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Abstract

The probability that a randomly chosen individual will, when ex-
posed to a specified electrical shock, undergo fatal ventricular fibrilla-
tion can be regarded as a function of random variation in the human
population along two dimensions. The first is the individual’s body
impedance characteristic: for this we introduce a new two-parameter
model that improves on the simpler one-parameter model used in pre-
vious work. The second is the individual’s current tolerance: for this
we codify some curves used in previous practice. We also consider
methods of solving the resulting shock circuit, and show in particular
that it is possible for the fixed-point iteration method to give incorrect
results.
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1 Introduction

The statistical modelling of electrical shock hazards is both decades old
([16]) and still of current interest ([9, 11]). While there are several possi-
ble approaches, there is general agreement that a key concept is that of the
ventricular fibrillation probability. This is the probability that an individ-
ual randomly chosen from the population will, when subjected to electrical
shock of a specified kind, undergo ventricular fibrillation leading to death.
It is generally accepted that ventricular fibrillation is the principal cause of
fatalities due to electrical shock.

The paradigm of the present paper is well-established ([11, 2]). A shock
consists of a given voltage applied for a given length of time, possibly via a
given series impedance, between two given points on a human body. An item
of electrical equipment creates such shocks from time to time at a rate λs
per unit time; these may be modelled as a Poisson or other random process.
The probability that a shock results in a fatality is identified with Pfib, the
probability that a randomly selected person subjected to the shock will un-
dergo ventricular fibrillation. The long-run average rate of fatalities is thus
λsPfib per unit time. We devise models that allow this rate to be calculated
in particular examples. Alternatively, the desired fatality rate may be spec-
ified, and the models used to determine a value for some parameter of the
shock (e.g. the maximum allowable voltage).

A shock circuit consists of a human body in series with another given
impedance, powered by a source of given voltage (and frequency). To de-
termine the current that flows in the circuit, it is necessary to model the
impedance of the human body; such a model must be statistical in nature as
there is substantial variation between individuals. (The body impedance is
principally resistive. Although the skin exhibits some capacitive behaviour,
this is relatively small ([1]) and will be neglected: for the purposes of the
present paper, references to “impedance” are to resistance only.) Once the
current is determined, another statistical model is required to estimate the
probability that it results in ventricular fibrillation.

The necessary calculations are captured in the Australian industry-standard
(but closed-source) software known as Argon ([3]). The purpose of the present
paper is to examine the standard underpinning the Argon software suite, and
to replicate, evaluate, and improve on the approach adopted therein.
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2 The rate of shocks

The occurrence of shocks can be modelled in the following simple way. A
given piece of equipment is assumed to experience faults from time to time
at random. Simultaneously, contact events between humans and objects that
will become live during a fault also occur from time to time at random. The
faults and the contacts are modelled as independent Poisson processes with
rates λf and λc (per unit time) respectively; every fault is assumed to have
duration τf and every contact to have duration τc. A shock occurs when a
fault event overlaps in time with a contact event (a “coincidence”).

For this model, it is straightforward to calculate the rate at which fault-
contact coincidences occur. Without loss of generality, each event of the
Poisson process representing faults can be taken to be the start of a period
of duration τf during which the fault is in effect; if a contact is initiated
during this period, a coincidence occurs. The start of the fault period also
marks the end of another period of duration τc; a coincidence will also occur
if a contact is initiated during this period. In total, then, each fault event
is associated with a period of duration τf + τc during which the initiation of
any contact event will give rise to a coincidence. Since the fault and contact
processes are independent, the expected number of coincidences arising from
a single fault event is λc(τf + τc). Therefore, the rate at which coincidences
(or shocks) occur is λs = λfλc(τf + τc) per unit time.

Note that the foregoing analysis takes no account of the possibility of
faults coinciding with each other; similarly contacts. Should two faults over-
lap with each other in time, they are counted as separate events, and any
coincidences they give rise to are counted separately. Similarly, the excep-
tionally unlucky individual whose contact period overlaps with two distinct
faults (which may or may not overlap with each other) is considered to have
experienced two coincidences, and to have been exposed to two shock haz-
ards. While the realism of this neglect may be problematic, the effect on
the results should be small, provided that faults and contacts are both rare
events.

We also note that this analysis differs somewhat from a slightly different
approach published elsewhere ([15]), which involves a detailed calculation
of the probability of at least one coincidence occurring during a given time
interval. The analysis in the present paper would instead tell us the expected
number of coincidences during the time interval. The two values will be very
similar if coincidences are rare enough to make it very unlikely that two or
more occur during the interval. However, the latter approach is better suited
to our purposes in this paper, as the expected number of coincidences can
be multiplied by a fibrillation probability to obtain the expected number of
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Table 1: Body impedance statistics at various voltages (hand-to-hand, dry,
large contact area, AC 50-60 Hz)

Voltage Impedance (Ω) One-parameter model Two-parameter model
(V) 5th percentile 50th percentile mean(log) sd(log) β
25 1750 3250 8.086 0.376 1.000
50 1375 2500 7.824 0.363 0.735
75 1125 2000 7.601 0.350 0.523

100 990 1725 7.453 0.338 0.413
125 900 1550 7.346 0.330 0.339
150 850 1400 7.244 0.303 0.280
175 825 1325 7.189 0.288 0.250
200 800 1275 7.151 0.283 0.229
225 775 1225 7.111 0.278 0.209
400 700 950 6.856 0.186 0.106
500 625 850 6.745 0.187 0.067
700 575 775 6.653 0.181 0.040

1000 575 775 6.653 0.181 0.040

fatalities.

3 Modelling the human body impedance char-

acteristic

The available data on human body impedance is illustrated in Figure 1 (left;
see also [1]). Estimates are tabulated of the 5th, 50th, and 95th percentiles of
the impedance at a finite set of voltages ranging from 25V to 1000V; the first
two of these quantiles are reproduced in Table 1. Similar tables are available
for other current paths (e.g. left-hand-to-right-foot, or foot-to-foot) and for
contact made with wet or saltwater-wet skin.

A simple modelling approach ([11]) is to fit a lognormal distribution to
the given quantiles for each given voltage. This choice of distribution is
suggested by data ([6]); it also has the desirable feature that it guarantees
non-negativity. The lognormal distribution, which has two parameters, is fit
exactly to the given values for the 5th and 50th percentiles. The 95th per-
centile value is ignored as being of lesser interest for present purposes – it is
the individuals with low body impedance who will carry the highest currents
and so are most likely to perish from electric shock – although in fact it is re-
produced quite well by the fitted lognormal distributions. Fitted parameters
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Figure 1: Body impedance data (left) and a simple lognormal fit (right).

(mean and standard deviation of the log(impedance)) are recorded alongside
the data in Table 1.

To model the body impedance characteristics of individuals, we need a
further assumption regarding the correlation between impedances at different
voltages. The simplest thing is to posit a perfect correlation, i.e. that each
individual’s body impedance coincides with the same population quantile at
all voltages. So, for example, an individual whose body impedance at 25V
happens to match the population median will have a body impedance at
1000V matching the population median for that statistic also. The body
impedance functions of the human population are thus modelled as a one-
parameter family: any individual’s body impedance is completely specified,
as a function of voltage, by the population quantile with which the individual
coincides.

This simple lognormal model can be used to extrapolate to lower quantiles
of impedance, as shown in Figure 1 (right). Doing so reveals a main flaw in
this approach: for the most extreme quantiles, the impedance is no longer
a monotone function of voltage. This is unappealing because we expect on
physical grounds that the impedance characteristic of any individual will be
monotone decreasing in voltage; therefore, any quantile of the population
should be monotone decreasing also. It is readily apparent why the simple
lognormal model fails in this way: the impedance (or rather, its logarithm)
at low voltages has greater variance than at high voltages, and so there must
be some quantile at which the low-voltage impedance falls below the high-
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voltage impedance.
The physical basis for the voltage-dependence of the body impedance lies

in the behaviour of the skin, which presents a relatively large impedance to
low voltages, but breaks down for voltages on the order of a few hundred
volts. This points the way towards an improved model: the skin and the
subdermal tissue can be treated separately:

Zb(V ) = Zskin β(V ) + Zsubd. (1)

That is, the body impedance function of any individual is the sum of
two terms, representing skin and subdermal impedances in series. Only the
skin impedance is voltage-dependent. The body impedance functions of the
human population are thus modelled as a two-parameter family: each in-
dividual has their own values for the two parameters Zskin and Zsubd while
β(V ) is a fixed function common to all individuals. We assume that Zskin
and Zsubd, which we must now regard as random variables, are independent
and both lognormally distributed.

Note that the impedance curves of two different individuals may cross,
something not possible with the simple lognormal model. Note also that the
impedance function of any individual is guaranteed to be decreasing with
voltage (provided the function β is decreasing).

The model (1) is fitted to the given 5th and 50th percentile impedance
values at the tabulated voltages V1, . . . , Vn. In so doing, we actually have
fewer fitted parameters than the simpler model. Given tabulated quantiles
at the n voltages, the simple lognormal model fits 2n parameters: two for
each specified voltage. But (1) fits only n + 3 parameters: two each for the
distributions of Zskin and Zsubd, and n− 1 for the values of β(V2), . . . , β(Vn).
(Without loss of generality, we may take β(V1) = 1 for the smallest voltage
V1.) Given 2n tabulated percentiles (the 5th and 50th for each voltage) we
thus have an overdetermined system to solve, and must seek the best fit.

We take a likelihood approach to the fitting. Let the vector of param-
eters be θ. Suppose that θ determines a univariate cumulative distribution
function F (·; θ), and we have data indicating that the 5th percentile of this
distribution should be q5 and the 50th percentile q50. That is, F (q5; θ) = 0.05
and F (q50; θ) = 0.50, or as nearly so as can be managed. The log-likelihood
function corresponding to this condition is

θ 7→ 0.05 logF (q5; θ) + 0.45 log(F (q50; θ)− F (q5; θ)) + 0.5 log(1− F (q50; θ)).

Given a collection of conditions of this form, we determine the value of θ that
best fits them all by maximizing the sum of the corresponding log-likelihood
functions.
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Figure 2: The two-parameter model of body impedance: quantiles (left) and
50 randomly sampled individuals (right).

In the particular case of interest here, we have n = 13 different distribu-
tions F , corresponding to the different voltages. The parameter vector θ is
of size 16:

θ = (µskin, σskin, µsubd, σsubd, β2, . . . , βn)

where muskin, σskin are the mean and standard deviation of logZskin; simi-
larly µsubd, σsubd; and β2, . . . , βn are the values of β(V2), . . . , β(Vn).

In carrying out this nonlinear optimization, we have the difficulty that
for given θ, the distribution F (·; θ) is that of the sum of two independent
lognormally-distributed random variables, and so there is no closed-form ana-
lytical expression for F (q; θ). We overcome this problem in the following way.
First, draw large independent random samples (W skin

i )Ni=1 and (W subd
i )Ni=1

according to the standard normal distribution; we used N = 105. These
samples, once drawn, remain fixed throughout the fitting. Then for any θ,
(Zik)

N
i=1 defined by

Zik = exp
(
µskin + σskinW

skin
i

)
βk + exp

(
µsubd + σskinW

subd
i

)
is an independent random sample drawn according to the distribution of
body impedances at voltage Vk (k = 1, . . . , n) corresponding to θ. We use the
proportion of values in this sample that are less than q as an approximation
to F (q; θ).

Fitted values of the β(Vi) parameters are recorded alongside the data in
Table 1. The corresponding fitted distributional parameters for log(Zskin)



4 Modelling the human current tolerance 8

Figure 3: Human current tolerance.

are µskin = 7.84 and σskin = 0.62; those for log(Zsubd) are µsubd = 6.49 and
σsubd = 0.19. Figure 2 illustrates the model obtained. A good fit has been
achieved to the required 5th and 50th percentile values. The extrapolated
1st percentile and 0.1 percentile curves are monotone decreasing as expected,
and for high voltages are in good agreement with those extrapolated by the
simple lognormal model. (This, too, is as expected, since the skin term
becomes negligible at high voltages). The models differ most at around 200V.
Figure 2 (right) shows that it is not only possible, but quite common for the
impedance characteristics of different individuals to cross: one individual
may have relatively high-impedance skin and a low-impedance internal body,
while another has low-impedance skin and a high-impedance internal body.

4 Modelling the human current tolerance

In this section we turn our attention to modelling the ability of individuals to
tolerate current through the body without triggering ventricular fibrillation
and death. As with most published work in this area, we begin with the
diagram in Figure 3; see also [1] and (in earlier form) [5, 4]. Note that the
current tolerance depends on the duration of the exposure: short electric
shocks are less harmful than prolonged ones. Of interest are the three S-
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Figure 4: Spline curve fitted to the current-tolerance thresholds.

curves in Figure 3, which represent thresholds at which ventricular fibrillation
will occur in 5%, 50%, and 95% of exposed individuals.

We first attempt to standardize a numerical representation of these curves.
Two approaches were trialled: one a generalized logistic function fitted with
ceiling, floor and growth rate estimated by minimizing the root mean squared
error, the other a polynomial spline. Comparison of the residuals suggested
that the spline approach was favoured over the logistic estimate (and results
did not seem to vary much on a substantive basis when the number of steps
chosen for fitting the spline were increased from 13 to 113).

A univariate piecewise polynomial (pp) is specified by its break sequence
breaks and the coefficient array coefs of the local power form of its poly-
nomial pieces. The ppform of a polynomial spline of order k provides a de-
scription in the terms of the break points ψ1, ψ2, ψ3, ..., ψl + 1 and the local
polynomial coefficients Cji of its l pieces.

Pj(x) =
k∑
i=1

(x− ψj)k−iCji, j = 1 : l, (2)

We use a cubic spline: the order is k = 4. The break sequence is assumed
to be strictly increasing with l polynomial pieces that make up the ppform.
The resulting interpolation is depicted in Figure 4.

We define an individual’s current tolerance (also known as the threshold
of ventricular fibrillation) as the minimum current sufficient to cause ven-
tricular fibrillation. Since the current tolerance varies between individuals,
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it is necessary to fit a probability distribution for it. There is reasonable
evidence from animal experiments (see [7]) that a lognormal distribution has
the right shape, although it is not the only possibility. (See, e.g. [14], where a
three-parameter variant of the lognormal distribution is fitted, or [12], where
normal and log-triangular distributions are also considered.) We take the
straightforward approach of fitting a standard two-parameter lognormal dis-
tribution exactly to the required 5th and 50th percentiles of the distribution,
these values being obtained from the spline interpolation above. It is then
possible to directly calculate the probability of fibrillation for a given current
and exposure time.

5 Solving the shock circuit

In this section we consider the shock circuit comprising a voltage source
connected across two impedances in series, one of which is a human body.
The other impedance – which may represent footwear, gloves, soil, paving
material, etc. – is assumed (as with the body impedance) to be purely
resistive, and to have a fixed value Zs. The source voltage (also known as
the prospective touch voltage) will be denoted Vs.

As discussed in Section 3, the impedance of the human body is voltage-
dependent; we denote it Zb(V ) at voltage V , and define this quantity for all
voltages V by linear interpolation between the tabulated voltages V1, . . . , Vn.
For completeness, we define Zb(V ) = Zb(V1) for 0 ≤ V < V1 and Zb(V ) =
Zb(Vn) for V > Vn. (The first of these approximations has poor accuracy,
but this is not a concern as the very lowest voltages, and highest impedances,
are not hazardous in any case.)

The voltage across the body (known as the touch voltage) Vt then satisfies

Vt =
Zb(Vt)

Zs + Zb(Vt)
Vs (3)

or equivalently

Zb(Vt) −
ZsVt
Vs − Vt

= 0. (4)

Provided Zb is a decreasing function, it is clear that there exists a unique
solution to (4) with 0 < Vt < Vs, since the left-hand-side of (4) is a strictly
decreasing continuous function of Vt on that interval which takes positive
values as Vt → 0 and negative values as Vt → Vs.

It was noted in Section 3 that the simple lognormal model may have some
quantiles which are not decreasing functions of the voltage; this raises the
mathematical possibility of multiple solutions to (4). Such cases, however,
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are found to exist only for very extreme quantiles corresponding to a fraction
circa 10−20 (or less) of the population, and we will not consider them further.

Equation (3) could be solved by fixed-point iteration on the function
f(v) = VsZb(v)/(Zs+Zb(v)) (see [11]). That is, a sequence (vk)

∞
k=0 is defined

by letting v0 = Vs and vk = f(vk−1) for k = 1, 2, . . .; it is then observed
experimentally that in cases of practical interest, this sequence always seems
to converge to the solution of the equation. However, fixed-point iteration is
well-known to be a method that works in some situations but not in others,
and in some (relatively rare) cases this approach to solving (3) may fail.

Example. Let Zs =10kΩ and Vs =3200V, and let the exposed individual
have a body impedance coinciding with the 98th percentile of the population
according to the simple lognormal model given in Section 3. According to
this model, the body impedances are 2170Ω, 1391Ω, and 1248Ω at 225V,
400V, and 500V respectively. Solving (3) reveals the touch voltage to be
Vt =395.59V, with the corresponding body impedance being 1410.6Ω and
body current 280mA. However, if the above fixed-point iteration is initiated
from 395V (or any close approximation of the solution) it will not converge
to the correct value, but will eventually alternate between values 390.26V
and 401.4V, which constitute a 2-cycle for f .

In general, a necessary condition for the successful convergence of the
fixed-point iteration is |f ′(Vt)| ≤ 1 (see, for example, [8] or [13]). We have

f ′(v) =
VsZsZ

′
b(v)

(Zs + Zb(v))2

which for the above numerical example gives f ′(Vt) ≈ −1.09.
An alternative and more reliable method of solving (3) is a simple bisec-

tion search for the touch voltage Vt satisfying (4); this method is used for
calculations for the present paper.

6 The probability of ventricular fibrillation

A key modelling assumption is that the body impedance curve and the cur-
rent tolerance are statistically independent. This assumption seems to be
made everywhere (e.g. [2]) where both variables are considered, although it
is far from clear that it is justified. For example, some association is found
between an animal’s body weight and its current tolerance ([10]); it is easily
imaginable that an individual’s body weight or size will also affect the body
impedance.

Suppose, however, that the body impedance curve and the current toler-
ance are independent random quantities. On this assumption, it is in prin-
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ciple straightforward to calculate the probability of ventricular fibrillation
resulting from a given shock. Denote by I the corresponding (random) body
current: this depends only on the body impedance curve. Adopt a lognormal
model for the current tolerance as suggested in Section 4, with log(current
tolerance) having mean µf and standard deviation σf . Then the fibrillation
probability for given I is

P (fibrillation | I) = Φ

(
log I − µf

σf

)
,

where Φ denotes the standard normal cumulative distribution function. The
unconditional fibrillation probability is

P (fibrillation) = E [P (fibrillation | I)] = E

[
Φ

(
log I − µf

σf

)]
. (5)

Since I is a function of the body impedance curve only, we have an expecta-
tion of a function of this random curve.

For the simple lognormal model of body impedance, a random individ-
ual’s body impedance curve is drawn from a one-parameter family: the sole
parameter p (with 0 < p < 1) specifies that the body impedance curve of
the individual in question matches the population’s p-quantile curve. The
resulting current in the shock circuit is then a function of p; if we denote it
g1(p) then 5 becomes

P (fibrillation) =

∫ 1

0

Φ

(
log g1(p)− µf

σf

)
dp. (6)

That is, the required probability is obtained as a univariate integral. Even
though the integrand is somewhat complicated – to evaluate it for a single
value of p requires solving the shock circuit as described in Section 5 – it is
a simple matter to numerically evaluate such an integral ([11]).

For our two-parameter model of body impedance, a random individ-
ual’s body impedance curve is given by (1); the parameters Zskin and Zsubd
appearing there are independent lognormally-distributed random variables.
The resulting current is a function of these two parameters only: I =
g2(Zskin, Zsubd). Hence

P (fibrillation) = E

[
Φ

(
log g2(Zskin, Zsubd)− µf

σf

)]
or equivalently

P (fibrillation) = E

[
Φ

(
log g2(e

µskin+σskinW1 , eµsubd+σsubdW2)− µf
σf

)]
,
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where W1, W2 are independent standard normal random variables. It would
be possible to express this expectation as a double integral, analogously to
(6), but we do not pursue that approach here. Instead, we content ourselves
with simple Monte Carlo simulations to evaluate the fibrillation probabilities.

Example. A given item of equipment produces shocks by fault-contact
coincidences at rate λs = 0.01 per annum – that is, the shocks are 1-in-
100 year events. All the shocks are assumed to have duration 500ms and
protective series impedance Zs = 1kΩ. What is the maximum prospective
touch voltage consistent with a fatality rate of 10−6 per annum?

The given rates imply that the fibrillation probability must be Pfib =
10−4. Figure 3 indicates that for shocks of this duration, the current toler-
ance is 200mA at the population median and half of this value at the 5th
percentile; a lognormal model of current tolerance thus has mean (log cur-
rent) equal to µf = log(200) and standard deviation (log current) equal to
σf = log(0.5)/Φ−1(0.05) = 0.421. Using Monte Carlo samples of n = 105

body impedance curves suggests that the required prospective touch volt-
age may be taken to be 110V; for this value of Vs, the estimated Pfib is
(93.1± 1.3)× 10−6 for the simple lognormal model of body impedance, and
(96.3± 1.2)× 10−6 for the two-parameter model.

7 Conclusion

As in earlier work, this paper has decomposed the fibrillation-probability
problem into two parts: individuals are assumed to vary both in their cur-
rent tolerance and their body impedance characteristic. This decomposition
reduces the problem to one of calculating a bivariate expectation. Body
impedance is the more complicated variable, and for this we have devised a
new two-parameter model that may be more realistic than the simpler model
previously used.

We have also followed the approach of explicitly allowing for a series
impedance in the circuit ([11]). We have discovered that the resulting cir-
cuit is not always solved correctly by fixed-point iteration, and proposed an
alternative.

One aspect of the problem not addressed in the present paper is the nature
of the series impedance discussed in Section 5. The Argon software ([3])
models this impedance explicitly in terms of types of footwear and paving
surfaces. (For shocks other than via the feet, no series impedance appears
to be allowed for.) The reduction of the geometry and materials of a given
situation to a single series impedance value requires separate models beyond
those we have considered.
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