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Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine
2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous
promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1
inhibitors had entered clinical trials so far, and those agents have generated disappointing
clinical results. Improved understanding of molecular mechanisms involved in the
immune-regulatory function of the tryptophan catabolism is likely to optimise
therapeutic strategies to block this pathway. The immunosuppressive role of
tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a
mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine.
Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated
immunosuppression by competing with kynurenine for entry into immune T-cells
through the amino acid transporter called System L. This hypothesis stems from the
observations that elevated tryptophan levels in TDO-knockout mice relieve
immunosuppression instigated by IDO1, and that the vacancy of System L transporter
modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential
therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly
inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous
compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral
supplementation with System L substrates such as leucine represents a novel potential
therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-
tumour immunity.
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INTRODUCTION

The human immune system can recognise and eradicate tumour cells. Thus, the immunity plays a
key role in reducing cancer incidence (1). However, the immunity is a double-edged sword.
Elimination of immune-sensitive tumour cells drives evolution of tumours towards the immune-
resistant phenotype in a process called cancer immune-editing (2). This, in turn, leads to malignant
Abbreviations: AhR, Aryl hydrocarbon Receptor; GCN2, General control non-derepressible 2; IDO1, Indoleamine 2,3-
dioxygenase 1; KP, Kynurenine Pathway; mTOR, Mammalian target of rapamycin; PD-1, Programmed cell death protein 1;
TDO, Tryptophan 2,3-dioxygenase.
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and clinically apparent cancer. It is of utmost importance to
identify and silence tumoural immune escape mechanisms to
restore the patient’s anti-tumour immunity. Inhibiting the T-cell
regulatory checkpoints, such as the programmed cell death
protein 1 (PD-1) axis, by monoclonal antibodies have shown
remarkable clinical responses (3). Some patients on the anti-PD-
1 inhibitors experience durable tumour regressions but a sizeable
fraction of patients do not benefit from these agents (4). This has
triggered a search for mechanisms that could be modulated to
optimise cancer patients’ responses to immune checkpoint
inhibitors (5, 6). One of the key candidates are enzymes IDO1
and TDO that accelerate immunosuppressive tryptophan
catabolism along the kynurenine pathway (7).

Initially thought of as a “holy grail” for potentiating cancer
immunotherapy, the disappointing outcomes of IDO1 inhibitors
in clinical trials (8–10) have generated scepticism (11–13).
However, the evidence indicates that the concept of blocking
the kynurenine pathway for potentiating immunotherapy is
sound and holds true in preclinical models. It is likely that the
most optimal therapeutic approaches to silence the kynurenine
pathway have not yet been identified. We envision that improved
understanding of the immunosuppression induced by the
kynurenine pathway will yield insights into optimised
therapeutic strategies.

In this perspective, we summarise the current knowledge
about the mechanisms mediating immunosuppression by IDO1/
TDO, propose a novel immune-regulatory function for the
IDO1/TDO’s substrate tryptophan, and discuss the potential
impact of this novel function on therapeutic strategies to block
the immunosuppressive tryptophan catabolism.
IMMUNOSUPPRESSIVE
TRYPTOPHAN CATABOLISM

Mammals metabolise more than 90% of tryptophan via the
kynurenine pathway (KP) (14). The resulting tryptophan
metabolites are involved in essential biological processes such
as immune regulation, energy metabolism and production of an
important enzyme co-factor NAD (15–17). The first and rate
limiting step of the KP, tryptophan oxidation, is catalysed by
intracellular enzymes IDO1 and TDO (18). There is also a third
enzyme called IDO2, but its low catalytic activity suggests that its
principal role is unlikely to oxidise tryptophan (19, 20).

Although both IDO1 and TDO catalyse the identical
biochemical reaction, their physiological roles differ. IDO1
regulates peripheral immunity (21) and is induced by pro-
inflammatory molecules including type I and II interferons,
TNF-a, lipopolysaccharide, and prostaglandin E (22–25) in a
wide range of cells including myeloid cells, fibroblasts, and
cancer cells (26). Due to its inducible nature, IDO1 is absent in
most tissues except for the sites where the body is exposed to
non-self antigens such as lung, intestine, pregnant placenta, and
lymphoid organs (27). In contrast, the evolutionarily older TDO
is primarily expressed in the liver where it degrades excess
dietary tryptophan (28–30). TDO can be induced by
corticosteroids and activated by excess tryptophan (31–33).
Frontiers in Immunology | www.frontiersin.org 2
The immunosuppressive role of the KP came to the fore in
1998 as a mechanism that confers an allogeneic foetus the ability
to evade destruction by the mother’s T-cells (34). Researchers
soon realised that the powerful immunosuppressive effect of KP
could be co-opted by cancers to escape immune destruction (35,
36). It is now well established that a wide range of different
cancer types thrive on accelerated tryptophan catabolism (27,
37–39). However, the mechanisms whereby KP regulates
immunity are not completely understood.
Mechanisms Involved in
Immunosuppression Mediated by
Accelerated Tryptophan Catabolism
As KP is a metabolic pathway, its immune regulatory role has
been attributed mainly to tryptophan deprivation and the
accumulation of the kynurenine pathway metabolites (Figure
1) (40). However, IDO1 also has a non-enzymatic function in
which the enzyme acts as a signalling protein in a non-canonical
NF-kB pathway driven by immunosuppressive cytokine TGF-b
(41–43). The contribution of each of these mechanisms to the
immune regulation is actively discussed in the research
community but accumulating evidence suggests that
kynurenine is likely the main culprit (44). Increased
kynurenine levels have been associated with reduced function
of Natural Killer cells (45) and T-cells (46, 47). Mechanistically,
kynurenine’s immune regulatory function is primarily linked to a
transcription factor called aryl hydrocarbon receptor (AhR).
Binding of kynurenine to AhR induces differentiation and
activation of immunosuppressive T-regulatory cells (48–53),
contributes to the recruitment of tolerogenic myeloid cells such
as macrophages (54), and increases expression of the immune
checkpoint molecule PD-1 on tumour-specific CD8+ T-cells
(Figure 1) (55).

In contrast, the role of tryptophan deprivation in immune
regulation is somewhat controversial. An earlier study has
demonstrated that tryptophan deprivat ion inhibits
proliferation and induces apoptosis in T-cells (56). But these
experiments have been mostly carried out in the dish where
tryptophan can get depleted. As tumours accelerating
tryptophan catabolism still contain sufficient levels
of tryptophan (57–59), it is likely that tumoural tryptophan
levels cannot reach levels sufficiently low to activate the stress
response pathways to low amino acid levels such as the general
control non-derepressible-2 (GCN2) and the mammalian target
of rapamycin (mTOR) (Figure 1). The key protagonist involved
in regulation of T-cell responses to tryptophan deprivation was
initially suspected to be the GCN2 kinase (60). GCN2 mediates
conserved stress response pathway to amino acid deprivation in
eukaryotes and was shown to be activated in T-cells in response
to tryptophan deprivation (60, 61). However, this finding was
recently challenged by two studies. Sonner and colleagues
demonstrated no difference in the level of immune responses
between the GCN2-proficient and GCN2-deficient T-cells
against B16 melanomas (59). Similarly, tryptophan deprived T-
cells ceased proliferation even in the absence of the GCN2 gene
(62). The unlikely role of GCN2 as a low tryptophan sensor in
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immune cells is further corroborated by studies questioning the
canonical role of GCN2 as a sensor of amino acid deficiency in
mammals. GCN2 stress response pathway has been widely
accepted as a mechanism for maintenance of amino acid
homeostasis by controlling the feeding behaviour of omnivores
(63). However, more recent studies challenged this paradigm as
no significant difference in feeding behaviour was observed
between the GCN2-deficient and GCN2-proficient mice that
were amino acid-deprived (64). Complementary to GCN2, the
mTOR senses amino acid sufficiency (65) and was proposed as a
mediator of cellular stress response to low tryptophan levels.
Metz and colleagues reported the repression of mTOR kinase
activity in tryptophan-deprived HeLa cells, which eventually led
to cell cycle arrest and apoptosis (66). It is not yet understood if
mTOR could sense low tryptophan levels in immune cells.

The collective evidence accumulated to date tends to favour
the conclusion that tryptophan serves primarily as a kynurenine
precursor rather than inducing stress by its deprivation in vivo
(67). However, a recent study by Schramme and colleagues
provides a clue to a new immune regulatory function of
tryptophan (57). In this study, elevated (5 to 10-fold) systemic
tryptophan levels reaching 500 µM in TDO2- knockout mice
Frontiers in Immunology | www.frontiersin.org 3
overturned tumoural immune suppression induced by IDO1.
Consequently, anti-PD1 immune checkpoint therapy alone was
sufficient to impede the growth of IDO1-proficient MC38 colon
tumours in these TDO2-knockout mice (57). That is a striking
observation but how can it be explained mechanistically? How can
elevation in circulating tryptophan levels overcome IDO1-
mediated immunosuppression in the tumour? We posit that
elevated tryptophan levels reverse the immunosuppression by
outcompeting kynurenine for entry into T-cells through a shared
amino acid transporter.

Tryptophan and Kynurenine:
Transporter Competitors
IDO1 and TDO are intracellular enzymes; hence they require the
cells to import tryptophan from the extracellular space. Import of
large amino acids such as tryptophan typically occurs through
the transporter called System L (68, 69). System L transporters
are heterodimeric transmembrane proteins comprising a
glycoprotein heavy chain (CD98) and a catalytic light chain
(LAT1 or LAT2). Kynurenine can also be transported into cells
through the System L transporters (70). It has been suggested
that the transporters are bidirectional and can exchange
A

B

FIGURE 1 | The immunosuppressive functions of IDO1/TDO-mediated tryptophan catabolism. Extrahepatic and hepatic cells express indoleamine 2,3-dioxygenase
1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) to consume tryptophan and give rise to numerous bioactive metabolites such as kynurenine. Elevated expression of
IDO1 or TDO, such as in cancer, increases the relative kynurenine levels while reducing tryptophan content. Kynurenine enters cells via System L transporters.
(A) Increased kynurenine levels inhibit proliferation of T-cells and natural killer (NK) cells by interacting with aryl hydrocarbon receptor (AhR) to express programmed
cell death protein 1 (PD-1). Previous studies have suggested the involvement of the general control non-deprepressible-2 (GCN2) kinase and mammalian target of
rapamycin (mTOR) in proliferation inhibition but the exact mechanism through which this occurs still remains unresolved. (B) Kynurenine induces differentiation of
naïve CD4+ T-cells to immunosuppressive T-regulatory cells by activation of AhR and induction of the FoxP3 transcription factor. Taken together, an immune
suppressed tumour microenvironment is created that promotes survival of cancer cells.
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tryptophan for kynurenine in cancer cells (71). This would
explain the ability of cancer cells to siphon tryptophan from
the microenvironment and enrich it with kynurenine to create an
immunosuppressive milieu. As System L transports a broad
range of amino acids, the transporter substrates compete with
each other, and the probability of interacting with the transporter
depends on the relative levels of the specific amino acid and their
respective affinity for the transporter (72).

This observation indicates that the relative ratio of tryptophan to
kynurenine will influence the amount of kynurenine entering T-
cells. Therefore, tryptophan concentration can be viewed as a
rheostat that modulates kynurenine entry into T-cells and the
resulting immunosuppression (Figure 2). This concept is
supported by literature evidence. The vacancy of System L
transporter influences the ability of kynurenine to enter the
CD4+ T-cells and activate AhR (73). Further, both low
tryptophan levels and kynurenine accumulation appear to be
pivotal for immunosuppression mediated by tryptophan
catabolism (47), and tryptophan supplementation reverses the
proliferation arrest of IDO1-mediated tryptophan deprivation in
T-cells (60, 74). Tryptophan acting as a rheostat of kynurenine-
mediated immunosuppression has two important therapeutic
implications. Firstly, it can aid to resolve the conundrum whether
the IDO1-selective, TDO-selective or dual IDO1/TDO inhibitors
wouldbe themostoptimal therapeutic agents toblockKP.Secondly,
Frontiers in Immunology | www.frontiersin.org 4
it can serve as a basis for a new approach to silence kynurenine-
mediated immunosuppression by oral supplementationwith System
L transporter substrates. We will discuss these two areas in the
following section.
DISCUSSION

Efficient Silencing of Kynurenine Pathway
May Require Only TDO-Selective Inhibitors
Many cancer types co-opt IDO1, TDOor both enzymes (27, 39, 75)
to accelerate tryptophan catabolism and escape immune
destruction. Upregulation of IDO1 or elevated kynurenine levels
associate with poor patient outcomes (37, 76–79) and resistance to
immune checkpoint therapy such as anti-PD-1 inhibitors (80, 81).
Moreover, anti-PD-L1 therapy promotes tryptophan catabolism as
a consequence of IDO1 upregulation by IFN-g secreted by re-
invigorated tumour-infiltrating lymphocytes (82). These
observations provide a strong mechanistic rationale for
combining the tryptophan catabolism blockade with immune
checkpoint inhibitors and potentia l ly other cancer
immunotherapies. Targeting the KP also offers certain advantages
over targeting cell surface immune-regulatory molecules such as
PD-1. Proteins on the KP including IDO1 and TDO are
intracellular enzymes (40, 83) that harbour active sites easily
FIGURE 2 | Reversing IDO1/TDO-mediated immunosuppression by increasing the levels of System L transporter substrates to limit kynurenine entry into T-cells.
(A) In tumour microenvironment rich in indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase 2 (TDO), the tryptophan to kynurenine ratio is typically
low leading to the suppression of T-cell activity and tumour killing. Blockade of TDO enzymatic activity by small molecule inhibitors (2) and/or supplementation with
System L substrates such as leucine (1) is expected to increase their blood levels. Hence, the ratio of System L substrates to kynurenine in the tumour
microenvironment (B) will also be increased. Elevated System L substrate levels competitively inhibit kynurenine entry into T cells so that T cell suppression is reduced.
February 2021 | Volume 12 | Article 636081
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targetable with inexpensive and non-immunogenic small
molecules. Such molecules are stable on storage, can be
administered orally, and penetrate into the brain. This is in
contrast to immune checkpoint molecules such as PD-1 that do
not catalyse a biochemical reaction hence lack an active site, and
typically require costly antibodies for therapeutic modulation. Due
to their size and instability, antibodies need to be administered by
injection and cannot pass the blood brain barrier. Of note, small
molecules that disrupt PD-1/PD-L1 interaction are currently in
development (84, 85).

Major effort has been devoted to disable tryptophan
catabolism using IDO1 inhibitors (7, 86, 87). Whilst IDO1
inhibitors can boost immunotherapy in mouse cancer models
(88–91), the most advanced IDO1 inhibitor Epacadostat
(INCB024360) could not potentiate anti-PD1 inhibitor
pembrolizumab in a recent Phase III trial involving about 700
advanced melanoma patients (9, 92). Reasons for this negative
outcome are unclear and discussed extensively elsewhere (11–13,
93, 94) but poor target engagement, compensatory expression of
TDO or IDO2, dose-limiting toxicities or the lack of selection for
IDO1-positive patients are likely one of the contributing factors.

Unlike IDO1 inhibitors, no TDO-specific inhibitor has yet
reached clinical trials. This is not surprising given the paucity of
potent TDO-selective inhibitors. High affinity TDO inhibitors
seems to be much more difficult to develop than IDO1 inhibitors.
That is likely because the TDO’s active site is less flexible than
that of IDO1 and thus cannot accommodate bulky ligands (7,
95). As a consequence, the majority of TDO-specific inhibitors
[reviewed in (7, 96)] mimic tryptophan (28, 36, 97–100).
Currently, the most promising TDO inhibitors appear to be
the derivatives of IDO1-specific clinical candidate Navoximod
(100) reported by Genentech, and PF06845102 (57) developed by
iTeos Therapeutics. These inhibitors display submicromolar
potencies, up to 100-fold TDO selectivity over IDO1, good
metabolic stability and ability to raise systemic tryptophan
levels in mice (57, 100). PF06845102 has also been shown to
potentiate anti-tumour activity of the anti-CTLA4 immune
checkpoint inhibitor in a mouse model of colorectal cancer
(57). These promising data support further development of
next-generation TDO inhibitors.

The hypothesis presented in this perspective suggests that
TDO inhibition can be advantageous to IDO1 inhibition. Firstly,
TDO inhibition is expected to indirectly inhibit the
immunosuppressive action of IDO1 by raising the systemic
levels of tryptophan and limiting entry of IDO1-generated
kynurenine into T-cells (Figure 2). This concept assumes
relatively low contribution of non-enzymatic signalling
function of IDO1 to the overall immunosuppression. Secondly,
unlike IDO1 inhibitors, TDO inhibitors do not require tumoural
TDO expression because TDO is constitutively expressed in the
liver. This is clearly demonstrated in studies where TDO2-
knockout mice but not IDO1-knockout mice have markedly
increased plasma tryptophan levels compared to their respective
wild-type counterparts (29, 57). Therefore, TDO inhibition is
anticipated to silence kynurenine-mediated immunosuppression
in a greater subset of patients. The potential toxicity of hepatic
Frontiers in Immunology | www.frontiersin.org 5
TDO blockade in humans still remains unresolved. However, the
absence of serious clinical pathologies of a woman diagnosed
with hypertryptophanaemia due to TDO deficiency (101)
suggests that TDO inhibition will be well tolerated in humans.

As cancers can express both IDO1 and TDO, the industry has
been pursuing the development of dual IDO1/TDO inhibitors.
This concept has not yet been supported by strong evidence but
some dual inhibitors are in preclinical development or Phase I
trials (40, 102, 103) including Navoximod (89) which was
originally thought to be an IDO1-selective inhibitor. Similarly
to IDO1 inhibitors, we contend that development of dual
inhibitors may be unnecessary. However, it cannot be excluded
that IDO1 inhibition will be needed to complement TDO
blockade. Inhibition of hepatic TDO may not increase
tryptophan levels significantly in humans. Further, it is
possible that kynurenine enters cells through a transporter
other than System L or triggers the immunosuppressive effect
in the absence of secretion from the IDO1/TDO-expressing cells.
Can High-Dose Amino Acid
Supplementation Reverse Kynurenine
Mediated Immunosuppression and
Potentiate Immunotherapy?
We propose that any strategy that safely increases the levels of
circulating System L substrates to out-compete kynurenine has
potential to reverse the IDO1/TDO mediated immunosuppression.
One additional possibility toTDO inhibition is oral supplementation
with amino acids that are System L substrates (Figure 2) such as
leucine, isoleucine, valine, phenylalanine, tyrosine, tryptophan,
methionine, or histidine. Whilst tryptophan supplementation
emerges as a possibility, it is unlikely to increase systemic
tryptophan levels because hepatic TDO efficiently breaks down
excess tryptophan. This is consistent with the study of Schramme
et al. showing that three-fold increase of tryptophan in the diet from
0.06 to 0.18% did not increase circulating tryptophan levels of the
mice (57). Further, tryptophan supplementation (30mg per mouse)
did not significantly impede growth of mouse CT26 colon tumours
(104). On the other hand, there are preclinical data showing that
leucine, a high affinity substrate of System L, limits System L-
mediated entry of kynurenine into brain (105). There are no data
available to show if high-dose dietary supplementation with leucine
or any other amino acid would translate into improved tumour
control or blockade of kynurenine-mediated immunosuppression.
However, the above-mentioned study strongly supports the
feasibility of limiting kynurenine transport in vivo at leucine doses
that are well tolerated by an organism.

The safety of high dose amino acid supplementation raises a
potential concern. It is generally assumed that amino acids do
not pose serious health hazards as they are natural substances
produced endogenously and part of human diet and
supplements (106). Perhaps not surprisingly, toxicities
associated with high dose amino acid supplementation to
mammals differ significantly (107) but leucine appears to be
the least toxic amino acid. Oral or intravenous supplementation
of leucine (5 g–6 g) increased systemic leucine levels in humans
February 2021 | Volume 12 | Article 636081
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in the absence of overt toxicities (108, 109). Similarly, as stated in
the preceding paragraph, elevated leucine levels sufficient to
prevent kynurenine transport are well tolerated by mice. This
is in contrast to methionine and histidine which, at high doses,
appear to be one of the most toxic amino acids to humans (110–
112). However, the toxicity of a substance depends on its dose. It
is therefore likely that even the seemingly most toxic amino acids
may prevent kynurenine entry into T-cells at levels which are
well tolerated by an organism. Experimental studies will be
necessary to rigorously investigate this concept and determine
which amino acids and at what doses will provide therapeutic
benefit, if any.

Overall, the therapeutic supplementation with a high dose of
amino acids with the intent to inhibit kynurenine-mediated
immunosuppression appears like a highly feasible and exciting
research prospect. It offers a simple and economical alternative to
synthetic drugs inhibiting tryptophan catabolising enzymes or
downstream kynurenine targets such as AhR.
SUMMARY

The disappointing outcome of the Phase III trial of Epacadostat (9)
has stimulated search for alternative approaches to silence the KP.
Such approaches include kynurenine depletion by kynureninase
(44), small molecule inhibitors to the kynurenine’s downstream
target AhR (81, 94), and perhaps we will see small molecule
inhibitors to a recently discovered tryptophan metabolising
enzyme IL4I1 that produces AhR agonists (113). This perspective
proposes a novel function for the IDO1’s substrate tryptophan that
could lead to an additional therapeutic strategy to block KP. We
posit that tryptophan acts as a rheostat of kynurenine-mediated
immunosuppression, i.e., high tryptophan to kynurenine ratio
limits kynurenine’s entry into immune T-cells through the shared
System L amino acid transporter.

Therefore, increasing circulating levels of System L substrates
can relieve kynurenine-induced immunosuppression. One way
to achieve this is via inhibition of hepatic kynurenine pathway by
TDO inhibitors. This supports the development of TDO-
Frontiers in Immunology | www.frontiersin.org 6
selective inhibitors that, unlike IDO1 inhibitors, are not
contingent on tumoural TDO expression. Alternatively,
kynuren ine can be ou t - compe ted by the rapeu t i c
supplementation of amino acids such as leucine which is a
high-affinity System L substrate. Leucine supplementation
appears highly feasible. Leucine has low toxicity to
mammals and was shown to block kynurenine entry into the
mouse brain. If confirmed, we envision the amino acid
supplementation strategy will enrich the armamentarium of
therapeutic approaches modulating KP, and increase the
likelihood of realising the prospect of silencing the KP for
cancer immunotherapy.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding author.
AUTHOR CONTRIBUTIONS

PT conceived, designed and supervised the study. MK drafted the
manuscript and figures. All authors contributed to the article and
approved the submitted version.
FUNDING

PT and MK acknowledge support from Health Research Council
New Zealand through the Emerging Researcher First Grants 17/
586 awarded to PT. PT acknowledges additional support from
Auckland Medical Research Foundation Project grant 1120009
awarded to PT, School of Medical Sciences at the University of
Auckland in New Zealand and Auckland Cancer Society
Research Centre. The funding bodies had no role in design of
this study, decision to publish and preparation of the manuscript.
REFERENCES

1. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. IFN
[gamma] and lymphocytes prevent primary tumour development and shape
tumour immunogenicity. Nature (2001) 410:1107–11. doi: 10.1038/35074122

2. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer
immunoediting: from immunosurveillance to tumor escape. Nat Immunol
(2002) 3:991–8. doi: 10.1038/ni1102-991

3. Hoos A. Development of immuno-oncology drugs [mdash] from CTLA4 to
PD1 to the next generations, Nature reviews. Drug Discov (2016) 15:235–47.
doi: 10.1038/nrd.2015.35

4. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for
checkpoint inhibitor immunotherapy. Nat Rev Cancer (2019) 19:133–50.
doi: 10.1038/s41568-019-0116-x

5. Bader JE, Voss K, Rathmell JC. Targeting metabolism to improve the tumor
microenvironment for cancer immunotherapy.Mol Cell (2020) 78:1019–33.
doi: 10.1016/j.molcel.2020.05.034
6. Egen JG, Ouyang W, Wu LC. Human anti-tumor immunity: insights from
immunotherapy clinical trials. Immunity (2020) 52:36–54. doi: 10.1016/
j.immuni.2019.12.010
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