

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

MOLECULAR ANALYSIS OF THE ENDOFLAGELLA

OF THE PATHOGENIC TREPONEMES.

Robin David Isaacs

A thesis submitted for the degree of Doctor of Medicine

University of Auckland

1991

INDEX OF CONTENTS

Ind	ex o	f Contents	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
Ind	ехо	f Tables .	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•		vii
Ind	ex o	f Figures	•	•••	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•		viii
Abb	revi	ations	•	••	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	xi
Ack	nowl	edgements	•	••	•	•	•		•	•	•	•	•	•	•	•	•	•	•		xiv
Abs	trac	t	•	•••	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	1
1.	Intr	oduction .	•	•••	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	4
	1.1	Epidemiolo	рду	of	sy	phi	ili	s	•	•	•	•	•	•	•	•	•	•	•	•	6
	1.2	Biology of	Ет.	pa	11	idı	ım	•	•	•	•	•	•	•	•	•	•	•	•	•	9
	1.3	Treponemal	l mo	til	it	γa	and	pa	th	oge	en:	ic	it	Y	•	•		•		•	17
	1.4	Spirochaet	al	mot	il	ity	y a	nd	th	e e	enc	doi	E 1	ag	el]	la		•	•	•	20
	1.5	Antigenic	ana	lys	is	o	E T	. р	al.	lio	duı	n a	ano	d.	it	5					
	e	ndoflagel	la	•••	•	•	•	••	•	•	•	•	•	•	•	•	•	•		•	21
	1.6	Is a syphi	llis	va	CC	ine	∍ p	oss	ib	le	?		•		•	•	•	•	•	•	24
	1.7	Experiment	al	ain	ເຮ	of	th	is	st	udy	Y	•	•	•	•	•	•	•	•	•	26
2.	Mate	rials and	Met	hod	S		•	•••	•	•	•		•	•		•	•		•	•	30
	2.1	Culture me	edia	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	31
	2.2	Bacterial	str	ain	S	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	32
	2.3	Plasmid ar	nd o	lig	jon	uc	leo	tid	e	DN	As			•	•			•	•	•	37

	iii
2.4 Determination of protein concentration	37
2.5 Immunologic reagents	37
2.6 SDS-PAGE, 2D-PAGE, and immunoblotting	47
2.7 Extrinsic radiolabelling of T. pallidum	51
2.8 Radioimmunoprecipitation	51
2.9 Radio-immunocolony blot assay to detect expressed	
antigens	52
2.10 Isolation of treponemal endoflagella	53
2.11 Electron microscopy of isolated endoflagella	54
2.12 Radiolabelling of T. phagedenis	56
2.13 Purification of the endoflagellar proteins	57
2.14 N-terminal amino acid sequence analysis	57
2.15 Tryptic peptide analysis	57
2.16 DNA modifying reagents	58
2.17 General DNA procedures	58
2.18 Purification of plasmids and phage DNAs	60
2.19 Purification of treponemal DNA	63
2.20 DNA-DNA hybridizations	65
2.21 Construction and screening of T. pallidum	
chromosomal DNA libraries	67
2.22 DNA sequence analysis	69
2.23 DNA amplification by the polymerase chain reaction	70
2.24 Expression of the 37-kD sheath protein	70
2.25 Pulse-chase experiments	74
2.26 Minicell analyses	74
2.27 Selective release of E. coli soluble periplasmic	
proteins	75
2.28 Membrane fractionation experiments	76

	2.29 Extraction and phase-partitioning with	
	Triton X-114	76
	2.30 Purification of Cro-LacZ-FlaA fusion protein	77
	2.31 Purification of LacZ'-FlaA fusion protein	78
	2.32 Purification of the 47-kD antigen	79
3.	Results	81
	3.1 Purification of treponemal endoflagellar proteins	82
	3.1.1 Isolation of treponemal endoflagella	82
	3.1.2 Purification of component endoflagellar	
	proteins	89
	3.1.3 Comparative tryptic peptide analysis of	
	endoflagellar sheath proteins	92
	3.1.4 Amino terminal sequence analysis of component	
	endoflagellar proteins	92
	3.2 Determination of the primary structure of mature	
	FlaA	95
	3.2.1 Monoclonal antibody screening of a	
	recombinant DNA library	95
	3.2.2 Characterization of murine monoclonal	
	antibody H9-2	98
	3.2.3 Purification of T. pallidum genomic DNA	99
	3.2.4 Characterization of clone λ A34	104
	3.2.5 Southern analysis of T. pallidum genomic	
	DNA with the λ A34 probe	107
	3.2.6 T. pallidum genomic library construction	
	for "chromosome walking"	112

iv

.

3.2.7 Screening and clone characterization from	
a randomly generated gene library	112
3.2.8 Nucleotide sequence analysis of pRI4	113
3.3 Completion of the nucleotide sequence of flaA .	119
3.3.1 Southern analysis of T. pallidum genomic	
DNA with oligonucleotide probe oRI3	119
3.3.2 Determining the remaining nucleotide sequence	
of flaA using the polymerase chain reaction $\ .$	122
3.3.3 Structural features of FlaA	126
3.4 Expression of recombinant FlaA	130
3.4.1 Construction of an E. coli clone expressing	
recombinant sheath protein	130
3.4.2 Analysis of processing of FlaA	138
3.4.3 Localization of recombinant antigen in	
E. coli	138
3.4.4 Expression of a LacZ'-FlaA protein	143
3.4.5 Expression of a Cro-LacZ-FlaA protein	150
3.4.6 Solubilization and partial purification of	
LacZ'-FlaA	150
4. Discussion	160
4.1 Purification of treponemal endoflagella	163
4.2 The nucleotide sequence of <i>fla</i> A	164
4.3 Cloning toxic gene products in E. coli	169
4.4 Purification of T. pallidum chromosomal DNA	172
4.5 Expression of FlaA in E. coli	173
4.6 Subcellular localization of FlaA in E. coli	177
4.7 Expression of FlaA as a fusion protein	179

	vi
4.8 Future experimentation	182
Literature cited	185
Appendices	219
Appendix 1. Amino acid composition of pre-FlaA	
compared with the endoflagellar core proteins	
(FlaB1, FlaB2, and FlaB3)	220
Appendix 2. Codon usage table for the gene encoding	
pre-FlaA and for all four genes (flaA, flaB1,	
flaB2, flaB3) encoding the major T. pallidum	
endoflagellar proteins	222
Appendix 3. Hypothetical model of treponemal	
endoflagella assembly	227
Selected publications related to these studies	230
Molecular cloning and DNA sequence analysis of the	
37-kilodalton endoflagellar sheath protein	
of Treponema pallidum	231
Expression in Escherichia coli of the 37-kilodalton	
endoflagellar sheath protein of Treponema	
pallidum by use of the polymerase chain reaction	
and a T7 expression system	232
Other publications	233

INDEX OF TABLES

Table 1. Bacterial strains used in these studies	33
Table 2. Plasmid DNAs used in these studies	38
Table 3. Oligonucleotides used in these studies	43
Table 4. Polymerase chain reaction conditions	71
Table 5. N-terminal amino acid sequences for T. pallidum	
subsp. pallidum, T. pallidum subsp. pertenue and	
T. phagedenis endoflagellar proteins	96
Table 6. Amino acid sequence of peptides generated by	
tryptic digestion of purified T. pallidum subsp.	
pallidum endoflagellar sheath protein	97
Table 7. Areas of homology between the flaA gene	
product of T. pallidum and S. aurantia	12 9

INDEX OF FIGURES

Figure 1. Taxonomy of the genus Treponema	10
Figure 2. Schematic diagram demonstrating the	
ultrastructural features of T. pallidum	13
Figure 3. Electron micrographs of T. pallidum subsp.	
pallidum	15
Figure 4. Outline of the studies detailed in this thesis	29
Figure 5. Location of oligonucleotides used in	
these studies	45
Figure 6. Isopycnic density gradient centrifugation of	
radiolabelled T. phagedenis endoflagella	55
Figure 7. Outline of the inverse-PCR procedure used to	
amplify the upstream regions of <i>fla</i> A	72
Figure 8. Isolation of T. pallidum subsp. pallidum	
endoflagella	83
Figure 9. Negative contrast electron micrograph of	
T. pallidum subsp. pallidum endoflagella	85
Figure 10. Comparison of the SDS-PAGE profile of	
endoflagella from three different treponemes	87
Figure 11. Purification of component endoflagellar	
proteins	90
Figure 12. Comparison of HPLC elution profiles of	
tryptic digests of the endoflagellar sheath	
proteins of T. phagedenis, T. pallidum subsp.	
pallidum, and T. pallidum subsp. pertenue	93
Figure 13. Murine monoclonal antibody H9-2 reacts	
with the 37-kD endoflagellar sheath protein	100

Figure 14. Reactivity of murine monoclonal antibody $H9-2$	
with SDS-denatured proteins of several treponemes .	102
Figure 15. Characterization of the β -galactosidase fusion	
protein produced by λ A34 E. coli lysogen	105
Figure 16. The T. pallidum subsp. pallidum chromosomal	
DNA insert of $\lambda A34$ is not multimeric	108
Figure 17. Southern hybridization of T. pallidum subsp.	
pallidum chromosomal DNA using the EcoRI-EcoRI	
fragment from pRI1 as probe	110
Figure 18. Partial restriction maps	114
Figure 19. Nucleotide sequence of flaA and deduced amino	
acid sequence of pre-FlaA	116
Figure 20. Construction of T. pallidum subsp. pallidum	
genetic map with respect to flat	120
Figure 21. Use of the inverse-polymerase chain reaction	
technique to amplify upstream regions of flaA	123
Figure 22. Hydrophilicity analysis of pre-FlaA	128
Figure 23. Analysis of E. coli clones expressing	
recombinant FlaA	132
Figure 24. Two dimensional electrophoretic analyses of	
recombinant FlaA	134
Figure 25. Expression of recombinant FlaA reduces the	
growth rate of <i>E. coli</i>	137
Figure 26. Processing of FlaA in E. coli	139
Figure 27. Fractionation of E. coli clones expressing	
FlaA	141
Figure 28. Detergent solubility of recombinant FlaA	144

ix

Figure 29. Introduction of a bovine protease X_a site	
by using mismatched PCR primers	146
Figure 30. Expression of LacZ'-FlaA protein	148
Figure 31. Expression and purification of the	
Cro-LacZ-FlaA protein	151
Figure 32. The solubility of the LacZ'-FlaA protein	
following treatment with guanidine hydrochloride,	
urea, sodium deoxycholate and sodium chloride	154
Figure 33. Triton X-114 solubility of urea-solubilized	
LacZ'-FlaA protein	157
Figure 34. Hypothetical model for endoflagella assembly	228

x

Abbreviations

- 2D-PAGE two dimensional-polyacrylamide gel electrophoresis
- AIDS acquired immunodeficiency syndrome
- A_n Absorbance at n nm
- ATP adenosine triphosphate
- cpm counts per minute
- dATP deoxyadenosine triphosphate
- dCTP dexoycytidine triphosphate
- dGTP deoxyguanosine triphosphate
- DNA deoxyribonucleic acid
- DNase deoxyribonuclease
- EDTA (ethylenedinitrilo)tetraacetic acid
- FlaA the mature endoflagellar sheath protein
- flaA the gene encoding the endoflagellar sheath protein
- FlaB1 a T. pallidum endoflagellar core protein of M_r 34.5 kD
- flaB1 the gene encoding FlaB1
- FlaB2 a T. pallidum endoflagellar core protein of M_r 33 kD
- flaB2 the gene encoding FlaB2
- FlaB3 a T. pallidum endoflagellar core protein of M_r 30 kD
- flaB3 the gene encoding FlaB3

HEPES	N-2-hydroxyethylpiperazine-N'-2-ethane-sulphonic acid
HIV	human immunodeficiency virus
HPLC	high pressure liquid chromatography
IEF	isoelectric focusing
Ig	immunoglobulin
IPTG	$isopropyl-\beta-D-thiogalactopyranoside$
kb	kilobase pairs
kD	kilodalton
min	minute
Mr	relative molecular mass
NP-40	Nonidet 40
PBS	phosphate buffered saline
PCR	polymerase chain reaction
PEG 6000	polyethylene glycol 6000
PMSF	phenyl methyl sulphonyl fluoride
pre-FlaA	the precursor protein of FlaA
RBS	ribosomal binding site
RIP	radioimmunoprecipitation
RNA	ribonucleic acid
RNase	ribonuclease

• · · ·

rpm	revolutions per minute
sarkosyl	N-lauroyl sarcosinate
SDS	sodium dodecyl sulphate
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
sec	second
SSDNA	single stranded DNA
subsp.	subspecies
Tris	2-amino-2-(hydroxymethyl)-1,3-propanediol
UV	ultraviolet
vol	volume
wt	weight
X-Gal	$5-bromo-4-chloro-3-indoyl-\beta-D-galactopyranoside$

Acknowledgements

The research reported in this thesis was undertaken in the laboratory of Dr Justin D. Radolf, Assistant Professor of Internal Medicine and Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 73235, from July, 1987 through June, 1990.

The support and encouragement offered to me by Justin Radolf has been invaluable. In addition, I wish to thank Dick Bellamy, Rod Ellis-Pegler, Tom Miller, and Douglas Ormrod for reading this thesis and the following colleagues for their advice and assistance with many of the applied aspects of this study: Richard Baer, Alan Duby, Luz-Maria Guzman-Verduzco, Jeffrey Hanke, Yankel Kupersztoch, Sheila Lukehart, Robert Munford, Michael Norgard, Bret Purcell, and Francis Riedo. To those colleagues I have not mentioned, I wish to express my gratitude for their assistance and encouragement.

Abstract

- Motility of Treponema pallidum is mediated by endoflagella located within the periplasmic space. The endoflagella comprise a core surrounded by a sheath, with the sheath being composed of a 37-kD antigen (FlaA).
- 2. Treponemal endoflagella were isolated and component proteins were purified by reverse-phase high pressure liquid chromatography (HPLC). N-terminal amino acid sequence analysis was performed using the sheath protein and two core proteins from T. pallidum subsp. pallidum, T. pallidum subsp. pertenue, and T. phagedenis. For all three proteins, the N-terminal sequences found for T. pallidum and T. pertenue were identical but differed from the sequence of T. phagedenis. The sheath proteins from the three treponemes were also compared by HPLC tryptic peptide maps: maps for T. pallidum and T. pertenue were very similar but differed from T. phagedenis.
- 3. A λ gtll clone, λ A34, that expressed a portion of FlaA was selected from a *T. pallidum* genomic library using a murine monoclonal antibody. The insert from λ A34 provided a probe with which a chimeric plasmid, pRI4, encoding all but the nine N-terminal amino acids of FlaA was selected from a pBR322 *T. pallidum* genomic library.
- 4. The nucleotide sequence of *flaA* upstream of amino acid 10 could not be determined by routine cloning strategies.

Instead, the remaining sequence was determined using the inverse- and asymmetric-polymerase chain reaction methods. flaA contains a consensus Escherichia coli promoter and a ribosome binding site. A single open reading frame encodes a precursor protein, pre-FlaA, of 350 amino acids with a calculated M_r 38,860. A 20 amino acid signal sequence with a typical signal peptidase I cleavage site immediately precedes the known N-terminus of FlaA. Twenty six per cent (91/350) of the DNA-derived amino acid sequence was confirmed by N-terminal sequence analysis of ten tryptic peptides derived from native FlaA.

- 5. Polymerase chain reaction-derived constructs lacking the native T. pallidum promoter were cloned downstream of a T7 promoter. T7 polymerase transcription was under the control of a $P_L \lambda$ promoter. When the λ repressor was inactivated at 42°C, FlaA was expressed at relatively low levels in E. coli. Native and recombinant FlaA were identical as assessed by antibody reactivity and electrophoretic mobility in both sodium dodecyl sulphate- and two dimensional-polyacrylamide gels.
- 6. Although some pre-FlaA is processed to FlaA in E. coli, pre-FlaA is accumulated indicating inefficient processing of pre-FlaA in E. coli. Soluble FlaA was not detected in either the cytoplasmic or the periplasmic fractions of E. coli transformants. Fractionation of E. coli cell envelopes unexpectedly revealed that pre-FlaA and FlaA were associated

with both the inner and outer membranes.

7. Two gene fusions, cro-lacZ-flaA and lacZ'-flaA, were constructed in an attempt to increase expression of the recombinant antigen; a bovine protease X_a site was engineered into the hybrid proteins immediately upstream of the N-terminus of FlaA to allow for subsequent proteolytic cleavage of the purified hybrid proteins. The LacZ'-FlaA protein was expressed in E. coli in increased amounts as compared with FlaA, but like recombinant FlaA, associated with both the inner and outer bacterial membranes. LacZ'-FlaA [wt/vol] sarkosyl, 6 M urea, or 6 M guanidine hydrochloride.