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Abstract 

 

Antioxidants are commonly used as preservatives for protecting foodstuffs from 

oxidation. Packaging is believed not only to increase the economic value of products but 

also improve their qualities. Conducting polymers (CPs), such as soluble polyaniline and 

soluble polypyrrole, have been reported to exhibit antioxidant activity. Development of 

conducting polymer containing packaging materials, with antioxidant properties, is 

therefore the focus of this project. Polypyrrole (PPy), polyaniline (PANI) and poly (3,4-

ethylenedioxythiophene) (PEDOT) powders were prepared using various amounts of the 

oxidant ammonium persulfate (APS). Spectroscopic methods, including IR and Raman, 

were used to identify the structures of the CP powders synthesized at various APS levels. 

It was found that a high level of APS led to overoxidation of the CP powders. The 

conductivity and doping level of the CP powders formed using higher concentrations of 

the APS oxidant were found to be lower than those prepared using low concentrations of 

APS, which might be due to overoxidation, damaging the CP structures during the 

preparation processes. 

 

The antioxidant activity of PPy, PANI and PEDOT powders were evaluated using the 

DPPH and ABTS assays. The results showed that CP powders synthesized at a high 

concentration of APS presented lower free radical quenching effects, likely also due to 

overoxidation. The optimum initial ratio of APS to monomer for the synthesis of CP 

powders with a superior DPPH free radical scavenging was found to be around 0.5 for 

PPy, 1.5 for PANI and 1.0 for PEDOT, and the antioxidant ranking of the CP powders 

 viii



 ix

was as follows: PANI1.5 > PPy0.5 > PEDOT1.0. The reduced forms of PPy, PANI and 

PEDOT exhibited better radical scavenging abilities than the as-prepared powders. PANI 

nanotubes, synthesized at high pH, was also found to exhibit stronger free radical 

scavenging activity than the regular granular PANI formed under acidic conditions. 

Structural changes of PANI powders after reaction with free radicals were observed in IR 

and XPS spectra, showing an increase in the ratio of imine (C=N) to amine (C-N) units. 

 

PANI EC films were prepared using a solution method and the antioxidant capacity of the 

PANI EC films are examined using the ORAC assay. The results showed efficient 

peroxyl free radical scavenging activity of the PANI EC films. A very good correlation 

between the ORAC response and the area of tested film was also observed, indicating a 

homogenous dispersion of active PANI powder across the film. Similar to the results 

obtained from the DPPH and ABTS assays, reduced PANI presented greater peroxyl 

radical scavenging activity than the as-prepared powders. The influence of the PANI EC 

films on the oxidation of Ropufa oil was determined by peroxide value (PV) 

measurement. After incubation at 60oC for several days, the oil stored in the presence of 

the PANI EC film was found to exhibit a lower PV than in the absence of a CP film, 

indicating that the conducting polymer is effective in inhibiting oxidation of fish oil.  
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a) y = 0.859x-1.05, R2 = 0.9850   b) y = 0.446x-2.39,  R2 = 0.9968 

Figure 5.15 Cyclic voltammograms for the polymerization of (A) PANI in   150 

0.1 M H2SO4, and (B) PPy in 0.1M NaHSO4. Inserts: the first three  

cycles of PPy and PANI. 

Figure 5.16 ORAC results of PANI PE film (10% PANI): (A) relative fluorescence 152  

versus time; and (B) ORAC area versus PANI PE film area. 

Figure 6.1  PV of Ropufa oil under accelerated storage conditions (60oC).   158 
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Figure 6.2  Peroxide value (PV) of Ropufa oil at 60oC with (a) no film,   160 

(b) PANIEC film (9 %), (c) PANIEC film (17 %) (n = 3). 

Figure 6.3  Peroxide value of Ropufa oil in the presence of various amounts of  161 

the antioxidant BHT after 8 days of storage at 60oC.  

y = 243 – 7.21x, R2 = 0.9567 

Figure 6.4  Peroxide value (PV) of Ropufa oil at 40oC with (▲) no film,   162 

(•) PANIEC film (9 %), (c) PANIEC film (17 %) (n = 3). 

Figure 6.5  Peroxide value (PV) of 3.0 g of Ropufa oil with (•) nil and   163 

(▲) 4.5 mg of α-tocopherol added (n = 3). 

Figure 6.6  Peroxide value (PV) of avocado oil at 60oC in presence of    164 

(▲) nil and (•) PANI EC film (9 %) (n = 3). 

 

 

 

 

 

 

 

  

 

 

 

 



LIST OF SYMBOLS AND ABBREVIATIONS 
 
 
 
A    amps 

A•     antioxidant radical 

AAPH    2-2’-azobis(2-amidinopropane) dihydrochloride 

ABTS    2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) 

                                                diammonium salt 

ABTS•+   ABTS radical cation 

ABTSH+    reduced ABTS•+ 

AH         antioxidant (with proton attached)  

ANI    aniline 

APS     ammonium persulfate 

AUC     under the ORAC fluorescence decay curve 

B    benzenoid 

BHT     butylated hydroxytoluene 

CP    conducting polymer 

CPS    counts per second                                                                  

CV     cyclic voltammetry 

DBSA     dodecylbenzenesulfonic acid 

DHA     docosahexaenoic acid 

DMSO    dimethyl sulfoxide 

DPPH    2,2’-diphenyl-1-picrylhydrazyl 

DPPH•    DPPH free radical 

 xxiii



e-    electron 

EC     ethyl cellulose 

EDOT    3,4-ethylenedioxythiophene 

EDXS     energy-dispersive X-ray spectrometry 

EPA     eicosapentaenoic acid 

ESR     electron spin resonance spectroscopy 

ET     electron transfer 

eV    electron volt 

FH     fluorescein (with proton attached) 

FTIR    fourier transformation infrared spectroscopy 

GC     gas chromatography 

H+    proton 

HAT     hydrogen atom transfer 

HIPEF    high-intensity pulsed electric fields 

HX-Fe+3   metmyoglobin 

ITO     Indium tin oxide electrode 

LH     lipid (with proton attached) 

mS    milli-Siemens 

mT    milli-Tesla 

ORAC    oxygen radical absorbance capacity 

β-PE    β-phycoerythrin 

PANI     polyaniline 

PANI1.5   PANI prepared with a ratio of APS to ANI of 1.5 to 1 

 xxiv



PANI(OX)EC   PANI EC composite prepared by polymerizing aniline 

       in a EC matrix with presence of APS oxidant  

PE     polyethylene 

PEDOT    poly (3,4-ethylenedioxythiophene) 

PEDOT1.0    PEDOT prepared with a ratio of APS to EDOT of 1.0 to 1 

PNMPy    polyN-methylpyrrole 

PPy     polypyrrole 

PPy0.5    PPy prepared with a ratio of APS to Py of 0.5 to 1  

PPya     PPy made with addition of acid 

PV     peroxide value 

Py    pyrrole 

Q    quinoid 

RedPEDOT1.0  PEDOT1.0 reduced with hydrazine 

RedPANI1.5   PANI1.5 reduced with hydrazine 

RedPPy0.5   PPy0.5 reduced with hydrazine 

R2N2     AAPH 

RH     organic substrate (with proton attached) 

ROO•    peroxyl radicals 

SEM     scanning electron microscopy 

SHE    standard hydrogen electrode 

V    volt 

X•      oxidizing agent 

•X-[Fe+4 = O]   ferrylmyoglobin 
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 xxvi

XPS     X-Ray photoelectron spectroscopy 


