

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

DEVELOPMENT OF CONDUCTING POLYMER-BASED ANTIOXIDANT PACKAGING MATERIALS

CHYONG FANG HSU

DEVELOPMENT OF CONDUCTING POLYMER-BASED ANTIOXIDANT PACKAGING MATERIALS

CHYONG FANG HSU

This thesis is submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Food Science, The University of Auckland, 2009

CONTENTS

CONTENTS	i
ABSTRACT	viii
ACKNOWLEDGEMENT	X
LIST OF SCHEMES	xi
LIST OF TABLES	xiii
LIST OF FIGURE	XV
LIST OF SYMBOLS AND ABBREVIATIONS	xxiii

Chapter 1

Introduction

1.1	Antioxidants	1
1.2	Determination of antioxidant capacity	3
1.3	Conducting polymers	11
1.4	Conducting polymer composites	18
1.5	Packaging	20
1.6	Objectives of this thesis	21

Experimental Methods

2.1	Introduction	27
2.2	Materials	28
2.3	Polymerization of polypyrrole, polyaniline and	30
	poly(3,4-ethylenedioxythiophene) powders	
2.4	Reduction of PPy, PANI and PEDOT powders and	30
	preparation of dedoped PANI powder	
2.5	Elemental analysis	31
2.6	Preparation of PANI EC film	31
	2.6.1 Solution blending of EC and previously prepared PANI powders	31
	2.6.2 Reduction of PANI EC film	32
	2.6.3 Preparation of an in situ oxidatively polymerized PANI(OX)EC film	32
2.7	Preparation of PANI PE film	33
2.8	Preparation of PANI and PPy films electrochemically	33
2.9	Evaluation of antioxidant capacity of CPs powders and films	34
	2.9.1 DPPH assay	34
	2.9.2 ABTS assay	34
	2.9.3 ORAC-FH assay	36
2.10) Characterization of polypyrrole, polyaniline and PEDOT	36
	2.10.1 SEM images	36
	2.10.2 Spectroscopy	37
	2.10.3 Conductivity	37

2.10.4 Cyclic Voltammograms of PANI powders	38
2.11 Mechanical properties of PANI films	38
2.12 Measurement of the peroxide value (PV) of oil samples	39
2.13 Determination of fatty acids in fish oil	39
2.13.1 Preparation of the GC internal standard	40
2.13.2 Preparation of saponifying agent	40
2.13.3 Preparation of methylating agent	40

DPPH scavenging activity of conducting polymers

3.1	Introduction	41
3.2	Experimental	41
3.3	Development of a DPPH assay for conducting polymer powders	42
3.4	Antioxidant activity of PPy	45
	3.4.1 Polymerization of PPy	45
	3.4.2 Spectroscopic Characterisation	50
	3.4.3 DPPH free radical scavenging activity of PPy powders	56
	3.4.4 Properties of fully reduced PPy powders	58
	3.4.5 Comparison of DPPH [•] scavenging activity of PPy and PNMPy	62
3.5	DPPH scavenging activity of PANI	64
	3.5.1 Polymerization of PANI	64
	3.5.2 SEM morphology of PANI	67
	3.5.3 Cyclic Voltammetric investigation	70

3.7	Conclusions	92
	3.6.5 Conductivity of the PEDOT samples	91
	3.6.4 DPPH [•] scavenging activity	90
	3.6.3 FTIR spectroscopy	88
	3.6.2 SEM images	87
	3.6.1 Polymerization of PEDOT	85
3.6	DPPH [•] scavenging activity of poly (3,4-ethylenedioxythiophene)	85
	3.5.8 Structural changes in PANI upon reaction with DPPH	79
	3.5.7 DPPH [•] scavenging activity of PANI powders	77
	3.5.6 ESR spectroscopy	75
	3.5.5 Raman spectroscopy	74
	3.5.4 FTIR spectroscopy	73

ABTS** scavenging activity of polypyrrole, polyaniline and

poly(3,4-ethylenedioxythiophene)

4.1	Introduction	96
4.2	Experimental	97
	4.2.1 ABTS ^{•+} radical scavenging activity of PPy 0.5, PANI 1.5 and PEDOT 1.0	97
	4.2.2 Spectroscopic characterization of the conducting polymer powders	98
	4.2.3 Cyclic voltammetry (CV) and UV- visible characterisation of $ABTS^{\bullet^+}$ and	98
	DPPH [•] in an ethanolic solution	

4.3	Results and discussion	100
	4.3.1 Development of an ABTS assay for conducting polymer powders	100
	4.3.2 ABTS ^{•+} scavenging activity of conducting polymer powders	103
	4.3.3 Comparison of DPPH• and ABTS•+ scavenging capacity of the	111
	conducting polymers	
	4.3.4 Spectroscopic characterization of PANI before and after reaction with	113
	ABTS ^{•+} and DPPH [•]	
	4.3.5 Comparison of ABTS ^{•+} and DPPH [•] oxidant strength using cyclic	117
	voltammetry and UV-visible spectrometry	
4.4	Conclusions	123

Antioxidant capacity of a conducting polymer – ethyl cellulose

film

5.1	Introduction	124
5.2	Experimental	124
5.3	Results and Discussion	125
	5.3.1 Development of the PANI EC films	125
	5.3.2 Morphological study	126
	5.3.3 Development of an ORAC assay for PANI-containing films	128
	5.3.4 Peroxyl free radical scavenging activity of PANI EC films	130

	5.3.5 Characterization of PANI powders by XPS and IR	138
	5.3.6 Peroxyl free radical scavenging capacity of PANI EC films with different	141
	PANI contents	
	5.3.7 Mechanical properties of the PANI EC films	142
	5.3.8 Peroxyl radical scavenging activity of reduced PANI in PANI EC films	144
	5.3.9 Peroxyl radical scavenging activity of the in situ oxidatively polymerized	146
	PANI(OX)EC film	
	5.3.10 Peroxyl free radical scavenging of pure PANI and of PPy films prepared	148
	electrochemically on a stainless steel working electrode	
	5.3.11 Peroxyl free radical scavenging activity of PANI PE film	151
5.4	Conclusions	153

The application of the conducting polymer films in food

packaging

6.1	Introduction	155
6.2	Experimental	155
	6.2.1 Measurement of peroxide value (PV)	155
	6.2.2 Determination of DHA and EPA in fish oil using gas chromatography	156
	6.2.3 Statistical Analysis	156
6.3	Results and discussion	156
	6.3.1 Oxidation of lipid	156
	6.3.2 The influence of PANI EC film on oxidation of Ropufa oil	158

6.4	Conclusions	167
	6.3.5 Fatty acid composition of Ropufa oil	164
	6.3.4 The influence of PANI EC film on oxidation of avocado oil	163
	6.3.3 Influence of α -tocopherol on the oxidation of Ropufa oil	162

Conclusions and future work

7.1 General conclusions	168
7.2 Future research	174

References	176
	110

Abstract

Antioxidants are commonly used as preservatives for protecting foodstuffs from oxidation. Packaging is believed not only to increase the economic value of products but also improve their qualities. Conducting polymers (CPs), such as soluble polyaniline and soluble polypyrrole, have been reported to exhibit antioxidant activity. Development of conducting polymer containing packaging materials, with antioxidant properties, is therefore the focus of this project. Polypyrrole (PPy), polyaniline (PANI) and poly (3,4ethylenedioxythiophene) (PEDOT) powders were prepared using various amounts of the oxidant ammonium persulfate (APS). Spectroscopic methods, including IR and Raman, were used to identify the structures of the CP powders synthesized at various APS levels. It was found that a high level of APS led to overoxidation of the CP powders. The conductivity and doping level of the CP powders formed using higher concentrations of the APS oxidant were found to be lower than those prepared using low concentrations of APS, which might be due to overoxidation, damaging the CP structures during the preparation processes.

The antioxidant activity of PPy, PANI and PEDOT powders were evaluated using the DPPH and ABTS assays. The results showed that CP powders synthesized at a high concentration of APS presented lower free radical quenching effects, likely also due to overoxidation. The optimum initial ratio of APS to monomer for the synthesis of CP powders with a superior DPPH free radical scavenging was found to be around 0.5 for PPy, 1.5 for PANI and 1.0 for PEDOT, and the antioxidant ranking of the CP powders

was as follows: PANI1.5 > PPy0.5 > PEDOT1.0. The reduced forms of PPy, PANI and PEDOT exhibited better radical scavenging abilities than the as-prepared powders. PANI nanotubes, synthesized at high pH, was also found to exhibit stronger free radical scavenging activity than the regular granular PANI formed under acidic conditions. Structural changes of PANI powders after reaction with free radicals were observed in IR and XPS spectra, showing an increase in the ratio of imine (C=N) to amine (C-N) units.

PANI EC films were prepared using a solution method and the antioxidant capacity of the PANI EC films are examined using the ORAC assay. The results showed efficient peroxyl free radical scavenging activity of the PANI EC films. A very good correlation between the ORAC response and the area of tested film was also observed, indicating a homogenous dispersion of active PANI powder across the film. Similar to the results obtained from the DPPH and ABTS assays, reduced PANI presented greater peroxyl radical scavenging activity than the as-prepared powders. The influence of the PANI EC films on the oxidation of Ropufa oil was determined by peroxide value (PV) measurement. After incubation at 60°C for several days, the oil stored in the presence of the PANI EC film was found to exhibit a lower PV than in the absence of a CP film, indicating that the conducting polymer is effective in inhibiting oxidation of fish oil.

Acknowledgements

I would like to thank my supervisors A/Prof. Paul A. Kilmartin and A/Prof. Jadranka Travas-Sejdic for their patient guidance throughout the work and their assistance and comments in writing this thesis. I have to thank A/Prof. Paul A. Kilmartin especially for giving me his valuable time in discussion and direction in research.

I would like to express my appreciation to Dr. Hui. Peng for patiently helping me with many of my experiments and ideas, to Dr. William Chiu, Dr. Lijuan Zhang, Dr. Sally Xiong, Dr. Sudip Ray and Dr. Kwong-chi Li for giving me research ideas and sharing with me their experiences and to Sreeni Pathirana for her technical assistance and help.

Thanks also go to my friends, colleagues of my research group and fellow Food Science students for their help and encouragement, and to funding support from the University of Auckland Research Committee grant (No. 3606261) and the New Zealand Foundation for Science and Technology (contract No. UOAX0408).

I would like to give my special thanks to my husband Kuo-Ming and my son Mike for their endless love and support.

LIST OF SCHEMES

Scheme 1.1 Formation of the ABTS ^{•+} radical cation in the presence and abse	ence 5
of an antioxidant. Ferrylmyoglobin is produced by oxidation of	
metmyoglobin.	
Scheme 1.2 The production of ABTS ^{•+} from the ABTS diammonium salt ar	nd 7
reaction of $ABTS^{\bullet+}$ with an antioxidant.	
Scheme 1.3 Illustration of the principle of the ORAC assay.	11
Scheme 1.4 Structures of polypyrrole, polyaniline and PEDOT.	16
Scheme 1.5 Oxidation of PEDOT.	17
Scheme 2.1 Chemical structures of some of the key chemicals used in this re	esearch. 29
Scheme 3.1 Chemical polymerisation of pyrrole.	46
Scheme 3.2 A: Overoxidation processes for PPy. B: Initial reaction phase for	r 52
a Wolff-Kishner reduction of the carbonyl group of overoxidised	d
polypyrrole to a hydrazone.	
Scheme 3.3 Polaron and bipolaron forms of oxidised PPy.	54
Scheme 3.4 Reaction scheme for polypyrrole with DPPH [•] .	63
Scheme 3.5 Chemical polymerisation of aniline.	65
Scheme 3.6 Oxidation of polyaniline.	73
Scheme 3.7 Polymerization of PEDOT.	85
Scheme 4.1 Schematic representation of the cell used for spectroelectrochem	nistry. 99
experiments	

Scheme 5.1 Formation of PANI radical cations and resonance stabilisation of	132
PANI radical cations.	
Scheme 5.2 The main chemical forms of polyaniline showing different	146
proportions of (reduced) benzenoid and (oxidized) quinoid units.	

LIST OF TABLES

Table 2.1 Formula and molecular weight of the chemicals.	28
Table 3.1 pH value of the PPy reaction mixture after 2 hours.	47
Table 3.2 Elemental analysis results for PPy samples prepared with	47
different APS/pyrrole ratios.	
Table 3.3 Elemental analysis results (mass %) for PPy samples prepared with	60
an APS/pyrrole ratio of 0.5 or 2.0, before (PPy0.5 and PPy2) and after	
reduction with hydrazine (RedPPy0.5 and RedPPy2), with molar ratios	
given in brackets, normalised to a value of 4 for carbon in each case.	
Table 3.4 Elemental analysis results for PANI samples prepared with different	65
APS/aniline ratios.	
Table 3.5 Conductivity and pH values of the PANI reaction mixture after 24 hours.	66
Table 3.6 Elemental analysis of PANI before (A) and after (B) reaction with	82
DPPH free radicals, according to XPS wide spectra.	
Table 3.7 Elemental analysis results for PEDOT samples prepared with	86
different APS/EDOT ratios.	
Table 3.8 Calculation of molar ratio of HSO_4^{-7}/SO_4^{-2-} to EDOT units for	86
PEDOT1.0 based on the elemental analysis results.	
Table 3.9 pH values of the PEDOT reaction mixture after 24 hours.	87
Table 3.10 Conductivity values and DPPH scavenging activity for PEDOT powders.	92

Table 4.1 Solution absorbance values at 753 nm, to indicate the degree of ABTS ^{•+}	
scavenging for PPy, PANI and PEDOT at different times with and without	
shaking.	
Table 4.2 Comparison of $ABTS^{\bullet^+}$ (%) scavenging capacity for as-prepared	108
and reduced PPy0.5, PANI1.5 and PEDOT1.0 after 3 hours of reaction.	
Table 4.3 Comparison of DPPH [•] and ABTS ^{•+} scavenging activity of the	113
conducting polymers.	
Table 5.1 Molar percentage of O, N and C in PANI cluster and EC matrix.	128
Table 5.2 Regression Coefficients for fitting the Weibull distribution function	
curve to the ORAC response curves for PANI EC films (9 % PANI).	
Table 5.3 Net AUC of PANI EC films.	142
Table 5.4 Net AUC of PANI EC and PPy EC cast films, and of PANI and	
PPy film prepared electrochemically on a stainless steel working electrode.	
Table 6.1 Fatty acid composition in wt % of Ropufa oil determined by GC ($n = 2$).	166

LIST OF FIGURES

Figure 1.1	Fluorescence decay curve of (a) blank (b) sample. The area between	10
	curve a and curve b provides the net AUC of the tested sample.	
Figure 1.2	(A) Formation of a polaron and a bipolaron, and (B) charge-carrier	13
	delocalization, for all-trans polyacetylene.	
Figure 1.3	Representative conducing polymer spectra: (A) FTIR spectrum of	23
	overoxidised PPy; (B) Raman spectra of (a) regular and (b) overoxidised	
	PPy; (C) ESR spectra of PPy; (D) XPS (N1s) spectra of PANI.	
Figure 2.1	Preparation of PANI powder.	30
Figure 2.2	Preparation of PANI EC film.	32
Figure 2.3	UV-VIS spectra of ABTS ^{•+} .	35
Figure 3.1	Decline in the absorbance at 516 nm of a 255 μ M methanolic	44
	DPPH [•] solution with (a) nil, (b) 1.0, (c) 2.0 and (d) 5.0 mg of PPy	
	powder added (formed using an APS/pyrrole ratio of 1.5).	
Figure 3.2	Doping level (\blacksquare) and conductivity (\blacktriangle) of PPy powders prepared	49
	with various ratios of APS/pyrrole.	
Figure 3.3	SEM images of PPy prepared with APS / Py ratio of (A) 0.25	50
	(B) 0.5 (C) 1.0 (D) 1.5 (E) 2.0.	
Figure 3.4	Comparison of the FTIR spectra of PPy powders prepared with	51
	different APS/pyrrole ratios, from top to bottom: (a) 0.25, (b) 0.5,	
	(c) 1.0, (d) 1.5, (e) 2.0 and (f) reduced PPy 2.0.	

Figure 3.5 Raman spectra of PPy powders formed with different APS/pyrrole	53
ratios, from top to bottom: (a) 0.25, (b) 0.5, (c) 1.0, (d) 1.5 and (e) 2.0;	
(A) in the range of 200-2000 cm^{-1} , and (B) highlighting the peak at	
around 1600 cm^{-1} .	
Figure 3.6 ESR spectra of the PPy powders formed using different	55
APS/pyrrole ratios, from top to bottom: (a) 1.5, (b) 2.0, (c) 1.0,	
(d) 0.5 and (e) 0.25.	
Figure 3.7 The change in the EPR signal for 30 mg of a PPy powder in	56
10 mL of Milli-Q water upon reduction with various amounts of	
hydrazine.	
Figure 3.8 DPPH scavenging capacity of PPy synthesized with different	57
APS/pyrrole ratios: (a) DPPH only, (b) 2.0, (c) 1.5, (d) 1.0, (e) 0.25,	
(f) 0.5.	
Figure 3.9 DPPH [•] scavenging capacity of PPy synthesized with two	61
APS/pyrrole ratios, before and after reduction of 30 mg samples in 10 mL	
Milli-Q water with 2 mL of hydrazine for 48 hours: (a) DPPH only,	
(b) PPy2, (c) RedPPy2, (d) PPy0.5, (e) RedPPy0.5.	
Figure 3.10 Decline in the absorbance at 516 nm of a 255 μ M methanolic	64
DPPH [•] solution with (a) nil, and 1 mg of (b) PNMPy, (c) PPya and	
(d) PPy powders.	
Figure 3.11 SEM images of PANI prepared with various ratios of	68
APS/aniline ratio (A) 1.0 (B) 1.5 (C) 2.0 (D) 2.5.	
Figure 3.12 TEM image of PANI1.5.	69

Figure 3.13 SEM image of PANI prepared with the APS/aniline/H ₂ SO ₄ of	70
(A) 1:1:0.5 (B) 1:1:1 (C) 1:1:1.5 (D) 1:1:2.	
Figure 3.14 Cyclic voltammograms of PANI powders, prepared with various	72
APS/ANI ratios: (a) 1.5 (b) 1.0 (c) 1.5 (d) 2.0, cast on a glassy carbon	
working electrode and cycled in 0.1 M HCl at a scan rate of 20 mV s ^{-1} .	
Figure 3.15 FT-IR spectra of polyaniline prepared with various ratios of	74
APS/aniline: (a) 1.0 (b) 1.5 (c) 2.0 and (d) 2.5.	
Figure 3.16 Raman spectra of polyaniline prepared with various ratios of	75
APS to aniline : (a) 1.0 (b) 1.5 (c) 2.0 and (d) 2.5.	
Figure 3.17 ESR spectra of polyaniline with various ratios of APS to aniline,	76
from a to d, the ratios are: 1:1.5, 1:1, 1:2 and 1:2.5.	
Figure 3.18 (A) DPPH [•] scavenging activity of PANI powders prepared with	78
various APS/aniline ratios: (a) DPPH [•] only, (b) 2.5, (c) 2.0, (d) 1.0 and	
(e) 1.5. (B) Decline in the absorbance at 516 nm of a 255 μ M methanolic	
DPPH [•] solution with (a) nil and PANI prepared with molar ratio of	
APS: aniline: H ₂ SO ₄ of (b) 1:1:1, (c) 1:1:1.5, (d) 1:1:0.5 and (e) 1:1:0.	
Figure 3.19 DPPH [•] scavenging capacity of PANI powders synthesized with	80
an APS/ANI ratio of 1.5: (a) reduced PANI, (b) as-prepared PANI,	
(c) dedoped PANI.	
Figure 3.20 IR spectra of PANI (a) after (b) before reaction with DPPH [•] .	81
Figure 3.21 ESR spectra of PANI (a) before (b) after reaction with DPPH [•] .	83

Figure 3.22 Cyclic voltammograms of PANI powders (a) before (b) after	
reaction with DPPH [•] , cast on a glassy carbon working electrode and	
cycled in 0.1 M HCl at a scan rate of 20 mV s^{-1} .	
Figure 3.23 Morphology of PEDOT prepared with various ratios of APS/EDOT	88
(1) 1.0 (2) 1.5 (3) 2.0 (4) 2.5.	
Figure 3.24 IR spectra of PEDOT prepared with the ratio of APS to EDOT:	89
from top to bottom are 1, 1.5, 2 and 2.5.	
Figure 3.25 DPPH [•] scavenging capacity of PPy synthesized with different	91
APS/EDOT ratios: (a) DPPH [•] only, (b) 2.5, (c) 2.0, (d) 1.5, (e) 1.0.	
Figure 3.26 Amount of DPPH scavenged over a 24 hour period for powders	
formed with different polymerization ratios of (A) APS to Py,	
(B) APS to ANI and (B) APS to EDOT $(n = 2)$.	
Figure 4.1 Inhibition of production of ABTS ^{•+} by addition of (a) nil (b) 5.0,	101
(c) 3.0, (d) 1.0 and (e) 2.0 (Δ) mg of PANI powder (prepared using an	
APS/aniline ratio of 1.5).	
Figure 4.2 ABTS ^{•+} scavenging activity of as-prepared conducting	104
polymer powders: (A) ABTS ^{•+} only, (b) PEDOT1.0, (c) PPy0.5 and	
(d) PANI1.5.	
Figure 4.3 ABTS ^{•+} scavenging activity of the reduced conducting polymer	106
powders: (a) $ABTS^{\bullet^+}$ only, (b) PEDOT1.0 (c) PPy0.5 (d) PANI1.5.	
Figure 4.4 SEM images of (a) PANI15H0.5 (b) PANI15H1.	109

Figure 4.5	ABTS ^{•+} scavenging activity of conducting polymer powders:	110
	(a) ABTS ^{•+} only, (b) PANI15H1 (c) PANI15H0.5 (d) PANI1.5.	
Figure 4.6	IR spectra of (A) PPy0.5 (B) PANI1.5 (C) PEDOT1.0 :	114
	(a) before (b) after reaction with $ABTS^{\bullet^+}$.	
Figure 4.7	XPS spectra of PANI1.5 (A) before, and after reaction with	116
	(B) $ABTS^{\bullet^+}$ and (C) $DPPH^{\bullet}$.	
Figure 4.8	Cyclic voltammogram of 0.1 mM ABTS in 0.1 M LiClO ₄	118
	in ethanol using an Indium tin oxide (ITO) electrode as the working	
	electrode, platinum wire as a counter electrode and silver covered with	
	AgCl as the reference electrode at a scan rate of 50 mV/s.	
Figure 4.9	Generation of $ABTS^{\bullet^+}$ monitored using cyclic voltammetry and	120
	UV-visible spectrometry: (A) CV voltammograms from -0.1 to 0.8 V;	
	(B) associated absorbance changes at 753 nm with time;	
	(C) cyclic representation of absorbance change at 753 nm as a	
	function of applied potential; and (D) generation of $ABTS^{\bullet^+}$ at 0.5 V	
	after 0, 10, 120, 240, 360, 480, 600, 720 and 840 seconds.	
Figure 4.1	0 Oxidation and reduction of DPPH [•] monitored using cyclic	121
	voltammetry and UV- visible spectrometry: (A) CV voltammogram from	
	-0.1 to 0.9 V, (B) absorbance changes at 753 nm for various times,	
	(C) first cycle of the CV trace and absorbance at 753 nm from -0.1 to 0.9 V,	
	(D) second cycle of CV tracing and absorbance at 753 nm from -0.1 to 0.9 V.	

- Figure 5.1SEM images of (A) Pure EC, (B) a PANI EC film prepared with1279 % PANI viewed from above, and (C) a cross section of the PANI EC film,where \circ is an area high in EC (part I) and \Box is an area high in PANI (part Π).
- Figure 5.2 The decline of fluorescence of a fluorescein solution with (a) nil
 (b) 18.2 mg of EC film and (b) 20.0 mg of PANI EC film, in presence of
 AAPH at 37 °C.
- Figure 5.3
 Correlation between ORAC area and weight of multiple PANI EC
 130

 film pieces
 130
- Figure 5.4 ORAC results of PANI EC films (9 % PANI): (A) fluorescence decay
 133 curve of fluorescein induced by peroxyl radicals in presence of various
 PANI EC films; (a) no film present, (b) 16 mm² (c) 36 mm² (d) 64 mm²
 and (e) 100 mm² of PANI EC film; (B) correlation between net AUC
 and film area (deducted 91% ORAC area of EC, with net AUC of
 1.6, 3.6, 6.7 and 8.4 units for film areas of 16 mm², 36 mm², 64 mm² and
 100 mm² respectively).
- Figure 5.5 Plot of net AUC versus Trolox concentration (μM).
 Figure 5.6 Relative ORAC value (Trolox equivalents, μ moles) as a function
 of film area (mm²) for the PANI EC films (9 % PANI).
- Figure 5.7 Fluorescence decay curve of AAPH /FL system in presence of
 (a) nil (b) 16 mm² (c) 36 mm² (d) 64 mm² and (e) 100 mm² of PANI EC
 film. The dots represent experimental data points and the lines are
 the fitting results.

Figure 5.8 Correlation between the tested PANI EC film area and (a) parameter α	138
and (b) parameter $\beta_{.}$ (a) y = 0.355x + 22.0, R ² = 0.9807	
(b) $y = -0.008x + 2.33$, $R^2 = 0.9617$	
Figure 5.9 XPS spectra of PANI (A) before and (B) after reaction with	140
peroxyl free radicals.	
Figure 5.10 IR spectra of PANI (A) before and (B) after reaction with	141
peroxyl free radicals.	
Figure 5.11 Mechanical properties of PANI EC films with varying amounts	144
of PANI added: (Δ) modulus and (\bullet) ultimate tensile strength.	
Figure 5.12 Comparison of peroxyl free radical scavenging ability of	145
(•) PANI EC film, (•) reduced PANI + EC and (\triangle) reduced PANI EC film.	
Figure 5.13 SEM image of PANI(OX)EC film (cross section) prepared by	147
synthesizing PANI in the matrix of EC and casting the mixture onto a	
Teflon sheet.	
Figure 5.14 Net AUC of (a) PANI(OX)EC film prepared in matrix of EC	148
(17 % PANI), and (b) PANI EC as-prepared films (17 % PANI).	
a) $y = 0.859x-1.05$, $R^2 = 0.9850$ b) $y = 0.446x-2.39$, $R^2 = 0.9968$	
Figure 5.15 Cyclic voltammograms for the polymerization of (A) PANI in	150
0.1 M H ₂ SO ₄ , and (B) PPy in 0.1M NaHSO ₄ . Inserts: the first three	
cycles of PPy and PANI.	
Figure 5.16 ORAC results of PANI PE film (10% PANI): (A) relative fluorescence	152
versus time; and (B) ORAC area versus PANI PE film area.	
Figure 6.1 PV of Ropufa oil under accelerated storage conditions (60°C).	158

Figure 6.2 Peroxide value (PV) of Ropufa oil at 60°C with (a) no film,	160
(b) PANIEC film (9 %), (c) PANIEC film (17 %) ($n = 3$).	
Figure 6.3 Peroxide value of Ropufa oil in the presence of various amounts of	161
the antioxidant BHT after 8 days of storage at 60°C.	
$y = 243 - 7.21x, R^2 = 0.9567$	
Figure 6.4 Peroxide value (PV) of Ropufa oil at 40° C with (\blacktriangle) no film,	162
(•) PANIEC film (9 %), (c) PANIEC film (17 %) (<i>n</i> = 3).	
Figure 6.5 Peroxide value (PV) of 3.0 g of Ropufa oil with (•) nil and	163
(\blacktriangle) 4.5 mg of α -tocopherol added ($n = 3$).	
Figure 6.6 Peroxide value (PV) of avocado oil at 60°C in presence of	164
(\blacktriangle) nil and (•) PANI EC film (9 %) ($n = 3$).	

xxii

LIST OF SYMBOLS AND ABBREVIATIONS

А	amps
A•	antioxidant radical
AAPH	2-2'-azobis(2-amidinopropane) dihydrochloride
ABTS	2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)
	diammonium salt
ABTS ^{•+}	ABTS radical cation
$ABTSH^+$	reduced ABTS ^{•+}
АН	antioxidant (with proton attached)
ANI	aniline
APS	ammonium persulfate
AUC	under the ORAC fluorescence decay curve
В	benzenoid
ВНТ	butylated hydroxytoluene
СР	conducting polymer
CPS	counts per second
CV	cyclic voltammetry
DBSA	dodecylbenzenesulfonic acid
DHA	docosahexaenoic acid
DMSO	dimethyl sulfoxide
DPPH	2,2'-diphenyl-1-picrylhydrazyl
DPPH [•]	DPPH free radical

e	electron
EC	ethyl cellulose
EDOT	3,4-ethylenedioxythiophene
EDXS	energy-dispersive X-ray spectrometry
EPA	eicosapentaenoic acid
ESR	electron spin resonance spectroscopy
ET	electron transfer
eV	electron volt
FH	fluorescein (with proton attached)
FTIR	fourier transformation infrared spectroscopy
GC	gas chromatography
H^+	proton
НАТ	hydrogen atom transfer
HIPEF	high-intensity pulsed electric fields
HX-Fe ⁺³	metmyoglobin
ΙΤΟ	Indium tin oxide electrode
LH	lipid (with proton attached)
mS	milli-Siemens
mT	milli-Tesla
ORAC	oxygen radical absorbance capacity
β-ΡΕ	β-phycoerythrin
PANI	polyaniline
PANI1.5	PANI prepared with a ratio of APS to ANI of 1.5 to 1

PANI(OX)EC	PANI EC composite prepared by polymerizing aniline
	in a EC matrix with presence of APS oxidant
PE	polyethylene
PEDOT	poly (3,4-ethylenedioxythiophene)
PEDOT1.0	PEDOT prepared with a ratio of APS to EDOT of 1.0 to 1
PNMPy	polyN-methylpyrrole
РРу	polypyrrole
PPy0.5	PPy prepared with a ratio of APS to Py of 0.5 to 1
РРуа	PPy made with addition of acid
PV	peroxide value
Ру	pyrrole
Q	quinoid
RedPEDOT1.0	PEDOT1.0 reduced with hydrazine
RedPANI1.5	PANI1.5 reduced with hydrazine
RedPPy0.5	PPy0.5 reduced with hydrazine
R_2N_2	ААРН
RH	organic substrate (with proton attached)
ROO•	peroxyl radicals
SEM	scanning electron microscopy
SHE	standard hydrogen electrode
V	volt
Х•	oxidizing agent
$^{\bullet}$ X-[Fe ⁺⁴ = O]	ferrylmyoglobin

X-Ray photoelectron spectroscopy