Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author’s permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form and Deposit Licence.
THE USE OF LOW MOLECULAR WEIGHT PROTEINS IN THE DIAGNOSIS OF
RENAL TUBULAR DYSFUNCTION IN CHILDREN

PAUL ANDREW TOMLINSON

thesis submitted to the University of Auckland for the degree of Doctor of Medicine

February 1995
Abstract

Low molecular weight (LMW) proteins pass easily through the glomerular filter and are almost completely reabsorbed by the proximal renal tubule in health. An increase in their urinary excretion implies failure of reabsorption and may signal tubular dysfunction. \(\beta_2 \)-microglobulin (B2M) is a sensitive marker of tubular dysfunction, but is unstable in acid urine, whilst only limited data are available for other LMW proteins.

The aim of these studies was to determine the prevalence of elevated LMW protein excretion in children with renal disease and to identify factors influencing LMW protein excretion. Secondly, these studies sought to determine conditions where individual proteins might best indicate tubular dysfunction.

Enzyme-linked immunosorbent assays were used to measure B2M, \(\alpha_1 \)-microglobulin (A1M) and urine protein 1 (UP1) in plasma and urine, and retinol-binding protein (RBP) in urine. Albumin, the lysosomal enzyme N-acetyl-\(\beta \)-D-glucosaminidase (NAG), creatinine and pH were also measured in urine. Each protein excretion was expressed as a ratio to creatinine concentration.

B2M showed instability in urine with pH below 6.0, RBP was unstable in urine below pH 5.0 following frozen storage whilst A1M and UP1 were stable at physiological pH. Two groups of apparently healthy children were studied, and normal ranges were established for protein excretion in random and overnight samples. A comparison of B2M, A1M, UP1, RBP and NAG excretion was undertaken in tubular disease and in glomerular disease.
AIM, UP1 and NAG were correlated with increasing albumin excretion in steroid-sensitive nephrotic syndrome, in contrast to B2M and RBP. Compared with AIM, UP1 and NAG, RBP was more closely associated with tubulo-interstitial involvement histologically.

There was abnormal RBP excretion in reflux nephropathy, with levels increasing according to the degree of scarring. Increased RBP excretion was also seen in cystic disease, neurogenic bladder, allograft rejection and chronic glomerular disease. RBP excretion was inversely correlated with glomerular filtration rate in reflux nephropathy and in glomerular disease. RBP excretion was increased in diabetic children and was correlated with albumin excretion and with metabolic control.

LMW protein excretion is common in children with renal problems, and may be a marker of disease severity. RBP is the most suitable marker of tubular dysfunction.
Table of Contents

Review of the Literature

1. Historical Background
 1.1 The Origin of Proteinuria
 1.2 Tubular Proteinuria

2. The Renal Handling of Serum Proteins
 2.1 Glomerular Permeability
 2.1.1 Glomerular Filtration Rate
 2.2 Tubular Reabsorption
 2.2.1 Tubuloglomerular Feedback
 2.3 Renal Catabolism

3. The Proteins in Urine
 3.1 Low Molecular Weight Proteins
 3.1.1 β2-Microglobulin
 3.1.2 Retinol-Binding Protein
 3.1.3 α1-Microglobulin
 3.1.4 Lysozyme
 3.1.5 Ribonuclease
 3.1.6 Urine Protein 1
 3.1.7 Other LMW Proteins
 3.2 High Molecular Weight Proteins
 3.2.1 Albumin
 3.2.2 Other Proteins
 3.3 Urine Enzymes
 3.3.1 N-Acetyl-β-D-Glucosaminidase
 3.3.2 Other Lysosomal Enzymes
 3.3.3 Brush Border Enzymes
 3.4 Proximal Tubular Antigens
 3.5 Urinary Mucoproteins

4. Analytical Methods
 4.1 Urine Electrophoresis
 4.2 Radial Immunodiffusion
 4.3 Turbidimetry
 4.4 Latex Immunoassay
4.5 Radioimmunoassay

4.6 Enzyme-Linked Immunosorbent Assay

5. Normal Values

5.1 Serum or Plasma

5.1.1 β2-Microglobulin
5.1.2 Retinol-Binding Protein
5.1.3 α1-Microglobulin
5.1.4 Urine Protein 1

5.2 Urine

5.2.1 β2-Microglobulin
5.2.2 Retinol-Binding Protein
5.2.3 α1-Microglobulin
5.2.4 Urine Protein 1
5.2.5 Albumin
5.2.6 N-Acetyl-β-D-Glucosaminidase

6. Comparison Between Proteins

6.1 Glomerular Sieving Coefficients
6.2 Tubular Reabsorption
6.3 Reabsorption Threshold
6.4 Relationship with GFR
6.5 Stability in Acid Urine
6.6 Stability following Diuresis
6.7 Diurnal Variation, Posture and Exercise

7. Clinical Applications

7.1 Tubular and Miscellaneous Disorders
7.2 Glomerular Disorders

7.2.1 Nephrotic Syndrome
7.2.2 Glomerulonephritis

7.3 Vesicoureteric Reflux
7.4 Perinatal Applications
7.5 Insulin-Dependent Diabetes Mellitus
7.6 Renal Transplantation
Aims and Methods

Aims of this Study

8. Clinical Methods

9. Laboratory Methods

9.1 Enzyme-Linked Immunosorbent Assay

9.1.1 Materials
9.1.2 Procedure
9.1.3 Individual Protein Assays
 9.1.3.1 Retinol-binding protein assay
 9.1.3.2 β2-microglobulin assay
 9.1.3.3 Albumin assay
 9.1.3.4 α1-Microglobulin assay
 9.1.3.5 Urine Protein 1 assay

9.1.4 Assay Evaluation
 9.1.4.1 Detection limit
 9.1.4.2 Coefficient of variation
 9.1.4.3 Recovery
 9.1.4.4 Assay linearity
 9.1.4.5 Cross-reactivity

9.2 N-Acetyl-β-D-Glucosaminidase Assay

9.2.1 Materials
9.2.2 Procedure
9.2.3 Quality Control

9.3 Other Laboratory Methods

9.3.1 Creatinine
 9.3.1.1 Expression of results

9.3.2 Urine pH
9.3.3 Glomerular Filtration Rate

Studies of Low Molecular Weight Protein Excretion in Children with Renal Disease

10. Childhood Reference Ranges for Four Low Molecular Weight Proteins, N-Acetyl-β-D-Glucosaminidase and Albumin in Urine

10.1 Introduction
10.2 Methods
10.3 Results
10.4 Discussion
11. A Study of the Stability of Four Low Molecular Weight Proteins in Urine 145

11.1 Introduction 146

11.2 Methods 147

11.2.1 Volunteer Studies 147
11.2.2 Clinical Samples 148

11.3 Results 149

11.3.1 Volunteer Studies
11.3.1.1 \(\beta_2 \)-microglobulin 149
11.3.1.2 Retinol-binding protein 150
11.3.1.3 \(\alpha_1 \)-Microglobulin 150
11.3.1.4 Urine protein 1 150

11.3.2 Clinical Samples 151

11.4 Discussion 159

12. A Study of Low Molecular Weight Protein Excretion in Children with Renal Tubular Disorders 164

12.1 Introduction 165

12.2 Methods 166

12.3 Case Reports 167

12.4 Results 170

12.5 Discussion 178

13. A Comparative Study of Low Molecular Weight Protein and N-Acetyl-\(\beta \)-D-Glucosaminidase Excretion in Glomerular Disorders of Childhood 183

13.1 Introduction 184

13.2 Methods 185

13.3 Results 186

13.3.1 Steroid-Sensitive Nephrotic Syndrome 186
13.3.2 Other Nephrotic Syndromes 189
13.3.3 Acute Post-Infectious Glomerulonephritis 190
13.3.4 Other Nephritic Syndromes 190
13.3.5 Relationship with GFR 191
13.3.6 Biopsy Results 192
13.3.7 Relationships between Proteins 193

13.4 Discussion 210

14.1 Introduction
14.2 Methods
14.3 Results
 14.3.1 Study Population
 14.3.2 Effect of Scar Type
 14.3.3 Relationship to DMSA Findings
 14.3.4 Effect of Urinary Tract Infection
 14.3.5 Influence of Vescicoureteric Reflux
 14.3.6 Effect of Age and Sex
 14.3.7 Relationship to Glomerular Filtration Rate
14.4 Discussion

15. A Study of Protein Excretion in Children with Miscellaneous Renal Disease

15.1 Introduction
15.2 Methods
15.3 Results
15.4 Discussion

16. A Study of Tubular Proteinuria and Microalbuminuria in Children with Insulin-Dependent Diabetes Mellitus

16.1 Introduction
16.2 Methods
16.3 Results
16.4 Discussion

17. A Study of Retinol-Binding Protein and N-Acetyl-β-D-Glucosaminidase Excretion in Children following Renal Transplantation

17.1 Introduction
17.2 Methods
17.3 Results
17.4 Discussion
Conclusions

18.1 Choice of Low Molecular Weight Protein

18.1.1 β2-Microglobulin 283
18.1.2 Retinol-Binding Protein 284
18.1.3 α1-Microglobulin 286
18.1.4 Urine Protein 1 287
18.1.5 N-Acetyl-β-D-Glucosaminidase 288

18.2 Scope and Significance of Low Molecular Weight Protein Excretion 289

18.3 Relationship with Albumin Excretion 292

18.4 Relationship with Glomerular Filtration Rate 293

References 295

Appendix A 330

Urine Protein Excretion Values in Glomerular Disorders 330

Appendix B 334

List of Publications 334
List of Figures

Figure 9.1. Composite standard curve for RBP ELISA displaying mean (SD) absorbance for ten consecutive assays 122
Figure 9.2. Composite standard curve for B2M ELISA displaying mean (SD) absorbance for ten consecutive assays 123
Figure 9.3. Composite standard curve for albumin ELISA displaying mean (SD) absorbance for ten consecutive assays 124
Figure 9.4. Composite standard curve for A1M ELISA displaying mean (SD) absorbance for ten consecutive assays 125
Figure 9.5. Composite standard curve for UP1 ELISA displaying mean (SD) absorbance for ten consecutive assays 126
Figure 10.1. Normal probability plot of log-transformed protein to creatinine ratio for RBP, B2M, A1M and UP1 in children 137
Figure 10.2. Normal probability plot of log-transformed protein to creatinine ratio for albumin and NAG in children 138
Figure 11.1. Mean B2M concentration at measured urine pH in adult volunteers 153
Figure 11.2. Mean RBP concentration at measured urine pH in adult volunteers 154
Figure 11.3. Mean A1M concentration at measured urine pH in adult volunteers 155
Figure 11.4. Mean UP1 concentration at measured urine pH in adult volunteers 156
Figure 11.5. Mean percentage recovery of B2M, RBP, A1M and UP1 by initial urine pH after 3 months frozen storage 157
Figure 11.6. Scattergraph of the percentage unaltered to alkaninised B2M concentration according to urine pH 158
Figure 12.1a. Photomicrograph of the renal biopsy specimen in Dent's disease (x63) 175
Figure 12.1b. Photomicrograph of the renal biopsy specimen in Dent's disease (x256) 176
Figure 12.2. Relationship of RBP excretion and albumin excretion to GFR in tubular disease 177
Figure 13.1. Relationship between RBP excretion and albumin excretion for children with SSNS 199
Figure 13.2. Relationship between A1M excretion and albumin excretion for children with SSNS 200
Figure 13.3. Relationship between B2M excretion and albumin excretion for children with SSNS

Figure 13.4. Relationship between UP1 excretion and albumin excretion for children with SSNS

Figure 13.5. Relationship between NAG excretion and albumin excretion for children with SSNS

Figure 13.6. Serial RBP, A1M, UP1 and albumin excretion in a girl with post-infectious glomerulonephritis

Figure 13.7. The relationship between RBP excretion and GFR in children with glomerular disorders

Figure 13.8. The relationship between A1M excretion and GFR in children with glomerular disorders

Figure 13.9. The relationship between B2M excretion and GFR in children with glomerular disorders

Figure 13.10. Urine RBP excretion according to grade of interstitial scarring in renal biopsy specimens

Figure 13.11. The relationship between urine RBP excretion and percentage fractional B2M excretion in glomerular disease

Figure 14.1. Mean (standard error) NAG excretion according to the type of scarring in each kidney

Figure 14.2. Mean (standard error) albumin excretion according to the type of scarring in each kidney

Figure 14.3. Mean (standard error) RBP excretion according to the type of scarring in each kidney

Figure 14.4. Mean (standard error) RBP excretion according to the type of scarring in the less affected kidney

Figure 14.5. Mean (standard error) albumin excretion according to the type of scarring in the less affected kidney

Figure 14.6. The relationship between RBP excretion and GFR in 79 children with renal scarring

Figure 14.7. The relationship between albumin excretion and GFR in 79 children with renal scarring

Figure 16.1. The relationship of RBP excretion to albumin excretion in children with diabetes

Figure 16.2. The relationship of NAG excretion to albumin excretion in children with diabetes

Figure 16.3. Scatterplot of RBP excretion versus HbA1c showing the regression line
Figure 16.4. Scatterplot of NAG excretion versus HbA1c showing the regression line

Figure 17.1. Mean (SD) RBP excretion according to day post transplant in children with rejection or cyclosporin toxicity

Figure 17.2. Mean (SD) NAG excretion according to day post transplant in children with rejection or cyclosporin toxicity

Figure 17.3. Serial RBP excretion and plasma creatinine concentration in a girl with two episodes of rejection
List of Tables

Table 5.1. A comparison of published normal values for B2M excretion in urine

Table 5.2. A comparison of published normal values for RBP excretion in urine

Table 5.3. A comparison of published normal values for A1M excretion in urine

Table 5.4. A comparison of published normal values for albumin excretion in urine

Table 5.5. A comparison of published normal values for NAG excretion in urine

Table 7.1. Incidence of abnormal albumin excretion in diabetic children and adolescents

Table 9.1. Common buffers for every ELISA

Table 9.2. Spreadsheet template for derivation of standard curve and calculation of sample concentrations

Table 9.3. Assay buffers for each ELISA

Table 9.4. Detection limits for each ELISA

Table 9.5. ELISA Intra-assay coefficients of variation

Table 9.6. ELISA Inter-assay coefficients of variation

Table 9.7. Percentage recovery for each ELISA

Table 9.8. Protein concentrations following doubling dilutions of a single sample for each ELISA

Table 10.1. Summary statistics of urine protein excretion for 43 apparently healthy children

Table 10.2. Geometric mean protein/creatinine ratios by age and sex

Table 10.3. Normal mean and standard deviation plasma concentrations for B2M, A1M and UP1 in 23 children

Table 10.4. Normal percentage fractional protein excretion for B2M, A1M and UP1 in 23 children

Table 10.5. Normal mean, standard deviation, geometric mean and range of overnight protein to creatinine ratio

Table 11.1. Geometric mean percentage ratio of unaltered to alkalinised B2M concentration in normal and pathological urine samples
Table 12.1. Analysis of urine protein excretion in case 2 (Dent's disease) on presentation and on re-evaluation after three years

Table 12.2. Urine protein excretion values for children with various renal tubular disorders

Table 13.1. Geometric mean, minimum, and maximum protein excretion and number of abnormal values in nephrotic conditions

Table 13.2. Geometric mean plasma concentration and geometric mean and maximum fractional protein excretion in children with SSNS

Table 13.3. Geometric mean and maximum protein excretion and number of abnormal values in certain nephritic conditions

Table 13.4. Geometric mean protein excretion according to degree of interstitial scarring on biopsy

Table 14.1. Geometric mean (range) RBP, albumin and NAG excretion in children with infection, VUR, and renal scarring

Table 14.2. Geometric mean RBP, albumin and NAG excretion according to the number of documented urinary tract infections in unscarred and scarred kidneys

Table 14.3. Geometric mean protein excretion according to the known presence or absence of VUR at the time of urine sampling

Table 15.1. Geometric mean protein concentrations for obstructive lesions, cystic diseases, urolithiasis and single kidneys

Table 16.1. Geometric mean (range) protein excretion from two consecutive overnight samples in normal and diabetic children

Table 16.2. Correlation coefficients for age, duration of diabetes, glycosylated haemoglobin and GFR versus protein excretion

Table 17.1. Causes of renal dysfunction in the children with transplanted kidneys

Table 17.2. Urine protein excretion at the time of the nadir in plasma creatinine for each transplanted child

Table A.1. Protein excretion values for children with steroid-sensitive nephrotic syndrome

Table A.2. Protein excretion values for children with other nephrotic disorders

Table A.3. Protein excretion values for children with acute post-infectious glomerulonephritis
Table A.4. Protein excretion values for children with other nephritic disorders
The following abbreviations have been used within this thesis
(standard biochemical symbols and abbreviations have not been
included):

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>α₁-microglobulin</td>
</tr>
<tr>
<td>B2M</td>
<td>β₂-microglobulin</td>
</tr>
<tr>
<td>Cr-EDTA</td>
<td>⁵¹chromium edetic acid</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CyA</td>
<td>Cyclosporin A</td>
</tr>
<tr>
<td>Da</td>
<td>Daltons</td>
</tr>
<tr>
<td>DMSA</td>
<td>⁹⁹ᵐtéchneetium dimercaptosuccinic acid</td>
</tr>
<tr>
<td>DTPA</td>
<td>⁹⁹ᵐtéchneetium diaminotetraethylpentacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FE</td>
<td>Fractional excretion</td>
</tr>
<tr>
<td>FSGS</td>
<td>Focal and segmental glomerulosclerosis</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>GSC</td>
<td>Glomerular sieving coefficient</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leucocyte antigen</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse-radish peroxidase</td>
</tr>
<tr>
<td>HSP</td>
<td>Henoch-Schonlein purpura</td>
</tr>
<tr>
<td>IgA</td>
<td>Immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>LMW</td>
<td>Low molecular weight</td>
</tr>
<tr>
<td>Max</td>
<td>Maximum</td>
</tr>
<tr>
<td>MCGN</td>
<td>Mesangio-capillary glomerulonephritis</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>NAG</td>
<td>N-acetyl-β-D-glucosaminidase</td>
</tr>
<tr>
<td>OPD</td>
<td>o-phenylene diamine</td>
</tr>
<tr>
<td>Pcreat</td>
<td>Plasma creatinine concentration</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PNP</td>
<td>Para nitro phenol</td>
</tr>
<tr>
<td>RBP</td>
<td>Retinol-binding protein</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>RID</td>
<td>Radial immunodiffusion</td>
</tr>
<tr>
<td>RN</td>
<td>Reflux nephropathy</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SSNS</td>
<td>Steroid-sensitive nephrotic syndrome</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UP1</td>
<td>Urine protein 1</td>
</tr>
<tr>
<td>VUR</td>
<td>Vesicoureteric reflux</td>
</tr>
</tbody>
</table>
The studies outlined in this thesis are the result of work undertaken as a Research Fellow within the department of paediatric nephrology at Guy's hospital, London, UK. I developed the laboratory assays for measurement of low molecular weight proteins and performed the majority of the assays myself, assisted at times by my laboratory colleagues. In addition, I undertook much of the specimen collection at Guy's hospital, and collected the clinical data. The data collation and analysis are the result of my endeavour.

I gratefully acknowledge below the contribution of the many people who have assisted me with this work.

Dr Diana Gibb provided urine samples from diabetic subjects and from healthy schoolchildren. Dr Godfrey Clark arranged for the collection and storage of plasma and urine samples from renal transplant recipients. Dr William van't Hoff collected plasma and urine samples on my behalf from some of the patients with cystinosis. Dr Jean Smellie and her assistant Nina Prescod collected many of the urine samples from children with urinary tract infection or vesicoureteric reflux. Professor Cyril Chantler, Professor George Haycock and Dr Sue Rigden kindly allowed me access to their patients for the purposes of these studies. The outpatient nurses in the children's renal unit and the nursing and junior medical staff from Dickens ward helped with specimen collection also.

The laboratory work was undertaken in the Children Nationwide Kidney Research Laboratory at Guy's hospital. I am grateful to Dr Neil Dalton and Mr Charles Turner for their constant help and encouragement with the development of laboratory assays and for assistance with laboratory techniques. Charles Turner was responsible for my introduction to the Personal Computer, which was to become an invaluable aid to data collection, analysis and subsequent preparation of manuscripts, and for an introduction to statistical analysis. I am especially grateful to Neil Dalton for his constant support, sharing of ideas and willingness to criticise these studies at all stages of development. My thanks extend to Ms Jeannette Gorst from Dako Limited, High Wycombe, UK who provided advice and samples of antibodies for use in the assays described herein.

The clinical data were obtained through the medical records department at Guy's hospital by chart review. In addition, Dr Diana Gibb provided the clinical data for the study on diabetes. Clinical data for the study of children with vesicoureteric reflux were also provided by Dr Jean Smellie and her research assistant Nina Prescod. Dr Smellie reviewed the imaging material and performed the scar typing on all intravenous urography studies.

There were many other staff at Guy's hospital who have assisted me at times with this work, including the radiology department staff, the medical illustration department, the Will's library, the nuclear medicine department and the clinical chemistry laboratory. Professor Stewart Cameron and Dr Geoff Frampton allowed me access to the ELISA plate-reader in the Clinical
Sciences laboratory. Dr Barry Hartley, Consultant Pathologist, assisted me with the interpretation of renal biopsy material.

Dr Elizabeth Wells from the Christchurch School of Medicine advised me on statistical matters relating to reflux nephropathy. Francis Harrington, librarian for Southern Health, helped me to obtain references, often from foreign journals at short notice. Dr Kate Bayston has assisted in proof-reading this manuscript.

Finally, I wish to record my special thanks to my supervisor, Professor Cyril Chantler, who arranged for the funding through the Special Trustees of Guy’s hospital that enabled me to undertake this work, and who provided me with the initial idea of studying low molecular weight protein excretion in children.

A portion of the chapter involving children with diabetes is also included in the MD thesis of Dr Gibb, submitted to the University of London.
I dedicate this thesis to my wife Kate, who has constantly encouraged me to continue with this project, and to my children Christopher, Hamish and Sarah who have displayed patience and understanding beyond their years.