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Different glial cell types are found throughout the central (CNS) and peripheral nervous
system (PNS), where they have important functions. These cell types are also involved
in nervous system pathology, playing roles in neurodegenerative disease and following
trauma in the brain and spinal cord (astrocytes, microglia, oligodendrocytes), nerve
degeneration and development of pain in peripheral nerves (Schwann cells, satellite
cells), retinal diseases (Müller glia) and gut dysbiosis (enteric glia). These cell type have
all been proposed as potential targets for treating these conditions. One approach to
target these cell types is the use of gene therapy to modify gene expression. Adeno-
associated virus (AAV) vectors have been shown to be safe and effective in targeting
cells in the nervous system and have been used in a number of clinical trials. To date,
a number of studies have tested the use of different AAV serotypes and cell-specific
promoters to increase glial cell tropism and expression. However, true glial-cell specific
targeting for a particular glial cell type remains elusive. This review provides an overview
of research into developing glial specific gene therapy and discusses some of the issues
that still need to be addressed to make glial cell gene therapy a clinical reality.
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INTRODUCTION

The term glia relates to types of non-neuronal cells in the central nervous system (CNS) and
peripheral nervous system (PNS) that maintain homeostasis and are active regulators of numerous
physiological functions. The glial cells of the CNS include astrocytes, which support the blood-brain
barrier (BBB), provide nutrients to neurons and play a crucial role in maintaining extracellular ion
balance and neurotransmitter levels in the CNS. Microglia play roles relating to both the immune
response and homeostasis (Kierdorf and Prinz, 2017) and oligodendrocytes primary function
is to myelinate axons and provide metabolic support (Bradl and Lassmann, 2010). The retina,
which is considered part of the CNS, contains Müller glia, which like astrocytes play a role in
regulating blood flow, uptake of neurotransmitters, regulation of ion levels and energy storage
(Bringmann et al., 2006).

Several glial cell types play similar roles within the PNS. The gut contains enteric glia, which
share many similarities with CNS glia (Grubisic and Gulbransen, 2017) and are crucial for
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the survival of enteric neurons. Moreover, they play a key
role in homeostasis, metabolism and neurotransmission as well
as gut epithelial integrity, and regulate gut motility (Ruhl
et al., 2004). Schwann cells are the myelinating cells of
the PNS and are involved in maintaining ionic balance and
providing support to axons (Kidd et al., 2013). Satellite cells
are associated with neurons in peripheral ganglia and have
similar functions to astrocytes in the CNS (Hanani, 2005,
2010). As well as their role in normal physiological functions
of the nervous system, glia are activated under pathological
conditions and contribute significantly to disease pathology
in many neurodegenerative diseases, neurotrauma, peripheral
neuropathies and gut inflammation. Glial cells are therefore a
potential cell target for several therapeutic approaches to treat
diseases of the nervous system (Ahmed et al., 2017; Spear and
Mawe, 2019; Eastlake et al., 2020).

One such approach is the use of gene therapy which employs
viral vectors to deliver genetic material with therapeutic potential
into a cell. Different viral vector systems have been developed
to mediate gene delivery to different organ systems, including
the CNS and PNS (Kantor et al., 2014). The use of viral vector
gene therapy for the nervous system is appealing as many drugs
cannot cross the BBB efficiently and it can overcome the need
for repeated delivery of often short-acting drugs into the brain,
spinal cord, retina and cochlea by allowing for a single, long-
lasting intervention.

One of the most well-characterized vectors for gene therapy
is derived from adeno-associated virus (AAV). These are
considered the ideal for human gene therapy approaches as they
are small and non-replicative, can transduce dividing and non-
dividing cells, are non-pathogenic to humans and can provide
long-lasting changes in gene expression (Ingusci et al., 2019).
AAVs have been used to target a number of different tissue
and cell types successfully within the CNS and PNS including
neurons, astrocytes, oligodendrocytes, microglia, Müller glia,
Schwann cells, and satellite cells (Berns and Giraud, 1996;
Rabinowitz and Samulski, 1998; Xiang et al., 2018; Sargiannidou
et al., 2020). A large number of clinical trials using AAV have
demonstrated the relative safety of AAV gene therapy (Mastakov
et al., 2002; Penaud-Budloo et al., 2018). However, to date,
these trials have targeted neuronal cell types and retinal pigment
epithelium in the retina. An AAV gene therapy approach has
real potential for targeting of glial cells and in preclinical studies
targeting of different glial cell types has been achieved (Howard
et al., 2008; Hammond et al., 2017).

AAV Vectors
Wild type AAVs are small, 4.7 kb, linear, single-stranded DNA
(ssDNA) viruses in the Parvovirus family. They are composed of
an icosahedral protein capsid of three types of subunit (VP1, VP2,
and VP3), totaling 60 copies in a ratio of 1:1:10 (VP1:VP2:VP3).
The genome consists of a rep gene, encoding four proteins
necessary for viral replication; a cap gene that encodes the three
capsid subunits through alternative splicing and translation from
different start codons; and a third gene that encodes an assembly
activating protein (AAP) which promotes virion assembly. These
are flanked by inverted terminal repeats (ITRs) which are needed

to direct genome replication and packaging (Samulski and
Muzyczka, 2014). For therapeutic use, the rep and cap genes
are removed and replaced by an expression cassette containing
the therapeutic transgene under the control of a promoter and
flanked by the AAV ITRs, forming a recombinant AAV (rAAV)
(During et al., 2003). There are hundreds of variants of AAV,
including the 11 natural serotypes; AAVs 1–11. The natural
serotypes are defined by antigenically distinct viral capsids and
although most were first isolated in humans, later serotypes were
identified in non-human primate species, including rhesus and
cynomolgus macaques (Gao et al., 2004; Mori et al., 2004).

AAV Tropism
In the CNS, while most AAV vectors have a preference for
targeting neurons, both naturally-occurring and engineered
serotypes have been shown to transduce glia (Figure 1). The
tropism of an AAV for a particular cell type is dependent
on the interaction of the capsid with cell surface receptors
(Lisowski et al., 2015). The vector initially attaches to a cell
surface glycan, which acts as a primary receptor. For efficient
entry to the cell, the virus must then interact with a co-receptor.
Twenty-three different glycan receptors have been identified,
although the primary receptor for some serotypes has not yet
been determined, whilst a number of co-receptors have also been
identified (reviewed in Lisowski et al., 2015; Srivastava, 2016).
AAV capsids can be modified, changing their ability to interact
with specific receptors and therefore the cell types they will
transduce, and this has been used successfully to change AAV
tropism for a particular cell or tissue and to improve transduction
efficiency.

Different strategies can be used to alter the tropism of
AAV capsids (reviewed in Castle et al., 2016; Deverman et al.,
2018). Chemical modification of the virus capsid can lead to
improved transduction efficiency and mask native receptors
allowing the vector to target alternate receptors (Bartlett et al.,
1999; Ponnazhagan et al., 2002; Le et al., 2005; Carlisle et al.,
2008; Horowitz et al., 2011), but these have had limited use
in vivo. Hybrid capsids that combine the advantageous properties
of specific selected AAV serotypes have been developed that lead
to improved transgene expression and tropism (Koprich et al.,
2010). Short peptides can also be inserted into the capsids, and
their presence can allow for interaction with a specific target cell
receptor (Chen et al., 2009).

Approaches can involve rational design, which is underpinned
by an understanding of the function of capsid protein residues
such as key residues involved in receptor binding. Mutation of
these residues can lead to unique cellular tropism (Murlidharan
et al., 2015), and insertion of specific peptide sequences can
change cell tropism and modify the ability of the AAV vector
to cross the BBB (Adachi et al., 2014; Albright et al., 2018).
Another approach used to develop novel capsids is directed
evolution. This involves generating highly diverse capsid libraries
and using iterative rounds of selection either in vitro or in vivo
to enrich for the most potent AAV variant with the desired
tropism. This diversity can be created using capsid-shuffling,
which involves the nuclease digestion of different AAV serotype
cap genes that are then randomly reassembled to form chimeric
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FIGURE 1 | Capsid serotypes and promoters for glial targeting of AAV. Overview depicting naturally-occurring and engineered AAV viral vectors with known glial cell
tropism in the CNS and PNS and relevant cell-specific promoters. References used for this figure are detailed and cited in the text. Created with BioRender.com.

genes (Koerber et al., 2009); peptide insertion, where every
virus particle is engineered to display a random peptide at
the capsid surface (Muller et al., 2003); or error prone PCR,
which involves amplifying AAV cap genes in error-prone PCR
reaction, with the resulting PCR products cloned to generate
a diverse AAV plasmid library (Koerber et al., 2006). A more
recent approach called CREATE (Cre-recombination-based AAV
targeted evolution) uses Cre/lox technology to generate novel
capsids and involves delivering capsid genomes containing loxP
sites to animals with Cre expression in a defined cell population
and then selective amplification and recovery of Cap sequences
that transduced the target population (Deverman et al., 2016).
A recent approach called BRAVE (barcoded rational AAV vector
evolution), allows for large scale selection of capsids using only a
single in vivo round of screening, unlike previous methods that
require multiple rounds of enrichment (Davidsson et al., 2019).
The directed evolution approach has had the greatest success in
shifting AAV tropism toward certain glial cell types, and examples
of this are described in the appropriate sections below.

ASTROCYTES

Astrocytes play a role in several homeostatic functions within
the brain and spinal cord, including controlling uptake and

release of neurotransmitters, modulating synaptic activity and
the supply of metabolites to neurons. Astrocytes are also
components of the blood-brain barrier (BBB), where they
play a crucial role in BBB integrity and function (Sweeney
et al., 2019). As well as these supportive roles in normal
CNS function they are well known to respond in a number
of CNS disorders including Alzheimer’s disease and other
aging-related dementias (Dzamba et al., 2016; Garwood et al.,
2017), Parkinson’s disease (Booth et al., 2017), Huntington’s
disease (Palpagama et al., 2019), Amyloid Lateral Sclerosis
(ALS) (Yamanaka and Komine, 2018) and traumatic conditions
such as ischemia (Rossi, 2015), spinal cord injury (Gaudet and
Fonken, 2018; Okada et al., 2018), and traumatic brain injury
(Burda et al., 2016).

Astrocytes respond to CNS insult by transforming their
phenotype via a process called reactive gliosis. Once stimulated
by injury or inflammation, several cell pathways are activated
that can be either damaging or protective, many of which
could be targeted as a treatment. As a result of insult
or neurodegeneration, astrocytes produce molecules such as
inflammatory cytokines, which activate microglia and infiltration
of peripheral immune cells leading to chronic inflammation
(Stephenson et al., 2018). Following traumatic injuries of the
CNS, activated astrocytes migrate to the lesion where they
eventually form a glial scar that produces axonal growth
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inhibitors, preventing axonal regeneration (Burda et al., 2016;
Okada et al., 2018). Astrocyte activation leads to the loss of proper
synaptic and plasticity regulation. The control of glutamatergic
transmission by astrocytes is adversely affected by oxidative
stress and increased production of pro-inflammatory factors
(Liu et al., 2006; Santello et al., 2011). Another key role of
astrocytes is in the regulation of ion flux, and disruptions to
this interfere with neurotransmitter uptake by astrocytes (Djukic
et al., 2007; Kucheryavykh et al., 2007). Changes in astrocytic
modulation of synaptic function have been demonstrated in
a model of ALS (Benkler et al., 2013). Expression of the
potassium Kir4.1 channel is lost in the SOD1 mouse (Kaiser
et al., 2006) and high levels of endothelin-1, which leads to
activation of the AMPA receptor, is produced by activated
astrocytes in this model and leads to motor neuron cell
death (Ranno et al., 2014). Astrocytes produce a number of
growth factors, including nerve growth factor (NGF), brain-
derived growth factor (BDNF), and fibroblast growth factor
(FGF) which all play an essential role in neuronal function
(Miyazaki and Asanuma, 2017). Reduced growth factor levels
have been associated with neurodegenerative disease. A decrease
in serum BDNF levels is associated with cognitive impairment
in dementias and changes in BDNF levels in the hippocampus
may be linked with emotional symptoms relating to Alzheimer’s
disease (Budni et al., 2015).

As well as the negative effect of reactive gliosis, astrocytes
can have protective effects. For example, activating the TGF-β
signaling pathway in astrocytes limits the degree of inflammation
following stroke (Cekanaviciute et al., 2014). As a reaction to
oxidative stress, expression of Toll-like receptor-3 is increased
in astrocytes, which upregulates anti-inflammatory cytokines
whilst reducing the levels of pro-inflammatory cytokines
(Bsibsi et al., 2006). The interferon pathway in astrocytes
is also protective. Interferon regulatory factor 3 suppresses
astrocyte inflammatory cytokine gene expression following
inflammatory insult (Tarassishin et al., 2011). Interferon-
1 production by astrocytes is known to regulate immune
responses of brain endothelial cells via anti-inflammatory effects
(Rothhammer et al., 2016).

Mutations in key astrocyte genes have been associated
with neurodegenerative disease. Mutations of Fyn tyrosine
kinase are associated with increased inflammatory responses
in Alzheimer’s disease (Lee et al., 2016, 2017). Mutations in
the gene encoding TGF-β have been associated with AD risk
(Caraci et al., 2012, 2018). Mutations in the astrocyte protein
apolipoprotein E4 can impair amyloid-beta (Aβ) clearance
(Liu et al., 2013) and may be linked to oxidative stress
and inflammation (Liu et al., 2015). PARK7, a regulator of
astrocyte metabolism has been found to be mutated in cases
of familial Parkinson’s disease (Bandopadhyay et al., 2004), is
important for astrocyte mitochondrial function and its loss
leads to oxidative stress (Kumaran et al., 2007; Larsen et al.,
2011). Therefore, astrocytes are a potential cell target for
AAV-mediated gene therapy strategies that modulate either
the inflammatory or protective effects of reactive gliosis or
through potentially expressing normal copies of mutated genes
expressed in astrocytes.

AAV-Based Approaches for Targeting
Transgene Expression to Astrocytes
A number of studies have looked at the tropism of AAV vectors
for astrocytes. Most AAV serotypes demonstrate broad tropism
without absolute specificity, but some differ in their absolute
levels of transgene delivery to specific tissues. This depends on
the experimental model as cell receptors for AAVs are likely
expressed differently in vitro and in vivo (Royo et al., 2008). This
is reflected in the variation of AAV tropism observed in each
study as shown in Table 1.

In primary cultures of rat CNS cells, AAV5 appears to
demonstrate the strongest glial tropism under the control of a
constitutively active CAG or CMV promoter (Harding et al.,
2006; Howard et al., 2008). Further, AAVs 1, 2, 6, 7, 8, and
especially 9 can transduce both neurons and astrocytes (Howard
et al., 2008; Royo et al., 2008; Schober et al., 2016). Newer, more
novel serotypes have expanded the repertoire and potential for
glial transduction, but many of these have yet to be compared
with the naturally-occurring serotypes (Cearley et al., 2008).

In vivo animal studies have demonstrated some astroglial
transduction with AAVs 1, 2, 5, 6, and 8 (Davidson et al.,
2000; Wang et al., 2003; Harding et al., 2006; Klein et al., 2008;
Hutson et al., 2012; Schober et al., 2016; Hammond et al., 2017),
but AAVrh43 has been shown to have more specific astrocyte
targeting when compared to AAV8 (Lawlor et al., 2009). In
a separate study, AAV4 has demonstrated strong transduction
of astrocytes when injected into the brain parenchyma (Liu
et al., 2005). However, this has not been replicated in side-by-
side comparisons with other serotypes. AAVs rh8 and rh10, in
addition to rh43 and 9 can penetrate the BBB and transduce both
neurons and glial cells (Foust et al., 2009; Gray et al., 2011; Yang
et al., 2014). Glial transduction was more robust in adult animals,
while transduction in neonatal animals was primarily neuronal
(Foust et al., 2009; Gray et al., 2011; Yang et al., 2014). This may
be an example of differential receptor expression causing altered
tropism, in this case between neonatal and mature adult mice.
Despite the existence of certain trends, many of the studies only
compare a limited number of AAV serotypes and other variables
are not controlled for between studies. Even AAV purification
methods have led to differences in tropism (Klein et al., 2008).
This indicates that for new experiments, it is worth comparing as
many serotypes as possible to ensure the best choice for a specific
set of experimental conditions.

Several synthetic AAVs that have been developed to improve
transduction of the CNS have demonstrated improved ability
to target astrocytes. AAV9P1 is a synthetic AAV9 variant that
produces selective and robust astrocyte transduction in vitro
(Kunze et al., 2018). This vector was identified from a screen
of 30 artificial AAV variants, generated by introducing specific
peptides into the AAV capsid sequence of AAV1, 2, 6, 8, and 9.
While this variant was shown to have relatively good astrocyte
specificity in vitro (the transduction rate for primary human
neurons was around 10%), to date no data is available on whether
this specificity is still seen in vivo. The CREATE approach led to
the discovery of a variant AAV-PHP.B, which can transduce the
CNS much more efficiently than AAV9, and is able to transduce
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TABLE 1 | Astrocyte transduction of AAV serotypes with pan-cellular promoters.

Study Hammond
et al., 2017

Harding
et al., 2006

(mouse)

Harding
et al., 2006

(glioma)

Schober
et al., 2016

Klein
et al., 2008

Wang
et al., 2003

Howard
et al., 2008

Royo
et al., 2008

Hutson
et al., 2012

Lawlor
et al., 2009

Davidson
et al., 2000

Liu et al.,
2005

Model In vivo In vivo Xenograft In vivo/vitro In vivo In vivo In vitro In vitro In vivo In vivo In vivo In vivo

Promoter CBA CAG CAG CMV CMV CMV CMV CMV CMV CAG RSV RSV

1/AAV2 ITR ++ ++ ++ −ˆ + ++

2/2 + ++ ++ + − ++ + +

3/2 −

4/2 − − ++

5/2 ++ ++ ++ ++ ++ ++

6/2 + ++ +++ −ˆ ++

7/2 + ++ −ˆ +

8/2 ++* + ++ ++ −ˆ ++ + +

9/2 ++* − − ++

rh43/2 +++

*, wild-type virus; ˆ, had transduced astrocytes 2 days after treatment.
AAV, adeno-associated virus; CBA, CMV-Enhancer/Chicken β-Actin Promoter; CMV, Human Cytomegalovirus Immediate/Early Gene Promoter and Enhancer; CAG,
Chicken β-Actin/Cytomegalovirus Hybrid Promoter; RSV, Rous Sarcoma Virus Long Terminal Repeat Promoter.

the majority of astrocytes (> 75%) in multiple CNS regions of the
mouse brain (Deverman et al., 2016). However, this does not have
selectivity for astrocytes as it can effectively transduce neurons
and oligodendrocytes. Another variant AAV-PHP.A improved
the selective targeting to more than 80% of transduced cells
being ALDH1L1 + ve. However, when AAV-PHP.A and AAV-
PHP.B were used to transduce human iPSC-derived cortical
spheroids, only around 15% of AAV-PHP.A transduced cells
were glial fibrillary acidic protein (GFAP)-positive, compared
with 40% for AAV-PHP.B. There did not appear to be any
difference in selectivity for astrocytes between the two variants
(Deverman et al., 2016). The AAV capsid Anc80L65, developed
using in silico reconstruction of the viral evolutionary lineage
transduces astrocytes with around four times the efficacy of AAV9
(Hudry et al., 2018). A study that utilized molecular evolution
to engineer novel AAV variants using directed evolution and a
panel of 4 distinct AAV libraries found variants that had increased
astrocyte transduction. Two AAV mutants, ShH19 and L1–12,
transduced astrocytes 5.5- and 3.3-fold, respectively, compared to
the parent AAV2. However, the percentage of astrocytes showing
expression from these vectors was very low; 15% for ShH19
and 9% for L1–12 (Koerber et al., 2009). While these vectors
described above are not astrocyte-specific, the use of these with
astrocyte-specific promoters could have potential.

Most of the work to date developing astrocyte-specific
promoters for gene therapy has focused on the use of the
promoter for GFAP. GFAP is an intermediate filament protein
that is expressed almost exclusively by astrocytes (Yang and
Wang, 2015). This fact has led to its promoter being used to
direct transgene activity to astrocytes, and there is a large amount
of literature that shows this can be achieved. Many studies have
tested the incorporation of GFAP promoters to drive astrocytic-
specific expression using viral vectors. Transgene expression
under the transcriptional control of the 2.2 kb human GFAP
promoter, gfa2, has been shown to be expressed in astrocytes
throughout the brain (Lee et al., 2008). However, as with many
cell-type-specific promoters, the large size of this promoter

has severe limitations when used with AAV vectors, due to it
occupying a considerable amount of the vector genome. Different
strategies have been employed to shorten the GFAP promoter
to make it more suitable for use in AAV vectors. An AAV
vector containing a truncated 448 base-pair gfa28 promoter (Lee
et al., 2006, 2008), was able to drive gene expression much
more strongly than the full-length promoter when tested in vitro.
However, when this promoter was used in vivo in mice, the level
of transgene expression driven by this promoter was comparable
to the full-length gfa2 promoter, expression was restricted to
certain CNS regions, and neuronal expression was observed as
well as in astrocytes. Based on this finding Lee et al. (2008) created
transgenic mice with promoters containing different enhancer
fragments to determine which were required to silence neuronal
signaling, and to restrict expression to specific brain regions.
This work led to the discovery of a 681 bp GFAP promoter,
gfaABC1D, which exhibited mostly the same expression pattern
in the brain as the full-length 2,210 bp gfa2 promoter but had a
twofold greater expression that was largely restricted to astrocytes
(Lee et al., 2008). Similarly a 681 bp gfaABC1(mC1.1)D variant
had expression limited to astrocytes in the dorsal and caudal
cortex, hippocampus and caudal vermis of the cerebellum. This
study demonstrates that it may be possible to further limit
gene expression to specific glial populations by modifying cell-
specific promoters (Lee et al., 2008). de Leeuw et al. inserted
additional copies of the GFAP enhancer regions to determine if
these would increase its transcriptional activity. Injection of an
adenoviral construct containing the gfa2 promoter engineered
to contain three copies of the B enhancer region [gfa2(B3)]
resulted in greater gene expression in astrocyte cell cultures
and expression that was limited to GFAP-positive cells when
injected into the basal ganglia of mice (de Leeuw et al., 2006).
However, again due to its size, there are issues in using this in the
context of AAV vectors.

A number of studies have used AAV vectors containing the
681 bp gfaABC1D with the goal of obtaining astrocyte specificity
(Xie et al., 2010; Theofilas et al., 2011; Dirren et al., 2014;
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Dvorzhak et al., 2016; Vagner et al., 2016; Taschenberger et al.,
2017; Griffin et al., 2019, 2020; Testen et al., 2020). While several
studies show good evidence of astrocyte specificity (Xie et al.,
2010; Theofilas et al., 2011), other studies report transduction
of other cell types (Taschenberger et al., 2017; Griffin et al.,
2019). For instance, we observed transgene expression in lower
motor neurons but not in neurons of the dorsal horn following
vector infusion in the adult rat spinal cord (Griffin et al., 2019).
Very high levels of transgene expression in lower motor neurons
was also reported with the full-length GFAP promoter (Peel and
Klein, 2000). One approach that has been used to overcome
the issue of lack of astrocyte specificity is the incorporation
of cell-specific microRNAs (miRNAs) to suppress off-target
transgene expression in particular cell types (Brown et al., 2006).
Endogenous expression of miR124, which is specific to neurons
is able to repress gene expression in neuronal cells (Colin
et al., 2009) and addition of miRNA recognition sequences to
viral constructs can suppress leaky gene expression from AAV
vectors (Shimizu et al., 2014). When target sequences for miR124
were included in the 3′ UTR of an AAV expression plasmid
containing a transgene under the control of the gfaABC1D
promoter, neuronal transgene expression in the rat striatum was
completely absent compared to around 10% neuronal expression
with the gfaABC1D promoter alone (Taschenberger et al., 2017).
However, the presence of the miR sequence strongly reduces
the number of astrocytes expressing the transgene to around
10% of that seen with the gfaABC1D promoter alone, calling
into question the usefulness of this approach for improving
astrocyte specificity.

One issue with the use of a GFAP promoter is that the levels of
GFAP expression can be variable in different parts of the CNS
and relatively low in some brain regions (Hajos and Kalman,
1989; Kalman and Hajos, 1989). Therefore using this promoter
may not always be appropriate. Aldehyde dehydrogenase family
1, member L1 (ALDH1L1) has been characterized as a pan-
astrocytic marker that is found more homogeneously throughout
the brain than GFAP (Cahoy et al., 2008). Mudannayake
et al. (2016) tested several different AAV serotypes under
the control of a putative rat Aldh1l1 promoter for astrocyte
selectivity in the rat substantia nigra pars compacta (SNpc)
brain region and found transgene expression was exclusively
expressed in neurons and independent of AAV serotype used.
Neuronal-specific transgene expression was also found following
intrahippocampal vector infusion, but expression was found
in both neurons and astrocytes in the striatum following
intrastriatal vector infusion. In a later study by Koh et al.
(2017) using a human ALDH1L1 promoter, an AAV-hALDH1L1-
Cre vector was injected into several brain regions of the Ail4
(RCL-tdTomato) mouse, found tdTomato gene expression was
also seen to be predominantly neuronal in most brain regions
analyzed. Interestingly, in the thalamus, this expression pattern
was reversed, with the majority of tdTomato expression found
in astrocytes (92%) with minimal neuronal expression (2%).
Therefore, the use of the ALDH1L1 promoter may have the
potential for targeting astrocyte expression in the thalamus,
especially as GFAP expression in this region appears to be very
low (Kalman and Hajos, 1989).

Other potential astrocyte-specific gene promoters have also
been suggested (Kery et al., 2020) including Slc1a3, which codes
for the glutamate transporter SLC1A3 (also known as GLAST or
EAAT1) (Sery et al., 2015). A 636 bp region 5′ upstream of the
gene can drive strong gene expression, and so this relatively small
promoter might have potential use in AAV vectors (Hagiwara
et al., 1996). Another potential promoter is Gjb6, which codes
for the gap junction protein Connexin30. Connexin30 is only
expressed in gray matter astrocytes and so this promoter could
be used to specifically target these populations (Nagy et al., 1999;
Sohl et al., 2004).

OLIGODENDROCYTES

Oligodendrocytes are the myelin-producing cells of the CNS.
This myelin forms an insulating membrane that wraps tightly
around axons that allows for rapid signal conduction and
is crucial for normal CNS function (Kuhn et al., 2019).
Oligodendrocytes and the myelin sheath also provide trophic
support for axons, such as the production of neurotrophic factors
(Bradl and Lassmann, 2010) and lactate that is passed to axons
to partake in the metabolic pathways involved in producing ATP
(Bercury and Macklin, 2015). Oligodendrocytes are particularly
sensitive to excitotoxic and cytotoxic factors and damage of the
CNS. The high metabolic rate required for myelination and the
presence of high levels of iron, which is required as a co-factor for
this process, can lead to high levels of reactive oxygen species, free
radical formation and lipid peroxidation. This combined with
the presence of low levels of the antioxidant enzyme glutathione
in oligodendrocytes makes this cell type particularly sensitive
(Bradl and Lassmann, 2010). Oligodendrocyte pathology is,
therefore, present in a range of CNS disorders (Fern et al., 2014).
This includes leukodystrophies, which are a group of inherited
disorders that lead to white matter degeneration (Vanderver et al.,
2015), multiple sclerosis (Procaccini et al., 2015), Alzheimer’s
disease (Nasrabady et al., 2018), Parkinson’s disease (Bohnen
and Albin, 2011), Fragile X syndrome (Filley, 2016), ischemic
stroke (Wang et al., 2016), spinal cord, and traumatic brain injury
(Fern et al., 2014; Hassannejad et al., 2019; Pukos et al., 2019),
as well as in conditions such as schizophrenia and depression
(Wang et al., 2014; Najjar and Pearlman, 2015). Gene therapy
approaches have the potential to protect against toxicity or to
promote remyelination.

AAV-Based Approaches for Targeting
Transgene Expression in
Oligodendrocytes
No natural AAV capsid that exhibits primary oligodendrocyte
tropism has been described. While a small number of serotypes
can transduce this cell type when combined with pan-cellular
markers, the overall transduction efficiency is low (Lawlor
et al., 2009). These include AAV8 and 9 when paired with a
cytomegalovirus (CMV) promoter (Hutson et al., 2012; Bucher
et al., 2014) and AAV8 with a chicken β-actin (CBA) promoter
(Gray et al., 2010). In a preclinical study of metachromatic
leukodystrophy, AAVrh10 has been found to transduce
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oligodendrocytes when driven by a cytomegalovirus/β-actin
hybrid (CAG/cu) promoter (Piguet et al., 2012). AAV-PHP.B’s
widespread transduction of the mouse CNS includes
oligodendrocytes when using a CAG promoter (Deverman
et al., 2016). DNA shuffling and directed evolution approaches
have also produced a chimeric capsid that transduced both
neurons and oligodendrocytes (Gray et al., 2010), with a novel
AAV capsid shown to have excellent oligodendrocyte preference
(Powell et al., 2016). The Olig001 vector, which contains a
chimeric mixture of AAVs 1, 2, 6, 8, and 9 had a > 95%
specificity for oligodendrocytes (as assessed by GFP expression)
following striatal vector infusion into rats even though transgene
expression was under the control of the CBA promoter. The
other 5% of cells transduced were neurons, and no astrocyte or
microglial expression was seen.

In order to specifically target transgene expression to
oligodendrocytes, a number of cell-specific promoters have been
trialed. Initial studies used the promoter from the gene for
myelin basic protein (MBP), which is a major constituent of
the myelin sheath of both oligodendrocytes and Schwann cells.
A 1.9 kb Mbp promoter was able to drive GFP expression
in the MOCH-1 transformed oligodendrocyte cell line and
primary rat oligodendrocyte cultures (Chen et al., 1998). In
primary cultures, GFP expression was almost exclusively in
oligodendrocytes, although some expression was observed in
astrocyte-like cells. When AAV vector was injected into the
cerebral hemisphere of mice, GFP expression appeared to
be only in oligodendrocytes and was not seen in astrocytes,
microglia or neuronal filaments. Building on this work, the
authors then investigated cell and tissue specificity and the
duration of transgene expression following injection of the vector
into different regions of the mouse brain (Chen et al., 1999).
High-levels of GFP expression were almost exclusively seen in
white matter areas of the brain with very limited expression
in areas of gray matter. When cell-specificity was determined
based on morphology, anatomic location, and cell-type specific
immunohistochemistry, GFP expression was found to be almost
exclusively in oligodendrocytes with no expression seen in
neurons, astrocytes or microglia.

While this data suggests that cell-specific promoters such as
those for MBP can be used to target oligodendrocytes specifically,
it is also important to determine how the stage of development
would impact this. This is essential to understand when using
somatic gene transfer approaches for glia in the developing
brain to treat genetic conditions such as leukodystrophies. von
Jonquieres et al. (2013) tested this by injecting a chimeric AAV
1/2 vector expressing GFP under the control of the Mbp promoter
into the striatum of mice at postnatal day 0 (P0) (neonates),
P10 and P90 (adults). While in the P10 and P90 animals, the
majority of GFP staining was localized to oligodendrocytes,
for the P0 animals only around 25% of GFP + ve cells were
oligodendrocytes, with the majority (56%) being astrocytes and
the number of oligodendrocytes transduced was very low at
only 3%. While for the P10 and P90 animals the majority of
transduced cells were oligodendrocytes, there was a different
pattern in the degree of transduction of other cell types. In
the P90 animals, around 20% of transduced cells were neurons,
and no GFP was detected in astrocytes. However, in the P10

animals, no GFP was detected in neurons, but it was seen
in astrocytes, although in small numbers (3.6% of GFP + ve
cells). Perhaps most interestingly at P10, transduction was almost
exclusively in oligodendrocytes (96%), compared with around
75% in the adult mice. The authors suggested that this vector
could allow for treatment of developmental gliopathies as brain
development in the P10 mouse corresponds to that seen at the
beginning of the last trimester in human pregnancy (Clancy
et al., 2001). When the vector was injected into the brains of
P10 homozygous ASPAlacZ/lacZ mice, which are a model of the
early onset leukodystrophy Canavan disease, a similar pattern
of oligodendrocyte specificity was seen as in WT mice (von
Jonquieres et al., 2013). While this is promising for the potential
to treat developmental gliopathies such as leukodystrophies, due
to the marked difference in cell expression patterns seen between
P0 and P10 animals, much more work would be required to
understand changes in expression during human development
before it could be used for such a purpose. In a subsequent
paper these authors looked at transduction of non-chimeric AAV
variants rh20, rh39, and cy5 and their ability to drive expression
under the control of the Mbp promoter, in the striatum of adult
mice. They showed that oligodendrocyte specificity was greater
for rh39 (91%) and cy5 (87%) when compared to AAV 1/2 (78%)
(von Jonquieres et al., 2016).

While the Mbp promoter seems to have potential for
oligodendrocyte targeting, its relatively large size and the poor
oligodendrocyte specificity following early neonatal vector
delivery (von Jonquieres et al., 2013) would limit its usefulness.
However, MBP-driven transgene expression from an AAV vector
has been shown to be effective in a model of oligodendrocyte
disease. The Cx32/Cx47 double-knockout mouse is a well-
characterized model of hypomyelinating leukodystrophy-2.
An AAV vector containing the Gjc2/Cx47 gene under the
Mbp promoter was delivered to the internal capsule of P10
animals. This resulted in greater survival and significant
motor improvement, improved myelination and reduced
oligodendrocyte apoptosis, inflammation and astrogliosis
(Georgiou et al., 2017).

The myelin-associated glycoprotein (MAG) has been tested
for its ability to drive oligodendrocyte-specific expression using
AAV (von Jonquieres et al., 2016). MAG is a protein responsible
for recognition of axons and maintenance of myelin. Based on
an in silico analysis of the MAG promoter, the authors generated
AAV plasmids expressing GFP under the control of either a 2.2 kb
MAG promoter or truncated 1.5 and 0.3 kb fragments. All three
AAV constructs were packaged into cy5 vectors and injected into
the striatum of adult mice. All three constructs showed very
good oligodendrocyte specificity, with GFP expression almost
exclusively confined to oligodendrocytes, with between 98.4% for
the 2.2 kb to 90.7% for the 0.3 kb promoter. The percentage
of oligodendrocytes transduced was 65, 82, and 57% for the
2.2, 1.5, and 0.3 kb promoters, respectively. When the vector
containing the 2.2 kb promoter was injected into the brains
of P0 pups, the specificity for oligodendrocytes was seen to be
around 80% in comparison to the Mbp promoter where only
around 25% specificity for oligodendrocytes was seen, suggesting
use of the MAG promoter may be better suited to treatment
of developmental gliopathies. However, the authors did not
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test the smaller promoters. The specificity and percentage of
oligodendrocytes transduced appeared to be less for the smaller
promoters. It would have been interesting to look at their profile
in P0 pups, especially as the 0.3 kb promoter is likely to be the
most useful for use with AAV vectors due to its small size.

A recent report by Powell et al. (2020) demonstrated that
modification of constitutive promoters can shift gene expression
from neurons to oligodendrocytes. Infusion of an AAV9 vector
with a full-length CBA promoter into the rat striatum led to
predominantly neuronal (88.4%) transgene expression. However,
the use of a truncated CBA promoter (CBh) showed only 46%
of neurons but 38% of oligodendrocytes were labeled. When an
AAV2 vector was used, expression was predominantly neuronal
for both promoters. This suggests that certain AAV capsids can
influence promoter activity between different cell types. When
six glutamate residues were inserted into the VP2 region of
the AAV9 capsid, this shifted the transgene expression profile
from the full-length promoter from neurons to oligodendrocytes
(80%). However, when these amino acids were changed in
AAV2, no change in expression was seen. This ability for capsid
sequence to influence gene expression could be used to target
particular cell types.

MICROGLIA

Studies have tested various AAV serotypes for their ability to
transduce microglia, and the level of transduction is generally
low (Maes et al., 2019). In early studies, Bartlett et al. (1998)
found that while AAV2 was able to transduce microglia, as
determined using Cy3-labeled virions, no transgene expression
was observed. Similarly, no transgene expression was observed
in primary microglia cultures following application of AAV1–
9 or rh10 vectors (Rosario et al., 2016) although others showed
80% of the cells expressed GFP when AAV2-CMV-eGFP was
applied to primary neonatal and adult microglia (Su et al.,
2016). When different serotypes (AAV2, AAV5, AAV6, AAV8,
and AAV9) were applied to cultured neonatal microglia, AAV6-
CMV-eGFP produced an 80-fold increase in transgene expression
compared to AAV2-CMV-eGFP while AAV8 resulted in a 25-fold
increase in transgene expression. However, when the expression
of microglial M1 and M2 activation markers was assessed to
determine the effect of viral vector-mediated transduction and/or
transgene expression, AAV6 and AAV9 elevated expression of
the scavenger receptor MARCO, while the M2 phenotype marker
YM1 was down-regulated in cells treated with AAV5 and AAV8.
AAV2 did not produce any significant change in any activation
markers assessed or influence the phagocytic activity of the
microglia (Su et al., 2016). Therefore, development of an AAV to
target microglia in vivo will require an understanding of the effect
a serotype will have on the activation state of microglia, to prevent
any unwanted, potentially detrimental inflammatory side-effects
of the treatment.

Several macrophage-specific promoter sequences, human
CD11B and CD68, and murine F4/80, have been assessed
for their ability to provide specific microglial targeting both
in vitro and in vivo. When AAV2 and AAV5 vectors expressing

transgenes under control of these promoters were applied to rat
primary microglia cultures, transduction efficiencies of around
25% for F4/80, 10% for CD68, and only one cell per field-of-
view for CD11B were reported for both vectors. While these
transduction efficiencies are low, transgene expression did appear
to be microglia-specific as no expression was detected following
transduction of rat primary neuronal cultures (Cucchiarini et al.,
2003). When AAV5 vector containing the F4/80 promoter was
injected in to brains of adult rats, transgene expression appeared
largely localized to F4/80-labeled cells.

Modified AAV capsids have also shown some success in
improving transduction of microglia. Rosario et al. modified
the AAV6 capsid (AAV6) through site-directed mutagenesis
of two tyrosine residues to phenylalanine and a threonine
to valine (Y731F/Y705F/T492V), which has been shown to
increase transduction efficiency in monocyte-derived dendritic
cells (Pandya et al., 2014). The combination of this modified
AAV capsid and either the F4/80 or CD68 promoter resulted
in > 95% transduction of microglia and no neuronal or astrocytic
expression in mixed glial or primary microglial cultures. When
tested in vivo, microglial specificity was shown to be around
75% for F4/80 and 20% for CD68 following injection into P0
rat pups and the adult rat hippocampus, although the total
numbers of microglia showing expression appeared to be low
(Rosario et al., 2016).

An important consideration is the impact that the activation
state of microglia will have on expression from specific
vectors used. For example, levels of CD68 are greater in pro-
inflammatory microglia, which could explain the low level of
expression seen in a healthy brain. This expression pattern
could potentially be of use when targeting activated microglia,
where it is likely that gene expression would be highest in this
population of cells.

MÜLLER CELLS

Müller glial cells are a major cellular component of the retina
and engage in numerous roles vital to retinal function, such
as structural, nutritional, homeostatic, osmotic, metabolic, and
growth factor support to retinal neurons (Bringmann et al.,
2006; Reichenbach and Bringmann, 2013). These glial cells also
interact with blood vessels and are involved in the function
of the blood–retina barrier and regulating retinal blood flow
(Newman, 2015). In response to retinal injury, stress, or
degeneration, Müller glial cells undergo active gliosis (Graca
et al., 2018). A number of diseases including diabetes, macular
edema, and ischemia lead to hypertrophy and hyperplasia of the
Müller glia that contributes to a chronic inflammatory retinal
environment and ultimately cell death (Coughlin et al., 2017). It
has been demonstrated that Müller cells have a neuroprotective
phenotype. For example, they respond to disease or injury-
mediated photoreceptor stress by upregulating secretion of
neurotrophic factors such as basic fibroblast growth factor
(bFGF) and ciliary neurotrophic factor (CNTF) (Greenberg et al.,
2007). Mutations in several genes expressed in Müller glial
cells have been linked to retinal dystrophies (Maw et al., 1997;
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Zhao et al., 2015). Therefore Müller glial cells have been
proposed as targets for therapeutic approaches to retinal diseases
such as gene replacement therapy or boosting neurotrophin
secretion to enhance their neuroprotective properties (Dorrell
et al., 2009; Pellissier et al., 2015). As these cells transverse the
entire thickness of the retina, they would have the ability to
facilitate expression of factors throughout all layers of the retina
(Reichenbach and Bringmann, 2013).

A number of different AAVs have been shown to have tropism
for Müller cells. When AAV 1, 2, and 5 were delivered to the
retinas of E13 mice via subretinal injection, only AAV1 and 2
transduced Müller cells (Surace et al., 2003). Intravitreal injection
of AAV 1, 5, 8, and 9 showed occasional Müller cell transduction
in 2 month-old C57BL/6 mice (Lebherz et al., 2008). Subretinal
injection of AAV8 and 9 also shows Müller cell transduction
in 4 week-old mice, but transduction was not seen with AAV5
(Allocca et al., 2007). When retinal transduction by AAV2 was
compared following intravitreal injection into P0, P14 and adult
mice, transduction was seen in Müller cells at all ages with
highest levels of transduction observed in adults, where around
10% of AAV transgene expression was observed (Harvey et al.,
2002). AAV4 and 6 also have tropism for Müller cells (Hellstrom
et al., 2009). In all these cases the number of Müller cells
transduced was low, compared with other retinal cell populations.
However, Pellissier et al. (2014) reported that use of AAV9 vectors
led to transduction of around 30% of Müller cells along with
photoreceptor cells and retinal pigment epithelia. These authors
used AAV9 under the control of a CMV promoter to deliver
the Crumbs-homolog-2 (CRB2) protein, which is expressed in
Müller cells and photoreceptors, to the retinas of Crb2 and
Crb1Crb2F/+conditional knock-out mice, which are both models
of severe, progressive retinal degeneration (Pellissier et al., 2015).
This led to improved retinal function and morphology compared
to untreated animals, demonstrating the potential for AAV to
target and modify Müller cell-related gene mutations.

As Müller cells express GFAP, this has been used to target
transgene expression to these cells. AAV-mediated delivery of
neurotrophic factors, under control of the GFAP promoter
has been shown to be protective in animal models of retinal
disease. A mouse model that has a defective gene for the VLDL
receptor (VLDLR) shows excessive retinal neo-vascularization
(NV), which is associated with common causes of vision loss
(Klein et al., 2004). The retinal phenotype of these animals is
similar to that seen in human patients with certain retinal NV
diseases, including glial abnormalities as evidenced by increased
Müller cell activation associated with the area of NV. In order to
target activated Müller cells as a potential therapy, Dorrell et al.
(2009) tested an AAV2 vector containing GFP under the control
of a minimal 0.35 kb human GFAP promoter consisting of the
A/B and D sequences (Besnard et al., 1991). When the vector
was delivered by intravitreal injection to wild-type mice, limited
GFP expression was noted in Müller cells while in Vldlr−/− mice,
a greater number of Müller cells expressed GFP, and this was
also associated with transgene expression in processes adjacent to
areas of NV. GFP expression appeared to be Müller cell-specific,
unlike non-specific expression mainly localized to ganglion cells
that was found using a non-selective CAG promoter. The authors

then used this system to deliver neurotrophin-4 (NT-4), which
is known to protect neurons in models of retinal degeneration.
Using an AAV-GFAP-NT4 vector, a similar expression pattern of
NT-4 as found for GFP was observed, and this was associated with
protection of the retina from neuronal degeneration.

A number of AAV variants have shown enhanced targeting
for Müller cells. Based on work which determined novel AAV
capsids that more efficiently transduced both primary human
astrocytes in vitro and rat astrocytes in vivo (Koerber et al., 2009)
and the shared properties between astrocytes and Müller cells,
Klimczak et al. (2009) explored the effectiveness of a number of
AAV variants for their potential for intravitreal transduction of
Müller cells. Compared to very low transduction from the parent
AAV6, one novel variant named ShH10 demonstrated a striking
increase in both transduction efficiency and specificity for Müller
cells. ShH10 was able to produce diffuse expression throughout
the retina with approximately 94% of transduced cells being
Müller cells, with limited transduction in interneurons (2%),
and retinal ganglion cells (4%) compared with approximately
76% of transduced cells being Müller cells, 3% interneurons,
and 21% retinal ganglion cells for the related AAV2 virus.
ShH10 was also more efficient at transducing Müller cells,
transducing 22 vs. 14% of total Müller cells compared with
AAV2. These authors then extended to testing the ability of the
ShH10 vector to deliver GDNF to the retina via Müller cells,
and its ability to modulate retinal degeneration in the S334-
4ter rat model of retinitis pigmentosa (Dalkara et al., 2011).
To optimize GDNF production by improving the transduction
capability of the vector, they modified ShH10 via a tyrosine
to phenylalanine amino acid change to create ShH10.Y445F.
Mutations in conserved tyrosine residues in AAV capsids have
been shown to enhance vector transduction including in the
retina (Zhong et al., 2008; Petrs-Silva et al., 2009). This vector
led to transduction of approximately 50% of Müller cells in the
retina of TgS334 rats. This was over 100% greater transduction
than that seen in WT rats, demonstrating that this mutation
allows for a greater transduction efficiency, although the authors
also acknowledge that the degenerating retina may be a more
permissive environment for AAV transduction. When this vector
was used to deliver a GDNF transgene in the diseased retina, they
were able to demonstrate long-term expression of therapeutic
and safe levels of GDNF for up to 5 months, and this was
accompanied by a slowdown in retinal degeneration, as assessed
by electroretinogram and histology. Interestingly, when the
ShH10Y vector was used to specifically target Müller cells in the
Crb2 and Crb1Crb2F/+models described above, no improvement
in retinal function was seen (Pellissier et al., 2015), as opposed
to AAV9, which targeted Müller cells and photoreceptor cells
and led to functional improvement. This demonstrates that
depending in the disease, specific targeting of just one cell type
with an AAV may not be appropriate. These vectors combined
with the use of cell-specific promoters have been used in an
attempt to further improve Müller cell specificity (Pellissier et al.,
2014). Pellissier et al. (2014) looked at the transduction profile of
AAV6 and the two AAV6-derived variants ShH10 and ShH10Y
via injection into the vitreous of Crb1−/− mice, a model of
retinal dystrophy. The ShH10Y variant had an enhanced ability to
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transduce Müller cells, with 2–3 times the transduction efficiency
of the other vectors. This supports the idea that the increase in
transduction seen by Dalkara et al. (2011) is due to the vector
modification and not the diseased environment. The authors
tested ShH10Y vectors with GFP expression under the control
of a full-length (1.8 kb) or minimal (0.4 kb) Cd44 promoter or
the 2.8 kb RLBP1 promoter (Pellissier et al., 2014). However, the
Cd44 promoters showed only low levels of expression, that was
not restricted to Müller cells. Conversely, the RLBP1 promoter
caused high levels of expression that was restricted to Müller
cells. However, due to its size, a shortened promoter would likely
be required for it to be of practical use for expression of most
genes. More recently Cao et al. (2020) found using an AAV2/6
mutant rAAV2/6-S663L led to increased tropism for Müller cells
when injected intravitreally into 5 week-old mice and when gene
expression as driven by the GFAP promoter that gene expression
was specifically seen in Müller cells.

Due to the fact that natural “cell-specific” promoters often
target expression to more than one cell type, attempts have
been made to screen a library of promoters driving transgene
expression in regions of interest. Jüttner et al. developed a library
of 230 AAVs, each with a different synthetic promoter and tested
their transduction in the retina of mice, non-human primates
and humans (Juttner et al., 2019). This screen found a number
of synthetic promoters that targeted Müller cells with 100%
specificity and one in particular (labeled ProB2) transduced 45%
of Müller cells.

Attempts have been made to create vectors that will restrict
gene expression to an injured retina. Hypoxia in the eye is known
to be a causative factor in a number of retinal diseases, such
as diabetic retinopathy and age-related macular degeneration
(Campochiaro, 2015). When an AAV2 vector containing a hybrid
promoter consisting of the GfaABC1D promoter and hypoxia-
responsive and aerobically silenced elements (HRSE) (Wenger,
2002) was injected into a mouse model of oxygen-induced
retinopathy, high levels of gene expression was seen in Müller
cells of damaged eyes but was completely absent in mice exposed
to normoxia (Prentice et al., 2011). This approach would allow
for gene expression only in regions of hypoxia, which could
be beneficial in reducing off-target effects of gene expression
in healthy tissue.

PERIPHERAL NERVE

Schwann Cells
Schwann cells are the major glia of the PNS. Two types of
Schwann cells are found; myelinating, which form a myelin
sheath around peripheral axons and non-myelinating, which are
involved in maintaining ionic balance and providing support
to axons (Kidd et al., 2013). Many neuropathies are related
to mutations or inflammation of immune cells (Martini and
Willison, 2016). Charcot-Marie-Tooth (CMT) disease, or non-
syndromic inherited peripheral neuropathy, is one of the
most common neurogenic disorders. Clinical characteristics
include distal weakness, sensory loss and deformities of the
feet. It is a genetically heterogeneous set of disorders with

over 100 different genes implicated in disease causation.
Mutations can occur in myelinating Schwann cells, and these
cause demyelinating forms of neuropathy (Laura et al., 2019;
Sargiannidou et al., 2020). A number of gene therapy approaches
using lentiviral vectors for gene replacement strategies in
models of CMT have been trialed and demonstrated promise
(Eggers et al., 2013; Allodi et al., 2014; Sargiannidou et al.,
2015; Kagiava et al., 2016). To date, only a few studies
have looked at the feasibility of using AAV vectors to target
Schwann cells in CMT.

Several AAV vectors demonstrate tropism for Schwann cells.
Hoyng et al. (2015) tested AAV 1–9 for their ability to transduce
cultured primary rat and human Schwann cells and rat and
human nerve segments. This study showed a few differences
in tropism between the species and between cells and nerve
segments. AAV1 was the most efficient at transducing rat
Schwann cells, with twice the number of transgene-expressing
cells compared to any other AAV tested. In human Schwann cells,
AAV2 and AAV6 were seen to perform equally well. However,
a different transduction pattern was seen in nerve segments.
AAV 1, 5, 7, and 9 were all equally successful in transducing rat
nerve segments, whereas AAV2 was superior in human nerve
segments. More recently, AAV1, AAV2, AAV6, and AAV-DJ
were found to efficiently transduce primary human Schwann
cells, with levels of transgene expression for AAV6 and AAV-
DJ being 2–3 times that seen in AAV1 or 2 (Bai et al., 2019).
A study by Homs et al. (2011) to determine whether AAV vectors
could specifically target Schwann cells found that sciatic nerve
injection of AAV8 led to specific Schwann cell expression with
limited (< 1%) neuronal gene expression, unlike the CNS where
significant neuronal tropism is seen. This could be explained by
differences in the expression of receptors between the CNS and
PNS (Homs et al., 2011).

Due to the presence of common transcription binding
elements, a number of oligodendrocyte promoters are also able
to drive gene expression in Schwann cells. However, the size
of these promoters precludes their use in AAV vectors. A full-
length Mbp promoter is capable of driving expression in Schwann
cells but the shorter 1.3 or 1.9 kb fragments shown to drive
expression in oligodendrocytes do not contain the enhancer
elements required for Schwann cell expression (Mathis et al.,
2000; Forghani et al., 2001). The 2,3-cyclic nucleotide (Cnp)
and proteolipid protein (Plp) promoters have been shown to
be expressed in Schwann cells, and a Cnp promoter has been
used to drive expression in oligodendrocytes using lentivirus, but
are again too big to use with AAV (Kagiava et al., 2014; Schiza
et al., 2015). The 2.2, 1.5, and 0.3 kb fragments of the MAG
promoter should drive expression in Schwann cells, but this has
not been tested. These promoter fragments contain an RNF10 site
which has been suggested would allow transgene expression in
Schwann cells (von Jonquieres et al., 2016). The myelin-specific
myelin protein zero (Mpz) promoter has been shown to have
high selectivity for Schwann cells. This along with its relatively
short length (1.1 kb) (Messing et al., 1992) and its successful
use in targeting Schwann cells using lentivirus (Sargiannidou
et al., 2020), suggests it is likely to be a good candidate for use
with AAV vectors.
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Satellite Cells
Another glial cell type found in peripheral nerves are satellite
cells. These are associated with neurons in the sensory,
sympathetic and parasympathetic ganglia and are thought to
play similar functions to astrocytes in the CNS (Hanani, 2005,
2010). Following nerve injury, satellite cells become activated,
leading to chemokine/cytokine release (Ohara et al., 2009; Souza
et al., 2013). This activation is an important component of pain
signaling, and dysregulation can lead to chronic pain (Gosselin
et al., 2010; Ji et al., 2013). Modulation of satellite cells can alter
the pain responses after nerve injury, and genetic manipulation
of satellite cells has been proposed as a potential treatment for
pain control (Jasmin et al., 2010). A recent study tested different
AAV vectors for their ability to transduce satellite cells. AAV6 as
well as AAV shH10, and AAV shH19, which have been shown
to have a preference for transduction of Müller glia in the retina
were used and injected into the dorsal root ganglion (DRG) of
adult rats. Strong expression that was restricted to neurons was
observed when transgene expression was under the control of
a CMV promoter. Conversely, when expression was driven by
a GFAP promoter, expression was almost exclusively in satellite
cells (Xiang et al., 2018). Interestingly the AAV shH10 vector, the
novel capsid variant of AAV6 that demonstrates almost exclusive
glial tropism in the retina, was almost exclusively neuronal on the
DRG. This suggests that cellular receptors for different AAVs can
vary between different glial populations in the CNS and PNS.

ENTERIC GLIA

The gut contains its own nervous system, termed the enteric
nervous system (ENS) which regulates gastrointestinal functions
such as motility, local blood flow, transport of molecules across
the mucosa and modulates endocrine and immune functions
(Costa et al., 2000). It consists of two interconnected ganglionated
plexuses that surround the digestive tract. As well as enteric
neurons, the ENS contains enteric glia, which are present in
numbers up to 6 times higher than the number of neurons.
These glia express astrocyte markers such as GFAP and S100
and are typically thought of as astrocytes of the gut. The role of
enteric glia in gut function is not completely understood, but they
are involved in regulating motility via interactions with enteric
neurons (McClain et al., 2014). Furthermore, they also play a
role in the maintenance of gut epithelial integrity and loss of
enteric glia has been shown to lead to intestinal inflammation
(Aube et al., 2006). It has also been suggested that enteric glia
may influence barrier integrity through interaction with immune
cells (Ibiza et al., 2016). The ability of enteric glia to mediate
immune responses could be a possible underlying mechanism
for Crohn’s disease (Pochard et al., 2018) and they are known
to contribute to the inflammation that occurs with conditions of
the gut including irritable bowel disease, enterocolitis, and gut
infections (von Boyen et al., 2004; Linan-Rico et al., 2016; Lilli
et al., 2018). An age-related decrease in the number of enteric
glia may play a role in chronic, low-grade inflammation that
is associated with age-related gut motility disorders (Franceschi
et al., 2007). Treatments for Crohn’s disease are limited and can

have serious side-effects (Seyedian et al., 2019). Therefore, gene
therapy targeting of enteric glia with neuroprotective strategies
in the early stage of such diseases, may be a useful approach to
help treat these disorders.

Several studies have looked at the delivery of AAV to the
gastrointestinal tract. Oral or enema delivery of AAV serotypes
1–10 have shown transduction of GI tissue including the lamina
propria and endothelial cells, but transduction of the ENS was
not determined (Shao et al., 2006). When AAV vectors were
injected directly into the descending colon, neuronal and enteric
glia transduction was observed in the myenteric and submucosal
plexuses (Benskey et al., 2015). Of the serotypes tested, AAV
serotypes 1, 5, 6, 8, and AAV8-double Y-F + T-V showed
both neuronal and glial transduction. However, the authors
note that glial transduction was rare for most serotypes except
for AAV6, where the level of transduction was roughly equal
between neurons and glia. Systemic delivery of AAV serotypes has
demonstrated tropism for enteric glia, although few studies have
attempted to target glia directly. Both intravenous and intrathecal
delivery of AAV9 to juvenile mice leads to transduction of
enteric ganglia, but no glial transduction was reported (Schuster
et al., 2014). Gombash et al. (2014) showed that intravenous
injection of scAAV8 and scAAV9 (which have known tropism
for astrocytes) containing a GFP reporter into neonatal and
juvenile mice led to GFP expression that was found exclusively in
myenteric neurons. GFP expression was occasionally detected in
S100 positive glia in neonatal animals for scAAV8. To determine
if tropism could be directed toward glia, the authors engineered
an AAV9 vector with GFP expression under the control of the
GFAP promoter, as GFAP expression is present in enteric glia,
similar to astrocytes in the CNS. Following intravenous injection
of an AAV9-GFAP-GFP vector into neonates, GFP expression
was found principally in enteric glia of the myenteric ganglia.
However, it should be noted that the number of glial cells
transduced was less than 5%. This study also trialed AAV 6,
which has been shown to cross the BBB (Zhang et al., 2011)
but no transgene expression was detected. This is likely due to
differences in vasculature between the ENS and CNS that impact
on the virus’s ability to cross the endothelial barrier. In another
study (Buckinx et al., 2016) using AAV8 and AAV9 to transduce
myenteric and submucosal neurons, about 25–30% of neurons
were found to be expressing eGFP. All subtypes of neurons
expressed GFP, but no expression was seen in glia (assessed
using S100 and GFAP). While it appears that AAV-mediated
transgene expression can be somewhat tailored toward enteric
glia, further work is required to make this a viable approach to
target these cells. One issue is the use of a GFAP promoter and
systemic delivery of AAV9, as this would make specific targeting
of enteric glia, without potential off-target effects on other GFAP-
expressing cells, impossible. Currently, an enteric-glia-specific
promoter has not been identified. However, transcriptional
profiling of enteric glia suggests that they are developmentally
closer to oligodendrocytes and Schwann cells than astrocytes and
can adopt some Schwann cell markers (Rao and Gershon, 2018).
However, the gut microenvironment shifts these cells toward an
astrocyte-like phenotype as shown by expression of GFAP, which
is not seen in Schwann cells (Gulbransen and Christofi, 2018).
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Therefore, enteric glia are considered a novel type of glia, and
that an enteric glia-specific promoter may need to be developed.
This different phenotype may also explain the low transduction
efficiency of enteric glia compared with other glial types. Further
testing of novel AAVs would likely be needed to make this a viable
approach to therapy.

CONCLUSION

Through the use of specific serotypes and cell-specific promoters,
glial cell targeting is possible and has shown some promise in
experimental models, particularly in the retina. However, there
are still several hurdles that need to be overcome for truly glial-
specific AAV tropism to be achieved for use in human gene
therapy. While several AAV serotypes have increased tropism
toward glia, they are not glia-specific, and so any gene therapy
transgene will be present in other cell types. Furthermore, the
percentage of glial cells that are transduced is also often low,
raising the question of whether transgene expression levels would
be enough to have a therapeutic effect. The development of
promoters that are highly specific for a particular glial cell
type would be beneficial to avoid the possibility of off-target
effects which might be likely with systemic delivery of an AAV
vector expressing transgenes under the control of the GFAP
promoter for example, due to it being expressed in a number
of glial cell types throughout the body. An issue with the use
of cell-specific promoters is that they are often large, which can
preclude their use in an AAV vector context. However, a number
of studies have demonstrated the use of shortened promoter
sequences for driving glial cell-specific transgene expression. The
development of new methods for synthetic promoter design
holds real promise (Juttner et al., 2019). This study used a
number of approaches to design synthetic promoters based
on conserved upstream sequences of highly cell-specific genes
and cis-regulatory regions active in cell types of interest. This
approach led to the discovery of promoters that provide 100%
specific gene expression in different retinal cell types, including
the 500 bp ProB2 promoter, which shows 100% specificity for
Müller cells. Applying this approach to other cell types could
lead to the discovery of highly cell-type-specific promoters of
appropriate size for use in AAV vectors.

The AAV literature also reports differences in transduction
results depending on the model used and the method of delivery.
Observations from in vitro studies often do not translate to
the in vivo situation, and differences can be seen depending on
the animal species or strain used or the method of delivery.
For example, the ability to systemically deliver an AAV vector
with a particular cellular tropism or cellular promoter would
be beneficial. The variants AAV9-PHP.B and PHP.eB have
been reported to allow for significant transduction of the CNS
following intravenous infusion but depending on the animal
model or method of delivery used, different results are seen
(Hordeaux et al., 2018; Simpson et al., 2019). While enhanced
CNS tropism has been shown in a number of mouse strains
including C57BL/6J mouse where it was first demonstrated, no
such increase in transduction efficiency is seen in the BALB/cJ

mouse strain (Hordeaux et al., 2018; Matsuzaki et al., 2019).
These results are explained by lower levels of the receptor for
AAV9-PHP.B, LY6A, in BALB/cJ mice (Huang et al., 2019; Batista
et al., 2020). When this virus was delivered to cats, sheep and
non-human primates the efficiency of transduction of the CNS
was low (Hordeaux et al., 2018; Matsuzaki et al., 2018; Liguore
et al., 2019; Batista et al., 2020; Liu et al., 2020) and these species,
as well as humans, have no known ortholog for Ly6a (Batista
et al., 2020). This demonstrates that the use of non-human
species to select novel AAV capsid variants could inadvertently
limit the usefulness of candidate capsids that are isolated. These
differences can also be more subtle. Using the cell-type-specific
markers GFAP and Olig-2, He et al. (2019) assessed the cell-
specific tropism of AAV serotypes 2, 5, 7, 8, and 9 in C57 and
FVB mice. In the case of oligodendrocyte transduction, AAV8
resulted in 23% of oligodendrocytes being EGFP positive in
C57 mice, significantly more than was seen measured in FVB
mice at only 4.4%. In FVB mice, AAV7 vectors transduced
a significantly larger number of oligodendrocytes than AAV8
vectors. Therefore, the choice of model can have a significant
impact on the results that are obtained, and it will be important to
understand the species and cell-type specific localization of AAV
receptors to ensure accurate targeting of AAVs.

In a review by Maes et al. (2019) on the use of gene therapy
to target microglia, the authors proposed guidelines for the
reporting of viral transduction of this cell type. A similar set
of guidelines for design and reporting of glial-targeting gene
therapy studies could be of benefit for moving these approaches
to clinically useful interventions. In order to confirm the results
observed in animals, experiments using human model systems
are crucial. While a number of non-human primate studies of
AAV tropism have been carried out, these are not practical or
financially viable for many research groups to undertake. Studies
could be carried out in primary cells derived from the human
brain; however, these may not express the same AAV receptors
and lack the differentiation of the in vivo environment. In order to
better understand the tropism and glial cell-specific transduction
of AAV vectors, studies using primary human cells as close to
their in vivo context are needed (Lisowski et al., 2015). One
example that has been proposed is the use of humanized mouse
models containing chimeric tissues, such as the FRG mouse
model that allows animals to be generated with chimeric mouse-
human livers (Azuma et al., 2007). While such an approach
does not apply to the nervous system, the use of induced
pluripotent stem cells (iPSCs) and human brain organoids have
potential to understand tropism and expression of transgenes in
human cells. Recent studies have used this approach to study
AAV transduction and expression in the retina (Mookherjee
et al., 2018; Quinn et al., 2019; Tornabene et al., 2019; Garita-
Hernandez et al., 2020; Lane et al., 2020). The study by Quinn
et al. (2019) specifically looked at the expression in Müller
cells within the organoids. Using AAV and ShH10Y445F vectors
with either the CMV or RLBP1 promoter showed good Müller
cell transduction, with the authors reporting a ShH10Y445F-
RLBP1-GFP vector being specific for transduction in Müller
cells. A similar tropism and expression potency was seen in
cultured adult human retinal explants. This is an important
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observation, as it demonstrates findings seen in organoids
may recapitulate what would be seen in adult human tissue.
Studies have also used human iPSC-derived cerebral organoids
to study AAV transduction (Latour et al., 2019; Depla et al.,
2020). However, these studies only looked at neuronal transgene
expression achieved from the AAV vectors used. While organoids
are likely useful for testing AAV for treating developmental
disorders, using optimal differentiation conditions enables the
creation of cerebral organoids containing mature neurons and
astrocytes (Yakoub, 2019) that could be used to study AAV glial
tropism. Models of human intestinal organoids that contain an
ENS (including glia) could potentially be used for this purpose
(Schlieve et al., 2017).
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