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Abstract

The field of artificial intelligence and its paradigms continue to achieve state-of-the-art accuracy in var-

ious tasks. The future of artificial intelligence-based solutions will be populated with smart devices that

require low computational power and inexpensive hardware platforms. Typically, the machine learning

algorithms are complex, iterative, time-consuming, and hence are usually executed on general-purpose

or high-performance computers. The computational engine for inferencing is significantly less complex

than machine learning algorithms. While standard computers can incorporate sophisticated floating-

point units (FPU), this is not the case with embedded processors that may host a simplified FPU. On

dedicated inference engines, FPUs may not be possible due to cost (space, power, and speed). To solve

this problem, we focus on efficient algorithms for various building blocks of neural networks. Our ap-

proach starts by introducing the square law that significantly reduces the computation requirements of

machine learning models by eliminating the need for mathematical operators such as exponent, floating-

point division, square root, and logarithm. The square law algorithm can reduce computation time on

CPU by 1.3x to 4.3x and on ARM processors by 4x to 169x without hurting the prediction accuracy.

We also discovered that square law can be applied across a wide variety of machine learning building

blocks. We propose distinct technologies to make a complete neural network on a chip. The square

law-based solutions use standard digital building blocks and can be implemented on ASICs or FPGAs.

On ASIC platform, our algorithm records area efficiency (throughput per gate) of 1.79x to 3.75x over

baselines without hurting the prediction accuracy.
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Chapter 1

Introduction

The field of artificial intelligence and its paradigms continue to achieve state-of-the-art accuracy in im-

age recognition [15], language processing [16], autonomous vehicle [17], and other domains [18]. One

of the successes of artificial intelligence and its paradigms is due to the availability of high computing

hardware platforms. There is a growing interest in underlying hardware platforms for computing neural

network operations. Distributed computing infrastructure using several Central Processing Unit (CPU)

cores [19] or the use of high-end power-hungry Graphical Processing Units (GPUs) [15] are the two

major platforms. Other commonly used platforms of choice are the Field Programmable Gate Arrays

(FPGAs) and Application Specific Integrated Circuits (ASICs). Hardware implementation of machine

learning models exhibits several challenges due to finite hardware resources, memory constraints, power,

and latency. Current neural network models are computationally expensive and memory intensive. The

associated computational complexity is highly undesirable from a real-time operation and low power

consumption perspective, leading to considerable problems for constrained computing platforms (e.g.

mobile devices) that suffer from limitations such as low computational power, low memory capacity,

short battery life, strict miniaturisation requirements, and in some cases, lack of necessary support for

floating-point arithmetic [20]. Current research [21–23] in the hardware implementation of neural net-

work results in custom hardware-based neural network accelerators surpassing general-purpose proces-

sors in terms of energy efficiency and throughput.

1.1 Neural Network Building Blocks

The current trend in neural networks empowered Internet of Things (IoT), autonomous vehicles, and

embedded applications to result in advancements in hardware and embedded platforms. However, un-
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like CPU and GPU, FPGAs and ASIC are resource and memory constrained. The two fundamental

operations of any neural network architecture are the General Matrix Multiply (GEMM) and activation

functions. The following are the commonly used elementary functions in the field of machine learn-

ing: multiplication (matrix multiplication, convolution, element-wise multiplication), exponentials, log-

arithms, adders, and floating-point division [22, 24]. The elementary functions can be implemented

using lookup tables [21], direct computations such as polynomial power series evaluations [25], hybrid

approaches [26], iterative approaches [27] and piecewise approximations [22, 28].

1.1.1 Activation Function

At the heart of every machine learning architecture lies a linear transformation followed by an activation

function f (). The nonlinear activation function is an important building block of any artificial neural

network architecture. Activation functions lie at the core of machine learning architectures allowing

them to learn arbitrarily complex mappings and perform complex tasks. Without the activation function,

a neural network is a linear regression model. Over the years, activation functions have been shown to

increase performance accuracy [3], make it possible to create deeper layers [29], speed up training [3]

among others. Many neural network applications can benefit from accurate, scalable, and low-power

calculation of nonlinear activation functions. Accurate lookup tables (LUTs) require very large real

estate on ANN chips and floating-point engines consume a lot of power and take time to process.

There are several types of machine learning models, each with their own characteristics and appli-

cations. Some activation functions are only useful in some machine learning models. For example,

deep neural networks are characterised by using asymmetric non-saturating activation functions like

ReLU and its variants. Long Short Term Memory (LSTM), a variant of recurrent neural networks, uses

symmetric saturating activation functions for its gating mechanism. A normalising function, such as

softmax, found use in multiclass classification problems. Sigmoid found use in generative adversarial

networks, attention models, and binary classification problems. Sigmoid has significance in terms of its

interpretability as probability; it is intuitive to use it for gating or binary classification problems [30]. The

study of the optimal activation function is an active area of research. Over the years, researchers have

proposed several activation functions to improve network performance (ability to train deeper layers,

faster convergence, better accuracy, and others). There is a constant rise in the computational com-

plexity in formulating these activation functions. Figure 1.1 shows the increasing complexity of some

popular activation functions found in the literature for the last decade. Apart from the computationally

simple ReLU, all other activation functions are expensive with increasing computation.
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Figure 1.1: Different Variant of RELU with Increasing Computational Complexity.(LReLU [1], APLU
[2],ELU [3], GELU [4], SELU [5], dSiLU [6], ELISH [7], SRS [8]). Square Law is the algorithm
proposed in this thesis for simple symmetric and asymmetric activation functions.

1.1.2 Multiplication

Multipliers are the most area and power-intensive arithmetic operators of the hardware implementation

of any neural network architecture. The cost of a multiplier varies as the square of the precision for small

width operands while the cost of adders and accumulators varies as a linear function of the precision [31].

As discussed in [32], multiplication and accumulation operations are directly related to the computation

requirements of the neural network. Therefore, solving the high computation requirements of neural

networks is equivalent to reducing the multiplication and accumulation operations. On software-based

platforms, techniques such as pruning [33, 34] and compact architectural designs [35, 36] have been

shown to reduce the multiplication requirements of network architecture. Furthermore, hardware and

software platforms can benefit from the reduction of operands and operations precision, resulting in

energy and power efficiency.

Reduction of weights and activations to binary [37] or ternary [20] results in the elimination of

multiplications. Multiplications are replaced in binary and ternary networks with a shift operation,

XNOR [38], and population count operation. On certain datasets and neural network models, reducing

the precision of multipliers (which results in a reduction in area and power) does not affect the perfor-

mance accuracy [24].
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1.1.3 Data Representation

Floating point, fixed point (full precision or quantised) are commonly used to represent neural network

operation data. Data representation and precision for the neural network have a direct impact on memory,

latency, and resource utilisation on software and hardware platforms. Quantisation [39] shifts values

from floating-point continuous values to reduced bit discrete values (fixed-point). A 32-bit floating-point

and integer multiplication consume 3.7pJ and 0.2pJ respectively on a 45nm ASIC technology [40]. A

lot of work is being done on reducing the data precision during training and inferencing operation of

machine learning applications.

The arithmetic operations of neural networks can be truncated down to an 8-bit fixed-point with-

out significant deterioration in inference performance [41–44]. To make neural networks practical on

embedded systems, many researchers have focused on training networks with quantised weights and

activations. For example, weights may be constrained to take on integer, binary or ternary values, or

maybe represented using low-precision (8 bits or less) fixed-point numbers. Extensive experiments per-

formed in [45] show that lower precision (e.g., binary or ternary) requires a lot more training time/epoch

to achieve the same accuracy level as higher bits such as 3-8 bits precision.

1.2 Motivation

In recent years, Artificial Intelligence and its paradigms have seen a great spike in both academics and

the commercial environment. Several existing software implementations of machine learning models

provide high classification accuracy. However, these implementations cannot be used in embedded sys-

tems and applications because of the intensive computations required by the individual building blocks

of machine learning architectures. In addition, embedded systems development requires meeting chal-

lenging constraints such as low cost, limited resources, and low power consumption. Devices that make

use of machine learning paradigms are becoming more common. The use of machine learning involves a

learning phase, an implementation engine, and an algorithm to match the problem. The implementation

engine and inference engine could be a standard computer system or an embedded processor as in mobile

phones. Processor chips in mobile phones are now equipped with an artificial neural network engine that

can be configured to execute the outcome of a machine learning algorithm. Two important and integral

parts of a machine learning implementation is the matrix multiplication and computation of a nonlinear

function called the activation function. The GEMM operation is the most computational workload in

deep learning. Several optimisations and parallelisation techniques have been introduced in the literature
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to speed up this process. With GEMM operations, computationally complex (functions with exponent,

logarithm, trigonometric, and floating-point division) activation functions dominate the computational

intensity. Using the power series expansion, an exponential function would take at least three multipli-

cations, two floating-point divisions, and several additions. With the acceleration of GEMM operations,

the computational intensity introduced by computationally complex activation functions becomes more

significant. Hence, the motivation for this work which shows that a fast and resource efficient activa-

tion function calculation is essential. The hardware implementation of this work primarily targets the

reduction of resource utilisation while the software implementation targets state-of-the-art performance

accuracy.

1.3 The Proposed Square Law Solutions

There are two ways to view the implementation of machine learning architecture. Firstly, software

implementations on CPUs and GPUs. Secondly, hardware implementation on dedicated digital devices

such as on FPGAs and ASICs. A multiplier and a nonlinear mapping function form the core of an

ANN inference engine. Our research contribution is based on two innovations that can capitalise on the

parallelism offered by FPGA or ASIC. Firstly, we have developed a novel algorithm to build a family

of nonlinear functions. The proposed family of functions are based on the square-law algorithm. Our

proposed functions use compositions of a square operation and a binary shift to achieve both symmetric

and asymmetric nonlinearities. Importantly, a parallel implementation of our proposed method would

take fewer silicon resources than transcendental activation functions. Our proposed method is expected

to have an execution time that is similar to the Multiply and Accumulate (MAC) operation and hence

is very relevant. Secondly, we have developed a low resource multiplier. Importantly, we estimate

our algorithms to be more efficient in terms of real-estate, therefore delivering a higher throughput per

unit area of silicon. Our solutions offer the potential of making the ANN inference engines compact

and hence attractive for embedded solutions. We offer distinct technologies to make a complete neural

network on a chip. Our solutions use standard digital building blocks and can be implemented on ASICs

or FPGAs. Computationally, our solution eliminates the need for complex mathematics operators such

as exponent, division, logarithm, square roots, and others.

1.4 Research Contributions

Overall, the thesis structure and contribution is shown in Figure 1.2. This thesis focuses on designing
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and implementing novel arithmetic blocks require for efficient and effective hardware implementation

of machine learning architectures. The contribution of this thesis can be divided into software and

hardware. The solutions proposed in this thesis can be used on software (CPU, ARM, and GPU) as well

as on hardware (FPGA and ASIC). The main contributions of this thesis are:

• The development of eight novel activation functions and applications of each. These activation

functions are computationally efficient and are accompanied with simple mathematical formulas.

We show the universal applicability of the square law in artificial neural networks architectures

such as CNN, DNN, RBM, and RNN. Furthermore, the square law can be applied to statistical

models such as SVM and logistic regression architectures. Due to the presence of the square

function, they are referred to as SQuare NonLinearity (SQNL) family and include: (Chapters 2, 4

& 6)

– Square-based Nonlinearity (SQNL), which is computationally efficient and finds applica-

tions in RNN and shallow feed-forward neural networks.

– Log Square-based Nonlinearity (Log SQNL), which is the unipolar version of SQNL, and

finds application in logistic regression, RNN, and binary classifiers.

– Square Linear Unit (SQLU), whose property is identity in positive and nonlinear in the

negative region, applications in DNN and CNN.

– Square REU (SqREU) identity in positive and nonlinear in the negative region, applications
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in DNN and CNN.

– Square Swish (Sqish), non-convex, non-monotonic function with applications in deep neural

networks.

– Square Softplus (SQ Softplus), a soft version of ReLU with applications in RBM and some

DNN architectures.

– Square Radial Basis Function (SQ-RBF), a symmetric bell-shaped curved function with ap-

plications in RBFNN and nonlinear multiclass SVM.

– Square Softmax (SQMAX) normalising function for the output layer of neural networks.

• Development and implementation of hardware efficient method for implementing the SQNL fam-

ily of activation functions. This method is divided into the following: (Chapters 3 & 5)

– Multi-clock implementation

– Single-clock implementation

– Embedded multiplier based implementation

• Development and implementation of a multifunctional generator (SQ-GEN). The symmetric and

asymmetric implementations share commonalities and have also been integrated into a multifunc-

tional generator. This would be attractive in headless inference engines like the designs of TPU™,

Nervana™, and NVDLA™.

• Elimination of resource and power-hungry multipliers in feedforward and recurrent neural net-

works. Our solution is divided into two, namely: (Chapter 7)

– Gated Activation: this solution simultaneously computes a symmetric activation function

with an integrated scaling functionality. Therefore, this eliminates two of the three element-

wise multipliers in an LSTM cell, thereby bringing significant benefits to custom hardware

in terms of silicon area and power consumption.

– Quantised Scaling Unit: A resource-efficient approximate multiplier that replaces the third

element-wise multiplier and can potentially replaces the resource-hungry multipliers in quan-

tised neural networks.

• Computationally efficient learnable asymmetric activation functions for deep learning: (Chapter 8)

– Investigation of several effects of parameterisation on convergence speed and performance

accuracy.
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– A new learnable combined square-based activation function called Multiple Square Units

(MSU). MSU synthesises properties from SQLU, SqREU, SQ Softplus, and others.

1.5 Thesis Outline

The rest of the thesis is organised as follows:

• In Chapter 2, we present a computationally efficient symmetric activation function. Our proposal

uses a novel algorithm named square law and presents a detailed evaluation of this function in

comparison to the baselines. The computational footprint on the Intel CPUs and ARM M3 pro-

cessor is presented.

• In Chapter 3, we present a novel algorithm for generating symmetric activation functions in hard-

ware. Three hardware implementation solutions and computational footprint on embedded devices

are explored. We carried out extensive resource utilisation and inference performance on FPGA.

• In Chapter 4, we present four new asymmetric activation functions for deep neural networks.

The computational footprint and performance accuracy of these functions show superiority when

compared to the state-of-the-art.

• In Chapter 5, the ALU implementation, hardware implementation of the asymmetric activation

functions is presented. The computational footprint on an embedded NIOS II processor, FPGA,

and ASIC is presented. We also present a generator that can combine multiple activation functions

with very minimal resources, The advantages of square-law based functions in low-end hardware

devices is discussed.

• In Chapter 6, the FPGA based radial basis neural network and support vector machine architec-

tures are explored. Of particular interest is the popular Gaussian function. We compared our

proposed function to the conventional and show speedup and lower area usage on an FPGA.

• In Chapter 7, we propose two solutions for resource-efficient recurrent and feedforward neural

networks. The digital implementation of our solution is described in detail. Extensive experiments

are performed to show the usability and performance of the two solutions.

• In Chapter 8, the thesis returns to asymmetric activation functions for use in deep learning with a

particular interest in evaluating learnable asymmetric functions. The effect of three parameterisa-
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tion concepts is explored. We propose an efficient and simple learnable combination of square-law

based asymmetric activation functions.

• In Chapter 9, conclusions are presented, and avenues for future work for hardware/embedded

neural network building blocks for the training phase are discussed.
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Chapter 2

Square Nonlinearity: A Computationally

Efficient Activation Function

Abstract

A new symmetric activation function is proposed. This activation function uses the square operator to

introduce the required nonlinearity as compared with the use of an exponential term in the popular Tan-

Sig. Smaller computational operation count characterises the proposed activation function. The key to

the effectiveness of this function is its fast computation. Overall, on different Intel processing units, the

proposed function is 1.9x to 3.2x faster than the computationally expensive TanSig. The derivative of

the function is linear, resulting in a quicker gradient computation. The scaled and shifted version of the

proposed activation function results in a new function. This new function is morphologically similar to

sigmoid. The effectiveness and efficiency of the proposed activation function have been compared with

TanSig and the computationally efficient ElliotSig functions using selected UCI and MNIST datasets on

single-layer feedforward neural networks. An empirical comparison suggests that the proposed func-

tion outperforms TanSig and ElliotSig in convergence time as well as in generalisation metrics for most

datasets. Further empirical comparison using these square nonlinearities on logistic regression and re-

current neural network architectures results in better performance accuracy.

2.1 Introduction

In recent years, Artificial Intelligence and its paradigms have seen a great spike in both academics and

the commercial environment. Deep learning, machine learning, neuromorphic computing, spiking neu-
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ral networks, and some other Artificial Intelligence paradigms are very popular due to state-of-the-art

simulation, emulation environment, embedded systems, and availability of large data for training. Dur-

ing the implementation process of modelling an Artificial Neural Network (ANN), training data, network

architecture, and activation functions among others are important parameters. Activation functions are

responsible for the introduction of nonlinearity. They are viewed as the fundamental, vital building

blocks that will help achieve the complex capabilities ANNs are expected to deliver [46,47]. In [47–51]

the nonlinearity of activation functions is justified if a universal approximator is required. Additional

properties of such activation functions include boundedness, continuous, smooth, and monotonically in-

creasing. Any activation function with these characteristics is capable of continuous mapping and has the

potential ability to learn and approximate very complex nonlinear mappings in single-layer feedforward

neural networks .

The nonlinearity of the activation function can also speed up the training of ANN as described

in [52–54]; this characteristic is lacking in some types of functions. An activation function with ”sim-

ple” mathematical terms in its expression can lead to significant speed improvement for solving certain

Multilayer Perceptron (MLP) ANN problems. In a simulation or emulation environment, specific ac-

tivation functions are selected based on the favourable properties required by the learning algorithms -

particularly those that are reliant on gradient determination. Before the current wave of deep learning,

activation functions used in neural network architectures are of a ”squashing” type. The sigmoid and

TanSig activation functions tends to be a designer’s choice as opposed to the hard-limiting functions.

In literature, other forms of activation functions have been proposed to solve one or more problems as-

sociated with the popular sigmoidal functions. Authors in [55] proposed an activation function called

Hexpo capable of eliminating the vanishing gradient issue but this function, as well as its derivative, is

computationally expensive due to the presence of exponent term. Another form of activation function

capable of eliminating the vanishing gradient problem is the ReLU reported in [56]. The non-saturating

characteristics of ReLU function have led to training of very deep networks. ReLU will be discussed

fully in chapter 4.

Performance of an ANN model is partly based on the choice of activation function and thus has led

to various work in the literature on the factors that make a good activation function and how to choose

a good activation function [57] [58]. The authors in [59] discussed the various monotonic and bounded

activation function types with their influences on the overall performance of MLP ANN by comparing

their mean square error to a fixed number of iterations. The different activation function based on the

same architecture and data gives different performance accuracy with the TanSig activation function
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resulting in the best accuracy [60]. While computational speed is of importance when using simulators,

generalisability (performance with unseen data) is a universal requirement.

This chapter presents two new activation functions that address both of these issues. The first func-

tion is referred to as the SQNL and its performance is compared with the TanSig and ElliotSig [61] ac-

tivation functions. The choice of benchmarking SQNL against TanSig and ElliotSig functions is based

on their similar shape and the same output range (−1,+1). The second function is referred to as the

Log SQNL and its performance is compared to the logistic sigmoid activation function.

The TanSig and sigmoid activation functions are computationally expensive due to the presence of

an exponential term and floating-point division in their mathematical expression. The ElliotSig is an

approximation of the TanSig function because software implementations, as well as some straightfor-

ward computing hardware, may not support exponential term directly. Therefore, eliminating the use of

exponential term present in TanSig and sigmoid can lead to faster simulation. Using exponential-based

functions as activation function for any neural network training can slow down training since it includes

a call to high order exponent term.

The proposed method is motivated by an intention to construct a nonlinear activation function on

ASIC or FPGA hardware. This chapter does not explore the hardware implementation. A seperate

chapter (Chapter 3) is dedicated for presenting the novel algorithm for the implementation of these

activation functions. The following are the contributions of this chapter:

• Introduction of two new computationally efficient activation functions.

• Evaluation of the computational footprint and speedups of the proposed activation functions on

Intel CPU and ARM processors.

• Experiments on the hidden representation and gradient computation of the new activation func-

tions during training.

• Usability of the proposed activation functions across multiple machine learning models with an

increase in inference speed and sometimes performance accuracy.

2.2 Concepts

This proposal uses a hard nonlinearity and a time average to produce a precise square law nonlinearity.

This nonlinearity can also be modeled as an approximate TanSig function. Figure 2.1 shows, as a

block diagram, a possible hardware implementation schematic. It comprises an adder, subtractor, and
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Figure 2.1: Potential ASIC Implementation Block Schematic of Proposed Nonlinear Activation Function

an averaging filter. First, the input and an oversampled random signal are added. The adder is saturating

(hard-limited) and hence all sums over the defined limits are clipped. The same random signal is then

subtracted from the sum. The subtractor is also required to be hard-limited. The subtraction attempts to

recover the original input. If the input was small in magnitude, then the addition with the random signal

will not result in clipping, and hence the original input is recovered after the subtraction. However, if

the input is large in magnitude, then the addition of the random values will lead to clipping in some of

the additions, and the following subtraction will not restore the original signal. The filter averages the

restored outputs. The clipping and averaging effectively add a negative offset where the offset is larger

when the input is closer to the clipping levels and smaller when the input is closer to zero. The resulting

transfer characteristic at f1 in Figure 2.1 is nonlinear.

Figure 2.2 shows this around ≈ (1,1). If the distribution of the random signal has a very small

variance, then the nonlinearity will be narrower, i.e., it will not manifest till the signal is very close to

(1,1). However, if the variance is large, then the nonlinearity is manifest much before (1,1), i.e., closer

to (0,0). Hence, the variance can be used to shape the nonlinearity.

Figure 2.1 has been simulated in MATLAB. A uniform distribution with a range of ±1.0 was used.

The adder has its hard-limit set at ±1.0 while the subtracter is at ±2.0. The data at f1(x) was fitted to

an approximate TanSig function defined in Equation 2.1. A particular MATLAB simulation results in

a =−1.81 and b = 0.18 (c.f. a =−2.0 and b = 0 for TanSig) and exhibiting RMS error of 0.023. Thus

f1(x)≈ fA(x). Figure 2.3 plots the MATLAB simulation.

fA(x) =
2

1+ eax+bx3 −1 (2.1)
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Although this technique generates an approximate TanSig function, it will be shown that its exact

equation is more attractive in both forward and backward propagation. A closed-form expression for

this technique will be developed using Figure 2.4. If f1(x) is scaled and shifted by 0.5, an approximate

LogSig is produced. This has also been simulated and presented in Figure 2.3.

Definition 2.1

Assume that the clipping levels are ±1.0. The random signal is uniform, i.e., {u|u∼U [−1.0,1.0]}.

The input x is the netsum from the input or previous layers where x ∈ R.

Theorem 2.1

The offset as a consequence of clipping and averaging is given by

o(x) =
x2

4
, where x ∈ R (2.2)

Proof

Proof of Theorem 2.1: Figure 2.4 a) depicts an input of zero. Since −1.0 ≤ x+ u ≤ 1.0, the clipping

limits have not been exceeded, and hence there is no change in the recovered magnitude. Figure 2.4 b)

depicts a positive input (x = n). When the random signal is added, the values in which the sum extends

into the red zone are clipped. The offset is the triangular area in the clipping zone and can be determined

by integrating the clipped samples in the range [1.0,1.0+n].

o(x)
∣∣∣∣
x=n

=
1
2

ˆ 1+n

1
(x−1)dx =

n2

4
(2.3)

Thus, the general form of the offset is given by

o(x) =
x2

4
(2.4)

�
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Theorem 2.2

Using definition 2.1, the bipolar transfer characteristic is given by

fB(x) =



1 : x > 2.0

x− x2

4 : 0≤ x≤ 2.0

x+ x2

4 :−2.0≤ x < 0

−1 : x <−2.0

(2.5)

Proof

Proof of Theorem 2.2: For all positive inputs, the minimum value of x+u, i.e., min(x+u)>−1.0 and

hence is unaffected. However, all additions of x+u > 1.0 are clipped and the subsequent subtraction of

u results in a reduction in magnitude. This is captured by

f (x) = x−o(x), where x > 0

However, for negative inputs, it is the maximum value, i.e., max(x+ u) < 1.0 that is not affected but

rather all values x+u <−1.0 are clipped and the subsequent subtraction results in a positive offset. This

is given by

f (x) = x+o(x), where x < 0 �

Given the square-law nature of the proposed activation function, it will be referred to as SQNL in

subsequent discussions.

Scaling and shifting Equation 2.5 by half as shown in Figure 2.1, a new transfer characteristic is

given by Equation 2.6. This function will be referred to as Log SQNL.

f (x) =



1 : x > 2.0

(1
2(x−

x2

4 ))+
1
2 : 0≤ x≤ 2.0

(1
2(x+

x2

4 ))+
1
2 :−2.0≤ x < 0

0 : x <−2.0

(2.6)

Derivative

The SQNL and Log SQNL functions can potentially replace the equivalent exponential-based activation

functions. Equations 2.7 and 2.8 describe the derivatives of SQNL and Log SQNL, respectively .

17



Square Nonlinearity (SQNL)

f ′B(x) =



0 : x > 2.0

1− x
2 : 0≤ x≤ 2.0

1+ x
2 :−2.0≤ x < 0

0 : x <−2.0

(2.7)

Square Logistic Sigmoid (Log SQNL)

f ′(x) =



0 : x > 2.0

1
2 −

x
4 : 0≤ x≤ 2.0

1
2 +

x
4 :−2.0≤ x < 0

0 : x <−2.0

(2.8)

The derivative of interest is the Log SQNL (replacement sigmoid) which achieves a maximum at

0.5 when input is 0.0, unlike sigmoid, which achieves a maximum at 0.25. This means that the gradient

signal flows through the Log SQNL are stronger than the sigmoid. It will be shown later that this is an

advantage in recurrent neural network architectures.

Remarks

1. The solid traces in Figure 2.4 (bottom) shows the results of fA(x), i.e., Equation 2.1 and its deriva-

tive d fA(x). The circles trace the closed form equation fB(x) (Equation 2.5) and its derivative

d fB(x) = 1∓ x
2 . Equations 2.1 and 2.5 ( fA(x) and fB(x)) are closely matched and suggest that

either could be used. However, the closed form is not only accurate but also computationally

attractive.

2. The SQNL activation function is continuous (−∞−+∞), easily differentiable ( fB(x)), bounded

outputs (range = ±2.0), and symmetrical as described by the universal approximation theorem

[49, 62, 63].

3. Equation 2.5, exhibits a quadratic nonlinearity. Its compact form is desirable because it uses a

square operation instead of an exponent.

4. The derivative, Equation 2.7, is well-behaved in the range of ±2.0.

5. The optimised derivative of Equation 2.5 requires one difference and one multiplication by 0.5.

Both of these are single cycle operations and hence have a computational advantage over the

18



derivative of the TanSig function given by (1−a)(1+a), where a = TanSig(x).

6. The square law based logistic sigmoid (Log SQNL) will act as a replacement for the computa-

tionally expensive logistic sigmoid f (x) = 1/1+ exp(−x).

7. The derivative of Log SQNL (Equation 2.8) requires two shift operations and one difference. This

is computationally efficient over the derivative of LogSig function given by o(1− o) where o =

LogSig(x).

2.3 Analysis

Equation 2.5 has been benchmarked against the well established TanSig activation function and also

against the computationally efficient ElliotSig function [61] and recently proposed ISRU function [64].

The ElliotSig and ISRU function are defined in Equation 2.9 and Equation 2.10, respectively.

f (x) =
x

1+ |x|
, f ′(x) = (1−| f (x)|)2 (2.9)

f (x) = x(
1√

1+αx2
) , f ′(x) = (

1√
1+αx2

)3 (2.10)

The positive half of the forward and derivative mappings of TanSig, ElliotSig, and SQNL functions

are shown in Figure 2.5 and Figure 2.6. The plot shows that SQNL and TanSig functions approach the

asymptotes [−1,+1] quickly as opposed to the ElliotSig. This is a disadvantage for ElliotSig because it

means that it will require more iterations to converge for large values [65] because it does not go to 1 or

−1 as fast as TanSig and SQNL.
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Figure 2.6: Derivative mappings - TanSig ( f ′t (x)), ElliotSig ( f ′s(x)), and Proposed SQNL Function
( f ′s(x))

Equation 2.6 is also benchmarked against the popular logistic sigmoid function. The positive half of

the forward and derivative mappings of the Log SQNL and sigmoid functions are shown in Figure 2.7

and Figure 2.8.
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Figure 2.8: Derivative mappings - Sigmoid ( f ′s(x)) and Proposed Log SQNL Function ( f ′LogSQ(x))

2.3.1 Computational Footprint on Intel CPUs

The main advantage of SQNL and Log SQNL functions over the baselines is that SQNL and Log SQNL

nonlinearities are based on square (multiplication) operator. Square operations are faster to evaluate than

exponential for many generations of systems [66]. Intel [66] publishes Clocks per Element (CPE) for

several vector functions on their ”Vector Mathematics (VM) Performance and Accuracy Data” website.

Table 2.1 shows the performance on three different Intel processors for the mathematical operations. The
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CPE for each activation function is computed based on this. Vectors of 1000 elements with randomly

generated numbers were used, and an average was taken to obtain the results.

Table 2.1: CPU Performance of Commonly used Mathematics Function and the Activation Functions.
EP: Enhanced Performance.

Vector Function Intel Xeon Intel Xeon Intel Xeon

Single Precision 2699 v3 2699 v4 6148

(EP) (Haswell AVX2) (Broadwell AVX2) (Skylake AVX-512)

Square 0.20 0.17 0.13

InvSqrt 0.64 0.54 0.22

Exp 0.80 0.75 0.52

Division 0.54 0.45 0.38

Multiplier 0.25 0.21 0.16

Add/Sub 0.25 0.21 0.16

Abs 0.25 0.22 0.15

TanSig 2.34 2.04 1.54

ISRU 1.59 1.34 0.83

SQNL 0.75 0.64 0.47

ElliotSig 1.04 0.88 0.69

Sigmoid 1.59 1.41 1.06

Log SQNL 1.00 0.85 0.63

Table 2.2 shows the speedups reported for square-based activation function when compared with the

benchmarks. It can be seen that square-based activation functions show a significant speedup over the

benchmarks; this will mainly be useful in CPU based inference engines.

Table 2.2: Speedups: CPU Performance of Symmetric Activation Functions. EP: Enhanced Perfor-
mance.

Vector Function Intel Xeon Intel Xeon Intel Xeon
Single Precision 2699 v3 2699 v4 6148
(EP) (Haswell AVX2) (Broadwell AVX2) (Skylake AVX-512)
TanSig/SQNL 3.1× 3.2× 1.9×
ISRU/SQNL 2.1× 2.1× 1.8×
ElliotSig /SQNL 1.4× 1.4× 1.5×
Sigmoid /Log SQNL 1.6× 1.3× 1.7×
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2.3.2 Computational Footprint on the ARM M3 Processor

Table 2.3 shows the time taken to compute 1000 (double precision and Q16.16 fixed point) activa-

tions and the achieved speedups on a Cypress PSoC 5 (ARM M3, 24MHz). Table 2.3 shows the full

computational time in milliseconds of Tanh, ElliotSig, SQNL, and ISRU activation functions as well

as their respective derivatives. Table 2.4 shows the speedup achieved by SQNL function relative to the

benchmarks.

Table 2.3: Computational time of Tanh, ElliotSig, SQNL, and ISRU functions and their derivatives
using ARM M3 processor. This is an average of 1000 calculations.

Function Forward (ms) Derivative (ms)
Tanh Floating Point 182.17 12.78
Tanh Fixed Point 8.11 2.23
ElliotSig Floating Point 32.87 41.43
ElliotSig Fixed Point 14.14 20.88
ISRU Floating Point 92.18 270.13
ISRU Fixed Point 51.89 149.19
SQNL Floating Point 15.22 9.87
SQNL Fixed Point 1.86 0.89

The processor does not include a hardware exponential instruction and consumes 182ms to com-

pute 1000 Tanh activations. The multiplication and division operations have better hardware support,

and hence the SQNL mapping consumes only 15ms. Subsequent discussions will make comparisons

relative to the Tanh timings to factor out the absolute clock frequency. An open-source fixed point li-

brary libfixmath [67] using a Q16.16 format was evaluated. The fixed point Tanh activation is 22.5

(182.17/8.11) times faster than the double-precision while the derivative is 5.7 times faster. The SQNL

formulation is very well suited for fixed-point instructions. The performance benefits are attributed to

two aspects:

• The square operator: On ARM M3 processors, the multiply instruction takes 3-7 clock cycles

• The binary division (/4): A full division operation takes between 2-12 clock cycles, but SQNL

requires a divide 4, which is technically a shift operation. For this shift operation, in reality, only

the upper bits need to be propagated and hence consume no resources or time.
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Table 2.4: Speedups: Computational time of Tanh, SQNL, ElliotSig, ISRU function and their derivative
using ARM M3 processor. This is an average of 1000 calculations.

Function Forward Derivative
Tanh/SQNL Floating Point 11.97 × 1.29 ×
Tanh/SQNL Fixed Point 4.37 × 2.49 ×
ElliotSig/SQNL Floating Point 8.55 × 3.66 ×
ElliotSig/SQNL Fixed Point 19.22 × 19.83 ×
ISRU/SQNL Floating Point 6.05 × 27.36 ×
ISRU/SQNL Fixed Point 27.89 × 167.62 ×

2.3.3 Decision Boundary and Activation Over Time

This analysis focuses on the decision boundary and activation values during training. We compared the

hyperplane (decision boundary) for two morphologically similar functions: SQNL and the popular Tan-

Sig. We used a two dimensional, nonlinearly separable dataset generated from a uniformly distributed

random number of sample size 200 with a noise of 20%. We trained a single layer neural network with

three hidden neurons. We used gradient descent without any other hyperparameter except for the learn-

ing rate and the change in activation functions. The hyperplane achieved after training is illustrated in

Figure 2.9a-b. As shown, although the functions are mathematically different, they are broadly similar

and hence result in similar decision boundaries.

We performed another experiment on the MNIST [68] dataset. We used a single hidden layer of 128

neurons of SQNL activation functions with softmax units at the output layer.

e)

f)

a)

b) d)

c)

Figure 2.9: a) Toy dataset: TanSig decision boundary b) Toy dataset: SQNL decision boundary c)
MNIST dataset: TanSig hidden layer activations during training d) MNIST dataset: SQNL hidden layer
activations during training e) MNIST dataset: TanSig histogram distribution of activations f) MNIST
dataset: SQNL histogram distribution of activations.

The difference between SQNL and TanSig activations during training, as illustrated by the activation

over time in Figure 2.9c-d, is minimal. Furthermore, Figure 2.9e-f shows the histogram of the activa-
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tion values, and there is little to no difference in the output. This further supports the claim that the

computationally efficient SQNL can successfully replace the computationally expensive TanSig.

2.4 Performance Comparison

In this section, comprehensive experiments are performed on the replacement of baseline activation

functions (TanSig, sigmoid, ElliotSig) with square-based activation functions. Three neural network

architectures are explored and the performance and advantages of square based activation function are

shown empirically.

2.4.1 SQNL for Shallow Supervised Learning

The forward and derivative of the SQNL expression make it straightforward for optimisation. In other

words, the division and square operation can be optimised and replaced with multiplication. This is

not possible for TanSig and ElliotSig functions. Division and exponential operations are known to be

more computationally expensive (speed) than multiplication operations (Table 2.1). The performance

accuracy and convergence of the SQNL function will be proved using the traditional backpropagation,

Levenberg-Marquardt backpropagation, and Resilient backpropagation (Rprop) variants. The choice of

different training algorithm is to prove that SQNL is independent of the training algorithm. The per-

formance on the training set and network generalisation (performance with unseen data) is presented.

Commonly used datasets from UCI repository [69] have been selected for these experiments. The pat-

tern set was randomly partitioned for training and validation in an 80:20 ratio. The minimum network

configuration comprised of five neurons in the hidden layer, with both hidden and output nodes having

SQNL/TanSig/ElliotSig activation function for all classification problems. On the other hand, for the

regression problems, the output nodes have the linear activation function. The networks were trained

with the same initial conditions (randomisation of weights and biases). The performance comparison

was based on two criteria: one distinguishes on the convergence speed while the other is based on gen-

eralisability. The performance comparison of these two criteria is expressed with respect to TanSig by

normalising as shown in Equation 2.11. If TN is the normalised ratio, TT S is the performance of the

TanSig function (baseline performance), and TFUT is the performance of the function under test.

TN =
TT S

TFUT
(2.11)
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Thus, a result greater than 1.0 indicates a performance better than TanSig. All experiments were carried

out on a 64-bit windows server 2012 R2 standard with eight processors and the Intel Xeon CPU running

at 2.90GHz with 32.0GB of installed memory (RAM) in MATLAB environment.

Experiment 1

Here, the purpose is to compare the number of epochs to reach a predefined Mean Square Error (MSE).

The weights and biases of each network were identically initialised. The training was terminated when

an MSE criterion was reached. The experiment was repeated a total of 100 times, averaged, and the

results are presented. Figure 2.10 shows the results of using the traditional backpropagation algorithm

for training the selected datasets. Here, the number of epochs has been normalised using Equation 2.11.

Thus, data points above 1.0 indicate fewer epochs taken relative to a TanSig network. With ≈ 90%

success rates, all the networks exhibited a similar generalisation (based on unseen test data). The Wine

and HeartC datasets do not meet the MSE criterion after 20000 epochs for all of the activation functions.

The SQNL’s performance exceeds and matches the TanSig and ElliotSig in most of the datasets. Using

the same initial conditions, the three activation functions were used alongside with Levenberg Marquardt

and Resilient Backpropagation variants with their results displayed in Figure 2.11 and Figure 2.12,

respectively. Using the Levenberg Marquardt algorithm, the SQNL function continuously outperforms

both TanSig and ElliotSig in terms of convergence speed for datasets that meet the MSE criterion.

Finally, Figure 2.12 shows that SQNL reaches convergence faster than the other two functions except

for the Wine datasets which fail to reach the predefined MSE. In conclusion, SQNL has proven to be

an efficient function in attaining quick convergence during training. The breast cancer and ionosphere

datasets are referred to as BC and IS in our graphical representation.

Experiment 2

Here, we evaluate the network’s performance after a fixed number of training epochs across three train-

ing algorithms. The networks were trained for a fixed number of epochs. Figure 2.13, Figure 2.14, and

Figure 2.15 compare the performance of the SQNL and ElliotSig relative to that of the TanSig. Fig-

ure 2.13 and Figure 2.15 show that when using backpropagation, the SQNL based networks perform

better at generalisation than the ElliotSig. However, when the SQNL is compared with TanSig, then, as

with experiment 1, neither show a clear superiority. Figure 2.14 compares these using the Levenberg-

Marquardt algorithm. Here too, the SQNL performs better than the ElliotSig, however, no distinction

can be made between the SQNL and the TanSig.
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Figure 2.10: Results of Experiment 1 For Traditional Backpropagation - BC:Breast Cancer, IS: Iono-
sphere
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Figure 2.11: Results of Experiment 1 For Levenberg Macquardt Backpropagation - BC:Breast Cancer,
IS: Ionosphere
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Figure 2.12: Results of Experiment 1 For Resilient Backpropagation - BC:Breast Cancer, IS: Ionosphere
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Figure 2.13: Results of Experiment 2 For Traditional Backpropagation - BC:Breast Cancer, IS: Iono-
sphere
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Figure 2.14: Results of Experiment 2 For Levenberg Macquardt Backpropagation - BC:Breast Cancer,
IS: Ionosphere
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Figure 2.15: Results of Experiment 2 For Resilient Backpropagation - BC:Breast Cancer, IS: Ionosphere
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With the Glass dataset, the ElliotSig consistently performs better than the others. The SQNL always

performs better on the Iris dataset. Although the overall performance of the SQNL is better than the

others, the variation in performance suggests a strong data set dependence, and hence any conclusions

on the superiority of any one of the activation functions are premature and potentially not possible to

establish. Importantly, the SQNL is not inferior to the well-established TanSig.

Classifier Performance

The geometric mean (G-mean) and its variants have also been used to strengthen our claims of the

effectiveness of the SQNL. The sensitivity, specificity, and G-mean metrics mathematical expressions

are given in equations below

Sensitivity =
T P

T P+FN
(2.12)

Speci f icity =
T N

T P+FP
(2.13)

G−mean =
√

Sensitivity×Speci f icity (2.14)

where T P indicates the number of positive elements predicted as positive, T N indicates the number

of negative elements predicted as negative, FP indicates the number of negative elements predicted as

positive, FN indicates the number of positive elements predicted as negative. How well a classifier

can recognise/classify positive examples is described as the classifier’s sensitivity. On the other hand,

specificity is how well negative examples are recognised by the classifier. The geometric mean of the

specificity and sensitivity of a classifier is the G-mean.

Table 2.5 shows clearly that for all datasets, the classifiers trained with SQNL function were able

to recognise positive examples. Whereas the specificity of each dataset was not conclusive on which

function is superior. However, Table 2.6 shows a distinct performance of SQNL for all datasets using

the accuracy and G-mean metrics.

Performance on MNIST Dataset

The MNIST dataset was used to prove the convergence ability of the SQNL function on large datasets.

One-third of the data was set aside for testing. After several initial analyses, a hidden layer of 250

neurons was selected because it gave up to 98.6% on unseen data. We set up our experiment using the

same initialisation parameters. 100 networks were trained to get an average convergence time. The

output neurons were set to softmax activation function. The hidden neurons used the SQNL function
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Table 2.5: Sensitivity and Specificity on Classification Dataset

Data Function Sensitivity Specificity
Set (%) (%)

Breast
Cancer

ElliotSig 89.4 96.8
TanSig 89.6 97.8
SQNL 91.5 97.8

Glass
ElliotSig 90.9 80.0
TanSig 90.6 72.7
SQNL 93.8 81.8

Diabetics
ElliotSig 71.7 65.9
TanSig 73.2 69.0
SQNL 74.8 68.1

Ionosphere
ElliotSig 76.9 84.2
TanSig 79.2 94.4
SQNL 83.7 75.0

HeartC
ElliotSig 75.0 61.5
TanSig 79.3 68.0
SQNL 82.1 69.2

Ovarian
ElliotSig 77.8 100
TanSig 72.2 96.2
SQNL 92.3 93.5

Table 2.6: Accuracy and G-mean on Classification Dataset

Data Function Accuracy G-mean
Set (%) (%)

Breast
Cancer

ElliotSig 94.3 93.0
TanSig 95.0 93.6
SQNL 95.7 94.6

Glass
ElliotSig 88.4 85.3
TanSig 86.0 81.2
SQNL 90.7 87.6

Diabetics
ElliotSig 70.1 68.7
TanSig 72.1 71.1
SQNL 72.7 71.4

Ionosphere
ElliotSig 78.9 80.5
TanSig 83.1 86.5
SQNL 80.3 79.2

HeartC
ElliotSig 68.5 67.9
TanSig 74.1 73.4
SQNL 75.9 75.4

Ovarian
ElliotSig 90.9 88.2
TanSig 86.4 83.3
SQNL 93.2 92.9
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Table 2.7: Convergence Speed On MNIST Dataset

Function Epoch
ElliotSig 17.74
TanSig 8.45
SQNL 8.11

and the selected benchmarks. Table 2.7 shows the average over 100 of the number of epochs to reach

the predefined performance goal. On average, SQNL slightly outperforms TanSig, hence confirming our

claim that SQNL can be used in place of TanSig.

2.4.2 Log SQNL for Binary Logistic Regression

In a logistic regression problem, a cost function, update rule, and nonlinearity is required. Consider a

binary classification problem of n-dimensional feature vector given by X = (X1,X2,X3, ...Xn) and the

class variable represented as Y ∈Θ = {θ1,θ2}. The probability that Y = θ1 | X = x is denoted by p1(x).

For binary logistic regression model, it is assumed that

log
p1(x)

1− p1(x)
= β

T x+β0 (2.15)

where β ∈ℜnandβ0 ∈ℜ are learning parameters. Solving Equation 2.15 for p1(x)

p1(x) =
1

1+ exp[−(β T x+β0)]
(2.16)

We show that we can eliminate the computationally expensive exponent term in Equation 2.16 with a

Log SQNL defined in Equation 2.6. Therefore, Equation 2.16 becomes p1(x) = Log SQNL(β T x+β0)

where Log SQNL is described by Equation 2.6.

By maximising the conditional log-likelihood described in Equation 2.17, we can estimate the pa-

rameters β and β0 given a learning set {(xi,yi)}d
i=1 is

`(β ,β0) =
d

∑
i=1

yi1 log p1(xi)+(1− yi1) log(1− p1(xi)] (2.17)

where yi1 = 1 if yi = θ1 and yi1 = 0 otherwise.

The Performance Accuracy of LogSig versus Log SQNL based Regression is shown in Table 2.8.

Best performance accuracy is shown in bold font with the training set up parameters of 10000 epoch and

0.1 learning rate. The description of the datasets is available at [70].
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Table 2.8: Performance Accuracy of Sigmoid/LogSig Vs SQNL based Logistic Regression. A compa-
rable result between Sigmoid and Log SQNL is achieved.

Dataset LogSig Log SQNL
Accuracy (%) Accuracy (%)

Sonar 78.50 75.36
Breast 96.58 96.58
Glass 86.77 88.42
Ionosphere 82.84 83.33
HeartC 61.09 61.09
Diabetics 60.09 56.01
Liver Disorder 57.27 57.65
Lymphography 31.03 31.03
Lenses 1.0 1.0

2.4.3 SQNL and Log SQNL for Recurrent Neural Network

Softly saturating nonlinear functions makes it difficult to make hard decisions and thereby slows down

the training in RNN, as described in [71]. The exponential is the cause of the soft-saturation in the

sigmoid and hyperbolic tangent in recurrent networks. Since SQNL is based on quadratic, it has an

inbuilt advantage of making hard decisions. The problem of negligible gradients is reduced in SQNL

because the derivative given by f ′(x) = 1± x/2 will give precise zero at saturation (which is at x = 2).

Moreover, the strong gradients associated with Log SQNL (section 2.2) are important for well-flowing

gradients over time. Therefore, we applied our functions (SQNL and Log SQNL to replace TanSig

and LogSig, respectively) to LSTM and GRU recurrent architectures. In our analysis, we included the

approximate TanSig referred to as Hardtanh and approximate sigmoid referred to as Hardsig. Hardtanh

is defined mathematically as max(−1.0,min(1.0,x)) while Hardsig is defined as max(0.0,min(1.0,(x+

2.0)/4.0)). It is important to know that SQNL and Log SQNL are not an approximation to TanSig and

sigmoid activation function but rather, standalone functions.

Long Short Term Memory

The memory and several cells associated with RNN made them highly computationally intensive. As

described in [72], much research has been directed into improving the execution efficiency of RNN mod-

els, among which are parallelisation, model pruning, quantisation, and finally, data access accelerator.

One interesting aspect of LSTM that has been neglected is the gates activation functions. An LSTM cell

has five gates, which are equivalent to five activation functions.

The IMDB (a large movie review dataset) contains 25,000 highly popular movie reviews. The model

and description we used is available at [73]. The Kaggle dataset and the model are available at [74]. The
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model and description for the MNIST dataset are available at [75]. The Sequential MNIST dataset and

the model description is described in [76]; we used the row-by-row Sequential MNIST example. We

replaced all sigmoid and TanSig in the reference model with their SQNL counterparts.

Table 2.9: Performance Accuracy using square-based LSTM network. Changing the activation function
to SQNL yielded about 3% for the Kaggle Model and 1% for the IMDB dataset improvement in per-
formance accuracy. Use of Hardtanh and Hardsig performs worse than TanSig and sigmoid functions.
(SQNL and log SQNL to replace TanSig and sigmoid respectively)(Results are average of 5 runs, and
an estimated mean of accuracy with the confidence of 95% is recorded)

Dataset TanSig/ Hardtanh/ SQNL/
Sigmoid (%) Hardsig(%) Log SQNL(%)

IMDB 86.3 ±0.9 82.58 ±3.3 87.14 ±0.8
Kaggle 87±2.9 87.8±1.5 90.2 ±0.4
MNIST 98.6 ±0.1 98.5±0.1 98.7 ±0.1
Sequential 95.9 ±1.8 90.3 ±3.8 95.9 ±0.5

Gated Recurrent Units

The GRU is known as the simpler RNN architectures. The GRU architecture is made up of three gates

which is equivalent to three activation functions. We follow the same approach as defined in the LSTM

experiment. The architecture for MNIST is available at [76]. Finally, we used the dynamic RNN as

defined in [76] and modified it to GRU. This was used to perform dynamic computation over sequences

with variable length. Table 2.10 shows the performance accuracy and our proposed model shows a

higher performance accuracy when compared to the baseline.

Table 2.10: Performance Accuracy using square-based GRU network. (Results are average of 5 runs,
and an estimated mean of accuracy with the confidence of 95% is recorded)

Dataset Tanh/ Hardtanh/ SQNL/
Sigmoid (%) Hardsig(%) Log SQNL(%)

MNIST 85.15 ±0.9 84.45 ±1.2 85.16 ±1.3
Toy 98.0 ±0.2 97.0 ±0.3 99.0 ±0.2

2.5 Conclusion

In this chapter, we proposed a novel nonlinear activation function with proven and accurate mathemat-

ical equations. The proposed SQNL and Log SQNL functions circumvent the use of the exponential

term and floating-point division resulting in a reduction in computational time. Their derivatives can

be highly optimised and require a single cycle operation. Another advantage of the SQNL function is

that it eliminates the disadvantages of ElliotSig, therefore leading to faster convergence for large val-
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ues. The performance accuracy and convergence speed of the SQNL function have been proven using

three variants of the backpropagation algorithm. Selected UCI datasets were used to evaluate perfor-

mance. Network architectures using the proposed SQNL activation function train faster to reach similar

performance goals than the baseline functions. Also, network generalisability is mostly better. The

SQNL consistently records better accuracy and G-mean metric analysis for all datasets. The SQNL is a

potentially worthy alternative because it offers faster-training speeds without adverse effects on gener-

alisability. The hard nonlinearity of SQNL and Log SQNL is particularly useful for RNN architectures.

We record state-of-the-art accuracy for some of the tested datasets.
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Chapter 3

Efficient Hardware Calculator for SQNL

Function

Abstract

The direct implementation of the preferred nonlinear function for single-layer feed-forward and recur-

rent neural network architectures presents a problem in hardware. This is a result of the presence of

floating-point division and exponentiation operations in these functions. These operations require a

large amount of time and hardware resources. This has led to the implementation of these nonlinear

functions on hardware using approximation methods or lookup tables. These methods all have one of

these challenges associated with them. In this chapter, we present a novel algorithm for generating

the SQNL function on hardware. The hardware implementation of the proposed algorithm is highly

amenable to parallelisation and extremely resource-efficient when compared to other forms of hardware

approximation. Also, the nonlinearity and the numerical precision are adjustable and hence offer ad-

ditional options for optimising hardware designs. For an 8-bit resolution, we recorded 1.79x to 3.75x

throughput per gate on an ASIC platform when compared to lookup table implementations. With 12-bit

resolution, we record 14.77x to 30.35x throughput per gate.

3.1 Introduction

Hardware implementation of ANN is viewed as the next technological frontier [77–79]. Although re-

search in this area has been active over several decades, there has been a recent spike in activity due

to a multitude of factors: availability of low power computing engines and FPGAs, demand for ‘smart’
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solutions to improve the quality of life and others. Implementation of ANN poses challenges on several

fronts. One dominant issue is the drive to achieve biological realism [80]. Thus, hand-in-hand with

hardware developments, there has been progress in network architectures and implementation method-

ologies that capitalise on the availability of parallel hardware [81, 82]. The biggest shift in paradigm

to achieve biological realism is based on single-bit signal encoding/representation techniques. The two

broad classes in single bit representations are stochastic and deterministic bit-streams [83–86]. However,

the most dominant paradigm is the multi-bit representation in which signals are propagated through mul-

tipliers and non-linear elements. The nonlinear elements are viewed as the fundamental, vital building

blocks that will help achieve the complex capabilities that ANNs are expected to deliver [25,46]. Neural

network architectures such as shallow multilayer perceptron, recurrent neural networks, restricted boltz-

mann machines, auto-encoders popularly use sigmoid and hyperbolic tangent (TanSig/Tanh) activation

functions as opposed to the simple rectifier linear units (ReLU) use in deep neural networks.

The sigmoid and Tanh nonlinear functions are the resource-hungry aspects of hardware ANN. The

mathematical characteristic (the expression having a division and an exponent) of the sigmoidal acti-

vation functions makes the direct implementation of sigmoid activation functions resource hungry and

hence very difficult [87]. This has therefore led to various reports in the literature, exploring differ-

ent ways in which the activation functions can be efficiently and effectively implemented on hardware.

The various implementations on hardware platforms (FPGA and ASIC) have been tailored either to-

wards improving accuracy, as described in [88, 89]; improved computational speed [90, 91]; or efficient

resource usage [92]. One interesting work is proposed in [93] in which an extended stochastic logic im-

plementation of the hyperbolic tangent was implemented on FPGA. They report a reasonable reduction

in resource usage but also a reduction in effective precision.

Based on our review, the most common implementation approach of the activation functions on

FPGA is the use of Look-Up Table (LUT) which is used to store the values of the activation functions

as used in neurons. LUTs require pre-calculation of the activation functions mapping before being

loaded into memory. LUT is memory intensive and does not scale well with increasing resolution

and precision. Other forms of improvement on the LUT include the work of [94] in which there is

a combination of LUT and a piecewise linear approximation. Truncated Taylor series consisting of

approximation methods such as the sum of steps, piecewise linear, were discussed in [95–97] along with

their associated performances. Specifically, piecewise linear is associated with relatively high mean

absolute error and use of multipliers even though this approach is one of the most direct methods in terms

of implementation on FPGAs [87, 88]. Polynomial approximation of higher orders, such as Lagrange
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polynomial interpolation, Chebyshev polynomial interpolation, and least square method polynomial

interpolation, gives a very low error but they are exceptionally resources-hungry due to the number

of arithmetic operations performed for each value [88]. Finally, CORDIC implementation is another

highly studied approach for hardware implementation of ANN as a result of its primary advantage of

using the same resource for several functions but its pipelined, iterative nature could detract from its

performance [98, 99]. There have been other variations of CORDIC approach, such as hybrid CORDIC

[100], in which CORDIC was combined with LUT and pipeline technology. Authors in [101] and [88]

both describe the use of adder and shifter CORDIC implementation and adder, multiplier, and shifter,

respectively in which the latter approach increases the accuracy at the expense of increased resource

usage.

While computational speed is paramount in a simulator, low resource utilisation and the absence of

congestion is of importance for hardware implementation. The goal of this chapter is to present a hard-

ware implementation of the SQNL nonlinear activation function that meets both of these requirements.

The following are the notable contributions of this chapter:

• We discussed two new resource-efficient ways of implementing the SQNL activation function on

hardware.

• Introduction of custom instruction for executing SQNL. This is a single-cycle operation which is

advantageous in low-end devices.

• We performed extensive resource utilisation counts using the two methods and the popular lookup

table approach.

• We have demonstrated the hardware implementation and performance accuracy of our proposed

activation functions using datasets in single-layer feed-forward neural network classification and

regression domains.

3.2 Concepts

In this section, we discuss two methods of implementing the SQNL function on hardware. The first

method is a novel resource-efficient implementation suitable for large scale parallelism on FPGAs or

ASICs. We refer to this method as counter-based SQNL. The second method is based on the use of

the standard multiplier. We show that by wrapping a standard multiplier with combinatorial logic, the
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SQNL function can be evaluated as quickly as a multiply operation. Hence, the SQNL can also be easily

implemented using DSPs on FPGA/CPU based platforms.

3.2.1 Counter-based SQNL

The basis of the counter-based SQNL function implementation is encapsulated in Equation 3.1.

f (n) =
1
N

N

∑
k=1

(((n+U(k))C)−U(k))M (3.1)

The input n, a signed integer, is iteratively added to every element of a predefined sequence U(k) of

length N. The adder saturates at predefined upper and lower limits C. The sequence is now subtracted

(saturates at M) from this sum and the partial sums are averaged. The underlying morphology of the

output is quadratic and can be designed to generate integer SQNL function. Given a binary resolution

R, the SQNL activation function generator will use the following parameters:

• The effective range of the input is M = [−2R−1,2R−1−1].

• The sequence is an integer non-repeating sequence, U(k) = {−UMAX , · · · ,UMAX}. The length of

U(k) is a design decision.

• The saturation levels, ±C of the adder are defined by C =UMAX = 2R−2.

Without saturation, (n+U(k))−U(k) = n and f (n) = n. However, some of the elements of U(k)

will result in a saturation and hence (n+U(k))−U(k) 6= n. In Figure 3.1 a), the conceptual impact of

Equation 3.1 is shown with U(k) plotted on the x-axis and n, the netsum, along the y-axis. For n = n1,

in the absence of saturation, each partial product of f (n1) will be unaffected and would be plotted as

a horizontal line between [−UMAX ,UMAX ]. However, with saturation, some of the positive elements

of U(k) will result in saturation resulting in (n1 +U(k))−U(k) ≤ n1. These partial sums follow the

saturation boundary and hence, f (n1)< n1. The yellow zone shows the consequent saturation loss. The

behaviour for negative values, i.e., n = n2 is similar to that for positive inputs.

The average of the mapping corresponds to f (n) and can be easily determined. If the length of U(k)

is very large, f (n) can be obtained by a simple computation of f (n) = area
2UMAX

. The slope of the saturation

profile is −1 and hence, will result in Equation 3.2.

f (n) =
1

2UMAX

[
n×2UMAX −

1
2

n×n
]

f (n) = n− n2

4UMAX
(3.2)
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∆ = 2UMAX
N

n
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−C C

n

UMAX−UMAX

U(1)
U(2)

U(N)

−C C

Errorc)

b)

−M

n2

UMAX
C−C

−UMAX

n1

M

n

M−M

Area Represents
f (n1)

f (n2)

Boundary
Saturation

a)

Saturation
Boundary

Loss at f (n1)

n

f (n)

U(k)

Figure 3.1: SQNL - A Symmetric Activation Function. a) The conceptual impact of Equation 3.1 is
shown for symmetric activation function realization. U(k) is plotted on the x-axis and n, the netsum,
along the y-axis. The area enclosed in green represents the output mapping f (n1). The inset shows the
form of the mapping for −M ≤ n < M b) When n = ±i×∆ i.e. midway between any two contiguous
U(k), the f (n) mapping is exact. c) When n = ±(∆

2 + i×∆) i.e. exactly equal to any element of U(k),
the deviation from the ideal is a maximum.

A large N would adversely impact the throughput of the gate level implementation of Equation 3.1

and hence a pragmatic length of U(k) is preferable. The range [−UMAX · · ·UMAX ] is uniformly divided

into N sections and U(k) are selected to be the midpoints of each section. The use of midpoints offers the

advantage of each section being evenly distributed around zero and thus circumventing the asymmetry

of M around zero.

Figure 3.1 b) and c) pictorially depict potential profiles with N = 8. If ∆ = 2UMAX
N , the input in

Figure 3.1 b) is selected to be at any integer multiple of ∆, i.e., n = ±i×∆, while in Figure 3.1 c)

n =±(∆

2 + i×∆).

The determination of area in the saturation region can be viewed as progressively diminishing rectan-

gles or trapezoids. A gate level implementation would execute 1
N [∑

N(((n1 +U(k))C)−U(k))M] hence,

in the following discussion, we consider each section as a rectangle

f (n) =
1

2UMAX
[n×∆+n×∆+ · · ·+

(n−∆)×∆+((n−∆)−∆)×∆+((n−∆)−2∆)×∆+ · · ·((n−∆)− p∆)×∆]

f (n) =
1

2UMAX

[
n.N.∆−

p

∑
i=1

∆2

2
−

p−1

∑
i=1

i∆2

]
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Here, ∆ = 2UMAX
N and n− p∆ = 0 and hence,

f (n) =
1

2UMAX

[
n.N.∆− p∆2

2
− (p−1)p∆2

2

]
f (n) = n− n2

4UMAX

Recall that UMAX = M
2 . Repeating the methodology for negative inputs results in

f (n) =



−M
2 : n <−M

n+ n2

2M :−M ≤ n < 0

n− n2

2M : 0≤ n≤M

M
2 −1 : n > M

(3.3)

Impact of N

N influences the throughput for the hardware implementation of Equation 3.1. Reducing the length of

U(k) has a direct influence on the throughput. A consequence of a small and pragmatic value of N results

in a linear change in f (n) during the progression from n = i×∆ to n = (i+ 1)×∆. This represents a

deviation from Equation 3.2. We define deviation as the difference between the ideal SQNL mapping

and the mapping produced by a hardware efficient implementation.

Figure 3.1 c) visualises this deviation when n 6= ±i×∆. This deviation is at maximum when n =

±(∆

2 + i×∆). The deviation is exactly (∆/2)2

4UMAX
. With R = 8 and N = 8, the absolute value of this deviation

is 0.25, i.e., less than one bit. Reducing N will imply fewer clocks are required. With R = 8, Figure 3.2

plots the theoretical deviations with N = 4 and N = 8. Figure 3.2 a) only shows the deviations for

positive n because negative values match the positive values. The deviation is at maximum when n is

equal to any of the values of U(k) and zero midway between any two consecutive U(k). The profile at

N = 4 clearly shows that increasing N reduces the deviation.
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Figure 3.2: Profile of deviation from ideal for R = 8 when N is reduced to 4 and 8. a) Plots the deviation
for the positive input range for different values of C. b) Plots the frequency distribution of the deviation
as a probablity

Figure 3.2 b) shows the frequency distribution of the deviations with N = 4 and N = 8. It shows that

the deviations, for both, are at most ±1 bit away from the ideal mapping. With N = 8, the histogram

shows that the deviations are within ±0.5. Theoretically, there will be a zero-bit error if N = 8 when

R = 8. However, if N is reduced to 4, more than 70% of the range will still exhibit zero-bit errors.

The choice of values for M, C and UMAX are specifically chosen to be aligned to binary boundaries

(2p). This offers gate level implementation efficiencies. The gate level operations of Equation 3.1 are

standard building blocks: adders, binary counters, and shift operators.

3.2.2 Multiplier-based SQNL

The simplicity of the SQNL function makes direct implementation with hardware multipliers possible.

An examination of Equation 3.3 shows that the square operation can be augmented with combinatorial

logic so as to perform a conditional product defined in Equation 3.4.

fs(n) = n×−|n| (3.4)

In Equation 3.4, fs(n) is referred to as a special square operator. Since hardware multipliers are common

in most embedded processors, this square operator could be implemented in the processor and available

as a custom instruction. Using this special operator, Equation 3.3 can be compactly written as shown in

Equation 3.5, where b =−|n|.

f (n) = n+
n∗b
2M

(3.5)
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Most FPGAs host DSP blocks that also integrate a MAC (MUL and ADD) operation. The use of

multiplier/DSP blocks with logic that implements Equation 3.4 offers an alternative pathway with a

throughput that is exactly that of the multiplier.

3.3 Hardware Implementation

The SQNL activation function has been implemented on an Altera Cyclone V device

(5CSXFC6D6F31C6). The Quartus Prime Standard 18.1 Edition and Modelsim 10.1d are the integrated

development environment on which all the hardware implementation is performed. We discuss three

methods of implementation.

3.3.1 Multi-clock/Counter Solution

Figure 3.3 shows a complete schematic with various bus-widths highlighted. The code is parametrised,

and hence the saturation of the adder and subtractor change with the resolution R. The input and out-

put, marked with thick lines, could be a fixed point at a larger bus width than the activation function.

The lower Add, Latch, and Right-Shift blocks function as the filter (sum, accumulated, scale). These

operate a higher bus width as well. The counter values for an 8-bit (R = 8) system with N = 8 is

{±1,±3,±5,±7}×2R−2/N. This is easily obtained by suitable padding of leading and trailing bits.

Resize

Add

Sign Extend

& Latch

Sign Extend

Latch

Right

Shift

Sum & Accumulate

Output

Clock

Counter

Add

Net Sum

Subtract

f (n)

n

Figure 3.3: Schematic of SQNL Activation Function using Multi-clock Methodology

In Equation 3.3, if M is based on integer powers of 2, the 1
2M is a shift operation. Design decisions R

and M are fixed at compilation. Hence, the shift operation consumes zero additional logic because only

the upper bits are passed through and will be hardwired by the compiler. Addition/subtraction operations
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are combinatorial, and hence extra clock edges are not required.

The values of UMAX and saturation limits of the adder/subtractor can be selected to achieve imple-

mentation efficiencies. The optimised values are

• The range of n and f (n) are [−2R−1,2R−1−1].

• Adder saturates at −2R−2 or 2R−2−1.

• The subtractor saturates at −2R−1 or 2R−1−1.

• The sequence, U(k), consists of N non-repeating values between [−2R−2,2R−2−1].

The derivative of Equation 3.3 is given by

f ′(n) = 1± n
M

(3.6)

Equation 3.6 requires only a subtractor/adder because the 1
M is shift operation that will be hardwired

during compilation. Thus the forward and the derivative computations are highly amenable to hardware

implementation when compared to most smooth nonlinear functions.

An additional speedup of 2× can be extracted by noting that for all inputs, half of the partial sums

due to positive/negative U(k) are constant. Thus, the accumulator could be preloaded with either n N
2 or

±∑
k=N/2
k=0 U(k). This implies only four clocks are required for N = 8.

3.3.2 Single-clock Solution

The fundamental method of generating the SQNL function is based on addition, subtraction, and ac-

cumulation; we show that a single cycle is possible which will produce the desired result in one clock

cycle. Therefore, the counter sequence can be preloaded, eliminating the need for a counter and the

latency associated. The single-cycle solution schematic is shown in Figure 3.4.

RSH

n

C1

C2

f (n)

CN

Figure 3.4: Schematic of SQNL Activation Function using Single-clock Methodology. (RSH is Right
Shift Operation)
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3.3.3 Multiplier Solution

The standard multiplier present in the special square operator introduced in section 3.2.2 is wrapped

with combinatorial logic. Equation 3.3 is evaluated as quickly as a multiply operation. The schematic is

shown in Figure 3.5.

0

1

MAC:

Registered

x4

2’s Complement

Sign Bit = ’0’

Combinatorial

f (n)
2’sC

C
A

B
MAC

(A×B+C)÷4

÷4

n

Figure 3.5: Hardware Implementation of SQNL using the custom multiplier (special square operator).
The ÷4,×4 operations are right and left shift operations respectively, hence, have no impact on the
computational or resource footprint.

We analyse the computational footprint of the SQNL function using the multiplier solution on Al-

tera Cyclone V FPGA. The SQNL mapping with a custom hardware implementation has the potential to

achieve the throughput of the MUL(tiply) instruction. Figure 3.5 shows a possible implementation. The

schematic shows a square operation achieved using one Multiply and Accumulate (MAC) and additional

combinatorial logic that results in the final SQNL. The combinatorial logic is not reliant on any clock

and hence, will only impart a propagation delay. It is estimated that this custom instruction will result in

an execution time very similar to that of a multiplier, i.e., one to seven clock cycles. Current technology

does not allow us to have custom instruction on ARM. Hence, we created custom instructions on the

Altera Cyclone V FPGA Nios II for verification. Figure 3.5 was implemented for the SQNL activa-

tion function using custom instructions. Experiments show that the SQNL function implemented using

proposed custom instruction on Nios II produced the result in one clock cycle.

3.4 Resource Utilisation

We consider both FPGAs and ASIC platforms for resource utilisation analysis. FPGAs use vendor-

specific libraries of LUTs, registers, and memory to infer custom designs. The ALM of Cyclone V hosts

a fracturable, eight input LUT and four registers. It should be noted that a full six input or subsets of

seven and eight input mappings can be achieved. ASICs will certainly offer real-estate efficiencies over

FPGAs. We assume that the basic building block is a NAND gate. With this assumption, we estimate

the gate usage for the relevant building blocks, shown in Table 3.1. These indicative metrics will be used
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in all subsequent comparisons.

Table 3.1: Indicative Gate Usage

Digital Block Cell/bit Gates/bit Total Gate
Single register - - 4
1bit full adder - - 9
8bit adder - - 72
9bit adder - - 81
8bit 2’s Complement - - 80
9bit 2’s Complement - - 90
2 to 1 mux (1bit) - 3 3
LUT 8 bits 127 381 2667
LUT 12 bits 2047 6141 67551
Booth 8 bits - - 754
Booth 12 bits - - 1124

Hence, we present key elements from the resource usage reports of their synthesis tools. We compare

the multiplier solution, multi-clock solution, and the use of LUT on the SQNL activation function. Single

instances of the three methods - counter (C SQNL), multiplier (D SQNL ), and LUT (L SQNL) - have

been implemented and their resource usage reported.

Table 3.2: Estimated Counter Based SQNL Gate Usage (GU) with Various N

R = 8 R = 12
N 22 23 27 22 23 211

Adder 72 72 72 108 108 108
Subtractor 81 81 81 121 121 121
Counter 8 12 28 8 12 44
Sum & Accumulate 90 99 135 126 135 207
Sum & Accumulate Register 40 44 60 56 60 92
Output Register 32 32 32 48 48 48
Multiplexer 48 48 48 72 72 72
Total Gate Usage 371 388 456 539 556 692

3.4.1 Counter-based Implementation

From Figure 3.3, of the three main elements, the adder and the subtracter will only consume logic

elements (no registers). The counter-based implementation (C SQNL) will require R− 1 registers to

maintain the sum-and-accumulate count, a 2×R register for the accumulator, and an R bit register to

latch the output. The total register usage is estimated as 4×R. On a Cyclone V, with R = 8 and N = 8,

the C SQNL will require 34 ALMs and 24 registers while with R = 12, the usage increases, moderately

to 46 ALMs and 31 registers.

With an ASICs perspective, the gate usage of various configurations of the SQNL is shown in Ta-
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ble 3.2. The row entitled ’Total Gate Usage’ estimates the gates required for each configuration. As

expected, the gate usage increases with an increase in N. With an increase in resolution (8 bits → 12

bits), the gate usage also increases. Whilst the numbers will not hold any significance until they are

compared with other technologies, it is noteworthy that a 16-bit resolution results in a moderate increase

in gate count with the C SQNL.

3.4.2 Multiplier-based Implementation

On FPGAs, Figure 3.5 could be implemented using embedded hard multipliers. However, to estimate

the resources on an ASIC, a radix-4 Booth’s algorithm was implemented on a Cyclone V using VHDL.

In addition to combinatorial operations, this multiplier will require the following: a counter, two shift

registers, a sum-and-accumulate block, and an output register. With R = 8, we estimate the gate usage

of the multiplier to be about 754 gates and the full SQNL function (Figure 3.5) would require 963 gates.

On the Cyclone V, an 8 bit SQNL function requires 103 ALMs and 63 registers, which increases to 173

ALMs and 75 registers for a 12 bit function.

3.4.3 Lookup Table-based Implementation

The current FPGAs are LUT centric, and their utilisation metrics need clarity. The ALMs on a Cyclone V

FPGA hosts two single bit full adders, four registers, and a fracturable 8-input LUT. The 8-input LUT

can completely map a 6-input function but only a subset of 7/8-input functions.

For an 8-bit SQNL function, a full 8-input LUT would map the entire space and hence require eight

ALMs (one for every input bit). However, on the Cyclone V, the partial 8-input LUT requires 23 ALMs.

With foreknowledge of its LUT mappings, the design was modified to map only half of the input space

(127x7) together with a 2’s complement. A 6-input LUT would require two ALMs per bit, and the full

mapping (128x7) will require 14 LUTs. The 2’s complement function will consume another 14 LUTs,

and hence the maximum estimated usage is 42 LUTs. However, the subsets of 7/8-input mappings

offer optimisations and results in lower usage. The Quartus synthesiser reports 17 ALMs and shown

in Table 3.3. A 12-bit SQNL, with only half-space mapping, will require 2048x11 mapping with a 2’s

complement. A 6-input LUT will require 352 ALMs, while a 7-input LUT will require 352 ALMs.

Quartus reports 234 ALMs for the SQNL function.

The estimated gate equivalent footprint of each ALM (adders, registers, and LUT) is 754 gates.

Recognising that the FPGA building blocks are general purpose and consequently, their ALM usage

will be inflated, we will use Table 3.1 to evaluate a LUT solution. The table lists the gate usage of
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Table 3.3: Resource Utilisation Summary of SQNL Implementation using direct (D SQNL ) method,
LUT (L SQNL ) method and counter-based (C SQNL )

Resolution Methods
Gates
(Estimated)

ALM FF

8 bits
D SQNL 963 103 63
L SQNL 2779 17 8
C SQNL 388 34 24

12 bits
D SQNL 1400 173 75
L SQNL 67719 234 12
C SQNL 556 46 31

a 128x7 and 2048x11 LUT built from a generic two to one multiplexor cell. Each cell requires three

gates. Thus, a read-only 128x7 LUT will require 2667 gates. A complete 8-bit SQNL function will then

require 2779 gates, while a 12-bit function will require 67719 gates.

If the LUTs need to be repurposed with a different mapping, RAM cells can be used. The RAM

storage will require 128x7 registers (3584 gates) and address decoding. These estimates are validated

by figures published by Intel/Altera’s [102] 128x8 memory bank, which consumes about 4620 gates.

3.4.4 Single-clock Solution Implementation

Table 3.4 shows the results of single-clock solution for the SQNL activation function against the LUT

and the multiplier-based solution. Single-clock solution consistently outperforms the multiplier-based

solution. At higher resolution, single-clock solution out-performs the LUT.

Table 3.4: Resource utilisation of single-clock solution, LUT and multiplier-based solution.

Methods 8 bits 12 bits
ALM FF ALM FF

Single-clock 60 - 96 -
LUT 17 8 234 12
Multiplier 103 63 173 75

3.4.5 Discussion

We briefly discuss the resource utilisation of existing methods of implementing Tanh, sigmoid, and other

exponential based activation functions presented in the literature. Authors in [103] use the Altera Float-

ing Point Exponent (ALTFP EXP) mega function. A single ALTFP EXP will consume 420 ALMs, 681

registers, 12 DSP blocks, and 362 blocks of memory bits. This implementation is the least used in the

literature due to its high resource utilisation and latency (17 clock cycles). The authors in [104] propose

two solutions for the direct implementation of Tanh which require 21 multipliers, 13 additions, and one
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division operation for McLaurin interpolation and eight multipliers, 11 additions, and two division op-

erations for Pade approximation. The LUT design in [105] reported 187 LUTs, 102 slices, and 1348

gates count on Xilinx Virtex-4 chip. The same work reported 108 LUTs, 58 slices, and 1029 gates count

for their PWL approximation method. The use of the multiplier-less piecewise linear approximation

(PLAN) method is associated with increased approximation error. Authors in [106] reported the PLAN

method consuming 167 to 368 logic elements on the Altera Cyclone III device. The use of Taylor se-

ries expansion is another popular approximation method for exponential-based activation functions. An

eighth order Taylor series for Tanh will require at least seven multipliers, seven floating point divisions,

subtraction, and addition operators. Finally, authors in [27] recorded 726 registers, 1687 LUTs, and 34

multipliers on Virtex-5 device using the CORDIC algorithm to implement Tanh.

A real-time inference engine would benefit from parallelism in which several activations are com-

puted rapidly. Here, we compare the resource usage of each of the three methods (C SQNL, D SQNL,

and L SQNL) with a focus on ASIC implementations.

With R = 8 and N = 128, the 128× oversampling is a drawback of the C SQNL. However, the

reduction of oversampling to 4× (N = 4) or 8× (N = 8) is a practical alternative. Although the 4×

or 8× oversampling introduces single bit mapping errors, if the network were to be trained with the

piecewise linear function, this error would be irrelevant. In the case studies to follow, the performance

of some networks showed no difference, while others exhibited minor variations.

The L SQNL is a single clock operation while the D SQNL and C SQNL require more clocks. The

gate/ALM/Register usage varies with R and N and hence, the three methods are compared by normalis-

ing their throughputs. With R = 8, the Booths algorithm takes four clocks, and therefore four instances

of the Booths multiplier will produce four outputs after four clocks. The ratio of normalised gate counts

is presented in Table 3.5.

Table 3.5: Ratio of Gates Usage for Normalised Throughput

R=8 R=12
N=4 N=8 N=8 N=16

C SQNL vs D SQNL 5.06 2.42 3.78 1.83
C SQNL vs L SQNL 3.75 1.79 30.45 14.77
D SQNL vs L SQNL 0.74 8.06

D SQNL vs L SQNL

For R = 8, a D SQNL implementation would take 963× 4 gates, while an L SQNL would take 2779

gates. This implies that LUT implementation would offer a better silicon real-estate utilisation. How-
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ever, if R = 12, Booth’s implementation (D SQNL) would fit 8× more functions.

C SQNL vs D SQNL

The C SQNL implementation with R = 8,N = 8, takes four clocks with a single bit error on 20% of

the mappings. However, it takes 388 gates compared to the 963 for the D SQNL. This implies that one

could fit 2.48, i.e., an array of C SQNL would take up less than half the space of the D SQNL. With

N = 4, about half the mappings have a single bit error, but the space savings are over 500%. For a 12 bit

resolution, the throughput per gate of the C SQNL is much better than D SQNL.

C SQNL vs L SQNL

The single-cycle performance and its simplicity may make the LUT attractive. However, the throughput

per gate of the LUT is inferior to the C SQNL. With R = 8,N = 4, the LUT requires about four times

more space, and at N = 8, it is almost two times. The LUT does not scale well, and at higher resolutions,

either the D SQNL or the C SQNL would be a better choice.

3.5 Inference Performance Accuracy

We show the performance accuracy between counter-based SQNL in ModelSim and MATLAB. Simu-

lations and experiments have been performed on the ModelSim simulation engine of the Altera Frame-

work using VHDL as the programming language. The experiments in this section are divided into three

categories based on the datasets. Four classification and regression datasets are selected from the UCI

repository. The second aspect of this section is based on the experimental dataset generated. The final

aspect is the performance verification on a large dataset.

3.5.1 Performance Accuracy on UCI datasets

The performance of the counter-based SQNL function has been evaluated using the datasets available on

the UCI repository [107]. A custom SQNL activation function was created (8-bit, M =±128, C =±64,

U = ±64) to be used with MATLAB’s training algorithms. This activation function was created with

an Intel/Altera Cyclone V FPGA implementation in mind. Since 18-bit multipliers are available on the

Cyclone V, the standard floating-point variables have been scaled such that the input spans ±100 while

the binary outputs are either +64 or −64. Various network architectures were tried. The pattern set was

randomly partitioned for training and validation in an 80:20 ratio. The minimum network configuration
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Figure 3.6: Fisher’s Iris Classification Dataset - Experimental Result (Modelsim code is synthesisable)

comprised of five neurons in the hidden layer, with both hidden and output nodes having the SQNL

activation function. The network was trained using MATLAB while the inferencing was done on Altera

Modelsim for Cyclone V FPGA device.

Using the architecture defined above, the networks were simulated using synthesisable VHDL code

with the SQNL activation function. The results of the classification datasets (Breast Cancer and Iris

[107]) are shown in Figure 3.6 and Figure 3.7, respectively. Figure 3.7 shows an exact match between

MATLAB’s floating-point (red asterisks) and Modelsim results (blue circles).

Finally, to validate the usability of our function for regression datasets, the following experiments

were conducted and reported. A MATLAB regression dataset referred to as ”Simple Fit” was also trained

using the same approach. A network architecture comprising five hidden SQNL neurons and a linear

output neuron gave the best fit. The dataset was divided into the 80:20 ratio. Similarly, we generated

a sine wave and trained the network using five hidden SQNL neurons and a linear output neuron. The

regression datasets of Figure 3.8 and Figure 3.9 show good agreement between the MATLAB (blue

circle) and Modelsim (red asterisks) results for the simple fit datasets and between the MATLAB(red

line) and Modelsim(blue circle) results for the sine wave. The difference between the MATLAB and

Modelsim simulations can be attributed to fixed-point data representation precision.
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Figure 3.7: Breast Cancer Classification Dataset - Experimental Result (Modelsim code is synthesisable)
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Figure 3.8: Simple Fit Regression Dataset - Experimental Result (Modelsim code is synthesisable)
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Figure 3.9: Sine Function Regression Dataset - Experimental Result (Modelsim code is synthesisable)

3.5.2 Performance Accuracy on Experimental Rotational Dataset

Figure 3.10 shows a rotation sensing IC (Honeywell APS00B) that uses a magnetoresistive sensor to

determine rotation. The magnetic field of a magnet mounted on the shaft/wheel rotates with the shaft.

The IC, in a stationary frame, produces two quadrature sinusoids, labelled as Cos and Sin. The lack

of purity of the sinusoids as a result of misalignment and non-matching gains could lead to errors in

determining the shaft angle. Hence, an ANN could be justified instead of the use of trigonometry. The

synthetic data was generated (in MATLAB) by adding 10% noise to the Cos and Sin values. A neural

network with 15 hidden nodes was trained with the noisy Cos and Sin signals to infer the rotation.

Figure 3.10 shows the responses of a MATLAB and Modelsim simulation. The ANNs use 8-bit SQNL

activation functions, and the inferred rotation in MATLAB and VHDL are closely matched except at

the ±180 degree rotations - corresponding to -50 and +50. At these extremes, the noise introduces

unresolvable uncertainties when the rotation wraps across ±180.

3.5.3 Performance Accuracy on MNIST Dataset

The performance of the counter-based SQNL function has been evaluated using the MNIST dataset.

This is to show the usability of the proposed SQNL function on much bigger datasets. The network
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Figure 3.10: Cosine Sine Function Regression Dataset - Experimental Result (Modelsim code is synthe-
sisable)

deployed 100 hidden counter-based SQNL neurons. The output neurons are set to a softmax activation

function. With floating point operations, we achieved an accuracy of 96.1% on test dataset. The same

accuracy was achieved for its hardware counterpart using a 27-bit fixed point representation (Q13.14,

i.e., 13 integer and 14 fractional bits).

All the networks for each of the datasets discussed were tested with different values of N = 4,8,16.

The classification problems showed no difference in accuracy while regression datasets displayed slight

variations. This demonstrated that reduced N does not have an adverse effect on the performance accu-

racy of the datasets.

3.6 Conclusion

We have introduced a novel method for generating computational and resource-efficient SQNL activa-

tion functions. The experiments were performed on an Altera Cyclone V FPGA. Although the counter

based implementation uses lower resources when compared to other methods, the SQNL function have

also been implemented using hardware multiplier. We show that combinatorial logic wrapped around

a standard multiplier offers an attractive alternative to the counter implementation. Comparisons with
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LUT implementation and a counter-based SQNL function with an 8-bit resolution offers an estimated

throughput (per gate) speedup of 1.79x to 3.75x. Similarly, a speedup of 2.48x to 5.06x is estimated

with multipliers. Higher throughputs per gate have also been estimated with 12-bit implementations.

The single-cycle hardware implementation of the proposed method is also resource-efficient for higher

resolution and provides area savings when compared to LUT. The derivative of the digital SQNL func-

tion is linear. The implementation of this derivative only requires a combinatorial operation making

it highly amenable to on-chip training. Results of computer and VHDL simulations are presented for

various datasets, and these show that the counter-based SQNL doesn’t cause any form of performance

degradation.
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Chapter 4

Asymmetric Square-based Activation

Functions for Deep Learning

Abstract

In training deep neural networks, the defacto activation function is the asymmetric function. This func-

tion is non-saturating, which helps to eliminate the vanishing gradient problem. The importance of the

choice of the activation function cannot be overemphasised. Activation functions can influence network

training convergence, performance accuracy, and can make training and inference stages computation-

ally expensive. This chapter introduces five new square-based activation functions for embedded ALUs

that consume only one instruction cycle with the potential of being resource efficient when constructed

in silicon. We show that the proposed functions are computationally efficient when compared with base-

line functions (functions containing exponent, logarithm, floating-point division, and square root). We

analyse the hidden representations of trained neural network models in an attempt to explain the per-

formance gain, and speedup observed when using square nonlinearities. We show a speedup of 1.9x to

4.3x for the proposed functions using metrics provided by Intel. On an embedded ARM processor, our

method achieves a speedup of at least 4.37x. These functions will find particular importance in low-end

hardware devices with limited hardware capabilities.

4.1 Introduction

Machine learning is moving towards edge computing evidence from big companies like Google and

Intel, creating neural computing sticks. Deep neural networks are characterised by computational com-
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plexity and requiring high memory. Thus, such networks are usually trained using powerful hardware.

There is an increasing interest in training and deploying neural networks directly on battery-powered

devices such as cell phones or other platforms. Such low-power embedded systems are memory and

power limited, and in some cases, lack necessary support for floating-point arithmetic [108]. For many

applications, the inference phase should possess low power consumption, faster execution, and low com-

putational complexity. The inference phase is mainly made up of the GEMM operation and the activation

units. The complexity of the activation function will impact the execution speed of the inference phase

and hence have an impact on power and speed.

In literature, there is a wide spectrum of activation functions [3,64,109]. Some network architecture

dynamically adjusts the activation functions [110, 111], increasing computation and area - especially in

hardware. In recent years, developing activation functions that speed up the training step while pro-

ducing accurate results has attracted greater attention [112, 113]. Designing activation functions that

enable fast training of accurate DNN is an active area of research [2]. The complexity of deep neu-

ral networks spans across learning parameters (> nine million for ImageNet problem using AlexNet,

DenseNet, ResNet models), training algorithm, and activation functions. There is active research in

tackling the complexity of deep neural network architectures evidence from DenseNet to SqueezeNet.

Activation functions are one of the important components of any neural network architecture. These

functions differ in forms and range but have one important usage - the introduction of nonlinearity.

These nonlinearities in neural network architectures are for the sole purpose of making them able to

learn complex patterns. The effort to find a suitable activation function has increased [3, 64, 109] due

to the need to improve performance accuracy, reduction in complexity, and better convergence speed.

However, apart from the ReLU used in deep neural networks, all other activation functions proposed

over the years are computationally expensive and also require more parameters (Figure 1.1). Some of

the functions, however, have outperformed ReLU based networks at the expense of introducing more

complexity to the network architecture. Most of these activation functions are computationally intensive

due to the presence of complex mathematical operations such as exponential, division, and square root.

The fast approximation of the exponential function described in [114] is associated with limitations.

ReLU is by far the simplest of all activations but is characterised by dying neurons and requiring batch

normalisation [3].

The inferencing action, mainly influenced by the shape of the activation function, has attracted the

attention of hardware implementations in NVIDIA and Google’s machine learning engines. NVIDIA

[113] introduced a new cuDNN library which provides a series of inference optimisations for GPUs.
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The new Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) block in the cuDNN

library (CuDNNLSTM and CuDNNGRU) are shown to be faster due to the optimisation involved by

eliminating the computationally intensive activation functions [113]. Google’s TPU [115] have a hard-

wired activation function to eliminate the resource-intensive activation functions.

We extended the square law (Chapter 2) to accommodate for varieties of activation functions. Our

proposed functions eliminate the need for an exponent, floating-point division, and logarithm for non-

linearity by using a combination of a square/multiplication and shift operations. The following are the

contributions of this chapter:

• Introduction of five new computationally efficient asymmetric activation functions.

• We show the computational footprint of the proposed square-based functions on Intel CPUs.

• We empirically show the activation over time and the inference time, as well as the speedups,

obtain using ARM M3 processor.

• We present the usability of the proposed square-based functions across multiple machine learning

models with an increase in inference speed and sometimes performance accuracy.

4.2 Novel Activation Functions

In this section, we propose and discuss five new activation functions for deep learning architectures

based on our square law. These functions are referred to collectively as the SQNL family due to pos-

sessing the square nonlinearity characteristics. We benchmark the SQNL family with computationally

complex activation functions (functions with exponent, logarithm, trigonometric, and floating-point di-

vision) found in the literature [3, 4, 116]. It is important to note that the SQNL family functions are

not an approximation. They are standalone functions that are mathematically unique. The computa-

tionally complex activation functions are referred to collectively as baseline family. Figure 4.1 shows

individual baseline functions against the square-based functions. Furthermore, we computed the com-

putational footprint of the SQNL family and baseline functions on Intel CPUs and ARM M3 processor.

We performed experiments showing the activation over time, and inference time.

In chapter 2, we proposed a computationally efficient symmetric activation function referred to as
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SQNL based on square law. It is defined in Equation 4.1.

f (x) =



1 : x > 2.0

x− x2

4 : 0≤ x≤ 2.0

x+ x2

4 :−2.0≤ x < 0

−1 : x <−2.0

(4.1)
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Figure 4.1: Activation Functions: All the proposed square-based against their corresponding complex-
based functions

The square law can be adapted to produce other forms of activation functions. We propose a series

of smooth asymmetric activation functions useful in the hidden layers. In addition, we present the

replacement for the normalising softmax function which is used in the output layer.

4.2.1 Smooth Square-based Asymmetric Activation Functions

Several variants of ReLUs have been proposed in the literature and shown to outperform ReLU. Of

particular interest are the smooth asymmetric functions [3, 4, 116]. Asymmetric functions with negative

values are of importance because they are responsible for pushing the mean activations closer to zero [3].

This is responsible for faster training, sometimes the elimination of batch normalisation, and leads to
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increased accuracies. However, a particular similarity to all these variants of ReLU is the introduction of

computationally expensive mathematical operators like the exponent term, logarithm, and floating-point

division. We will discuss each of these smooth variants of ReLU functions, their advantages, and their

replacement based on our square law.

Square Linear Units (SQLU)

Using the square nonlinearity, we define a new nonlinear function called Square Linear Unit (SQLU).

The SQLU function is defined in Equation 4.2.

f (x) =


x : x > 0

x+ x2

4 :−2.0≤ x≤ 0

−1 : x <−2.0

(4.2)

Equation 4.2 can be compactly written as f (x) = max{0,x}+min{0,x+ x2/4} after clipping the nega-

tive input to−2. SQLU is morphologically similar to the Exponential Linear Units (ELU) defined in [3]

but computationally simple. Figure 4.1 shows the similarity in the shape of ELU and SQLU. SQLU is

not an approximation of ELU but it is derived from the square law defined in Equation 4.1. The ELU

has been shown to achieve higher classification accuracies with a learning/convergence speed up as com-

pared to ReLU. This is as a result of its ability to push mean unit activations closer to zero. However, the

function is computationally expensive due to the presence of the exponent term. The authors reported

that ELU networks are about 5% slower on ImageNet datasets than ReLU networks, further confirming

the complexity of ELU functions.

Batch Normalisation and ELU/SQLU

We recognise that ReLU is one of the most popular functions for DNN architectures. It was reported that

it could lead to dead neurons and bias shift [3]. According to the analysis provided in [3,117], they have

reduced the undesired bias shift effect without the natural gradients, either by centring the activation of

incoming units at zero or by using activation functions with negative values. ReLU networks have been

shown in literature [3, 118] to benefit from batch normalisation. The requirement of batch normalisa-

tion [118] to reduce the undesired bias shift is computationally expensive (xbn = γ( x−µ

σ
)+β , where µ

and σ are the mean and the standard deviation of each mini-batch, γ and β are the learnable parameters

responsible for improving the representation power of the model).Per unit activation: two multiplica-

tions, square root, one division, additions, and subtractions are required for batch normalisation. These
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additional computations effectively negate the simplicity of the ReLU when batch normalisation is re-

quired. It has been shown [3] that ELU networks do not benefit from batch normalisation. The SQLU

morphology is characteristically similar to the computationally expensive ELU activation function. The

characteristics of the SQLU function will be able to reduce the bias shift with minimum computational

complexity. Finally, it will be shown in Chapter 5 that SQLU can be implemented as a single cycle

function, and hence, the ReLU and SQLU will exhibit the same computational load.

Square Swish (Sqish)

Using the square nonlinearity, we define a new nonlinear function called Square Swish (Sqish) with

a morphology similar to Swish and GELU but computationally simple. Swish and GELU proposed

in [4, 116] are non-convex, non-monotonic functions which are not linear in the positive domain by

exhibiting curvature at all points. Swish is defined mathematically as f (x) = x×σ(x) while GELU

is approximated as f (x) = 0.5x(1+ tanh[
√

2/pi(x+ 0.044715x3)]). The Sqish function is defined in

Equation 4.3.

f (x) =


x+ x2

25 : x > 0

x+ x2

2 :−2.0≤ x < 0

0 : x <−2.0

(4.3)

Equation 4.3 can be compactly written as f (x) = max{0,x+x2/25}+min{0,x+x2/2}. Equation 4.3 is

not an approximation of Swish and GELU functions.

Square REU (Sqreu)

Authors in [119] proposed an activation function which aimed to take advantage of ReLU and Swish

functions. This function is called REU and defined as f (x) = max{0,x}+min{0,x× exp(x)}. This

function shares the positive region characteristics of ReLU and the negative region characteristics of the

Swish function. We defined a new activation function based on our square law. This function defined in

Equation 4.4 is morphologically similar to REU and we refer to this function as SqREU.

f (x) =


x : x > 0

x+ x2

2 :−2.0≤ x≤ 0

0 : x <−2.0

(4.4)

Equation 4.4 can be compactly written as f (x) = max{0,x}+min{0,(x+ x2/2)}.

61



Square Softplus (SQ Softplus)

The square-based softplus (SQ Softplus) is introduced to replace the Softplus function f (x) = log(1+

exp(x)). The proposed function is defined in Equation 4.5.

f (x) =


x : x > 0.5

(x+0.5)2

2 :−0.5≤ x≤ 0.5

0 : x <−0.5

(4.5)

Equation 4.5 can be compactly written as f (x) = max{0,x}+min{0,(x+0.5)2/2}.

4.2.2 Square-based Output Layer Activation Function

The choice of activation function for the last layer of a neural network architecture depends on the task.

For regression problems, the common activation of choice is the linear function. Sigmoid and Softmax

functions are generally used in binary and multi-class classification applications, respectively. Sigmoid

is also used as a gating function in recurrent neural networks. Sigmoid and softmax are computationally

expensive due to the presence of the exponential function. We present an alternative to softmax function

using our square law method. The alternative to sigmoid, called Log SQNL, has already been discussed

in Chapter 2.

The square-based softmax (SQMAX) is introduced to replace the computationally expensive soft-

max function f (xi) =
exi

∑
M
j=1 ex j . The softmax function takes a vector of M dimensions and returns a

probability distribution also of M dimensions. Each element of the output is in the range (0,1) and the

sum of the elements of M is 1.0. The proposed function is defined in Equation 4.6. Where c = 4 is a

predefined offset.

f (xi) =
(xi + c)2

∑
M
j=1(x j + c)2

(4.6)

4.3 Analysis

4.3.1 Computational Footprint on Intel CPUs

Intel [66] provides detailed metrics on the computation time of various math operations. Vectors of

1000 elements with randomly generated numbers were used, and an average was taken to obtain the

results. An extensive comparison of the CPU performance of the required mathematical functions for

activation functions under test is available in Table 2.1 (Chapter 2). Table 4.1 shows the speedups
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Table 4.1: Speedups: CPU Performance of asymmetric activation functions. Run on Intel Xeon with
Vector Function Data.

Single E5- 2699 E5-2699 Gold 6148
Precision (Haswell) (Broadwell) (Skylake)
ELU/SQLU 2.3× 2.5× 2.3×
ISRLU /SQLU 3.5× 3.5× 2.9×
Swish/Sqish 4.1× 4.3× 4.2×
REU/Sqreu 2.3× 2.5× 2.3×
Softplus /SQ Softplus 2.3× 1.9× 2.1×

reported for square-based activation function when compared with the baseline benchmarks. It can be

seen that square-based activation functions show a significant speedup over the baseline functions; this

will mainly be useful in CPU based inference engines.

4.3.2 Computational Footprint on the ARM M3 Processor

Table 4.2 shows the full computational time in milliseconds of the proposed asymmetric activation

functions as well as their respective derivatives against their respective baselines. Table 4.3 shows the

speedup achieved by the square-based functions relative to the benchmarks. The SQLU is 8.56× faster

with double precision and 19.2× faster with Q16.16 fixed-point operations (Table 4.3). The Softplus

mapping is the most expensive in double or Q16.16 precision arithmetic. The proposed SQ Softplus

offers very significant speeds ups of 39.2× and a substantial 169.8× for double and Q16.16 precision,

respectively.
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Table 4.2: Computational time of ELU, SQLU, Softplus (Softp) and SQ Softplus (SQ Softp) , SqREU,
REU, Swish and Sqish functions and their derivatives using ARM M3 processor. This is an average of
1000 calculations.

Function Forward (ms) Derivative (ms)
ELU Floating Point 131.14 125.85
ELU Fixed Point 34.84 12.66
SQLU Floating Point 15.33 34.42
SQLU Fixed Point 1.81 0.64
Softplus Floating Point 252.83 154.58
Softplus Fixed Point 109.49 5.27
SQ Softplus Floating Point 6.44 6.53
SQ Softplus Fixed Point 0.64 0.64
Swish Floating Point 168.17 178.91
Swish Fixed Point 136.10 143.57
Sqish Floating Point 18.60 11.68
Sqish Fixed Point 8.95 2.74
REU Floating Point 71.83 72.22
REU Fixed Point 66.08 65.82
SqREU Floating Point 12.54 8.29
SqREU Fixed Point 5.32 1.69

Table 4.3: Speed ups: Computational time of asymmetric functions and their derivatives using ARM
M3 processor. This is an average of 1000 calculations.

Function Forward Derivative
ELU/SQLU Floating Point 8.55 × 3.66 ×
ELU/SQLU Fixed Point 19.22 × 19.83 ×
ISRLU/SQLU Floating Point 8.55 × 3.66 ×
ISRLU/SQLU Fixed Point 19.22 × 19.83 ×
Softplus/SQ Softplus Floating Point 39.23 × 23.68 ×
Softplus/SQ Softplus Fixed Point 169.79 × 8.18 ×
Swish/Sqish Floating Point 9.04 × 15.32 ×
Swish/Sqish Fixed Point 15.21 × 52.39 ×
REU/SqREU Floating Point 5.73 × 8.71 ×
REU/SqREU Fixed Point 12.42 × 38.95 ×

4.4 Experimental Results

To empirically evaluate the proposed method, we investigated popular machine learning models with

our activation functions. In terms of performance, the square-based functions are not inferior to the

baseline functions, and sometimes they are better. We made no changes to predefined architectures and

hyperparameters. All the predefined architectures were designed with the ReLUs activation function. We

replace the ReLU activation function with different activation functions and show good comparability

between the activation functions.
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4.4.1 Activation Over Time and Inference Time

We trained an eight hidden layer deep neural network on MNIST dataset. We followed the same settings

as defined in [3]. Each layer consisted of 128 neurons; we used the stochastic gradient descent with

mini-batches of size 64 and learning rate of 0.01. Table 4.4, shows the accuracy and computational time.

This further supports the claim that the computationally efficient SQLU can successfully replace the

computationally expensive ELU.

Table 4.4: MNIST preliminary analysis showing: training time, inference time in seconds, and percent-
age performance accuracy. Here SQLU consistently performs better than ELU.(Average of five runs)

Function Training Inference Accuracy
Time (s) Time (s) (%)

ReLU 1146.29 108.12 99.03
ELU 1324.07 114.88 99.27
SQLU 1302.03 110.15 99.71

Furthermore, we present the activations over time of the first and the penultimate layer in Figure 4.2

and 4.3 respectively for SQLU and ELU functions. Figure 4.2 and 4.3 show similar values of activations

over time.

Figure 4.2: Top: First hidden layer activations during training with ELU Function, Bottom: First hidden
layer activations during training with SQLU Function.
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Figure 4.3: Top: Last hidden layer activations during training with ELU Function, Bottom: Last hidden
layer activations during training with SQLU Function.

4.4.2 Experiments using SQLU

We investigate the learning behavior of SQLUs on unsupervised and supervised learning. We perform

the analysis on the following architectures: deep autoencoders, deep neural networks, and simple deep

convolution neural networks. The performance accuracy of SQLU was also explored on CIFAR-10,

CIFAR-100 [120], SVHN [121], and Tiny ImageNet [122] datasets using various CNN architectures.

Learning Behaviour of SQLU: Train a simple deep MLP on the MNIST

We first want to verify the usability of SQLU in deep multilayer perceptron networks. Fully connected

deep neural networks with SQLUs, ELUs (α = 1.0), ReLUs, and LReLUs (α = 0.1) were trained on

the MNIST digit classification dataset. Each network has eight hidden layers of 128 neurons, and was

trained for 300 epochs by stochastic gradient descent with learning rate 0.01 and mini-batches of size

64 as described in [3]. The weights have been initialised according to [9]. The training error and the test

error for ELU and SQLU are the same and perform better than other functions as shown in Figure 4.4.

Learning Behaviour of SQLU: Train a simple deep CNN on the CIFAR10 small images dataset

To evaluate SQLU networks on CNN models, we follow the simple CNN model defined in Keras [123].

KerasNet: a convolutional neural network included in the Keras framework. It is made up of four

convolutional layers and two fully connected layers, and it employs both max pooling and dropout.
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a
b

Figure 4.4: SQLU networks evaluated on MNIST. a) Training set cross entropy loss for different acti-
vation functions. b) Validation set cross entropy loss for different activation functions.(Best viewed in
colour)

a
b

Figure 4.5: SQLU and ELU networks evaluated on CIFAR10 with Data Augmentation to show that
SQLU is not inferior to ELU. a) Training set cross entropy loss for SQLU and ELU functions. b)
Validation set cross entropy loss for SQLU and ELU functions. (Best viewed in colour)

Figure 4.5 shows that SQLU and ELU achieve the same results. Therefore, the computationally efficient

SQLU can successfully replace the ELU.

Learning Behaviour of SQLU: Autoencoder Learning

To evaluate SQLU networks at unsupervised settings, we followed [124, 125] and trained a deep au-

toencoder on the MNIST dataset. The encoder part consisted of four fully connected hidden layers with

sizes 1000, 500, 250, and 30, respectively. The decoder part has a similar connection to the encoder. For

learning, we applied stochastic gradient descent using the fixed learning rate of 0.01 with mini-batches of

64 samples for 500 epochs. Figure 4.6 shows that SQLU and ELU outperform the competing activation

functions in terms of training / test set reconstruction error.
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a
b

Figure 4.6: Autoencoder training on MNIST: a) Training reconstruction error using different activation
functions. b) Test reconstruction error using different activation functions.(Best viewed in colour)

Table 4.5: Performance Accuracy on CIFAR - 10 using ReLU, ELU and SQLU activation functions on
already defined architecture. We used the ResNet20 (20 layer ResNet) Version 1 [9]. The results show
that SQLU is not inferior to ELU and hence, can replace ELU whenever the computational time and
resource-efficient Inference block is essential. * ELU diverges. (Results are average of five runs, and an
estimated mean of accuracy with the confidence of 95% is recorded).

Network
Activation Functions

ReLU (%) ELU (%) SQLU (%)
ResNet20 91.77 ±0.15 91.40 ±0.14 91.77 ±0.2
VGG-19 93.4 ±0.31 93.3 ±0.34 93.2 ±0.46
NIN 88.25±0.36 -* 88.88±0.33

SQLU Performance Accuracy: Deep supervised Learning

The closest form to the SQLU is the ELU [3].The SQLU and ELU only differ in the negative zone.

SQLU is characterised by larger values of nonlinearity at the linear regime when compared to ELU. We

use the same network architecture provided in [9, 126, 127], and only replace the activation functions

from ReLU to SQLU and ELU. This code is available at [128]. We applied the architectures to CIFAR

10, CIFAR 100, SVHN (descriptions available at [129]), and Tiny ImageNet Datasets. The results are

presented in Tables 4.5, 4.6, 4.7 and 4.8.

Table 4.6: Performance Accuracy on CIFAR - 100 using ReLU, ELU and SQLU activation functions on
already defined architecture. We used the ResNet20 (20 layer ResNet) Version 2 [10]. * ELU diverges.
(Results are average of five runs, and an estimated mean of accuracy with the confidence of 95% is
recorded).

Network
Activation Functions

ReLU (%) ELU (%) SQLU (%)
ResNet20 71.6 ±0.36 71.8 ±1.3 71.8 ±0.01
VGG-19 70.8 ±0.28 70.5 ±0.33 70.6 ±0.47
NIN 61.91 ±0.32 -* 63.01 ±0.31

68



Table 4.7: Performance Accuracy on SVHN using ReLU, ELU and SQLU activation functions on al-
ready defined architecture. We used the Convnet ( [11]). The results show that SQLU is not inferior
to ELU and hence, can replace ELU whenever the computational time and resource-efficient Inference
block is essential. (Results are average of five runs, and an estimated mean of accuracy with the confi-
dence of 95% is recorded).

Network
Activation Functions

ReLU (%) ELU (%) SQLU (%)
Convnet 95.72 ±0.19 95.61 ±0.41 95.67 ±0.2
VGG-19 95.53 ±0.06 95.33 ±0.08 95.30 ±0.03
NIN 94.28±0.09 94.39±0.06 94.41±0.03

Table 4.8: Performance Accuracy on Tiny ImageNet using ReLU, ELU and SQLU activation functions
on already defined architecture. We used the DenseNet and model parameters defined in [12]. We use
the ResNet50 (50 layer ResNet) [10] and model parameters defined in [13].

Network
Activation Functions

ReLU (%) ELU (%) SQLU (%)
DenseNet 62.73 62.77 62.75
ResNet50 51.61 51.11 51.60

Our results show that applying the proposed activation function sometimes leads to the same/better

performance than that of the reference model. It is important to note that we are interested in showing

the usability of SQLU by using the same model set up by previous work and only replace the activation

function. The speedup was not recorded because other factors (such as dropout, maxpooling and so on)

contribute to the training and inference time. Hence, reliable comparisons of time taken to train are

difficult. However, Table 4.1 shows that computing SQLU layer is 2.3× faster than the ELU layer on

Intel CPU. It is of great interest to see that SQLU in most cases outperforms ELU, even though they are

morphologically similar. However, SQLU and ELU differ significantly in the negative region and the

derivative function.

4.4.3 Experiments using Sqish for Very Deep Networks

We compare Sqish to ReLU and Swish activation functions on the CIFAR-10 and CIFAR-100 datasets

[120]. We follow the experimental settings recorded in [116] and train Sqish activation function on the

following very deep architectures: ResNet-164 [10], Wide ResNet 28-10 (WRN) [14], and DenseNet

100-12 [130]. Table 4.9 and 4.10 shows the performance accuracy on CIFAR-10 and CIFAR-100

datasets, respectively.
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Table 4.9: Sqish: Performance Accuracy on CIFAR - 10 using activation functions on already defined
architecture. The results show that Sqish is not inferior to swish and hence, can replace swish whenever
the computational time and resource-efficient Inference block is essential. (Results are average of five
runs, and an estimated mean of accuracy with the confidence of 95% is recorded).

Model ResNet-164 WRN 28-10 DenseNet 100-12
ReLU 92.24±0.10 95.57±0.13 93.65±0.52
Swish 91.64±0.13 95.66±0.10 94.12±0.38
Sqish 92.69±0.23 95.68±0.10 94.01±0.58

Table 4.10: Sqish: Performance Accuracy on CIFAR - 100 using activation functions on already defined
architecture. The results show that Sqish is not inferior to swish and hence can replace swish whenever
the computational time and resource-efficient Inference block is essential. (Results are average of 5 runs,
and an estimated mean of accuracy with the confidence of 95% is recorded)

Model WRN 28-10 DenseNet 100-12
ReLU 78.9±0.50 73.39 ±0.99
Swish 79.76 ±0.82 74.63±2.07
Sqish 79.50±0.26 74.03±1.82

The results in Tables 4.9 and 4.10 show that Sqish is not inferior to Swish in performance accuracy.

Swish and our square based equivalent Sqish consistently match or outperform ReLU on every model

for CIFAR-10 and CIFAR-100.

4.4.4 Experiments using SqREU

We replace the conventional computationally intensive REU function with the simple SqREU. We car-

ried out a similar experiment as described in [119] and show in Table 4.11 that the SqREU consistently

outperforms ReLU and REU functions.

Table 4.11: SqREU: Performance Accuracy on Fashion MNIST (FMNIST), CIFAR-10 and CIFAR-
100 using activation functions on already defined architecture. The results show that SqREU is not
inferior to REU and hence, can replace REU whenever the computational time and resource-efficient
Inference block is essential. (Results are average of five runs, and an estimated mean of accuracy with
the confidence of 95% is recorded).

LeNet-5 ResNet-110
FMNIST CIFAR-10 CIFAR-100

ReLU 90.44±0.15 92.27 ±0.22 69.29 ±0.93
REU 90.57±0.10 92.72 ±0.20 70.26 ±0.43
SqREU 90.61 ±0.19 92.86 ±0.21 71.03 ±0.39

4.4.5 Experiments using SQ Softplus for Restricted Boltzmann Machine

In this experiment, we replaced the softplus function ( f (x) = log(1+ exp(x))) commonly used in RBM

and sometimes in DNN architecture with our simple square-based function referred to as SQ softplus,
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defined in Equation 4.5. The model description and architecture used is defined and available at [131].

The result shows that SQ softplus function and softplus achieve the same results in terms of accuracy, as

shown in Figure 4.7. Both softplus and SQ softplus networks show a similar training loss and test error.

Figure 4.7: Comparison of Conventional softplus and SQ softplus: Left: Training loss, Right: Test
error.

4.4.6 Experiments using SQMAX

For this experiment, the softmax and SQMAX gives comparable performance accuracy across all datasets

and architectures as shown in Table 4.12.

Table 4.12: Performance Accuracy on SVHN CIFAR-10 and CIFAR-100 using softmax and SQMAX
as the output layer activation function. The hidden layer function is left as ReLU. We changed the flatten
layer to the Global Averaging Pooling for the VGG-19 architecture. The results show that SQMAX is
not inferior to Softmax and hence, can replace softmax whenever the computational time and resource-
efficient inference block is essential.

NIN VGG-19
SVHN CIFAR-100 Tiny ImageNet

Softmax 95.10 61.91 62.47
SQMAX 95.10 61.37 62.46

The difference between the softmax and SQMAX function is the replacement of the exponent term

with a square term. Therefore computationally, on an Intel CPU processor, a square operator is 4×

faster than an exponent term. Table 4.13 shows the computational time on an ARM M3 processor of

the exponent and square terms. The floating-point square operator is 25.69× faster than the exponent

operator. The fixed point precision square operator achieves a speedup of 20.46×.
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Table 4.13: Computational time of exponential and square operators using ARM M3 processor.

Precision Exponential Square
Time (ms) Time (ms)

Floating point 128.98 5.41
Fixed Point 116.03 5.67

4.5 Conclusion

The matrix multiply unit, accumulator unit, and activation unit makes up a typical inference engine. In

this chapter, we have proposed replacing the computationally complex activation unit with our square-

based activation unit. We introduce five new computationally simple activation functions. These square-

based functions are not an approximation of baseline activation functions but are standalone functions.

We show the initial speedup of functions using metrics provided by the Intel processor. On various Intel

CPUs, a speedup ranging from 1.3x to 4.3x is achieved. We empirically demonstrated the activation over

time and the inference time, as well as the speedups obtained using ARM M3 processor. Overall, on the

ARM M3 processor, the square-based functions obtained a speedup of 5.73x to 169.79x when compared

to baseline. The derivatives are linear in nature and also achieved a speedup of 3.66x to 38.95x on the

ARM M3 processor. We have demonstrated extensively that square-based activation functions achieve

comparable or better performance accuracy on several datasets and neural network architectures. The

advantage of square-based nonlinearity will manifest in the inference engine block.
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Chapter 5

Resource Efficient Asymmetric Activation

Functions Generator

Abstract

Implementations of machine learning models in resource-limited embedded systems are becoming highly

desired. This has led to a need for resource-efficient building blocks for computing the mathematical

operations required for neural network training and inferencing. Efficient activation functions for low-

end hardware devices with limited hardware capabilities are important. In this chapter, we present an

algorithm for generating asymmetric activation functions. The digital implementation of the proposed

algorithm is highly amenable to parallelisation and extremely resource-efficient when compared to other

forms of hardware approximation. Furthermore, we introduced an arbitrary multifunctional generator

called SQ-GEN. We show that it is efficient and is characterised with arbitrary precision without affect-

ing the resource usage. We record an area-saving on FPGA and ASIC platforms with different precision.

5.1 Introduction

Convolutions, multiplication, activations, pooling, and normalisation are the major mathematical op-

erations in which the majority of the computing effort of various deep learning architecture training

and inference stage is allocated. Hardware implementation of these operations possesses several chal-

lenges [132]. There are many nonlinear functions used as activation functions for deep learning neural

network models. Some of these functions, such as ReLU, are very simple and can be implemented

trivially with simple operators on hardware; others require some type of approximation method or extra
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memory by using a lookup table (LUT). Every variant of ReLU or other deep learning based activation

functions are computationally expensive. For example, Leaky ReLU [29] and PReLU [1] require a mul-

tiplier, ELU [3], swish [116], and SELU [5] require an exponential, softmax requires exponential and

division. These mathematical functions are computationally expensive on hardware and hence, leads to

challenges for hardware-based deep learning architectures.

The impact of activation function in both area and latency for hardware accelerator is important.

Implementing an accurate, low cost, power efficient, and low latency activation function is an impor-

tant aspect of implementing deep learning models on FPGAs. There have been multiple activation

functions proposed by researchers over the years due to a need for higher performance accuracy, better

convergence speed, reduced computational cost, and so on. However, most activation functions include

primitive operators such as exponential and division functions. There is a high area cost associated with

implementing these functions on FPGAs. Efficient hardware implementation of computationally inten-

sive activation functions will contribute to designing effective and efficient deep learning accelerators.

In literature, various approaches have been proposed for implementing efficient hardware transenden-

tal activation functions. These methods falls into three broad categories: look-up table (LUT), piecewise

approximation, and hybrid methods. LUT method has been shown to generally be resource and memory

intensive for higer resolution and precision [133]. The structure of a LUT is not amenable to direct

expansion when there is a need for factors such as change in resolution, activation function, and so on.

Large table sizes provide better results but increase the memory requirements. There are different types

of piecewise approximation which include piecewise linear [28, 134], piecewise nonlinear [26], and

others [27,135]. In most cases, piecewise approximation requires one or more multipliers [134]. As de-

scribed in [24, 37], multipliers are resource hungry and power hungry devices on hardware. Other types

of piecewise approximation have been shown to not require any multiplier but rather only comparators,

multiplexers, shift operators, storage of several coefficients. For a small degradation in performance ac-

curacy for some problem space, shift operator based piecewise approximation activation functions will

suffice.

Authors in [136] show that activation functions affect the learning and generalisation capabilities of

neural networks. In most machine learning architectures, each neuron in the hidden and output layers

needs some type of activation function. The rationale for focusing on the efficient hardware implementa-

tion of computationally expensive activation functions include the following: (i) not all machine learning

architectures can use the simple ReLU, (ii) some computationally expensive activation functions have

been shown in literature to out perform ReLU [3, 29, 116]. For example, functions like ELU have the
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advantage of not requiring computationally expensive batch normalisation, decreasing training time and

improving performance accuracy. (iii) The number of activation functions per layer is increasing with

machine learning model complexity. For example, the popular VGG [127] has two dense layers of fully

connected neurons of 4096 activation functions each before the final layer of softmax function. Deep

autoencoder for MNIST [124] has a network with layers of width 1000, 500, 250, 30, 250, 500, 1000

ELU functions, and 784 neurons of sigmoid function. ELU-network [3] for ImageNet dataset contains

two layers of 4096 ELU functions in the fully connected layers and other convolutional layers containing

ELU function. Finally, SELU function has recorded state-of-the-art results using feed forward neural

networks for different datasets. The new state-of-the-art accuracy recorded for Tox21 dataset requires

each hidden layer to have between 1024 and 2048 SELUs.

Therefore, hardware implementation of networks with any of these computationally expensive func-

tions will lead to high resources and power consumption from the activation function alone; thus, show-

ing the need and importance of efficient hardware implementation of computationally expensive acti-

vation functions. Overall, the number of hardware activation function components can be significant.

Hence, optimisation of activation function circuits could dramatically decrease neural network area and

power requirements [135,137]. As a result of this analysis, efficient execution/implementation of matrix

multiplication operations should not be the only focus of designers during hardware implementation.

Special attention should be paid to other components of hardware implementation of machine learning

models hence, the focus of this chapter, which is to propose resource efficient hardware implementation

of asymmetric activation functions. Our proposed hardware implementation method is simple to im-

plement in digital circuits as the complexity of the computations can be significantly reduced by using

subtraction, sum, and accumulate.

The following are the contributions of this chapter:

• Computationally and resource-efficient asymmetric activation functions generator.

• We introduced an arbitrary generator called SQ-GEN: multifunctional (symmetric and asymmetric

activation functions) generator. We show that it is efficient and is characterised with arbitrary

precision without affecting the resource usage.

• Arithmetic logic unit implementation and the associated resource footprint of the square-based

asymmetric activation functions.

• Resource and computational footprint on FPGA and ASIC hardware platforms
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5.2 Concepts

As with the symmetric functions generator defined in Chapter 3, the basis of implementing asymmetric

functions is encapsulated in Equation 3.1 of Chapter 3 ( f (n) = 1
N ∑

N
k=1(((n+U(k))C)−U(k))M) with

slight modifications. The asymmetric function can be affected by making two changes.

• U(k) = {−2UMAX , · · · ,0}

• Adder saturation C = {−UMAX ,M} where UMAX = 2R−2 and M = 2R−1, i.e., only the lower satu-

ration boundary is required.

Figure 5.1 plots the impact of the saturating adder at three different inputs - n1, n2, and n3. With

n1, some of the partial sums of U(k) (close to zero) do not experience saturation and hence their partial

sums, i.e., ((n1 +U(k))C)−U(k))M = n1. These correspond to the horizontal section of the profile.

Unlike the symmetrical function, the saturation in this case causes an increase in the values of the partial

sums (((n1 +U(k))C)−U(k))M > n1 and corresponds to the sloping section of the profile shown in

Figure 5.1b. Thus f (n1)> n1.

The situation for n2 is similar to that for n1. However, for n = n3, none of elements in U(k) result

in saturation and hence f (n3) = n3. The complete mapping is sketched in the top right quadrant of

Figure 5.1 a).

As discussed with the symmetric generator, a pragmatic N is necessary. The partial sums for N = 8

are shown in Figure 5.1 b) overlayed with an idealised profile. A closed form expression can be obtained
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n
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Figure 5.1: An Asymmetric SQNL Activation Function
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by viewing each segment in Figure 5.1 b) as rectangles or trapezoids. Here, we consider each segment

as a trapezoid. It should be noted that the results for rectangular segments are identical.

For 0≤ n≤UMAX ,

f (n) =
1

2UMAX
[area(U(1))+ area(U(2))+ · · ·+ area(U(p))×∆+n×∆+n×∆]

Here, ∆ = 2UMAX
N and UMAX − p∆ = n,

area(U(1)) =
∆2

2
+(p∆−∆)+n∆

area(U(2)) =
∆2

2
+(p∆−2∆)+n∆

area(U(p)) =
∆2

2
+(p∆− p∆)+n∆ =

∆2

2
+0+n∆

Hence,

f (n) =
1

2UMAX

[
p

∑
i=1

∆2

2
+

p−1

∑
i=1

i∆2 +
p

∑
i=1

n∆

]
=

(UMAX +n)2

4UMAX

It can be shown that for −UMAX ≤ n ≤ 0, f (n) = (UMAX+n)2

4UMAX
. Since we select UMAX = M

2 and hence the

complete mapping is,

f (n) =


0 : n <−M

2

(M
2 +n)2

2M :−M
2 ≤ n≤ M

2

n : n > M
2

(5.1)

The activation function as a result of Equation 5.1 will subsequently be refered to as SQ Softplus.

We define another asymmetrical function that has an identity in the positive region but a smooth

nonlinearity in the negative region. This incorporates a parameter that defines the negative asymptotic

limit. The SQNL based asymmetric functions can also be parameterised and offer an argument with

similar impact. For this mapping, we modifiy U(k) such that,

• U(k,α) = {−2UMAX , · · · ,0}+α , where 0≤ α ≤ M
2

As α is increased from 0 to M/2, the saturation boundary moves to the right and downwards by α .

This is shown in Figure 5.2 b). The impact on the partial sums at a particular input n = n1, at an arbitrary

α as well as at α = 0 is shown in Figure 5.2 a). The profiles of partial product has been reproduced

in Figure 5.2 c). For U(k,0) the saturation leads to a bigger offset and hence f (n1,0) > f (n1,α). The
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negative limit of f (n,α) =−α . The inset in Figure 5.2 a) sketches the mapping.

f (n) =


−α : n <−M

2 −α

(M
2 +n+α)2

2M −α :−M
2 −α ≤ n≤ M

2 −α

n : n > M
2 −α

(5.2)

This activation function (Equation 5.2) at α = 64 will be called SQLU. It is important to note that

when α = 0, then Equation 5.2 is the same as Equation 5.1, and hence the function becomes SQ Softplus

as defined earlier.
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Figure 5.2: A Parameterised Asymmetric SQNL Activation Function

The algorithm inherently offers a wide spectrum of mapping. In addition to the two mappings

discussed earlier, other variations are discussed below. These modifications require a very small increase

in logic gate usage.

SqREU A non monotonic mapping can be obtained by arranging α in Equation 5.2 to vary condition-

ally. For this mapping, we modify Equation 5.2 such that,

• at n <−M
2 −α , f (n) = 0

• at n > M
2 −α , f (n) = n
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• at −M
2 −α ≤ n≤ M

2 −α,α = M
2 +n, hence f (n) is derived as follows:

f (n) =
(M

2 +n+α)2

2M
−α

α =
M
2
+n

f (n) =
(M

2 +n+ M
2 +n)2

2M
−M

2
−n

f (n) =
(M+2n)2

2M
−M

2
−n

Let n = β ·M

f (n) =
(M+2βM)2

2M
−M

2
−βM

f (n) =
M2(1+2β )2

2M
−M(

1
2
+β )

f (n) = M
[
(1+2β )2− (1+2β )

2

]
f (n) = M

[
(1+2β )2β

2

]
f (n) = Mβ (1+2β )

f (n) = n(1+2
n
M
)

Therefore the complete mapping for SqREU function is,

f (n) =


0 : n <−M

2 −α

n+ 2n2

M :−M
2 −α ≤ n≤ M

2 −α

n : n > M
2 −α

(5.3)

SQINE Modifying U(k) to custom values offers an alternative to the Sine function on hardware. This

mapping offers a worst case of two bits error on 16.34% of values.

5.3 Analysis

5.3.1 Computational Footprint on Embedded NIOS II Processor

The square-based asymmetric functions mapping with a custom hardware implementation has the po-

tential to achieve the throughput of the MUL(tiply) instruction. Figure 5.3 shows a possible implemen-

tation. The schematic shows a square operation achieved using one Multiply and Accumulate (MAC)
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and additional combinatorial logic that results in the final SQLU. The combinatorial logic is not reliant

on any clock and hence will only impart a propagation delay. It is estimated that this custom instruction

will result in an execution time very similar to that of a multiplier, i.e., one to seven clock cycles.

00

1

MAC:

Registered

2’s Complement

Sign Bit = ’0’

Combinatorial

x4

>0 1

2’sC

C
A

B
MAC

(A×B+C)÷4

÷4 f (n)

n

Figure 5.3: Hardware Implementation of SQLU using the custom multiplier (special square operator).
The ÷4,×4 operations are right shift operations and hence, have no impact on the computational or
resource footprint. Slight modification will result in other asymmetric functions.

Current technology does not allow us to have custom instruction on ARM. Hence, we created cus-

tom instructions on the Altera Cyclone V FPGA Nios II for verification. Figure 5.3 was implemented

for all the square-based activation functions using custom instructions. The simple ReLU function was

implemented using custom instruction. Experiments show that all the square-based activation functions

implemented using proposed custom instruction on Nios II produce the result in one clock cycle like the

simple ReLU function. Therefore, computationally speaking, all the proposed square-based functions,

and ReLU are the same. The transcendental functions are written directly in C using the inbuilt math li-

brary. The computational time of floating point and fixed point custom instructions for the SQNL family

and their exponential based equivalent shows a consistent speedup for square-based nonlinearities.

5.3.2 Resource Footprint: Arithmetic Logic Unit Implementation

The square operation in Equation 4.1 can be replaced with a modified ’square’ operator, defined as

fs(x) = x×−|x|. This operator can be used to produce other nonlinearities at an extremely low compu-

tational cost. Since hardware multipliers are common in most embedded processors, this square operator

could be implemented in the processor and available as a custom instruction. One possible implementa-

tion is shown in Figure 5.4.

80



X

0

1

Complement
Two’s

Multiplier

> 0

2′sC

x

fs(x)

Figure 5.4: The implementation of a custom square operator ( fs(n) = n×−|n|) using a multiplier.

Each of the proposed activation functions will make use of the special square operator for efficient

calculations. The 2’s complement and the data selector are combinatorial, and hence, its timing is

very comparable to a standard multiplier. Using this operation, the execution of SQNL, (Equation 4.1)

reduces to f (x) = x− fs(x). This is shown pictorially in Figure 5.5a.

Besides the fact that the nonlinearity accounts for a relatively short computational time, the physical

footprint of the SQNL family is small. So if an inference engine implementation is a focus, then the

SQNL family will take minimal resource space as compared to the exponential based functions. This is

as shown in Figure 5.5a-d for the SQNL family.

c)

d)

0

1

SQNL
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a)

b)

Sub

AddSQNL ÷2
÷2

x

x

0.5

> 0 fSQLU

fspfs

x

0.5

fs

x

fSQNL

fLogSQNL

Figure 5.5: SQNL family implementation schematics: a) SQNL using the custom multiplier fs(x) =
x×−|x|. b) Log SQNL. c) SQLU d) SQ Softplus. Note: The ÷2 and ÷4 operations are right shift
operations and hence, have no impact on the computational or resource footprint.

5.4 Hardware Implementation

The asymmetric activation functions have been implemented on an Altera Cyclone V device

(5CSXFC6D6F31C6). The Quartus Prime Standard 18.1 Edition and Modelsim 10.1d are the integrated

development environment on which all the hardware implementation is performed. We will only discuss

the multi-clock/counter solution for the asymmetric functions in this section. The single-cycle solution

and multiplier-based solutions follow the same approach as already discussed in chapter 3.

Multi-clock/Counter solution - Figure 5.6 shows a complete schematic with various bus-widths

highlighted. The code is parameterised, and hence the saturation of the adder and subtractor change
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with the resolution R. Section 6.4 describes the different changes to the parameters based on the type

of function. The asymmetric counter is {−1,−3,−5, · · · ,−15}× 2R−2/N. This is easily obtained by

suitable padding of leading and trailing bits. The summation of α with the counter values results in

asymmetric functions. The input and output, marked with thick lines, could be fixed point at a larger bus

width than the activation function. The lower Add, Latch, and Right-Shift blocks function as the filter

(sum, accumulated, scale). The optimised values of the parameters are defined based on the activation

function and summarised in Table 5.1. An additional speedup of 2× can be extracted by noting that,

for all inputs, half of the partial sums due to positive/negative U(k) are constant. Thus, the accumulator

could be preloaded with either n N
2 or ±∑

k=N/2
k=0 U(k). This implies only four clocks are required for

N = 8. The single-cycle and the multiplier solution is as described in chapter 3.

Table 5.1: The optimised values of different activation functions for hardware implementation ( UMAX =
2R−2 and M = 2R−1 )

Function Alpha (α) Adder saturates (C) Subtracter saturates (M)
SQLU 2R−2 −UMAX ,M −2R−1 or 2R−1−1
SQ Softplus 0 −UMAX ,M −2R−1 or 2R−1−1
SqREU M

2 +n −UMAX ,M −2R−1 or 2R−1−1

Resize

Add

Sign Extend

& Latch

Sign Extend

Latch

Right

Shift

Sum & Accumulate

Add

Alpha

Counter

Subtract

n

f (n)

Figure 5.6: Schematics Asymmetric Activation Function Generator using multi-clock methodology.

5.5 Results and Discussion

In this section, we present the resource utilisation of the hardware implementation of asymmetric func-

tions. Furthermore, we introduce and discuss the resource utilisation of a square-based multifunctional

generator.
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Table 5.2: Resource utilisation of asymmetric activation function implementation using a custom Booths
Radix-4 multiplier (mult), multi-clock (counter, N = 8), and LUT solution. As displayed the counter
based method for the asymmetric activation function consistently outperform the multiplier solution on
both ASIC and FPGA platforms. At a lower resolution, the LUT performs slightly better than the counter
solution on FPGA but worse on ASIC when compared with the counter solution. The LUT on the other
hand is only better for lower resolution and can not accommodate applications where higher resolution
is required. The counter solution scales well across different resolutions.

SQLU (α = 2R−2) SQ Softplus (α = 0)
R Methods Gates ALM FF Gates ALM FF

8
Mult 987 124 63 826 100 54
LUT 2779 17 8 2747 19 8
Counter 460 31 22 460 29 24

12
Mult 1473 187 93 1232 153 80
LUT 67719 234 12 67671 125 12
Counter 664 41 31 664 39 30

5.5.1 Resource Utilisation of Asymmetric Function Generator

We compare the multiplier solution, multi-clock solution, and the use of LUT on the proposed square-

based functions. Table 5.2 shows the resource utilisation of the asymmetric functions. Both FPGAs and

ASIC platforms have been considered.

The LUT based solution is a single clock operation while the multiplier and counter-based solutions

require more clocks. The gate/ALM/Register usage varies with R and N hence, the three methods

are compared by normalising their throughputs. With R = 8, the Booths and counter algorithms take

four clocks hence, with N = 8, the counter offers a 987/460 = 2.14 greater throughput per used gate.

The ratio of gate counts usage for normalised throughput is presented in Table 5.3. The asymmetric

function uses the same clocks as the symmetric function, although it uses slightly more gates. The

clocks associated with the asymmetric function are independent of the resolution (i.e., R = 8 and R =

12 will both require four clocks for N = 8) and thus the dynamic range can be increased without a

significant impact on timing. Although the LUT offers single-cycle performance, the throughput per

gate of the LUT is generally inferior, it does not scale well, and provision of a table update mechanism

is expensive. Although a counter-based implementation consistently offers a higher throughput per

gate, the availability of a multiplier would be attractive at higher resolutions if larger values of N are

necessary. The resource utilisation of the single-cycle solution offers area savings when compared to

LUT and multiplier-based solution.
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Table 5.3: The ratio of gates usage for normalised throughput. The counter-based solution performs
better than the multiplier and LUT solutions both at a lower resolution and higher resolution. At higher
resolution, the counter-based solution achieves extremely high throughput when compared to the LUT.

R = 8 R = 12
N = 4 N = 8 N = 8 N = 16

SQLU - α = 2R−2
Counter Vs Multiplier 4.45 2.14 3.33 1.62
Counter Vs LUT 3.14 1.51 25.50 12.43
Multiplier Vs LUT 0.70 7.66

SQ Softplus - α = 0
Counter Vs Multiplier 3.73 1.80 2.78 1.36
Counter Vs LUT 3.10 1.49 25.48 12.42
Multiplier Vs LUT 0.83 9.15

Table 5.4: Resource Utilisation of SQNL,SQLU,SQ Softplus Combination Implementation using cus-
tom implementation

Methods 8 bits 12 bits
ALM FF ALM FF

Counter 31 26 39 32

5.5.2 Resource Utilisation of SQ-GEN

The beauty of our custom method is the ability to switch between two or more square-based activation

functions with just a minor tweak to the coefficient loaded. Using mode, we can select which activation

function to use. The symmetric (already discussed in Chapter 3) and asymmetric implemenations share

commonalities and have also been integrated into a multifunctional generator. Multiple instances can

share a single counter output which would extract additional efficiencies. This would be attractive in

headless inference engines like the designs of TPU™, Nervana™, and NVDLA. We refer to this block

that can produce different functions as SQ-GEN. The resource utilisation increase is shown, which is

about 5%. This is not possible if we are using direct methods or the LUT method. This further shows that

an SQ-GEN can switch from one function to another by just changing the loaded sequence. Therefore,

the SQNL, SQ Softplus, and SQLU functions can be combined into one block which can be changed

with ”mode select”. The combined block is particularly useful in network architectures that employ two

or more activation functions, for example an LSTM-FCN model [138] have symmetric (Tanh, Sigmoid),

asymmetric (ReLU, SQLU), and normalising (softmax, sqmax) activation functions. Therefore we can

replace the need for several LUTs or approximation methods with a single block of SQ-GEN.

The proposed algorithm and the implementation has demonstrable advantages over the current state-

of-the-art as summarised below:

Counter At low/mid resolutions the counter based solution gives the maximum density of activation

functions. The counter based solution permits encapsulation of symmetric and asymmetric func-
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tions into a single entity. Thus, activation functions can be dynamically adapted during training

and inferencing. Our experiments on various models show that the absolute error due to N ≤ 8

has no impact on model performance. However if R > 16 and N > 16, the multiplier may be more

efficient but if N ≤ 8 the counter based method is much more attractive.

Multiplier A multiplier solution would be attractive if free multipliers are available and if high/full pre-

cision is essential. Furthermore, since our square-law based functions are not an approximation,

the direct solution will not introduce any approximation errors when compared to the piecewise

linear approximation methods found in the literature.

LUT A LUT based function under performs compared with a counter based solution. At higher res-

olutions, the LUT is not a practical option due to an excessive gate usage. At lower resolutions

(R< 8), a LUT may outperform a counter based solution on an FPGA but this is device dependent.

5.6 Conclusion

We have introduced a novel method for generating computational and resource-efficient asymmetric

activation functions. The consequent mappings have been analytically obtained and experimentally

verified. The experiments were performed on an Altera Cyclone V FPGA. Although the counter based

implementation uses lower resources when compared to other methods, the proposed functions have

also been implemented using hardware multipliers. We show that combinatorial logic wrapped around

a standard multiplier offers an attractive alternative to the counter implementation. Comparisons with

LUT implementation, a counter-based asymmetric function with an 8-bit resolution offers an estimated

throughput (per gate) speedup of 1.51x to 3.14x. Similarly, a speedup of 2.14x to 4.45x is estimated

with multipliers. Higher throughputs per gate have also been estimated with 12-bit implementations.

The single-cycle hardware implementation of the proposed method is also resource-efficient for higher

resolution and provides area savings when compared to LUT. The proposed method can produce many

other mappings with relatively small modifications. It is attractive in applications that require a dynamic

mapping change.
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Chapter 6

Computationally Efficient Radial Basis

Function

Abstract

We introduced a square-law based RBF kernel, called SQuare RBF (SQ-RBF), which is computationally

efficient and effective due to the elimination of the exponential term. In contrast to the Gaussian RBF,

SQ-RBF requires smaller computational operation count and direct implementation without a call to

higher order library. The derivative of the SQ-RBF is linear which will improve gradient computation

and makes its applicability in gradient-based training algorithms attractive. We present the hardware

implementation of the SQ-RBF using three methods. Empirically, SQ-RBF leads not only to faster

learning but also requires significantly fewer neurons than Gaussian RBF on Radial Basis Function

Neural Networks. On average, we recorded a speedup in training time of about 8% for SQ-RBF based

networks without affecting the overall generalisability of the network. SQ-RBF uses about 10% fewer

neurons than Gaussian RBF hence making it very attractive. Furthermore, the SQ-RBF was modified for

support vector machines. Speedup was recorded with proposed quadratic-based kernel transformation on

support vector machines, showing the computational simplicity of the SQ-RBF kernel function. Finally,

in terms of resource utilisation, our proposed hardware implementation shows significant area savings

when compared to existing methods.
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6.1 Introduction

In the field of Artificial Neural Network (ANN) and machine learning, there is a constant need for

improvement in cost-energy-performance. There is an exponential growth in data, and the more data

available for an ANN model during training, the better the inference (prediction) stage. This has led

to several architectures being developed to be used during training as well as inference. Graphical

Processing Units (GPUs) were able to provide speedups that were not possible when using Central

Processing Units (CPUs). Furthermore, Google introduced an application specific unit dedicated to

machine learning. This is referred to as Tensor Processing Units (TPUs) which has been described to be

about 15x and 30x faster than GPUs and CPUs respectively [115]. This shows that computational speed

is as important as performance accuracy when it comes to any neural network architecture.

Gaussian Radial Basis Functions are commonly used in various machine learning architectures

among which are multilayer perceptron, Radial Basis Function Neural Network (RBFNN) and Sup-

port Vector Machine (SVM). The presence of the exponential term in the Gaussian function made its

direct implementation on hardware not possible except through approximation methods. Therefore, the

elimination of the exponential term will not only alleviate the computational intensity, but also lead to

faster simulations. The introduction of GPU and other platforms for training neural networks has led to

significant speedups in simulation time but as described in [139–141], the exponential function is not

implemented with hardware on GPUs but rather with software library. With this, the speedup possible

using GPUs is defeated. Over the years, there have been different approximations of the Gaussian RBF,

and an exhaustive list can be found in [142]. The authors in [143] proposed a replacement for the Gaus-

sian kernels which is adapted by combining three activation functions, namely sigmoid, multi quadratic,

and Gaussian activation functions. However, this new activation function still makes use of the exponent

term heavily.

This chapter aims to present a computationally efficient and improved version of the Gaussian RBF

activation function. This new function, although having a similar convex shape as the Gaussian func-

tion is characterised by just multiplication and subtraction mathematical operators, and it is capable of

achieving better performance. The new function requires only multiplications, subtractions, and logi-

cal operations to obtain a bell-shaped Gaussian-type function. Moreover, the derivative of the function

is purely combinatorial (comprising just addition and subtractions) which makes gradient computation

easier when used in gradient-based algorithms. The function proposed in this chapter can replace the

existing Gaussian function through its well-formed bell-shaped nonlinearity. Additionally, extensive ex-
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periments have been performed to show the performance and advantages of the proposed function on

RBFNN and SVM architectures. The following are the contributions of this chapter:

• Introduction of a new computationally efficient activation function for Radial Basis Function and

Support Vector Machine Architectures.

• Hardware implementation of the proposed function with significant area savings.

• Improved training and inference computational time on various datasets.

6.2 RBF Networks and RBF Kernels

RBFNN was introduced by Broomhead and Lowe [144] in the late 1980s and has found significant

applications and success in areas such as function approximation, interpolation, dynamic system design,

and classification. They perform excellently to date in any form of approximation problem, and their

excellent approximation capabilities have been studied extensively in literature [145, 146]. The most

important part of the RBFNN architecture is the hidden layer neurons, commonly referred to as RBF

kernels. As described in [147], the RBF kernels transform the input patterns (data) into a new feature

space through the help of a strictly positive, radially symmetric activation function. Researchers have

been working to improve RBFNN training with more focus on the training of RBFNN. In this work we

shift focus to the centre selection through the RBF kernel. The importance of the right RBF kernel was

extensively illustrated in [147]. One of the most widely used RBF kernels is the Gaussian kernel. RBF

networks are similar to MLP in that they are feedforward neuron networks architecture, but they are

characterised with a single hidden layer whereas MLP networks can have more than one hidden layer.

Each hidden layer unit is characterised by a radial activation function. The output layer, on the other

hand, implements the weighted sum of the hidden node outputs. A survey carried out in [148] describe

RBF networks as a current trend in the successful modelling of various industrial processes.

The training of RBFNN is in two stages: identification of the radial basis centre for the RBF neurons

in the hidden layers and the learning of the weights present in the hidden layers to the output layer.

Several methods can be used for the centre definition, namely random sampling of input data, unsuper-

vised clustering (commonly K-means), and Self Organising Map (SOM). On the other hand, the weights

can be tuned using supervised linear perceptron training, backpropagation, Moore Penrose Pseudo In-

verse, Least Mean Squares, and some additional training methods as proposed in literature [148, 149].

Like their MLP counterparts, the performance accuracy, convergence speed, and generalisability of an
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Table 6.1: Common and Approximate RBF Kernels

RBF Kernel Expression
Gaussian f (x) = exp−(βx)2

Multiquadric f (x) =
√

1+(βx)2

Inverse Multiquadric f (x) = 1√
1+(βx)2

Thin-plate Spline f (x) = x2 log(βx2)

C4 Matern f (x) = exp−βx · (3+3βx+βx)2

Approximate Gaussian f (x) = 1
1+(βx)2

Approximate Gaussian f (x) = 1
1+(βx)4

RBFNN depends mostly on architecture, initialisation heuristics, choice of activation function, regular-

isation techniques, and learning algorithms.

Among all the different types of activation functions for RBF networks, Gaussian function tends to

be the most popularly used. Unfortunately, this function is characterised by an exponent term. Exponent

function is generally computationally expensive due to a call to high order function term. As described

in [147], Radial basis kernels fall under the family of functions whose value depends on the distance

between the variable x and a defined centre point c. In other words, an RBF kernel f (x,c) = ||x− c||.

There are various types of RBF kernel f (x,c) as seen in literature. Table 6.1 shows some kernels with

their associated mathematical expressions.

The expressions in Table 6.1 all show a need for multiple computationally expensive operations.

However, the two approximate Gaussian functions do not have exponent terms and square roots and

are ”simple” as described in literature [150]. In addition, the divisor term is not a power of two hence,

shift operation cannot be used, thereby requiring division which is resource intensive when compared to

logical operation. The next section will show a new function that is computationally efficient and more

effective than all the RBF kernels listed in Table 6.1. The mappings of each of the functions listed in

Table 6.1 are significantly different. A suitable normalising technique is required such that the narrower

functions are not adversely affected. There are many ways of normalising the functions, but in this

chapter, we have opted to compare only the Gaussian RBF.

6.3 Nonlinear Support Vector Machine and RBF Kernels

The classification power and flexibility of support vector machines lies in the choice of kernel [151].

The commonly used nonlinear kernels are listed in [152] which are computationally expensive due to

the presence of exponent, trigonometric functions, square roots, divisions, and so on. The quadratic

kernel k(x,y) = 1− ‖x−y‖2

‖x−y‖2+c and the non-positive multi-quadratic kernel defined as
√
‖ x− y ‖2 +c2
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were proposed due to their lower computational cost as compared to the popular Gaussian and have been

shown to excel in applications where training time is significant. The kernel function K used in SVM

must possess the following characteristics: symmetric, continuous in nature, and possessing a positive

definite gram matrix [153]. Polynomial and RBF/Gaussian kernels are the two most commonly used

kernel families. The kernel function K must satisfy Mercer’s condition [152]: g(~x) such that
´

g(~x)2d~x

is finite. We must have that
´

K(~x,~z)g(~x)g(~z)d~xd~z≥ 0.

The Gaussian kernel is, understandably, the first choice of a kernel for nonlinear SVM classifiers due

to the following: it requires fewer numbers of hyperparameters in contrast to polynomial kernels [154].

Polynomial kernel defined as K(xi,x j) = (γxT
i x j + r)d ,γ > 0 has three hyperparameters unlike Gaussian

kernel (K(xi,x j) = exp(−γ ‖ xi− x j ‖2),γ > 0) with only one hyperparameter. These hyperparame-

ters can influence the complexity of the model. Secondly, Gaussian kernels are known to have fewer

numerical difficulties [154]. The novel sqaure-based gaussain function will fit right in.

6.4 Novel Square Nonlinear Radial Basis Function (SQ-RBF)

We define a new convex kernel that makes use of a square-law and eliminates the exponential term

present in Gaussian expression. We referred to this expression as SQ-RBF and it is defined in Equa-

tion 6.1.

f (x) =


1− x2

2 : x≤ 1.0

2− (2−x)2

2 : 1.0≤ |x|< 2.0

0 : |x| ≥ 2.0 .

(6.1)

Although, SQ-RBF is similar in shape to Gaussian RBF as illustrated in Figure 6.1, it is in contrast

to Gaussian kernel; SQ-RBF has smoother asymptotes which can be beneficial during training by using

lesser hidden neurons. Furthermore, the approximate Gaussian kernels shown in Table 6.1 are not com-

putationally simple as SQ-RBF because of the presence of non-power of two divisors. SQ-RBF divisor

is a power of two which is a shift operation and is not computationally expensive when compared with

the former.
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Figure 6.1: The SQ-RBF and Gaussian RBF Kernels

6.5 Mercer’s Theorem Proof for SQ-RBF Kernel

Kernel functions used for SVM architectures must satisfy Mercer’s theorem. Therefore, in this section,

we prove that Equation 6.1 satisfies Mercer’s theorem. There are two rules in Mercer’s theorem. We

show below that the SQ-RBF kernel satisfies both of these rules.

1. Kernel function must be symmetric. Generally, a kernel is a continuous function K(x,y) that takes

two arguments x and y and maps them to a real value independent of the order of the arguments.

Mathematically, this is defined in Equation 6.2.

K(x,y) = K(y,x) (6.2)

Equation 6.3 defines the SQ-RBF kernel, where u = x− y

k(x,y) =


1− (‖u‖2)2

2 : u≤ 1.0

2− (2−‖u‖2)2

2 : 1.0≤ |u|< 2.0

0 : |u| ≥ 2.0

(6.3)
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Equation 6.3 is symmetric because (‖ x− y ‖)2 = (‖ y− x ‖)2

2. A kernel function must be positive semidefinite: every Gram matrix Ki j = k(xi,x j) is positive

semidefinite. Mathematically, positive semidefinite is defined as Equation 6.4

n

∑
i=1

n

∑
j=1

K(xi,x j)cic j ≥ 0 (6.4)

The conditions given in Equation 6.4 will always make the output of k(x,y)≥ 0, hence, satisfying

Mercer’s theorem of positive semidefinite.

6.6 Hardware Implementation of Square-based Gaussian RBF

The SQNL function generator proposed in Chapter 3 is modified to produce the SQ-RBF mapping.

Overall, to achieve SQ-RBF from the SQNL function generator, three things have to be done. The

following are the modifications to the SQNL function generator:

• The absolute value of netsum n is required because the output graph of the SQ-RBF function is a

characteristic symmetric ”bell curve” shape with positive values. Therefore, the new netsum n is

defined as n =| n |.

• The magnitude of the netsum is required to be shifted by a value called nshift. This nshift is defined

as nshi f t = 2R−2. This shift operation is performed by subtracting the magnitude of netsum from

nshift. That is | n | −nshi f t.

• The original sequence, U(k), consists of N non-repeating values between±64. The new sequence

to achieve the SQ-RBF function requires the addition of an offset to U(k). This offset is defined

as O = −2R−2. The resolution R is a positive integer value, which is the binary resolution of the

input and output.

In summary, the counter values are modified by adding an offset. For an 8-bit (R= 8) system with N = 8,

the counter values are {±1,±3,±5,±7}×2R−2/N and the offset value is −2R−2. The netsum input (n)

is modified by finding its magnitude and subtracting a shift value 2R−2. Figure 6.2 shows the schematic

for implementing SQ-RBF.
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Figure 6.2: Schematic of SQ-RBF Activation Function using Multi-clock Solution

As with the SQNL function, SQ-RBF can also be implemented using the single-cycle and the mul-

tiplier solutions.

6.7 Software Experimental Results

In this section, experiments are performed on RBFNN and SVM architectures. The focus is on the

training time and the performance accuracy when compared to the Gaussian kernel. All the simulations

are run in MATLAB version 2017b Environment. The system is a 64-bit Windows 7 Enterprise with

Intel Core i7 processor running at 3.40GHz with 16.0GB of installed memory (RAM). Equation 6.1 will

be used for RNFNN architecture while Equation 6.3 will be used for SVM architecture.

6.7.1 SQ-RBF on RBFNN Problems

Two experiments are presented to validate and demonstrate the effectiveness of the proposed function.

Our proposed method is compared with the Gaussian function as the hidden layer activation function on

a series of benchmark tests and one new problem set. The benchmark tests, as used in [148], are the

SinE function approximation dataset, nonlinear dynamic system identification, and finally the Mackey-

Glass time series prediction dataset. Performance of the proposed function has been measured by the

computational training time, the number of RBF kernels required, and performance accuracy on both the

training set and test set which is commonly used in literature to verify and demonstrate the effectiveness

and performance of the proposed RBF kernel function. The performance accuracy was based on two

criteria, namely: the number of neurons required to get to a specified mean square error (MSE) and the
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generalisability independent of the number of neurons. Therefore, the criteria for stopping experiment 1

are based on the MSE goal, while for experiment 2, the stopping criteria are the number of RBF kernels.

All the experiments were performed a total of 100 times, and we present the mean results.

SinE Function Approximation

A rapidly changing function named SinE is used in this experiment to evaluate and compare the perfor-

mance of the SQ-RBF and Gaussian RBF. SinE function is given in Equation 6.5.

y = 0.8exp(−0.2x)sin(10x) (6.5)

We defined a set (x,y) of 500 data points for the training set and 150 data points for the testing

samples. The value of the input x was uniformly distributed in the interval [0,3] for the training and test

samples.

Experiment 1

In this experiment, we defined a specified MSE on which the training stops, in order to know the number

of RBF kernels (neurons) needed. The MSE goal is defined as the 0.01∗(mean(variance(training target)).

The kernel spread is given as 0.15. Table 6.2 shows the results. The results in bold perform better, and

all the results are an average of 100 trials of network initialisation.

Table 6.2: Experiment 1: Performance Comparison on SinE Function. The best result is shown in bold.

RBF Kernel Training Time (seconds) Testing MSE Number of Neurons
Gaussian 0.6189 0.0060 90
SQ-RBF 0.5555 0.0067 84

Experiment 2

In this experiment, the stopping criteria are the number of RBF kernels. This number is defined as the

size of the training samples. The same method was used as in Experiment 1 to set up the remaining

parameters. Table 6.3 shows the approximation results obtained with Gaussian and SQ-RBF kernels in

terms of the error and computational time.

Table 6.3: Experiment 2: Performance Comparison on SinE Function. The best result is shown in bold.

RBF Kernel Training Time (seconds) Training MSE
Gaussian 5.3898 2.93x10e-19
SQ-RBF 5.1141 6.75x10e-15
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As shown in Tables 6.2 and 6.3, the time used in training an SQ-RBF based network is shorter

than the Gaussian-based network. The performance accuracy of the SQ-RBF is sometimes better and

comparable to the Gaussian function. Finally, in terms of RBF kernels needed, SQ-RBF based network

requires less than Gaussian-based network; hence, saving computational time as well as network size.

Nonlinear Dynamic System Identification

We evaluated the SQ-RBF on the identification of the nonlinear dynamic system which is one of the

commonly used benchmarks for approximation capability of RBF networks. The dataset was obtained

from a device functioning as a hair dryer; for full description, readers are referred to [155]. There are ten

inputs and one output in this model. We simulated the output using time t = 1 to 1000. We used 80% of

the data as training and the remaining as test data.

Experiment 1

We defined our target MSE as 0.01∗ (mean(variance(training target)) and the RBF kernel spread (width)

as 1.8. Table 6.4 shows the average of 100 runs using the SQ-RBF and Gaussian RBFs. In terms of

wall-clock time, SQ-RBF is about 14% faster computationally than the Gaussian kernel. Furthermore,

SQ-RBF requires 26 fewer RBF kernels when compared with Gaussian without any detriment to the

performance accuracy. This is a significant saving in both computational time and resources without any

negative effect on the accuracy.

Table 6.4: Experiment 1: Performance Comparison on Nonlinear Dynamic System Identification. The
best result is shown in bold.

RBF Kernel Training Time (seconds) Testing MSE Number of Neurons
Gaussian 5.5499 0.0197 368
SQ-RBF 4.7737 0.0162 342

Experiment 2

Here, the following parameters were changed due to the nature of this dataset. The kernel width remains

the same; we constrain the numbers of RBF kernels to be 450 because the number of the target is large.

The focus is on how long (in terms of time) it takes to finish a training run to acquire the lowest error

possible. Table 6.5 shows the results obtained.
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Table 6.5: Experiment 2: Performance Comparison on Nonlinear Dynamic System Identification. The
best result is shown in bold.

RBF Kernel Training Time (seconds) Training MSE
Gaussian 11.0813 9.09x10e-4
SQ-RBF 10.82 7.49x10e-4

Mackey-Glass Time Series Prediction

Mackey-Glass time series is one of the popular benchmark problems found in the literature for evaluating

the performance of RBF networks. The Mackey-Glass series is non-periodic for τ greater than 17 and

periodic otherwise. The initial values (for time t less than τ) were generated from uniformly distributed

pseudo-random numbers. Equation 6.6 is used to generate the remaining values, τ = 30, 1500 data

samples were extracted and used for training while 500 samples were used for testing.

ds
dt

=
0.9∗ s(t)+(0.2∗ s(t− τ))

1+ s(t− τ)10 (6.6)

Experiment 1

Using the same approach, we defined our target MSE as 0.1 ∗ (mean(variance(training target)) and the

RBF kernel spread (width) as 1.8. Table 6.6 shows the average of 100 runs using the SQ-RBF and

Gaussian RBFs. In terms of wall clock time, SQ-RBF is about 8% faster computationally than the

Gaussian kernel. Furthermore, SQ-RBF requires 19 fewer RBF kernels when compared with Gaussian

without any detriment to the performance accuracy.

Table 6.6: Experiment 1: Performance Comparison on Mackey-Glass Time Series Prediction. The best
result is shown in bold.

RBF Kernel Training Time (seconds) Testing MSE Number of Neurons
Gaussian 20.2748 0.0140 450
SQ-RBF 18.6580 0.0173 431

Experiment 2

Here, the following parameters were changed due to the nature of this dataset. The kernel width remains

the same; we constrain the numbers of RBF kernels to be 450 because the number of the target is large.

The focus is on how long (in terms of time) it takes to finish a training run to acquire the lowest error

possible. Table 6.7 shows the results obtained.
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Table 6.7: Experiment 2: Performance Comparison on Mackey-Glass Time Series Prediction. The best
result is shown in bold.

RBF Kernel Training Time (seconds) Training MSE
Gaussian 20.1224 0.0091
SQ-RBF 19.5357 0.0060

Inverse Cosine Function Approximation

This dataset aims to use RBFNN to infer trigonometry angle. The repeating cosine wave is characterised

with a magnitude of 1 and a phase offset of pi. We generated 2000 data points, using 1600 as training

and the remaining 400 as the test set.

Experiment 1

Using the same approach, we defined our target MSE as 0.01 ∗ (mean(variance(training target)) and

the RBF kernel spread (width) as 0.15. Table 6.8 shows the average of 100 runs using the SQ-RBF

and Gaussian RBFs. In terms of wall clock time, SQ-RBF is faster computationally than the Gaussian

kernel.

Table 6.8: Experiment 1: Performance Comparison on Triangular Function Approximation. The best
result is shown in bold.

RBF Kernel Training Time (seconds) Testing MSE Number of Neurons
Gaussian 0.1603 0.0213 3
SQ-RBF 0.1588 0.0189 3

Experiment 2

Here, the following parameters were changed due to the nature of this dataset. The kernel width remains

the same, the number of epoch was left to be the number of samples in the dataset. The focus is on how

long (in terms of time) it takes to finish a training run to acquire the lowest error possible. Table 6.9

shows the results obtained.

Table 6.9: Experiment 2: Performance Comparison on Triangular Function Approximation. The best
result is shown in bold.

RBF Kernel Training Time (seconds) Training MSE
Gaussian 295.28 9.7208x10e-8
SQ-RBF 260.94 4.4768x10e-9
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6.7.2 SQ-RBF Kernel on SVM Classification Problems

The description of the dataset is available at [70]. The results are averaged over five runs with each run

having 500 epochs. An estimated mean of accuracy with the confidence of 95% is recorded. The results’

out-of-sample misclassification rate by using 10-fold cross validation is presented in Table 6.10. The

SQ-RBF consistently used less training time for all the datasets as recorded in Table 6.10, with smaller or

comparable test error. This further proves the computational simplicity of the SQ-RBF Kernel function.

Table 6.10: Test Error and Training Time (in Seconds) of Gaussian Vs. SQ-RBF based SVM. The best
result is shown in bold.

Dataset
Gaussian SQ-RBF

Training Test Training Test
Time (s) Error Time (s) Error (%)

Adult 9.3 ±0.9 0.3±0.02 8.9 ±0.5 0.2±0.02
Spiral 0.4±0.2 0.0 0.3 ±0.1 0.0
Covtype 2142±12 0.5±0 2141 ±1 0
Epsilon 2768 ±29 0.5±0 2519 ±24 0.5 ±0

6.8 Hardware Experimental Results and Discussion

We carried out a comprehensive comparison between our multi-clock solution implementation of the

SQ-RBF and the approximation methods of Gaussian RBF found in literature. Authors in [103] use the

Altera Floating Point Exponent (ALTFP EXP) megafunction to implement the Gaussian RBF. A single

ALTFP EXP will consume 420 ALMs, 681 registers, 12 DSP blocks, and a 362 block of memory bits.

This implementation is the least used in the literature due to its high resource utilisation and latency (17

clock cycles). Another implementation of Gaussian RBF in the literature [156, 157] is the use of Xilinx

CORDIC IP Core. This IP core will consume 908 LUTs and 897 Registers, approximately, for a 16-bit

system. The following are the other commonly used approximation methods and a brief description of

each.

• Taylor Series: The Taylor series expansion for exponential function is defined in Equation 6.7.

e−x = 1− x+
1
2!

x2− 1
3!

x3 +
1
4!

x4− 1
5!

x5 +
1
6!

x6− 1
7!

x7 +
1
8!

x8 + · · ·+HOT (6.7)

Where HOT is the high order terms and are ignored during the hardware implementation. The

larger the order terms, the lower the approximation error obtained. Equation 6.7 can be written
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compactly for simplicity as shown in Equation 6.8.

e−x = ((· · ·(1
8

x−1)
1
7

x+1)
1
6

x−1)
1
5

x+1)
1
4

x−1)
1
3

x+1)
1
2

x−1)x+1+ · · ·+HOT (6.8)

Authors in [158–160] implemented the Gaussian RBF using Taylor’s series of different orders

ranging from 4 to 12. On an FPGA, Equation 6.8 (8th order) will require at least seven multipliers,

seven divisions, four additions and four subtractions. A 4th order Taylor series, explored in [159],

makes use of three multipliers, three dividers and three adders. The adders add the outputs of

every order.

• Look up table: The authors in [161,162] use the ROM and RAM to implement the Gaussian RBF.

An 8-bit Gaussian RBF implemented on an FPGA using ROM will use five ALMs and a 1024

block of memory bits while a 16-bit will use 26 ALMs and 524,288 block of memory bits. This

shows that LUT-ROM based Gaussian implementation is not scalable for higher resolution.

• Piecewise Linear: A 5-segment piecewise approximation of Gaussian RBF was proposed in [163]

to eliminate the need for the time-consuming exponent term present in Gaussian RBF. This 5-

segment piecewise linear approximation is made up of two multipliers, several additions and sub-

trations, and floating point division.

We implemented a 6th order polynomial and LUT-based Gaussian RBF on Altera Modelsim for the

implementation on Altera Cyclone V (5CSXFC6D6F31C6) FPGA. The results, alongside the proposed

methods in this chapter, are shown in Table 6.11. As shown, the polynomial approximation method re-

quires 6 DSPs for 8 and 12 bits resolution while our multiplier-based solution requires just a single DSP.

Furthermore, the multi-clock and single-clock solutions are scalable for higher resolution as compared

to LUT solution.

Table 6.11: FPGA logic utilisation of the proposed designs in relation to previous works using various
activation function block array configurations

8 bits 12 bits
Method ALM FF DSP ALM FF DSP
6th order Polynomial 26 - 6 38 - 6
LUT 22 8 - 234 12 -
Multi-clock Solution (proposed) 28 25 - 38 34 -
Single-cycle Solution (proposed) 103 - - 136 - -
Multiplier Solution (proposed) 10 - 1 14 - 1

Finally, we created an RBF network structure of 15 hidden neurons and one output neuron to solve
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the SinE function approximation problem. We simulated the result of this network on Altera Model-

sim. We recorded in Table 6.12 the resource utilisation of the network with different Gaussian RBF

implementations on Altera Cyclone V (5CSXFC6D6F31C6) FPGA.

Table 6.12: Resource Utilisation on SinE dataset

Method ALM FF DSP
Poly6 491 - 90
Multi-clock Solution (proposed) 393 235 18
Single-cycle Solution (proposed) 1316 - 18
Multiplier Solution (proposed) 253 - 30

6.9 Conclusion

In this chapter, we proposed a computationally efficient and effective RBF kernel. This novel RBF

kernel improves the training time without any detriment to performance accuracy. We also recorded a

consistent reduction in the number of RBF kernels required when using our function as to the Gaussian

function. Two experiments were performed on four benchmarks and showed the generalisability of our

function as well as convergence speed. On average, we recorded a speedup in training time of about

8% and a decrease in the numbers of neurons to 10%. We see a consistent speed up in the kernel

transformation for SVM training using our proposed computationally efficient kernel as compared to

the Gaussian kernel. Finally, we recorded significant resource savings with our method when compared

to other methods found in the literature.
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Chapter 7

Resource Efficient Implementation of

Machine Learning Models

Abstract

In this chapter, the efficient implementation of feedforward and recurrent neural network models are ex-

plored. Long Short Term Memory (LSTM) is a computationally intensive, resource, and power-hungry

type of recurrent neural network. We propose a solution that simultaneously computes a symmetric

activation function with an integrated scaling functionality. This effectively eliminates two of the three

element-wise multipliers in an LSTM cell. Also, this built-in scaling requires no additional compu-

tation time because it is integrated within the computation of the nonlinear mapping. This approach

replaces the need to compute several Tanh activation functions and element-wise multipliers separately.

This brings significant benefits to custom hardware in terms of silicon area and power consumption. A

resource-efficient approximate multiplier is also proposed to eliminate the third element-wise multiplier

and potentially replace the resource-hungry multipliers. The proposed approximate multiplier is useful

in quantised neural networks due to its inherent quantised property. We empirically show that apply-

ing the proposed multiplier results in comparable performance accuracy with baseline. We evaluate the

performance accuracy of our method using LSTMs and GRUs models on various problem areas. We

demonstrate that our method achieves competitive results with negligible loss of performance. On the

hardware side, we present custom hardware implementation of LSTM and GRU cells with our method

compared with other benchmarks. Ultimately, we show that LSTMs with our method can achieve up to

3.5x resource footprint saving compared to the hard activation implementation.
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7.1 Introduction

The two main types of neural networks based on connection are the Feed Forward Neural Networks

(FFNN) and the Recurrent Neural Networks (RNN). In this chapter we discuss two ways of resource

efficient implementation of these two networks.

7.1.1 Recurrent Neural Networks

Long Short Term Memory [164] and Gated Recurrent Unit (GRU) [165] are RNN models achieving

state-of-the-art accuracy in several applications. Authors in [165] proposed GRU architecture which is

a modification to the LSTM RNN. The GRU, like the LSTM, solves the vanishing gradient problem

using an update and reset gate. Due to the simpler gating structure of the GRU model, reduced num-

ber of gates and thereby parameters, it is considered to be an efficient alternative to the LSTM RNN.

LSTM requires a large number of parameters and high computational complexity. The computational

cost and size of LSTM models continue to grow to achieve better model accuracy [166]. This will make

the implementation of LSTM models on embedded devices and hardware with finite on-chip resources

difficult to achieve. Latency and resource utilisation reduction will contribute immensely to efficient

hardware implementation of LSTM. In an LSTM inference accelerator, there are two main operations

contributing to the high resource utilisation [21, 166], namely (i) matrix-vector multiplication and (ii)

element-wise operations (consisting of three element-wise multipliers and five transcendental activa-

tion functions). Multipliers consume the most space and are power-hungry arithmetic operators of the

hardware implementation of any neural network models [24].

FPGA implementation of LSTM has been explored in literature [21, 167–169]. LSTM’s computa-

tional intensity has led to various ways of efficient implementation of LSTM. Weight pruning and com-

pression are techniques that lower memory requirements and reduce complexity [21]. Other complexity

reduction methods are data representation and multiplier reduction through sparse LSTM. In literature,

data representation in LSTM models go from 32-bits to binary [169]. Commonly, the activations and

weights are represented with 8-bits or 16-bits [21,167,168]. The approximate multiplier [170,171] is on

the increase in hardware neural networks. Two popular works in literature have developed LSTM FPGA

inference engine, namely C-LSTM [172] and ESE [21]. The authors in [21] build an Efficient Speech

Recognition Engine (ESE) with sparse LSTM on FPGA. In the model, 16 multipliers were instantiated

for element-wise multiplications per channel (total channel is 32).

Several methods have been proposed in the literature to reduce the computational time and resource
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Table 7.1: LSTM Equations for the Conventional and proposed method.

Conventional Equations [164] Proposed Equations
it = σ(WxiXt +Whiht−1 +bi) it = L S(WxiXt +Whiht−1 +bi)
ft = σ(Wx f Xt +Wh f ht−1 +b f ) ft = L S(Wx f Xt +Wh f ht−1 +b f )
ot = σ(WxoXt +Whoht−1 +bo) ot = L S(WxoXt +Whoht−1 +bo)
c̃t = tanh(WxcXt +Whcht−1 +bc) nt =WxcXt +Whcht−1 +bc

ct = ft � ct−1 + it � c̃t ct = QSU( ft ,ct−1)+gated activation(nt , it)
ht = ot � tanh(ct) ht = gated activation(ct ,ot)

utilisation of the matrix-vector multiplication operations [21, 172]. Authors in [173] propose the use

of memoisation optimisation to eliminate three out of the six matrix vector multiplications present in

GRU computation. The element-wise multiplication and activation functions acccount for about 30%

of the overall runtime of a 128 hidden unit size GRU computation carried out on a 2.3 GHz Intel Xeon

E5-2699v3 server [173]. The activation function of choice for LSTM and GRU networks is the sig-

moid and Tanh functions. Unfortunately, the exponentiation and floating-point divisions present in these

activation functions consume a large number of hardware resources. Considering the computation re-

source constraints of hardware platforms, researchers over the years have proposed different ways in

which these activation functions can be implemented with a minimal trade-off between performance

accuracy and resource consumption [172]. This has led to the use of computationally efficient piece-

wise linear replacements such as hard Tanh (defined mathematically as max(−1.0,min(1.0,x))) and

sigmoid (max(0.0,min(1.0,(x+ 2.0)/4.0))) to replace the soft transcendental functions. In summary,

the hardware implementation of transcendental activation functions for LSTM models can be broadly

categorised into two - the use of piecewise linear approximation method [167], [174], [175] and the use

of lookup table [21], [176]. On the other hand, the element-wise multiplication has received little or no

contribution to effective implementation in literature.

The architecture of LSTM cell [164] without peep hole connections is shown in Figure 7.1a. This

cell accepts an input sequence X = (x1;x2;x3;x4; ...;xT ) (each of xT is a vector corresponding to time t)

and produces an output sequence Y = (y1;y2;y3;y4; ...;yT ). Conventional LSTM cell is characterised by

the equations in column 1 of Table 7.1. Column 1 of Table 7.2 shows the equations of a standard GRU

cell. At time step t , xt is the input vector, zt is the update gate vector, rt is the reset gate vector, ht is the

hidden state and output vector, Wz and Wr are the trainable and recurrent weight matrices for the update

and reset gates, respectively [138].

The activation functions are applied to four gates (it , ft ,ot , c̃t) and also at the computation of the

output ht for an LSTM cell. The five activation functions are applied element-wise to vectors of size H.
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Table 7.2: GRU Equations for the Conventional and proposed method.

Conventional Equations [165] Proposed Equations
zt = σ(WzXt +Wzht−1) zt = L S(WzXt +Wzht−1)
rt = σ(WrXt +Wrht−1) rt = L S(WrXt +Wrht−1)
h̃t = tanh(W (rt �ht−1)+WXt) nt =W (QSU(rt ,ht−1))+WXt

ht = (1− zt)�ht−1 + zt � h̃t ht = QSU((1− zt),ht−1)+gated activation(nt ,zt)

If H = 128 hidden units, 5×H = 640 activations need to be evaluated. In the absence of a dedicated

exponential unit, an exponent computation is iterative and will possibly consume several multiplication

cycles. Furthermore, assuming D is the dimension of xt (as well as ht and ct), the number of weights is

8×D2. Thus, at each inference step, the number of operations in the M × V is 8×D2, and 8×D for

the element-wise operators [168]. Given that matrix-vector operations contribute largely to latency and

resources, methods described in [21, 168, 172] offer high throughput but rely on uninterrupted dataflow.

Element-wise operations will generally be handled separately, and hence effort at reducing their latency

and resource utilisation is well spent if this operation does not impact the dataflow.

7.1.2 Feed Forward Neural Networks

The training and inferencing phase of neural networks are faced with bottlenecks such as computational

complexity, large memory requirements, and the need for power-hungry GPUs. Neural network oper-

ations performed on a GPU typically have a large memory footprint that is too large for FPGAs and

portable embedded devices. Machine learning algorithms are iterative, complex, and time consuming.

The training algorithm, as well as the inference engine, is characterised with being reliant on requiring

large number of arithmetic multiplications. Multiplication accounts for more than 70% operation of the

training and inferencing of neural networks [177]. However, on hardware such as ASIC and FPGAs,

multipliers are the most power and space-hungry arithmetic operators of the hardware implementation

of neural networks. The possibility of using reduced multiplier precision for neural network operations

have been heavily explored in the literature [24]. Recently, quantised neural networks have become

highly in demand to meet the ever growing deep network architectures [39, 178, 179].

Quantisation is the process of converting the floating point values in a machine learning model to

a fixed point representation. There are several quantisation fixed point representations that have been

explored in literature ranging from binary to 32-bit [41–43, 180]. Authors in [181] and [180] propose

the use of binary (−1,1) and tenrary (−1,0+ 1) weights respectively. Activations and gradients and

other computationa are kept at 32-bits. The work in [180, 182, 183] propose a framework that uses 8-

bits for the whole model. The 8-bit data representations were shown to achieve similar performance
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accuracy with the full floating point precision. However, binary and ternary data representation shows

a little degredation in accuracy [180]. Furthermore, as described in [184], 2-bit and 4-bit fixed point

quantisations show better hardware trade-off on MNIST and CIFAR-10 datasets while 4-bit and 8-bit

provide the best trade-off in large-scale tasks like AlexNet on ImageNet dataset. On hardware, binary

neural networks have been shown to not necessarily provide efficient resource utilisation due to large

amount of parameters required for binary neural networks to achieve the same level of model accuracy

with high precision alternatives [184].

Authors in [24] show that the cost of a fixed point multiplier varies as the square of the precision of its

operands. Therefore, the use of limited precision to full precision on hardware offers several merits such

as area reduction in terms of memory requirements and arithmetic multiplication, reduction in latency,

and power consumption. The use of low precision, fixed point representation for neural network values

have led to elimination of multipliers or reduced presion multiplication. For example, binary and ternary

networks use shift, addition, XNOR, and population count to replace the resource-hungry multiplication.

However 4-bit and higher data representation will still require a multiplier. A 9× 9 fixed point Xilinx

Virtex-6 multiplier costs 115 LUTs and 110 registers and produces results after four clock cycles [185].

An 8×8 fixed point representation will use just a little bit lower and a 4×4 will use approximately 55

LUTs and 50 registers.

We propose two entities to address a more efficient implementation of the feed forward and recurrent

neural networks: the Gated Activation and the Quantised Scaling Unit (QSU). The Gated Activation is a

nonlinear activation function that inherently incorporates a scaling capability. This eliminates the need

for a dedicated element-wise multiplier in a RNN architecture. The QSU eliminates the element-wise

multiplier required by the forget gate ( ft) and the ’previous’ memory cell (ct−1) in an LSTM cell. The

QSU also has the potential to be used for matrix-vector multiplication for quantised neural network

architectures. Figures 7.1b and 7.2b show LSTM and GRU cells modified with our proposed entities,

and column 2 of Tables 7.1 and 7.2 lists the corresponding equations. The following are the contributions

of this chapter:

• Elimination of element-wise multiplications in the LSTM and GRU cells.

• Resource efficient quantised scaling unit to replace the computationally expensive multipliers.

• The efficient implementation of the LSTM cell achieves about a 3.5× reduction in resource foot-

print when compared with conventional methods.
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Figure 7.1: Difference between conventional and proposed LSTM cell with the elimination of element-
wise multiplication. (QSU: Quantised Scaling Unit, L S: Log SQNL, Gated Act: Gated Activation).
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Figure 7.2: Difference between conventional and proposed GRU cell with the elimination of element-
wise multiplication. (QSU: Quantised Scaling Unit, L S: Log SQNL, Gated Act: Gated Activation).

7.2 Concepts

In this section, we present the proposed methods of eliminating multiplication in feed forward and

recurrent neural networks.

7.2.1 Gated Activation

The proposed method uses a hard nonlinearity and a time average to produce the result for element-wise

multiplication between an input and a symmetric nonlinearity, i.e., k×G(n). The core of our implemen-

tation is based on a saturating adder and a non-repeating sequence. The underlying formulation is given
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in Equation 7.1.

f (n,C) =
1
N

N

∑
k=1

((n+U(k))C)−U(k))M = n∓L(n,C) (7.1)

In Equation 7.1, f (n,C) is the nonlinear mapping of an integer input n and C is the gate coefficient

(i.e., the sigmoid output). Within the algorithm, the saturation levels of the adder are ±C. With an R

bit binary resolution, −2R−1 ≤ n ≤ 2R−1− 1 and 0 ≤ C < 2R−2. This makes max ( f (n,C)) =C and

min ( f (n,C)) =−C. Finally, U(k) = {−UMAX · · ·UMAX} is the monotonic, non-repeating sequence of

length N with UMAX = 2R−2. Note max (C) =UMAX .

The input is repeatedly summed with each element of the sequence and averaged. Without any

saturation, (n+U(k))−U(k) = n and f (n) = n. However, any saturation in (n+U(k)) will result in

(n+U(k))−U(k) 6= n. The saturation constitutes a loss and this loss is quadratic. The average loss

and f (n,C) have been analytically determined. Figures 7.3-7.6 plot the loss at different values of U(k)

across the positive range of the input n. The mapping is symmetric for the negative range.

L(U(k))

U(k)
−UMAX

−C UMAXC

UMAX −C

Figure 7.3: Gated Activation: loss evaluated at n = 0.

At n = 0, (n+U(k))C will only saturate when U(k) > C or U(k) < −C. The saturation zones are

shown as yellow triangles in Figure 7.3. For−C≤U(k)≤C the loss is zero while for U(k)>C the loss

is positive and for U(k)<−C the loss is negative. If ∆ =UMAX −C

L(n,C) =
1

2UMAX

[
−1

2
∆

2 +0+
1
2

∆
2
]
= 0

f (n,C) = n
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@n = 0

@n =UMAX −C

Figure 7.4: Gated Activation: loss evaluated at 0≤ n≤UMAX −C.

Figure 7.4: For 0 ≤ n ≤UMAX −C, the saturation is asymmetrical. At n = UMAX −C, none of the

negative elements of U(k) result in saturation. If ∆ =UMAX −C,

L(n,C) =
1

2UMAX

[
−1

2
(∆−n)2 +

1
2
(∆+n)2

]
f (n,C) = n

C
UMAX

L(U(k))

−UMAX

−C

U(k)

UMAXC

@n =UMAX −C

@n =UMAX +C

Figure 7.5: Gated Activation: loss evaluated at UMAX −C ≤ n≤UMAX +C.

For UMAX −C ≤ n ≤UMAX +C and ∆ = UMAX −C, the loss from saturation is represented by the
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triangular zone shown in Figure 7.5.

L(n,C) =
1

2UMAX

[
1
2
(UMAX −C+n)2

]
f (n,C) = n− (∆+n)2

4UMAX

L(U(k))

−C

U(k)

UMAXC

@n =UMAX +C

@n = 2UMAX

−UMAX

n− (UMAX +C)
UMAX −C

Figure 7.6: Gated Activation: loss evaluated at UMAX +C ≤ n≤ 2UMAX .

For UMAX +C ≤ n ≤ 2UMAX , the loss is represented by a rectanglar and a triangular zone as shown

in Figure 7.6.

L(n,C) =

[
2UMAX(n− (UMAX +C))+2U2

MAX

]
2UMAX

= n−C

f (n,C) = n− (n−C) =C
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If4=UMAX −C then

f (n,C) =



−C : n <−(UMAX +C)

n+ (−4+n)2

4UMAX
:−(UMAX +C)≤ n <−4

n C
UMAX

:−4≤ n≤4

n− (4+n)2

4UMAX
:4< n≤ (UMAX +C)

C : n > (UMAX +C)

(7.2)

At the limit C = 2R−2 =UMAX and if G(n) = f (n,2R−2) then Equation 7.2 gives f (n,C)≈ k×G(n),

where k =C/UMAX . The mappings of f (n,C), with R = 8 and N = 8, for different values of n and C are

shown in Figure 7.7a.

The algorithm, as modelled by Equation 7.2, exhibits a small error from the ideal k×G(n). The plot

with C = 64 corresponds to G(n) = f (n,64). With C = 40, f (n,40) ≈ 40
64 G(n). Specifically at n = 40,

G(40) = 33.75, f (40,40) = 24 but 40
64 ×33.75 = 21.09, and hence the gated activation exhibits an error

of −2.91. The error can be determined by Equation 7.3.

E(n,C) =
C

UMAX
G(n)−

(
n+
−(4+n)2

4UMAX
)

)
(7.3)

From Equation 7.3, it can be shown that the maximum error is at n = ±2R−2,∀C. It can also be

shown that the error is maximum at C = 2R−3. For R = 8, maximum error at f (64,32) is 4.0 (3.13%).

The complete error profile is shown in 7.7b. The figure shows that the maximum eror is -4 and this

occurs at n = 64. In addition the worst case error occurs when C = 32.

In summary, f (n,C) replaces both the Tanh and the element-wise multiplier. These functions are

both very resource efficient when compared to their exponential based counterparts. The deviations

from the ideal behaviour are small and should not influence the network performance. The difference

between a conventional LSTM cell and the proposed LSTM cell solution is illustrated in Figure 7.1.

Figure 7.2 shows the difference between a conventional GRU cell and the proposed GRU cell solution.

On CPUs, these functions will also be faster than exponential based functions.
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Figure 7.7: a) Gated Activation, R = 8, N = 8: It shows that at a constant input, say netsum = 40 and
C = 64, the output is f (40,64) = 33.75. Thus, f (40,40) = 24≈ 40

64 × f (40,64) = 21.09. b) This shows
the error varies with both n and C. The maximum error is always at n = 2R−2, and C = 2R−3, With R = 8,
the maximum error is binary value of 4.
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Impact of N

The length of the sequence U(k) has a direct influence on the throughput. Reducing N will imply fewer

clocks are required. A good choice of N is either 4 or 8.With R = 8, N = 4 causes a deviation (difference

between full precision and a pragmatic N) of only ±1 bit and when N = 8, the deviation is less than one

bit. Figure 7.8 plots the deviations from the ideal mapping as a consequence of changing R and N.

For R = 8, the deviation profile in Figure 7.8 a) and c) show that an increase in N results in many

small deviations from the ideal. The corresponding frequency distributions show that 30% of the values

would exhibit a single bit error. With N = 8, the deviations are smaller than ±0.5, and hence will

produce no errors, suggesting that N > 8 would serve no benefit. With N = 8, if R changes from 8 to 12,

the deviation increases ratiometrically and this corresponds to a maximum of ±4-bit error, with at least

half the values exhibiting no errors.

The results of our experiments will show that these errors are inconsequential because the learning

algorithms factor these errors in the learning differentials. The benefits of a reduced resource usage with

the elimination of the multipliers far outweighs the small errors.

7.2.2 Quantised Scaling Unit (QSU)

The QSU calculates i× j where i and j are binary integers and j is always positive. Internally, the

QSU multiplier implementation successively adds the i input to itself j times. Our measurements show

that the QSU takes fewer resources than a Booths Radix-4 implementation. The following shows the

operation of a QSU:

Definition 7.2.1. An oversampling rate is defined as 2O where O is an integer constant (0 > O <= 7).

This oversampling rate determines the clock cycles and the quantisation level of the multiplicand/scale

j.

Definition 7.2.2. The multiplicand is defined as a quantised level of 2(O+1). Therefore input j =

j/2(O+1).

Definition 7.2.3. The result of i× j is available at 2O clocks.

Due to the simplicity of the QSU, it is best explained numerically. For O = 3, and a resolution of

8-bits for multiplier value i and 3-bits for multiplicand value j.

Example 7.2.4. Multiplier value i = 12 and multiplicand value j = 3 can be obtained by: three addi-

tions, and a sum and accumulate (SAC) block controlled by a counter that counts from 0 to 2O−1.
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(c) Deviations, R = 8, N = 8
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(d) Distribution of the deviations, R = 8, N = 8
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(e) Deviations, R = 12, N = 8
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Figure 7.8: Profile of deviation from ideal f (n,C) a) Plots the deviation for the positive input range for
different values of C. b) Plots the frequency distribution of the deviation as a probablity.
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12×3 = 12 + 12 + 12 + 0 + 0 + 0 + 0 + 0

Therefore, Example 7.2.4 shows that while i can represent signed or fixed point numbers, the maxi-

mum range of j is [0,7].

If the width of j is increased by 1, then, the maximum range of j increases to [0,15]. This would

require O = 4 and thus 2O = 16 clocks. However, we present an alternative solution that will circumvent

this clock cycle doubling.

Example 7.2.5. Consider a multiplier value i= 12 and multiplicand value j = 11. Since 1110 = 10112 =

10002 +00112. Here, the most significant bit (MSB) is 1, and hence the multiplication can be expressed

as

1210×1110 = 1210× (10002 +00112)

1210× (10002 +00112) = 1210×10002 +1210×00112

The first term 1210× 10002 is a left shift by three while the second term, 1210× 00112, is a sum

and accumulate of 12. This will be achieved in three clocks. Thus, the SAC block can be preloaded

with the 1210×10002 = 9610 prior to initiating the sum and accumulate block. Therefore, Example 2 is

expressed as 12×11 = [(96)+11+11+11+0+0+0+0+0]

Remark 7.2.6. Since 1210×10002 is an arithmetic left shift by 3-bits, it can be achieved in a combina-

torial logic and thus takes minimal time and resources.

Remark 7.2.7. The resolution of the multiplicand j can be further increased by 1-bit to represent signed

multipliers. The sign bit of j can be used to modify the multiplier i by simply negating i prior to the sum

and accumulate operation.

Example 7.2.8. For signed multiplication;

i×−11 = (−i×8)+(−i)+(−i)+(−i)+0+0+0+0+0

The binary resolution of signal ct−1 present in an LSTM cell may be larger than R but the effective

binary resolution of s(n) is R−2 because 0≤ s(n)≤ 2R−2 (where s(n) is the Log SQNL function). This

reduced resolution offers an opportunity to consider an alternative: the QSU.

7.3 Hardware Implementation

The gated activation and QSU methods have been implemented on an Altera Cyclone V device

(5CSXFC6D6F31C6). The Quartus Prime Standard 18.1 Edition and Modelsim 10.1d are the integrated

development environment on which all the hardware implementation is performed.
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Figure 7.9: Gated Activation Implementation.

7.3.1 Hardware Implementation of Gated Activation

The Gated Activation requires an additional input for the gate signal and an adder with adjustable sat-

uration. Figure 7.9a shows a complete schematic with various bus-widths highlighted. The code is

parametrised, and hence the saturation of the adder and subtractor change with the resolution R. The

lower Add, Latch, and Right-Shift blocks function as the filter (sum, accumulate, scale). These operate

at a higher bus-width as well. Figure 7.9 b) shows a block diagram illustrating the operation of the adder

block in Figure 7.9a. This parameterised saturation adder is responsible for gated activation.

The parameter U(k) is implemented to generate {±1,±3,±5,±7}× 2R−2/N. This sequence is

only a binary counter from zero to three with leading and trailing edge padding. Typically, the signals

that generate the netsum inputs operate at larger word widths than the activation function. This is

accommodated by the Resize and Sign Extend blocks. The choice of UMAX = max (C) = 2R−2 arranges

for the output range to be 50% of the input range. It provides a wide nonlinear range with a good linear

section and a simple quadratic mapping equation.
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7.3.2 Hardware Implementation of QSU

Figure 7.10 shows a complete schematic with various components and bus-width details. The left shift

operation consumes zero additional logic because only the upper bits are passed through and will be

hard-wired by the compiler. Addition/subtraction operations are combinatorial, and hence extra clock

edges are not required. There is an absolute block for obtaining the modulus of the multiplicand, a sum

and accumulate block, and several multiplexers.

7.4 Experimental Results

In this section, we show two results, firstly, the performance accuracy of our proposed methods in

software simulations using different datasets. Secondly, we discuss the hardware resource utilisation

and usability of our proposed methods.
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Table 7.3: Character-level perplexity on the US baby name dataset. There is no difference in perplexity
when using the baseline model and Gated Activation method (small is better).

Method Validation Set Test Set

Baseline [187] 1.55 1.63

Hard Activation 1.56 1.64

Gated Activation (proposed) 1.55 1.63

7.4.1 LSTM Software Experimental Results

We show that the elimination of the element-wise multiplier obtains comparable prediction accuracy.

We use the baseline LSTM as a benchmark on language modelling, character recognition, and image

recognition datasets. We use predefined models available for each of these datasets and replace the

element-wise multipliers and the activation functions. For all the experiments carried out in this section,

the baseline refers to using the equations defined in column 1 of Table 7.1. The activation function is the

sigmoid and Tanh. The hard activation method refers to replacing the activation with the computation-

ally efficient hard sigmoid and hard Tanh. The gated activation method refers to our proposed method

(using Equation 7.2). For a fair comparison, all the experiments carried out in this section use models

and hyperparameters that were designed for Tanh and sigmoid. We replaced these functions with hard

activations and our proposed method.

Language Modelling

We conduct character-level and word-level prediction experiments to show the usability of our proposed

method on language modelling problems. We use perplexity (PPL) as the measure to evaluate the

performance of an algorithm for language modelling (the lower, the better), defined as PPL = exp( L
T ),

where L is the cross-entropy loss and T is the number of tokens in the test set.

• Character Level Language Modelling The character-level language modelling is performed on

the US Baby’s First Names [186]. This dataset contains 1825k names. The full data and model

description is available at [187]. The results of using the baseline, hard activations, and our method

is shown in Table 7.3.

• Word Level Language Modelling We conduct word-level prediction experiments on the Penn

Tree Bank (PTB) corpus [188] and the WikiText-2 corpus [189] .

– PTB corpus dataset: The PTB corpus consists of 929k training words, 73k validation words,
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Table 7.4: Word-level perplexity on the Penn Tree Bank dataset. Using Gated Activation shows a
negligible increase in the perplexity on this task (small is better).

Method Validation Set Test Set

Baseline Non-regularised model [16] 120.7 114.5

Hard Activation 122.92 117.84

Gated Activation (proposed) 121.4 115.2

Table 7.5: Word-level perplexity on the WikiText-2. Using Gated Activation shows a negligible increase
in the perplexity on this task (small is better).

Method Validation Set Test Set

Baseline Non-regularised model [16] 141.34 133.19

Hard Activation 151.31 143.71

Gated Activation (proposed) 142.24 135.16

and 82k test words, and it has 10k words in its vocabulary. We adopted the non-regularised

small LSTM model defined in [16]. We use the small model which consists of 200 hidden

units per layer and the same hyperparameters. The results are shown in Table 7.4.

– WikiText-2 corpus: The WikiText-2 corpus consists of 2088K training, 217K validation, and

245K test tokens, and has a vocabulary of 33K words. We adopted the non-regularised small

LSTM model defined in [16]. We use the small model which consists of 200 hidden units

per layer and the same hyperparameters. The results are shown in Table 7.5.

Image Classification

As a quick illustration to show that our gated activation algorithm is not limited to texts, we conduct

experiments on the sequential MNIST and Fashion MNIST classification tasks.

• Sequential MNIST The dataset consists of a training set of 60K and a test set of 10K 28× 28

gray-scale images. We used the first 50K for training and the last 10K images for validation. In

every time step, we sequentially use one row of the image as the input (28×1), which results in

a total of 28-time steps. We use one hidden layer of LSTM of size 128 neurons. We used a batch

size of 128, epoch of 200, the learning rate of 0.001, and the RMSprop training algorithm.

• Sequential Fashion MNIST This dataset proposed in [190] is a direct drop-in alternative to the

digit based MNIST data. It is a more challenging classification task than the simple MNIST digits
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Table 7.6: Test error rate of LSTM on MNIST and Fashion MNIST. By eliminating the element-wise
multiplication, there is a negligible performance degradation between conventional and proposed LSTM
models validating the usability of our approach. (Results are average of five runs, and an estimated mean
of accuracy with confidence of 95% is recorded)

Method MNIST Fashion MNIST

Baseline [191] 0.89% ±0.02 9.92 % ±0.07

Hard Activation 1.49% ±0.05 10.40% ±0.09

Gated Activation (proposed) 1.01% ±0.02 10.11 % ±0.14

data. Fashion MNIST has the same dimension and shape as the digit based MNIST. We performed

the same experiments described above and use the same hyperparameters.

7.4.2 GRU Software Experimental Results

We follow the same experiment setup as in the LSTM. We conduct character-level prediction experi-

ments to show the usability of our proposed method on language modelling problems. The character-

level language modelling is performed on the dataset and GRU model defined in [192]. This dataset

contains 9249 words. The results of using the baseline, hard activations, and our method is shown in

Table 7.7.

Table 7.7: Character-level Accuracy. There is no difference in accuracy when using the baseline model
and Gated Activation method.

Method Accuracy (%)

Baseline [192] 85. 9

Hard Activation 84.9

Gated Activation (proposed) 85.8

7.4.3 FNN Software Experimental Results

We carried out experiments to show the effect our QSU has on the performance accuracy of selected

datasets. We apply our QSU to four binary classification problems and Thyroid dataset which is a

multi-classification problem with three output elements. The High Time Resolution Universe Survey

(HTRU2) [193] dataset has 16,259 samples with 1,639 features of real pulsars. The Covtype [194]

is made up of 581012 samples with 54 features. The Adult [194] dataset has 13 features and 32,561

samples. Epsilon [195] contains 100,000 samples with 2,000 features. The Thyroid [194] dataset is
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made up of 7200 patients with 21 patient attributes. We quantised the inputs and the activations during

training to five bits. We compare the quantised method to the full precision implementation. Table 7.8

shows the performance accuracy between full and quantised precisions. Our results demonstrate that

our quantisation method yield comparable accuracies to full precision representation.

Table 7.8: Accuracy using floating point full precision and INT5 quantisation.

Dataset Precision
Accuracy
(%)

Thyroid
Full 93.65
Quantised 93.01

HTRU2
Full 92.68
Quantised 91.28

Adult
Full 85.08
Quantised 84.90

Covtype
Full 100
Quantised 100

Epsilon
Full 96.95
Quantised 96.93

7.4.4 Resource Utilisation of QSU and Standard Multiplier

We compared the resource utilisation of a standard Booth’s multiplier with our proposed QSU. Since

one of the inputs of our QSU is quantised, this was taken into consideration during the comparison with

the Booth’s multiplier. The resource utilisation is shown in Table 7.9. The Booth’s Radix-4 multiplier

uses approximately 85/55 = 3× and 55/30 = 1.8× more ALMs and FFs, respectively than the QSU.

Table 7.9: Resource utilisation of QSU and Standard Booth’s Multiplier ( for an 8-bit system: input A
is 8 bits, input B is 6 bits)

Method
8 bits 16 bits

ALM FF ALM FF

Booth’s Multiplier 85 55 129 79

QSU 28 30 44 47

7.4.5 LSTM Hardware Experimental Results and Discussion

The resource utilisation of the LSTM cell is carried out on the Altera Cyclone V device (5csxfc6d6f31c6).

The synthesis results have been obtained using Quartus Prime version 18.1 for the Cyclone V device.

For this analysis, we built an LSTM cell incorporating just the gates and element-wise multiplication op-

eration. The resource count of this cell shows the difference between using hard nonlinearities, approx-
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imate soft nonlinearities, and the proposed gated activation The experiments performed in this section

are described below

• Conventional LSTM: the conventional LSTM implementation requires the use of element-wise

multipliers and the conventional activation functions. The sigmoid and Tanh are implemented on

FPGA using the following competing methods found in the literature:

– Piecewise Linear Approximation : In [172], the basic form of ax+ b is used to construct

approximate Tanh and Sigmoid using 12 breakpoints. Each of the breakpoints are hardcoded

in VHDL.

– Lookup table implementation of Tanh and Sigmoid as used in [21]. The table contents have

been precalculated and used in long ’WHILE LOOP’ with ’IF’ statements. A memory block

could have been used but the size of memory blocks will vary with FPGA family and vendor.

More importantly, all FPGAs internally use LUT and the use of a ’WHILE LOOP’ with ’IF’

statements is likely to be the optimal method. In terms of ’information’ storage, the use of

memory or LUTs should result in a similar gate usage.

– Hard Tanh and Hard Sigmoid: hard Tanh and hard sigmoid are the computationally ef-

ficient piecewise linear replacement for Tanh and sigmoid functions, respectively. Hard

Tanh is defined mathematically as max(−1.0,min(1.0,x)) and hard sigmoid is defined as

max(0.0,min(1.0,(x+2.0)/4.0)). Each breakpoints is hardcoded in VHDL using ’IF’ state-

ments.

Each of these competing methods require a multiplier. The DSP’s in the Cyclone V were used to

implement these multipliers. To permit a quantitative comparison, these methods have also been

implemented using a custom Booths Radix-4 multiplier (in VHDL) and their resource usage has

been obtained.

• Gated Activation (proposed): the LSTM cell with no element-wise multipliers, all the element-

wise multipliers are replaced by the quantised multiplier and gated activation algorithm. The

sigmoid activation function is also replaced with our proposed Log SQNL described in Chapter 3.

The three element-wise multiplication requires three hardware multipliers. These can make use of

built-in DSP blocks or coded in HDL. The Altera built-in DSP blocks have native support for up to

three signal processing precision levels (three 9 x 9, two 18 x 18, or one 27 x 27 multiplier) in the

same variable-precision DSP block [196]. This can be observed in Table 7.10 in which the LUT and
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Table 7.10: Resource utilisation of LSTM cell

Method
8 bits 16 bits

ALM FF DSP ALM FF DSP

Piecewise Activation [172] 81 - 7 107 - 7

LUT [21] 96 16 2 6,568 32 2

Hard Activation 20 - 2 53 - 2

Gated Activation (proposed) 52 55 - 150 175 -

Table 7.11: Resource utilisation of LSTM cell (Replacing DSP with Booth’s Algorithm)

Method
8 bits 16 bits

ALM FF ALM FF

Piecewise Activation 548 285 1056 530

LUT 276 148 6817 271

Hard Activation 181 150 383 191

Gated Activation (proposed) 52 55 150 175

hard activation implementations use two DSPs. Note that Table 7.10 shows the resource utilisation of the

hardware LSTM cell using built-in DSP. Since the resource usage of the built-in multipliers is difficult to

establish, a Booths Radix-4 was implemented in VHDL. An 8-bit Booth’s Radix-4 multiplier will cost 98

ALM, 63 FF, and 196 ALM, 120 FF for 16-bit resolution. Table 7.11 tabulates the resource utilisation

of the methods using Booth’s multiplier. The hard activation method will consume 181/52 = 3.48×

ALMs and 150/55 = 2.73× FFs than our method for an 8-bit system. The PWL method will consume

548/52 = 10.54× ALMs and 285/55 = 5.18× FF and the LUT method will consume 276/52 = 5.31×

ALMs and 148/55 = 2.69× FF than our proposed method. This will increase for higher resolutions.

Throughput Analysis If the latency of the activations is TA and that of each multiplier is TM, the

maximum latency of the LSTM cell is at the ht terminal and can be quantified by

TD = max((TA +TM),(TA +TM))+TA +TM = 2(TA +TM)

The 8-bits Booths Radix-4 algorithm takes four clocks. Thus, the Hard Tanh and the LUT will have

a latency of eight clocks, while the PWL will require 16 clocks. With N = 8, SQNL based solutions will

have a latency of 20 clocks. However, Hard Tanh requires multipliers. Each of the LSTM methods has
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been implemented using our Booths multiplier, and the resource utilisation is tabulated in Table 7.11.

The Hard Tanh requires 181 ALMs, and hence its throughput in terms of ALM is 181×8 vs 52×20 of

the proposed method. The gated activation has a higher throughput at R = 8.

7.4.6 GRU Hardware Experimental Results and Discussion

The resource utilisation of the GRU cell is carried out following the description given for the LSTM

cell in section 7.4.5. As expected, GRU cell consumes less resources than the LSTM cell. Table 7.12

shows the resource utilisation of our proposed method in comparison with three other methods found in

literature. Overall, our method continuously use less resources. Table 7.13 shows the resource utilisation

by replacing the inbuilt DSP with the Booth’s Radix-4 multiplier.

Table 7.12: Resource utilisation of GRU cell

Method
8 bits 16 bits
ALM FF DSP ALM FF DSP

Piecewise Activation [172] 54 - 5 94 - 5
LUT [21] 61 16 2 5225 28 2
Hard Activation 5 8 2 38 - 2
Gated Activation (proposed) 52 54 - 160 166 -

Table 7.13: Resource utilisation of GRU cell (Replacing DSP with Booth’s Algorithm)

Method
8 bits 16 bits
ALM FF ALM FF

Piecewise Activation 404 215 811 408
LUT 240 138 5337 251
Hard Activation 184 134 382 203
Gated Activation (proposed) 52 54 160 166

The 8-bits Booths Radix-4 algorithm takes four clocks. Thus, the Hard Tanh and the LUT will have

a latency of four clocks, while the PWL will require eight clocks. With N = 4 and N = 8, SQNL based

solutions will clearly have a higher throughput at R = 8 or R = 16.

7.4.7 FNN Hardware Experimental Results and Discussion

We build shallow quantised networks using Quartus to show the resource utilisation of the QSU based

network against the standard Booth’s multiplier units. Table 7.14 shows the result of the resources.

QSU based neural networks achieve area savings of approximately 1.66× and 1.32× for ALM and FF,

respectively when compared to Booth’s multiplier based network architectures.
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Table 7.14: Resource utilisation of Quantised Neural network models with QSU and Booth multiplier

Network
QSU Booth’s Multiplier
ALM FF ALM FF

4-5-3 1290 1009 2181 1362
9-5-2 1945 1469 3359 2016
2-15-1 1737 1401 2887 1845

The following are the advantages of the proposed solutions: i) Gated Activation eliminates two

multipliers in an LSTM cell leading to resource-efficient hardware implementation of LSTM networks.

ii) Precise analytical expressions are available for CPU based inference and training engines. iii) The

QSU consumes fewer resources than a standard Booths multiplier.

7.5 Conclusion

We have proposed a novel algorithm and its hardware implementation that computes a symmetric acti-

vation function with an integrated scaling functionality. The algorithm has a unique advantage in which,

without using a multiplier, it also simultaneously scales the output by an external input. In an ASIC

implementation of an LSTM, the non-requirement of a multiplier implies that the proposed solution

outperforms the simplest function - Hard Tanh. In a conventional LSTM, this proposal can replace all

five activations functions and two of the three element-wise multipliers. A closed-form expression for

the mapping has been obtained, and hence CPU-based training engines can be used for offline training.

We also propose a compact multiplier, the QSU, that has the potential to replace the final multiplier. The

QSU capitalises on the reduced word width from the gate generators. The QSU also has the potential to

replace multipliers in quantised neural networks. The entities proposed in this chapter offer options for a

complete hardware solution of the LSTM cell. The proposal is resource-efficient and also offers higher

throughput. We have tested our proposed algorithms on different datasets and show that our performance

is comparable to the conventional LSTM and the Hard Tanh variant.
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Chapter 8

Evaluation of Learnable Asymmetric

Activation Functions for Deep Learning

Abstract

We have discussed several activation functions, their advantages, and usage in diverse neural network

architectures. All the activation functions that have been proposed and discussed so far are fixed and

not adaptable during training. Determining optimal activation function for deep neural networks is still

an active area of research. The flexibility of a neural network model has been shown in the literature

to increase by introducing learnable activation functions. In this chapter, we empirically investigate the

effect of parameterising different regions of learnable activation functions. The parametric asymmetric

square-based units are shown to achieve faster convergence when compared to fixed activation functions.

Our experiments indicate that there is no significant difference in convergence speed of parameterising

both the positive region and negative region of an activation function and negative region-only param-

eterising. Parameterising activation functions with a small number of adaptable parameters introduces

the need for multipliers, division operators, and others. In this chapter, we further introduce a learnable

efficient, and computationally simple Multiple Square Units (MSU) function. This function synthesises

many useful properties of three already defined asymmetric square-based activation functions. This

function is computationally efficient as a result of eliminating the commonly used mathematical oper-

ators such as a multiplier, floating-point division, square, logarithm, and others to introduce learnable

parameters. Empirically, MSU outperforms other activation functions.
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8.1 Introduction

As described in [2], the choice of activation function affects the network performance and changes learn-

ing representation. During the course of this research, we have discussed several activation functions

characterised by different shapes and ranges. Apart from some properties that make some activation

functions suitable or not suitable for particular tasks, picking an activation function is a trial and error

process. Therefore, making activation functions as a hyperparameter to be learned during training may

help shed light on the issue of the optimal activation function. The choice of activation function in the

deep neural network is an active area of research [197,198]. Unlike the conventional activation functions

whose parameters are fixed, parametric functions contain learnable parameters that can be learned with

network weights and biases during training. This kind of nonlinearity is more flexible and can be fine-

tuned to produce a more accurate model than networks using non-parametric activation functions [111].

In [1], parametric ReLUs were demonstrated to outperform traditional ReLUs on the ImageNet task.

Furthermore, parametric ELUs were similarly demonstrated to be superior to non-parametric ELUs on

the MNIST, CIFAR-10/100, and ImageNet tasks [199].

As described in the literature [1, 111, 199], the following are the advantages of parametric func-

tions: i) help to reduce network overfitting ii) speed up training convergence iii) parametric activations

achieve (marginally) higher accuracy than their non-parametric counterparts. Parametric functions, due

to their learnable parameters, tend to synthesise many useful properties of other activation functions iv)

improve the total response region during learning and hyperplane carving. A parametric activation func-

tion is more dynamic and capable of adapting as per the requirements of its neighboring layers [200].

The following are the notable downsides of parametric activation functions: i) the introduction of extra

learnable parameters ii) the need for mathematical operators (such as addition, subtraction, multiplica-

tion, and division) to include these parameters with the activation functions. Multiplication and division

are computational intensive operators both in software and hardware. Multipliers are said to be resource-

hungry and computationally expensive [181].

This has motivated us to investigate the parameterised square-based asymmetric activation function

in this chapter. The square asymmetric functions, discussed in Chapter 5, has an inbuilt variable that

can be parameterised and give the result without the need for a multiplier. Hence, saving on resources,

computing power, and latency. We also investigated the effect of parameterising different regions of an

activation function.
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8.2 Related Work

In this section, we review parametric activation functions by categorising them into three, based on the

method for combining and deriving the activation functions.

8.2.1 Single Learnable Functions

In this category, we discuss all the activation functions as a result of combining a set of trainable param-

eters with standard/fixed activation function. Generally, the numbers of learnable parameters are low.

Therefore, the expressive power of the activation functions in this category are limited [197].

• Parametric ReLU [1]: the parametric α is responsible for transforming the negative part as defined

PReLUα(x)=max(x,α ·x). The α parameter is learned jointly with the weights and biases present

in the model using stochastic gradient algorithm. The authors in [1] avoid pushing α to zero by

not using weight decay during the training. If α is zero then the PReLU becomes the standard

ReLU.

• Parametric Exponential Linear Unit (PELU) [199]: PELU is defined as fβ ,γ(x) = max(β

γ
x,β ·

(exp(β

γ
)− 1)). The learnable β ,γ are used to adapt the positive and negative region of the ELU

function. The parameters β and γ are learned alongside the model using gradient descent algo-

rithm.

• Parametric Deformed Exponential Linear Unit (PDELU) [198]: PDELU is a slight modification

of ELU with t-deformed exponential function defined as expt(x) = exp(x) at t = 1 and expt(x) =

[1+(1− t)x]
1

1−t
+ at 0 < t < 2. PDELU is defined as f (xi) = max(0.0,xi)+min(0.0,α([1+(1−

t)xi]
1

1−t −1)).

8.2.2 Multiple Learnable Functions

Activation functions in this category are modelled in terms of linear or nonlinear combinations of two

or more standard activation functions. Functions that fall under this category contain a fusion of two or

more activation functions using probabilistic and/or hierarchical ways.

• Elastic Exponential Linear Unit (EELU) [201]: combines the ReLU, LReLU, ELU, and MPELU

activation functions. The positive slope of EELU is modified from the Gaussian distribution with

a randomised standard deviation.
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It is defined as f (x(c)i, j ) = max(0.0,k(c)i, j x(c)i, j )+min(0.0,α(c)(expβ (c)x(c)i, j −1)). At k = 1,α = 0, the

function is ReLU and at α = β = k = 1, the function becomes ELU.

• Multiple Parameter Exponential Linear Unit (MPELU) [202] : the aim of MPELU is to unify

ReLU, PReLU and ELU functions by sharing their advantages thereby leading to better conver-

gence and performance accuracy.

The definition of MPELU is f (xi) = max(0.0,xi)+min(0.0,α(expβc·xi−1)). The values of βc and

α controls the activation function; for example α = β = 1, the resulting function is ELU, while at

α = 0 and α = 25.6302,β = 0.01 the functions are ReLU and PReLU, respectively.

• Linear Mixed Activation functions [203]: it synthesises LReLU and ELU functions. It is defined

as f (x) = β ·LReLU(x)+(1−β ) ·ELU(x), β ∈ [0,1] learned from data.

• Soft++ [204]: this activation function synthesises PReLU and Softplus functions by parameter-

ising the slope in the negative domain and the exponent. Soft++ is defined as f (x) = ln(1+

expk·x)+ x
c − ln(2), c is the slope coefficient which sets the slope in the negative domain and k is

the exponent coefficient.

• Adaptive Blending Units (ABUs) [110]: a trainable linear combination of a set of basic activation

functions. The following are the set of activation functions in ABU; Tanh, ELU, ReLU, the

identity and Swish. ABU for the ith layer is defined as gi(x) = ∑ j αi j · f j(x) with i = 1, · · · ,n and

j = 1, · · · ,m .

• Bendable Linear Units (BLU) [111]: A parametric activation function that can synthesise the

following activation functions LReLU, ReLU, identity, and Softplus. It is defined as f (α,β ,x) =

β (
√

x2 +α2 + ε−α)+ x.

• Nonlinear Mixed Activation functions [203]: The gated activation is defined as f (x) = σ(βx) ·

LReLU(x)+(1−σ(βx)) ·ELU(x).

8.2.3 Others

Authors in [2] proposed Adaptive Piecewise Linear Units (APLU) which model functions as a sum of

hinge-shaped functions. Defined as APLU(x) = max(0,x)+∑wu,kmax(0,−x+ bu,k), where wu,k,bu,k

variables are learned during the network training. APLU is similar to the popular maxout [205] func-

tions with fewer parameters. A further improvement to the recently proposed APLU parametric acti-

vation function is called SPLASH [206]. Shifted ReLU defined in [207] is another learnable function
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Table 8.1: Computation: Mathematical Operator of commonly used learnable activation functions.(
LMA: Linear Mixed Activation, NGA: Nonlinear Gated Activation).

Function Multipliers Division Exponent
Additions/
Subtractions

Parameters Others

PLReLU 1 - - - 1 -
PELU 1 1 1 - 2 -
BLU 3 - - 4 3 1 square root
Soft++ - 1 1 4 2 2 ln
LMA [203] 3 - 1 3 1 -
NGA [203] 3 2 3 5 1 -
SReLU [207] 1 - - 2 4 -

that combines three linear functions using four learnable parameters. It is important to know that during

training, SReLU is initialised as a LReLU before adaptively learning the parameters. At certain param-

eter values, SReLU can synthesise ReLU, LReLU, and PReLU. SReLU, APLU, and maxout functions

are characterised by learning both convex and non-convex functions. A Variable Activation Function

(VAF) sub-network proposed in [208] is another form of trainable activation function. It is a network

composed of a single hidden layer, fixed activation function, and an output layer. It can be viewed as an

activation function in the form of a single layer feedforward neural network with sets of learnable α and

β as hidden and output layer connections. VAF is defined as zi = VAF(ai) = ∑
k
j=1 β jg(α jai +α0 j)+β0,

where α j,α0 j,β j and β0 are the parameters to be learned during training. Another recently proposed

parametric activation function is called Padé Activation Units (PAU) [209] based on the Padé approxi-

mation [210]. Computationally, PAU functions are expensive due to the presence of polynomial of order

m,n > 1 and floating-point division.

In summary, apart from the PReLU function, all the other functions discussed are heavily param-

eterised and include computationally expensive mathematical functions. This is a problem for power

and resource-constrained embedded and mobile devices. Table 8.1 shows the mathematical operator

requirements of some of the discussed parametric activation functions.

8.3 Parametric Square-based Asymmetric Activation Functions

We revisited the square-based asymmetric activation functions defined in Chapter 4 and introduce learn-

able parameter. Equations 8.1, 8.3, and 8.5 are three different square-based asymmetric activation func-

tions with negative region only parameterisation, where 0 ≤ α ≤ 1. The positive region exhibits an

identity function like ReLU. This is the most common parametric approach in literature and is found in

popular functions like PReLU, PELU, and so on. A newer, parametric approach is learning the whole
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function (both the negative and positive region) and the square-based format is defined in Equations 8.2,

8.4, and 8.6, where 0≤ α ≤ 1. These activation functions have slope greater than 1 for positive inputs.

Therefore they can model identity function at α = 0. At α 6= 0 the functions has slopes greater than 1.

A slope greater than 1 for positive inputs avoids a vanishing gradient in deep networks. The best way to

parameterise asymmetric activation functions is still an open question. We aim to investigate the effect

of this two forms of parameterisation on performance and training convergence.

f (x)psqlu =


x : x > 0

α(x+ x2

4 ) :−2.0≤ x≤ 0

−α : x <−2.0
(8.1)

f (x)psqlu = α


x : x > 0

x+ x2

4 :−2.0≤ x≤ 0

−1 : x <−2.0

(8.2)

f (x)psqreu =

 x : x > 0

α(x+ x2

2 ) :−2.0≤ x≤ 0
(8.3)

f (x)psqreu = α

 x : x > 0

x+ x2

2 :−2.0≤ x≤ 0
(8.4)

f (x)psqish =


x+ x2

32 : x > 0

α(x+ x2

2 ) :−2.0≤ x < 0

0 : x <−2.0
(8.5)

f (x)psqish = α


x+ x2

32 : x > 0

x+ x2

2 :−2.0≤ x < 0

0 : x <−2.0
(8.6)

8.4 Multiple Square Units

We introduce a new parametric square-based asymmetric activation function called multiple square units

(MSU). MSU have single parameter: α , where α ≥ 0. MSU is shown in Equation 8.7. MSU is multiple

square units which consist of SQLU, Sq Softplus, SqREU activation functions, and others. We aim to

show that this parameterised approach learns, or is comparable to existing parametric functions but its

hardware implementation, resource utilisation, and computationally complexity is small.

f (x)MSU =


−α : x <−1−α

(1+x+α)2

4 −α :−1−α ≤ x≤ 1−α

x : x > 1−α

(8.7)

Parametric square-based functions are trained simultaneously with all the network parameters during

back-propagation. Using the chain rule, the gradients of f with respect to α is defined in Equation 8.8.
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Figure 8.1: A visualisation of Multiple Square Units, varying α . The closer α is to 0, the more it is like
SQ Softplus, α greater than 1, shows SqREU and α = 1.0 is SQLU.

∂ f (x)MSU
∂α

=


−1 : x <−1−α

x+α−1
2 :−1−α ≤ x≤ 1−α

0 : x > 1−α

(8.8)

The following are the desirable properties of the MSU activation function:

• It can synthesise various square-based asymmetric activation functions thereby leading to better

convergence and performance accuracy.

• It is square-based, and hence computationally cheap.

• On hardware, the counter-based implementation of MSU is resource-efficient by eliminating the

power and resource-hungry multipliers.

8.5 Experiments

All our experiments use the Wide Residual Network (WRN) topology [14]. The WRN topology is

selected because of the presence of d and k hyperparameters which are use for controlling the depth
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Table 8.2: The structure of wide residual network topology [14] used in our experiments. Hyperparam-
eter k controls the width of the network and d controls the depth. Groups of convolutions are shown in
brackets. Number is how many blocks of layers are used in succession. N = d−4

6 .

Layer Stride Number
conv1 16×3×3 (1, 1) 1
[conv2 16k×3×3] (1, 1) N
conv3 32×3×3 (2, 2) 1
[conv4 32k×3×3] (1, 1) N−1
conv5 64×3×3 (2,2) 1
[conv6 64k×3×3] (1, 1) N−1
average pooling 8×8 - 1

and width of the topology respectively. Therefore, a wide variety of experiments can be performed for

different network sizes with the proposed functions. Table 8.2 shows the description of a WRN-d-k

topology.

We used the Keras deep learning library with the TensorFlow backend for all tests. We investigate

the effect of the following parameterisation:

• Study the effect of parameterising the negative region of the activation function as expressed in

Equations 8.1, 8.3 and 8.5.

• Study the effect of parameterising the whole function (i.e., bipolar parameterisation) as expressed

in Equations 8.2, 8.4, and 8.6.

• Study the effect of our new parameterising, i.e., parameterise the negative and part of the posi-

tive: parameterise the slope in both the negative and positive domains as well as synthesising the

properties of established square-based asymmetric functions.

In our first experiment, we compare 11 activation functions across four topologies in order to investigate

the potential accuracy gains of different ways of parameterising learnable activation functions as well as

how the accuracies are affected by the network depth and width. In our second experiment, we compared

all the square-based learnable activation trained for a short amount of time to test how quickly networks

with each activation converge.

In all our experiments, we use the CIFAR-10, CIFAR-100, and SVHN datasets on four groups of

activation functions:

1. Fixed and piecewise linear units: ReLU, SQLU, SqREU, and Sqish.

2. Negative region only learnable units: PReLU, PELU, PSQLU-1, PSqREU-1, and PSqish-1.
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3. Bipolar - positive and negative region learnable units: APLU, BLU, , PSQLU-2, PSqREU-2, and

PSqish-2.

4. Multiple/ensemble units: MSU, we disregarded training with the other ensemble units found in

literature because, they are computationally expensive.

In our first experiment, the weights are initialised with the He initialisation [1]. We employed the L2

regularisation with an initial weight decay set to 0.0005. Each model is trained using stochastic gradient

descent with a mini-batch size of 128 and a momentum term of 0.9. The learning rate started from

0.1 and decayed to 0.0008 over the course of the training using an epoch-based scheduler. We set the

training run to 200 epochs and recorded an average of five runs for each model. The code that produced

the reported results is available at the following URL: https://github.com/awur978/msu.

8.5.1 CIFAR-10

CIFAR-10 is a 32×32 color image classification dataset. There are 50,000 training sets and 10,000 test

sets. We preprocessed the data using global contrast normalisation and ZCA whitening. Table 8.3

shows the results of experiment 1 on CIFAR-10 dataset. As shown, across all architectures, MSU

marginally outperforms all other activation functions (fixed, bipolar function, and negative-only pa-

rameterised learnable activation functions).

Overall, on an average, all parameterised activation functions perform better than the fixed activa-

tion functions. Our investigation into bipolar and negative-only region parameterisation shows that the

accuracy across learnable bipolar functions and negative-only region is largely not consistent across dif-

ferent architecture depths and widths. For example, the WRN-16-8 shows that the negative-only region

parameterisation consistently outperforms parameterising the whole activation function. Whereas, the

WRN-40-1 architecture shows a majority of the bipolar parameterisation outperforming the negative-

only region parameterisation. This still shows that for CIFAR-10, the architecture has a major influence

on performance accuracy as compared to the choice of activation functions.

Figure 8.2 shows the training curves for four WRN architectures with fixed, bipolar, and negative-

only region parameterisation of SQLU function. We observe that the parametric activation functions

(PSQLU-1 and PSQLU-2) all learn more quickly than the non-parametric SQLU function for all the

WRN architectures. We also observe no difference in convergence speed between bipolar and negative-

only region parameterisation. The same is recorded for other parametric activation functions defined.
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Table 8.3: CIFAR-10: The performance accuracy for each activation/topology pair tested in our first
experiment. Results are average of five runs, and an estimated mean of the performance accuracy is
recorded. The best activation for each topology is shown in bold. The parametric functions achieve
higher accuracy, at very small margin, than their non-parametric baselines.

Parameters Activation WRN-40-1 WRN-40-4 WRN-16-4 WRN-16-8

Fixed

ReLU 93.43 94.67 94.67 95.24
SQLU 92.76 94.60 94.16 94.76
Sqish 92.59 94.81 94.59 95.31
SqREU 93.38 94.92 94.60 95.27

Negative

PReLU 92.16 95.05 94.18 94.71
PELU 93.50 95.36 95.04 95.14
PSQLU-1 92.81 94.53 94.18 95.01
PSqish- 1 92.66 95.02 94.97 95.13
PSqREU-1 93.13 94.63 94.64 95.49

Bipolar

APLU 92.18 94.27 94.43 94.54
BLU-α 93.42 94.69 94.66 94.78
BLU-β 93.51 94.54 94.44 94.71
PSQLU-2 92.13 94.6 94.25 94.41
PSqish-2 93.14 94.91 94.89 95.02
PSqREU-2 93.07 95.06 94.33 95.26

Multiple MSU 94.54 95.48 94.91 95.45

c)

b)

d)

a)

Figure 8.2: CIFAR10: Convergence curves for training sets of fixed and learnable activation functions
on different WRN architectures. a) WRN-40-1 b) WRN-40-4 c) WRN-16-4 d) WRN-16-8. The para-
metric SQLU (PSQLU-1 and PSQLU-2) converges fastest than the fixed SQLU activation function for
all architecture depths and widths.
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Table 8.4: CIFAR-100: The performance accuracy for each activation/topology pair tested in our first
experiment. Results are average of five runs, and an estimated mean of the performance accuracy is
recorded. The best activation for each topology is shown in bold. The parametric functions achieve
higher accuracy, at very small margin, than their non-parametric baselines.

Parameter Activation WRN-40-1 WRN-40-4 WRN-16-4 WRN-16-8

Fixed

ReLU 69.66 77.74 75.88 78.14
SQLU 69.36 76.60 76.33 78.10
Sqish 70.40 77.68 76.01 77.57
SqREU 70.40 76.73 74.80 77.47

Negative
PSQLU-1 69.37 77.27 74.00 76.46
PSqish- 1 68.65 76.72 74.53 77.17
PSqREU-1 68.93 76.84 74.47 77.51

Bipolar
PSQLU-2 69.42 75.89 75.72 77.37
PSqish-2 70.27 76.73 75.82 77.88
PSqREU-2 70.70 76.98 75.25 77.80

Multiple MSU 69.70 77.94 76.97 78.45

8.5.2 CIFAR-100

CIFAR-100 dataset is a 32× 32 colour image that has 100 classes. CIFAR-100 has 50,000 training

images and 10,000 test images. We follow the same preprocessing as the CIFAR-10 and employ data

augmentation for data preprocessing.

Table 8.4 shows the results of experiment 1 on CIFAR-100 dataset. We find that in all but one case

(WRN-16-4), the parametric activation functions consistently outperform the fixed functions. MSU

function outperforms all the other activation functions except in WRN-40-1 architecture. This shows

the superiority of MSU in terms of performance accuracy across datasets and architectures. As observed

with the CIFAR-10 dataset, parameterising the whole activation function yields a marginally better per-

formance accuracy than the negative-only parameterised activation for CIFAR-100 dataset. Figure 8.3

shows the convergence curve for experiment 2.

8.5.3 SVHN

The SVHN dataset [121] is a coloured 32×32 real-world digit recognition dataset consisting of photos of

house numbers in Google Street View images. There are 73257 images for training and 26032 images

for testing.We follow the same procedure used for the CIFAR-10 experiments. Table 8.5 shows the

results of experiment one on SVHN dataset.
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a) b)

d)c)

Figure 8.3: CIFAR100: Convergence curves for training sets of fixed and learnable activation functions
on different WRN architectures. a) WRN-40-1 b) WRN-40-4 c) WRN-16-4 d) WRN-16-8. The para-
metric SQLU (PSQLU-1 and PSQLU-2) converges fastest than the fixed SQLU activation function for
all architecture depths and widths.
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Table 8.5: SVHN: The performance accuracy for each activation/topology pair tested in our first experi-
ment. Results are average of five runs, and an estimated mean of the performance accuracy is recorded.
The best activation for each topology is shown in bold. The parametric functions achieve higher accu-
racy, at very small margin, than their non-parametric baselines.

Parameters Activation WRN-40-1 WRN-40-4 WRN-16-4 WRN-16-8

Fixed

ReLU 95.29 95.88 95.50 95.59
SQLU 95.52 95.46 95.20 95.45
Sqish 95.51 95.78 95.44 95.92
SqREU 95.52 95.95 95.68 95.95

Negative
PSQLU-1 95.39 95.76 95.27 95.44
PSqish- 1 95.28 95.58 95.68 95.58
PSqREU-1 95.55 95.95 95.42 95.90

Bipolar
PSQLU-2 95.29 95.47 95.52 95.30
PSqish-2 95.34 95.83 95.67 95.79
PSqREU-2 95.26 95.68 95.68 95.68

Multiple MSU 95.23 95.99 95.50 95.41

The results of our experiment on SVHN dataset is particularly interesting because all the results

show negligible differences. The lowest recorded accuracy is 95.23% and the highest is 95.95%. Pa-

rameterising of any type doesn’t seem to have a significant effect over the performance accuracy across

all the architectures for SVHN dataset. Figure 8.4 shows the convergence curve for experiment 2. There

is no significant convergence speed-up between fixed and parametric SQLU activation functions for all

the different WRN architecture.
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a) b)

d)c)

Figure 8.4: SVHN: Convergence curves for training sets of fixed and learnable activation functions on
different WRN architectures. a) WRN-40-1 b) WRN-40-4 c) WRN-16-4 d) WRN-16-8. The parametric
SQLU (PSQLU-1 and PSQLU-2) converges fastest than the fixed SQLU activation function for all
architecture depths and widths.

8.6 Conclusion

In this chapter, we investigated the effect of parameterising different regions of fixed activation functions.

Furthermore, we presented a novel activation function, multiple square unit that continuously generalises

among SQLU, SQ softplus, SqREU, and other activation functions. Compared to other learned and fixed

activation functions, including ReLU and its variants, MSU functions show superior performance across

various datasets and network architectures with different widths and depths. MSU can be easily im-

plemented on hardware using our proposed asymmetric generator. We show that parametric activation

functions speed up learning and reduce training time. The convergence speedup characteristics of para-

metric activation functions makes them desirable in time, power, and resource-limited embedded and

mobile devices.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

Neural network is changing every aspect of our lives. State-of-the-art neural networks are computation-

ally intensive therefore making deploying neural network solutions on embedded systems and hardware

challenging. Unlike software solutions, the hardware solution is limited in resources and power. To

address this problem, we presented software and hardware methods for improving the performance ac-

curacy and efficiency of various neural network architectures. This thesis focuses on improving the

efficiency of neural network architectures by eliminating resource-intensive and computationally com-

plex machine learning building blocks.

On software platforms, we propose several computationally efficient activation functions aim at ob-

taining state-of-the-art performance accuracy at simple computation. On various Intel CPUs, a speedup

ranging from 1.3x to 4.3x is achieved. On an ARM M3 processor, we achieve a 4.37x to 169.79x range of

speedup. We have demonstrated extensively that our proposed square-based activation functions achieve

comparable or better performance accuracy on several datasets and neural network architectures.

We propose two novel nonlinear symmetric activation functions with simple mathematical equations.

The proposed functions circumvent the use of the exponential term and floating-point division resulting

in a reduction in computational time. Their derivatives can be highly optimised and require a single

cycle operation. Networks using the SQNL function train faster to reach predefined performance goals.

Additionally, we focus on computationally efficient activation functions for deep learning architec-

tures. Particularly, we introduce five new asymmetric activation functions for deep learning. We show a

speedup of 1.9x to 4.3x for the various functions using metrics provided by the Intel processor and dis-

cuss the advantage of square-based nonlinearity in CPU-based inference engine and low-end hardware
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devices with limited hardware capabilities. The square-based radial basis kernel proposed shows, on

average, a speedup in training time of about 8% for SQ-RBF based networks without affecting the over-

all generalisability of the network. SQ-RBF uses about 10% fewer neurons than Gaussian RBF, hence

making it very attractive. Furthermore, the SQ-RBF was modified for support vector machines. The

speedup was also recorded with the proposed quadratic-based kernel transformation on support vector

machines.

On hardware platforms, we offer solutions that can construct nonlinear activation functions using

significantly fewer resources. We also propose the elimination of resource and power-hungry multipli-

ers through gated activation and quantised scaling unit for recurrent and feedforward neural networks.

Our SQNL based solutions offer the potential of making the artificial neural network inference engines

compact, and hence attractive for embedded solutions. Our solutions use standard digital building blocks

and can be implemented on ASICs or FPGAs.

We have introduced a novel method for generating computational and resource-efficient symmetric

and asymmetric activation functions. The experiments were performed on an Altera Cyclone V FPGA.

Although the counter based implementation uses lower resources when compared to other methods, the

proposed functions have also been implemented using hardware multipliers. We show that combinatorial

logic wrapped around a standard multiplier offers an attractive alternative to the counter implementation.

Comparisons with LUT implementation, a counter-based symmetric function with an 8-bit resolution,

offers an estimated throughput (per gate) speedup of 1.79x to 3.75x. Similarly, a throughput (per gate)

speedup of 2.42x to 5.06x is estimated with multipliers. Higher throughputs per gate have also been esti-

mated with 12-bit implementations. The single-cycle hardware implementation of the proposed method

is also resource-efficient for higher resolution and provides area savings when compared to LUT. The

proposed method can produce many other mappings with relatively small modifications. It is attractive

in applications that require a dynamic mapping change.

We also extended the square law algorithm for element-wise multiplication in RNN models. The

algorithm has a unique advantage in which, without using a multiplier, it also simultaneously scales

the output by an external input. In an FPGA implementation of an LSTM, the non-requirement of

a multiplier implies that the proposed solution outperforms the simplest function - Hard Tanh. We

propose a compact multiplier, the QSU. The QSU capitalises on the reduced word width from the gate

generators. In a conventional LSTM, our proposed solutions can replace all five activations functions

and the three element-wise multipliers.
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9.2 Future Work

This work has improved the inference engine of a variety of neural network architectures through devel-

oping and implementing the important building blocks.

The simplicity and linearity of the derivatives of our proposed activation functions can be explored

further for creating on-chip training using gradient-based algorithm. The implications of the simple

derivative of the square-law based activation functions on online training can be further explored in

terms of convergence speed, performance accuracy, and resource utilisation.

Although the square law is closely aligned with the current generation of ANN formulations, the

square-law based nonlinear generator algorithm can also be applied to Spiking Neural Networks. In a

future development, the speedup options to software based solutions can be explored.

Furthermore, the N sequence discussed in Chapter 3 can be further investigated for lower values by

studying the effects on training and performance accuracy. Even though the morphology of square-based

functions proposed in this work is similar to benchmark functions, they still differ in saturation levels,

linear regions, and others. Hence, weight initialisation techniques specifically tailored for square-law

functions can be investigated for faster convergence and better performance accuracy.

Fourier neural networks, which were first introduced in late 90’s [211, 212], are resurfacing again

[212–215]. Fourier neural networks transform a signal from the time or space domain to the frequency

domain in a process similar to the Fourier transform by using sinusoidal activation function [213]. The

square law can be further investigated to form a sinusoidal function without the trigonometric complexity

associated. We have already established SQINE and further investigation is to be performed on hardware

using Fourier neural networks.

Diverse activation function is another area in which different activation functions are used per neu-

ron, per layer. Also new architectures such as FCN-LSTM require both symmetric and asymmetric

activation functions. Further investigation and analysis on the proposed SQ-GEN on machine learning

models can be explored.

Recently, focus has been shifted from fixed activation functions to learnable activation functions.

As discussed in Chapter 8, learnable activation functions have a variety of advantages over fixed func-

tions. However, the algorithm for updating the parameters should be further explored. At the moment,

gradient descent is the algorithm of choice; investigating other types of algorithms may further improve

convergence speed and performance accuracy.
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[210] C. Brezinski and J. Van Iseghem, “Padé approximations,” Handbook of Numerical Analysis,

vol. 3, pp. 47–222, 1994.

[211] J. M. Sopena, E. Romero, and R. Alquezar, “Neural networks with periodic and monotonic acti-

vation functions: a comparative study in classification problems,” 1999.

[212] P. Liu, Z. Zeng, and J. Wang, “Multistability of recurrent neural networks with nonmonotonic

activation functions and unbounded time-varying delays,” IEEE transactions on neural networks

and learning systems, vol. 29, no. 7, pp. 3000–3010, 2017.

[213] A. Zhumekenov, M. Uteuliyeva, O. Kabdolov, R. Takhanov, Z. Assylbekov, and A. J. Castro,

“Fourier neural networks: A comparative study,” arXiv preprint arXiv:1902.03011, 2019.

[214] V. Sitzmann, J. N. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein, “Implicit neural

representations with periodic activation functions,” arXiv preprint arXiv:2006.09661, 2020.

[215] G. Parascandolo, H. Huttunen, and T. Virtanen, “Taming the waves: sine as activation function in

deep neural networks,” 2016.

160


	Abstract
	Acknowledgement
	Acronyms
	Publications
	Patents
	Lists of Figures
	Lists of Tables
	Introduction
	Neural Network Building Blocks
	Activation Function
	Multiplication
	Data Representation

	Motivation
	The Proposed Square Law Solutions
	Research Contributions
	Thesis Outline

	 Square Nonlinearity: A Computationally Efficient Activation Function
	Introduction
	Concepts
	Analysis
	Computational Footprint on Intel CPUs
	Computational Footprint on the ARM M3 Processor
	Decision Boundary and Activation Over Time

	Performance Comparison
	SQNL for Shallow Supervised Learning
	Log_SQNL for Binary Logistic Regression
	 SQNL and Log_SQNL for Recurrent Neural Network

	Conclusion

	Efficient Hardware Calculator for SQNL Function
	Introduction
	 Concepts
	 Counter-based SQNL
	 Multiplier-based SQNL

	Hardware Implementation
	Multi-clock/Counter Solution
	Single-clock Solution
	Multiplier Solution

	Resource Utilisation
	Counter-based Implementation
	Multiplier-based Implementation
	Lookup Table-based Implementation
	Single-clock Solution Implementation
	Discussion

	Inference Performance Accuracy
	Performance Accuracy on UCI datasets
	Performance Accuracy on Experimental Rotational Dataset
	Performance Accuracy on MNIST Dataset

	Conclusion

	Asymmetric Square-based Activation Functions for Deep Learning
	Introduction
	Novel Activation Functions
	Smooth Square-based Asymmetric Activation Functions
	Square-based Output Layer Activation Function

	Analysis
	Computational Footprint on Intel CPUs
	Computational Footprint on the ARM M3 Processor

	Experimental Results
	Activation Over Time and Inference Time
	Experiments using SQLU
	Experiments using Sqish for Very Deep Networks
	Experiments using SqREU
	Experiments using SQ_Softplus for Restricted Boltzmann Machine
	Experiments using SQMAX

	Conclusion

	Resource Efficient Asymmetric Activation Functions Generator
	Introduction
	Concepts
	Analysis
	Computational Footprint on Embedded NIOS II Processor
	Resource Footprint: Arithmetic Logic Unit Implementation

	Hardware Implementation
	Results and Discussion
	Resource Utilisation of Asymmetric Function Generator
	Resource Utilisation of SQ-GEN

	Conclusion

	Computationally Efficient Radial Basis Function
	Introduction
	 RBF Networks and RBF Kernels
	Nonlinear Support Vector Machine and RBF Kernels
	 Novel Square Nonlinear Radial Basis Function (SQ-RBF)
	 Mercer's Theorem Proof for SQ-RBF Kernel
	Hardware Implementation of Square-based Gaussian RBF
	Software Experimental Results
	SQ-RBF on RBFNN Problems
	SQ-RBF Kernel on SVM Classification Problems

	Hardware Experimental Results and Discussion
	Conclusion

	Resource Efficient Implementation of Machine Learning Models
	Introduction
	Recurrent Neural Networks
	Feed Forward Neural Networks

	Concepts
	Gated Activation
	 Quantised Scaling Unit (QSU)

	Hardware Implementation
	Hardware Implementation of Gated Activation
	Hardware Implementation of QSU

	Experimental Results
	 LSTM Software Experimental Results
	 GRU Software Experimental Results
	 FNN Software Experimental Results
	 Resource Utilisation of QSU and Standard Multiplier
	 LSTM Hardware Experimental Results and Discussion
	 GRU Hardware Experimental Results and Discussion
	 FNN Hardware Experimental Results and Discussion

	Conclusion

	Evaluation of Learnable Asymmetric Activation Functions for Deep Learning
	Introduction
	Related Work
	Single Learnable Functions
	Multiple Learnable Functions
	Others

	Parametric Square-based Asymmetric Activation Functions
	Multiple Square Units
	Experiments
	CIFAR-10
	CIFAR-100
	SVHN

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

