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Abstract

Musculoskeletal models provide insights into muscle structures, and allow for in-
vestigations of muscle function during walking based on data from gait analysis.
The function of muscles during walking is of special interest in a clinical con-
text if musculoskeletal impairments result in pathological gait. Skeletal muscles
in clinical gait analysis have commonly been modelled as series of straight-line
segments with no consideration for their 3D architecture. However, experimen-
tal and computational results suggest that muscle function is predetermined by
anatomical features such as cross-sectional areas and fibre lengths. The validity
of straight-line models in gait analysis has been disputed, especially for mus-
cles with complex geometries and broad areas of attachment. The present PhD
study has built on a combined effort between the Auckland Bioengineering In-
stitute and the Department of Surgery, University of Auckland, for introducing
anatomically-based, subject-specific modelling techniques into clinical gait anal-
ysis. In particular, the potential use of anatomically-based models in research
related to Cerebral Palsy (CP) was explored. Theoretical background knowledge
needed to be acquired in three areas in order to reach this goal: (i) anatomically-
based, subject-specific modelling, (ii) clinical gait analysis and (iii) finite de-
formation of soft-tissue muscle models. The outcome of the present work has
demonstrated that muscle volumes and muscle lengths in the lower limbs of chil-
dren with CP are significantly altered compared to typically developing children,
that the Host Mesh Fitting technique provides a valid and efficient method for
deriving muscle soft-tissue deformations based on kinematic data from gait anal-
ysis, that the calculation of muscle-tendon lengths during walking is significantly
affected by errors from optical motion capture and that interactive, web-based
visualisation of musculoskeletal models could become a beneficial resource in the
teaching of gait. At this stage, the application of anatomically-based, subject-
specific models to clinical gait analysis is still considered visionary, requiring an
interdisciplinary research effort for further advancing modelling and measure-
ment techniques. Despite remaining challenges, the present work has highlighted
the potential of anatomically-based, subject-specific modelling for assisting in
the assessment and management of children with CP, and is considered the first
step towards the next generation of musculoskeletal models in gait research.
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