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Identification of a Nonlinear Dielectric Elastomer
Actuator Based on the Harmonic Balance Method
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Abstract—This paper presents a control-oriented modelling
of a circular dielectric elastomer actuator loaded with a mass.
Precise dynamic position control of these actuators is a challenge,
because of the high level of nonlinearities. Our model takes into
account nonlinear mechanical phenomena such as hyperelasticity
and viscoelasticity. The behavior of dielectric elastomer actuators
is analyzed by a series of experiments on three actuators with
different parameters. Furthermore, the model parameters are
found using optimization procedures. To improve the perfor-
mance of the optimization, the steady state solution is found
using the Harmonic Balance Method. Compared to a forward
integration method, the time gain of the Harmonic Balance
Method is significant, and exceeds 2 orders of magnitude when
6 or less harmonics are considered. The application of steady
state solver enables taking the frequency response into account
for the parameter identification procedure. The results obtained
from the model are compared with experiments and show an
excellent agreement.

Index Terms—Dielectric Electroactive Polymer, Dielectric Elas-
tomer Actuator, Parameter Identification, Optimization, Har-
monic Balance Method

I. INTRODUCTION

Electroactive Polymers (EAP) are a class of promising smart
materials that react to electrical stimuli with a deformation.
Dielectric Elastomer Actuators (DEA) are a subclass of the
EAP family for which actuation is produced by an elastic
deformation resulting from the compressive electrostatic forces
caused by charges on the surface of the membrane [1]–[4].
They consist of a thin elastomer membrane (usually silicone),
stretched on a frame and sandwiched between two stretchable
electrodes, thus forming a deformable rubbery capacitor [3],
[5], [6]. The application of an electrical potential between the
electrodes, leads to the generation of a Maxwell pressure. This
causes a compression of the membrane, and – owing to the
incompressibility of elastomers – leads to an increase of the
electrode surface. Accurate information about the properties
and control methods of DEAs is critical to designers who are
considering the construction of mechanisms or devices using
these materials. Prototypes of DEA pumps, valves, robots,
lens element actuators and micropositioning stages have been
documented in recent literature [1], [7]–[10]. DEAs are an
interesting solution for positioning applications, thanks to their
large output strain, but precise position control is very diffi-
cult due to their complex electro-viscomechanical coupling
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and intrinsic nonlinearities [11]–[14]. Therefore, the accurate
operation of DEAs requires an adequate control system.

Many models have been published to describe the dynamic
behaviour of DEAs. For example, the Ogden model can be
used to model the hyperelastic behaviour of the elastomer,
together with a Kelvin-Voigt model to account for the viscous
losses in the material [11], [13]. The electrical model of DEAs
takes into account the Maxwell Stress Tensor as a coupling
force [11]–[13]. The dynamics of the electrical circuit is
usually modelled by representing the actuator as a capacitance
with a series resistance representing the electrodes. Because
of the complexity of the nonlinear processes in play, finite
element analysis is often used to study the behaviour of
dielectric elastomer actuators [15]–[18]. The main drawback
of DEAs is their high driving voltage, which calls for custom-
made power supplies [19], [20]. But despite this, DEAs are a
very attractive solution for many application fields.

The most important challenge of modeling is posed by the
identification of the model parameters [11]–[13]. In experi-
ments with DEAs the most common output is displacement
or output force. Hence, the velocity and internal state of
the viscoelasticity model are unavailable during identification.
Furthermore, the model is nonlinear, because of the mechan-
ical properties of elastomers, and the quadratic relationship
between the applied voltage and Maxwell pressure. Conse-
quently, identification procedures commonly used for linear
systems are not applicable [21], and optimization approaches
are therefore the most reliable identification methods. The
application of the identification process to DEAs has been
reported in the literature [13], [22], [23]. In general, the iden-
tification process is split into two steps. Firstly, the parameters
related to the static characteristics are found, for instance with
genetic algorithms [22]. Then, the parameters related with the
model dynamics are identified, which is a much more complex
task. In the works of Zou and Gu, [22] and Gupta et al. [23],
expert knowledge about the behavior of the system is required
to find the parameters by a trial and error method. In the work
of Rizello et al. [13], a nonlinear optimization procedure is
applied to identify the parameters.

We have noticed that the dynamics of DEAs consists of
oscillations and slow poles due to the relaxation processes
of the viscoelasticity. In this work, we take into account the
frequency response in the parameter identification procedure.
However, in the case of slow poles, using the steady state solu-
tion is a time-consuming task, because of the time required to
reach steady-state. Hence, an alternative approach is required
to tackle this challenge. In this contribution, we introduce
the use of the Harmonic Balance Method (HBM) [24], [25]
to identify the response of DEAs. The harmonic balance
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principle is the base of a series of methods to search for
the solutions of nonlinear dynamic systems. It is very useful
in the analysis of chaotic, mechanical, and electromechanical
systems [26]–[28]. One of the two approaches of the HBM
relies on solving the analytical equations taking into account
that the response and excitation are represented as Fourier
Series [25]. The second approach is to find the solution
based on nonlinear optimization techniques [29]. Besides rapid
screening for the steady state solution, it is also possible to
use the HBM to analyze important phenomena like Duffing-
oscillators [28]. Here, we apply the HBM to identify the
parameters of our model from the measured response of DEAs,
using the nonlinear optimization approach. This enables us to
drastically speed-up the parameter identification process for a
sinusoidal excitation by more than two orders of magnitude
(c.f. section IV-E).

This paper presents a model of DEAs biased by a mass. In
our work, we consider a special case of a generalized Maxwell
model for the viscoelastic response, combined with an hy-
perelastic model for the steady-state mechanical behaviour
of the elastomer. The experimental validation is performed
on three different types of DEAs membranes. The first two
were fabricated by the authors, and the third one was a
commercial sample from Leap Technology. This enables a
more comprehensive analysis of the optimization procedure.

The remainder of this paper is organized as follows. Section
II describes the DEA working configuration and its nonlinear
model. In Section III, the HBM method is presented and
applied to the DEA model. Section IV the identification
procedure is described and validated with a set of experiments.
This section highlights the important features of the HBM
method applied to the modelling of DEAs.

II. DIELECTRIC ELASTOMER ACTUATORS

DEAs are electromechanical devices, and therefore exhibit
an electromechanical coupling, transforming electrical energy
into mechanical energy. Their mechanical behaviour is visco-
elastic, with the elastic part governed by an hyperelastic
strain energy function [13], [30], [31]. These phenomena
play important roles in the design of devices using these
membranes, and they must be taken into account to accurately
build control-oriented models. We explain the basic actuation
principle, and then introduce the specific actuator geometry.
The actuators presented in this paper are made of a circular
membrane stretched over a circular frame. The membrane is
placed horizontally, and a mass is fixed at its center, thus
creating a biasing force that causes the membrane to deform
out-of-plane in a conical shape. The application of a voltage
alters the vertical position of the mass. The DEA membrane
geometry is shown in Fig. 1. We consider the voltage applied
to the membrane as input and the vertical displacement of the
mass as output. The DEA membrane is made of an elastomeric
membrane which is equi-biaxially prestretched by a factor λp
during fabrication. Electrodes are then applied on both side of
the membrane. They are considered to be perfectly compliant,
and their influence is therefore not taken into account in the
model.

A. Model
Control-oriented models of DEAs have previously been

published, for example in [11]–[13]. Here, we combine the
models developed by the group of Stefan Seelecke [13],
[32], [33], as well as our own work [34]. These references
proposed a dynamic model composed of a set of nonlinear,
time-invariant differential equations describing the dynamic
relationship between the input voltage and the output actuator
displacement. But whereas [13], [32], [33] used a spring to
create the initial out-of-plane bias, we present a modified
model which considers an inertial mass as a load. This causes
a change in the force equation, whose goal is to accurately
describe the behavior of the actuator, both in transient and
steady state, and for different mass loads. Using a mass bias is
one possible configuration, which we choose to demonstrate
the identification process using the HBM. In a similar way,
the diaphragm actuator used in the study is one particular
geometry, but the method can be generalised to other DEA
geometries (stacked actuators, rolled actuators, in-plane actu-
ators, etc.)

Fig. 1. Dielectric elastomer actuator geometry and working principle. a)
Without voltage and mass, b) without voltage and with mass, and c) with
applied voltage and mass.

σh(λr)

k1

η1

η2σv1 σv2

Fig. 2. The components of the mechanical stress (the hyperelastic stress σh,
the viscoelastic stress σv1 and the viscous damper stress σv2 ) in the DEA
membrane.

Elastomer are considered to deform with a constant volume
[1], [7]. Therefore:

λrλcλz = 1 (1)

where

λr =
l

l0
=

√
l20 + d2

l0
, λz =

z

z0
, λc = 1 (2)
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z = z0
l0
l

= z0
l0√
l20 + d2

(3)

sin(θ) =
d√

l20 + d2
(4)

The variables λr, λc and λz are the actuation stretches that are
defined relative to the initial prestretch membrane on the frame
before any out-of-plane deformation (c.f. Fig. 1). The indexes
r, c, and z refer to the radial, circumferential, and vertical
direction. That means that the total stretch of the material
is given by λr,tot = λrλp, λc,tot = λcλp, λz,tot = λz/λ

2
p,

where λp is the equi-biaxial prestretch that is applied to the
membrane prior to attaching it to the circular frame (c.f.
section IV-A). The parameter z0 is the initial thickness of
membrane (undeflected state), l0 is the initial length of the
electrode (undeflected state), z is the thickness of membrane
(deflected state), l is the length of the electrode (deflected
state), d is the vertical displacement of the mass, θ is the
angle between the membrane in its deflected and undeflected
state.

This means that l0 and z0 are parameters after the mem-
brane pre-strech in the fabrication process. This influences the
hyperelastic model, as will be discussed later. Additionally,
as in [13], in the model definition the auxiliary function
λ2r = s(d) = 1 + d2

l20
is used to simplify the notation.

The vertical force equilibrium on the biasing mass can be
defined as:

d̈ = g − 2πrz

m
sin(θ) (σMaxwell + σMechanical) (5)

where m is the mass of the biasing load, r is the radius
of the cylindrical biasing mass m, g means standard gravity,
σMaxwell, σMechanical are the Maxwell and mechanical stress.

The electromechanical coupling is produced by Maxwell
Stress σMaxwell which compresses the membrane when a
voltage is applied to the DEA. The actuation is in the thickness
direction and due to the constant volume condition, produces
an actuation stretch in the radial direction, λr. The value of
the Maxwell stress is equal to:

σMaxwell = c2s(d)u2

c2 = −ε0εr
z20

(6)

where ε0 is vacuum permittivity, εr is the relative permittivity
of the polymer material and u is the applied voltage. In our
approach we consider the actuator as being a perfect capacitor
(i.e. we neglect the series resistance of the electrodes). This
is possible, as even with an electrode resistance of the order
of tens of kΩ the electrical cut-off frequency of our actuators
(their capacitances is about 1 nF) is orders of magnitude higher
than their mechanical bandwidth [13], [33].

The mechanical stress σMechanical is composed of the vis-
coelastic stress, empirical viscous damper and hyperelasticity:

σMechanical = σh + σv1 + σv2 (7)

where σh is the hyperelastic stress, σv1 is the viscoelastic
stress and σv2 is the viscous damper stress. The components
of mechanical stress are presented in Fig. 2 and are explained

in details below. The three parts have different influence on
the mechanical behavior, despite the fact that σv1 and σv2
represent a generalized Maxwell model.

The DEA membrane has hyperelastic properties as reported
in [35], [36]. Many hyperelastic strain energy density functions
exist, such as Yeoh, Ogden, Arruda-Boyce, etc. In this work,
we use the Ogden model [37]. Similar to [13], we define two
parameters βi and γi to integrate the prestretch into the strain
energy function:

βi = µiλ
2i
p (8)

γi = µiλ
−4i
p , (9)

where i = 1, 2, 3 is the index and µi is the Ogden model
coefficients.

In addition, to reduce the complexity of the model, and
based on the experimental data from [13], we have limited
the number of elements of the Ogden model to 3.

This leads to the following expression for the hyperelastic
stress:

σh =

3∑
i=1

(
βiλ

2i
r − γiλ−2i

r

)
. (10)

The hyperelastic stress σh is presented in Fig. 2 as a part of
the mechanical stress.

Viscoelasticity in elastomers is usually modelled with sev-
eral branches with different time constants corresponding to
the different relaxation processes [12], [22], [35]. To identify
the number of branches required to accurately model our
actuators, we first considered a system with a single relaxation
process. However, fittings on experimental data showed that
this was not sufficient. We found that an additional branch
containing a single dash pot leads to excellent fitting to the
experimental data. Additionally, it allows to adequately model
the damping of the oscillations. Usually, 3 or more viscoelastic
branches are required to accurately model the viscoelastic
relaxation of a DEA [12], [22], [35]. We attribute the adequacy
of two branches for our actuators to the fact that we are using
silicone membranes instead of VHB, which has much less
viscous losses. However, the model could easily be expanded
to include additional branches, should it be used to model
VHB-based actuators. The first part of the viscoelasticity is
modeled by a series connection of a viscous damper and an
elastic spring as presented in Fig. 2. Hence, the viscoelastic
stress is given by:

σv1 = −k1ε1 + k1(λr − 1)

ε̇1 = −k1
η1
ε1 +

k1
η1

(λr − 1)
(11)

where ε1 is the strain of the damper in the viscoelasticity
model, k1 is the elastic modulus and η1 is the viscosity of
the material. The term λr − 1 describes the engineering strain
of the DEA membrane in the radial direction.

The second part of the viscoelasticity model, which is also
shown in Fig. 2, is called the viscous damper and it is given
by:

σv2 = η2λ̇r = η2ϕ(d)ḋ

ϕ(d) =
d

l0
√
l20 + d2

(12)
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where η2 is the damping coefficient.
This additional stress stems from experimental observation,

and leads to a much better fit to experimental data, as exposed
in more details in Section IV. Initially, our model contained
two viscoelastic branches (spring k2 in series with a dashpot
η2), as viscoelastic processes with 2 time constants have
been reported in the literature [12]. This is especially true
if polyurethane or acrylic elastomers (VHB4910) are used as
dielectric membranes [38]. However, during our experimental
optimization procedures, the time constant η2/k2 systemati-
cally approached 0, which indicates that the spring constant k2
converges to infinity. Consequently, we converted the second
branch of the viscoelastic model to a purely viscous damper
η2, as shown in Fig. 2. It gives us the possibility to model the
resonance frequency and the damping of the oscillations more
accurately.

III. HARMONIC BALANCE METHOD

Before attempting to deal with the parameter identification
of the DEAs, it is worth discussing the available methods of
finding the steady state solution of a DEA model. This is not
a trivial task, as DEAs exhibit both slow and fast dynamics.
Hence, the response to a sinus excitation can take a long time
to converge to steady state. This has motivated researchers
to find more efficient tools to search for the steady state
solution. An interesting methodology called the Harmonic
Balance Method is well known in literature [24]–[27], [29],
[39] and can be applied to solve this problem.

In this section, we briefly describe the HBM methodology,
based on the literature [25], [26], [29], [39]. The main assump-
tion is that the response of a nonlinear system to an harmonic
excitation can be represented by a Fourier Series. Hence the
steady state solution xs(t) can be written as:

xs(t) ≈
N∑

n=−N
Xne

jnωt (13)

where j is the imaginary unit, ω is the fundamental frequency
of the signal in radians, Xn are the coefficients of the Fourier
Series and N is the number of coefficients. If N approaches
infinity, the Fourier Series becomes an exact representation of
the steady state. Furthermore, it is possible to approximate the
derivative of xs(t) as:

ẋs(t) ≈ jnω
N∑

n=−N
Xne

jnωt (14)

The steady state solution xs(t) must satisfy the general nonlin-
ear equation ẋ = f(x, u) where the function f(x, u) represents
the state equation of the model. Hence, the following equation
is satisfied:

0 ≈ jnω
N∑

n=−N
Xne

jnωt − f(

N∑
n=−N

Xne
jnωt, u(t)) (15)

where u(t) is the harmonic excitation (input signal). If we
would like to calculate the response on some harmonic exci-
tation for a system described by ẋ = f(x, u), then the steady
state solution is the unknown xs(t). Hence, the coefficients Xn

must be found based on (15). The solution of (15) represents
a root finding problem, with the main question being how
to efficiently calculate the coefficients Xn. In the literature,
optimization solvers are applied to find these coefficients,
such as the Newton-Krylov nonlinear algebraic solver [29].
Furthermore, there are two approaches in solving a root
problem. In the first one, the Fourier transform of the steady
state solution is numerically calculated using the fast Fourier
transform (FFT) algorithm. Then, the root solving problem
searches the solution using the coefficients Xn as in (15).
For the second one, the steady state solution is expressed as
xs(t) for fixed set of t values. Then, the FFT is only applied
to calculate the approximation of the derivative [40]. Let us
denote the approximation of ẋs(t) found by FFT as xds(t).
Then, the root finding problem must be solved for equation:

0 ≈ xds(t)− f(xs(t), u(t)) (16)

However, in this approach the approximation xds(t) must
be calculated in every iteration of the root finding problem
solver. In our work, we use the second approach because the
optimization algorithm has a faster convergence than in the
first approach.

To solve the steady state equation with the HBM, the DEA
model is rewritten into a state space form:

ẋ = f(x, u) (17)

where

f(x, u) =

 ḋ

−k1η1 ε1 + k1
η1

(λr − 1)

g − c1 d
s(d) (σMaxwell + σMechanical)

 (18)

where x =
[
d ε1 ḋ

]T
is the state vector and u is the

input (the applied voltage). The state space form (17) for
the DEA model is found by converting (5). The expression
2πrzsin(θ) can be expressed as c1 d

s(d) where c1 = 2πrz0
l0

.
This is a third order system, with the displacement, strain, and
velocity as state variables. In our work, we use the HBM to
find the solution to a sinusoidal excitation u(t) = Umsin(ωt).
However, in general the method is also applicable to other
forms of harmonic excitations. To find the HBM solution we
use the method hb_time from the open source mousai
library [29]. The method searches a steady-state solution xs(t)
for (16), taking into account the harmonic excitation u(t). The
method works on time domain points xs(t) with a fixed set
of t values. The number of t values required by hb_time
depends on the number of harmonics and is equal to 2N + 1.

IV. EXPERIMENTAL VALIDATION

A. DEA fabrication

The model was tested on 3 different actuators (LP1, A1,
and A2) to verify its applicability to membranes with differ-
ent parameters. The actuator LP1 was purchased from Leap
Technology and used as received. The actuator was mounted
on a 3D printed frame, and its dimensions given in Table I.
We fabricated actuators A1 and A2 as follows (Fig. 3): A
commercial silicone film (Wacker Elastosil 2030/250) with
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a nominal thickness of 50 µm is equibiaxially prestretched
(Fig. 3a) and fixed on a circular plastic frame with an
internal diameter of 44 mm. The prestretching step is con-
ducted on a radial stretcher as described in [41]. A pressure-
sensitive silicone adhesive (ARclad 7876) is used to hold
the prestretched membrane on the frames (Fig. 3b). After
prestretch, the thickness of the membranes is measured with
an interferometer (27 µm for A1, and 35 µm for A2). It is
not possible to precisely control the prestretch with the radial
stretcher, but the effective prestretch λp of each membrane is
calculated using the membrane thickness measured before and
after prestretch (λp = 1.36 for A1, and λp = 1.19 for A2).
Although prestretching the membrane is not strictly necessary
for an actuator that will provide out-of-plane displacement
using a biasing system (in this case, a mass), a slight prestretch
makes the fabrication process (especially the airbrushing of
the electrodes) easier by pre-tensioning the membrane. Two
different values of prestretch are used, to test the proposed
control method on membranes biased at different points of
their stress-stretch behaviour. The compliant electrodes consist
of 10% carbon black (Akzo Nobel Ketjenblack EC-600JD)
by weight dispersed in a soft silicone (Bluestar Silbione LSR
4305) and dissolved into isooctane to reduce the viscosity of
the mixture in order to make it suitable for spray coating.
A 50 µm-thick Polyethylene naphthalate (PEN) film is cut
with a laser plotter to serve as a shadow mask for the spray
coating process, defining an annular electrode with an inner
diameter of 10 mm (Fig. 3c). The centre of the actuator, where
the biasing mass will later be applied, remains uncoated. An
airbrush is used to apply the electrode solution on both sides of
the elastomer membrane. Once the PEN masks are removed,
the actuator is placed in an oven at 80 °C for 30 minutes
to crosslink the electrodes. Finally, a piece of copper tape
is added on each side of the actuator to provide electrical
contacts to the electrodes. The DEA is loaded with a mass,
which consists of a 3D-printed 4.5 mm base with a hole for a
screw (Fig. 3d). Different screws can be mounted on the base
to change the value of the mass.

B. Static parameters identification

In this section we present the identification procedure of
our DEA model. It is based on an optimization problem.
Firstly, a series of experiments were conducted to obtain the
responses of our 3 DEA prototypes. The dimensions of the
actuators are shown in Table I. The samples were characterised
on the experimental set-up shown in Fig. 4. The laboratory
set-up consists of a high voltage amplifier TREK MODEL
10/10B-HS, a laser distance sensor Micro-Epsilon optoNCDT
ILD1320-10 with 1 µm accuracy, and an Inteco RT-DAC/USB
data acquisition card. The results of the step responses for the
three membranes are presented in Fig. 5.

The model defined in (5) has mechanical and electrome-
chanical parameters. Due to the nonlinearity of the model,
optimization methods were applied to find the model param-
eters. In the first step, the static measurements were used to
find the values of the Ogden model coefficients and relative

a)

b)

c)

d)

membrane adhesive frame mask

electrode copper tape weight

Fig. 3. Fabrication process of the dielectric elastomer actuators. The fabricated
devices have a membrane diameter of 44mm, with a central hub of 9mm in
diameter. The membrane thickness is about 30 µm, with the exact values
given in Table I. a) Equi-biaxial prestretch. b) Bonding of membrane on
a circular frame using silicone adhesive. c) Spray-coating of the annular
electrode through a shadow mask (both sides). d) Addition of the electrical
contacts and of the inertial weight.

Fig. 4. Measurement set-up for the characterization of the actuators, with a
high voltage amplifier, DE actuator, data acquisition card and displacement
sensor.

permittivity. Hence, the following optimization problem is
solved:

min
β1,β2,β3,γ1,γ2,γ3,εr

wmJm + wuJu (19)

where wm and wu are weight coefficients between two objec-
tive functions Jm and Ju. Both functions take into account the
steady state of the actuator model. The first function describes
the static displacement of the membrane caused by a mass mk

in the absence of voltage. The second function describes the
steady state value of the distance dj caused by the applied
voltage uj , with a constant mass mu. The objective functions
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Fig. 5. Displacement versus time for the 3 membranes caused by a voltage
step of 2.2 kV.

are defined as:

Jm =

Nk∑
k=1

[
mkg −

c1dk
s(dk)

σe(λr(dk))

]2

Ju =

Nj∑
j=1

[
mug − c1c2dju2j −

c1dj
s(dj)

σe(λr(dj))

]2
.

(20)

First, we measure the static response without voltage for a
mass of 0 and 3 g. Hence, in the goal function we have
Nk = 2. In a second step, we take into account the steady state
response for the following voltages 2.0 kV, 2.1 kV, 2.2 kV,
2.3 kV, 2.4 kV and 2.5 kV (Nj = 5) with single mass load
mu = 3 g. The choice of our maximal voltage is close to
the limit of dielectric breakdown (80 V µm−1–100 V µm−1)
of the silicone. However, in the case of different membranes
the range of applied voltages can vary. Initially, the weights
wu and wm were chosen to 1

Nj
and 1

Nk
which equalize the

effect of both performance indexes. Then, to minimize the
optimization error, the weights were adjusted by a trial and
error method. The final values were chosen to wu = 1

Nj

and wm = 0.1
Nk

. The optimization problem was run with
a Nelder-Mead simplex algorithm [42] using SciPy python
package [43]. The results of the optimization is shown in
Fig. 6, and it can be seen that the optimization succeeds for
each membrane with a very low absolute error (below 3.3 µm,
14.2 µm, 5.5 µm for membrane LP1, A1 and A2 respectively).
The hyperelastic parameters based on the Ogden model are
visible in Table II. It is worth pointing that the Ogden model
parameters βi and γi for A1 and A2 are different, as they
include the initial prestrech, see (8) and (9). The relative
permittivity of A1 and A2 should be identical, as they are
made from the same silicone membrane (Wacker Elastosil
Film 2030/250), with a relative permittivity of εr = 2.8
according to the product datasheet. The observed difference
is most likely caused by phenomena that are not included in
our model, such as the impact of the electrodes. However,
it does not affect the validity of the results, as our objective
is not to use the measurement to extract a precise value of
the relative permittivity, but to use the model to predict the
dynamic behavior of DEAs.

TABLE I
DIMENSIONS AND PRESTRETCH OF THE 3 ACTUATORS USED FOR THE

EXPERIMENTAL VERIFICATION.

Parameter Symbol Value Units

Membrane name LP1 A1 A2

Prestretch factor λp 1.15 1.36 1.19 -

Membrane thickness z0 38 27 35 µm

Internal plate radius r 4.5 4.5 4.5 mm

Electrode width l0 14 17 17 mm

2.0 2.1 2.2 2.3 2.4 2.5
voltage [kV]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

di
st

an
ce

 [
m

m
]

model (LP)
model (A1)
model (A2)

measurement (LP)
measurement (A1)
measurement (A2)

Fig. 6. Steady state vertical displacement of the 3 actuators as a function of
applied voltage. Crosses: experimental values, lines: result of the optimization
process.

C. Dynamic parameters identification

The main problem encountered with the identification of the
dynamics parameters is to obtain the coefficients k1, η1 and
η2. These viscoelastic parameters define the transient behavior
of the DEA model. Hence additional set of experiments were
conducted with sinusoidal voltage excitation. The frequency
range was chosen relative to the mechanical bandwidth of the
system. Silicone-based DEAs can actuate in the kHz range
when the mass of the system is limited to that of the mem-
brane. Due to the addition of the proofmass, the bandwith of
our actuator was limited to about 40 Hz. However, we expect
the model to work on systems with a lower inertia that can be
driven at higher frequencies. The root mean square (RMS)
of displacement is calculated from the frequency response
measurement by:

drms =

√√√√ 1

NT

NT∑
k=1

[dk − d0]
2 (21)

where NT is the number of measured points per period, d0
is the static equilibrium displacement, and dk is the measured
displacement. Thanks to taking d0 into account, it is possible
to compare the response of actuators with different static
force-distance characteristics. The results for all membranes
are shown in Fig. 7. The measured resonance frequency for
the three DEAs were as follows: f = 8.9 Hz, f = 9.6 Hz,
f = 9.1 Hz for LP1, A1 and A2. The resonance frequencies
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TABLE II
DEA MODEL PARAMETERS

Parameter Symbol Value Units

Membrane name LP1 A1 A2

Standard gravity g 9.81 ms−2

Vacuum permittivity ε0 8.85 · 10−12 Nm−1

Relative permittivity εr 2.45 2.31 2.63 -

Coefficient of viscoelastic model k1 18.41 69.89 40.25 MPa

Coefficient of viscoelastic model η1 434.38 5.39 37.58 MPa s

Damping coefficients η2 19.42 16.35 35.11 kPa s

Hyperelastic model coefficient β1 110 343 −222 kPa

Hyperelastic model coefficient β2 −86.7 267 −233 kPa

Hyperelastic model coefficient β3 267 −81.8 901 kPa

Hyperelastic model coefficient γ1 −43.5 134 524 kPa

Hyperelastic model coefficient γ2 −80.3 −396 −504 kPa

Hyperelastic model coefficient γ3 −51.3 −245 −265 kPa
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Fig. 7. The comparison of frequency response on sinusoidal input for voltage
amplitude 2.5kV and various membrane types.

were measured with a sinusoidal input signal of constant
amplitude (2.5 kV) and varying frequency.

The optimization procedure for the dynamic parameters is
based on both a step response and a frequency response.
Hence, the following optimization problem is solved:

min
k1,η1,η2

wstep

Nstep∑
k=1

Juk,step + whbm

Nhbm∑
k=1

Jωk,hbm (22)

where wstep and whbm are weight coefficients, Nstep is the
number of step responses, Nhbm is the number of frequency
responses. The performance index Juk,step is calculated as:

Juk,step =

Nf∑
j=0

e2d(j) (23)

where Nf is a number of samples in experiment, ed is
distance error between simulation and experiment and uk is
the amplitude of the step voltage excitation. The sampling rate
of the experiments was 1 ms. The performance index Jωk,hbm

is calculated from the steady state response to a sinusoidal
excitation:

Jωk,hbm = (dm,rms − ds,rms)2 (24)

where dm,rms is the measured distance (RMS), and dm,rms
is the simulated distance (RMS), calculated using (21).

The step response and frequency response are measured on
the three DEAs membranes. The transient step response is
measured for a voltage of 2.2 kV (Nstep = 1). The frequency
response is measured for a wide range of frequencies (from
0.2 Hz to 40 Hz, at a constant voltage amplitude of 2.5 kV).
For each step of the optimization, the responses were calcu-
lated by numerical forward-integration based on the Runge-
Kutta method for the step response, and by the Harmonic Bal-
ance Method for the frequency response. Due to performance
considerations, only a small subset of frequencies is taken into
account for the optimisation fk =0.2 Hz, 8.3 Hz, 11.2 Hz and
40 Hz. The set of frequency consists of points for frequencies
below, around and above resonance as visible in Fig. 7. Hence,
we define crucial points of frequency characteristic which we
want to fit in the identification process. The weight coefficient
are set to (wstep = 6.6× 106 and whbm = 0.1× 106) to scale
the performance indexes around 1. Eq. (22) was solved with
the Nelder-Mead algorithm from the Python package SciPy
[43], [44]. The absolute error of the optimization variable
and absolute error of the function between iterations is set to
5×10−2 to improve the accuracy. Regarding the optimization
variables: coefficients of the viscoelastic model k1 and η1,
the damping coefficient η2 are normalized with the following
weights: 107, 108 and 104 respectively. We have chosen the
initial values of the simplex by a trial and error method. The
parameters found in the optimization are shown in Table II.

The characteristics of the responses are presented in Fig.
8. It can be seen that for all three membranes, the step
response and frequency response predicted by our model is
in excellent agreement with the experimental data. In Table
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III we present the performance indexes of the identification
error for various membranes calculated from the step responses
presented in Fig. 8. We calculated the Integral Absolute Error
(IAE), Integral Square Error (ISE), Integral Time Absolute
Error (ITAE) to show the quality of identification for different
membranes. In Table IV the peak of the resonance frequency
is compared for the simulations and measurements. We have
verified the ability of the model to accurately capture the
viscoleastic behaviour of the actuators by submitting our test
devices to a sinusoidal voltage input with a frequency of 2 Hz
and 12.5 Hz. Our viscoelastic model is in excellent agreement
with the experimental data.

TABLE III
PERFORMANCE INDEXES INTEGRAL ABSOLUTE ERROR (IAE), INTEGRAL
SQUARE ERROR (ISE), INTEGRAL TIME ABSOLUTE ERROR (ITAE) FOR
IDENTIFICATION ERROR BETWEEN MODEL AND EXPERIMENT FOR STEP

RESPONSE.

Performance Index Value

Membrane name LP1 A1 A2

IAE [mm s] 0.137 0.0923 0.084

ISE
[
mm2 s

]
0.0033 0.00195 0.0018

ITAE
[
mms2

]
0.5173 0.2793 0.2497

TABLE IV
THE DIFFERENCE BETWEEN THE RESONANCE PEAK IN THE SIMULATIONS

AND MEASUREMENTS FOR THE VARIOUS MEMBRANES.

Resonance peak [Hz] Error

Method Simulation Measurement

LP1 9.3 8.9 4.5%

A1 10.2 9.6 6.25%

A2 9.5 9.1 4.4%

D. Analysis of η2
The viscoelasticity is important phenomenon for DEA mem-

branes. In our model we describe viscoelasticity with the
coefficients k1, η1 and η2. The influence of different values
of η2 (12) on the model is shown in Fig. 9. The model is
simulated based on the parameters of membrane A1 with three
different values of η2. The analysis is performed for a step
response for a voltage of 2.2 kV and calculated by forward
integration. It is clearly visible that the damping coefficient
η2 controls the damping of the oscillations. The existence of
the second time constant is required as it is responsible for
large time scale behavior.

E. Performance of the HBM solver

The performance of the solver is a crucial issue in the
identification of the parameters by an optimization approach.
As long as the optimization algorithm needs to compute the

steady state response of the actuator for each iteration, the per-
formance of solver is critical. Hence, the number of iterations
required to find the steady state solution by the HBM was stud-
ied for different numbers of harmonics. The simulations were
run for the DEA with membrane A2 based on the parameters
in Table II. The input voltage was sinus with 2.5 kV amplitude.
The frequency range was 0.1 Hz–20 Hz. In Fig. 10, it is visible
that the performance of the HBM varies with the frequency
of the excitation voltage. The worst performance is observed
close to the resonance frequency. Furthermore, the higher
number of harmonics leads to a lower performance. However,
this is the cost of a better accuracy. The HBM approach is also
compared with the forward integration method (Runge-Kutta
[45]). In this case the number of iterations is constant, because
we need to integrate until the system has reached steady
state. Additionally, the time when transient is finished can be
unknown. Hence, this can lead to unnecessary overestimation
of the number of required iterations. It is visible that for
many of the frequencies, the HBM method provides better
performance than solving the ordinary differential equation by
integration. In the Table V the median time of execution was
calculated for Harmonic Balance Method (HBM) and Forward
Integration (FI). It is visible that the median of time execution
for the Harmonic Balance Method is significantly lower than
for Forward Integration. Additionally, we have analyzed the
accuracy of the HBM solver with respect to the FI solution as
a function of the number of harmonics, in order to evaluate
the balance between accuracy and computational cost. The
analysis is made for a set of frequencies (0 Hz–20 Hz) and
the HBM was computed for 2,4,6,8 harmonics. The RMS of
displacement (21) was calculated for each response. We have
defined the error as:

eaccuracy =
|drms,HBM − drms,FI |

drms,FI
× 100% (25)

where drms,HBM , drms,FI is the RMS of displacement for the
HBM and FI methods respectively. The accuracy results can
be grouped into two regions: around the resonance frequency
and away from the resonance frequency. In the first case
the number of harmonics has influences the error. The mean
error for a set of frequencies 0.5 Hz around resonance is
presented in column accuracy in Table V. In the second case
the error is almost everywhere below 1%, irrespective of the
number of harmonics. From this, we can conclude that for this
particular case, using 6 harmonics is a good tradeoff between
computation time and accuracy, as using 8 harmonics comes at
the cost of a much longer computing time for no improvements
in accuracy. If an application is known to use input frequencies
which stay away from the resonance region, then 2 harmonics
will be enough and combine the advantage of a high accuracy
with a low computing time.

V. CONCLUSIONS

A complex dynamic model is necessary to account for the
capacitive and viscoelastic properties of DEAs. In this paper a
nonlinear model was derived by combining an electrical circuit
model with an Ogden hyperelastic model taking into account
viscous damping forces. Since DEAs can be regarded as
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Fig. 8. Comparison of the step responses (left) and frequency characteristics (right) between experiments and simulations. LP1 (a,b), A1 (c,d), A2 (e,f).

deformable capacitors, applying a time-varying stimulus intro-
duces a time-dependent and frequency-dependent mechanical
response. Our model, which relies on an identification process
to quickly find the model parameters, can adequately capture
both phenomena. We have shown that the model is in close
agreement with the measured responses of the real DEA, and
that the use of the HBM method enables us to identify the
model parameters 2 order of magnitude faster than a forward-
integration method.
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