of the family growing
linearly with one (or more) of the parameters making up its ‘type’ (Schläfli symbol). They
have used this method to construct several new infinite families of chiral polytopes of ranks
3, 4, 5 and 6. Furthermore, Zhang constructed in her PhD thesis [23] a number of chiral
polytopes of types {4, 4, 4}, {4, 4, 4, 4} and {4, 4, 4, 4, 4}, with automorphism groups of
orders 210, 211, 212, and 215, 216, · · · , 222, and 218, 219, respectively.

Now let P be a regular or chiral 4-polytope. We say that P is locally toroidal if its
facets and its vertex-figures are maps on the 2-sphere or on the torus, and either its facets
or its vertex-figures (or both) are toroidal – which means they have type {3, 6}, {4, 4}
or {6, 3}. Up to duality, rank 4 polytopes that are locally toroidal are of type {4, 4, 3},
{4, 4, 4}, {6, 3, 3}, {6, 3, 4}, {6, 3, 5}, {6, 3, 6} or {3, 6, 3}.

Schulte and Weiss [19] developed a construction that starts with a 3-dimensional regu-
lar hyperbolic honeycomb and a faithful representation of its symmetry group as a group
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of complex Möbius transformations (generated by the inversions in four circles that cut
one another at the same angles as the corresponding reflection planes in hyperbolic space),
and then derived chiral 4-polytopes by applying modular reduction techniques to the cor-
responding matrix group (see Monson and Schulte [15]). They then used the simple group
PSL(2, p) with p an odd prime to construct infinite families of such polytopes.

Some years later, Breda, Jones and Schulte [2] developed a method of ‘mixing’ a chiral
d-polytope with a regular d-polytope to produce a larger example of a chiral polytope of
the same rank d. They used this to construct such polytopes with automorphism group
PSL(2, p)×Ω, where Ω is the rotation group of a finite regular locally-toroidal 4-polytope.
For example, Ω could be A6×C2 or A5, when the corresponding chiral polytope has type
{4, 4, 3} or {6, 3, 3}, respectively.

One can see that almost all of the examples mentioned above involve non-abelian simple
groups. On the other hand, there appear to be few known examples of chiral polytopes
with solvable automorphism groups, apart from some of small order, and families of rank
3 polytopes arising from chiral maps on the torus (of type {3, 6}, {4, 4} or {6, 3}). This
was the main motivation for the research leading to this paper. It was also motivated in
part by a problem posed by Schulte and Weiss [21, Problem 30], namely the following:

Problem 1.1 Characterize the groups of orders 2n or 2np, with n a positive integer and
p an odd prime, which are automorphism groups of regular or chiral polytopes.

Here we construct two infinite families of locally toroidal chiral 4-polytopes of type
{4, 4, 4}, with solvable automorphism groups. Each family contains one example with
1024m2 or 2048m2 automorphisms, respectively, for every integer m ≥ 1. In particular, if
we let m be an arbitrary power of 2, say 2k (with k ≥ 0), then the automorphism group
has order 210+2k or 211+2k, which can be expressed as 2n for an arbitrary integer n ≥ 10.

This extends some earlier work by the second and third authors [11, 12], which showed
that all conceivable ranks and types can be achieved for regular polytopes with automor-
phism group of 2-power order. It also extends both the work by Zhang [23] mentioned
above, and a construction by Cunningham [8] of infinite families of tight chiral 3-polytopes
of type {k1, k2} with automorphism group of order 2k1k2 (considered here for the special
cases where k1 and k2 are powers of 2).

2 Additional background

In this section we give some further background that may be helpful for the rest of the
paper.

2.1 Abstract polytopes: definition, structure and properties

An abstract polytope of rank n is a partially ordered set P endowed with a strictly
monotone rank function with range {−1, 0, · · · , n}, which satisfies four conditions, to be
given shortly.
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The elements of P are called faces of P , and the faces of rank n − 1 are called the
facets of P . More generally, the elements of P of rank j are called j-faces, and a typical
j-face is denoted by Fj. Two faces F and G of P are said to be incident with each other if
F ≤ G or F ≥ G in P . A chain of P is a totally ordered subset of P , and is said to have
length i if it contains exactly i + 1 faces. The maximal chains in P (with length n + 1)
are called the flags of P . Two flags are said to be j-adjacent if they differ in just one face
of rank j, or simply adjacent (to each other) if they are j-adjacent for some j.

If F and G are faces of P with F ≤ G, then the set {H ∈ P | F ≤ H ≤ G } is called a
section of P , and is denoted by G/F . Such a section has rank m− k − 1, where m and k
are the ranks of G and F respectively. A section of rank d is called a d-section. Moreover,
if Fn−1 is any facet, then the section Fn−1/F−1 is also called a facet of P , while if F0 is
any vertex, then the section Fn/F0 = {G ∈ P | F0 ≤ G} is the vertex-figure of P at F0.

We can now give the four conditions that are required of P to make it an abstract
polytope. These are listed as (P1) to (P4) below:

(P1) P contains a least face and a greatest face, denoted by F−1 and Fn, respectively.

(P2) Each flag of P has length n+ 1 (so has exactly n+ 2 faces, including F−1 and Fn).

(P3) P is strong flag-connected, which means that any two flags Φ and Ψ of P can be
joined by a sequence of successively adjacent flags Φ = Φ0,Φ1, · · · ,Φk = Ψ, each of
which contains Φ ∩Ψ.

(P4) The rank 1 sections of P have a certain homogeneity property known as the diamond
condition, namely as follows: if F and G are incident faces of P , of ranks i− 1 and
i + 1, respectively, where 0 ≤ i ≤ n− 1, then there exist precisely two i-faces H in
P such that F < H < G.

An easy case of the diamond condition occurs for polytopes of rank 3 (or polyhedra): if V
is a vertex of a 2-face F , then there are two edges that are incident with both V and F .

Next, every 2-section G/F of P is isomorphic to the face lattice of a polygon. Now if
it happens that the number of sides of every such polygon depends only on the rank of G,
and not on F or G itself, then we say that the polytope P is equivelar. In this case, if ki
is the number of edges of every 2-section between an (i− 2)-face and an (i+ 1)-face of P ,
for 1 ≤ i ≤ n, then the expression {k1, k2, · · · , kn−1} is called the Schläfli type of P . (For
example, if P has rank 3, then k1 and k2 are the valency of each vertex and the number
of edges of each 2-face, respectively.)

2.2 Automorphisms of polytopes

An automorphism of an abstract polytope P is an order-preserving permutation of its
elements. In particular, every automorphism preserves the set of faces of any given rank.
Under permutation composition, the automorphisms of P form a group, called the auto-
morphism group of P , and denoted by Aut(P) or sometimes more simply as Γ(P). Also
it is easy to use the diamond condition and strong flag-connectedness to prove that if an
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automorphism fixes a flag of P , then it fixes every flag of P and hence every element of P .
It follows that Γ(P) acts fixed-point-freely, and hence semi-regularly, on the flags of P .

A polytope P is said to be regular if its automorphism group Γ(P) acts transitively (and
hence regularly) on the set of flags of P . In this case, the number of automorphisms of P
is as large as possible, and equal to the number of flags of P . In particular, P is equivelar,
and the stabiliser in Γ(P) of every 2-section of P induces the full dihedral group on the
corresponding polygon. Moreover, for a given flag Φ and for every i ∈ {0, 1, . . . , n−1}, the
polytope P has a unique automorphism ρi that takes Φ to the unique flag (Φ)i that differs
from Φ in precisely its i-face, and then the automorphisms ρ0, ρ1, . . . , ρn−1 generate Γ(P)
and satisfy the defining relations for the string Coxeter group [k1, k2, · · · , kn−1], namely

〈 ρ0, ρ1, · · · , ρn−1 | ρ2i = 1 for 0 ≤ i ≤ n− 1, (ρiρi+1)
ki+1 = 1 for 0 ≤ i ≤ n− 2,

(ρiρj)
2 = 1 for 0 ≤ i < j − 1 < n− 1 〉,

where the ki are as given in the previous subsection for the Schläfli type of P . The
generators ρi also satisfy a certain ‘intersection condition’, which follows from the diamond
and strong flag-connectedness conditions. These and many more properties of regular
polytopes may be found in [14].

We now turn to chiral polytopes, for which some good references are [18, 5, 17].

A polytope P is said to be chiral if its automorphism group Γ(P) has two orbits on
flags, with every two adjacent flags lying in different orbits. (Another way of viewing this
definition is to consider P as admitting no ‘reflecting’ automorphism that interchanges
a flag with an adjacent flag.) Here the number of flags of P is 2|Γ(P)|, and Γ(P) acts
regularly on each of two orbits. Again P is equivelar, with the stabiliser in Γ(P) of every
2-section of P inducing at least the full cyclic group on the corresponding polygon.

Next, let Φ be any flag of P , denote by Fi the i-face of Φ, for 0 ≤ i ≤ n. Then for
1 ≤ j ≤ n − 1, the chiral polytope P admits an automorphism σj that takes Φ to the
flag (Φ)j,j−1 which differs from Φ in only its (j − 1)- and j-faces Fj−1 and Fj, and so fixes
each Fi with i 6∈ {j− 1, j}, and cyclically permutes consecutive j- and (j− 1)-faces in the
2-section Fj+1/Fj−2. This automorphism σj is the analogue of the abstract rotation ρj−1ρj
in the regular case, for each j. Now the automorphisms σ1, σ2, . . . , σn−1 generate Γ(P),
and if P has Schläfli type {k1, k2, . . . , kn−1}, then they satisfy the defining relations for the
orientation-preserving subgroup of (index 2 in) the string Coxeter group [k1, k2, · · · , kn−1].
Also they satisfy a ‘chiral’ form of the intersection condition, which is a variant of the one
mentioned earlier for regular polytopes.

Chiral polytopes occur in pairs (or enantiomorphic forms), such that each member of
the pair is the ‘mirror image’ of the other. Suppose one of them is P , and has Schläfli type
{k1, k2, · · · , kn−1}. Then Γ(P) is isomorphic to the quotient of the orientation-preserving
subgroup Λo of the string Coxeter group Λ = [k1, k2, · · · , kn−1] via some normal subgroup
K. By chirality, K is not normal in the full Coxeter group Λ, but is conjugated by any
orientation-reversing element c ∈ Λ to another normal subgroup Kc which is the kernel of
an epimorphism from Λo to the automorphism group Γ(Pc) of the mirror image Pc of P .

The automorphism groups of P and Pc are isomorphic to each other, but their canonical
generating sets satisfy different defining relations. In fact, replacing the elements σ1 and
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σ2 in the canonical generating tuple (σ1, σ2, σ3, . . . , σn−1) by σ−11 and σ 2
1 σ2 gives a set of

generators for Γ(P) that satisfy the same defining relations as a canonical generating tuple
for Γ(Pc), but chirality ensures that there is no automorphism of Γ(P) that takes (σ1, σ2)
to (σ−11 , σ 2

1 σ2) and fixes all the other σj.
Conversely, any finite group G that is generated by n − 1 elements σ1, σ2, . . . , σn−1

which satisfy both the defining relations for Λo and the chiral form of the intersection
condition is the ‘rotation subgroup’ of an abstract n-polytope P that is either regular or
chiral. Indeed, P is regular if and only if G admits a group automorphism ρ of order
2 that takes (σ1, σ2, σ3, . . . , σn−1) to (σ−11 , σ 2

1 σ2, σ3, . . . , σn−1), and hence behaves in the
analogous way to conjugation by the reflection ρ0 (when this exists).

We now focus our attention on the rank 4 case. Here the generators σ1, σ2, σ3 for Γ(P)
satisfy the canonical relations σk11 = σk22 = σk33 = (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = 1, and
the chiral form of the intersection condition can be abbreviated to

〈σ1〉 ∩ 〈σ2, σ3〉 = {1} = 〈σ1, σ2〉 ∩ 〈σ3〉 and 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉.

The following proposition is useful for the groups we will deal with in the proof of our
main theorem. It is called the quotient criterion for chiral 4-polytopes.

Proposition 2.1 [2, Lemma 3.2] Let G be a group generated by elements σ1, σ2, σ3 such
that (σ1σ2)

2 = (σ2σ3)
2 = (σ1σ2σ3)

2 = 1, and let θ : G → H be a group homomorphism
taking σj 7→ λj for 1 ≤ j ≤ 3, such that the restriction of θ to either 〈σ1, σ2〉 or 〈σ2, σ3〉
is injective. If (λ1, λ2, λ3) is a canonical generating triple for H as the automorphism
group of some chiral 4-polytope, then the triple (σ1, σ2, σ3) satisfies the chiral form of the
intersection condition for G.

2.3 Group theory

We use standard notation for group theory, as in [22] for example. In this subsection we
briefly describe some of the specific aspects of group theory that we need.

Let G be any group. We define the commutator [x, y] of elements x and y of G by
[x, y] = x−1y−1xy, and then define the derived subgroup (or commutator subgroup) of G
as the subgroup G′ of G generated by all such commutators. Then for any non-negative
integer n, we define the n th derived group of G by setting

G(0) = G, G(1) = G′, and G(n) = (G(n−1))′ when n ≥ 1.

A group G is called solvable if G(n) = 1 for some n. (This terminology comes from
Galois theory, because a polynomial over a field F is solvable by radicals if and only if its
Galois group over F is a solvable group.) Every abelian group and every finite p-group
is solvable, but every non-abelian simple groups is not solvable. In fact, the smallest
non-abelian simple group A5 is also the smallest non-solvable group.

We also need the following, which are elementary and so we give them without proof.

Proposition 2.2 If N is a normal subgroup of a group G, such that both N and G/N
are solvable, then so is G.
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Proposition 2.3 Let G be the free abelian group Z ⊕ Z of rank 2, generated by two
elements x and y subject to the single defining relation [x, y] = 1. Then for every positive
integer m, the subgroup Gm = 〈xm, ym〉 is characteristic in G, with index |G : Gm| = m2.

Finally, we will use some Reidemeister-Schreier theory, which produces a defining
presentation for a subgroup H of finite index in a finitely-presented group G. An easily
readable reference for this is [13, Chapter IV], but in practice we use its implementation as
the Rewrite command in the Magma computation system [1]. We also found the groups
that we use in the next section with the help of Magma in constructing and analysing
some small examples.

3 Main results

Theorem 3.1 For every positive integer m ≥ 1, there exist chiral 4-polytopes Pm and
Qm of type {4, 4, 4} with solvable automorphism groups of order 1024m2 and 2048m2,
respectively.

Proof. We begin by defining U as the finitely-presented group

〈 a, b, c | a4 = b4 = c4 = (ab)2 = (bc)2 = (abc)2 = (a2b2)4 = a2c2b2(ac)2 = [a, c−1]b2 = 1 〉.

This group U has two normal subgroups of index 1024 and 2048, namely the subgroups
generated by {(ac−1)4, (c−1a)4} and {(bc−1)4, (c−1b)4}, respectively. The quotients of U by
each of these give the initial members of our two infinite families.

Case (1): Take N as the subgroup of U generated by x = (ac−1)4 and y = (c−1a)4.

A short computation with Magma shows that N is normal in U , with index 1024. In
fact, the defining relations for U can be used to show that

a−1xa = y, b−1xb = y and c−1xc = y,

a−1ya = x, b−1yb = x−1 and c−1yc = x−1.

The first, third and fifth of these are easy to prove by hand, while the second and fourth
can be verified in a number of ways, and the sixth follows from the other five. One way to
prove the second and fourth is by hand, which we leave as a challenging exercise for the
interested reader. Another is by a partial enumeration of cosets of the identity subgroup
in U . For example, if this is done using the ToddCoxeter command in Magma, allowing
the definition of just 8000 cosets, then multiplication by each of the words b−1xby−1 and
a−1yax−1 is found to fix the trivial coset, and therefore b−1xby−1 = 1 = a−1yax−1.

It follows that conjugation by a, b and c induce the three permutations (x, y)(x−1, y−1),
(x, y, x−1, y−1) and (x, y, x−1, y−1) on the set {x, y, x−1, y−1}, and then (ac−1)2 and (c−1a)2

centralise both x and y, so x and y centralise each other.
Also Magma’s Rewrite command gives a defining presentation for N , with [x, y] = 1

as a single defining relation. Hence the normal subgroup N is free abelian of rank 2.

The quotient U/N is isomorphic to the automorphism group of the chiral 4-polytope
of type {4, 4, 4} with 1024 automorphisms listed at [3].
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Now for any positive integer m, let Nm be the subgroup generated by xm = (ac−1)4m

and ym = (c−1a)4m. By Proposition 2.3, we know that Nm is characteristic in N and
hence normal in U , with index | U : Nm| = | U : N ||N : Nm| = 1024m2. Moreover,
in the quotient Gm = U/Nm, the subgroup N/Nm is abelian and normal, with quotient
(U/Nm)/(N/Nm) ∼= U/N being a 2-group, and so Gm is solvable, by Proposition 2.2.

Next, we use Proposition 2.1 to prove that the triple (ā, b̄, c̄) of images of a, b, c in Gm

satisfies the chiral form of the intersection condition. To do this, we observe that the group
with presentation 〈u, v | u4 = v4 = (uv)2 = (u2v2)4 = 1 〉 has order 27 = 128, as does
its image in the group G1 = U/N1 under the epimorphism taking (u, v) 7→ (aN1, bN1).
These claims are easily verifiable using Magma. Then since G1 = U/N1 is a quotient of
Gm = U/Nm, the subgroup generated by ā and b̄ in Gm = U/Nm must have order 128 as
well, and hence the restriction to 〈ā, b̄〉 of the natural homomorphism from Gm to G1 is
injective, as required.

Accordingly, Gm is the rotation group of a chiral or regular 4-polytope Pm of type
{4, 4, 4}. Assume for the moment that Pm is regular. Then there exists an automorphism
ρ of Gm taking (ā, b̄, c̄) to (ā−1, ā 2b̄, c̄), and it follows from the relation 1 = a2c2b2(ac)2 =
ā2c̄2b̄2(āc̄)2 that also 1 = (ā2c̄2b̄2(āc̄)2)ρ = ā−2c̄2(ā2b̄)2(ā−1c̄)2 in Gm. But the image of this
element in G1 has order 2, and as this is also the image of a−2c2(a2b)2(a−1c)2) in G1, it
follows that (ā2c̄2b̄2(āc̄)2)ρ = ā−2c̄2(ā2b̄)2(ā−1c̄)2 is non-trivial in Gm, a contradiction.

Thus Pm is chiral, with automorphism group Gm of order 1024m2.

Case (2): Take K as the subgroup of U generated by z = (bc−1)4 and w = (c−1b)4.

Another computation with Magma shows that K is normal in U , with index 2048,
and moreover, the Rewrite command tells us that K is free abelian of rank 2. In this
case, the defining relations for U give

a−1za = z−1, b−1zb = w and c−1zc = w,

a−1wa = w, b−1wb = z−1 and c−1wc = z−1.
The quotient U/K is the automorphism group of the chiral 4-polytope of type {4, 4, 4}
with 2048 automorphisms found by Zhang in [23].

Now for any positive integer m, let Km be the subgroup generated by zm = (bc−1)4m

and wm = (c−1b)4m. Using Proposition 2.3, we find that Km is characteristic in K and
hence normal in U , with index | U : Km| = | U : K||K : Km| = 2048m2. Also the quotient
Hm = U/Km is solvable, again by Proposition 2.2.

Next, the image of the subgroup generated by a and b in H1 = U/K has order 128, so
just as in Case (1) above, we can apply Proposition 2.1 and find that the triple (ā, b̄, c̄) of
images of a, b, c in Hm = U/Km satisfies the chiral form of the intersection condition.

Thus Hm is the rotation group of a chiral or regular 4-polytope Qm of type {4, 4, 4}.
Moreover, the same argument as used in Case (1) shows that Qm is chiral, because the

image in H1 of the element a−2c2(a2b)2(a−1c)2) has order 2, and hence the image of that
element in Hm is non-trivial.

Thus Qm is chiral, with automorphism group Hm of order 2048m2.

As a special case we have the following Corollary, which is an immediate consequence
of Theorem 3.1 when m is taken as a power of 2.
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Corollary 3.2 There exists a chiral 4-polytope of type {4, 4, 4} with automorphism group
of order 2n, for every integer n ≥ 10.

On the other hand, an inspection of the lists at [3] shows that there exists no such
chiral polytope with automorphism group of order 2n, where n ≤ 9.

Acknowledgements

The first author acknowledges the hospitality of Beijing Jiaotong University, and partial
support from the N.Z. Marsden Fund (project UOA1626). The second and the third au-
thors acknowledge the partial support from the National Natural Science Foundation of
China (11731002) and the 111 Project of China (B16002). Together we acknowledge the
help of the Magma system [1] in constructing examples that help lead us to a proof of
our main theorem.

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma Algebra System I: the user language,
J. Symbolic Comput. 24 (1997) 235-265.

[2] A. Breda D’Azevedo, G.A. Jones, E. Schulte, Constructions of chiral polytopes of
small rank, Canad. J. Math. 63 (2011) 1254-1283.

[3] M.D.E. Conder, Chiral polytopes with up to 4000 flags, https://www.math.

auckland.ac.nz/~conder/ChiralPolytopesWithUpTo4000Flags-ByOrder.txt.

[4] M.D.E. Conder, I. Hubard, E. O’Reilly Regueiro, D. Pellicer, Construction of chiral
4-polytopes with an alternating or symmetric group as automorphism group, J.
Algebraic Combin. 42 (2015) 225-244.

[5] M.D.E. Conder, I. Hubard, T. Pisanski, Constructions for chiral polytopes, J.
London Math. Soc. 77 (2008) 115-129.

[6] M.D.E. Conder, W.-J. Zhang, Abelian covers of chiral polytopes, J. Algebra 478
(2017) 437-457.

[7] H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups,
Springer-Verlag, 1972.

[8] G. Cunningham, Tight chiral polyhedra, Combinatorica 38 (2018) 115-142.

[9] G. Cunningham, D. Pellicer, Chiral extensions of chiral polytopes, Discrete Math.
330 (2014) 51-60.

[10] M. Hartley, I. Hubard, D. Leemans, An Atlas of Chiral Polytopes for Small Almost
Simple Groups, http://homepages.ulb.ac.be/~dleemans/CHIRAL/index.html.

[11] D.-D. Hou, Y.-Q. Feng, D. Leemans, Existence of regular 3-polytopes of order 2n, J.
Group Theory 22 (2019) 579-616.

9



[12] D.-D. Hou, Y.-Q. Feng, D. Leemans, On regular polytopes of 2-powers, Discrete
Comput. Geom. 64 (2020) 339-346.

[13] D.L. Johnson, Topics in the Theory of Group Presentations, Cambridge University-
Press, Cambridge, 1980.

[14] P. McMullen, E. Schulte, Abstract Regular Polytopes, Cambridge University Press,
Cambridge, 2002.

[15] B. Monson, E. Schulte, Modular reduction in abstract polytopes, Canad. Math. Bull.
52 (2009) 435-450.

[16] D. Pellicer, A construction of higher rank chiral polytopes, Discrete Math. 310
(2010) 1222-1237.

[17] D. Pellicer, Developments and open problems on chiral polytopes, Ars Math.
Contemp 5 (2012) 333-354.

[18] E. Schulte, A.I. Weiss, Chiral polytopes, Applied Geometry and Discrete Mathemat-
ics 4 (1991) 493-516.

[19] E. Schulte, A.I. Weiss, Chirality and projective linear groups, Discrete Math. 131
(1994) 221-261.

[20] E. Schulte, A.I. Weiss, Free extensions of chiral polytopes, Canad. J. Math. 47 (1995)
641-654.

[21] E. Schulte, A.I. Weiss, Problems on polytopes, their groups, and realizations,
Periodica Math. Hungarica 53 (2006) 231-255.

[22] M.Y. Xu, Introduction to Group Theory I, Science Publishing House, Beijing, 1999.

[23] W.-J. Zhang, Constructions For Chiral Polytopes, PhD Thesis, University of
Auckland, 2016.

E-mail addresses for authors:

Marston Conder <m.conder@auckland.ac.nz>
Yan-Quan Feng <yqfeng@bjtu.edu.cn>
Dong-Dong Hou <16118416@bjtu.edu.cn>

10


