
P R O G R A M C O M P R E H E N S I O N C H A L L E N G E S

D E T E C T I O N F O R P U L L R E Q U E S T S

W I T H M A C H I N E L E A R N I N G

eddie chih-jung chiang

Department of Electrical, Computer, and Software Engineering
The University of Auckland

A thesis submitted in fulfilment of the requirements for the degree of
Master of Engineering in Software Engineering

The University of Auckland
January 2021

A B S T R A C T

The importance of program comprehension in software development is such that soft-
ware engineers spend more time, 35% to 70% of their time, understanding code than
writing it. With pull requests (PRs) becoming the default development collaboration
model, code review is becoming more common. There is a paucity of studies focusing
on the challenges concerning program comprehension. This study aims to provide an
insight into those challenges during code reviews, and to, specifically, detect compre-
hension challenges with the application of machine learning (ML) to analyze a large
number of GitHub PR review comments more efficiently, and investigate the common
causes of their occurrences to serve as suggestions as to the perils to avoid during
code reviews. In this context, comprehension challenges are focused on instances
when a code reviewer seeks information on the program behavior, the intention of a
code change, who has experience with the code, or why the code is implemented a
certain way.

To evaluate how accurately ML can be used to detect comprehension challenges
noted in review comments, an ML classifier was developed with the combination of a
linear support vector machine with stochastic gradient descent learning and natural
language processing of dialogue act classification, stop words removal, lemmatiza-
tion, and term frequency-inverse document frequency. To investigate the causes of
comprehension challenges, a sample of 748 review comments were analyzed through
statistical hypothesis tests, and a content analysis was conducted to compare 384

review comments without comprehension challenges and 384 samples with com-
prehension challenges. The performance results of the ML classifier showed a 74.3%
precision and a 66.7% recall. The quantitative and qualitative analysis showed that
the lines-of-code-changed metric made no significant difference to program compre-
hensibility, and review comments with comprehension challenges were associated
more frequently with discussions on bottom-up knowledge.

These results suggest that ML can help to detect comprehension challenges and
issues and provide analytics to software development teams to support them to
prioritize areas of improvement. Furthermore, missing top-down knowledge regarding
programming plans is the fundamental reason for many comprehension challenges.

iii

A C K N O W L E D G M E N T S

Throughout the course of the research, I have received a tremendous amount of
support and constant encouragement.

First and foremost, my supervisor, Dr. Kelly Blincoe, deserves my sincere appre-
ciation for the opportunity to do this work. With her comprehensive knowledge
and expertise, she provided me with invaluable guidance in the formulating of the
research topic and methodology to conduct the analysis. I am incredibly grateful for
her patience, enthusiasm, and mentoring.

Special thanks to Peter Devine, James Tizard, and Sunny Wang for their assistance
in conducting the independent manual data coding. Moreover, the entire HASEL
group has provided me with constructive feedback and inspiration for my research
design.

I also owe an important debt to Fraedom and Visa Inc. for the Education Assistance
Program that allows me to study part-time. Our architecture practice lead, Richard
Drew, helped me to explore the possibilities and inspired me to improve the work of
the software community. My colleagues, Peter Chen, Yi Chen, Zoran Ljubisavljevic,
Theodore Teow, Hong Zhang, and Dimitar Zhivkov, engaged in countless interesting
software development, data science, and machine learning discussions. Likewise, I
want to thank Chao Li and Kevin Li for contributing their personal GitHub access
tokens to use for data collection from GitHub for this study without being disrupted
by the API rate limit and for their kindness and support that made it possible to
complete this study.

Finally, I would like to express my gratitude to my wife, Sally, my boys, Bon and
Pontus, and my parents for their help, love, and support; for providing diversion
(sometimes much needed) from the academic study; and for sharing the path on my
journey. You are the best supporters, friends, and family one could hope for. You
mean the world to me.

v

C O N T E N T S

1 introduction 1

1.1 Definition of Program Comprehension 1

1.2 Importance of Program Comprehension 2

1.3 Motivation and Objectives 4

1.3.1 Definition of Program Comprehension Challenge 4

1.3.2 Program Comprehension and Pull Requests 5

1.3.3 Research Scope 6

1.4 Contributions 7

1.5 Structure of the Thesis 8

2 background 9

2.1 Pull Request 9

2.2 Code Review 11

2.3 Machine Learning and Natural Language Processing 13

3 literature review 15

3.1 Program Comprehension Models 15

3.1.1 Top-down Comprehension Model 15

3.1.2 Bottom-up Comprehension Model 16

3.1.3 Integrated Comprehension Model 17

3.2 Measuring Program Comprehension 19

3.2.1 Code Metrics 20

3.2.2 Observing Software Engineers 23

3.3 Types of Program Comprehension Challenge 26

3.3.1 Dialogue Act Classifications 27

3.4 Summary 28

4 methodology 29

4.1 Research Objective 29

4.2 Methodology Overview 30

4.2.1 Resources and Tools 31

4.3 Data Collection for Pull Request Review Comments 33

4.3.1 Secondary Data Collection From GitHub and GHTorrent 33

vii

viii contents

4.3.2 Selection Criteria 34

4.3.3 Data Collection Procedure 35

4.4 Machine Learning of Program Comprehension Challenges 40

4.4.1 Data Sampling Procedure for Training and Test Dataset 41

4.4.2 Manual Labeling 42

4.4.3 Feature Engineering 46

4.4.4 Machine Learning Classifier Training 51

4.4.5 Machine Learning Classifier Evaluation 56

4.5 Content Analysis of Program Comprehension Challenges 57

4.5.1 Data Sampling Procedure for Content Analysis Dataset 58

4.5.2 Meaning Unit, Topics, and Categories 59

4.5.3 Manual Labeling 60

4.5.4 Analyzing Non-Program Comprehension Challenges 60

5 results 61

5.1 Pull Request Attributes Affecting Program Comprehensibility 61

5.1.1 Attributes with Significant Correlations 61

5.1.2 Other Attributes Not Affecting Program Comprehensibility 64

5.2 Detecting Program Comprehension Challenges With Machine Learn-
ing 65

5.2.1 Machine Learning Classifiers Performance Results 66

5.3 Types of Program Comprehension Challenges During Code Reviews 71

5.3.1 Results 71

5.4 Causes of Program Comprehension Challenges 72

5.4.1 Results 73

6 discussion 75

6.1 Pull Request Attributes Affecting Program Comprehensibility 75

6.2 Detecting Program Comprehension Challenges With Machine Learn-
ing 78

6.3 Types of Program Comprehension Challenges During Code Reviews 79

6.4 Causes of Program Comprehension Challenges 81

6.5 Limitations 82

6.5.1 Threat to Internal Validity 82

6.5.2 Threat to External Validity 82

6.5.3 Small Number of Samples 82

contents ix

6.5.4 Researcher Bias 83

6.6 Summary 83

6.6.1 Implications 84

6.6.2 Guidelines 86

7 conclusion 87

7.1 Remarks and Observations 87

a dependent python packages 89

b ghtorrent bigquery query 91

references 95

L I S T O F F I G U R E S

Figure 1.1 Software development process and program comprehension 2

Figure 1.2 Challenges with the pull-based development 5

Figure 2.1 A pull request sequence 10

Figure 2.2 Code review discussion thread in a pull request on GitHub 11

Figure 2.3 Pull request review comments entity relationship modeling 12

Figure 3.1 Integrated comprehension model 18

Figure 3.2 Program control flow activity diagram 23

Figure 3.3 Measuring program comprehension with functional magnetic
resonance imaging 25

Figure 4.1 Research context diagram 32

Figure 4.2 Data flow of pull request review data collection from GHTor-
rent and GitHub 36

Figure 4.3 Activities of pull request review data collection from GHTorrent
and GitHub 38

Figure 4.4 Supervised learning activity diagram 41

Figure 4.5 Program comprehension challenge labeling guideline 45

Figure 4.6 Data flow of the preprocessing 49

Figure 4.7 Data flow diagram of the classifier training with scikit-learn 51

Figure 4.8 Experiment datasets breakdown for 5-fold cross-validation 55

Figure 4.9 Relationship between precision and recall 57

Figure 4.10 Data flow and data sampling for the content analysis 58

Figure 5.1 Confusion matrix for the dialogue act classification 63

Figure 5.2 Training and test datasets sample size and split from experi-
ment sample dataset 66

Figure 5.3 Confusion matrices for the machine learning algorithms 70

Figure 5.4 Frequencies of the types of program comprehension challenges
encountered 72

x

L I S T O F TA B L E S

Table 4.1 Data collection summary 34

Table 4.2 Attributes collected for pull request review comments 39

Table 4.3 Sample size calculation for pull request (PR) review comments
manual labeling 42

Table 4.4 Intercoder reliability coefficients 44

Table 4.5 List of program comprehension challenge labels and exam-
ples 44

Table 4.6 Dialogue act classifications and examples 47

Table 4.7 Feature selection of pull request attributes 48

Table 4.8 An example of OneHotEncoder transforming a feature into a
numeric representation 52

Table 4.9 List of categories and rules for category assignment 59

Table 5.1 Chi-squared test results of machine learning features 62

Table 5.2 Statistical hypothesis test results between pull request review
comment attributes and program comprehension challenge
labels 65

Table 5.3 Machine learning classifiers performance comparison for differ-
ent combinations of learning algorithms, features and natural
language processing tasks 68

Table 5.4 Key examples for each category 72

Table 5.5 Topics and program comprehensibility with significant correla-
tion 73

Table 5.6 Key examples for each topic with significant correlation 74

Table A.1 List of dependent Python packages 89

xi

L I S T I N G S

Listing 3.1 An example of lines of code in which comprehensibility is not
weighted equally 21

Listing 4.1 Cross-validation to evaluate different hyperparameters using
GridSearchCV 54

Listing B.1 GHTorrent BigQuery repository selection criteria 91

G L O S S A RY

AI artificial intelligence

API application programming interface

CCM cyclomatic complexity metric

CVCS centralized version control system

DRY Don’t Repeat Yourself

DVCS distributed version control system

GDPR general data protection regulation

HCM Halstead complexity measures

IDE integrated development environment

LOC lines of code

ML machine learning

NLP natural language processing

NLTK Natural Language Toolkit

NPS Naval Postgraduate School

PR pull request

xii

glossary xiii

REST representational state transfer

RQ research question

SGD stochastic gradient descent

SSL secure sockets layer

SVM support vector machine

tf-idf term frequency-inverse document frequency

UI user interface

1
I N T R O D U C T I O N

Program comprehension is fundamental to a software engineer’s job function and
plays a pivotal role in the software development process [1]. A software engineer
has to have a sufficient cognitive understanding of the source code before building,
maintaining, evolving, reusing, or modeling a software system [2, 3, 4, 5].

Currently, software engineers are spending a large portion of their valuable time on
program comprehension and re-comprehension. As a result, they have less capacity
to focus on innovations, building features, or enhancing software systems [6, 7, 8].
Despite steady improvement in the software development environment, process, and
methodologies, program comprehension tools are rarely utilized, or even known, and
comprehension strategies are overly dependent on the context [9].

This chapter starts by defining program comprehension and how it relates to
the context of software development, then introduces the importance of program
comprehension to the software engineering discipline, and also presents the increasing
trend of pull-based development and the role that program comprehension plays
in pull request (PR) code reviews. Thereafter, previous related studies were briefly
reviewed, and a knowledge gap was identified. Finally, the purpose of this new
research is established, the research question (RQ) listed, and the contributions of this
study clarified.

1.1 definition of program comprehension

Historically, the term “program comprehension” describes the ability to characterize
the structure of a software program, its input(s) and output(s), effect(s) during and
after execution, and the coding syntax written in the source code of the program [10].

To illustrate the definition, a simple example of a code snippet follows:

public double MyCalculation(double a, double b)

{

c = a + b;

return Math.pow(c, b);

}

1

2 introduction

A software engineer should be able to understand the intent, sequence flow, and
effects of the code snippet and be able to express it in human-level communication:

1. A method that takes two inputs, a and b.

2. Performs addition to those two inputs and assigns to a local variable c.

3. Raises c to the power of b, using a built-in class.

4. Returns the result to the caller of the method.

Moreover, program comprehension is not only required for source code written by
a human but also necessary for computer-generated artifacts, such as templates gen-
erated from a code generator or codebase structure created by executing a scaffolding
command. The relationship between program comprehension and the different parts
of the software development process is illustrated in Figure 1.1.

Figure 1.1: Software development process and program comprehension (Reproduced from
[11]). Solid lines depict human activities; dotted lines depict automated activities.
Bold text depicts the research area of program comprehension.

1.2 importance of program comprehension

One aspect of the importance of this topic is the cost in time to software engineers.
Evidence suggests that software engineers may spend more than 50% of software
maintenance capacity in reading and understanding source code [8, 12, 13]. Similarly,
one of the approaches software engineers use for program comprehension is to
navigate through call stacks or relevant code segments. A study that tracked the screen
activity found that, on average, 35% of their time was spent on this activity [7]. Another

1.2 importance of program comprehension 3

study collected interaction data from an integrated development environment (IDE)
and revealed that approximately 70% of time spent on coding or revising code
could be categorized in program comprehension [6]. In addition, they are likely
to spend 3.5 times more time on understanding the source code than reading the
supporting documentation and spending only a moderate amount of time on the
actual implementation of the enhancement [8]. Albeit that the findings of different
studies regarding the percentage of time spent on program comprehension vary
between 35 and 70% [6, 7, 12, 14, 15, 16], it is well established from a variety of
research that software engineers spend more time on understanding code than on
writing it [6, 7, 8].

The second aspect is the cost of resources to organizations. For a successful software
system, change is intrinsic and inevitable [5]. Unless an organization actively attempts
to maintain or reduce a software system’s complexity, it will increase in complexity
as it evolves [17]. The human mental capacity to process large and complex codebase
is limited. Code-level complexity can affect the readability and understandability of
the codebase, resulting in more time and effort spent to accomplish a development
task. For example, too many nesting levels or cyclic dependencies in a method will
affect the readability, rendering it difficult to understand [18, 19]. In addition, software
maintenance often accounts for a large proportion of an organization’s budget [20],
even up to 50 to 90% [21, 22]. Therefore, program comprehension is estimated to cost
an organization between 30 and 50% of the operating expense [6].

The third aspect is the cognitive load of software engineers. This load increases as
the software system complexity increases [23, 24]. Humans have limited cognitive
capacity and can only memorize a certain amount of information during any given
time frame, and familiarity decreases as time passes. This “forgetting factor” results
in additional effort to re-familiarize even previously seen source code [18, 24, 25] and
leads to a phenomenon in which software engineers sometimes attempt to copy and
paste source code to avoid too much effort, both in time and mental exertion [25, 26,
27]. For example, suppose a software engineer cannot understand all the possible side
effects of a change; instead of refactoring a code block into a reusable method, the
propensity is to copy and paste. Often they postpone refactoring the code until they
had copied the same code multiple times [9, 27]. Consequently, the cloned source
code violates the “Don’t Repeat Yourself” (DRY) principle, rendering the software
system more difficult to maintain. For any fix or enhancement required on the code

4 introduction

snippet, multiple copies are scattered throughout the codebase, increasing the risk
factor and reducing the system integrity and consistency [26, 28, 29].

1.3 motivation and objectives

The first in-depth analyses of program comprehension emerged during the late 1970s
[13, 30, 31]. There have been many improvements in the software development envi-
ronment over the ensuing 40 plus years. For example, some IDE now provides artificial
intelligence (AI)-assisted development, uses context from the codebase, and combines
with machine learning (ML) for more intelligent code completion.1 These changes have
streamlined software development tasks for software engineers. However, it still takes
a notably large portion of time to understand code [32], and program comprehension
tools are only minimally used [9].

To date, few studies have investigated how and why these improvements assist
software engineers [9, 11, 32]. Robillard et al. [33] conducted an exploratory study in a
laboratory setting with five developers.2 They concluded that it is more productive to
investigate a codebase with a systematic strategy than with an unmethodical approach.
Maalej et al. [9] studied 28 developers across seven companies. They found that the
comprehension strategy used depended significantly on the current work contexts,
such as task at hand, knowledge on the codebase, development experience, types of
technology, or framework used.

Although extensive research has been conducted on the actions of developers in
development tasks to understand the codebase as part of the tasks, few have focused
on the specific program comprehension challenges developers face or why they occur.

1.3.1 Definition of Program Comprehension Challenge

In this study, comprehension challenge is defined as when a developer seeks infor-
mation on the program behavior, the intention of a code change, who has experience
with the code, why the code is implemented a certain way, or who wrote this piece of
code [9, 14].

1 Visual Studio IntelliCode, https://visualstudio.microsoft.com/services/intellicode.
2 Throughout the context of this study, the terms "software engineer" and "developer" are interchangeable.

1.3 motivation and objectives 5

1.3.2 Program Comprehension and Pull Requests

Pull-based development is a software development collaboration model. Code review
processes and PRs are at the center of this model. A software engineer can initiate
code changes by creating a PR for someone to review the changes before merging
them into the branch. Those code review comments are conveyed and captured as
written communication associated with the PR and code position. With more than
56 million developers as of 2020, GitHub is one of the largest developer platforms
supporting pull-based development [34].

Moreover, pull-based development has been trending during the last ten years
[35, 36] and is expected to become the default software development collaboration
model [37]. Gousios et al. [36] have classified the frequency with which developers
created PRs and surveyed the main themes of challenges that emerged from the PR

process. The summarized findings of the specific challenges developers face with the
pull-based development are presented in Figure 1.2. The thickness of a line represents
the number of responses. Unsurprisingly, understanding codebase is one of the top
three most frequent challenges faced by developers.

Figure 1.2: Challenges with the pull-based development (Reproduced from [36]).

6 introduction

1.3.3 Research Scope

As the pull-based development model is progressively becoming more popular,
more software engineers are performing code reviews. In addition, Gousios et al.
[36] observed that, close to 70% of the time, software engineers would communicate
intended code changes by opening a PR, and that program comprehension is one of the
most frequent challenges that code reviewers face. A search of the literature revealed
a paucity of studies that investigated written software engineer communications in
PR code reviews.

A gap in the literature that motivates the need and establishes the importance
of studying program comprehension during PR code reviews has been revealed.
This study aimed to identify the accuracy of detecting program comprehension
challenges faced by software engineers during code reviews with the application of
ML, analyze the specific challenges surrounding program comprehension to compare
to the challenges of software maintenance, and discover the common causes of the
challenges. Therefore, this study investigates the following four main RQs:

RQ1. What are the attributes of pull requests that affect program comprehensibility?

RQ2. How accurately can a machine learning classifier detect program comprehension
challenges in a pull request code review?

RQ3. What types of program comprehension challenges do reviewers face?

RQ4. Why do reviewers face program comprehension challenges?

This study systematically analyzed data of PR review comments, aiming to identify
instances when software engineers encounter program comprehension challenges
and the context of those challenges. Both qualitative and quantitative methods were
used in this study, with PR review comments data gathered from two main sources:
GitHub REST API v3

3 and GHTorrent4.
Furthermore, this study explicitly investigated instances where developers encoun-

tered challenges in understanding the codebase and also advanced towards improving
program comprehension support for software engineers. A substantial amount of
code review comment textual data were collected, and ML and natural language

3 GitHub REST API, https://docs.github.com/v3.
4 The GHTorrent project, https://ghtorrent.org.

1.4 contributions 7

processing (NLP) were leveraged to analyze those comments. Many existing studies
with adequate feature engineering have proven that ML is recognized as a reliable
approach for data analysis. This study developed an ML classifier to classify the PR

review comments, and to detect when a code review comment expresses difficulties
in understanding code changes. In conjunction with manual content analysis, this
study further identified common types of challenges and discussion topics during
code reviews.

1.4 contributions

This study aims to provide a better understanding of the specific challenges to
program comprehension and gain a deeper understanding of software engineers’
particular needs to understand the codebase when facing a challenge. The novel
contributions of this study are:

1. The quantifiable attributes of a PR were analyzed, and their relationship with the
program comprehensibility of the code changes in the PR and the possibility that
some of the well-known software complexity metrics apply to PRs are discussed.

2. Various ML algorithms, training approaches, and NLP techniques are discussed;
their performances in detecting comprehension challenges during a PR code
review are compared; and a method of using an ML classifier for promptly
detecting program comprehension challenges in PR code reviews with acceptable
performance is provided.

3. A data aggregator developed in Python5 for collecting PR data from GitHub and
GHTorrent is publicly shared.

4. All developed Python ML scripts6 are provided and the raw and processed PR

comments data7 shared as a replication package for future studies.

5. A comparison of the types of program comprehension challenges during code
reviews and software maintenance is discussed.

5 https://www.python.org.
6 Code Comprehension Classifier for Pull Request Comments (CCC4PRC), https://github.com/eddie-

chiang/ccc4prc.
7 Datasets 20190503, https://bit.ly/2JvMhC1.

8 introduction

6. The common causes of program comprehension challenges during code reviews
are presented.

The significance of these contributions enables more efficient code review and pull-
based development. The ML classifier provides an in-depth understanding of whether
AI-assisted tools can be used to assist software engineers with reviewing code changes,
which, consequently, allows the more efficient onboarding of new team members,
minimizes the time spent on trivial impediments affecting program comprehensibility,
and maximizes output with more development velocity. Finally, knowledge of the
common types of information needs can enable suggestions for avoiding some perils
when software engineers creating PRs, turning the code review into a more enjoyable
and productive exercise. Decreasing the reviewers’ cognitive load will enable them to
focus more on ensuring code quality and minimizing bugs, and, therefore, reduce the
overall cost of software development.

1.5 structure of the thesis

The remainder of this thesis is structured into six chapters:

Chapter 2 explains the background and provides the reasons for researching pro-
gram comprehension with the implementation of PR and ML.

Chapter 3 discusses the trends, approaches, and evolution of the field in the litera-
ture review. These are then interpreted and evaluated to connect to the research
conducted in this study.

Chapter 4 describes the detailed design of the research methodology and explains
why the method was adopted.

Chapter 5 presents the results and findings related to the RQs.

Chapter 6 delves into the key findings, their relevance to the literature review and
the RQs, and considerations on the validity of the findings of this study.

Chapter 7 concludes this thesis with a conclusive discussion of the findings, main
contributions, and future research recommendations.

2
B A C K G R O U N D

To frame the discussion in this study, it is crucial to describe the basic components of
a PR, clarify how and why code reviews are conducted in a PR, and justify the use of
ML for analyzing code review comments.

2.1 pull request

A source code file is tracked with a change history on every commit or check-in in
version control systems. Git is a distributed version control system (DVCS), and since
its inception in 2005, it has revolutionized the way software engineers collaborate on
software development [38].

In addition to the more traditional centralized version control systems (CVCSs), such
as Team Foundation Version Control1 or Subversion2, a DVCS allows more flexible
and rapid branching or forking (i.e., cloning) of the codebase. Every branch created
in a CVCS requires contacting the central server. The server then has to process the
request, allocate data storage, and permission check to ascertain whether the user has
the appropriate authorization for the desired destination branch location.

In contrast, a DVCS is decentralized and has no such constraints. Each commit is
associated with a global identifier across branches and repository forks. A software
engineer can create a new branch locally on their computer or fork a repository in
their repository hosting. All of this can be achieved while preserving the commit
history and change tracking that can be referenced across branches or repositories.
The ability to distribute version control enables the pull-based development model.

Consequently, a software engineer can propose changes as a PR, and it is up to the
repository owner or reviewers to accept or reject the PR [35]. A PR can be utilized for
feature development, bug fixes, intra-repository collaboration within the same team
by creating separate branches, or inter-repository collaboration with the community
by creating forks.

1 Team Foundation Version Control, https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/what-
is-tfvc.

2 Apache Subversion, https://subversion.apache.org.

9

10 background

A classic example of a PR starts with a software engineer working on a new feature,
identified as the code change author. To minimize disruption and risk on the main
branch, the author creates a snapshot of the main branch as a feature branch, allowing
them to work on it independently. They make changes to the feature branch until
the feature is complete and ready to be merged back into the main branch. As a
workflow for code review from peers, the author creates a PR. One or more reviewers
inspect the change and may make some comments. On GitHub, those comments can
be tied to a specific code position, referred to as PR review comments, or be a global
comment regarding the entire PR, referred to as PR issue comments. The author then
reads those comments and makes amendments to address the feedback. This process
can be iterative, with multiple rounds of code review and additional commits. Once
the reviewer approves the code review and the PR, the feature branch merges back
into the main branch. Figure 2.1 illustrates the interactions among authors, reviewers,
the main branch, and a feature branch during a PR process.

Author

Author

main branch

main branch

feature branch

feature branch
Pull Request

Reviewer

Reviewer

create

loop [working on feature?]

commit

create

Pull Request

Code Review

review changes

comment

Optional as a result of the review

commit

comment

merge

pull

commits

close

delete

Figure 2.1: A pull request sequence.

2.2 code review 11

2.2 code review

Code reviews typically involve reviewers, excluding the author, inspecting the code
changes manually. The ultimate goal is to improve code quality, identify any issues,
and provide feedback to the author so that they can amend accordingly before
approving the PR [39, 40], while some code reviews are motivated by code ownership
and knowledge sharing [40, 41].

Figure 2.2 shows a sample screenshot of a code review discussion thread during
a PR process on GitHub. Although details for different code review tools from the
different platforms may differ, the core features remain largely similar [42]. The
reviewer provides feedback, referencing the changed code and the rationale for the
suggested change. The author acknowledges the feedback and updates the code
accordingly.

Figure 2.2: Code review discussion thread in a pull request on GitHub.

The following list describes the relationship between the domain objects relevant to
a PR captured on GitHub that are within the scope of this study:

• An author or a reviewer are both subtypes of a user.

12 background

• An author is a user who creates a PR.

• A PR contains one or more commits.

• Each commit contains changes to one or more files.

• A reviewer can comment overall regarding the entire PR; this is referred to as a
PR issue comment.

• A reviewer can comment on a specific code change in a file; this is referred to as
a PR review comment.

• An author can respond to a PR review comment by creating a subsequent PR

review comment in the discussion thread.

The entity-relationship model is illustrated in Figure 2.3.

Figure 2.3: Pull request review comments entity relationship modeling.

2.3 machine learning and natural language processing 13

2.3 machine learning and natural language processing

Today, with the pull-based development, code reviews are becoming more tool-based,
asynchronous, and communicated in written form [41, 42, 43]. Code reviewers are
motivated to ensure code quality, mainly by inspecting and reading through the code
changes [39], yet there is a lack in instantaneous interaction and discussion with code
authors to guide the code changes. In addition, one of the most significant challenges
during code review is program comprehension [36, 41]. This makes code review
comments the ideal data source for studying program comprehension.

However, with the large amount of data available from GitHub and given the
bandwidth constraint, it is not humanly possible to analyze even a fraction of that
data. Fortunately, ML offers methods to process large amounts of data efficiently. An
ML model with an appropriate algorithm, a training dataset, and extracted features
relevant to the problem domain can build a classifier for predictions. The classifier
could assist in identifying specific occurrences when a reviewer fails to understand a
code change or its rationale. This means that researchers will have more time to focus
on exploring the causes of those program comprehension challenges.

Furthermore, NLP extracts and filters features of code review comment textual data
for ML algorithms to evaluate. NLP is a subset of ML, and it concerns the understanding
of the natural language used by humans [44]. The following is a simple sentence to
illustrate:

Today it is hot and sunny.

One of the most basic tasks to process the sentence is to perform tokenization. This
means delimiting words in the sentence into meaningful units with spaces, and the
result would be: “Today,” “it,” “is,” “hot,” “and,” “sunny.” There are various methods
to achieve the goal in NLP. In real-world use cases, the tasks and processing involved
are often much more complicated.

With the maturing development and increasing focus on NLP and ML in recent
years [44, 45] and the development of ML models that show promising prediction
performance in text analysis in other studies [46, 47], it is being increasingly regarded
as a reliable technique to automate and reduce the effort required for analyzing code
review comments.

3
L I T E R AT U R E R E V I E W

Research into program comprehension has a long history, and much of the research
relevant to this study has been anchored in three major dimensions:

1. Studying the applied program comprehension models and strategies.

2. Inventing different metrics and techniques to measure program comprehension.

3. Identifying information needs and types of challenges faced.

This chapter reviews each of these dimensions, including outlining key concepts
and theories, exploring applications of those concepts and theories, and highlighting
and comparing the approaches and techniques applied in similar studies. The purpose
of these reviews is to examine whether the RQs are pointing in the right direction to
advance one more step in this research field.

3.1 program comprehension models

Different theories regarding program comprehension models exist in the literature.
These models portray the mental activities involved and how software engineers
memorize information to understand code, and provide insight into what information
they search for in their minds to construct the functions of the program [48, 49].

There are more than seven relatively complex models described in the literature
[49, 50], but most are comprised of two basic processes: top-down or bottom-up [32].
This section discusses those two fundamental processes and an integrated model that
combines both of those processes.

3.1.1 Top-down Comprehension Model

A top-down comprehension model starts when a software engineer has a high-level
understanding of the program’s context. The software engineer assumes a behavior
or feature, either functional or non-functional, and then analyzes the codebase to find

15

16 literature review

the relevant patterns, code blocks, or beacons to either support, reject, or further refine
the assumption. In this process, they focus only on the relevant beacons to validating
the assumption; any irrelevant information is discarded [49, 51].

In a simple example, a software engineer familiar with the mobile push notification
system first makes an assumption on how a push notification is delivered, in the
following sequence:

1. The back-end system generates a notification and sends a web service call to a
third-party notification service.

2. The notification service delivers the push notification to the end-user’s device.

With this assumption in mind, the engineer delves into the code, first by finding the
implementation where the notification is generated and then following the sequence
flow to search for web service calls. Any unrelated information, such as a stored
procedure to audit the notification in a data store, does not verify the assumption;
thus, it is ignored. Once the web service call to the notification service is found, the
assumption is validated and the goal is achieved by using the top-down model.

The comprehension model is more intuitive than other models to software engineers.
When they are familiar with the application domain, the approach is far more efficient
than reading the code line by line. They can recognize relevant beacons more easily
due to the knowledge they possess on the code structure or the architecture of the
software system [51].

3.1.2 Bottom-up Comprehension Model

In contrast to the top-down model, a bottom-up comprehension model is applied
when a software engineer does not have sufficient understanding of the application
domain. Without that knowledge, they cannot recognize the relevant patterns, code
blocks, or beacons. In this situation, they carefully read through the code to understand
the implementation details and glue together semantically relevant pieces to form a
more significant chunk of information, which is a higher-level abstraction. Thereafter,
they repeatedly aggregate more chunks until they can articulate a sufficient level of
understanding to address the task at hand [48, 52].

To revert to the previous example of the mobile push notification system, a software
engineer may receive an error alert with an error message (e.g., an HTTPS handshake

3.1 program comprehension models 17

failure) from an application monitoring system and a call stack. The task is to deter-
mine the source of error, its cause, and any impact on the end-users. The software
engineer can attempt to comprehend the system in the following way:

1. Examine the error message.

2. Locate the most recent method call.

3. Proceed to the next method in the call stack.

4. Repeat until the references to the method can be narrowed down and match any
preceding log entries.

These diagnostic steps aid in the formation of chunks of information, and each chunk
can help the software engineer to discover more about what the system does, why
the error was occurring, and the consequences and impact radius caused by the
error. After repeating several iterations of these steps, they may be able to determine
that the system failed when sending a push notification to a mobile device because
of an expired SSL certificate, used for web service integration with the third-party
notification service, and the repercussion is that the end-user may not have received
the push notification. The above example demonstrates the bottom-up approach to
gain a sufficient level of understanding in action.

3.1.3 Integrated Comprehension Model

It is almost impossible for anyone to know everything at all times with large and
sophisticated software systems. Hence, when the program is familiar, the compre-
hension process often involves both top-down and bottom-up approaches [53]. A
software engineer may have knowledge of the application domain, but, when there is
unfamiliar code to be understood, they may have to combine the two approaches.

The integrated comprehension model by von Mayrhauser and Vans [53] describes
such mental activities. It refers to the program model as the bottom-up approach to
reading through code to gain programming domain knowledge. It also refers to the
situation model as the subsequent step to develop in addition to the program model
to form problem domain knowledge regarding the functional feature. In short, the
bottom-up and situation models combine with the top-down model to establish an
understanding of the unseen code, as illustrated in Figure 3.1.

18 literature review

Figure 3.1: Integrated comprehension model (Redrawn from [53]). This depicts how top-down,
bottom-up, and situation models combine to form the required knowledge.

To once again revert to the previous examples on the mobile push notification
system, some new feature that generates actionable alerts has been developed and it

3.2 measuring program comprehension 19

is unfamiliar to the software engineer. The integrated comprehension model could be
implemented as follows to understand the new code:

1. Read through the newly implemented method.

2. Gain an understanding of the data structure for the notification payload.

3. Be aware that the system did not previously support actionable alerts.

As a result, they are able to map the newly implemented code for the actionable alerts
feature with the help of the existing application domain knowledge.

relevance to this study These studies have collectively outlined critical
observations regarding the intellectual processes during program comprehension,
providing insight into what information software engineers seek.

Although there is a tendency among software engineers to prefer the top-down
approach, as it requires less cognitive input, it is well established that different
problem contexts may lead to various activities to solve the problem [51]. In addition,
the characteristics of individual software engineers, such as ability, knowledge, and
experience, are the drivers of the differences in dealing with comprehension tasks [48,
54, 55], and they frequently switch between different models, depending on the level
of known information or details required [53]. Thus, rather than contradicting each
other, these models complement each other to fill any gaps.

This study concentrated on those three well-established comprehension models.
Consideration of the comprehension model(s) a reviewer implements during a PR code
review process can aid understanding of the types of information a reviewer needs.
Conversely, analyzing the reviewers’ information needs to find emerging themes can
aid understanding of the potential comprehension model(s).

3.2 measuring program comprehension

There are two aspects to measuring program comprehension. One aspect is to develop
quantifiable code metrics to represent software complexity, such as lines of code (LOC),
or a cyclomatic complexity metric (CCM). Another aspect is to measure how well
human subjects understand source code.

In the past, most studies explored quantifiable code metrics based on software
systems’ characteristics to measure the complexity. Code-level complexity has a

20 literature review

correlation to the program’s comprehensibility. The more complex the codebase, the
more difficult it is to understand [18, 19]. Moreover, a widely accepted metric of
software complexity can assist in the evaluation of the quality of software and provide
more confidence in the estimation of software development [56].

However, the generalizability of the published metrics is problematic and they may
not reflect software complexity correctly. Thus, other researchers have conducted vari-
ous empirical evaluation approaches to measure cognitive processes, predominantly
comprehension tasks, memorization, and think-aloud protocols [31, 51, 52, 53, 57, 58,
59].

The two aspects, aiming to measure the comprehensibility of the software system
and investigating different attributes, properties, or characteristics that could affect
software engineers’ understanding of the code, are two sides of the same coin. This
section discusses and evaluates the more common code metrics and the trends and
approaches to measuring cognitive processes.

3.2.1 Code Metrics

There is a considerable amount of literature on different code metrics that have been
invented to quantify a software system’s attributes, properties, or characteristics in
a numerical rating. Most of these metrics lack a substantial theoretical foundation
and are, instead, based on practical experience. The academic literature on these
metrics revealed the emergence of several contrasting themes regarding the correlation
between those metrics and program comprehensibility.

3.2.1.1 Lines of Code

The LOC is one of the most easily calculated measurements. As the name suggests, it
counts the number of lines in the source code, including comments or empty lines. A
study by Herraiz and Hassan [60] suggests that LOC is a useful metric to estimate the
effort required to understand the codebase. This metric is also easy to understand
and can be more easily communicated to non-technical stakeholders. On the contrary,
Ajami et al. [61] found a different perspective in their study, which in some cases, a
longer code snippet can take less time to understand than a shorter one, and they
advised LOC may not be the best metric to measure comprehension. Furthermore,

3.2 measuring program comprehension 21

LOC does not consider the complexity of each line [62], as in the example shown in
Listing 3.1.

Listing 3.1: An example of lines of code in which comprehensibility is not weighted equally.

1 int i = 1;

2 i = (++i) + (++i);

The second line is considerably more complex than the first line and requires signifi-
cantly more cognitive load to comprehend. In LOC, comprehensibility does not always
weigh equally.

3.2.1.2 Halstead Complexity Measures

Another popular metric is the Halstead complexity measures (HCM) proposed by
Halstead [63] in 1977. It measures the number of operators and operands in the
code and offers several metrics, with difficulty being one of those metrics related to
the difficulty of understanding code. The difficulty metric, D, is calculated by the
following equation:

D =
n1

2
× N2

n2
,

where n1 is the number of unique operators, N2 is the total number of operands, and
n2 is the number of unique operands.

In the first line of Listing 3.1, there are three unique operators, namely int , = , and
; . The total number of operands and the number of unique operands are both two:
i and 1 , so then,

Dline one =
3
2
× 2

2
= 1.5.

As for the second line, the number of unique operators is five: = , () , ++ , + , and ; ,
the number of unique operands is one: i , and the total number of operands is three,
then,

Dline two =
5
2
× 3

1
= 7.5.

22 literature review

The difficulty metric for the first line is 1.5, and it is 7.5 for the second line.
Compared to LOC, where each line weighs equally, HCM offers a superior grasp

of the relative complexity in this example. It is a more sophisticated measurement
yet only requires static code analysis and is still relatively easy to measure. However,
HCM lacks execution analysis and neglects the software system’s control flows and
structural properties, such as method calls jumping to a different class file, and cannot
always be considered a sufficient measure [62, 64].

3.2.1.3 Cyclomatic Complexity Metric

In contrast to HCM, CCM analyzes the structural properties and the control flows. The
CCM is one of the few of all the code metrics that has a theoretical basis. McCabe
[65] invented the metric back in 1976 based on graph-theoretic complexity, which
analyzes the decision structure of a software system and measures the possible paths
and combination of execution. The cyclomatic complexity, M, is defined as

M = E− N + 2× P,

where E is the number of edges, N is the number of nodes, and P is the number of
connected components.

For example, the following code can be associated with a program control flow
activity diagram, as illustrated in Figure 3.2.

if (thesis finished?) equals (yes) then

:celebrate;

else

:keep calm and carry on;

There are four edges and four nodes. Since it is a simple code snippet and not calling
for another method, there is only one connected component. Therefore,

M = 4− 4 + 2× 1 = 2.

The cyclomatic complexity is 2.
Higher numbers indicate more possible paths and more complexity. However, many

studies have questioned the appropriateness of using the CCM for program compre-
hension, and it still has some shortcomings [56, 60, 61, 62]. One of the shortcomings
is that the branching instructions may not weigh equally. For example, for can take
twice as long to understand as if [61], but the CCM counts both instances as a single

3.2 measuring program comprehension 23

thesis finished?yes

celebrate keep calm and carry on

Figure 3.2: Program control flow activity diagram.

node, and another is that the CCM only focuses on the control flow and ignores the
data flow, which means that a code block with 200 lines that performs some complex
sequential calculation may have the same complexity score as a single line of code.

There is no consistent positive correlation between program comprehensibility and
complexity metrics from either the HCM or CCM. Some have argued that, when it
comes to indicating program comprehension effort, LOC provides as much insight as
the HCM, CCM, or other syntactic complexity metrics that only measure the structure
of the codebase or the properties of a statement [19, 60].

In addition, there are attributes in a PR that signify the number of code changes,
such as the number of commits and the number of lines changed. The notion of
counting is similar to LOC. Moreover, without observing the repository snapshot
when a PR was created, those are the only easily obtainable metrics. Since there is no
added advantage to using HCM or CCM [19, 60], the LOC metric was linked to those
attributes in this study to examine their effects on program comprehension.

3.2.2 Observing Software Engineers

The other side of the coin to measuring program comprehensibility is to observe
software engineers’ cognitive processes. Some researchers have attempted to evaluate
the correlation between common software complexity metrics and program compre-
hensibility [57, 61]. Simultaneously, some studies measured the cognitive process
and discussed aspects of a software system that may not be easily quantifiable with
the existing metrics. However, observation of software engineers’ cognitive processes
can be challenging to control due to the human factor involved. Approaches used in
previous research have all been imperfect in at least one aspect.

Many researchers set comprehension tasks for software engineers. These tasks
present a shorter code snippet, varying from 15 to 200 lines. Some studies asked
participants to complete a multiple-choice quiz, and then measured their reaction time

24 literature review

and quiz scores [31, 52, 61]. Similarly, some studies focused on code patterns already
acknowledged as prone to misunderstanding, referred to as “atoms of confusion”,
and asked the participant to evaluate each manually to determine the expected
execution output, then compared to a structurally similar code snippet without the
atom to exhibit its effect on comprehension [66]. Other studies required participants
to complete the blank spaces, and those code snippets were designed to depend on
first comprehending the entire snippet [57]. In addition to these conventional studies,
which focused on participants’ subjective consciousness, new techniques have been
emerging. Those techniques combine comprehension tasks and leveraged psycho-
physiological sensors to investigate the functions of particular cognitive subprocesses
(e.g., language processing, attention, and memory).

For example, Peitek et al. [58] used brain imaging and an eye tracker to observe
how different brain areas react to defined tasks; this setup is illustrated in Figure 3.3.
The study found evidence that program comprehension activates the same area as
language processing. Another example is the study by Fritz et al. [59], who measured
eye tracking, electrical activity of the brain, and electrodermal activity while partic-
ipants performed defined tasks. The participants ranked the perceived complexity
of those tasks, and the study analyzed the relationship between task complexity and
the captured biometrics. This approach captured the cognitive process successfully
and found a correlation in reaction time among coding convention (e.g., naming
variables), different operators (e.g., +, &&, >=), and positive statements versus negative
statements (e.g., if (i == j) versus if (i != j)). However, these code snippets were
too short and did not reflect how a software engineer comprehends beyond a single
class, a microservice, or a software system. A typical size software system usually
contains not only multiple files of source code, but also the navigation mechanism,
and it seems that these studies did not consider the required memory bandwidth.
Furthermore, multiple-choice is not suitable for the current practical development
environment.

Some researchers asked participants to memorize the source code verbatim rather
than completing a blank space or answering a multiple-choice quiz. The code included
both the sequence flows and values assigned to variables, and participants were
asked to transcribe it from memory [30] or shown a slightly modified version and
asked to point out the differences [57]. Shneiderman [67], a researcher who studied
software psychology and has published several often-cited works since the late 1970s,

3.2 measuring program comprehension 25

Figure 3.3: Measuring program comprehension with functional magnetic resonance imaging
(Reproduced from [58]).

made an interesting analogy between programs and music. He suggested that, if
the problem domain is well known to a software engineer and the source code is
well structured, then, similar to musicians who can memorize entire symphonies
or thousands of music sheets, software engineers should be able to memorize the
source code. While evaluating the effect of source code structure on memory could
provide valuable insight into the slower reaction of experienced software engineers to
unplan-like programs (i.e., violating common programming principles, for example,
meaningless variable names or unreachable code), memorization is not necessarily a
good indication of comprehensibility, especially since memorizing may be a different
cognitive process to comprehending.

Finally, several studies recorded audio or video of participants who think aloud
while performing assigned tasks to collect real-time data [51, 53, 68]. A study by von
Mayrhauser and Vans [53] used a good-sized codebase with more than 40,000 lines
and asked participants to perform bug fixes. Shaft and Vessey [51] worked with profes-
sional software engineers, with an average of approximately ten years’ experience in
the accounting domain, to analyze how they worked with a familiar business domain
versus an unfamiliar business domain. These studies captured the exact cognitive
process of program comprehension and useful contextual information. Due to the
focus on the participants’ cognitive process in these studies, however, researchers were
able to record only extremely limited information regarding the specific instances
when participants were having difficulties in comprehending codebase. In contrast,
this current study connects information regarding each instance of comprehension
difficulties with the relevant code being reviewed.

relevance to this study The PR data from GitHub API provides information
on attributes related to a PR. Some of that information relates to LOC (i.e., the number

26 literature review

of commits and the number of lines changed). This study examined the related LOC

metrics and their effects on program comprehension.
Most of the studies conducted to observe software engineers involved a participant

selection process, usually with a small population size, as it is laborious to collect
data. There are several pitfalls with the methodologies used in these studies. First, the
participant selection process may be subjective to the researchers’ own opinion; demo-
graphic features, such as years of experience, may not represent actual comprehension
ability. Second, the context and format of the questions for comprehension tasks could
be misleading. Third, in an observed experiment environment, participants may not
display normal behavior or natural cognitive processes accurately.

Many limitations of past studies have been overcome in this study. The data col-
lected from GitHub include more than 1,000,000 code review comments written by
software engineers on active projects, with multiple collaborators, for real software
projects. There is direct access to the code position for relevant comments, allowing
more complex and thorough analysis than in other approaches to observe program
comprehension. Furthermore, the use of ML in combination with NLP in the methodol-
ogy in this study allowed the analysis of a considerably larger number of code review
comments.

3.3 types of program comprehension challenge

At this point, we had recognized from the program comprehension models that,
during a cognitive process, software engineers seek information to understand the
codebase. This section describes previous attempts to catalog the specific types of
information needs in program comprehension.

A common technique is to conduct qualitative studies on software engineers as
they engage in a comprehension task, dissect the communication among software
engineers, and categorize the questions that arose [14, 68, 69, 70, 71].

There are four fundamental comprehension interrogative words or particles [68],
and most studies expressed the types of information needs in one of these words:

• Why – for example, why is the code implemented this way?

• How – for example, how does the method obtain the result?

• What – for example, what are the variables for the method?

3.3 types of program comprehension challenge 27

• Whether – for example, whether the method returns the expected result?

While these interrogative words provide an initial direction to identify how possible
comprehension challenges can be detected from code review comments, they are
too broad, and often other non-comprehension-related questions are expressed in a
similar dialogue act.

The types of problems encountered significantly depend on the activity; implement-
ing a feature, reproducing a bug, and code review may each have different problems
[14, 70, 72]. Many researchers have formulated more specific lists of questions and
categorized them according to different activities. However, some of those questions
are too specific to the situation; for example, one of the questions listed by Sillito et al.
[70] is “What is the correct way to use or access this data structure?”

Therefore, some studies attempted to balance the level of detail in a question.
For code-review-related activities, Ko et al. [14] formulated a comprehensive list
of questions with an adequate level of abstraction. Moreover, a survey of 1,477

respondents conducted by Maalej et al. [9] utilized the list of questions from Ko et al.
[14] and confirmed the relevance of the types of information needs.

3.3.1 Dialogue Act Classifications

A dialogue act represents the meaning of an utterance in a dialogue intended by the
author. Identifying the dialogue act in a review comment adds to the understanding
of the discourse sequence, structure, and interrogative words or particles used [73].
Stolcke et al. [73] developed 42 dialogue act classifications based on a corpus of spon-
taneous human-to-human telephone conversations. These classifications formed the
basis of a study done by Wu et al. [74] that further refined the number of classifications
relevant to online chat conversations to 15.

These dialogue act classifications have been adopted by other studies to com-
pile corpus for NLP and ML [75]; the classifications were: “Accept,” “Bye,” “Clarify,”
“Continuer,” “Emotion,” “Emphasis,” “Greet,” “Other,” “Reject,” “Statement,” “System,”
“nAnswer,” “whQuestion,” “yAnswer,” and “ynQuestion.”

relevance to this study Ko et al. [14] used a rigorous design to categorize
the types of program comprehension challenges. Maalej et al. [9] also validated the

28 literature review

same list, and this study adopted a part of the list that is applicable to a code review
process:

• What is the program supposed to do?

• What was the developer’s intention when writing this code?

• Why was this code implemented this way?

• Who has experience with this code?

• Who wrote this piece of code?

These questions form the basis for defining the rules for the manual labeling of PR

review comments. The manually labeled dataset was used to train the ML classifier
and the content analysis.

Since GitHub PR review comments are in the form of online chat conversations that
exchange communication regarding code changes, the ML training process leveraged
the fundamental comprehension interrogative words, using NLP to classify the dia-
logue act of review comments with the 15 classifications developed by Wu et al. [74].
This study discusses the relevance of those dialogue act classifications and program
comprehension challenges.

3.4 summary

The reviewed studies provided important insights into the theories behind cognitive
processes and how software engineers seek information. They also provided an
understanding of different metrics for measuring program comprehensibility and
different approaches to observing how software engineers understand the codebase.

In addition, this review highlighted the need for further research to focus on
instances when software engineers experience program comprehension challenges.
This study is based on the previous studies and added one more step to overcome
many of the limitations. The PR code review data collected include more than 1,000,000

real review comments from real-world software projects. With the implementation of
ML and NLP, this study extracted review comments that contained some indication of
program comprehension challenges, allowing us to be specific and perform a more
thorough analysis than other more general-purpose program comprehension studies.

4
M E T H O D O L O G Y

This chapter introduces the research objective, establishes the overall research context,
and demonstrates the research design and process in detail. Moreover, it discusses
the rationale behind the design decisions and explains how obstacles were mitigated
to ensure that the research design and implementation were as rigorous as possible.

4.1 research objective

The primary objective of this study is to provide insight into program comprehension
challenges during PR code reviews. The intention is to leverage ML to auto-detect
instances when a software engineer experiences difficulties in understanding code
changes, and, furthermore, to analyze those specific instances and evaluate the types
of challenges faced during a PR code review compared to performing a development
task. Five main RQs guided the research design:

RQ1. What are the attributes of pull requests that affect program comprehensibility?

RQ1.a. How does the number of lines of code changed in a pull request affect
program comprehensibility?

RQ1.b. How does the number of commits in a pull request affect program compre-
hensibility?

RQ2. How accurately can a machine learning classifier detect program comprehension
challenges in a pull request code review?

RQ3. What types of program comprehension challenges do reviewers face?

RQ4. Why do reviewers face program comprehension challenges?

First, RQ1 examines measurable attributes that a PR author can control and their
effects on program comprehension. RQ1a and RQ1b focus on a subset of attributes
that measure the number of code changes. Those attributes are intrinsically similar
to the concept of counting in LOC, one of the most common code metrics, which is
considered to be a simple yet effective metric to indicate program comprehensibility

29

30 methodology

[19, 60, 62]. Thus, this study evaluates whether LOC is applicable in the context of code
reviews. The answer to this question will guide software engineers and researchers
to understand what guidelines can be adopted or which harmful practices to avoid
when creating PRs.

Second, RQ2 focuses on the possible implementation of an ML classification model
that can automatically identify when a software engineer encounters a problem due
to missing knowledge regarding code changes in a PR on an acceptable level.

Third, RQ3 delves into the types of information required during code reviews and
highlight the uniqueness of the code review activity compared to other development
activities, to spark research interest and context-aware tool development opportunities.

Finally, RQ4 examines the possible factors that prevent software engineers from
being able to comprehend the proposed PR code changes.

4.2 methodology overview

To achieve the research objective, a series of investigations were conducted into code
review comments exchanged by software engineers on GitHub when reviewing PRs.
The following describes the high-level research process:

1. Data collection

a) Secondary data of 1,036,743 PR review comments were collected from
GitHub and GHTorrent, which comprised both qualitative data, such as the
body text of a review comment, and quantitative data, such as the number
of lines changed in a PR.

b) Random samples were selected from the experiment dataset, with a sample
size of 770 to provide a 99% confidence level and a 5% confidence interval.

2. Manual labeling of the sample dataset was done in collaboration with indepen-
dent coders to identify PR review comments where the commenter indicated
difficulties in understanding code changes.

3. Feature engineering was performed, and statistical hypothesis tests were con-
ducted to support the discussion for RQ1.

4. A supervised ML classifier was built with the labeled sample dataset and features
extracted for detecting program comprehension challenges to answer RQ2.

4.2 methodology overview 31

5. Content analysis

a) The ML classifier was applied to on the experiment dataset to detect more
instances of PR review comments that indicate symptoms of program
comprehension challenges, which produced a dataset with a sample size of
384 program comprehension challenges.

b) Three hundred and eighty-four instances or non-program comprehension
challenges were sampled from the experiment sample dataset.

c) A content analysis was conducted on the two datasets to facilitate the
investigations for RQ3 and RQ4.

Before the detailed research procedures are described, it is beneficial to visualize
the overall research approach. Figure 4.1 illustrates the high-level research context in
scope, presenting the data sources of the PR review comments and how the research
process and procedures fitted into the overall setting.

4.2.1 Resources and Tools

Python v3.9 applications were implemented in this study for the data collection and
scripts used for ML training. The applicable Python packages are listed and described
in Appendix A.

The data collection was integrated with GitHub REST API v3 and GHTorrent services,
namely BigQuery1 and MongoDB2. GitHub imposed a user-to-server rate limit of
5,000 requests per hour3; thus, multiple personal access tokens were required for
authentication.

1 GHTorrent on the Google cloud, https://ghtorrent.org/gcloud.html.
2 Collections in MongoDB, https://ghtorrent.org/mongo.html.
3 https://docs.github.com/en/free-pro-team@latest/developers/apps/rate-limits-for-github-apps.

32 methodology

Figure 4.1: Research context diagram. Glossary: machine learning (ML), pull request (PR) and
research question (RQ).

4.3 data collection for pull request review comments 33

4.3 data collection for pull request review comments

Many researchers have utilized comprehension tasks, memorization, or think-aloud
protocols to investigate how software engineers understand code, and all involved
some form of an interview process. Compared to those methods, major advantages of
using PR code review comments were data availability, authenticity, and diversity.

Availability means that the code review comments were written communication
and effectively crowdsourced from the reviewers of a popular code hosting service.
This method only took a fraction of the time that it would take to conduct interviews
to gain a similar amount of information. As a result, this study collected a significantly
more extensive dataset.

Authenticity refers to the review comments capturing a more accurate represen-
tation of the results of reviewers’ understanding, misunderstanding, or inability to
understand the code changes as opposed to a lab setting, where participants are
conscious of being observed.

Diversity implies that, instead of a carefully crafted code snippet, deliberately
manipulated codebase, or a selection of interview participants, the data collected in
this study originated from real active open-source projects with a broader mixture of
different demographics among reviewers.

In addition, pull-based development is becoming more common [37], and many
software engineers will inevitably have to review the work of others at some point
during their careers.

4.3.1 Secondary Data Collection From GitHub and GHTorrent

GitHub is one of the most popular collaborative code hosting services and has already
collected a large number of PR review comments that would have been inaccessible
otherwise. Moreover, it offered a comprehensive set of APIs, making it an almost ideal
candidate for data mining. However, for the purpose of this study, it lacked an API for
querying data of PR review comments across its entire data store without specifying
the repository and its owner.

The GHTorrent project built by Gousios [76] addressed such limitations by mirror-
ing the GitHub data. During a PR code review, the author of the PR and the reviewer(s)
exchange communication regarding code changes in the form of PR review comments,

34 methodology

and that information is captured in GitHub. Subsequently, GitHub published events,
namely, PullRequestReviewCommentEvent.4 GHTorrent used an event sourcing pat-
tern to listen for those events and persistent-stored the data in various data storages
that can be more conveniently queried compared to GitHub. Thus, this study collected
and aggregated secondary data from both GitHub and GHTorrent.

The first step in the data collection process was to isolate the domain objects relevant
to a PR. Although PR issue comments allow authors or reviewers to communicate and
make general comments about the entire PR, they lack specific references to a code
change location in a file. Therefore, this study focused on PR review comments and
regarded PR issue comments as out of scope.

In total, the PR review comments were collected from 1,969 git repositories, contain-
ing 140,986 PRs, with a total of 1,036,743 review comments by 19,336 individual users.
Out of those review comments, 286,715 were from the PR author and 750,028 from the
reviewers. The collected dataset is summarized in Table 4.1. The following two parts
of this section describe in greater detail the selection criteria and collection procedure
applied in this study.

of Repository # of PR # of Users Total # of PR Review Comment

1,036,743

By Author By Reviewer1,969 140,986 19,336

286,715 750,028

Table 4.1: Data collection summary. Glossary: pull request (PR).

4.3.2 Selection Criteria

The GHTorrent BigQuery source dataset was produced in April 2018, with a cutoff
date of 2018-03-31 for all data previously collected. As a result, the valid date range
for the collected data was from February 2011 to March 2018.

Kalliamvakou et al. [77] provided some tactical recommendations for mining PR and
code review data from GitHub to minimize potential perils. Based on their guidance,

4 https://docs.github.com/en/free-pro-team@latest/developers/webhooks-and-events/github-event-
types#pullrequestreviewcommentevent.

4.3 data collection for pull request review comments 35

the first step of the data collection from GHTorrent BigQuery (see Appendix B) was
purposive sampling with the intersection of results filtered by the following criteria:

• Five or more medium-term commits (during the last two years), and five or
more recent commits (during the last three months).

• Three or more persons collaborated and implemented changes.

• Five or more medium-term and five or more recently created PRs.

• Prominent programming language was Java.

• Repository was not mirrored from other code hosting services, such as Source-
Forge, BitBucket.

• Repository was not deleted from GitHub (GHTorrent retains records for deleted
repositories).

One of the criteria was selecting Java as the prominent programming language
to maintain consistency for the analysis and a finite scope. In addition, Java had
consistently been one of the top three popular languages for the last six years, after
JavaScript and Python [34]. In addition to the criteria described above, since this study
involved content analysis to code the data and develop themes and concepts manually,
further filtering was done with a Python application to include only English review
comments.

4.3.3 Data Collection Procedure

Due to various limitations inherent to each data source, the collection process sourced
the data from multiple sources to overcome these limitations. GitHub was the main
data source, but its API was not designed for bulk data collection across multiple git
repositories. GHTorrent’s BigQuery dataset offered a data archive and allowed bulk
export of data into a *.csv file. However, there was a length restriction on the review
comments stored in the dataset, and comments were truncated after 255 characters.
Furthermore, GHTorrent did not capture some crucial PR attributes required for the
analysis in this study, so the missing information was restored by retrieving from
GitHub.

36 methodology

Figure 4.2 shows the data flow of the collection procedure. First, the PR review
comments were produced by PR authors and reviewers on GitHub. Second, this
data were subsequently extracted, loaded, and transformed by GHTorrent into its
BigQuery and MongoDB format. Finally, to collate the data from the various sources,
a Python application named PR Comments Aggregator, 5 was developed. This data
aggregator treated the queried result of the PR review comments (as a *.csv file) from
BigQuery as an input, processed each comment, and performed further data filtering
and enrichment to produce the experiment dataset for this study.

Figure 4.2: Data flow of pull request (PR) review data collection from GHTorrent and GitHub.

Figure 4.3 depicts the data collection activities, further data filtering, and enrichment
performed in the PR comments aggregator. First, the data aggregator used a third-
party open-source library called cld2-cffi [78] to detect the language used in a review
comment and only retained the English ones. Second, by testing whether the text
length equals 255, the data aggregator determined whether the review comment
had been truncated. If so, the data aggregator expanded it by restoring the missing
information from GHTorrent’s MongoDB. If the review comment was missing, it was
discarded from the experiment dataset output. This scenario could happen if, for

5 Pull Request Comments Aggregator, https://github.com/eddie-chiang/prca.

4.3 data collection for pull request review comments 37

example, the review comment was deleted on GitHub and the change mirrored to
the MongoDB but not in the archived dataset in BigQuery. Finally, the procedure
enriched the dataset with more PR attributes that were not captured by GHTorrent by
retrieving from GitHub REST API v3. The attributes extracted from each of the three
data sources are shown in Table 4.2.

A newer GraphQL6 API from GitHub was discounted for this study because it was
not suitable. The GraphQL API does not have the ability to identify the file associated
with a PR review comment. Moreover, there was no overall count of the PR review
comments in a PR, which required separate API calls to iterate through the PR review
comment lists.

Two obstacles were encountered during the procedure. One was that GHTorrent
discontinued access to MongoDB in June 2019 due to the restriction of general
data protection regulation (GDPR),7 and the database contained identifiable personal
information, such as email addresses. The bulk of the data collection procedure had
been completed at this point, and none of the personal data was within the scope of
this study. However, the PR comments aggregator Python application was refactored to
revert to GitHub for restoring any truncated PR review comments to ensure resiliency.

Another obstacle was the GitHub API rate limit of 5,000 requests per hour. Three
API calls were required for each PR review comment to collect the data required for
this study, including obtaining the PR attributes, the PR review comment attributes,
and commit file attributes. Three actions were taken to minimize the impact. The first
was to seek out peers to donate personal GitHub access tokens to boost the overall
limit. As there was a significant amount of data to be collected and APIs to invoke, the
second was to parallelize the API calls to minimize the time spent waiting on the I/O.
The third was to implement a back-out and cool-down function when all the available
rate limits were depleted.

At the end of the data collection procedure, 1,262,684 PR review comments were
initially returned from GHTorrent BigQuery. Of these, 162,331 were not in English,
and 63,610 could no longer be found on GitHub, resulting in a total of 1,036,743 PR

review comments.

6 GitHub GraphQL API, https://docs.github.com/en/free-pro-team@latest/graphql.
7 https://github.com/ghtorrent/ghtorrent.org/pull/696#issuecomment-508579729.

38 methodology

Go to GHTorrent BigQuery

Sample and select GitHub projects

Export result as a *.csv file

Run PR Comments Aggregator

Read *.csv file

PR review comment language?English Non English

Record found in GHTorrent MongoDB?Yes No

Restore PR review comment Discard record

Yes

PR review comment truncated?

Enrich PR attributes from GitHub

Discard record

Process record

More record? Yes

No

Figure 4.3: Activities of pull request (PR) review data collection from GHTorrent and GitHub.

4.
3

d
a

t
a

c
o

l
l

e
c

t
i
o

n
f

o
r

p
u

l
l

r
e

q
u

e
s

t
r

e
v

i
e

w
c

o
m

m
e

n
t

s
3
9

Property / Attribute Description Data Source(s)

Body The main content of the PR review comment. 1. GHTorrent BigQuery
2. GHTorrent MongoDB
3. GitHub

Position The position in the code changes where the review comment was
added.

GHTorrent BigQuery

Commenter Association How the commenter associates with the repository. Possible values:
MEMBER,CONTRIBUTOR, NONE, COLLABORATOR, and OWNER.

GHTorrent BigQuery

Comment Is by Author Whether the review comment is from the creator of the PR. GitHub
PR Issue Comments
Count

The total number of PR issue comments in the PR. GitHub

PR Review Comments
Count

The total number of PR review comments in the PR. GitHub

PR Commits Count The total number of commits associated with the PR. GitHub
PR Additions The total number of lines added from all the commits in the PR. GitHub
PR Deletions The total number of lines deleted from all the commits in the PR. GitHub
PR Changed Files The total number of files changed from all the commits in the PR. GitHub
PR Commits Count Prior
to Comment

The number of commits associated with the PR just before the review
comment.

GitHub

Commit File Status The file status that the review comment references. Possible values:
added, modified, renamed, and removed.

GitHub

Commit File Additions The number of lines added in the file. GitHub
Commit File Deletions The number of lines deleted in the file. GitHub
Commit File Changes The number of lines modified in the file. GitHub

Table 4.2: Attributes collected for pull request (PR) review comments.

40 methodology

4.4 machine learning of program comprehension challenges

Machine learning is particularly useful for processing written communication because
ML can analyze more data efficiently to detect occurrences when there is an issue
with understanding code changes and empowers the study to focus on those specific
occurrences.

Moreover, NLP-related applications are increasing, and some provide a comprehen-
sive set of features, both in a commercial application, such as Natural Language API,8

and open-source projects, such as Natural Language Toolkit (NLTK).9 Some studies
used NLP libraries to perform text analysis and achieved a satisfactory classification
performance [46].

Once the PR review comments had been collected, the process of creating an ML

classifier was the next stage of the research. Several ML algorithms (also known
as learning algorithms) were experimented with to test the manually labeled PR

review comments to ascertain whether or not ML could detect a PR review comment
indicating a comprehension problem. Given that the goal of the ML model was to
classify, supervised learning was applied. Due to the lack of studies on PR review
comments, there was no reasonable indication of which NLP preprocessing and ML

algorithm would perform best with review comments data. To add to the knowledge,
this study investigated four typical NLP preprocessing and six common ML algorithms
to do the training with the PR review comments dataset, and utilized quantitative
analysis to determine what preprocessing and algorithm performed best on the PR

review comments dataset.
Python was selected as the instrument for building the ML classifier, given the

maturity and readiness of the third-party libraries available for NLP and ML. The NLTK

library provided text corpora for dialogue act classification, word stemming, and
lemmatization, and these were employed as part of the NLP preprocessing tasks [44].
Scikit-learn10 library provided some additional NLP preprocessing functions and the
implementation of common ML algorithms [79]. The advantage of scikit-learn over
other common libraries, such as TensorFlow [80], was its focus on providing addi-
tional functions for feature extraction and a higher level of abstraction of the classifier
algorithms. As a result, fewer lines of code were required to consume its APIs. Fur-

8 Natural Language API, https://cloud.google.com/natural-language.
9 NLTK, https://www.nltk.org.

10 scikit-learn: machine learning in Python, https://scikit-learn.org.

4.4 machine learning of program comprehension challenges 41

thermore, the scikit-learn documentation was well structured and required a smaller
learning curve. The objective of this study was to provide a broad understanding of
PR review comments data, for which scikit-learn provided a composition mechanism,
Pipeline, that allowed this study to switch between different NLP preprocessing tasks
and classifier algorithms in seconds. Although some degrees of freedom had to be
sacrificed to fine-tune the classifier algorithm, combined with some before-mentioned
factors, it was an acceptable tradeoff for this study [81].

Figure 4.4 presents an overview of the activities for building the ML classifier for
the PR review comments to detect program comprehension challenges. More detailed
descriptions of the procedures are provided in the following parts of this section.

Figure 4.4: Supervised learning activity diagram.

4.4.1 Data Sampling Procedure for Training and Test Dataset

To conduct supervised learning, the first step was to create a manually labeled dataset.
With more than one million PR review comments collected and given the time and
resource constraints, a sampling procedure was employed to obtain a manageable
sample of the dataset for the manual labeling task while providing an acceptable level
of confidence to reflect the entire content of the collected dataset. The sample size

42 methodology

required was determined with a sample size calculator,11 and the parameters and
result are presented in Table 4.3.

Confidence Level 99%
Confidence Interval 5

Population of PR Review Comments 1,036,743

Sample size needed for manual labeling 665

Table 4.3: Sample size calculation for pull request (PR) review comments manual labeling.

However, to offset potential disagreements from the independent coders during
manual labeling, an additional 105 PR review comments were added to the sample
to produce a sample dataset size of 770. A Python script was executed to randomly
select 770 samples from the experiment dataset, using Python’s built-in library, random,
to produce the sample dataset required for manual labeling.

4.4.2 Manual Labeling

Once the sample dataset had been generated, data analysis of the PR review comments
and manual labeling were the next steps for supervised learning. These steps were
designed to create the training and testing dataset for supervised learning. There are
several levels in a code review discussion, including thread, post, and sentence. The
data analysis and manual labeling focused on the post level due to the following two
reasons:

• While GHTorrent and GitHub provided the ability to retrieve all review com-
ments across all discussion threads in a PR, they lacked an obvious identifier or
a straightforward API to group and order PR review comments in a discussion
thread.

• With the current limitation in GitHub, a discussion thread could not have a
sub-thread; thus, it could contain multiple conversations. For example, two
reviewers might comment on the same line of change, each discussing different
concerns.

11 Sample Size Calculator, https://www.surveysystem.com/sscalc.htm.

4.4 machine learning of program comprehension challenges 43

The additional effort required and the potential risk of cross-talk contaminating the
data analysis rendered post-level based analysis preferable.

Three independent coders were acquired to perform manual labeling, including two
external software engineering Ph.D. students and one professional software engineer
with more than 12 years of industry experience. To ensure higher confidence and
reliability of the data analysis, the coders independently analyzed the same set of
PR review comments with the same labeling scheme. The precedent set by Ko et al.
[14] and Maalej et al. [9] on the types of program comprehension challenges were
employed as the basis of the manual labeling guideline.

After the initial round of independent labeling, 453 out of 770 PR review comments
had been labeled by all three coders. This sizeable initial set was due to the labeling
guideline having been discussed in detail and agreed upon before the labeling process.
The initial Krippendorff’s alpha measure was 0.6695, calculated with the ReCal12

utility developed by Freelon [82].
The coders held a recalibration meeting to compare and discuss the label differences

and refine the labeling guideline. After the meeting, the second round of independent
labeling revisited the previous 453 PR review comments and labeled the remainder of
the sample dataset of 770 PR review comments. Another recalibration meeting was
held to finalize the labeled data. With a time constraint, the meeting was time-boxed
to address as many remaining label discrepancies as time allowed to reach consensus
among all three coders. There were 22 remaining discrepancies that were discarded
from the dataset. The entire process of data analysis and manual labeling spanned
almost six weeks.

As a result of this process, the final Krippendorff’s alpha measure of 0.9403 was
obtained. The measure was ≥ 0.8, indicating an acceptable intercoder reliability [83].
The details of the intercoder reliability coefficients in the initial round, recalibration
round one, and round two are presented in Table 4.4.

A total of 748 PR review comments had agreed labels with consensus from all three
coders. The data with the intercoder agreement served as the experiment sample
dataset for supervised learning. In the experiment sample dataset, two labels were cre-
ated for “program comprehension challenge”: “Yes” and “No.” Label “Yes” indicated
that the review commenter expressed some problem related to understanding code

12 ReCal: reliability calculation for the masses, http://dfreelon.org/utils/recalfront.

44 methodology

Recalibration
Initial Round Round One Round Two

Number of Coders 3 3 3

Number of Cases 453 770 770

Average Pairwise Percent Agreement 90.29% 96.5% 98.2%
Pairwise Agreement Coders 1 & 3 92.27% 96.5% 98.2%
Pairwise Agreement Coders 1 & 2 91.39% 97.7% 99%
Pairwise Agreement Coders 2 & 3 87.2% 95.2% 97.4%
Krippendorff’s alpha 0.6695 0.8827 0.9403

Table 4.4: Intercoder reliability coefficients.

changes, while label “No” indicated that the review commenter did not experience
any program comprehension issue.

There were 131 instances of program comprehension challenges in the 748 PR review
comments, versus 617 instances that were not challenge related. Table 4.5 provides
examples of the labeled instances.

Label Type of Information Need Example

Yes What is the program supposed to do? how is this used?
Yes What was the developer’s intention when

writing this code?
Which error are you trying to defend against
here?

Yes Who has experience with this code? How do I sort a single ‘pom.xml‘ file?
Yes Why was this code implemented this way? Shouldn’t it be done when we create topic?
No - Missing indentation.

Table 4.5: List of program comprehension challenge labels and examples.

There were five instances noted and discussed during the manual labeling where
review comments did not provide enough context. One example was “Can we use
isNotBlank()?” These scenarios were caused by the data collection limitation, which
prevented the retrieval of the entire discussion thread for the review comments.

Furthermore, several review comments were difficult to distinguish if the com-
menter mentioned a program comprehension challenge or made a polite, indirect, soft
suggestion. The scenarios where the comment contained a concrete implementation
suggestion were treated as soft suggestions, indicating that the commenter understood
the code, such as “add a message as the second argument?” Figure 4.5 illustrates the
labeling guideline.

4.4 machine learning of program comprehension challenges 45

Figure 4.5: Program comprehension challenge labeling guideline.

46 methodology

4.4.3 Feature Engineering

The feature extraction, selection, and NLP preprocessing procedures and the features
obtained for ML are described in this subsection.

4.4.3.1 Feature Extraction for Dialogue Act

Feature extraction from text data is a technique in feature engineering. Its goal is to
derive informative values for ML algorithms [84]. A PR review comment discussion
is fundamentally a conversation between the PR author and reviewers. This study
sought to apply an ML classifier for NLP and extract the dialogue act from the PR

review comments to identify the interrogative words or particles that often appeared
when information needs were discussed [68].

A dialogue act classifier was built, based on the algorithm from Bird et al. [44]
that demonstrated the capability to identify dialogue act using the NLTK library. The
algorithm utilized the Naval Postgraduate School (NPS) chat corpus13 in NLTK, which
contained more than 10,000 posts from online chat services. Forsythand and Martell
[75] labeled the entire corpus with the 15 dialogue act classifications developed by Wu
et al. [74]. Table 4.6 lists all 15 classifications and example posts for each classification.

The procedure included a preprocessing step to tokenize words in the posts to
extract as features and the naive Bayes algorithm was selected to build the classifier
with a train-test split of 90% training and 10% test. Even though precision and recall
rates for some of the dialogue act classifications were low, this study concentrated on
identifying PR review comments with interrogative words or particles. Among the
dialog act types, “whQuestion” and “ynQuestion” contained the use of interrogative
words or particles. Thus, these were the focal points for performance evaluation.

For “whQuestion,” the classifier performed at a precision rate of 74.6% and a recall
rate of 76.9%. For “ynQuestion,” the precision rate was 67.1%, and the recall rate 73.4%.
Precision and recall are the metrics for evaluating the accuracy of the detection of
an ML classifier. The definitions of these metrics are expanded on in Section 4.4.5. In
simple terms, a higher percentage indicates more accurate detections than a lower
percentage, and these rates were acceptable for this study. The detailed performance
results for the classifier are presented in Chapter 5.

13 The NPS Chat Corpus, http://faculty.nps.edu/cmartell/NPSChat.htm.

4.4 machine learning of program comprehension challenges 47

Dialog Act Example

Accept ok, victory is yours.
Bye cya later guys
Clarify i mean the pepper steak lol
Continuer Or 5 times.
Emotion HAHAHA
Emphasis i love jesus more than ANYONE ELSE
Greet hey
Other 0

Reject Test not complete
Statement that sounds painful
System JOIN
nAnswer not that I was aware of
whQuestion Why not use the client that’s already created for the integration tests?
yAnswer Yes, I’ll use a regex
ynQuestion Does this have to be public?

Table 4.6: Dialogue act classifications and examples.

Subsequently, the classifier labeled the entire experiment sample dataset and added
a column, “dialogue act classification.” This feature evidently showed statistical
significance in relation to program comprehension challenges, which are discussed in
the next part.

4.4.3.2 Feature Selection Using Statistical Hypothesis Testing

The ML algorithms use input data to perform detections, and the input data are a set
of features. The appropriate features are the primary information gain to facilitate
building high-performing ML classifiers [84]. The experiment sample dataset was
inspected and statistical hypothesis testing applied to establish the PR attributes that
had any bearing on whether a commenter had program comprehension challenges.

Chi-squared tests of independence [85] were performed to determine the correlation
between the label “program comprehension challenge” and each categorical attribute.
In contrast, Mann-Whitney U tests [86] were done to compare the differences in the
distributions of each discrete attribute.

These statistical hypothesis tests revealed a significant relationship between the
attribute “comment is by author” and the label “program comprehension challenge.”
Reviewer comments were more likely to express program comprehension challenges

48 methodology

than comments from authors. Even though the relationship may seem intuitive, ten
instances were observed where the author had encountered comprehension challenges
for the PR that they had created. Likewise, the relationship between “dialogue act
classification” and “program comprehension challenge” was significant.

On the contrary, the tests revealed no significant association between “program
comprehension challenge” and other attributes. At the end of the feature selection
procedure, “comment is by author” and “dialogue act classification” were the only
relevant attributes in addition to the main body of PR review comments.

Property / Attribute Type Code Metrics? Example Selected?

PR Commits Count Discrete Yes 17 No
PR Additions Discrete Yes 949 No
PR Deletions Discrete Yes 485 No
PR Changed Files Discrete Yes 7 No
Commit File Status Categorical Yes modified No
Commit File Additions Discrete Yes 1 No
Commit File Deletions Discrete Yes 1 No
Commit File Changes Discrete Yes 2 No
Commenter Association Categorical No CONTRIBUTOR No
Comment Is by Author Categorical No FALSE Yes
PR Issue Comments Count Discrete No 0 No
PR Review Comments Count Discrete No 55 No
PR Commits Count Prior to Comment Discrete No 14 No
Dialogue Act Classification Categorical No whQuestion Yes

Table 4.7: Feature selection of pull request (PR) attributes.

Table 4.7 lists the outcome of the feature selections. The results are further expanded
and elaborated on in the discussion of RQ1 and RQ2 in Chapter 5.

4.4.3.3 Preprocessing of Pull Request Review Comments

At this stage, the data preparation procedures had been completed. Figure 4.6 depicts
how the program comprehension challenge labels from the intercoder agreement and
the dialogue act classification were associated with the experiment sample dataset and
split into a training dataset and a test dataset. The subsequent procedure commenced
preprocessing the body text PR review comments in the training dataset.

4.4 machine learning of program comprehension challenges 49

Figure 4.6: Data flow of the preprocessing. Glossary: machine learning (ML), Natural Language
Toolkit (NLTK), Naval Postgraduate School (NPS), and pull request (PR).

Although the body texts of PR review comments are in natural language, a NLP step
was necessary to transform the body text into features and numeric representations
that would be meaningful and ingestible to an ML algorithm. Hence, NLP was applied
to the body text during the preprocessing in a further step of feature engineering
to extract features and filter inappropriate features to reduce any noise that could
adversely impact the algorithm [44, 84]. The following body text is used as an example
to clearly explain the set of NLP tasks applied:

Without this patch applied, I see that line about 40 times. I also do not understand
how these properties could affect that line?

The first three tasks were feature filtering related to the removal of features that
were unlikely to be useful for the classifier. The first task was normalizing the text into
all lowercase so that differences between “Without” and “without” can be ignored:
“without this patch applied, i see that line about 40 times. i also do not understand how these
properties could affect that line?” The second task was removing stop words (e.g., “this,”
“that”). Silva and Ribeiro [87] suggested that this task tends to improve the classifier
performance, which was also evident in this study. This task utilized the built-in stop
list word from scikit-learn to weed out pointless features occupied by those common

50 methodology

words: “patch applied, line 40 times. understand properties affect line?” The third task
utilized the WordNet corpus in NLTK to lemmatize words to group various forms of a
dictionary word into one, such as the suffix was removed from “times” and, thus, it
became “time”: “patch applied, line 40 time. understand property affect line?”

The two remaining tasks were feature extraction related. The bag-of-n-gram task
involved counting the frequency and possible meaningful collocation of words (e.g.,
“patch applied”). For instance, if the word “line” appeared more frequently in the
body text with program comprehension challenge label “Yes”, then the classifier may
have a higher probability of detecting other body text containing the same word as
“Yes” [84]. Bag-of-n-gram with one to two words follows:

{'patch': 1, 'applied': 1, ',': 1, ’line’: 2, '40': 1, 'time': 1, '.': 1,

↪→ 'understand': 1, 'property': 1, 'affect': 1, '?': 1, 'patch applied': 1, 'applied

↪→ ,': 1, ', line': 1, 'line 40': 1, '40 time': 1, 'time .': 1, '. understand': 1,

↪→ 'understand property': 1, 'property affect': 1, 'affect line': 1, 'line ?': 1}

The final NLP task was term frequency-inverse document frequency (tf-idf), which
was a simple yet effective transformation of the results from bag-of-n-gram. Their
relationship can be expressed through the following equation [79, 84]:

tf-idf(t, d) = bag-of-n-gram(t, d)× (log
1 + n

1 + df(t)
+ 1),

where bag-of-n-gram(t, d) is the number of times a term t appeared in body text d,
n is the total number of body text in the training dataset, and df(t) is the number
of body text in the training dataset in which term t appeared. With the count from
bag-of-n-gram, tf-idf computed a normalized weighting that considered the frequency
in which a term appeared across the entire body text in the training dataset. If a word
or phrase appeared in many PR review comments, it may be less meaningful and less
influential for classifier detection and resulted in a lower weighting [84]. An example
of this would be that, if all PR review comments used the word “affect”, the classifier
would effectively ignore the word as a feature.

In comparison, this study also experimented with other combinations of NLP

tasks. One of those was bag-of-words, a simpler variation of bag-of-n-gram that
counted the number of times a single word appeared in the body text. The other
NLP tasks attempted to retain stop words and various forms of dictionary words, in
other words, no lemmatization. Finally, applied stemming in place of lemmatization
removed any suffixes from words, for example, “properties” would be lemmatized as

4.4 machine learning of program comprehension challenges 51

“property” while stemmed as “properti.” However, those experimental procedures
described in the previous paragraph did not improve performance compared to
the previously described procedures. The results and performance comparison is
presented in Chapter 5.

This subsection described the NLP of the PR review comments body texts for feature
filtering and feature extraction. The next subsection describes how the extracted
features from the body text and previously selected features “comment is by author”
and “dialogue act classification” were used to build the ML classifier.

4.4.4 Machine Learning Classifier Training

This part of this thesis describes in greater detail the ML classifier training procedure
to build an ML classifier. The research objective of this study was to assess whether
the ML classifier can detect program comprehension challenges and evaluate different
feature preprocessing tasks and ML algorithms. The overall data flow and classifier
training context are illustrated in Figure 4.7.

Figure 4.7: Data flow diagram of the classifier training with scikit-learn. Glossary: machine
learning (ML) and pull request (PR).

A Python script using the scikit-learn library and its Pipeline composition interface
was implemented in this procedure, which allowed the orchestration of different

52 methodology

combinations of feature preprocessing tasks and ML algorithms by simply changing
the experiment parameters [81]. The Pipeline was composed of two main parameters:

1. Preprocessing tasks to transform features into numeric representations.

2. An ML algorithm.

4.4.4.1 Preprocessing Tasks

The feature preprocessing tasks involved OneHotEncoder and TfidfVectorizer. The TfidfVectorizer

was for the NLP tasks to filter and extract features from the body text, which has
already been described and explained in Section 4.4.3.3. In addition, OneHotEncoder was
utilized to transform the features “dialogue act classification” and “comment is by
author” into numeric representations. For example, “comment is by author” was
a feature with two possible categories: true or false. OneHotEncoder created a binary
column for each category, and the transformation is briefly illustrated in Table 4.8.

Row Comment Is by Author

1 true
2 false

(a) Before transformation.

−→
Row Category “true” Category “false”

1 1 0

2 0 1

(b) After transformation.

Table 4.8: An example of OneHotEncoder transforming a feature into a numeric representa-
tion.

4.4.4.2 Machine Learning Algorithms

This study evaluated three well-known ML algorithms that have displayed satisfactory
text classification performances. The process was repeated with different compositions
of preprocessing tasks, ML algorithms, and hyperparameters to assess whether an ML

classifier can detect program comprehension challenges in PR review comments and
evaluate the performance of each of the compositions.

multinomial naive bayes The first ML algorithm was multinomial naive Bayes.
The name “naive Bayes” comes from the algorithm’s assumption of treating each
feature in the dataset independently given the context of classification, despite that

4.4 machine learning of program comprehension challenges 53

most of the use cases in reality often display some correlation among the features [88].
However, several studies have found acceptable performance from the application of
text categorization [89, 90]. This study aimed to assess the performance of this algo-
rithm with PR review comments, as the set of selected features from the experiment
dataset had not been studied previously, according to the literature review.

logistic regression The classes for “program comprehension challenge” were
a binary set of “Yes” and “No.” The experiment sample dataset proved to be an
imbalanced dataset, with more than four times more instances of “No” than “Yes”.
Logistic regression is a linear statistical model that aims to find a hyperplane that ap-
proximately separates the numeric vector representations of the PR review comments
features into two desired classes [90]. Some studies have found logistic regression
effective on imbalanced datasets [91]. This study examines the logistic regression
algorithm using the imbalanced labeling of PR review comments.

linear support vector machine with stochastic gradient descent

learning Lastly, the third ML algorithm was a linear support vector machine
(SVM) with stochastic gradient descent (SGD) learning. Linear SVM is closely related
to logistic regression, further evaluates the margins of hyperplanes to the vectors of
each class, and finds the hyperplane with the maximum margin. In other words, it
aims to find the most clean-cut way to separate the vectors from two classes [90]. SGD

is an add-on to the algorithm; it is an optimization technique for fitting the training
data efficiently [79]. Many studies have found that SVM performs better than other
algorithms during text categorization [90, 92].

4.4.4.3 Cross-Validation

Once the preprocessing tasks and ML algorithms had been chosen and assembled
as a Pipeline, the Pipeline was passed into GridSearchCV for fitting with the training
data and cross-validation was performed to evaluate different hyperparameters of the
preprocessing tasks and the ML algorithms.

Listing 4.1 exhibits a code snippet that exemplifies the options of hyperparameters
as param_grid being evaluated for the processing tasks, including whether to lemmatize
the body text and filter stop words, for the number of words to use for bag-of-n-gram,
and the weightings for individual features that could affect the influence of a feature.

54 methodology

Those options were passed into GridSearchCV that performed 5-fold cross-validation on
the training dataset.

Listing 4.1: Cross-validation to evaluate different hyperparameters using GridSearchCV.

pipe = Pipeline(steps=[

('preprocessor', preprocessing_tasks),

('alg', SGDClassifier())])

param_grid = [{

'preprocessor__body__tokenizer': [None, LemmaTokenizer()],

'preprocessor__body__stop_words': [None, 'english'],

'preprocessor__body__ngram_range': [(1, 1), (1, 2), (1, 3), (2, 3)],

'preprocessor__transformer_weights': [

{'body': 4, 'dac': 1, 'is_author': 2},

{'body': 1, 'dac': 1, 'is_author': 1}],

'alg__random_state': list(range(1, 20))

}]

clf_grid_search_cv = GridSearchCV(pipe, param_grid=param_grid, cv=5)

clf_grid_search_cv.fit(X_train, y_train)

This study involved manual data labeling of a sample size of 748, which was not
ample to waste and could take advantage of cross-validation to sacrifice computation
time spent on multiple training iterations, over a smaller sample size [79]. The 5-
fold cross-validation split a training dataset into five stratified sets, preserving the
percentage of instances for each label, and performed five iterations of classifier
training. Each iteration fit four sets of training data to the classifier and retained one
of those five sets to evaluate the classifier performance. The results of the evaluation
of the five iterations were used to determine the fine-tuned parameters. The final
evaluation to measure the trained classifier’s performance was validated against the
test dataset, which was held-out and invisible to the classifier. Figure 4.8 is a good
illustration of how the datasets breakdown was conducted during the cross-validation.

4.4 machine learning of program comprehension challenges 55

Figure 4.8: Experiment datasets breakdown for 5-fold cross-validation.

4.4.4.4 Other Machine Learning Training Techniques Considered

This study explored other ML classifier training techniques, including active learning
and evenly distributing the imbalanced dataset due to the smaller sample size.

Active learning involves the sampling of more unlabeled instances, manually
labeling them, and adding the training dataset to retrain the classifier. This study
attempted to utilize an active learning scenario with pool-based sampling to select
unlabeled PR review comments from the experiment dataset. The selection criteria
were based on the query strategy with the least confidence based on the ML classifier’s
detection probability. However, the ML classifier performance did not improve after
30 iterations with a total of 30 new samples.

The other technique was to balance the percentage of samples from different classes
in the training dataset, so that the number of instances labeled “Yes” versus “No”
were the same. The balanced training dataset was then given to the ML algorithms to
build the classifiers. Evenly distributing the dataset allowed some compositions of
preprocessing tasks and ML algorithms to perform with higher accuracy. However, the
ML classifier with the best performance did not rely on the evenly distributed training
dataset, and its model was trained from the imbalanced training dataset.

Since those two techniques did not improve the classifier’s performance over the
previously described methodology, they were not deemed suitable for the research
objective.

56 methodology

4.4.5 Machine Learning Classifier Evaluation

The three selected algorithms were all utilized to fit the training dataset to build
the ML classifier and evaluated with the test dataset to compare the classification
performance and answer RQ2. The research objective was to identify occurrences
of program comprehension challenges and conduct a content analysis on those
occurrences.

Therefore, to take advantage of the ML classifier to sample those instances from
the experiment dataset, the deterministic metric for comparing the ML classifier
performance was based on the F-beta score with β = 0.5 to favor precision over recall,
to have as many correctly detected program comprehension challenge instances as
possible, and also to minimize those instances that slip through the detection.

Precision measures the percentage of classified instances that have the correct
relevant label, that is

precision =
tp

tp + f p
,

and recall measures the percentage of instances of a relevant label that has been
classified correctly, that is

recall =
tp

tp + f n
,

where tp is the number of true positives, f p is the number of false positives, and f n
is the number of false negative [93]. F-beta balances between precision and recall for a
more harmonic detection [94, 95], and is calculated as follows

Fβ = (1 + β2)× precision× recall
β2 × precision + recall

,

where lower β puts more weight on the precision score, and higher β puts more
weight on the recall score. This study chose β = 0.5 to favor precision while balancing
an acceptable recall score.

Figure 4.9 portrays the relationship between correctly classified instances (i.e., true
positives) and misclassified instances (i.e., false positives and false negatives) that
affects the precision and recall measures, and, in turn, affects the F-beta score.

4.5 content analysis of program comprehension challenges 57

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

Figure 4.9: Relationship between precision and recall (Adapted from “Precision and recall”
by Walber, licensed under Creative Commons Attribution-Share Alike 4.0 Interna-
tional: https://creativecommons.org/licenses/by-sa/4.0).

4.5 content analysis of program comprehension challenges

Content analysis is one of the most common techniques for qualitative analysis.
This involved large amounts of textual data. An ML classifier was used for the
initial filtering of data to select only the occurrences of program comprehension
challenges, as set out in the research objective. When investigating these occurrences,
the applicable categories of the types of program comprehension challenges deduced
by Ko et al. [14] and Maalej et al. [9] were implemented. Therefore, content analysis
would be more useful for identifying and characterizing the subcategories of the
labeled data effectively and reliably, compared to a thematic analysis method [83, 96].
Moreover, this method enabled inferences about the reviewers.

To gain more insight into the types of program comprehension challenges the
reviewers face and the reasons for these occurrences, a manual content analysis was
conducted with 384 samples of program comprehension challenges from the PR review
comments in the experiment dataset collected from GitHub and GHTorrent, as de-
scribed in Section 4.3.3. A program comprehension challenge in PR review comments
was defined as a commenter expressing information needs, and the guideline for

58 methodology

identifying those instances is illustrated in Figure 4.5. The overall data flow of the
data sampling and context of the content analysis are depicted in Figure 4.10.

Figure 4.10: Data flow and data sampling for the content analysis.

4.5.1 Data Sampling Procedure for Content Analysis Dataset

The manual content analysis samples comprised the already manually labeled 131

instances from the experiment sample dataset, and a new set of 253 randomly selected
instances from the pool of experiment dataset. There were 1,036,743 PR review com-
ments in the experiment dataset, and a sample size of 384 would provide a confidence
level of 95% with a confidence interval of 5%.

The developed ML classifier was applied to detect program comprehension chal-
lenges during the random sampling procedure. Since the precision of the ML classifier
was not perfect, a manual labeling procedure was required to confirm the detected
samples. Irrelevant PR review comments were rejected and new samples sourced from
the pool to replace those. This process was repeated several times to remove the false
positives to generate a new set of 253 samples.

Once 253 new instances had been carefully and precisely sampled, they were
combined with the 131 previously labeled instances to create the content analysis
dataset with a total of 384 samples.

4.5 content analysis of program comprehension challenges 59

4.5.2 Meaning Unit, Topics, and Categories

The meaning unit was defined in this study as the body of text of a PR review comment
and its relevant conversation. The content analysis dataset also contained the web
page link to the discussion thread on GitHub for each one of the samples; therefore,
the meaning unit included the related discussion in the thread in addition to the
review comment.

These meaning units were condensed into a higher level of abstraction, formulated
into a set of topics. A topic could be considered as a code or a label, usually one or
two words in length, that described the core meaning of either an entire meaning
unit or a part of it. To cater for possible different comprehension models reviewers
might have applied during the code review, the topics were based on the three
fundamental knowledge structures described by von Mayrhauser and Vans [53] in
the integrated program comprehension model, namely program domain knowledge,
problem domain knowledge, programming plans, and rules of discourse.

The classification of the types of information needs by Ko et al. [14] have been
used in other studies to investigate intrinsic properties of program comprehension
activities [9, 14]. This study adopted those types of information needs to define the
set of categories. Subsequently, a set of five categories were created. The list of rules
for assigning a meaning unit to a category is presented in Table 4.9.

Category Rules for Category Assignment

Intended program
behavior

What is the program supposed to do? Inquiring about the execution
outcome, use cases, or expected input.

Developer’s
intention

What was the developer’s intention when writing this code? The effect of the
code change is unclear, questioning the reason for the change.

Design rationale for
the implementation

Why was this code implemented this way? The intention and effect of the
code change are understood, but the reason for the particular
implementation approach is unclear, given there may be other options.

Developer familiar
with the code

Who has experience with this code? Asking others about how to achieve an
implementation goal.

Author of the code Who wrote this piece of code? Asking who is the author of the code change.

Table 4.9: List of categories and rules for category assignment.

60 methodology

4.5.3 Manual Labeling

Once the meaning unit, the rules for categorizing a topic, and the set of categories
had been established, the next step of content analysis was to conduct data analysis
and manual labeling of the dataset. Each PR review comment in the dataset was
assigned an appropriate category and the keywords of the topics that condensed the
core meaning were recorded.

Identifying and condensing the meaning unit into topics was a continuous process
of refinement by iteratively working on the dataset. For example, a previously recorded
topic was tweaked to reflect the core meaning more closely after analyzing several
meaning units with similar themes.

The finalized content analysis contained a refined list of 94 distinct topics that
captured the core meaning of the PR review comments from the 384 samples, and
each meaning unit was also assigned to a category of the relevant type of information
need. The outcome of this analysis facilitated the discussion of RQ3.

4.5.4 Analyzing Non-Program Comprehension Challenges

Furthermore, to supplement and compare the content analysis for program compre-
hension challenges, an additional content analysis was conducted on 384 samples of
non-program comprehension challenges related PR review comments. The experiment
sample dataset already contained more than 600 instances of non-program com-
prehension challenge related PR review comments, so the content analysis sampled
directly from the dataset and randomly selected 384 samples. The same definition of
meaning unit and the principle of generating topic discussed in Section 4.5.2 were
applied.

Ninety-six distinct topics were derived from the content analysis for non-program
comprehension challenge review comments. The comparison between program com-
prehension challenge versus non-program comprehension challenge review comments
was designed to investigate why the reviewers face program comprehension chal-
lenges, as discussed in RQ4 of the research objective.

5
R E S U LT S

This chapter presents qualitative and quantitative evidence for each RQ regarding
program comprehension challenges during code reviews, based on the experiment
dataset that contained 1,036,743 PR review comments collected from GitHub.

5.1 pull request attributes affecting program comprehensibility

The first question in this study sought to determine the quantifiable PR attributes and
evaluate the associated program comprehensibility consequences:

RQ1. What are the attributes of pull requests that affect program comprehensibil-
ity?

The evaluation of the associated program comprehensibility consequences was done
on a subset of the experiment dataset, with 748 randomly sampled PR review com-
ments. The experiment sample dataset included 572 unique users, 740 individual file
commits, 736 unique PRs, and covered 326 unique code repositories.

5.1.1 Attributes with Significant Correlations

For the following results, H0 denotes the null hypotheses, H1 denotes the alternate
hypotheses, and the level of significance for those statistical hypothesis tests was
α = .05. The detailed chi-squared test [85] results with the number of actual instances
versus expected instances are presented in Table 5.1.

For the PR attribute, “comment is by author,” the hypotheses were:

H0: Being a PR author has no effect on the likelihood of encountering program
comprehension challenges.

H1: Being a PR author affects the likelihood of encountering program comprehension
challenges.

61

62 results

Program Comprehension Challenge
Yes No Actual

Pull Request Attribute Actual Expected Actual Expected Total X2 p-value

Comment Is by Author 32.529 < .05

FALSE 121 94.4 418 444.6 539

TRUE 10 36.6 199 172.4 209

Dialogue Act Classification 103.648 < .05

Accept 0 0.4 2 1.6 2

Clarify 49 59.0 288 278.0 337

Continuer 0 0.7 4 3.3 4

Emotion 0 0.4 2 1.6 2

Emphasis 5 2.8 11 13.2 16

nAnswer 9 12.3 61 57.7 70

Other 10 7.0 30 33.0 40

Reject 8 8.6 41 40.4 49

Statement 5 22.6 124 106.4 129

System 0 0.7 4 3.3 4

whQuestion 24 7.2 17 33.8 41

yAnswer 0 1.8 10 8.2 10

ynQuestion 21 7.7 23 36.3 44

Table 5.1: Chi-squared test results of machine learning features. N.B. α = .05.

A chi-squared test showed that there was a significant correlation between “comment
is by author” and the label “program comprehension challenge,” consistent with H1,
X2(1, N = 748) = 32.529, p < .05.

It was apparent from the result that PR authors encountered few program compre-
hension challenges. The number of expected instances was 36.6, which is significantly
higher than the actual observed 10 instances. The number of expected instances
among reviewers was 94.4, which was significantly lower than the actual number of
121.

The overall confusion matrix for the PR attribute “dialogue act classification” ex-
tracted from the PR review comment by the ML classifier is illustrated in Figure 5.1.

The hypotheses for “dialogue act classification” were:

H0: The dialogue act expressed in a PR review comment has no correlation with
program comprehension challenges.

5.1 pull request attributes affecting program comprehensibility 63

Figure 5.1: Confusion matrix for the dialogue act classification.

H1: The dialogue act expressed in a PR review comment correlates to program
comprehension challenges.

The correlation between “dialogue act classification” and “program comprehension
challenge” was again found to be significant, with X2(13, N = 748) = 103.648, p < .05,
consistent with H1.

Among the 748 samples, “emphasis” was found in two instances and “other” in three
instances more than expected. Furthermore, the most striking result to emerge from

64 results

the data for “whQuestion” that was found to be considerably higher than expected, by
more than 16 instances, and for “ynQuestion,” 13 actual instances more than expected.

5.1.2 Other Attributes Not Affecting Program Comprehensibility

On the contrary, the statistical hypothesis test found no relationships for all of the
other PR attributes collected in the data. A series of chi-squared tests were conducted
for the categorical PR attributes. Similarly, a series of Mann-Whitney U tests [86] were
done for the discrete PR attributes. The samples were divided into two groups:

1. Program Comprehension Challenge = Yes (GP-Y) – PR review comments indi-
cated program comprehension challenges.

2. Program Comprehension Challenge = No (GP-N) – PR review comments that
were unrelated to program comprehension challenge.

For each of the PR attributes, the null hypothesis and alternate hypothesis were:

H0: The distributions of the PR attribute of the two groups (GP-Y and GP-N) are
equal.

H1: The distributions of the PR attribute of the two groups (GP-Y and GP-N) are not
equal.

The statistical hypothesis test results are summarized in Table 5.2.

5.2 detecting program comprehension challenges with machine learning 65

Program Comprehension Challenge
PR Attribute Yes No Total X2 p-value

Commit File Status 2.291 .514

added 13 61 74

modified 57 263 320

removed 1 1 2

renamed 0 4 4

Commenter Association 7.775 .1
COLLABORATOR 6 32 38

CONTRIBUTOR 53 227 280

MEMBER 58 309 367

NONE 14 36 50

OWNER 0 13 13

(a) Chi-squared test for categorical PR attributes.

Program Comprehension Challenge
Yes (GP-Y) No (GP-N)

PR Attribute Sample Size Median Sample Size Median U Z p-value

PR Commits Count 131 3 617 4 42742 1.053 .293

PR Additions 131 554 617 415 39295 -0.498 .619

PR Deletions 131 44 617 48 40642 0.102 .919

PR Changed Files 131 13 617 13 41323 0.405 .686

Commit File Additions 71 17 329 17 11731 0.057 .954

Commit File Deletions 71 2 329 2 11807 0.146 .884

Commit File Changes 71 30 329 27 11726 0.052 .959

PR Issue Comments Count 131 4 617 4 42118 0.761 .447

PR Review Comments Count 131 17 617 18 40247 -0.074 .941

PR Commits Count Prior to Comment 71 1 329 2 12615 1.082 .279

(b) Mann-Whitney U test for discrete PR attributes.

Table 5.2: Statistical hypothesis test results between pull request (PR) review comment at-
tributes and program comprehension challenge labels. N.B. α = .05.

5.2 detecting program comprehension challenges with machine

learning

The purpose of RQ2 was to evaluate whether ML would be an acceptable tooling
mechanism:

RQ2. How accurately can a machine learning classifier detect program compre-
hension challenges in a pull request code review?

66 results

This study evaluated ML classifiers built with three different ML algorithms, based on
a target F-beta (β = 0.5) score of 0.6, a target precision rate of 70%, and a target recall
rate of 60%. The breakdown of 748 samples of PR review comments labeled “Yes”
for program comprehension challenge versus “No” for non-program comprehension
challenge in the training and test datasets is summarized in Figure 5.2.

Yes
131

No

617

(a) Experiment Sample Dataset.

Yes
92

No

506

(b) Training Dataset.

Yes
39

No

111

(c) Test Dataset.

Figure 5.2: Training and test datasets sample size and split from experiment sample dataset.

5.2.1 Machine Learning Classifiers Performance Results

For each of the three algorithms, the effectiveness of different features and NLP tasks
combinations were compared and cross-validated with the training dataset split in
5-fold for hyperparameters tuning, and then the performance was evaluated against
the test dataset.

With the appropriate features and NLP tasks, both logistic regression and linear
SVM with SGD learning achieved the target score. Moreover, all algorithms performed
above the target for both labels when examined for precision. Nevertheless, a closer
inspection of the table showed that only linear SVM with SGD learning was able
to maintain an acceptable recall rate of more than 60% when detecting program
comprehension challenges and outperformed the other two algorithms in most metrics
apart from the precision rate for the label “Yes”, and recall for the label “No.”

5.2 detecting program comprehension challenges with machine learning 67

When the results for different combinations of features were compared, it showed
that with the features “body,” “comment is by author,” and “dialogue act classification”
the ML classifiers performed better than with other combinations of features, except for
the multinomial naive Bayes, which performed better with only “body” and “dialogue
act classification.” Furthermore, the feature weightings applied by the ML algorithm
that produced the highest F-beta score were found for the three features “body”
versus “comment is by author” versus “dialogue act classification.” The weightings
were four versus two versus one, respectively.

The NLP task combination involving the removal of stop words, lemmatization, and
tf-idf consistently performed the best with the highest F-beta score across all three
algorithms. The precision rates were also higher than other NLP tasks, apart from
linear SVM with SGD learning with the combination of retaining stop words and tf-idf,
which performed at a higher precision rate of 75%, but with a considerably lower
recall rate of merely 23.1%.

The relevant performance results comparing the different ML classifiers trained
with different combinations of ML algorithms, features, and NLP preprocessing on the
PR review comments body text are exhibited in Table 5.3.

6
8

r
e

s
u

l
t

s

Table 5.3: Machine learning classifiers performance comparison for different combinations of learning algorithms, features and
natural language processing (NLP) tasks. N.B. β = 0.5, Lowest → Highest . Glossary: support vector machine (SVM),
stochastic gradient descent (SGD), and term frequency-inverse document frequency (tf-idf).

Learning Algorithm Program Comprehension Challenge Detection

Feature(s) Yes No

NLP task(s) on Pull Request Review Comment Body Text F-Beta Precision Recall Precision Recall

Multinomial Naive Bayes

Body Text + Comment Is by Author + Dialogue Act Classification

Bag-of-words 0.324 0.36 0.231 0.76 0.856

Stemming + tf-idf 0.421 0.529 0.231 0.774 0.928

Retain stop words + tf-idf 0.33 0.462 0.154 0.759 0.937

Remove stop words + Lemmatization + tf-idf 0.485 0.625 0.256 0.784 0.946

Body Text + Comment Is by Author

Remove stop words + Lemmatization + tf-idf 0.467 0.588 0.256 0.782 0.937

Body Text + Dialogue Act Classification

Remove stop words + Lemmatization + tf-idf 0.505 0.667 0.256 0.785 0.955

Logistic Regression

Body Text + Comment Is by Author + Dialogue Act Classification

Bag-of-words 0.0 0.0 0.0 0.74 1.0

Stemming + tf-idf 0.317 0.667 0.103 0.757 0.982

Retain stop words + tf-idf 0.526 0.714 0.256 0.787 0.964

Remove stop words + Lemmatization + tf-idf 0.683 0.76 0.487 0.84 0.946

5.
2

d
e

t
e

c
t

i
n

g
p

r
o

g
r

a
m

c
o

m
p

r
e

h
e

n
s

i
o

n
c

h
a

l
l

e
n

g
e

s
w

i
t

h
m

a
c

h
i
n

e
l

e
a

r
n

i
n

g
6
9

Table 5.3 continued from previous page

Learning Algorithm Program Comprehension Challenge Detection

Feature(s) Yes No

NLP task(s) on Pull Request Review Comment Body Text F-Beta Precision Recall Precision Recall

Body Text + Comment Is by Author

Remove stop words + Lemmatization + tf-idf 0.647 0.72 0.462 0.832 0.937

Body Text + Dialogue Act Classification

Remove stop words + Lemmatization + tf-idf 0.611 0.696 0.41 0.819 0.937

Linear SVM with SGD Learning

Body Text + Comment Is by Author + Dialogue Act Classification

Bag-of-words 0.409 0.433 0.333 0.783 0.847

Stemming + tf-idf 0.352 0.625 0.128 0.761 0.973

Retain stop words + tf-idf 0.517 0.75 0.231 0.783 0.973

Remove stop words + Lemmatization + tf-idf 0.726 0.743 0.667 0.887 0.919

Body Text + Comment Is by Author

Remove stop words + Lemmatization + tf-idf 0.702 0.727 0.615 0.872 0.919

Body Text + Dialogue Act Classification

Remove stop words + Lemmatization + tf-idf 0.659 0.688 0.564 0.856 0.91

70 results

The confusion matrices for all three algorithms with the combination of the features
“body,” “comment is by author,” and “dialogue act classification” and NLP tasks of
removing stop words, lemmatization and tf-idf are presented in Figure 5.3.

(a) Multinomial naive Bayes. (b) Logistic regression.

(c) Linear support vector machine
with stochastic gradient descent
learning.

Figure 5.3: Confusion matrices for the machine learning algorithms.

multinomial naive bayes Multinomial naive Bayes failed to detect 29 instances
of program comprehension challenges (false negatives), resulting in the lowest recall
rate of 25.6% for “Yes.” The low recall rate indicated that 74.4% of program compre-
hension challenges were not detected by the ML classifier with this algorithm. On the
contrary, the recall rate for “No” was one of the highest at 94.6%.

5.3 types of program comprehension challenges during code reviews 71

logistic regression Logistic regression produced similar results, with a slightly
better but still underperformed recall rate for “Yes” at 48.7%. Interestingly, the metrics
indicated that this algorithm had the highest precision rate and detected the true pos-
itives with the highest certainty at 76%. However, this high precision rate was heavily
impaired by the low recall rate, which indicated that 51.3% of the false negatives were
not recognized by the ML classifier. In addition, the algorithm performed at the same
level as multinomial naive Bayes for the recall rate for “No.”

linear svm with sgd learning Lastly, linear SVM with SGD learning detected
program comprehension challenges with a precision rate of 74.3% and a recall rate
of 66.7%. On average, this algorithm had the most balanced performance, and it
scored over 70% for most metrics except for the recall rate for “Yes,” ranked second
in precision for “Yes,” had over 90% recall rate for “No,” and was at the top for all
other metrics. As shown in the confusion matrix, this algorithm correctly detected
26 instances of program comprehension challenges from the test dataset, which
was higher than multinomial naive Bayes (10 instances) and logistic regression (19

instances).

5.3 types of program comprehension challenges during code reviews

The program comprehension challenges were analyzed to answer RQ3:

RQ3. What types of program comprehension challenges do reviewers face?

A content analysis was conducted on 384 program comprehension challenges, in-
cluding the 131 instances already identified from the experiment sample dataset,
to categorize the review comments that reflected the types of information needs
encountered during code reviews. Table 5.4 provides a few key examples of how the
raw review comments data were classified into the categories.

5.3.1 Results

Out of the 748 experiment sample dataset, 17.5% of the review comments were found
to reveal program comprehension challenges. During the content analysis, the type
“design rationale for the implementation” tended to be more frequently mentioned in

72 results

Category Example

Intended program behavior Do we need to clear the list here explicitly?

Developer’s intention Why did you do this?

Design rationale for the implementation Why not use the client that’s already created for the
integration tests?

Developer familiar with the code Is there a way to generally say this magnitude is
"before" the other one if they have different systems?

Author of the code Not available

Table 5.4: Key examples for each category.

the review comments, at a rate of more than 44%. In addition, “developer’s intention”
was found in more than 28% of the review comments, closely followed by “intended
program behavior” at 25.3%. In contrast, “developer familiar with the code” occurred less
than 2%, and no cases inquiring about “author of the code” were found. The proportions
of the types of program comprehension challenges observed is shown in Figure 5.4.

Intended program behavior - 97 instances
Developer’s intention - 111 instances
Design rationale for the implementation - 170 instances
Developer familiar with the code - 6 instances

Author of the code - 0 instance

Figure 5.4: Frequencies of the types of program comprehension challenges encountered.

5.4 causes of program comprehension challenges

The final goal was to investigate the possible impedances of program comprehension:

RQ4. Why do reviewers face program comprehension challenges?

A content analysis of two datasets was conducted to answer this RQ. One set contained
384 samples of program comprehension challenges that captured 94 distinct topics.
The other sample size was the same, with 96 distinct topics included. These topics

5.4 causes of program comprehension challenges 73

were the condensed abstraction of the meaning units, based on the integrated com-
prehension model knowledge structures that include program domain knowledge,
problem domain knowledge, programming plans, and rules of discourse [53].

5.4.1 Results

Chi-squared tests [85] found that five topics correlated positively with program
comprehension challenges, and five topics correlated positively with non-program
comprehension challenges. The remainder of the topics did not show any correlation
with program comprehensibility. The detailed results for the topics showing significant
correlation are presented in Table 5.5.

Program Comprehension Challenge α = .05
Topic Yes No df N X2 p-value

Program Logic 77 39 1 748 13.556 < .05

Code Design 45 25 1 748 6.001 < .05

Defensive Coding 29 13 1 748 6.272 < .05

Condition Checking 15 1 1 748 12.38 < .05

Concurrency 13 2 1 748 8.147 < .05

Code Readability 0 15 1 748 15.299 < .05

Coding Convention 5 18 1 748 7.461 < .05

Naming Intention 0 10 1 748 10.132 < .05

Code Duplication 5 15 1 748 5.067 < .05

Performance 3 12 1 748 5.454 < .05

Table 5.5: Topics and program comprehensibility with significant correlation.

Table 5.6 provides a few key examples that demonstrate how the raw review
comments data were condensed into the topics with significant correlation.

74 results

Topic Program
Comprehension
Challenge

Example

Program Logic Yes Do we need to explicitly clear the list here?

Code Design Yes Why a ‘Service‘? Why an abstract class instead of an
interface?

Defensive Coding Yes What happens if enum.toInt(value) returns null?

Condition Checking Yes Won’t this always be true because in the previous line
you are adding ‘CGEO_PREFIX.length()‘?

Concurrency Yes Can you expand on where the lock contention could
occur? Do you mean scenario when Engine does not
reach it’s capacity limit?

Coding Readability No I think we should use new line for each field (I think it
increases readability)

Coding Convention No For json we should always use underscore

Naming Intention No IMO ‘getComponent(component)‘ reads a bit
confusingly. Could we change the method name to
something like ‘getUIPart‘?

Code Duplication No We already have getRandomShort() in Utils.

Performance No Creating a new transformer for every message looks
very inefficient.

Table 5.6: Key examples for each topic with significant correlation.

6
D I S C U S S I O N

This chapter delves into the key findings for each RQ, compares the results the
findings in the literature review, notes the implications of the findings, and provides
recommendations for future work.

6.1 pull request attributes affecting program comprehensibility

The results for RQ1 – What are the attributes of pull requests that affect program compre-
hensibility? – indicate that, during code reviews, the set of identified PR attributes a
PR author is in control of and the code metrics related to LOC, including the number
of lines added, deleted or modified, have no effect on program comprehensibility. In
comparison, only the dialogue act of the PR review comment and whether the com-
ment was by the PR author correlated with the instances of program comprehension
challenges.

Prior studies have noted the importance of LOC for estimating the effort required
for program comprehension [19, 60], but, no data was found on the association
between code metrics and program comprehensibility during code reviews in the
review of the literature. Since code reviews primarily focus on and comprehend code
changes, the additions, deletions, and modifications to the number of lines are related
measurements of LOC in the context of code reviews. The following sections discuss
LOC and the subset of the attributes measuring the number of code changes made.

number of lines of code changed One part of RQ1 set out the aim of
assessing the importance of LOC in a PR:

RQ1a. How does the number of lines of code changed in a pull request affect
program comprehensibility?

Herraiz and Hassan [60] claimed that LOC is a useful metric to estimate the com-
prehension effort. However, the difference observed in distributions of the number
of lines changed between GP-Y and GP-N in this study was not significant and no
evidence supporting the claim was detected. Instead, the results are in line with

75

76 discussion

the findings from Ajami et al. [61], who claimed that LOC may not be an important
confounding cause for comprehension efforts.

The statistical hypothesis test results of this study contribute a clearer understanding
of program comprehension challenges in a code review that may not be affected by
the number of lines changed. The reason for this is not apparent, but it might be
because LOC does not weight each line equally [61, 62]. Another possible explanation
for this is that, while the comprehension effort may increase during a review of the
PR, since the data gathered only reflects instances of comprehension challenges and
lacks information regarding the amount of time a reviewer spent on a PR, the results
cannot confirm the overall program comprehension effort.

number of commits The other part of RQ1 was set to identify the effect of the
number of commits on program comprehension:

RQ1b. How does the number of commits in a pull request affect program compre-
hensibility?

The results of this study do not show any significant increase in the distributions
of the number of commits between the PR review comments that reveal program
comprehension challenges and non-program comprehension challenges.

Furthermore, this implication further supports the idea that program comprehen-
sion challenges are not affected by the amount of code changed. It may be that the
code reviewers benefit from the code review user interface (UI) condense changes
across all the commits to date when the reviewer reviews the PR.

dialogue act classification The results from this feature selection build on
existing evidence that software engineers often use interrogative words to express
information needs when facing program comprehension challenges. Letovsky [68]
suggested four fundamental interrogative words for comprehension, namely “why,”
“how,” “what,” and “whether.”

These interrogative words can be identified with the application of an ML classifier
to classify the dialogue act of PR review comments [73]. Furthermore, in the review of
the literature, it was found that the types of program challenges are categorized in
the form of “whQuestion” [9, 14]. A comparison of the findings confirms that dialogue
act “whQuestion” and “ynQuestion” have a significant higher usage than expected for
the instances of program comprehension challenges.

6.1 pull request attributes affecting program comprehensibility 77

comment is by author One unanticipated finding was that, from the 131

samples, there were 10 instances of program comprehension challenges encountered
by the PR authors themselves. An inspection of those instances revealed that this
finding may be explained by the fact that there are scenarios where an author may
be responding to suggested code changes in the review feedback, and a program
comprehension challenge arises from an understanding of the broader codebase
beyond the scope of the code changes in the PR, or the challenge may relate to an
understanding of the intention or side effect of the suggested changes. This finding
contributes a clearer understanding of the implication that, during the code review,
the program comprehension activity is a joint exercise for both the reviewer and the
author.

insignificance of commit file status This study did not detect any evi-
dence for a correlation between the type of commit file status and program compre-
hension. There are several possible explanations why file addition, deletion, renaming,
or modification do not affect program comprehensibility during a PR code review.

One possible explanation might be the fact that the organization of files in a code
repository is often conventional, particularly in some programming languages such
as Java, so that a file contains only a class or an interface, and it is placed in the folder
structure according to its namespace.

Another possible explanation is that a code review UI, regardless of whether it is the
web interface on GitHub or in an IDE, highlights the code changes but deemphasizes
the file structure. The code changes include line additions, deletions, and modifications
to parts of a line. The file path or file structure in the code review interface is often
folded and collapsed. These highlights attract the focus of code reviewers and are the
primary artifacts for program comprehension (as illustrated in Figure 2.2).

insignificance of other attributes beyond control by an author

Surprisingly, program comprehension challenges also did not show any significant
relationship with a higher number of PR issue comments or review comments. This
somewhat contradictory result may be due to a possible scenario where a PR contains
too many comments. Since the discussion may have been sidetracked, became too
complicated, or required excessive cognitive load, a reviewer might avoid becoming

78 discussion

involved in the discussion or approve the PR without understanding the code changes,
especially if the PR author is recognized as a senior contributor.

6.2 detecting program comprehension challenges with machine

learning

No studies that used ML to classify PR review comments were found in the literature
review, although some studies have classified other types of textual content with ML

and NLP with satisfactory accuracy [46, 47].
RQ2 – How accurately can a machine learning classifier detect program comprehension

challenges in a pull request code review? – was set to assess the accuracy of ML in detecting
program comprehension challenges in PR code review comments. The results of the
assessment of the ML performance indicate that, with the described features, NLP

preprocessing, and ML algorithm to train an ML classifier, the classifier achieved a
precision rate of 74.3% and a recall rate of 66.7% in detecting program comprehension
challenges. Therefore, it can be assumed that the program comprehension challenges
can be accurately detected with ML.

svm performance for text categorization Among the three ML algo-
rithms evaluated, linear SVM with SGD learning consistently outperformed the other
algorithms. These results reflect the findings of Zhang and Oles [90] and Joachims
[92], who also found that SVM performed better than two other algorithms.

lack of context from a single review comment post One of the issues
that emerged from these findings is that a single review comment post, taken out of
context of a discussion, may not be sufficient for a human to determine whether it ex-
pressed program comprehension challenges, for example: “Can we use isNotBlank()?”
Five instances were noted and discussed during the manual labeling reconciliation
meetings, and all five were manually labeled as “No.” Therefore, the results of the
training and test datasets have to be interpreted with caution, as some legitimate
instances of comprehension challenges might have been considered irrelevant. Conse-
quently, the ML classifiers may be somewhat limited by the information provided in
review comments, and a shorter review comment without sufficient context may not
be detected as accurately as a longer review comment.

6.3 types of program comprehension challenges during code reviews 79

effectiveness of nlp The preliminary finding suggests that a classifier’s per-
formance is significantly impacted by the feature extraction and selection in NLP tasks
on the body text, and other PR attributes did not seem to affect the performance to
the same extent. This finding also helps to understand that program comprehension
challenges expressed by software engineers may be different from a regular review
comment. The ML was successful since it was able to detect program comprehension
challenges at an acceptable precision for the content analysis.

6.3 types of program comprehension challenges during code reviews

Relating to RQ3 – What types of program comprehension challenges do reviewers face? –
studies by Maalej et al. [9] and Ko et al. [14] both evaluated problems encountered
while attempting to understand code; however, no studies focusing on code review
activity have been described. This subsection discusses the similarities and differences
in the findings in this study as compared to previous studies.

design rationale for the implementation In contrast to earlier findings,
this study found that “design rationale for the implementation” occurred more frequently,
significantly more than the other types. In the scenarios where this type of question
was asked, the reviewer comments often revealed that the reviewer understood the
motive and the effect of the code change; however, they did not clearly understand
the rationale behind the implementation and asked the author for clarification, for
example: “Any reason why to use ‘grep‘ over ‘findAll‘?”

This finding is similar to what was observed in studies done by Dabbish et al. [97],
and provides some support for the conceptual premise that PR code review is a useful
tactic for managing incoming contributions to ensure code quality.

developer familiar with the code The results might suggest that there was
less need to discover who has had experience with a specific code. However, based on
the findings of similar studies, a more plausible explanation is that the design of the
PR code review UI on GitHub reduces the effort to navigate this information.

Maalej et al. [9] reported that almost 90% of the developers surveyed encountered
this problem at least once a month when attempting to understand the code of others,
and 48.5% of them encountered it more frequently, on a weekly or daily basis. This

80 discussion

frequency differs from the findings in this study, with less than 2% of the review
comments categorized as this type of challenge.

The information to view all the contributors of a file in a PR on the GitHub web
UI, is only two clicks away, and one of the fundamental design principles for modern
version control systems is traceability to track contributors who worked on the piece
of code.

Although Maalej et al. [9] reported that dedicated program comprehension tools are
rarely used, this study found important implications for the direction of developing
program comprehension tools. This raises intriguing questions regarding the nature
and extent of those types of tools, such as whether they would be more effective and
convenient to software engineers if embedded in the software development workflow
related to the information they provide.

intended program behavior Maalej et al. [9] and Ko et al. [14] both observed
that “intended program behavior” is the type of information software engineers sought
most frequently; 85% of the developers reported encountering this problem weekly
and, and approximately 50% of them, even daily. On the contrary, the levels observed
in this study are far below those observed in previous studies.

This inconsistency may be due to the top-down knowledge of programming plans
regarding what the code changes are supposed to do that may have been primarily
explained in the PR description, or by the issue referenced in the PR, resulting in
fewer questions regarding the application domain. This finding also suggests that it is
possible, therefore, that the bottom-up comprehension model is less frequently used
during a code review in a PR.

author of the code Interestingly, in all 384 samples in this study, no single
instance related to this type of information need was found, which is considerably
lower than the level reported by Maalej et al. [9], who found that 38.5% of developers
encountered this issue often, sometimes as much as once a week.

Although a PR may involve multiple contributors, there can only be one PR author.
These results are likely to be related to clear ownership and accountability, which
significantly reduces the likelihood of this type of information need during code
reviews.

6.4 causes of program comprehension challenges 81

6.4 causes of program comprehension challenges

Relating to RQ4 – Why do reviewers face program comprehension challenges? – “program
logic,” “code design,” “defensive coding,” “condition checking,” and “concurrency” were
found to cause program comprehension challenges during code reviews. These are
all related to the bottom-up comprehension approach and the program domain
knowledge described in the integrated comprehension model by von Mayrhauser and
Vans [53]. “Program logic,” “code design,” “defensive coding,” and “condition checking”
are subsets of the control sequence, and “concurrency” is a subset of data flow.

In comparison, review comments unrelated to any program comprehension chal-
lenges mostly discussed topics related to the top-down model knowledge. “Code
readability,” “coding convention,” and “naming intention” are part of rules of discourse,
and “code duplication” is part of implementation plans. “Performance” was the only
topic related to the program domain knowledge in the program model.

It is difficult to explain this result, but it might be related to code review being a
static analysis. The code review UI does not support navigating through call stacks
or checking the use of related code changes. Runtime information is also not readily
available to the reviewers. Maalej et al. [9] reported the importance of that information
in assisting with program comprehension. Hence, a simple code change might become
difficult to comprehend without the information to illustrate how the code changes
fit the higher-level programming plan. For instance, “Do we need to explicitly clear
the list here?”, commented on code change allIpList.clear() ; while the code change
is straightforward, but the way this change impacts the wider programming plan is
unclear.

In the discussion in a previous section it was mentioned that the bottom-up com-
prehension model might be less frequently applied. A study by Shaft and Vessey [51]
also revealed that software engineers tend to avoid the bottom-up approach to reduce
cognitive load. This combination of findings in this study and in the study by Shaft
and Vessey [51] supports the conceptual premise that the bottom-up comprehension
model approach is a last resort when the reviewers focus on program domain knowl-
edge. Furthermore, these scenarios signify missing supplementary information on
the programming plans from the top-down model or problem domain knowledge
from the situation model; thus, the reviewers are more likely to encounter program
comprehension challenges.

82 discussion

6.5 limitations

One internal threat and one external threat may potentially influence this study’s
findings and two limitations could affect reliability.

6.5.1 Threat to Internal Validity

Instrumentation design is a known threat to internal validity. The content analy-
sis dataset of program comprehension challenges contained 131 manually labeled
samples and 253 samples labeled by the trained ML classifier. Notwithstanding the
differences in the labeling, this threat is mitigated by the acceptable precision (74.3%)
and recall (66.7%) rates of the ML classifier.

6.5.2 Threat to External Validity

Sampling bias is a known threat to external validity. It is impossible to assess all
code repositories of different programming languages; therefore, it is not known
whether different programming languages pose different comprehension challenges
since they have different characteristics, such as code file structure convention or
syntax readability. Although the generalizability of the results could be limited by
some hidden factors, to counter the threat, the experiment dataset purposive sampled
PR review comments from repositories containing predominantly Java code, as it has
been one of the top three popular languages for the past six years [34].

6.5.3 Small Number of Samples

Compared to the number of PR review comments available on GitHub, the exper-
iment sample dataset was limited in the number of PR review comments that this
study could investigate. This small sample size can limit the generalizability of the
results. However, this limitation is mitigated by simple random sampling from a large
experiment dataset of more than 1,036,743 review comments, which diversified the
samples in the pool.

Moreover, out of the 748 samples, commit file information could be retrieved from
only 400 samples. The missing information was caused by the scenarios where there

6.6 summary 83

was a subsequent commit that modified the line referenced by the review comment;
the GitHub API removes the original commit from the PR commit list, resulting in
missing commit file information in the data collection. The smaller sample size of
only 400 samples for the commit file information lowered the confidence level to 95%
with a confidence interval of 4.9, compared to the other attributes that provided a
confidence level of 99% with a confidence interval of 4.72.

6.5.4 Researcher Bias

During the manual labeling procedures, the interpretation of comprehension chal-
lenges is subjective, so a researcher’s preconceptions, such as software development
knowledge, experience, or programming skills, can induce bias [96].

The threat to the data reliability of the labeling of the experiment sample dataset
used for ML training was mitigated by measuring the intercoder reliability coefficients
[83] of the labeled data through three independent coders.

For the content analysis datasets, this limitation was dealt with in three aspects.
One aspect was by limiting the filtering of the raw data to only repositories using Java,
given its popularity and the researcher’s programming skill, so that the code changes
in the PR could be understood. Another aspect was a similar method that filtered out
non-English review comments with the language detector library cld2-cffi [78]. The
last aspect was being aware of the preconceptions during the content analysis, and, in
addition to using intuition for generating a topic, iteratively refining the topics and
investigating unfamiliar key terms that appeared in the review comments.

6.6 summary

The most prominent finding to emerge from this study is that, based on a performance
comparison of three ML algorithms implemented to evaluate the precision and recall
rates in detecting program comprehension challenges, ML can achieve at least 74.3%
precision and 66.7% recall. The results suggest that the accuracy can be achieved
through the combination of linear SVM with SGD learning and NLP tasks of dialogue
act classification, stop words removal, lemmatization, and tf-idf.

By analyzing the instances of review comments that indicated failure to understand
the code changes, this study confirmed that LOC and the number of commits made

84 discussion

no significant difference to program comprehensibility. Also, interrogative words are
often used, and the results showed the communication often expressed in dialogue
act “whQuestion” and “ynQuestion.”

One of the more significant findings to emerge from this study is that the types
of information needed for understanding codebase when editing and extending
source code during software maintenance differ noticeably from what is required to
understand code changes in a code review.

However, determining the programming plan to articulate the intended program
behavior is the main problem encountered during software maintenance, but it ranked
only third in code reviews and accounted for only 25.3% of the challenges.

Furthermore, the content analysis revealed that, in general, missing supplemen-
tary top-down knowledge regarding the programming plans and situation model
knowledge regarding the problem domain behavior are common causes that impede
reviewers’ comprehension in code changes.

6.6.1 Implications

There are four implications for future research from this study:

1. Discussion thread is an important context to improve the detection rate of the ML

classifier for program comprehension challenges.

This finding has important implications for the development of ML classifiers
with the discussion threads from PR reviews to provide the background context
of the conversation. In future investigations, it might be possible to use the
GitHub GraphQL API, which offers an object PullRequestReviewThread that
provides all comments in a PR, organized in a threaded list. Further studies that
consider these data sources will have to be conducted.

2. LOC does not affect program comprehensibility during code reviews.

The results in this study may support the hypothesis that LOC is not a critical
confounding cause for program comprehensibility during code reviews [61]. To
develop a full picture of the correlation of program comprehensibility and other
code metrics, such as HCM and CCM, additional studies will be required to obtain
the information on the code changes from GitHub’s commits API and a snapshot
of the code repository. This additional information will help to address many

6.6 summary 85

unanswered questions regarding the characteristics of the code changes, such
as the number of operators and operands or the number of nodes or connected
components.

3. Code review requires a different set of program comprehension information needs to
what is required for software maintenance.

This study raises the possibility that the information needs for understanding
codebase when editing and extending the source code during software main-
tenance [9, 14] differs noticeably from understanding code changes in a code
review. Clear accountability and ownership of PR almost eradicate the need to
discover who wrote the piece of code. In addition, the UI in PR code review
significantly reduces the effort to discover who has experience with the code,
as that information is easily accessible; evidently, less than 2% of the review
comments sought this information. Reviewers often wonder why a piece of code
is implemented in a certain way, and this information need is seldom encoun-
tered when writing code. Furthermore, to better understand the implications
of these results, future studies could investigate a larger sample of program
comprehension challenges and develop an ML that automatically categorizes the
types of program comprehension challenges.

4. Distinguishing soft suggestions from program comprehension challenges is essential.

One of the issues that emerged from manual labeling is that, when changing
code, many reviewers are polite and indirect with their communication of
suggestions with concrete implementation alternatives, for example: “add a
message as the second argument?” This observation may be explained by the
fact that the open-source community and the full transparency in the code review
causes the reviewer to communicate with caution and reduce the possibility of
potential bias or prejudice. It is encouraging to compare this observation with a
study by Dabbish et al. [97], who found that the transparent feedback on GitHub
drives the desire of reviewers to manage their reputation and status in the online
community. Nine instances of soft suggestions were noted and discussed during
the reconciliation meetings to establish the manual labeling guideline. Those soft
suggestions were treated as irrelevant to program comprehension challenges, as
the reviewer displayed confidence in understanding the code changes.

86 discussion

6.6.2 Guidelines

There are three guidelines from this study for practice and future research:

1. Review comments categorization should consider the linear SVM with the SGD learning
algorithm.

The ML algorithm consistently achieved acceptable precision and recall rates
from the ML classifier performance results compared to two other algorithms
evaluated. Further research on review comment categorization focusing on this
ML algorithm is suggested.

2. Feature engineering on English review comments should consider NLP tasks including
dialogue act classification, stop words removal, lemmatization, and tf-idf.

The combination of NLP tasks that extracted and filtered the textual features
from review comments consistently outperformed other combinations. Future
research in this field should utilize the NLP task combination as a baseline for
feature engineering.

3. Integrate top-down knowledge into the workflow.

Based on the findings for the types of program comprehension challenges,
the information need for “author of the code” and “developer familiar with the
code” are significantly lower during code reviews, as this information is the
background context and part of the PR workflow. The findings for the causes
of program comprehension challenges suggest that the reviewers seek top-
down knowledge that fit with program domain knowledge. Practitioners should
consider developing future program comprehension tools embedded as part
of the workflow, to allow software engineers to access the relevant top-down
knowledge of programming plans only a few clicks away from their current
task.

7
C O N C L U S I O N

This study aimed to identify the accuracy of detecting program comprehension
challenges faced by software engineers when reviewing code changes in PRs with the
application of ML, and, furthermore, to analyze the specific challenges surrounding
program comprehension to compare to the challenges of writing and developing code
during software maintenance, and to discover the common causes of the challenges.

7.1 remarks and observations

This research clearly illustrates that ML can accurately detect program comprehension
challenges, but it also raises the matter of the importance of knowing the context of a
PR review discussion thread.

The sampling focused predominantly on Java code, and, while this bias limits the
generalizability of the results, these experiments confirmed that LOC and the number
of commits had no significant impact on program comprehensibility during code
reviews. Moreover, this study has identified the types of program comprehension
challenges specific to code review activity. Furthermore, the relevance of programming
plans and the top-down knowledge required during code review is clearly supported
by the current findings.

To address the limitations discussed in Section 6.5, further research should in-
corporate more sample data, collect discussion threads to provide more context for
a PR review comment, and expand the scope to different programming languages.
Alternatively, instead of individual PR review comments, an entire PR with all review
threads as a meaning unit or the actual code changes associated with the code review
could be analyzed.

This study has provided an in-depth insight into program comprehension and the
comprehension strategies software engineers currently apply during code reviews.
Three ML algorithms and four combinations of NLP tasks were evaluated, and recom-
mendations for future research in the area of PR review comments were provided.
The proven concept for the ML classifier developed in this study may assist in the

87

88 conclusion

detection of comprehension issues and provide analytics to software development
teams, assisting them to prioritize areas of improvement.

The ML classifier can be further optimized. The NLP tasks and hyperparameter tun-
ing explored relatively simple combinations, and more sophisticated NLP techniques
or different ranges of hyperparameters can be further explored. Further research
can even experiment with different machine learning architecture, such as neural
networks. In addition, the ML classifier can be improved for the classification of the
types of program comprehension challenges to better understand the implications of
the results. Future studies could investigate a larger sample of instances of program
comprehension challenges and develop an ML classifier that automatically categorizes
the types of program comprehension challenges.

These contributions enable a decrease in cognitive load for program comprehen-
sion, allow software engineers to focus on writing new code and developing new
features, and more efficient code review and pull-based development. Furthermore,
the common causes of comprehension challenges investigated in this study serve as a
basis for suggestions to guide software engineers on the information they provide
when creating PRs, rendering code review a more enjoyable and productive exercise.
Consequently, time spent on trivial impediments that affect program comprehensibil-
ity can be minimized and development velocity can be maximized, hence, reducing
the overall cost of software development.

A
D E P E N D E N T P Y T H O N PA C K A G E S

Python
Package

Dependent
Version

Primary Purpose Package URL

cld2-cffi 0.1 Language detection to select only English review
comments.

https://pypi.org/project/cld2-cffi/

matplotlib 3.3 For creating ML classifier performance visualiza-
tions.

https://pypi.org/project/matplotlib/

nltk 3.5 For creating a Dialogue Act classifier. https://pypi.org/project/nltk/
pandas 1.1 For processing the *.csv datasets. https://pypi.org/project/pandas/
pymongo 3.11 Data retrieval from GHTorrent’s MongoDB. https://pypi.org/project/pymongo/
scikit-learn 0.23 ML library with a comprehensive set of algorithms. https://pypi.org/project/scikit-learn/
seaborn 0.11 For creating ML classifier confusion matrix visual-

izations.
https://pypi.org/project/seaborn/

sshtunnel 0.1 Integration with GHTorrent’s MongoDB via an SSH
tunnel.

https://pypi.org/project/sshtunnel/

tqdm 4 Progress bar visualization for the data collection
process.

https://pypi.org/project/tqdm/

Table A.1: List of dependent Python packages.

8
9

B
G H T O R R E N T B I G Q U E RY Q U E RY

The GHTorrent BigQuery dataset was produced in April 2018, with a cutoff date of
2018-03-31 for all data previously collected. When querying data from it, the term
recent refers to activities within in the past three months (i.e., from 2018-01-01 to
2018-03-31), medium-term means activities from 2016-01-01 to 2017-12-31.

Listing B.1: GHTorrent BigQuery repository selection criteria.

SELECT

p.id AS project_id,

p.url AS project_url,

p.description,

pc.latest_commit_date,

pc.mdm_term_commit_cnt,

pc.mdm_term_distinct_author_cnt,

pc.mdm_term_distinct_committer_cnt,

pc.recent_commit_cnt,

pc.recent_distinct_author_cnt,

pc.recent_distinct_committer_cnt,

prstats.latest_pull_request_history_date,

prstats.mdm_term_pull_request_cnt,

prstats.recent_pull_request_cnt,

p.LANGUAGE AS project_language,

pl.language AS project_language_details_language,

pl.bytes AS project_language_bytes,

pl.created_at AS project_language_created_at,

p.forked_from,

pr.id AS pull_request_id,

pr.pullreq_id,

pr.intra_branch,

prc.user_id,

prc.comment_id,

prc.position,

prc.body,

prc.commit_id,

prc.created_at

FROM `ghtorrent-bq.ght_2018_04_01.projects` AS p

91

92 ghtorrent bigquery query

INNER JOIN (

-- Projects that are active and sustaining.

SELECT

pc.project_id,

MAX(c.created_at) AS latest_commit_date,

COUNT(DISTINCT author_id) AS mdm_term_distinct_author_cnt,

COUNT(DISTINCT committer_id) AS mdm_term_distinct_committer_cnt,

COUNT(commit_id) AS mdm_term_commit_cnt,

COUNT(DISTINCT CASE WHEN c.created_at >= '2018-01-01' THEN author_id END) AS

↪→ recent_distinct_author_cnt,

COUNT(DISTINCT CASE WHEN c.created_at >= '2018-01-01' THEN committer_id END) AS

↪→ recent_distinct_committer_cnt,

COUNT(CASE WHEN c.created_at >= '2018-01-01' THEN commit_id END) AS

↪→ recent_commit_cnt

FROM `ghtorrent-bq.ght_2018_04_01.project_commits` AS pc

INNER JOIN `ghtorrent-bq.ght_2018_04_01.commits` AS c ON c.id = pc.commit_id

WHERE c.created_at >= '2016-01-01' -- Medium Term activity

GROUP BY pc.project_id

) AS pc ON pc.project_id = p.id

INNER JOIN (

-- Uses Pull Request, and have recent and medium term activities.

SELECT

base_repo_id,

MAX(prh.created_at) AS latest_pull_request_history_date,

COUNT(DISTINCT pr.id) AS mdm_term_pull_request_cnt,

COUNT(DISTINCT CASE WHEN prh.created_at >= '2018-01-01' THEN pr.id END) AS

↪→ recent_pull_request_cnt

FROM `ghtorrent-bq.ght_2018_04_01.pull_requests` AS pr

INNER JOIN `ghtorrent-bq.ght_2018_04_01.pull_request_history` AS prh ON

↪→ prh.pull_request_id = pr.id

WHERE prh.created_at >= '2016-01-01' -- Medium Term activity

GROUP BY base_repo_id

) AS prstats ON prstats.base_repo_id = p.id

LEFT JOIN (

-- Subquery to get projects that have Java as one of the prominent languages

SELECT

pl.project_id,

pl.language,

pl.created_at,

pl.bytes

FROM (

ghtorrent bigquery query 93

SELECT

pl.project_id,

pl.created_at,

SUM(bytes) AS total_bytes

FROM (

SELECT

project_id,

MAX(created_at) AS latest_refresh_date

FROM `ghtorrent-bq.ght_2018_04_01.project_languages`
GROUP BY project_id

) AS pl_latest

INNER JOIN `ghtorrent-bq.ght_2018_04_01.project_languages` AS pl ON

↪→ pl.project_id = pl_latest.project_id AND pl.created_at =

↪→ pl_latest.latest_refresh_date

GROUP BY pl.project_id, pl.created_at

) AS pl_latest_total_bytes

INNER JOIN `ghtorrent-bq.ght_2018_04_01.project_languages` AS pl ON

↪→ pl.project_id = pl_latest_total_bytes.project_id AND pl.created_at =

↪→ pl_latest_total_bytes.created_at

WHERE LOWER(pl.language) = 'java'

AND pl_latest_total_bytes.total_bytes > 0

AND pl.bytes / pl_latest_total_bytes.total_bytes > 0.5 -- Java is prominent.

) AS pl ON pl.project_id = p.id

LEFT JOIN `ghtorrent-bq.ght_2018_04_01.pull_requests` AS pr ON pr.base_repo_id = p.id

LEFT JOIN `ghtorrent-bq.ght_2018_04_01.pull_request_comments` AS prc ON

↪→ prc.pull_request_id = pr.id

WHERE p.deleted = FALSE

AND (LOWER(p.LANGUAGE) = 'java' OR LOWER(pl.LANGUAGE) = 'java') -- Java is prominent.

AND (pc.mdm_term_commit_cnt - pc.recent_commit_cnt) >= 5

AND (

(pc.mdm_term_distinct_author_cnt - pc.recent_distinct_author_cnt) >= 3

OR (pc.mdm_term_distinct_committer_cnt - pc.recent_distinct_committer_cnt) >= 3

) -- At least 3 collaborators.

AND pc.recent_commit_cnt >=5

AND (pc.recent_distinct_author_cnt >= 3 OR pc.recent_distinct_committer_cnt >= 3)

AND (prstats.mdm_term_pull_request_cnt - prstats.recent_pull_request_cnt) >= 5

AND prstats.recent_pull_request_cnt >= 5

AND LOWER(p.description) NOT LIKE '%mirror of %'

AND prc.comment_id IS NOT NULL -- Need to have records with comments for the analysis.

ORDER BY pc.latest_commit_date DESC

R E F E R E N C E S

[1] A. von Mayrhauser, A. M. Vans, and A. E. Howe, “Program understanding
behaviour during enhancement of large-scale software,” Journal of Software
Maintenance: Research and Practice, vol. 9, no. 5, pp. 299–327, 1997. doi: https:
//doi.org/10.1002/(SICI)1096-908X(199709/10)9:5<299::AID-SMR157>3.0.

CO;2-S.

[2] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination of
software engineering work practices,” in CASCON First Decade High Impact
Papers, ser. CASCON ’10, Toronto, Ontario, Canada: IBM Corp., 2010, pp. 174–
188. doi: https://doi.org/10.1145/1925805.1925815.

[3] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke, “A
systematic survey of program comprehension through dynamic analysis,” IEEE
Transactions on Software Engineering, vol. 35, no. 5, pp. 684–702, Sep. 2009. doi:
https://doi.org/10.1109/TSE.2009.28.

[4] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM Systems
Journal, vol. 28, no. 2, pp. 294–306, 1989. doi: https://doi.org/10.1147/sj.
282.0294.

[5] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: A
roadmap,” in Proceedings of the Conference on The Future of Software Engineer-
ing, ser. ICSE ’00, Limerick, Ireland: ACM, 2000, pp. 73–87. doi: https://doi.
org/10.1145/336512.336534.

[6] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer - an
investigation of how developers spend their time,” in 2015 IEEE 23rd International
Conference on Program Comprehension, May 2015, pp. 25–35. doi: https://doi.
org/10.1109/ICPC.2015.12.

[7] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of
how developers seek, relate, and collect relevant information during software
maintenance tasks,” IEEE Transactions on Software Engineering, vol. 32, no. 12,
pp. 971–987, December 2006. doi: https://doi.org/10.1109/TSE.2006.116.

95

https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5<299::AID-SMR157>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5<299::AID-SMR157>3.0.CO;2-S
https://doi.org/10.1002/(SICI)1096-908X(199709/10)9:5<299::AID-SMR157>3.0.CO;2-S
https://doi.org/10.1145/1925805.1925815
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1147/sj.282.0294
https://doi.org/10.1147/sj.282.0294
https://doi.org/10.1145/336512.336534
https://doi.org/10.1145/336512.336534
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1109/TSE.2006.116

96 references

[8] R. K. Fjeldstad and W. T. Hamlen, “Application program maintenance study:
Report to our respondents,” in Tutorial on Software Maintenance, G. Parikh and
N. Zvegintzov, Eds. IEEE Computer Society Press, 1983, pp. 13–30.

[9] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the comprehension of
program comprehension,” ACM Trans.Softw.Eng.Methodol., vol. 23, no. 4, 31:37,
Sep. 2014. doi: https://doi.org/10.1145/2622669.

[10] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept assignment
problem in program understanding,” in [1993] Proceedings Working Conference
on Reverse Engineering, Baltimore, MD, USA: IEEE, 1993, pp. 27–43. doi: https:
//doi.org/10.1109/WCRE.1993.287781.

[11] M. Sulír, “Program comprehension: A short literature review,” in SCYR 2015:
15th Scientific Conference of Young Researchers, 2015.

[12] M. L. Nelson, “A survey of reverse engineering and program comprehension,”
ArXiv, vol. abs/cs/0503068, 2005.

[13] P. Marvin Zelkowitz, M. Zelkowitz, A. Shaw, and J. Gannon, Principles of Software
Engineering and Design, ser. Prentice Hall International Series in Computer
Science. Prentice-Hall, 1979. [Online]. Available: https://books.google.co.nz/
books?id=ctcmAAAAMAAJ (retrieved November 23, 2020).

[14] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software
development teams,” in 29th International Conference on Software Engineering
(ICSE’07), May 2007, pp. 344–353. doi: https://doi.org/10.1109/ICSE.2007.
45.

[15] R. Tiarks, “What maintenance programmers really do: An observational study,”
in Workshop on Software Reengineering, Citeseer, 2011, pp. 36–37.

[16] G. C. Murphy, M. Kersten, and L. Findlater, “How are Java software developers
using the Eclipse IDE?” IEEE Software, vol. 23, no. 4, pp. 76–83, Jul. 2006. doi:
https://doi.org/10.1109/MS.2006.105.

[17] M. M. Lehman, “Laws of software evolution revisited,” in Software Process
Technology, C. Montangero, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 108–124.

https://doi.org/10.1145/2622669
https://doi.org/10.1109/WCRE.1993.287781
https://doi.org/10.1109/WCRE.1993.287781
https://books.google.co.nz/books?id=ctcmAAAAMAAJ
https://books.google.co.nz/books?id=ctcmAAAAMAAJ
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1109/MS.2006.105

references 97

[18] J. Knodel and M. Naab, Pragmatic Evaluation of Software Architectures, ser. Fraun-
hofer IESE series on software and systems engineering. Springer, 2016. [Online].
Available: https://link-springer-com.ezproxy.auckland.ac.nz/book/10.
1007%2F978-3-319-34177-4 (retrieved November 23, 2020).

[19] Y. Gil and G. Lalouche, “On the correlation between size and metric validity,”
Empirical Software Engineering, vol. 22, no. 5, pp. 2585–2611, 2017. doi: https:
//doi.org/10.1007/s10664-017-9513-5.

[20] B. W. Boehm, “Software engineering economics,” IEEE Transactions on Software
Engineering, vol. SE-10, no. 1, pp. 4–21, January 1984. doi: https://doi.org/
10.1109/TSE.1984.5010193.

[21] J. T. Nosek and P. Palvia, “Software maintenance management: Changes in the
last decade,” Journal of Software Maintenance: Research and Practice, vol. 2, no. 3,
pp. 157–174, 1990. doi: https://doi.org/10.1002/smr.4360020303.

[22] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Professional,
vol. 2, no. 3, pp. 17–23, May 2000. doi: https://doi.org/10.1109/6294.846201.

[23] M. Skelton and M. Pais, Team Topologies: Organizing Business and Technology Teams
for Fast Flow. IT Revolution Press, 2019. [Online]. Available: https://books.
google.co.nz/books?id=Pj-IDwAAQBAJ (retrieved November 23, 2020).

[24] J. Krüger, J. Wiemann, W. Fenske, G. Saake, and T. Leich, “Do you remember
this source code?” In Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18, Gothenburg, Sweden: ACM, 2018, pp. 764–775. doi:
https://doi.org/10.1145/3180155.3180215.

[25] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: A study
of developer work habits,” in Proceedings of the 28th International Conference on
Software Engineering, ser. ICSE ’06, Shanghai, China: ACM, 2006, pp. 492–501.
doi: https://doi.org/10.1145/1134285.1134355.

[26] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional devel-
opers comprehend software?” In 2012 34th International Conference on Software
Engineering (ICSE), Jun. 2012, pp. 255–265. doi: https://doi.org/10.1109/
ICSE.2012.6227188.

https://link-springer-com.ezproxy.auckland.ac.nz/book/10.1007%2F978-3-319-34177-4
https://link-springer-com.ezproxy.auckland.ac.nz/book/10.1007%2F978-3-319-34177-4
https://doi.org/10.1007/s10664-017-9513-5
https://doi.org/10.1007/s10664-017-9513-5
https://doi.org/10.1109/TSE.1984.5010193
https://doi.org/10.1109/TSE.1984.5010193
https://doi.org/10.1002/smr.4360020303
https://doi.org/10.1109/6294.846201
https://books.google.co.nz/books?id=Pj-IDwAAQBAJ
https://books.google.co.nz/books?id=Pj-IDwAAQBAJ
https://doi.org/10.1145/3180155.3180215
https://doi.org/10.1145/1134285.1134355
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/ICSE.2012.6227188

98 references

[27] Miryung Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study of
copy and paste programming practices in OOPL,” in Proceedings. 2004 Interna-
tional Symposium on Empirical Software Engineering, 2004. ISESE ’04., August 2004,
pp. 83–92. doi: https://doi.org/10.1109/ISESE.2004.1334896.

[28] G. Wilson et al., “Best practices for scientific computing,” PLOS Biology, vol. 12,
no. 1, pp. 1–7, January 2014. doi: https://doi.org/10.1371/journal.pbio.
1001745.

[29] S. Foote, Learning to Program. Addison-Wesley Professional, 2014. [Online].
Available: https://books.google.co.nz/books?id=XHnbBAAAQBAJ (retrieved
November 23, 2020).

[30] B. Shneiderman, “Exploratory experiments in programmer behavior,” Interna-
tional Journal of Computer & Information Sciences, vol. 5, no. 2, pp. 123–143, 1976.
doi: https://doi.org/10.1007/BF00975629.

[31] J. P. Boysen, “Factors affecting computer program comprehension,” Ph.D. dis-
sertation, Iowa State University, 1979. doi: https://doi.org/10.31274/rtd-
180813-6131.

[32] J. Siegmund, “Program comprehension: Past, present, and future,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 5, March 2016, pp. 13–20. doi: https://doi.org/10.1109/SANER.
2016.35.

[33] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective developers
investigate source code: An exploratory study,” IEEE Transactions on Software
Engineering, vol. 30, no. 12, pp. 889–903, December 2004. doi: https://doi.
org/10.1109/TSE.2004.101.

[34] GitHub, Inc. “The state of the octoverse,” https://octoverse.github.com

(retrieved December 12, 2020).

[35] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the pull-
based software development model,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014, Hyderabad, India: Association
for Computing Machinery, 2014, pp. 345–355. doi: https://doi.org/10.1145/
2568225.2568260.

https://doi.org/10.1109/ISESE.2004.1334896
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://books.google.co.nz/books?id=XHnbBAAAQBAJ
https://doi.org/10.1007/BF00975629
https://doi.org/10.31274/rtd-180813-6131
https://doi.org/10.31274/rtd-180813-6131
https://doi.org/10.1109/SANER.2016.35
https://doi.org/10.1109/SANER.2016.35
https://doi.org/10.1109/TSE.2004.101
https://doi.org/10.1109/TSE.2004.101
https://octoverse.github.com
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2568225.2568260

references 99

[36] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and challenges
in pull-based development: The contributor’s perspective,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE ’16, ACM
SIGSOFT Distinguished paper, Austin, Texas: ACM, May 2016, pp. 285–296.
doi: https://doi.org/10.1145/2884781.2884826.

[37] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work practices
and challenges in pull-based development: The integrator’s perspective,” in
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol. 1,
Florence, Italy: IEEE, 2015, pp. 358–368. doi: https://doi.org/10.1109/ICSE.
2015.55.

[38] S. Chacon, Pro Git, ser. Books for professionals by professionals. Apress, 2009.
[Online]. Available: https://books.google.co.nz/books?id=3XcW4oJ8goIC
(retrieved November 23, 2020).

[39] T. Baum, O. Liskin, K. Niklas, and K. Schneider, “A faceted classification scheme
for change-based industrial code review processes,” in 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS), August 2016, pp. 74–
85. doi: https://doi.org/10.1109/QRS.2016.19.

[40] M. Fagan, “Design and code inspections to reduce errors in program develop-
ment,” in Software Pioneers: Contributions to Software Engineering, M. Broy and E.
Denert, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 575–607.
doi: https://doi.org/10.1007/978-3-642-59412-0_35.

[41] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern
code review,” in 2013 35th International Conference on Software Engineering (ICSE),
May 2013, pp. 712–721. doi: https://doi.org/10.1109/ICSE.2013.6606617.

[42] Y. Tymchuk, A. Mocci, and M. Lanza, “Code review: Veni, vidi, vici,” in 2015
IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineer-
ing (SANER), March 2015, pp. 151–160. doi: https://doi.org/10.1109/SANER.
2015.7081825.

[43] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013, Saint Petersburg, Russia: Association for
Computing Machinery, 2013, pp. 202–212. doi: https://doi.org/10.1145/
2491411.2491444.

https://doi.org/10.1145/2884781.2884826
https://doi.org/10.1109/ICSE.2015.55
https://doi.org/10.1109/ICSE.2015.55
https://books.google.co.nz/books?id=3XcW4oJ8goIC
https://doi.org/10.1109/QRS.2016.19
https://doi.org/10.1007/978-3-642-59412-0_35
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/SANER.2015.7081825
https://doi.org/10.1109/SANER.2015.7081825
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/2491411.2491444

100 references

[44] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python: Analyzing
Text with the Natural Language Toolkit. "O’Reilly Media, Inc.", 2009.

[45] Y. Goldberg, “A primer on neural network models for natural language process-
ing,” Journal of Artificial Intelligence Research, vol. 57, pp. 345–420, 2016.

[46] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise? on auto-
matically classifying app reviews,” in 2015 IEEE 23rd International Requirements
Engineering Conference (RE), August 2015, pp. 116–125. doi: https://doi.org/
10.1109/RE.2015.7320414.

[47] E. Guzman, M. Ibrahim, and M. Glinz, “A little bird told me: Mining tweets for
requirements and software evolution,” in 2017 IEEE 25th International Require-
ments Engineering Conference (RE), Sep. 2017, pp. 11–20. doi: https://doi.org/
10.1109/RE.2017.88.

[48] M.-A. Storey, “Theories, methods and tools in program comprehension: Past,
present and future,” in 13th International Workshop on Program Comprehension
(IWPC’05), May 2005, pp. 181–191. doi: https://doi.org/10.1109/WPC.2005.
38.

[49] A. von Mayrhauser and A. M. Vans, “Program comprehension during software
maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–55, August 1995.
doi: https://doi.org/10.1109/2.402076.

[50] J. Belmonte, P. Dugerdil, and A. Agrawal, “A three-layer model of source code
comprehension,” in Proceedings of the 7th India Software Engineering Conference,
ser. ISEC ’14, Chennai, India: Association for Computing Machinery, 2014. doi:
https://doi.org/10.1145/2590748.2590758.

[51] T. M. Shaft and I. Vessey, “Research report: The relevance of application domain
knowledge: The case of computer program comprehension,” Information Systems
Research, vol. 6, no. 3, pp. 286–299, 1995. [Online]. Available: http://www.jstor.
org/stable/23010878 (retrieved November 23, 2020).

[52] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs,” Cognitive Psychology, vol. 19, no. 3,
pp. 295 –341, 1987. doi: https://doi.org/10.1016/0010-0285(87)90007-7.

https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/RE.2017.88
https://doi.org/10.1109/RE.2017.88
https://doi.org/10.1109/WPC.2005.38
https://doi.org/10.1109/WPC.2005.38
https://doi.org/10.1109/2.402076
https://doi.org/10.1145/2590748.2590758
http://www.jstor.org/stable/23010878
http://www.jstor.org/stable/23010878
https://doi.org/10.1016/0010-0285(87)90007-7

references 101

[53] A. von Mayrhauser and A. M. Vans, “From program comprehension to tool
requirements for an industrial environment,” in [1993] IEEE Second Workshop on
Program Comprehension, Jul. 1993, pp. 78–86. doi: https://doi.org/10.1109/
WPC.1993.263903.

[54] F. Détienne and F. Bott, Software Design – Cognitive Aspect, ser. Practitioner Series.
Springer London, 2002. [Online]. Available: https://link.springer.com/book/
10.1007/978-1-4471-0111-6 (retrieved November 23, 2020).

[55] R. Brooks, “Towards a theory of the comprehension of computer programs,”
International Journal of Man-Machine Studies, vol. 18, no. 6, pp. 543 –554, 1983.
doi: https://doi.org/10.1016/S0020-7373(83)80031-5.

[56] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and software
maintenance productivity,” IEEE Transactions on Software Engineering, vol. 17,
no. 12, pp. 1284–1288, December 1991. doi: https://doi.org/10.1109/32.
106988.

[57] E. Soloway and K. Ehrlich, “Empirical studies of programming knowledge,”
IEEE Transactions on Software Engineering, vol. SE-10, no. 5, pp. 595–609, Sep.
1984. doi: https://doi.org/10.1109/TSE.1984.5010283.

[58] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. C. Hofmeister, and A. Brechmann,
“Simultaneous measurement of program comprehension with fMRI and eye
tracking: A case study,” 2018.

[59] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using psycho-
physiological measures to assess task difficulty in software development,” in
Proceedings of the 36th International Conference on Software Engineering, ser. ICSE
2014, Hyderabad, India: Association for Computing Machinery, 2014, pp. 402–
413. doi: https://doi.org/10.1145/2568225.2568266.

[60] I. Herraiz and A. E. Hassan, Beyond lines of code: Do we need more complexity met-
rics? A. Oram and G. Wilson, Eds. O’Reilly Media, 2010, pp. 125–141. [Online].
Available: https://books.google.co.nz/books?id=DxuGi5h2-HEC (retrieved
November 23, 2020).

[61] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, predicates, idioms: What
really affects code complexity?” In Proceedings of the 25th International Conference
on Program Comprehension, ser. ICPC ’17, Buenos Aires, Argentina: IEEE Press,
2017, pp. 66–76. doi: https://doi.org/10.1109/ICPC.2017.39.

https://doi.org/10.1109/WPC.1993.263903
https://doi.org/10.1109/WPC.1993.263903
https://link.springer.com/book/10.1007/978-1-4471-0111-6
https://link.springer.com/book/10.1007/978-1-4471-0111-6
https://doi.org/10.1016/S0020-7373(83)80031-5
https://doi.org/10.1109/32.106988
https://doi.org/10.1109/32.106988
https://doi.org/10.1109/TSE.1984.5010283
https://doi.org/10.1145/2568225.2568266
https://books.google.co.nz/books?id=DxuGi5h2-HEC
https://doi.org/10.1109/ICPC.2017.39

102 references

[62] S. Yu and S. Zhou, “A survey on metric of software complexity,” in 2010 2nd
IEEE International Conference on Information Management and Engineering, April
2010, pp. 352–356. doi: https://doi.org/10.1109/ICIME.2010.5477581.

[63] M. H. Halstead, Elements of software science. Elsevier New York, 1977, vol. 7.

[64] Jingqiu Shao and Yingxu Wang, “A new measure of software complexity based
on cognitive weights,” Canadian Journal of Electrical and Computer Engineering,
vol. 28, no. 2, pp. 69–74, April 2003. doi: https://doi.org/10.1109/CJECE.
2003.1532511.

[65] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software Engineering,
vol. SE-2, no. 4, pp. 308–320, December 1976. doi: https://doi.org/10.1109/
TSE.1976.233837.

[66] D. Gopstein et al., “Understanding misunderstandings in source code,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017, Paderborn, Germany: ACM, 2017, pp. 129–139. doi:
https://doi.org/10.1145/3106237.3106264.

[67] B. Shneiderman, Software Psychology: Human Factors in Computer and Information
Systems (Winthrop Computer Systems Series). Winthrop Publishers, 1980.

[68] S. Letovsky, “Cognitive processes in program comprehension,” Journal of Systems
and Software, vol. 7, no. 4, pp. 325 –339, 1987. doi: https://doi.org/10.1016/
0164-1212(87)90032-X.

[69] W. L. Johnson and A. Erdem, “Interactive explanation of software systems,”
Automated Software Engineering, vol. 4, no. 1, pp. 53–75, January 1997. doi:
https://doi.org/10.1023/A:1008655629091.

[70] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask during
software evolution tasks,” in Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. SIGSOFT ’06/FSE-14,
Portland, Oregon, USA: Association for Computing Machinery, 2006, pp. 23–34.
doi: https://doi.org/10.1145/1181775.1181779.

[71] T. Fritz and G. C. Murphy, “Using information fragments to answer the ques-
tions developers ask,” in Proceedings of the 32Nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, ser. ICSE ’10, Cape Town, South Africa:
ACM, 2010, pp. 175–184. doi: https://doi.org/10.1145/1806799.1806828.

https://doi.org/10.1109/ICIME.2010.5477581
https://doi.org/10.1109/CJECE.2003.1532511
https://doi.org/10.1109/CJECE.2003.1532511
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.1016/0164-1212(87)90032-X
https://doi.org/10.1023/A:1008655629091
https://doi.org/10.1145/1181775.1181779
https://doi.org/10.1145/1806799.1806828

references 103

[72] K. Erdos and H. M. Sneed, “Partial comprehension of complex programs
(enough to perform maintenance),” in Proceedings. 6th International Workshop on
Program Comprehension. IWPC’98 (Cat. No.98TB100242), Jun. 1998, pp. 98–105.
doi: https://doi.org/10.1109/WPC.1998.693322.

[73] A. Stolcke et al., “Dialogue act modeling for automatic tagging and recognition
of conversational speech,” Computational Linguistics, vol. 26, no. 3, pp. 339–373,
2000. doi: https://doi.org/10.1162/089120100561737.

[74] T. Wu, F. M. Khan, T. A. Fisher, L. A. Shuler, and W. M. Pottenger, “Posting act
tagging using transformation-based learning,” in Foundations of Data Mining and
knowledge Discovery, T. Young Lin, S. Ohsuga, C.-J. Liau, X. Hu, and S. Tsumoto,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 319–331. doi:
https://doi.org/10.1007/11498186_18.

[75] E. N. Forsythand and C. H. Martell, “Lexical and discourse analysis of online
chat dialog,” in International Conference on Semantic Computing (ICSC 2007), Sep.
2007, pp. 19–26. doi: https://doi.org/10.1109/ICSC.2007.55.

[76] G. Gousios, “The GHTorrent dataset and tool suite,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR ’13, San Francisco,
CA, USA: IEEE Press, 2013, pp. 233–236. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2487085.2487132 (retrieved November 23, 2020).

[77] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D.
Damian, “An in-depth study of the promises and perils of mining GitHub,”
Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071, October 2016. doi:
https://doi.org/10.1007/s10664-015-9393-5.

[78] D. Sites, A. Hayden, I. Giuliani, and jariesa, Compact language detector 2. [Online].
Available: https://github.com/CLD2Owners/cld2 (retrieved December 4, 2020).

[79] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[80] M. Abadi et al. (2015). “TensorFlow: Large-scale machine learning on het-
erogeneous systems.” Software available from tensorflow.org, https://www.
tensorflow.org/ (retrieved November 23, 2020).

https://doi.org/10.1109/WPC.1998.693322
https://doi.org/10.1162/089120100561737
https://doi.org/10.1007/11498186_18
https://doi.org/10.1109/ICSC.2007.55
http://dl.acm.org/citation.cfm?id=2487085.2487132
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://doi.org/10.1007/s10664-015-9393-5
https://github.com/CLD2Owners/cld2
https://www.tensorflow.org/
https://www.tensorflow.org/

104 references

[81] L. Buitinck et al., “API design for machine learning software: Experiences from
the scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining
and Machine Learning, 2013, pp. 108–122.

[82] D. Freelon, “ReCal OIR: Ordinal, interval, and ratio intercoder reliability as a
web service.,” International Journal of Internet Science, vol. 8, no. 1, 2013.

[83] K. Krippendorff, Content Analysis: An Introduction to Its Methodology. SAGE
Publications, 2018. [Online]. Available: https://books.google.co.nz/books?
id=FixGDwAAQBAJ (retrieved November 23, 2020).

[84] A. Zheng and A. Casari, Feature Engineering for Machine Learning: Principles and
Techniques for Data Scientists. O’Reilly Media, 2018. [Online]. Available: https:
//ebookcentral.proquest.com/lib/auckland/detail.action?docID=5328406

(retrieved November 23, 2020).

[85] K. Pearson, “X. on the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling,” The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 50, no. 302,
pp. 157–175, 1900. doi: https://doi.org/10.1080/14786440009463897.

[86] H. B. Mann and D. R. Whitney, “On a test of whether one of two random
variables is stochastically larger than the other,” The Annals of Mathematical
Statistics, vol. 18, no. 1, pp. 50–60, 1947. doi: https://doi.org/10.1214/aoms/
1177730491.

[87] C. Silva and B. Ribeiro, “The importance of stop word removal on recall values
in text categorization,” in Proceedings of the International Joint Conference on Neural
Networks, 2003., vol. 3, Jul. 2003, 1661–1666 vol.3. doi: https://doi.org/10.
1109/IJCNN.2003.1223656.

[88] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,”
Machine Learning, vol. 29, no. 2, pp. 131–163, November 1997. doi: https:
//doi.org/10.1023/A:1007465528199.

[89] A. McCallum, K. Nigam, et al., “A comparison of event models for naive Bayes
text classification,” in AAAI-98 workshop on learning for text categorization, Citeseer,
vol. 752, 1998, pp. 41–48.

https://books.google.co.nz/books?id=FixGDwAAQBAJ
https://books.google.co.nz/books?id=FixGDwAAQBAJ
https://ebookcentral.proquest.com/lib/auckland/detail.action?docID=5328406
https://ebookcentral.proquest.com/lib/auckland/detail.action?docID=5328406
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/IJCNN.2003.1223656
https://doi.org/10.1109/IJCNN.2003.1223656
https://doi.org/10.1023/A:1007465528199
https://doi.org/10.1023/A:1007465528199

references 105

[90] T. Zhang and F. J. Oles, “Text categorization based on regularized linear classifi-
cation methods,” Information Retrieval, vol. 4, no. 1, pp. 5–31, April 2001. doi:
https://doi.org/10.1023/A:1011441423217.

[91] Z. Zheng, X. Wu, and R. Srihari, “Feature selection for text categorization on
imbalanced data,” SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 80–89, 2004. doi:
https://doi.org/10.1145/1007730.1007741.

[92] T. Joachims, “Text categorization with support vector machines: Learning with
many relevant features,” in Machine Learning: ECML-98, C. Nédellec and C.
Rouveirol, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 137–
142. doi: https://doi.org/10.1007/BFb0026683.

[93] N. Jardine and C. van Rijsbergen, “The use of hierarchic clustering in informa-
tion retrieval,” Information Storage and Retrieval, vol. 7, no. 5, pp. 217 –240, 1971.
doi: https://doi.org/10.1016/0020-0271(71)90051-9.

[94] C. J. van Rijsbergen, Information Retrieval, 2nd. USA: Butterworth-Heinemann,
1979, ch. 7, pp. 112–140. [Online]. Available: http://www.dcs.gla.ac.uk/
Keith/Preface.html (retrieved November 23, 2020).

[95] L. Derczynski, “Complementarity, F-score, and NLP evaluation,” in Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16), 2016, pp. 261–266.

[96] C. Erlingsson and P. Brysiewicz, “A hands-on guide to doing content analysis,”
African Journal of Emergency Medicine, vol. 7, no. 3, pp. 93–99, 2017. doi: https:
//doi.org/10.1016/j.afjem.2017.08.001.

[97] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in GitHub: Trans-
parency and collaboration in an open software repository,” in Proceedings of
the ACM 2012 Conference on Computer Supported Cooperative Work, ser. CSCW
’12, Seattle, Washington, USA: Association for Computing Machinery, 2012,
pp. 1277–1286. doi: https://doi.org/10.1145/2145204.2145396.

https://doi.org/10.1023/A:1011441423217
https://doi.org/10.1145/1007730.1007741
https://doi.org/10.1007/BFb0026683
https://doi.org/10.1016/0020-0271(71)90051-9
http://www.dcs.gla.ac.uk/Keith/Preface.html
http://www.dcs.gla.ac.uk/Keith/Preface.html
https://doi.org/10.1016/j.afjem.2017.08.001
https://doi.org/10.1016/j.afjem.2017.08.001
https://doi.org/10.1145/2145204.2145396

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Glossary
	1 Introduction
	1.1 Definition of Program Comprehension
	1.2 Importance of Program Comprehension
	1.3 Motivation and Objectives
	1.3.1 Definition of Program Comprehension Challenge
	1.3.2 Program Comprehension and Pull Requests
	1.3.3 Research Scope

	1.4 Contributions
	1.5 Structure of the Thesis

	2 Background
	2.1 Pull Request
	2.2 Code Review
	2.3 Machine Learning and Natural Language Processing

	3 Literature Review
	3.1 Program Comprehension Models
	3.1.1 Top-down Comprehension Model
	3.1.2 Bottom-up Comprehension Model
	3.1.3 Integrated Comprehension Model

	3.2 Measuring Program Comprehension
	3.2.1 Code Metrics
	3.2.2 Observing Software Engineers

	3.3 Types of Program Comprehension Challenge
	3.3.1 Dialogue Act Classifications

	3.4 Summary

	4 Methodology
	4.1 Research Objective
	4.2 Methodology Overview
	4.2.1 Resources and Tools

	4.3 Data Collection for Pull Request Review Comments
	4.3.1 Secondary Data Collection From GitHub and GHTorrent
	4.3.2 Selection Criteria
	4.3.3 Data Collection Procedure

	4.4 Machine Learning of Program Comprehension Challenges
	4.4.1 Data Sampling Procedure for Training and Test Dataset
	4.4.2 Manual Labeling
	4.4.3 Feature Engineering
	4.4.4 Machine Learning Classifier Training
	4.4.5 Machine Learning Classifier Evaluation

	4.5 Content Analysis of Program Comprehension Challenges
	4.5.1 Data Sampling Procedure for Content Analysis Dataset
	4.5.2 Meaning Unit, Topics, and Categories
	4.5.3 Manual Labeling
	4.5.4 Analyzing Non-Program Comprehension Challenges

	5 Results
	5.1 Pull Request Attributes Affecting Program Comprehensibility
	5.1.1 Attributes with Significant Correlations
	5.1.2 Other Attributes Not Affecting Program Comprehensibility

	5.2 Detecting Program Comprehension Challenges With Machine Learning
	5.2.1 Machine Learning Classifiers Performance Results

	5.3 Types of Program Comprehension Challenges During Code Reviews
	5.3.1 Results

	5.4 Causes of Program Comprehension Challenges
	5.4.1 Results

	6 Discussion
	6.1 Pull Request Attributes Affecting Program Comprehensibility
	6.2 Detecting Program Comprehension Challenges With Machine Learning
	6.3 Types of Program Comprehension Challenges During Code Reviews
	6.4 Causes of Program Comprehension Challenges
	6.5 Limitations
	6.5.1 Threat to Internal Validity
	6.5.2 Threat to External Validity
	6.5.3 Small Number of Samples
	6.5.4 Researcher Bias

	6.6 Summary
	6.6.1 Implications
	6.6.2 Guidelines

	7 Conclusion
	7.1 Remarks and Observations

	A Dependent Python Packages
	B GHTorrent BigQuery Query
	 References

