
An EPTAS for Scheduling Fork-Join Graphs with

Communication Delay

Klaus Jansen1

Department of Computer Science, University of Kiel, 24118 Kiel, Germany

Oliver Sinnen

Department of Electrical, Computer, and Software Engineering, University of Auckland,

Auckland 1010, New Zealand

Huijun Wang

Department of Electrical, Computer, and Software Engineering, University of Auckland,
Auckland 1010, New Zealand

Abstract

This paper presents an EPTAS for scheduling fork-join task graphs with com-
munication delay on homogeneous processors, denoted as P |fork-join, cij|Cmax
in the α|β|γ-notation. The fork-join structure is a basic structure found in
many parallel computations. The algorithm uses an integer program as the
feasibility test and searches for a solution which would be guaranteed to be
within a 1 + ε factor of the optimum. It is shown that this runs in time
exponential in terms of 1/ε and polynomial in terms of the input size. Com-
munication costs are dealt with effectively for this fork-join graph structure.
The EPTAS is also adapted to scheduling independent tasks with release
times and deadlines, which is denoted as P |rj|Lmax.

Keywords: Parallel Computing, Scheduling, EPTAS, Fork-Join,
Approximation

1Supported in part by the DFG project JA 612 /20-1.

Preprint submitted to Elsevier February 18, 2021

1. Introduction

In programming parallel systems, an optimisation problem is to sched-
ule the computational workload, where units of work, called tasks, are each
allocated to a processor and a time slot for execution, in such a way that
optimises (i.e. minimises) the makespan of the schedule. There are data
dependencies between the tasks, each one imposing a precedence constraint
that must be satisfied by the schedule.

The structure of such a workload can be represented by a task graph,
which is a directed acyclic graph (DAG) where the nodes represent the tasks
and the edges represent their data communications. In addition to the pro-
cessing times of tasks, there are data communication times, which are delays
between the time when a sender finishes executing and when the receiver is
ready to start, if they have to communicate between processors. Communi-
cation delays are spared between tasks on the same processor. This models
systems where local communication between tasks on the same processor is
negligible in comparison to remote communication.

This work focuses on single fork-join workloads, with a structure repre-
sented by a fork-join DAG, made up of many branch tasks receiving data from
a common source, and sending data to a common sink (section 3). While
fork-join graphs are structurally simple, they are an important DAG struc-
ture, both theoretically and practically. In theory they are the basic parallel
sub-structure of series-parallel graphs and can represent master-slave types
of computation. In essence all kinds of computations that can be split into
independent tasks, but need data input for an initial task and then at the
end the results need to be reduced (e.g. data is merged) to a single task. In
practise they represent a significant subclass of parallel computations, e.g.
MapReduce frameworks, like Apache Hadoop and Spark, or scatter/gather
communication when using MPI parallelism. The modelled system has m
identical processors, with unrestricted communications, meaning that com-
munications can occur at the same time as each other and with the execution
of tasks as well.

Finding a valid schedule with optimal makespan for such fork-join graphs
is strongly NP-hard, because it is equivalent to scheduling independent tasks
(P ||Cmax, which is strongly NP-hard [5]) if communication times are set to
zero, as well as the processing times of the source and sink tasks.

An efficient polynomial time approximation scheme (EPTAS) for this
problem is presented in this paper. An EPTAS is an algorithm which, for

2

an accuracy parameter ε > 0, gives a solution that is within a 1 + ε factor
of the optimum in polynomial time in terms of the input size n. An EPTAS
has complexity O(f(1/ε)×poly(n)), rather than O(nf(1/ε)) for a PTAS. The
algorithm uses dual approximation [12] and a configuration ILP [8] (section
6), with techniques to make this work for communication times.

2. Related Work

For scheduling tasks with precedence constraints on limited processors,
the problem denoted as P |prec|Cmax, there cannot be a PTAS, because a
lower bound of 4/3 for the best possible ratio of any polynomial time ap-
proximation algorithm has been proven in [20]. This is also true for the
harder problem P |prec, cij|Cmax which includes communication costs. Even
with unit processing and communication times, as in the problem denoted
P |pj = 1, cij = 1|Cmax, there is a minimum polynomial time approximation
ratio of 5/4 [13]. There are other theoretical results and approximations for
more specific problems under P |prec, cij|Cmax [18, 14], especially for constant
processing and communication times [1, 23, 21, 22, 10, 17, 11], and special
DAG structures [24, 19, 3, 6], but no PTAS for these.

Scheduling a fork-join DAG has less to do with precedence constraints
than the other problems under P |prec, cij|Cmax, because most tasks in the
fork-join structure are independent of each other. It is closer to scheduling
independent tasks with release times and deadlines, as a feasibility problem of
scheduling under time T . There has been some work done on such problems
[2, 4, 9] (but no EPTAS that we know of), and they are not directly applicable
to fork-join scheduling, which has to additionally consider the allocation of
the source and sink (section 8).

Configuration integer programs (section 6) are commonly used in the
design of approximation algorithms [8, 15], and one of its first uses was in
bin packing [7]. We also employ the dual approximation framework studied
in [12], to search for an optimum makespan with a series of guesses, instead
of solving for the solution directly.

3. Problem Definition

A DAG with fork-join structure is to be scheduled on m identical pro-
cessors (machines), minimising the makespan. In this DAG there is a source
task jsource, a sink task jsink, and a set of branch tasks J . Each branch

3

task j ∈ J has an associated size vector (ρj, γ
in
j , γ

out
j) ∈ P × Γ × Γ , which

gives the time cost of processing, time cost of incoming communication from
the source, and of outgoing communication to the sink, respectively. An in-
coming or outgoing communication cost is only incurred if the task is on a
different processor from the source or sink task, respectively, otherwise it is
0. P ⊂ N0 is the set of all processing times, and Γ ⊂ N0 is the set of all
communication times. Figure 1 shows an example fork-join DAG.

Figure 1: Fork-join DAG

A schedule consists of processor allocations π : J → [m] and start time
allocations σ : J → N0 for all tasks. The start time allocations are equivalent
to a total order ≤σ of execution over each set of tasks scheduled to the
same processor, because optimally, tasks start as early as possible given their
order. Therefore, for i, j ∈ J scheduled consecutively on the same processor
(meaning i ≤σ j and @ k ∈ J : i ≤σ k ≤σ j), the start time of j is

σ(j) =

{
max(σ(i) + ρi, γ

in
j), if π(j) 6= π(jsource)

σ(i) + ρi, if π(j) = π(jsource)

4

For j = min ≤σ, the first branch task on a processor,

σ(j) =

{
γinj , if π(j) 6= π(jsource)

0, if π(j) = π(jsource)

The objective is to find a schedule with optimal makespan. For this
objective, without loss of generality, the processing times of the source and
sink tasks can be set to 0, ρsource = ρsink = 0. The makespan is then given
by the start time of the sink:

max
j∈J

(
σ(j) + ρj +

{
γoutj , if π(j) 6= π(jsink)

0, if π(j) = π(jsink)

)

Figure 2: Schedule of fork-join DAG

Figure 2 shows a schedule of the DAG in figure 1. The arrows represent
communication delays. In this schedule, the source task executes on P1,
so tasks on P1 have no incoming communication delays, and the sink task
executes on P2, so tasks on P2 have no outgoing communication delays.
Communications can occur at the same time as each other so only the latest
communication delays will delay the schedule on each processor. Branch
tasks not scheduled on the same processor with either the source or sink are
said to be remote.

5

4. Algorithm overview

As stated, finding a valid schedule with optimal makespan for the fork-
join graphs defined above is strongly NP-hard (section 1). We are therefore
proposing an EPTAS using the following strategy.

At the top-level, a binary search over different time bounds T is con-
ducted and for each T we test, using an ILP, whether a valid schedule with a
makespan ≤ T exists (the technique used in [12]). The range for T is finite,
as an upper bound for the optimal makespan is given by the fully sequen-
tial schedule, i.e. the sum of all processing times, and a lower bound is the
sum of all processing times divided by the number of processors (i.e. perfect
parallelism).

For each T , we set up an ILP in O(|J |) time to test if a feasible schedule
exists. To control the runtime complexity, we are using a configuration ILP
[7] with a fixed set of task size vectors normalised relative to T . The input to
the ILP are the numbers of tasks of each normalised size vector at the scale
set by T . To construct such an input that corresponds to the original input
instance, we need to simplify and transform the original instance in various
steps. Figure 3 illustrates our approach.

Figure 3: Overview of the scheme

The next section explains the simplification steps and analyses their im-
pact on the makespan quality.

5. Simplification of the instance

The following simplification steps reduce task size vectors to a constant
set, regardless of the input size, so that the size of the integer program is

6

bounded and constant. This is done by rounding (truncating) large tasks into
standard values, and introducing placeholder tasks for small tasks (where
rounding becomes unsuitable).

The variable ε (where ε ∈ R, 0 < ε < 1, and we can assume without loss
of generality that 1

ε
∈ N) decides the resolution of the schedule including task

size vectors and start times, and the accuracy of the approximation. Tasks
with processing times less than ε2T are said to be small tasks, and the rest
are big tasks. The subsets of small and big tasks are denoted Jsmall and Jbig
respectively. Tasks are sometimes also categorised by communication times.
The set of tasks with given communication times (γin, γout) ∈ Γ 2 is denoted
Jγ

in,γout .
Each of the following sections describes one simplification. Let I be the

original instance, and OPT be its optimal makespan. The makespan T will
be referenced throughout the definitions. It refers to the optimal makespan
for the fully simplified instance (I5), on which the integer program is applied,
hence it is the parameter of the binary search and decides the inputs to the
ILP. An L-schedule denotes a schedule with makespan at most L.

5.1. Communication Times

First, we limit the cardinality of Γ , by truncating all communication times
to the nearest multiple of εT , including 0. Let I1 be the instance obtained
after this communication times truncation step.

Lemma 1 (Communication truncation). Let T1 be the optimal makespan for
I1. Then

T1 ≤ OPT ≤ T1 + 2εT

Proof. A T1-schedule for I1 is transformed into a (T1 + 2εT)-schedule for I
by recovering the truncated communication times, which extends each com-
munication time by no more than εT .

Extending incoming communication times delays all branch tasks by no
more than εT . Extending the outgoing communication times delays the sink
by no more than εT . Together, these extend the schedule by at most 2εT . A
T1-schedule for I1 therefore guarantees a (T1 + 2εT)-schedule for I.

Now, the number of different communication costs is |Γ| = 1
ε
.

7

5.2. Big Tasks

Next, the processing times of big tasks are truncated to a nearest nor-
malised value, from the following set, which decreases them by no more than
a 1 + ε factor.

{(1 + ε)nε2T | n ∈ N0} (1)

To illustrate this, Figure 4 shows some processing times truncated to the
nearest order of magnitude. Let I2 be the instance obtained by applying this
task time truncation step to I1.

Figure 4: Truncation of big task processing times

Lemma 2 (Big task truncation). Let T2 be the optimal makespan for I2.
Then

T2 ≤ T1 ≤ T2 + εT

Proof. A T2-schedule for I2 is transformed into a (1 + ε)T2-schedule for I1 by
recovering the truncated processing times. Let Tbig be the total processing
time of all big tasks. A processing time is at most truncated from a value
approaching (1+ε)n+1ε2T , to (1+ε)nε2T , where it was reduced by a factor of
at most 1+ε. Returned to original values, these processing times are increased
by no more than a factor of 1 + ε, and the entire schedule is increased by
no more than εTbig. Tbig is constant in all schedules for any instance, and
Tbig ≤ T where T is the optimal makespan for the final instance.

Therefore, a T2-schedule for I2 can guarantee a (T2 + εT)-schedule for
I1.

8

5.3. Small Tasks

For the rounding strategy in the previous step, each processing time can
only be rounded to within some factor of itself. This would continue indefi-
nitely into the smaller processing times (infinitesimally small compared to T)
and cannot be used to bound the number of processing times. The number
of processing times must be bound in another way, in this case by approx-
imating the small tasks as uniform placeholder tasks. The task set Jsmall
for each communication size vector (γin, γout) ∈ Γ 2, denoted by Jγ

in,γout

small , is
replaced by a set of placeholder tasks Θγin,γout , each of uniform processing
time ε3T , which covers almost the same total processing time. That is, all
small tasks are removed, then, for all (γin, γout) ∈ Γ 2, the following (rounded
down) number of placeholder tasks with size vector (ε3T, γin, γout) are added:

|Θγin,γout| =

⌊∑
j∈Jγ

in,γout

small

ρj

ε3T

⌋
Let I3 be the instance obtained after replacing small tasks in I2 with

placeholder tasks. A schedule for I3, consisting of placeholder tasks instead
of small tasks, can be transformed back into a schedule for I2 by packing
small tasks back into the spaces (time slots) occupied by their placeholder
tasks, using Algorithm 1.

In Algorithm 1, each small task in Jγ
in,γout

small is packed into the corre-
sponding placeholder spaces occupied by Θγin,γout , and this is done for all
communication size vectors γin, γout. We arrange the placeholder tasks of
the same γin in non-increasing order of γout (i.e. larger γout start earlier),
because for any schedule, placeholder tasks may be rearranged this way with-
out increasing the makespan. Hence the algorithm is applied in that order

of γout to {Jγ
in,γout

small | γout ∈ Γ}, for each γin ∈ Γ .
The packing uses a next-fit (next-cover) approach, which tries to fill each

space until it is exceeded (overpacked). When a task from Jγ
in,γout

small exceeds a
space, the rest of the schedule is shifted (pushed forward) to avoid overlaps.
The amount by which the space is overpacked is subtracted from the next

space on the same machine belonging to placeholders for Jγ
in,γout

small or for some

Jγ
in,γout−∆

small (∆ would be a multiple of εT). If a space reduces to zero, we
move to the next space, and continue until the amount of overpacking has
been absorbed. If there are no more spaces to absorb this overpacking, the
processing time of the schedule on this processor is extended, and this over-

9

packing is at most the processing time of an entire placeholder. If we run out

of tasks of a given set Jγ
in,γout

small while filling some space, the remaining space

is given to tasks in the next set in order Jγ
in,γout−∆

small . (The amount of space
subtracted from that set is no more than the amount given back to it.)

Generally, spaces for one communication size vector may not fit (by not
leaving enough time for communication for) tasks of another communica-
tion size vector. However, looking at tasks with the same incoming com-

munication, the spaces left unfilled by some Jγ
in,γout

small can become spaces for

Jγ
in,γout−∆

small . The shorter outgoing communication γout − ∆ guarantees that
no constraint is violated.

Figure 5 shows a schedule with some placeholder tasks. Figure 6 shows
the same schedule with small tasks packed into placeholder spaces, starting
with the larger outgoing communication size. Spaces for the smaller size may
be reduced (top processor) or closed completely (middle processor), but are
recouped with unused spaces (bottom processor). (It is also possible that all
spaces are used when the packing is close to perfect.)

Figure 5: Schedule with placeholder tasks

Lemma 3 (Small task placeholder tasks). Let T3 be the optimal makespan
for I3. Then

T3 − εT ≤ T2 ≤ T3 + 2εT

Proof. Given a schedule for I3 we can construct a valid schedule for I2 using
Algorithm 1. It can at most extend the schedule by ε2T for each γin ∈ Γ

10

Figure 6: Schedule with small tasks recovered

where |Γ | = 1
ε
, and in total εT , because the algorithm ensures that the

overpacking of spaces for a given incoming communication size γin does not
extend the schedule by more than the processing of a small task, which is
ε2T .

Additionally, the numbers of placeholder tasks were rounded down, ig-

noring up to ε3T processing time for each Jγ
in,γout

small . Recovering them extends
the schedule by no more than ε3T · |Γ 2| = εT . Therefore, a T3-schedule for
I3 guarantees a (T3 + 2εT)-schedule for I2, giving

T2 ≤ T3 + 2εT

On the other hand, any L-schedule for instance I2, before the simplifica-
tion, can be transformed into (thus guaranteeing) an (L + εT)-schedule for
I3. This can be done by using next-fit again to pack the placeholder tasks
for each communication size vector (γin, γout) ∈ Γ 2 into the spaces occupied

by the small tasks Jγ
in,γout

small which they will replace. In an optimal schedule
for I2, the small tasks cannot be assumed to start in any particular order
with respect to communication times (unlike with placeholder tasks in I3),
due to their different processing times. The indeterminate order would cause
conflicts if using a process like Algorithm 1. Instead, the next-fit and push-
forward procedure found in Algorithm 1 is applied independently for each

Jγ
in,γout

small , extending the schedule by no more than the processing time of a

11

Algorithm 1: Packing Tasks into Spaces

for γin ∈ Γ in any order do

Arrange placeholder tasks Θγin in decreasing γout order. Treat
them as spaces for their respective small tasks (with the same
γout).

for γout ∈ Γ in decreasing value do

for θ ∈ Θγin,γout in non-decreasing start order do

Fill θ with unscheduled tasks in Jγ
in,γout

small until θ is full or
exceeded

if space θ is exceeded then
t← length exceeded beyond θ
for each task (inc. placeholder tasks /∈ Θγin) or space
after θ on θ’s processor, in increasing start time do

if task then
delay this task by t

if space then
Shorten and delay this space by t
t← t− length of space

if t ≤ 0 then
break

for each θ ∈ Θγin,γout not completely filled do

θ becomes space for Jγ
in,γout−∆

small , with the next smaller
outgoing communication

placeholder task, ε3T , for each (γin, γout) ∈ Γ 2, and in total εT . This means
that T3 ≤ T2 + εT , and

T3 − εT ≤ T2

In other words, if T3 is the optimal makespan for I3, there cannot exist a
schedule for I2 with makespan < T3 − εT , which would otherwise guarantee
a smaller makespan for I3 than T3.

5.4. Placeholder task Arrangement

In a further simplified instance I4, placeholder tasks for each incoming

communication size, denoted Θγin

small ∀γin are forced to only exist in groups
of 1

ε
such placeholder tasks (with total processing time ε2T), or in a stub,

which means a group of ≤ 1
ε

placeholder tasks. At most 1
ε

stubs can exist

12

on one processor, as the stub for each incoming communication size can be
reduced to one.

Algorithm 2 can do this placeholder task arrangement for a schedule
where they are not grouped, by shifting placeholder tasks to earlier start
times and delaying tasks between the old and new start times as needed.
Figure 7 shows an example schedule on a processor before and after the
transformation, for 1

ε
= 3. The right arrow indicates delayed communications

in the transformed schedule, as tasks were shifted to the right.

Algorithm 2: Shifting placeholder tasks into blocks

for γin ∈ Γ do

for each placeholder task j ∈ Θγin, in non-decreasing start time do
if there is an unfinished block (with < 1

ε
placeholder tasks)

before j then
Start j at the end of that block
Delay all tasks (including other placeholder tasks) between
j’s old and new start times by ε3T

else
j is the start of a block

Figure 7: Shifting placeholder tasks into blocks, here 1/ε = 3

In the eventual integer program, a group of placeholder tasks is scheduled
as a single task. This reduces the variety of schedules and the size of the
integer program needed to find them. Let I4 be the instance of the problem
with this grouping restriction to the solution.

13

Lemma 4 (Placeholder task arrangement). Let T4 be the optimal makespan
for I4.

T4 − εT ≤ T3 ≤ T4

Proof. A schedule for I3, where tasks are freely arranged, can be transformed
into a schedule for I4, where placeholder tasks are grouped together (into
blocks) using Algorithm 2.

A schedule is transformed without shifting more than 1
ε

placeholder tasks
past any one task, which does not delay the schedule by more than ε2T (due

to delayed communications), for each Θγin

small ∀γin ∈ Γ , and in total εT .

After this process, each Θγin

small ∀γin ∈ Γ could have left one stub, or
|Γ | = 1

ε
stubs in total, which complies with the restriction on I4.

Therefore, any L-schedule for I3 guarantees an (L + εT)-schedule for I4,
and if T4 is the optimal makespan for I4, then the optimal makespan for I3

cannot be less than T4 − εT .
Lastly, T4 is no smaller than T3 as placeholder tasks in I3 can be freely

arranged, hence they can be in the same order as in T4 if that is optimal.

5.5. Gap Sizes

As with task sizes, we limit the resolution of gaps in the schedule. Gaps
are idle times on a processor, before a branch task waiting for its communi-
cation to arrive. Their lengths are restricted to multiples of ε2T . Let I5 be
the instance where idle time gaps are restricted in this way.

Lemma 5 (Gap sizes). Let T5 be the optimal makespan for I5.

T5 − ε2T ≤ T4 ≤ T5

Proof. A schedule for I4 can be transformed into a schedule for I5, by ad-
justing the size of each of its gaps into a multiple of ε2T , the processing time
of a placeholder block, which is the smallest effective task (that can occur
repeatedly, which excludes stubs).

This can be done by packing empty spaces of size ε2T (which can be
thought of as filler tasks of size vector (ε2T, 0, 0), that are additional to the
instance), into the existing gaps between tasks, filling each gap until exceeded
(next-fit), delaying tasks scheduled after them as needed. Figure 8 shows this
transformation. The schedule on top has gaps of any length, and the schedule

14

Figure 8: Representing empty spaces as filler tasks

beneath has the same gaps represented by filler tasks, or closed completely
due to delays.

This way, the schedule is extended by no more than ε2T , so an L-schedule
for I4 guarantees an (L + ε2T)-schedule for I5, and if T is the optimal
makespan for I5, then there cannot be a schedule for I4 with makespan less
than T − ε2T .

Lastly, T5 is no smaller than T4 as all tasks are in the same order, and no
task in T4 starts later than in T5.

I5 is the instance for which the integer program can find an optimal
solution. The smallest bound T found by the ILP is equal to its optimal
makespan T5.

6. Formulation of the Integer Linear Program

The integer linear program is formulated for instance I5, consisting of big
tasks and placeholder tasks, with restrictions on their placements which are
needed in some of the following. (It is applied to the same inputs as I3 but
is only optimal for I5).

The constructed ILP is a configuration ILP and a schedule is constructed
by selecting processor configurations. Let A = P×Γ×Γ be the set of all task
size vectors after it has been bounded by the simplifications. A configuration
C describes a set of tasks (multiset of task size vectors (ρ, γin, γout) ∈ A,
defined C : A→ N0) to be scheduled onto a processor, and be the only tasks
scheduled there. (For example, for a set A with three task size vectors a, b, c,
a configuration (1, 0, 2) would mean that one task of size vector a, none of

15

size vector b, and two of size vector c go onto a processor, which will execute
these tasks only.) The tasks in a valid configuration must be able to execute
on one processor in some sequence, as well as finish communicating, under
the time bound T . The set of all needed configurations is denoted by C.

Variables xC ∀C ∈ C select the number of each configuration used.
Hence, a solution to this ILP is a selection of configurations, one for each pro-
cessor, which together can schedule all tasks in the given instance, respecting
time bound T .

The configuration ILP that is constructed has a matrix that is constant
(dimensions and elements) for each given ε. In other words, the constraints
are constant, as well as the number of variables. Only numeric values of the
input vector have increasing size O(|J |). In addition, the ILP is unaffected
by the size of elements in J . This makes it small in terms of the input size.

Next we formulate the constraints for the ILP and then we discuss how
to obtain the configurations.

6.1. Formulating Constraints

Let us first discuss task sizes. A task in a configuration can be thought
of as a slot which fits a task of that size vector, or in fact a size vector with
smaller communication times. A slot with size vector (ρ, γin, γout) can fit any
task with size vector (ρ, γin− , γ

out
−), where γin ≥ γin− ∧γout ≥ γout− . This kind of

generalisation is applied to communication times but not processing times,
because fitting smaller communication times into slots does not change the
configuration, unlike with processing times, where more tasks would fit into
the configuration if processing times were reduced.

To make use of this, slots can be passed down to smaller size vectors, and
only configurations with the largest possible slots are needed. Let Nρ,γin,γout

be the total number of tasks of size vector (ρ, γin, γout) in the instance, and
let Cρ,γin,γout be the number of slots of that size vector in configuration C.
Normally, without reusing slots, we would have∑

C∈C

xCCρ,γin,γout ≥ Nρ,γin,γout ∀(ρ, γin, γout)

which requires the number of slots to be enough for the given tasks at
each individual size vector. Now, taking slot reuse into account, we can
have the following constraint, where S denotes the number of slots passed on
to smaller-communication size vectors, and S+ denotes the number of slots
passed down in the same way from larger-communication size vectors.

16

∑
C∈C

xCCρ,γin,γout + S+ − S ≥ Nρ,γin,γout

To implement this, some variables are introduced. S+ is replaced with
S>in
ρ,γin+∆,γout

+ S>out
ρ,γin,γout+∆

, where S>in
ρ,γin+∆,γout

is the number of slots passed
down from the task size vector with the next bigger incoming communication,
and S>out

ρ,γin,γout+∆
is the number of slots passed down from the size vector with

next bigger outgoing communication. S is replaced with S>in
ρ,γin,γout

+S>out
ρ,γin,γout

,

where S>in
ρ,γin,γout

is the number of slots to pass down to the size vector with the

next smaller incoming communication, and S>out
ρ,γin,γout

is the number of slots to
pass down to the size vector with the next smaller outgoing communication.
The constraint becomes

∑
C∈C

xCCρ,γin,γout + S>inρ,γin+∆,γout + S>outρ,γin,γout+∆

− S>inρ,γin,γout − S
>out
ρ,γin,γout ≥ Nρ,γin,γout

∀(ρ, γin, γout) ∈ A (2)

Figure 9 visualises the S variables. Each grid cell is a task communication
size vector, and the arrows represent the directions in which slots are passed
on, from large to small size vectors.

Only one each of the source and sink tasks can be included in all con-
figurations. Let Csource = 1 if C contains the source, and likewise for the
sink.

∑
C∈C

xCCsource = 1 (3)∑
C∈C

xCCsink = 1 (4)

The total number of configurations selected is equal to the number of
processors. ∑

C∈C

xC = m (5)

17

Figure 9: Transfer of slots from large to small size vectors

To summarise, the inputs (new for each T) are:

Nρ,γin,γout ∀(ρ, γin, γout) ∈ A

the variables are:

xC ∀C ∈ C

S>inρ,γin,γout , S
>out
ρ,γin,γout ∀(ρ, γ

in, γout) ∈ A

and the constraints are the equations (2)-(5). These establish the ILP.

6.2. Obtaining the Configurations

Ignore the source and sink for a moment, and consider only configurations
C ∈ Cremote of branch tasks scheduled remotely. Only maximal configura-
tions (not subsets of other ones) are needed, as extra spaces provided by
a configuration can be unused. In addition, configurations which can form
other valid configurations by increasing the communication costs of its tasks,
are not needed. This is because they can be represented by more general
configurations where every task size vector is already maximised (in terms of

18

communication time), if the ILP is formulated in a way that allows each slot
in a configuration to fit any smaller sized task (in terms of communication
time), as was mentioned in the previous section. We formalise this as:

Cremote = {C ∈ NA
0 | V alid(C) ∧Max(C)}

Max(C) =⇒ ∀x : C ∪ {x} /∈ Cremote

Max(C) =⇒ ∀(ρ, γ) : C \ {(ρ, γ)} ∪ {(ρ, γ+)} /∈ Cremote

where γ = γin, γout and γin+ > γin ∨ γout+ > γout

Once Cremote is obtained, replicating Cremote with the source, sink, or
both added to each configuration (with corresponding communication time
changes) will give the rest of the configurations.

Each C ∈ C is encoded in the matrix of the ILP as a vector of multiplic-
ities indexed by task sizes, where C contains the configurations needed to
represent every possible schedule, of task size vectors in A. As A is constant
and finite (section 5), so are their configurations C.

C can be built with the following procedure. First, consider task process-
ing times only, and ignore all communication costs. Let H be a (maximal)
subset of branch tasks (including blocks of placeholder tasks, and containing
at most 1

ε
stub blocks) that can fit onto one processor, which means having

sum of processing times ≤ T . H is the set of all possible maximal subsets
H. For each H ∈ H , add all its permutations G to set G. Each G ∈ G
implies start times for its tasks, assuming all communications arrive in time
meaning that σ(j) = σ(i) + ρi for i ≤G j, and σ(min ≤G) = 0. Then, for

every G ∈ G, add C = {(ρj,
⌊
σ(j)
εT

⌋
· εT,

⌊
T−σ(j)−ρj

εT

⌋
· εT) | j ∈ G} to Cremote

(note that communication values are truncated to match those obtained af-
ter simplifications) In other words, each ordering becomes a configuration
after assigning the maximum allowable communication times to each task
slot given its position in the order and the resulting start time, as shown in
figure 10.

All configurations Cremote created this way are part of the final set, C ⊃
Cremote. In addition, for every C ∈ Cremote:

{jsource} ∪ {(ρ, γmax, γout) | (ρ, γin, γout) ∈ C} ∈ C

{jsink} ∪ {(ρ, γin, γmax) | (ρ, γin, γout) ∈ C} ∈ C

{jsource, jsink} ∪ {(ρ, γmax, γmax) | (ρ, γin, γout) ∈ C} ∈ C

19

Figure 10: Obtaining a configuration

These are configurations where the incoming communication, outgoing
communication, or both, are not incurred because the source, sink, or both,
have been scheduled to them. Therefore, they can fit tasks with any value of
the corresponding communication time(s).

Lemma 6. There exists C ∈ C to represent any possible schedule on one
processor

Proof. Let K be any set of tasks that can be scheduled on a processor without
violating the time bound T , and K ′ be the same set of tasks with communi-
cation times ignored. The sum of processing times of these tasks is ≤ T , so
∃H ∈H : K ′ ⊆ H. There is some permutation G ∈ G of this H that implies
the same start times for those tasks in K as they would be viably scheduled.
Lastly, the C ∈ C that is created from G has the maximum possible com-
munication times for all of its tasks, including those which correspond to the
ones in K, and when treated as slots, they will fit all corresponding tasks in
K.

Lemma 7. The number of configurations |C| = 2O(1/ε2 log 1/ε)

20

Proof. Let Pbig be the set of simplified processing times for big tasks, in-
cluding a block of 1

ε
placeholder tasks. Let Pstub be the set of processing

times for stub blocks of < 1
ε

placeholder tasks. For the truncated processing
times of the big tasks, equation (1), it holds (1 + ε)nε2T ≤ T , from which
follows n ≤ 2

log(1+ε)
log 1

ε
, hence |Pbig| = O(1

ε
log 1

ε
) for small ε < 1, and

|Pstub| = O(1
ε
).

A set H ∈ H can be described as multisets of processing times Hbig :
Pbig → [1

ε2
] and Hstub : Pstub → [1

ε
], where 1

ε2
is the most number of any ρ ∈

Pbig (minPbig = ε2T) a processor can execute, and 1
ε

the most number of stubs

allowed on a processor. |H| = O((1
ε2

)|Pbig |×(1
ε
)|Pstub|) = 2O(|Pbig | log 1

ε2
+|Pstub| log 1

ε
) =

2O(1/ε log2 1/ε).
There are O(1

ε2
) individual tasks in each H ∈ H , of which there are

O(1
ε2

)! = O((1/ε2)1/ε2) = 2O(1/ε2 log 1/ε) permutations. Together, these create

|Cremote| = |G| = |H| × 2O(1/ε2 log 1/ε) = 2O(1/ε2 log 1/ε), and |C| = 4 · |Cremote|
is of the same order.

7. Result

An EPTAS can be formed using the processes (Figure 3) described above,
which has the following bounds and complexity.

From the lemmas 1 to 5:

(1− 2ε− ε2)T ≤ OPT ≤ (1 + 5ε)T

In other words, the optimum makespan is no shorter than (1 − 2ε − ε2)T ,
while the final makespan obtained by the EPTAS is no longer than (1+5ε)T .
Therefore, the schedule obtained by the EPTAS has makespan no longer than

(1 + 5ε)

(1− 2ε− ε2)
OPT

Let N = |J | be the number of tasks in the input. Simplifying the instance
and obtaining inputs for the ILP takes O(N) time. Using a binary search to
find T , the EPTAS has running time in the form (ILP +O(N)) · log(N).

The ILP has a number of constraints l given by the number of task size
vectors O(1

ε3
log 1

ε
), a number of variables n dominated by the number of

configurations 2O(1/ε2 log 1/ε), and elements in the matrix no bigger than O(1
ε2

)

21

We make use of the result in [16], which has an algorithm that solves an
ILP in time

O(H)m · log(∆) · log(∆ + ‖b‖∞) +O(nl)

where H is bounded by the maximum of the 1-norm of the columns, which
corresponds to O(1/ε3) (the most number of tasks possible in a configura-
tion), ‖b‖∞ = O(N · 1

ε
) is the largest element in the input, which is bounded

by the maximum number of placeholder tasks, and ∆ = O(1
ε2

) is the largest
element in the matrix. This has a low cost relative to the number of vari-
ables, which is the largest dimension in this configuration ILP. Substituting
the values, the ILP is solved in time

O(1/ε3)(1/ε3 log 1/ε) · log 1/ε2 · log(1/ε2 +N/ε)

+2O(1/ε2 log 1/ε) · O(1/ε3 log 1/ε)

= 2O(1/ε3 log2 1/ε) · (log 1/ε2 + log(1 +Nε)) + 2O(1/ε2 log 1/ε)

= 2O(1/ε3 log2 1/ε) · O(log(N) + log(ε))

= 2O(1/ε3 log2 1/ε)O(logN)

Theorem 8. The EPTAS finds a schedule with makespan no longer than:

(1 + 5ε)

(1− 2ε− ε2)
OPT

in time:
2O(1/ε3 log2 1/ε)O(log2N) +O(N logN)

This time complexity can be improved with the use of an efficient α-
approximation for this problem, if one exists, and we believe it likely does (a
result could be forthcoming). With the use of an α-approximation, a range
[`, α`] can first be obtained, where OPT ∈ [`, α`]. Then, apply simplifica-
tions to the processing and communication times of the original instance,
using ` as the guessed makespan, to obtain a simplified instance I0 with only
O(1/ε3 log 1/ε) task size vectors (section 6.2). After this, all additional in-
stances (for different guessed makespans) are obtained by simplifying from I0

in O(1/ε3 log 1/ε) time. In addition, only a O(1/ε) number of values in [`, α`]

22

(in increments of O(ε) · `) need to be considered, for the purpose of having
an EPTAS (the approximation ratio will still be 1 + cε for some constant c).
With these methods, the time complexity of the EPTAS will be given by the
following, where α-APPROX is the time complexity of the α-approximation.

(ILP +O(1/ε3 log 1/ε)) · O(log 1/ε) +O(N) + α-APPROX

= 2O(1/ε3 log2 1/ε)O(logN) +O(N) + α-APPROX

7.1. Scheduling Fork-Graphs and Join-Graphs

The EPTAS can be applied in the proposed form to a fork graph (or
join graph, which reverses to become a fork-graph), by assigning 0 outgoing
communication cost to all branch tasks. This results in a smaller set of task
size vectors P × Γ × {0}, with cardinality reduced by a 1

ε
factor compared

to the set of task size vectors for the fork-join problem. This would reduce
the order of the number of constraints by a 1

ε
factor, resulting in a reduced

total time complexity of:

2O(1/ε2 log2 1/ε)O(log2N) +O(N logN)

Although the spare slot variables (e.g. S>inρ,γ) could actually be eliminated
entirely in this situation, it would not reduce the order of the total number
of variables, which is dominated by the number of configurations and is not
reduced.

8. The Release-Times and Deadlines Scheduling Problem

A similar problem to scheduling fork-join graphs is scheduling tasks with
release times and deadlines (denoted P |rj|Lmax in the α|β|γ-notation), as
described in the following. A set J of independent tasks are to be scheduled
on m processors. Each task j has a release time rj, which is the earliest
time it may begin executing, and a deadline dj before which it must finish.
This is equivalent to scheduling a fork-join graph under time T (where T
can be set to the latest deadline maxj∈J dj), with all communication delays
incurred, so that a release time is effectively an incoming communication
delay, and a deadline is effectively time T minus an outgoing communication
delay. The objective is to minimise the maximum lateness of any task over
its deadline, L = maxj∈J(σ(j) + ρj − dj), which is equivalent to finding a

23

minimum schedule with length T +LOPT which gives a minimum lateness of
LOPT .

Therefore, the EPTAS can be adapted to approximate the minimum L to
within a range, in the following way involving only a few modifications. Let
an instance of the problem be called U , which requires a set J of independent
tasks with release-times and deadlines to be scheduled onto m processors.

To begin with, create a fork-join graph with branch task j′ for each j ∈ J ,
with γinj′ = rj and γoutj′ = T − dj, where T is the latest deadline, maxj∈J dj.
Next, schedule this fork-join graph under a minimum amount of time T + L
on m processors, using the EPTAS. A modification must be made to the
scheduling rules that all communication costs are incurred (meaning that
effectively all tasks are scheduled remotely from the source and sink tasks).
To implement this, remove all configurations containing the source or sink
tasks, and assume they have been scheduled (i.e. remove the constraints∑

C xCCsource = 1,
∑

C xCCsink = 1). Let this adapted fork-join scheduling
problem be called U ′.

Let a T -schedule for U ′ denote a schedule with length at most T , and let
an L-schedule for U denote a schedule with at most L lateness.

Lemma 9. A (T + L)-schedule for U ′ implies an L-schedule for U , (vice
versa) an L-schedule for U implies a (T + L)-schedule for U ′.

Proof. Given a (T + L)-schedule for U ′, create an equivalent schedule for U
where each j ∈ J in problem U is scheduled at the same time and on the
same processor as its equivalent task j′ in problem U ′.

Task j′ can finish as late as T + L − γinj′ without extending its (T + L)-
schedule. Therefore, task j will also finish no later than T + L− γinj′ , which
would exceed its deadline, T − γinj′ , by no more than L.

In this way, an L-schedule for U can be obtained from a (T +L)-schedule
for U ′. The opposite result can be obtained in the reverse of this process.

Therefore, an L-schedule for U exists if and only if a (T + L)-schedule
exists for U ′.

Lemma 10. An approximate solution obtained by the EPTAS for U ′, and a
guaranteed range for the optimal solution

(1− aε)(T + L) ≤ OPT ≤ (1 + bε)(T + L)

24

(where a, b are constants, from section 7), transform into an approximate
solution for U , and a guaranteed range for the optimum lateness

L− aε(T + L) ≤ LOPT ≤ L+ bε(T + L)

Proof. Any (1+bε)(T +L)-schedule given by the EPTAS guarantees a sched-
ule for U with lateness at most (1 + bε)(T + L) − T = L + bε(T + L) (by
lemma 9), which explains the upper bound.

If the EPTAS reports a lower bound of (1− aε)(T +L) for U ′, a schedule
for U with lateness less than L − aε(T + L) would guarantee a schedule for
U ′ shorter than T + L − aε(T + L) = (1 − aε)(T + L) (by lemma 9), which
would be impossible, by the correctness of the EPTAS.

9. Conclusion

This paper presents an EPTAS for scheduling fork-join task graphs with
communication costs. At the centre of this is a procedure which, given a time
bound T , either returns a schedule with makespan no longer than (1 + bε)T ,
or correctly determines that there is no schedule with makespan shorter than
(1 − aε)T , where a > 0 and b > 0 are constants. Using this test, a binary
search is carried out to reach a range for the optimum, and return a solution
within it. The EPTAS can be used on a fork or join DAG individually
with reduced time complexity. It also transfers to the problem of scheduling
independent tasks with release times and deadlines, minimising the lateness.

References

[1] E. Bampis, A. Giannakos, and J.C. König. “On the complexity of
scheduling with large communication delays”. In: European Journal
of Operational Research 94.2 (1996), pp. 252–260.

[2] M. Cieliebak, T. Erlebach, F. Hennecke, B. Weber, and P. Widmayer.
“Scheduling With Release Times and Deadlines on A Minimum Num-
ber of Machines”. In: Exploring New Frontiers of Theoretical Informat-
ics. Ed. by J.J. Levy, E. W. Mayr, and J. C. Mitchell. Boston, MA:
Springer US, 2004, pp. 209–222.

[3] J. Du, J.Y.-T. Leung, and G.H. Young. “Scheduling chain-structured
tasks to minimize makespan and mean flow time”. In: Information and
Computation 92.2 (1991), pp. 219–236.

25

[4] N. Fisher and S. K. Baruah. “A fully polynomial-time approximation
scheme for feasibility analysis in static-priority systems with arbitrary
relative deadlines”. In: 17th Euromicro Conference on Real-Time Sys-
tems (ECRTS’05) (2005), pp. 117–126.

[5] M.R. Garey and D.S. Johnson. “Strong NP-completeness results: mo-
tivation, examples, and implications”. In: Journal of the Association
for Computing Machinery 25.3 (1978), pp. 499–508.

[6] M.R. Garey, D.S. Johnson, R.E. Tarjan, and M. Yannakakis. “Schedul-
ing opposing forests”. In: SIAM Journal on Algebraic Discrete Methods
4.1 (1983), pp. 72–93.

[7] P. C. Gilmore and R. E. Gomory. “A Linear Programming Approach to
the Cutting-Stock Problem”. In: Operations Research 9.6 (Dec. 1961),
pp. 849–859.

[8] M. X. Goemans and T. Rothvoß. “Polynomiality for Bin Packing with
a Constant Number of Item Types”. In: Proceedings of the Twenty-
fifth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA
’14. Portland, Oregon: Society for Industrial and Applied Mathematics,
2014, pp. 830–839.

[9] L. A. Hall and D. B. Shmoys. “Approximation schemes for constrained
scheduling problems”. In: 30th Annual Symposium on Foundations of
Computer Science. Oct. 1989, pp. 134–139.

[10] C. Hanen and A. Munier. “An approximation algorithm for scheduling
dependent tasks on m processors with small communication delays”. In:
Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies
and Factory Automation. ETFA’95. Vol. 1. Oct. 1995, 167–189 vol.1.

[11] C. Hanen and A. Munier. “Performance of Coffman-Graham schedules
in the presence of unit communication delays”. In: Discrete applied
mathematics 81.1-3 (1998), pp. 93–108.

[12] D. S. Hochbaum and D. B. Shmoys. “Using Dual Approximation Al-
gorithms for Scheduling Problems Theoretical and Practical Results”.
In: Journal of the ACM 34.1 (Jan. 1987), pp. 144–162.

[13] J. A. Hoogeveen, J. K. Lenstra, and B. Veltman. “Three, four, five,
six, or the complexity of scheduling with communication delays”. In:
Operations Research Letters 16.3 (1994), pp. 129–137.

26

[14] J.J. Hwang, Y.C. Chow, F.D. Anger, and C.Y. Lee. “Scheduling prece-
dence graphs in systems with interprocessor communication times”. In:
SIAM Journal on Computing 18.2 (1989), pp. 244–257.

[15] K. Jansen, K.M. Klein, and J. Verschae. “Closing the Gap for Makespan
Scheduling via Sparsification Techniques”. In: 43rd International Collo-
quium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy. Vol. 55. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016, 72:1–72:13.

[16] K. Jansen and L. Rohwedder. On Integer Programming, Discrepancy,
and Convolution. 2018. arXiv: 1803.04744 [cs.DS].

[17] S. Lam and R. Sethi. “Worst case analysis of two scheduling algo-
rithms”. In: SIAM Journal on Computing 6.3 (1977), pp. 518–536.

[18] E. L. Lawler, J. K. Lenstra, A.H.G. Rinnooy Kan, and D. B. Shmoys.
“Sequencing and scheduling: Algorithms and complexity”. In: Hand-
books in operations research and management science 4 (1993), pp. 445–
522.

[19] J. K. Lenstra, M. Veldhorst, and B. Veltman. “The complexity of
scheduling trees with communication delays”. In: Journal of Algorithms
20.1 (1996), pp. 157–173.

[20] J.K. Lenstra and A.H.G. Rinnooy Kan. “Complexity of scheduling
under precedence constraints”. In: Operations Research 26.1 (1978),
pp. 22–35.

[21] A. Munier. “Approximation algorithms for scheduling trees with gen-
eral communication delays”. In: Parallel Computing 25.1 (Jan. 1999),
pp. 41–48.

[22] A. Munier and C. Hanen. “Using duplication for scheduling unitary
tasks on m processors with unit communication delays”. In: Theoretical
Computer Science 178.1-2 (1997), pp. 119–127.

[23] V. J Rayward-Smith. “UET scheduling with unit interprocessor com-
munication delays”. In: Discrete Applied Mathematics 18.1 (1987), pp. 55–
71.

[24] T. A. Varvarigou, V. P. Roychowdhury, T. Kallath, and E. Lawler.
“Scheduling in and out forests in the presence of communication de-
lays”. In: IEEE Transactions on Parallel and Distributed Systems 7.10
(1996), pp. 1065–1074.

27

