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Abstract

A map is a 2-cell embedding of a connected graph or multigraph on a closed
surface, and a map is called edge-transitive if its automorphism group has a single
orbit on edges. There are 14 classes of edge-transitive maps, determined by the effect
of the automorphism group. In this paper we make some observations about these
classes, and answer three open questions from a 2001 paper by Širán, Tucker and
Watkins, by showing that (a) in each of the classes 1, 2P , 2P ex, 3, 4P and 5P , there
exists a self-dual edge-transitive map, (b) there exists an edge-transitive map with
simple underlying graph on an orientable surface of genus g for every integer g ≥ 0,
and (c) there exists an orientable surface that carries an edge-transitive map of each
of the 14 classes, and indeed that these three things still hold when we insist that
both the map and its dual have simple underlying graph. We also give the maximum
number of automorphisms of an edge-transitive map on an orientable surface of given
genus g > 1, and consider some special cases in which the automorphism group (or
its subgroup of orientation-preserving automorphisms) is prescribed. For example,
we show that a certain soluble group of order 576 is the smallest group that occurs
as the automorphism group of some edge-transitive map in each of the 14 classes.

Mathematics Subject Classification: 57M15 (primary), 05C10, 05E18, 57M60
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1 Introduction

A regular map is a symmetric embedding of a connected graph or multigraph on a closed
surface: the automorphism group of the embedding has a single orbit on ‘flags’ (which are
like incident vertex-edge-face triples), or more loosely on ‘arcs’ (which are incident vertex-
edge pairs). The theory of such discrete objects has a long and interesting history, dating
back to the work of Brahana, Burnside, Dyck and others, and recent work has produced
infinite families of examples [10] as well as complete lists of those on hyperbolic surfaces
of small genera [6, 4, 5].

In contrast, relatively little is known about the more general case of edge-transitive
maps, for which the automorphism group has a single orbit on edges. By work of Graver
and Watkins [11], it is known that these can be divided into 14 classes according to certain
properties (determined by automorphisms preserving a given edge or one of the vertices or
faces incident with it). That work was taken further in [18] by Širán, Tucker and Watkins,
who showed there exist finite maps in each class. They also posed a number of questions,
some of which were answered by Alen Orbanić in his 2006 PhD thesis. Further questions
were also posed by Orbanić et al in [17]. Some of the remaining questions and related
ones were discussed at a BIRS workshop (on Symmetries of surfaces, maps and dessins) at
Banff in September 2017, and in this paper we present the answers to many of those.

In particular, we answer Questions 3, 4 and 6 from [18], by showing the following:

(a) In each of the classes 1, 2P , 2P ex, 3, 4P and 5P , there exists a self-dual edge-transitive
map, indeed one for which the map is non-degenerate, in that both the map and its dual
have simple underlying graph;

b) There exists a non-degenerate edge-transitive map on an orientable surface of genus g
for every integer g ≥ 0, and

c) There exists an orientable surface that carries a edge-transitive map of each of the 14
classes, and indeed a non-degenerate one of each class.

We also give the maximum number of automorphisms of an edge-transitive map on an
orientable surface of given genus g > 1, and consider some special cases in which the auto-
morphism group (or its subgroup of orientation-preserving automorphisms) is prescribed.
For example, we show that a certain soluble group of order 576 is the smallest group that
occurs as the automorphism group of some edge-transitive map in each of the 14 classes.

Before doing that in Sections 3 to 8, we provide some further information about the 14
classes, including ‘universal’ groups that determine the effect of the automorphism group
of every map in the class, and then we conclude the papers with some remarks and further
questions.

Many of the findings we describe in this paper resulted from computations involving the
universal groups and their quotients, using the Magma system, or were guided by them.
In cases where the outcomes depended almost entirely on computations, we summarise
them in tables in an Appendix at the end.
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2 Details and properties of the 14 classes

In this section we present some background information on each class that can be helpful
in constructing or analysing examples of edge-transitive maps. Much of this information
can also be found in references [11] or [18] or [16] or [17], but unfortunately the table in [11]
that was copied as Table I in [18] contains a number of shortcomings that make it difficult
to follow. First, the columns headed Gv and Gf refer to the stabiliser of a particular vertex
v or face f , but for some classes the stabilisers of the vertex u and/or face g should be
given as well. And in fact the column headed Gv looks more appropriate for Gu, but even
then, its entry for class 4∗ should be 〈σ 4

u , θug〉, not 〈σ 4
u , θuf〉. Also in Table II of [18], some

relations are missing, namely τ 2 = 1 for type 4, and λ2 = 1 for type 4∗, and φ2 = 1 for
type 4P . The information below is more accurate and comprehensive.

Figure 1: Reflecting generators for the universal group of class 1

In each case we let e = {u, v} be a given edge, and let f and g be the faces incident with
e, as illustrated in Figure 1.

Associated with each class is a universal group U , which has the property that if M is
any ET map of the given class, then its automorphism group Aut(M) is a quotient of U .
This group U is generated by particular elements that can be described in terms of their
effect on the vertices, edges and faces labelled in Figure 1. Here we compose automorphisms
from left to right.

Conversely, if A is any quotient of U in which the images of the generators and certain
other elements have the appropriate orders (to avoid collapse), then there exists an ET
map M on which A acts edge-transitively as a group of automorphisms, in the appropriate
way. This map can be constructed using cosets of the stabilisers of the vertices u and v,
the edge e and the faces f and g coming from Figure 1, in a similar way to the well-known
construction for regular maps from groups (see [6], for example).

Class 1 consists of the fully regular maps. In this case, the universal group is

U1 = 〈 a, b, c | a2 = b2 = c2 = (ac)2 = 1 〉
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where a, b and c are automorphisms that act like local reflections, such that the stabilisers
of the vertex u, edge e and face f are the subgroups generated by {b, c}, {a, c} and {a, b}
respectively. (These correspond to the elements λe, θuf and τe in the notation of [18].)

The universal group U for any one of the 14 classes can be embedded into the group U1

above, as a subgroup of index dividing 4, with transversal a subgroup of 〈a, c〉. We give this
embedding, which is unique except for classes 4, 4∗ and 4P , where there are two possibilities
(that can be interchanged under conjugation by a, c and either a or c, respectively).

In each case, we also give generators for the orientation-preserving subgroup (which is
the intersection of U with the subgroup 〈ab, bc〉 of U1) in the orientable case, and state
whether or not the automorphism group of a map in the given class acts transitively on
vertices, on faces, and/or on Petrie polygons of the map. Note that when the action (on
vertices, faces, or Petrie polygons) is not transitive, there are two orbits (since each edge is
incident with at most two vertices, and most two faces, and at most two Petrie polygons).
Then we describe the stabilisers of the vertices u and v, the edge e, and the faces f and g,
in terms of both generators for U and generators for U1. We also indicate the effect of an
orientation-reversing element (usually but not always b) by conjugation on the generators
for the orientation-preserving subgroup, when such an element exists, and similarly, the
effect of a map duality on the chosen set of generators for U , in the orientable case.

Finally, for each element g ∈ {a, c, ac} in the stated transversal for U in U1 (but lying
outside U), we describe the effect of the automorphism ψg of U induced by conjugation
by g, taking each generator h of U to g−1hg. These ψg are what we may call ‘barred’
automorphisms, in the sense that if A is the automorphism group of an ET map in the
given class, then A has no automorphism that has the same effect on the images in A of
the generators of U as ψg has on the generators themselves.

Class 1

Universal group: U = 〈x, y, z | x2 = y2 = z2 = (xz)2 = 1 〉;
Embedding of generators in U1 : (x, y, z) 7→ (a, b, c), with transversal {1};
Orientation-preserving subgroup U+ is generated by r = xy = ab and s = xz = ac

(and r−1s = yz = bc), subject to the single relation s2 = 1;

Automorphism group of map is transitive on vertices, faces and Petrie polygons;

Stabiliser of vertex u is generated by {y, z} = {b, c};
Stabiliser of vertex v is generated by {xyx, z} = {aba, c};
Stabiliser of edge e is generated by {x, z} = {a, c};
Stabiliser of face f is generated by {x, y} = {a, b};
Stabiliser of face g is generated by {x, zyz} = {a, cbc};
A reflection (by a) takes (r, s) = (ab, ac) 7→ (ba, ca) = (r−1, s−1);

An orientable duality takes (a, b, c) 7→ (c, b, a), preserving class 1;

There are no barred automorphisms.
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Class 2

Universal group: U = 〈x, y, z | x2 = y2 = z2 = 1 〉;
Embedding of generators in U1 : (x, y, z) 7→ (b, c, aba), with transversal {1, a};
Orientation-preserving subgroup U+ is generated by
r=xy = bc and s=zy = abac = abca, and is free of rank 2;

Automorphism group of map is transitive on faces and Petrie polygons but not on vertices;

Stabiliser of vertex u is generated by {x, y} = {b, c};
Stabiliser of vertex v is generated by {y, z} = {c, aba};
Stabiliser of edge e is generated by {y} = {c};
Stabiliser of face f is generated by {x, z} = {b, aba};
Stabiliser of face g is generated by {yxy, yzy} = {cbc, acbca} = {cbc, cabac};
A reflection (by c) takes (r, s) = (bc, abac) 7→ (cb, caba) = (r−1, s−1);

An orientable map duality takes (b, c, aba) 7→ (b, a, cbc), interchanging classes 2 and 2∗;

Extending automorphism ψa takes (x, y, z) = (b, c, aba) 7→ (aba, c, b) = (z, y, x).

Class 2∗

Universal group: U = 〈x, y, z | x2 = y2 = z2 = 1 〉;
Embedding of generators in U1 : (x, y, z) 7→ (a, b, cbc), with transversal {1, c};
Orientation-preserving subgroup U+ is generated by r = xy = ab and s = yz = (bc)2,
and is free of rank 2;

Automorphism group of map is transitive on vertices and Petrie polygons but not on faces;

Stabiliser of vertex u is generated by {y, z} = {b, cbc};
Stabiliser of vertex v is generated by {xyx, xzx} = {aba, acbca} = {aba, cabac};
Stabiliser of edge e is generated by {x} = {a};
Stabiliser of face f is generated by {x, y} = {a, b};
Stabiliser of face g is generated by {x, z} = {a, cbc};
A reflection (by b) takes (r, s) = (ab, (bc)2) 7→ (ba, (cb)2) = (r−1, s−1);

An orientable map duality takes (a, b, cbc) 7→ (c, b, aba), interchanging classes 2∗ and 2;

Extending automorphism ψc takes (x, y, z) = (a, b, cbc) 7→ (a, cbc, b) = (x, z, y).

Class 2P

Universal group: U = 〈x, y, z | x2 = y2 = z2 = 1 〉;
Embedding of generators in U1 : (x, y, z) 7→ (ac, b, cbc), with transversal {1, a} or {1, c};
Orientation-preserving subgroup U+ is generated by r = x = ac, s = yz = (bc)2 and
t = yxz = babc, subject to the two relations r2 = (st−1)2 = 1;

Automorphism group of map is transitive on vertices and faces but not on Petrie polygons;

Stabiliser of vertex u is generated by {y, z} = {b, cbc};
Stabiliser of vertex v is generated by {xzx, xyx} = {aba, acbca} = {aba, cabac};
Stabiliser of edge e is generated by {x} = {ac};
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Stabiliser of face f is generated by {y, xzx} = {b, aba};
Stabiliser of face g is generated by {z, xyx} = {cbc, acbca} = {cbc, cabac};
A reflection (by b) takes
(r, s, t) = (ac, (bc)2, babc) 7→ (bacb, (cb)2, abcb) = (ts−1, s−1, rs−1);

An orientable map duality takes (ac, b, cbc) 7→ (ac, b, aba), preserving class 2P ;

Extending automorphism ψc takes (x, y, z) = (ac, b, cbc) 7→ (ca, cbc, b) = (x, z, y).

Class 2ex

Universal group: U = 〈x, y | x2 = 1 〉;
Embedding of generators in U1 : (x, y) 7→ (c, ab), with transversal {1, a} or {1, b};
Orientation-preserving subgroup U+ is generated by
r=xy = bc and s=zy = abac = abca, and is free of rank 2;

Automorphism group of map is transitive on vertices, faces and Petrie polygons;

Stabiliser of vertex u is generated by {x, y−1xy} = {c, bcb};
Stabiliser of vertex v is generated by {x, yxy−1} = {c, abcba} = {c, (aba)c(aba)};
Stabiliser of edge e is generated by {x} = {c};
Stabiliser of face f is generated by {y} = {ab};
Stabiliser of face g is generated by {xyx} = {cabc} = {acbc};
A reflection (by c) takes (r, s) = (ab, cabc) 7→ (cabc, ab) = (s, r);

An orientable map duality takes (c, ab) 7→ (a, cb), interchanging classes 2ex and 2∗ex;

Extending automorphism ψa takes (x, y) = (c, ab) 7→ (c, ba) = (x−1, y−1).

Class 2∗ex

Universal group: U = 〈x, y | x2 = 1 〉;
Embedding of generators in U1 : (x, y) 7→ (a, bc), with transversal {1, b} or {1, c};
Orientation-preserving subgroup U+ is generated by r = y = bc and s = xyx = abca,
and is free of rank 2;

Automorphism group of map is transitive on vertices, faces and Petrie polygons;

Stabiliser of vertex u is generated by {y} = {bc};
Stabiliser of vertex v is generated by {xyx} = {abca} = {abac};
Stabiliser of edge e is generated by {x} = {a};
Stabiliser of face f is generated by {x, yxy−1} = {a, bab};
Stabiliser of face g is generated by {x, y−1xy} = {a, cbabc};
A reflection (by a) takes (r, s) = (bc, abca) 7→ (abca, bc) = (s, r);

An orientable map duality takes (a, bc) 7→ (c, ba), interchanging classes 2∗ex and 2ex;

Extending automorphism ψc takes (x, y) = (a, bc) 7→ (a, cb) = (x−1, y−1).

Class 2P ex

Universal group: U = 〈x, y | x2 = 1 〉;
Embedding of generators in U1 : (x, y) 7→ (ac, ab), with transversal {1, a};
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Orientation-preserving subgroup U+ is equal to U ;

Automorphism group of map is transitive on vertices, faces and Petrie polygons;

Stabiliser of vertex u is generated by {y−1x} = {bc};
Stabiliser of vertex v is generated by {yx} = {abac} = {abca};
Stabiliser of edge e is generated by {x} = {ac};
Stabiliser of face f is generated by {y} = {ab};
Stabiliser of face g is generated by {xyx} = {cbac} = {cbca};
There is no orientation-reversing automorphism in U ;

An orientable map duality takes (ac, ab) 7→ (ac, bc), preserving class 2P ex;

Extending automorphism ψa takes (x, y) = (ac, ab) 7→ (ca, ba) = (x−1, y−1).

Class 3

Universal group: U = 〈x, y, z, w | x2 = y2 = z2 = w2 = 1 〉;
Embedding of generators in U1 : (x, y, z, w) 7→ (b, cbc, acbca, aba),
with transversal {1, a, c, ac};

This group U is also a subgroup of index 2 in the universal groups for classes 2, 2∗ and 2P

(but not in the universal groups for classes 2ex, 2∗ex or 2P ex);

Orientation-preserving subgroup U+ is generated by r = wx = (ab)2 and s = xy = (bc)2

and t = zx = (acb)2 = (cab)2, and is free of rank 3;

Automorphism group of map is not transitive on vertices, faces or Petrie polygons;

Stabiliser of vertex u is generated by {x, y} = {b, cbc};
Stabiliser of vertex v is generated by {w, z} = {aba, acbca} = {aba, cabac};
Stabiliser of edge e is trivial;

Stabiliser of face f is generated by {x,w} = {b, aba};
Stabiliser of face g is generated by {y, z} = {cbc, acbca};
A reflection (by b) takes
(r, s, t) = ((ab)2, (bc)2, (acb)2) 7→ ((ba)2, (cb)2, (bac)2) = (r−1, s−1, t−1);

An orientable duality takes (b, cbc, acbca, aba) 7→ (b, aba, acbca, cbc) or (acbca, cbc, b, aba),
preserving class 3;

Extending automorphisms ψa, ψc and ψac respectively take (x, y, z, w) = (b, bc, bac, ba)
to (ba, bac, bc, b), (bc, b, ba, bac) and (bac, ba, b, bc),
that is, to (w, z, y, x), (y, x, w, z), and (z, w, x, y).

Class 4

Universal group: U = 〈x, y, z | x2 = y2 = 1 〉
Embedding of generators in U1 : (x, y, z) 7→ (b, cbc, acba), with transversal {1, a, c, ac};
This group U is also a subgroup of index 2 in the universal group for class 2
(but not in the universal groups for classes 2∗, 2P , 2ex, 2∗ex or 2P ex);

Orientation-preserving subgroup U+ is generated by
r = yx = (cb)2 and s = z = acba and t = yzx = cbabab, and is free of rank 3;
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Automorphism group of map is transitive on faces and Petrie polygons but not on vertices;

Stabiliser of vertex u is generated by {x, y} = {b, cbc};
Stabiliser of vertex v is generated by {z} = {acba} = {caba};
Stabiliser of edge e is trivial;

Stabiliser of face f is generated by {x, z−1yz} = {b, abababa};
Stabiliser of face g is generated by {y, zxz−1} = {cbc, acbababca} = {cbc, a(cbc)a(cbc)a(cbc)a};
A reflection (by b) takes
(r, s, t) = ((cb)2, acba, cbabab) 7→ ((bc)2, bacbab, bcbaba) = (r−1, r−1t, r−1s);

An orientable duality takes (b, cbc, acba) 7→ (b, aba, cabc), interchanging classes 4 and 4∗;

Extending automorphism ψc takes (x, y, z) = (b, cbc, acba) 7→ (cbc, b, abac) = (y, x, z−1).

Class 4∗

Universal group: U = 〈x, y, z | x2 = y2 = 1 〉;
Embedding of generators in U1 : (x, y, z) 7→ (b, aba, cabc), with transversal {1, a, c, ac};
This group U is also a subgroup of index 2 in the universal group for class 2∗

(but not in the universal groups for classes 2, 2P , 2ex, 2∗ex or 2P ex);

Orientation-preserving subgroup U+ is generated by
r = yx = (ab)2 and s = z = cabc and t = yzx = abcbcb, and is free of rank 3;

Automorphism group of map is transitive on vertices and Petrie polygons but not on faces;

Stabiliser of vertex u is generated by {x, z−1yz} = {b, cbcbcbc};
Stabiliser of vertex v is generated by {y, zxz−1} = {aba, cabcbcbac} = {aba, c(aba)c(aba)c(aba)c};
Stabiliser of edge e is trivial;

Stabiliser of face f is generated by {x, y} = {b, aba};
Stabiliser of face g is generated by {z} = {cabc} = {acbc};
A reflection (by b) takes
(r, s, t) = ((ab)2, cabc, abcbcb) 7→ ((ba)2, bacbcb, babcbc) = (r−1, r−1t, r−1s);

An orientable duality takes (b, aba, cabc) 7→ (b, cbc, acba), interchanging classes 4∗ and 4;

Extending automorphism ψa takes (x, y, z) = (b, aba, cabc) 7→ (aba, b, cbca) = (y, x, z−1).

Class 4P

Universal group: U = 〈x, y, z | x2 = y2 = 1 〉;
Embedding of generators in U1 : (x, y, z) 7→ (b, acbca, abc), with transversal {1, a, c, ac};
This group U is also a subgroup of index 2 in the universal group for class 2P

(but not in the universal groups for classes 2, 2∗, 2ex, 2∗ex or 2P ex);

Orientation-preserving subgroup U+ is generated by
r = zx = abcb and s = xz = babc and t = zy = ababac, and is free of rank 3;

Automorphism group of map is transitive on vertices and faces but not on Petrie polygons;

Stabiliser of vertex u is generated by {x, z−1yz} = {b, cbcbcbc};
Stabiliser of vertex v is generated by {y, zxz−1} = {acbca, abcbcba} = {cabac, (aba)c(aba)c(aba)};
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Stabiliser of edge e is trivial;

Stabiliser of face f is generated by {x, zyz−1} = {b, abababa};
Stabiliser of face g is generated by {y, z−1xz} = {acbca, cbababc};
A reflection (by b) takes
(r, s, t) = (abcb, babc, ababac) 7→ (babc, abcb, bababacb) = (s, r, st−1r);

An orientable duality takes (b, acbca, abc) 7→ (b, acbca, cba) or (acbca, b, abc),
preserving class 4P ;

Extending automorphism ψac takes (x, y, z) = (b, acbca, abc) 7→ (acbca, b, cba) = (y, x, z−1).

Class 5

Universal group: U = 〈x, y | − 〉 (free of rank 2);

Embedding of generators in U1 : (x, y) 7→ (bc, abca), with transversal {1, a, c, ac};
This group U is also a subgroup of index 2 in the universal groups for classes 2, 2∗ex
and 2P ex (but not in the universal groups for classes 2∗, 2P or 2ex);

Orientation-preserving subgroup U+ is equal to U ;

Automorphism group of map is transitive on faces and Petrie polygons but not on vertices;

Stabiliser of vertex u is generated by {x} = {bc};
Stabiliser of vertex v is generated by {y} = {abca} = {abac};
Stabiliser of edge e is trivial;

Stabiliser of face f is generated by {yx−1} = {(ab)2};
Stabiliser of face g is generated by {y−1x} = {c(ab)2c} = {a(cbc)a(cbc)};
There is no orientation-reversing automorphism in U ;

An orientable duality takes (bc, abca) 7→ (ba, cbac), interchanging classes 5 and 5∗;

Extending automorphisms ψa, ψc and ψac respectively take (x, y) = (bc, abca)
to (abca, bc) = (y, x), (cb, caba) = (x−1, y−1) and (acba, cb) = (y−1, x−1).

Class 5∗

Universal group: U = 〈x, y | − 〉 (free of rank 2);

Embedding of generators in U1 : (x, y) 7→ (ab, cabc), with transversal {1, a, c, ac};
This group U is also a subgroup of index 2 in the universal groups for classes 2∗, 2ex
and 2P ex (but not in the universal groups for classes 2, 2P or 2∗ex);

Orientation-preserving subgroup U+ is equal to U ;

Automorphism group of map is transitive on vertices and Petrie polygons but not on faces;

Stabiliser of vertex u is generated by {x−1y} = {(bc)2};
Stabiliser of vertex v is generated by {xy−1} = {a(bc)2a} = {(aba)c(aba)c};
Stabiliser of edge e is trivial;

Stabiliser of face f is generated by {x} = {ab};
Stabiliser of face g is generated by {y} = {cabc} = {acbc};
There is no orientation-reversing automorphism in U ;

An orientable duality takes (ab, cabc) 7→ (cb, acba), interchanging classes 5∗ and 5;
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Extending automorphisms ψa, ψc and ψac respectively take (x, y) = (ab, cabc)
to (ba, cbca) = (x−1, y−1), (cabc, ab) = (y, x) and (cbac, ba) = (y−1, x−1).

Class 5P

Universal group: U = 〈x, y | − 〉 (free of rank 2);

Embedding of generators in U1 : (x, y) 7→ (abc, acb), with transversal {1, a, c, ac};
This group U is also a subgroup of index 2 in the universal groups for classes 2P , 2ex
and 2∗ex (but not in the universal groups for classes 2, 2∗ or 2P ex);

Orientation-preserving subgroup U+ is generated by
r = xy = (ab)2 and s = y−1x = (bc)2 and t = xy−1 = a(bc)2a, and is free of rank 3;

Automorphism group of map is transitive on vertices and faces but not on Petrie polygons;

Stabiliser of vertex u is generated by {y−1x} = {(bc)2};
Stabiliser of vertex v is generated by {xy−1} = {a(bc)2a} = {(aba)c(aba)c};
Stabiliser of edge e is trivial;

Stabiliser of face f is generated by {xy} = {(ab)2};
Stabiliser of face g is generated by {yx} = {c(ab)2c} = {a(cbc)a(cbc)};
Conjugation by the orientation-reversing automorphism x = abc takes
(r, s, t) = ((ab)2, (bc)2, a(bc)2a) 7→ (cababc, cbabcbcabc, bcbc) = (t−1rs, s−1r−1trs, s);

An orientable duality takes (abc, acb) 7→ (cba, acb) or (abc, bca), preserving class 5P ;

Extending automorphisms ψa, ψc and ψac respectively take (x, y) = (abc, acb)
to (bca, cba) = (y−1, x−1), (cab, abc) = (y, x) and (cba, bac) = (x−1, y−1).

It can also be helpful to see how the 14 universal subgroups can be embedded not just
in U1 but also in each other. These inclusions are illustrated in Figure 2.

Indeed here we may note that the 14 classes correspond precisely to the 14 conjugacy
classes of subgroups of U1 that are complementary to some subgroup of the edge-stabiliser
〈a, c〉, and that this gives a purely algebraic way of finding them, much more easily than in
the approach taken in [11]. It is also easy to determine these classes using the combinatorial
approach of ‘symmetry type graphs’ in [17].

3 Maximum orders of automorphism groups for ET

maps of genus greater than 1

Theorem 3.1. Let A be a group of automorphisms of an edge-transitive map on some
orientable surface of genus g > 1, or some non-orientable surface of genus p > 2. Then
|A| ≤ |A|maxo or |A| ≤ |A|maxnono, respectively, where |A|maxo and |A|maxnono are given in
Table 1 for each of the 14 classes of edge-transitive maps. Moreover, these bounds are sharp
for certain values of g and p in each class.

Proof. First, we might as well take A as the full automorphism group of the map in each
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1

2∗2 2P 2ex 2∗ex 2P ex

3 4 4∗ 4P 5 5∗ 5P

ψcψa ψc ψa ψc ψa

Figure 2: Inclusions among the universal groups of the 14 classes

case, and then the bounds can be proved easily using the orders of stabilisers of vertices,
edges and faces, and the Euler-Poincaré formula.

For example, in class 1 we know that if k = o(xy) = o(ab) and m = o(yz) = o(bc),
then |V | = |A : Au| = |A|/k and |E| = |A : Ae| = |A|/4 and |F | = |A : Af | = |A|/m,
so the Euler characteristic is χ = |V | − |E| + |F | = |A|(1/k − 1/4 + 1/m). Then the
maximum possible negative value of this is −|A|/84, achievable when {k,m} = {3, 7}, and
giving |A| ≤ −84χ = 168(g − 1) or 84(p − 2) in the orientable and non-orientable cases,
respectively. Similarly, for class 4, we have |V | = |A :Au|+|A :Av| = |A|/o(z)+|A|/(2o(xy))
and |E| = |A| and |F | = |A :Af | = |A|/o(xzyz−1), and this gives the maximum possible
negative value of χ = |V |−|E|+|F | as −|A|/24, achievable when (o(z), o(xy), o(xzyz−1)) =
(3, 4, 1) or (3, 1, 4). The other cases are similar, and are left as an exercise for the reader.

Sharpness can be proved by exhibiting examples for which the bounds are attained.

If M is a fully regular map of type {3, 7} or {7, 3}, such as Klein’s map of genus 3, then
Aut(M) is generated by elements a, b, c satisfying a2 = b2 = c2 = (ab)3 = (bc)7 = (ac)2 = 1,
and |Aut(M)| = 168(g − 1) or 84(p − 2), and this proves sharpness for class 1. But then
also the triple (x, y, z) = (a, b, c) satisfies the defining relations for the universal group of
class 2 maps, but there exists no automorphism of the group that takes (x, y, z) to (z, y, x),
since o(xy) = 3 while o(zy) = o(yz) = 7. Hence this triple gives an ET map in class 2,
with χ = (|A|/6 + |A|/14) − |A|/2 + |A|/4 = −|A|/84, and therefore the same genus and
the same number of automorphisms as M . Also its dual is in class 2∗ and has the same
genus and same automorphism group as well.

Similarly, if M is an orientably-regular but chiral map of type {3, 7} or {7, 3}, then it
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Classes |A|maxo |A|maxnono Sufficient conditions for achieving maximum

1 168(g − 1) 84(p− 2) (o(xy), o(yz)) = (3, 7) or (7, 3)

2, 2∗ 168(g − 1) 84(p− 2) {o(xy), o(yz), o(xz)} = {2, 3, 7}
2P 24(g − 1) 12(p− 2) (o(yz), o(xyxz)) = (2, 3) or (3, 2)

2ex, 2∗ex 48(g − 1) 24(p− 2) (o(y), o(xy−1xy)) = (3, 4)

2P ex 84(g − 1) N/A {o(y), o(xy)} = {3, 7}
3 24(g − 1) 12(p− 2) {o(xy), o(zw), o(yz), o(xw)} = {2, 2, 2, 3}
4, 4∗ 48(g − 1) 24(p− 2) (o(z), o(xy), o(xzyz−1)) = (3, 4, 1) or (3, 1, 4)

4P 8(g − 1) 4(p− 2) (o(xz−1yz), o(xzyz−1)) = (1, 2) or (2, 1)

5, 5∗ 84(g − 1) N/A {o(x), o(y), o(xy−1)} = {2, 3, 7}
5P 12(g − 1) 6(p− 2) {o(xy), o(xy−1)} = {2, 3}

Table 1: Bounds on the number of automorphisms

has class 2P ex and 84(g−1) automorphisms. Also any irreflexible generating pair (x, y) for
Aut(M) such that x3 = y7 = (x−1y)2 = 1 satisfies the conditions for a canonical generating
pair for the automorphism group of a map of class 5 or 5∗, with χ = (|A|/3+ |A|/7)−|A|+
|A|/2 = −|A|/42, and hence the same genus and same number of automorphisms as M .

Small examples of maps in classes 2P , 3 and 4P attaining the upper bound on the num-
ber automorphisms can be found in Sections 4.5 of Alen Orbanić’s thesis [16]. In particular,
his lists include orientable maps with (g, |A|) = (6, 60), (2, 24) and (15, 112), respectively,
and non-orientable maps with (p, |A|) = (30, 168), (3, 12) and (16, 56), respectively.

Additional computations (using Magma [1]) give examples attaining the bounds for
the remaining five classes. In class 2ex, there exists an orientable map of genus g = 26 with
|A| = 1200 = 48(g − 1), and a non-orientable map of genus p = 1346 with |A| = 32256 =
24(p− 2), and their duals give corresponding examples in class 2∗ex. Also the same thing
happens in classes 4 and 4∗. Finally, in class 5P there exists an orientable map of genus
g = 14 with |A| = 156 = 12(g− 1), as given also in [16, §4.5], and a non-orientable map of
genus p = 226 with |A| = 1344 = 6(p− 2). This completes the proof. �

Many other examples than those mentioned in the last two paragraphs of the above
proof can be found. Further details are available form the first author upon request.

4 Self-dual non-degenerate orientable ET maps

In this brief section, we answer Question 6 of [18], about self-duality for ET maps in classes
1, 2P , 2P ex, 3, 4P and 5P . In fact we can do even more, by proving the following:
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Theorem 4.1. In each of the classes 1, 2P , 2P ex, 3, 4P and 5P , there exist self-dual edge-
transitive orientable maps such that the map and its dual have simple underlying graph.

Proof. Computations using Magma produce the non-degenerate self-dual maps summarised
in Table 9, with defining relations for their automorphism groups given in Table 10, in the
Appendix. �

5 Edge-transitive maps with simple underlying graphs

Question 3 in [18] asked the following: Does every closed orientable surface support some
non-degenerate, edge-transitive map? (It is not difficult to construct degenerate regular
maps (of class 1) on orientable surfaces of all possible genera.)

Examples of small genera are already widely known, such as the five Platonic maps on
the sphere (genus 0) and the regular maps {4, 4}2q on the torus (see [10]).

We can complete an answer to the above question positively by proving the following:

Theorem 5.1. For every integer g ≥ 2, there exists an edge-transitive map of class 2 on
the orientable surface of genus g, such that both the map and its dual have simple underlying
graph (indeed with underlying graph being a complete bipartite graph in each case).

We have two proofs of this theorem. We give one of them, and then give a brief descrip-
tion of the other, based on an alternative construction for the family of maps involved.

Proof. We start by taking the following group, which is a quotient of the universal group
for ET maps of class 2 (obtained by adding two extra relations):

G = 〈x, y, z | x2 = y2 = z2 = [x, z] = (xyzy)2 = 1 〉.

In this group G, the subgroup N generated by a = (xy)2 = [x, y] and b = (yz)2 = [y, z] is
normal, with

ax = a−1, ay = a−1 and az = zxyxyz = zx(yxyz)−1 = zxzyxy = (xy)2 = a,

and bx = xyzyzx = (xyzy)−1zx = yzyxzx = (yz)2 = b, by = b−1 and bz = b−1,

and the quotient G/N is elementary abelian of order 8. Moreover, by Reidemeister-
Schreier theory (explained in [12, §12 & §13] and implemented as the Rewrite command
in Magma [1]), the subgroup N is free abelian of rank 2.

Now for any even positive integers k and m, let N (k,m) be the subgroup of N generated
by ak/2 = (xy)k and bm/2 = (yz)m. Then N (k,m) is normal in G, with conjugation of its
generators by x, t = y and z following the same pattern as given for a and b above, and
the quotient Q(k,m) = G/N (k,m) is isomorphic to an extension of N/N (k,m) ∼= Ck/2 × Cm/2

by G/N ∼= C2 × C2 × C2. In particular, Q(k,m) = G/N (k,m) has order 2km.
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We now use these quotients Q(k,m) of G to construct bipartite ET maps of class 2 with
the required properties, one for each choice of the pair (k,m) with k 6= m. For notational
convenience, from now on we will let x, y, z, a and b denote the images in Q(k,m) of the
elements given above. Equivalently, we simply assume that the elements a = (xy)2 and
b = (yz)2 have orders k/2 and m/2 respectively. Also we now define Q = Q(k,m), and let
N be the normal subgroup generated by a and b in Q, isomorphic to Ck/2 × Cm/2, with
quotient Q/N ∼= C2 × C2 × C2.

For the underlying graph of the map for a given pair (k,m), we take the vertices of one
part as the m right cosets of the dihedral subgroup V1 of order 2k generated by x and y,
and the vertices of the other part as the k right cosets of the dihedral subgroup V2 of order
2m generated by y and z, and define adjacency by non-trivial intersection.

For example, the vertex V1 = 〈x, y〉 is adjacent to the k cosets of V2 = 〈y, z〉 of the
form V2(xy)i for i ∈ Zk, with V2(xy)ix = V2(yx)−ix = V2(xy)−i−1 for all such i. Note that
the coset intersections are given by V1 ∩ V2(xy)i = {(xy)i, y(xy)i} = {(xy)i, (xy)−i−1x} for
i ∈ Zk. In particular, the valency of the vertex V1 is k, and hence V1 is adjacent to every
vertex of the second part. Similarly, the vertex V2 = 〈y, z〉 has neighbours V1(zy)j for
0 ≤ j < m, and hence it is adjacent to every one of the m vertices of the first part.

For the faces of the map, we use the right cosets of the subgroup H of order 4 generated
by x and z, and define incidence again by non-empty intersection. (We preserve the symbol
F for the set of faces.) For example, since H = {1, x, z, xz}, the face H itself is incident
with the vertices V1 and V1z in the first part, and the vertices V2 and V2x in the second
part. Here we note that z 6∈ V1 = 〈x, y〉, for otherwise Q = 〈x, y, z〉 = 〈x, y〉 which has
order 2k < 2km, and similarly x 6∈ V2 = 〈y, z〉, because the latter has order 2m < 2km. In
particular, the face H has four different vertices, and hence also four different edges.

Also the group Q acts by right multiplication on this map, with two orbits of sizes m
and k on vertices, namely the two parts of the graph, and a single orbit on faces, and a
single orbit on edges. Indeed the edges can be identified with right cosets of the subgroup
K of order 2 generated by y, with K(xy)i = {(xy)i, y(xy)i} = {(xy)i, (xy)−i−1x} for all
i ∈ Zk. It follows that every vertex of the first part has valency k, and every vertex of the
second part has valency m, and hence the graph is isomorphic to the complete bipartite
graph Km,k. Similarly, the map has 2km/4 = km/2 faces, all of which have length 4 (with
four distinct vertices), and so the dual of the map is simple too.

Next, if k 6= m then the parts of the underlying graph have different sizes, so the map
cannot lie in class 1, and hence it has class 2. (This also follows from the fact that Q has
no automorphism taking (x, y, z) to (z, y, x), since the orders of xy and zy are k and m.)

Finally, the map is orientable, since the subgroup generated by xy and zy (= (yz)−1)
has index 2 in Q (with image C2×C2 in Q/N ∼= C2×C2×C2), and its Euler characteristic
is χ = |V | − |E| + |F | = (m + k) − mk + (mk/2) = m + k − mk/2, so its genus g is
(2 − χ)/2 = (4 − 2m − 2k + mk)/4 = (k − 2)(m − 2)/4. Taking m = 4 gives genus
g = (k − 2)/2 = k/2− 1, which can be any integer greater than 1 when k/2 > 2.
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This completes the construction and proof. �

An alternative way of constructing these maps is to add six extra relations to the
universal group for ET maps of class 3, to give the group with presentation

〈x, y, z, w | x2 = y2 = z2 = w2 = [x, z] = [y, z] = [x,w] = [y, w] = (xy)k = (zw)m = 1 〉,

which is isomorphic to the direct product of 〈x, y〉 ∼= Dk and 〈z, w〉 ∼= Dm.

The above map with underling graph Km,k can be constructed from this group, but the
group admits an automorphism of order 2 that takes (x, y, z, w) to (y, x, w, z), and another
taking (x, y, z, w) to (z, w, x, y) when k = m, and hence the map has class 1 or class 2,
depending on whether or not k = m. The proof is straightforward.

Next, a natural question related to Question 3 in [18] (but not posed in [18]) is the
following: Does there exist a simple graph X that is the underlying graph of a map in each
of the 14 classes of edge-transitive maps?

Note that any such graph must be arc-transitive and hence regular (because it underlies
an ET map of class 1), with valency divisible by 4 (because it underlies an ET map of
class 5), and also bipartite (because it underlies an ET map of class 2). Accordingly, there
are natural candidates to check. In an early search we found that the complete bipartite
graph K8,8 underlies ET maps of 11 of the 14 classes, namely all of them except classes
2∗ex, 2P ex and 5. A little further work led us to a positive answer to the question:

Theorem 5.2. In each of the 14 classes of edge-transitive maps, there exists an orientable
map with underlying graph isomorphic to the complete bipartite graph K16,16.

Proof. Computations using Magma produce the maps with underlying graph K16,16 sum-
marised in Table 5, with defining relations for their automorphism groups given in Table 6,
in the Appendix. �

6 Orientable ET maps of genus 14

Question 4 in [18, Section 6] is the following: What is the largest number of automorphism-
group types for edge-transitive maps contained by one surface? Is there some surface that
supports all 14 types? We can now answer both parts of this.

Theorem 6.1. The orientable surface of genus 14 carries edge-transitive maps of all 14
classes.

Proof. Computations using Magma produce the maps summarised in Table 7, with defin-
ing relations for their automorphism groups given in Table 8, in the Appendix. �
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In particular, the answer to the second part of Question 4 in [18, Section 6] is “Yes”,
and the answer to the first part is 14. Also we can prove that 14 is the smallest genus for
which this happens, by Magma computations and Theorem 3.1 (to bound the order of
the groups required for consideration in a search for examples). Again, further details are
available for the first author upon request. On the other hand, there are other surfaces of
higher genus that carry ET maps of all 14 classes, as explained in the next section.

7 Non-degenerate orientable ET maps of genus 17

A natural extension of Question 4 in [18, Section 6] is the following: Is there some surface
that supports at least one non-degenerate ET map of each of the 14 classes? The answer
to this question is also “Yes”:

Theorem 7.1. The orientable surface of genus 17 carries edge-transitive maps of all 14
classes, with the property that the map and its dual have simple underlying graph.

Proof. Computations using Magma produce the non-degenerate maps summarised in Ta-
ble 9, with defining relations for their automorphism groups given in Table 10, in the
Appendix. �

8 Edge-transitive maps with prescribed automorphism

group(s)

Another very natural question is this: Which finite groups occur as the automorphism
group of at least one ET map in each of the 14 classes? This same question can be asked
with a restriction to simple or non-degenerate maps.

Clearly a necessary condition if that the group can be generated by two elements. On
the other hand, for orientable ET maps with more than two edges, it cannot be cyclic,
because in [18] it was shown that if an orientable ET map M has at least three edges, then
Aut(M) is a non-abelian group, except in the case where M has class 4P , and Aut(M)
is isomorphic to the direct product Cn × C2 where n ≡ 2 mod 4. In that exceptional
case the stabiliser of every vertex and every face is the subgroup of order 4 generated by
the images of the two involutory generators x and y of the universal group for class 4P ,

and the underlying graph of the map has double edges. Similarly it can be shown easily
that if a non-orientable ET map M has at least three edges and Aut(M) is abelian, then
either M has class 3 (with two vertices and eight edges) and Aut(M) ∼= C2 × C2 × C2,
or M has class 4 or 4∗ and Aut(M) ∼= Cn × C2 for some even n, or M has class 4P and
Aut(M) ∼= Cn × C2 for some n divisible by 4. Again in these cases the underlying graph
of the map has multiple edges.
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We can also extend these observations to abelian groups that occur as the orientation-
preserving subgroup of Aut(M) for some orientable ET map M . It is not difficult to show
that there are no such maps in classes 2P , 2ex, 2∗ex, 2P ex, 4, 4∗, 5, 5∗ and 5P (mainly
because the abelian groups involved admit outer automorphisms that put the map into a
higher class), but there exist infinite families of examples in the other five classes, namely
1, 2, 2∗, 3 and 4P .

In class 1 these maps have just one or two vertices, and just one or two faces, with
multiple edges. In class 4P the maps have (|V |, |E|, |F |) = (k, 2kn, k) for arbitrary integers
k ≥ 1 and n ≥ 2 or 3, but again none of them is simple. In class 2, some of the maps are
simple but all have non-simple dual, while in class 2∗, all of the maps are non-simple (but
some have simple dual). The only class containing non-degenerate orientable ET maps is
class 3, and in these case there are four infinite families of examples with (|V |, |E|, |F |) =
(4k + 4, 16k, 4k + 4) and Aut(M) ∼= C2k C2 × C2 for all k ≥ 2, with two infinite families
containing self-dual examples, and the other two consisting of duals of each other.

Details are available from the first or third author upon request.

A major contribution in the non-abelian case for the above question was made by Gareth
Jones in [13], where he considered this for non-abelian simple groups, the symmetric groups
Sn, soluble groups, and nilpotent groups. In particular, he showed in [13, Theorem 1.2]
that a given non-abelian simple group is the automorphism group of some ET map of a
given class unless it appears in a list of known exceptions, copied in Table 2 below.

Class Non-abelian simple groups that do not occur

1 L3(q), U3(q), L4(2
e), U4(3), U5(2), A6, A7, M11, M22, M23, McL

2, 2∗, 2P U3(3)

2ex, 2∗ex, 2P ex L2(q), L3(q), U3(q), A7

3 –

4, 4∗, 4P –

5, 5∗, 5P L2(q)

Table 2: Non-occurrences of non-abelian simple groups for a given class of ET map

Note that in 11 of the 14 classes (all except 2P ex, 5 and 5∗), the maps are non-orientable,
for the obvious reason that a non-abelian simple group has no subgroup of index 2.

It follows easily from Table 2 that the smallest simple group that occurs for all 14 classes
is the Suzuki group Sz(8), of order 29120. In fact, Sz(8) is the automorphism group of
some non-degenerate ET map in every one of the 14 classes; details are available from the
first author on request. The same holds for the next smallest examples, which are M12, J1
and A9, and in particular, A5, A6, A7 and A8 do not occur in this way.

Indeed by [13, Theorem 1.1], the alternating group An of degree n is the automorphism
group of some ET map in any given class, except in the following cases: n ∈ {3, 4, 6, 7, 8}
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for class 1; n ∈ {1, 2, 3, 4} for classes 2, 2∗, 2P and 3; n ∈ {1, 2, 3, 4, 5, 6, 7} for classes 2ex,
2∗ex and 2P ex; n ∈ {1, 2, 3} for classes 4, 4∗ and 4P ; and n ∈ {1, 2, 3, 4, 5, 6} for classes
5, 5∗ and 5P . In particular, A9 is the smallest alternating group that occurs for all 14
classes. Moreover, non-degenerate ET maps occur in all classes for A9 (and A10); details
are available from the first author on request.

Similarly, by [13, Theorem 1.1], the symmetric group Sn of degree n is the automorphism
group of some ET map in any given class, except in the following cases: n = 1 for classes
2, 2∗, 2P , 3, 4, 4∗ and 4P ; and n ∈ {1, 2, 3, 4, 5} for classes 2ex, 2∗ex, 2P ex, 5, 5∗ and 5P .
In particular, S6 is the smallest symmetric group that occurs for all 14 classes. Moreover,
non-degenerate ET maps occur in all classes for S6 (and S7, S8, S9 and S10); details are
available from the first author on request.

Incidentally, the symmetric group S6 is the smallest insoluble group that occurs as the
automorphism group of some ET map in every one of the 14 classes, and again, the same
holds under the assumption that the map is simple or non-degenerate.

Finally, we have the following:

Theorem 8.1. The smallest finite group G that occurs as the automorphism group of some
ET map in every one of the 14 classes is the 8654th group of order 576 (in the database of
all groups of order up to 2000).

Proof. Computations using Magma produce maps of each class for this group, indeed
non-degenerate maps of all 14 classes, and these are summarised in Table 11, with defining
relations for their automorphism groups given in Table 12, in the Appendix. The same
computations show that no group of smaller or equal order (necessarily divisible by 4) has
the required property. �

Note that just one of the maps given in the table is non-orientable, namely the one in
class 2P . There are also orientable examples in class 2P with simple underlying graph, but
none with simple dual. Again, further details about these maps are available from the first
author on request.

9 Some final remarks and questions

Answers always raise more questions. We ask a few of them for this topic below.

For each of the 14 classes of ET maps, define the non-degenerate genus spectrum for
that class to be the set of genera of orientable surfaces that carry a non-degenerate map
of that class. By our Theorem 5.1 (and knowledge of ET maps of genus 0 and 1), the
non-degenerate genus spectrum for class 2 (and therefore also 2∗) is the set of all non-
negative integers. The corresponding question for classes 1 (regular maps) and/or 2P ex
(chiral maps), however, is a challenging open question (see [8, 7]).
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Indeed, questions about genus spectra questions are notoriously difficult. Another
example comes from group actions. Given a finite group G, its symmetric genus σ(G) is
defined as the smallest non-negative integer g for which G has a faithful action on some
compact Riemann surface of genus g. Much but not all of the spectrum for σ is known;
see [9]. In contrast, the strong symmetric genus σo(G) is the smallest g such that G has
a faithful action on such a surface of genus g, preserving orientation, and the spectrum
for σo contains all non-negative integers, by a theorem of May and Zimmerman in [15],
which incidentally uses the groups Ck×Dm in a similar way to the way we used the groups
Dk ×Dm in proving Theorem 5.1. The following question(s) could constitute a long-term
project:

Question 9.1. What are the genus spectra for the 14 classes of ET maps, under the
restriction to non-degenerate maps, or to simple maps, or to ET maps in general?

The symmetric groups Sn play a prominent role in [18], producing ET maps in each
class, but with restrictions on the congruence class n modulo 12. Those restrictions are
removed in [13], where it is also shown that Sn realises all classes for every n ≥ 6, and An

realises all classes for every n ≥ 9.

Similarly, the first author of this paper showed in [3] that Sn and An realise the upper
bounds |A|maxo and |A|maxnono given in Table 1 for class 1 (and hence also for classes 2 and
2∗), for all but finitely many n, and many years later the same in [2, Theorem 6.3] for An

for class 2P ex (and hence also classes 5 and 5∗), again for all but finitely many n.

Question 9.2. For which other classes do An and/or Sn realise the upper bounds |A|maxo

and |A|maxnono in Table 1, possibly with restrictions on n?

Edge-transitive maps on non-orientable surfaces have been largely ignored in the liter-
ature. Even in this paper, most of our theorems, examples and tables concern maps on
orientable surfaces, and yet there should be non-orientable versions:

Question 9.3. What are the analogues of Theorems 4.1, 5.1, 5.2, 6.1 and 7.1 for non-
orientable ET maps (in the 11 classes other than 2P ex, 5 and 5∗)? How might the infor-
mation given in the tables in the Appendix differ for non-orientable maps?

Finally, for a map on a non-orientable surface S with automorphism group G, a stan-
dard technique is to pass to the orientable double cover of S, where G × C2 acts, with
G preserving orientation and C2 orientation-reversing and fixed-point free (in effect, an
antipodal symmetry). If the given map (on S) is edge-transitive, then so is the lifted map
under the group G×C2. On the other hand, the lifted map may actually be ‘unstable’, in
that it has a symmetry group larger than G×C2, which means that the lifted map may be
in a different class, with larger edge-stabiliser. Many examples of this phenomenon have
been provided recently by Gareth Jones [14].

Question 9.4. How common is instability for edge-transitive maps on non-orientable sur-
faces?
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Appendix

Below are the tables mentioned in the proofs of Theorems 5.1, 5.2, 6.1, 7.1 and 4.1. Note
that there are two tables for each theorem: the first gives details about a map from each of
the relevant classes, and the second gives defining relations for the automorphism groups
of those maps (in terms of the canonical generators for the relevant universal group).

The following notation is used in the odd-numbered tables. First ‘SD’ and ‘NSD’ indicate
that the map is self-dual or non-self-dual, respectively. (We do not indicate ‘NSD’ in the
obvious cases, where |V | 6= |F |.) Next, Cn, Dn, An and Sn denote the cyclic group of
order n, the dihedral group of degree n (and order 2n), and the alternating and symmetric
groups of degree n, while Group(n, k) denotes the k th group in the database of all groups
of order up to 2000 (except 1024), available in the Magma system [1]. Finally, V4 denotes
the direct product C2×C2 (the Sylow 2-subgroup of A4), while KoH denotes a semi-direct
product with kernel K and complement H, and Cnok Cm denotes the semi-direct product
〈 a, b | am = bn = 1, a−1ba = bk 〉.

Class |V | |E| |F | Genus |A| Au, Av Af , Ag Comments

1 4 6 4 0 24 D3 D3 Aut(M) ∼= S4

2P 8 16 8 1 32 V4 V4 Aut(M) ∼= Group(32, 43)

2P ex 5 10 5 1 20 C4 C4 Aut(M) ∼= C5 o2 C4

3 12 32 12 5 32 D4, V4 D4, V4 Aut(M) ∼= D4 × V4
4P 12 48 12 13 48 V4 V4 Aut(M) ∼= A4 × V4
5P 14 42 14 8 42 C3 C3 Aut(M) ∼= C7 o2 C6

Table 3: Non-degenerate self-dual maps with the smallest number of edges in six of the 14
classes

Class Defining relations for A = Aut(M)

1 x2 = y2 = z2 = (xz)2 = (xy)3 = (yz)3 = 1

2P x2 = y2 = z2 = (yz)2 = (xz)4 = (xyxz)2 = (xy)3zxzy = 1

2P ex x2 = y4 = xyxy2xy−1 = 1

3 x2 = y2 = z2 = w2 = (xz)2 = (yz)2 = (yw)2 = (zw)2 = (xy)4 = xywxwy = 1

4P x2 = y2 = (xy)2 = (xz)3 = [x, z]2 = [xy, z] = 1

5P x6 = xy2x2y−1 = xy−2x2y = 1

Table 4: Defining relations for the automorphism groups of the maps in Table 3
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Class |F | Genus |Aut(M)| Au, Av Af , Ag Comments

1 16 105 1024 D16 D32 Aut(M) not in database

2 128 49 512 D16, D16 V4 Aut(M) ∼= Group(512, 30471)

2∗ 80 201 512 D8 D16, D4 Aut(M) ∼= Group(512, 32917)

2P 32 225 512 D8 D8 SD, Aut(M) ∼= Group(512, 32917)

2ex 16 105 512 D8 C32 Aut(M) ∼= Group(512, 1056)

2∗ex 16 105 512 C16 D16 Aut(M) ∼= Group(512, 955)

2P ex 16 105 512 C16 C32 Aut(M) ∼= Group(512, 955)

3 32 97 256 D8, D8 D8, D8 SD, Aut(M) ∼= Group(256, 722)

4 32 97 256 D8, C16 D4 Aut(M) ∼= Group(256, 56)

4∗ 48 89 256 D4 D4, C16 Aut(M) ∼= Group(256, 95)

4P 32 97 256 D4 D4 SD, Aut(M) ∼= Group(256, 95)

5 16 105 256 C16, C16 C16 Aut(M) ∼= Group(256, 41)

5∗ 96 65 256 C8 C4, C8 Aut(M) ∼= Group(256, 117)

5P 32 97 256 C8 C8 SD, Aut(M) ∼= Group(256, 117)

Table 5: ET maps of all 14 types with underlying graph K16,16

Class Defining relations for A = Aut(M)

1 x2 = y2 = z2 = [x, z] = (xyxzyzy)2 = (xyxyxyxyz)2 = (xy)13zyxyzy = (yz)16 = 1

2 x2 = y2 = z2 = (xz)2 = (xyxyz)2 = (xy)13zyxyzy = (yz)16 = 1

2∗ x2 = y2 = z2 = (xz)4 = (yz)8 = xyxyxzyxyz = xyxzxzyzxz = 1

2P Same defining relations as for class 2∗ above

2ex x2 = (xy4)2 = (xy−2)2(xy2)2 = (xyxyxy−2)2 = xyxyxy−1xyxy−1xyxy−1xy3 = 1

2∗ex x2 = xy−1xyxy−3xy3 = (xy2)2(xy−2)2 = y16 = 1

2P ex x2 = xy4xy12 = xyxy−2xy3xy−2 = xyxy−4xy−1xy4 = xy−1xy(xy−1)3(xy)3 = 1

3 x2 = y2 = z2 = w2 = (xz)2 = (yw)4 = (yz)8 = (xwy)2 = (xy)2(xw)2 = (xy)2zywz = 1

4 x2 = y2 = xyxzxz−1 = xyxz−1xz = xyxyzyzyz−1yz−1y = z16 = 1

4∗ x2 = y2 = (xy)4 = xyzxyz−1 = xz(yz)3 = xz−1xz−2xzxz2 = (xy)2z8 = 1

4P Same defining relations as for class 4∗ above

5 xyx3y−1 = x−1y−1x5y = y16 = 1

5∗ x4 = y8 = [x2, y2] = xyxy−1x−1yxy−1 = x−1y−3(xy)3 = 1

5P Same defining relations as for class 5∗ above

Table 6: Defining relations for the automorphism groups of the maps in Table 5
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Class |V | |E| |F | |Aut(M)| Au, Av Af , Ag Comments

1 2 35 7 140 D35 D10 Aut(M) ∼= D5 ×D7

2 2 29 1 58 D29, D29 D29 Aut(M) ∼= D29

2∗ 1 29 2 58 D29 D29, D29 Map dual to the one above

2P 2 30 2 60 D15 D15 SD, Aut(M) ∼= D15 × C2

2ex 4 40 10 80 D10 C8 Aut(M) ∼= C5 o (C8o5C2)

2∗ex 10 40 4 80 C8 D10 Map dual to the one above

2P ex 26 78 26 156 C6 C6 NSD, Aut(M) ∼= (C13o10C6)× C2

3 2 30 2 30 D15, D15 D15, D15 SD, Aut(M) ∼= D15

4 12 40 2 40 D10, C4 D10 Aut(M) ∼= D5 × C4

4∗ 2 40 12 40 D10 D10, C4 Map dual to the one above

4P 13 52 13 52 V4 V4 SD, Aut(M) ∼= C26 × C2

5 9 40 5 40 C8, C10 C8 Aut(M) ∼= C5 o2 C8

5∗ 5 40 9 40 C8 C8, C10 Map dual to the one above

5P 26 78 26 78 C3 C3 SD, Aut(M) ∼= C13 o3 C6

Table 7: ET maps of all 14 types on the orientable surface of genus 14

Class Defining relations for A = Aut(M)

1 x2 = y2 = z2 = (xz)2 = (xyxyz)2 = (xyz)2(yz)5 = 1

2 x2 = y2 = z2 = xzyz = (xy)14xz = 1

2∗ x2 = y2 = z2 = yzxz = (yx)14yz = 1

2P x2 = y2 = z2 = (xyz)2 = (xz)2(yz)3 = (xy)6 = 1

2ex x2 = y8 = [x, y4] = (xy)4y4 = xyxy2xy2xy−1 = 1

2∗ex Same defining relations as for class 2ex above

2P ex x2 = y6 = (xyxy2)2 = (xy)3(xy−1)3 = xy−2xy2xy3xy3 = 1

3 x2 = y2 = z2 = w2 = xyxzwy = xyxwxw = (xz)3 = 1

4 x2 = y2 = z4 = [x, z] = [xz, y] = (xy)3(zy)2 = 1

4∗ Same defining relations as for class 4 above

4P x2 = y2 = (xy)2 = [x, z] = [y, z] = yz13 = 1

5 x2yx−2y = xy3x−1y−1 = xy−1x3y2 = 1

5∗ Same defining relations as for class 5 above

5P x6 = (xy)3 = (xy−1)3 = xy−1x−1y3 = 1

Table 8: Defining relations for the automorphism groups of the maps in Table 7
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Class |V | |E| |F | |Aut(M)| Au, Av Af , Ag Comments

1 32 96 32 384 D6 D6 SD, Aut(M) ∼= Group(384, 5602)

2 40 96 24 192 D4, D6 D4 Aut(M) ∼= Group(192, 591)

2∗ 24 96 40 192 D4 D4, D6 Map dual to the one above

2P 16 64 16 128 D4 D4 SD, Aut(M) ∼= Group(128, 332)

2ex 32 128 64 256 D4 C4 Aut(M) ∼= Group(256, 511)

2∗ex 64 128 32 256 C4 D4 Map dual to the one above

2P ex 32 96 32 192 C6 C6 SD, Aut(M) ∼= Group(192, 1008)

3 16 64 16 64 V4, V4 V4, V4 Aut(M) ∼= Group(64, 73)

4 40 96 24 96 V4, C6 V4 Aut(M) ∼= Group(96, 118)

4∗ 24 96 40 96 V4 V4, C6 Map dual to the one above

4P 16 64 16 64 V4 V4 SD, Aut(M) ∼= Group(64, 42)

5 48 96 16 96 C3, C6 C6 Aut(M) ∼= Group(96, 71)

5∗ 16 96 48 96 C6 C3, C6 Map dual to the one above

5P 16 64 16 64 C4 C4 SD, Aut(M) ∼= Group(64, 46)

Table 9: Non-degenerate ET maps of all 14 types on the orientable surface of genus 17

Class Defining relations for A = Aut(M)

1 x2 = y2 = z2 = (xz)2 = (xy)6 = (xyzy)3 = (yz)6 = [xyxyx, zyzyz] = 1

2 x2 = y2 = z2 = (xy)4 = (xz)4 = (yz)6 = (xyz)2(xzy)2 = x(yz)2x(zy)2 = 1

2∗ x2 = y2 = z2 = (xy)4 = (yz)4 = (xz)6 = (yxz)2(yzx)2 = y(xz)2y(zx)2 = 1

2P x2 = y2 = z2 = (xz)4 = (yz)4 = (xy)3zxzy = xyxzyz(xyz)2 = 1

2ex x2 = y4 = (xy)2(xy2)2(xy−1)2 = 1

2∗ex Same defining relations as for class 2ex above

2P ex x2 = y6 = (xy3)4 = xyxy2xy−2xy−1 = xyxy−1xy−1xy2xyxy−2 = 1

3 x2 = y2 = z2 = w2 = (yw)2 = (xy)4 = (yz)4 = xyzxzw = yzywzw = 1

4 x2 = y2 = z6 = (xy)2 = [x, z2] = (yz2)2 = (xzyz)2 = (yz)2(yz−1)2

= xzxz−1xz−1yxz−1y = 1

4∗ Same defining relations as for class 4 above

4P x2 = y2 = xyz−1xyz = xyz−1yz−1y = xyxz3xz−1 = 1

5 x3 = y6 = (xy)4 = xy−1x−1yx−1y2 = xy2x−1y−1xy3 = 1

5∗ Same defining relations as for class 5 above

5P x2y−1x2y = x−1y−1xy3 = 1

Table 10: Defining relations for the automorphism groups of the maps in Table 9
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Class |V | |E| |F | Genus Au, Av Af , Ag Comments

1 48 144 48 25 D6 D6 NSD, Orientable

2 120 288 48 61 D4, D6 D6 Orientable

2∗ 48 288 120 61 D6 D4, D6 Map dual to the one above

2P 48 288 48 97 D6 D6 Non-orientable

2ex 48 288 96 73 D6 C6 Orientable

2∗ex 96 288 48 73 C6 D6 Map dual to the one above

2P ex 96 288 96 49 C6 C6 SD, Orientable

3 240 576 120 109 V4, D3 D6, D4 Orientable

4 240 576 144 97 D6, C3 V4 Orientable

4∗ 144 576 240 97 V4 D6, C3 Map dual to the one above

4P 72 576 144 181 D4 V4 Orientable

5 240 576 96 121 C4, C6 C6 Orientable

5∗ 96 576 240 121 C6 C4, C6 Map dual to the one above

5P 96 576 96 193 C6 C6 SD, Orientable

Table 11: Non-degenerate ET maps of all 14 types with Aut(M) ∼= Group(576, 8654)

Class Defining relations for A = Aut(M)

1 x2 = y2 = z2 = (xz)2 = (xy)6 = (yz)6 = (xyxyzy)3 = (xyz)6 = (xyzy)2xzyzyxyzyz = 1

2 x2 = y2 = z2 = (xy)4 = (xz)6 = (yz)6 = (xyxz)3 = xyzyxyzyxzxz = 1

2∗ x2 = y2 = z2 = (xy)4 = (xz)6 = (yz)6 = (xyxz)3 = xyzyxyzyxzxz = 1

2P x2 = y2 = z2 = (zx)3 = (xy)4 = (yz)6 = (xzxyzy)3 = xyxzyxzyzxyz = 1

2ex x2 = y6 = (xy)6 = (xy2)4 = (xy)2(xy−1)2(xy3)2 = 1

2∗ex Same defining relations as for class 2ex above

2P ex Same defining relations as for class 2ex above

3 x2 = y2 = z2 = w2 = (xy)2 = (xz)2 = (wz)3 = (yz)4 = (xzwyw)2 = (xwxwz)2

= xyzwxzywyzyw = xwyzwzyzwzyw = 1

4 x2 = y2 = z3 = (yz)4 = (xz−1yz)2 = (xz−1)2(xz)2 = xyxz−1xyxzyz−1y = 1

4∗ Same defining relations as for class 4 above

4P x2 = y2 = z6 = (xy)2 = (yz)4 = [y, z3] = (xzyz−1)2 = xyzyz−2xzxz−1 = (xz3)2xz−3 = 1

5 x4 = y6 = x−1yx−2yxy2 = [x2, y]2 = (xy)4x−1y−1xy−1 = 1

5∗ Same defining relations as for class 5 above

5P Same defining relations as for class 5 above

Table 12: Defining relations for the automorphism groups of the maps in Table 11
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