http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.
Body protein loss in preoperative patients:
the assessment of its impact on
physiologic function and surgical risk.

John Albert Windsor
BSc, MBChB, DipObst

Thesis submitted for the
Degree of Doctor of Medicine.

University of Auckland School of Medicine,
Auckland, NEW ZEALAND.
"My flesh has grown lean, without fatness; and my knees are weak from fasting."

Psalms 109: 24

"It is a major challenge to every surgeon to understand the significance of surgical weight loss and the extent to which it can occur before important bodily functions begin to be compromised."

J. M. Kinney (1), 1984

"Functional tests hold considerable promise for the objective assessment of malnutrition, at least in research, if not also in a routine clinical setting."

D.S. McLaren (2), 1988
ACKNOWLEDGEMENTS

I am deeply indebted to Professor Graham Hill for his enthusiastic and consistent support over the last 4 years. He has provided an unparalleled environment for clinical research, from which I have richly benefited.

There are many other people who have provided technical advice, practical assistance, and/or encouragement: Drs Alun Beddoe and John Sutcliffe, Physicists (for contributions in physics, methods of research and statistics), Dr. Stephen Streat, Intensivist, (for providing incisive comment), Dr. Grant Knight, Chemist (for setting up and supervising the biochemical assays), Dr. Graham Witney, fellow researcher (for sharing in the day to day task of research), Dr. Alistair Stewart, Biostatistician (for statistical advise), Mr. John McMaster, Bioengineer (for providing the electronic expertise necessary for the use of the muscle function apparatus), Miss Sue Gasgoigne, Nurse (for helping to co-ordinate the studies and for being the patients advocate), Mrs Susan McWilliams, Technician (for helping with all the biochemical assays), Mr. Herman Zuidmeer, Engineer, (for the construction and maintenance of equipment), and Mrs. Gay Ellerm (for secretarial assistance).

The Medical Research Council provided a salary for one year, in the form of a Training Fellowship. W. L. Gore and Associates (Flagstaff, Arizona) donated the Goretex (polytetrafluoroethylene) tubing for the wound healing studies.

On a more personal note, I owe much to my wife, Christine and my children, Matthew, Joshua and Benjamin who have shown great patience, and given encouragement and thinking space while this thesis has been written in midst of surgical training and clinical commitments.
SYNOPSIS OF THESIS

The nutritional assessment of patients awaiting major abdominal surgery is important. It has been shown that malnutrition is common in such patients, but is often unrecognized. Because of the widespread availability of safe forms of nutritional therapy the task of identifying patients who warrant this therapy has become more urgent. However, current techniques used for the identification of significantly malnourished surgical patients have several important limitations. It has become increasingly evident that a fresh approach to nutritional assessment is now required. Drawing on some preliminary evidence that the loss of body protein is associated with an impairment of a range of physiologic functions, this thesis asserts that in order to improve on our ability to identify preoperative patients who are at a significantly increased risk of postoperative morbidity and mortality because of the loss of body protein, it would be necessary to assess physiologic functions that can be easily measured, are protein dependent, and clinically relevant.

Therefore, the following concept was investigated: That patients lose weight in response to disease and/or nutrient deprivation and the important component of this loss is body protein. The loss of body protein results in an impairment of important physiologic functions, which is the basis of the increased surgical risk noted in malnourished patients, and which results in the increased morbidity and mortality after major surgery. In order to investigate the inter-relationships of weight loss, protein loss, impaired function and surgical risk several objective measurement techniques had to be developed in order to measure physiologic functions (respiratory function, liver function, skeletal muscle function, wound healing response and psychological function). An \textit{in vivo} neutron activation analysis facility was available for the direct measurement of body protein status. In addition, techniques for the clinical assessment of nutritional status, diet, and postoperative course were developed. The fundamental conclusions of these clinical studies were: [1] that the measurement of preoperative weight loss is no longer useful in identifying patients who are at an increased risk of dying following major surgery, [2] that the preoperative loss of body protein is associated with an increased postoperative morbidity and mortality, [3] that the loss of body protein is associated with an
impairment of clinically relevant physiologic functions including liver, skeletal muscle and respiratory function, [4] that a proportion (20 to 25%) of body protein can be determined and must be lost before there is an impairment of some important physiologic functions, [5] that plasma transferrin and prealbumin concentrations are sensitive to the adequacy of recent food intake, and are a measure of body protein status in the elective patients studied, [6] that plasma albumin concentration, in the elective patients studied, is sensitive to the adequacy of recent food intake, but does not reflect body protein status, [7] that voluntary grip strength is a practical and sensitive measure of the extent of body protein loss, [8] that body protein loss is an important, and hitherto unrecognized risk factor for postoperative pneumonia because of its impact on respiratory function, [9] that the wound healing response is sensitive to the adequacy of recent food intake, but not to body protein status, and [10] that a clinical assessment of weight loss, wasting and physiologic function can be objectively validated and can identify preoperative patients at an increased risk of postoperative morbidity and mortality.

There are several important implications of these studies. The future direction of nutritional assessment will be the refinement of a clinical method that incorporates an assessment of physiologic function. Further study is required to demonstrate that nutritional therapy is able to reverse the impairment of clinically relevant physiologic functions and to demonstrate that such an improvement translates into a decrease in postoperative morbidity and mortality. It may be that specific defects due to protein loss and responsible for the impairment of function can be identified and treated with short-term nutritional therapy. The method of clinical assessment developed in this thesis can be used to select preoperative patients for nutritional therapy and predict the likely efficacy of such therapy.
Table of Contents

<table>
<thead>
<tr>
<th>Section/Chapter</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title page</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>Quotations</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Synopsis</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td></td>
<td>vi</td>
</tr>
</tbody>
</table>

SECTION I: INTRODUCTION

Chapter 1

The importance of nutritional assessment
- The prevalence of protein-energy malnutrition 2
- The prognostic significance of protein-energy malnutrition 3
- The development of nutritional therapy 4
- Conclusion 5

Chapter 2

Current techniques of nutritional assessment
- Historical perspective 6
- General problems with nutritional assessment 7
- Specific limitations of current techniques of nutritional assessment 8
 - Measurement of weight loss 8
 - Measurement of skinfold thickness 9
 - Measurement of skeletal muscle bulk 10
 - Measurement of plasma protein concentration 10
 - Measurement of immune competence 11
 - Derivation of prognostic nutritional indices 12
 - Measurement of body composition 12
 - The clinical assessment of nutritional status 13
- Conclusion 15

Chapter 3

Body protein loss and physiologic function
- The importance of preserving body protein 16
- The effects of body protein loss on physiologic function 16
- The assessment of physiologic function as part of the assessment of nutritional status 19
- Physiologic functions relevant to surgical patients 20
SECTION III: CLINICAL STUDIES

Chapter 13
Evaluation of weight loss as a predictor of postoperative mortality in modern surgical practice. 102

Chapter 14
Protein depletion and surgical risk 107

Chapter 15
Does an impairment of physiologic function occur with the loss of body protein in patients awaiting major surgery? 114

Chapter 16
What proportion of body protein can be lost before physiologic impairment occurs in preoperative patients? 124

Chapter 17
Determinants of plasma protein concentration: the relative importance of diet, the loss of body protein and the loss of body fat. 138

Chapter 18
Grip strength: a measure of the extent of protein loss in surgical patients. 143

Chapter 19
The wound healing response in surgical patients: recent food intake is more important than nutritional status. 154

Chapter 20
Risk factors for postoperative pneumonia: the importance of protein depletion. 163

Chapter 21
Weight loss with physiologic impairment: a basic indicator of surgical risk. 178
SECTION IV: CONCLUSION

Chapter 22
Summary and Conclusions of the thesis
 Summary of the introduction 192
 Summary of the methods 194
 Summary of the clinical studies 195
 Conclusions of the thesis 200

Chapter 23
Implications of the thesis
 Developing simple techniques for nutritional assessment 201
 The clinical assessment of nutritional status 202
 The assessment of physiologic function 202
 Demonstrating patient benefit of nutritional therapy 203
 Short term nutritional therapy 203
 Predicting the likely response to nutritional therapy 204
 Selection of patients for nutritional therapy 205

SECTION V: APPENDICES

Appendix 1
 Limitations of other nutritional assessment techniques 208

Appendix 2
 Excluded patients 212

Appendix 3
 A clinical assessment of nutritional status 214

Appendix 4
 Pilot study: tissue fibronectin as a marker of the early wound healing response 222

Appendix 5
 Hemicolecotomy study 226

Appendix 6
 Decision analysis of the clinical nutritional assessment 229

Appendix 7
 Auckland Sepsis Index 234

Appendix 8
 Publications arising from the thesis 239

SECTION VI: REFERENCES