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ABSTRACT 

 

Growing popularity of OSS has attracted millions of developers to social coding platforms such as 

GitHub.com. However, it appears that OSS software is becoming a victim of its own success because 

finding the right project, among millions of projects hosted on social coding platforms, is a gruelling 

task for developers. Lack of mismatch among developers and projects has resulted in high developer 

turnover and project failures. In this context, the evolving nature of developers’ preferences and 

projects’ goals, complicates matching of developers and projects.  

This paper proposes a new artefact based on collaborative filtering (CF) recommendation 

technique to recommend OSS projects to developers. The dynamic nature of projects’ evolution and 

the developers preferences makes this a very different problem than, say, recommending products to 

consumers. Our proposed method uses developers’ socio-technical activities to capture their evolving 

preferences and project goals, and creates an implicit personalized project rating/ranking for 

developers. A multi-criteria decision-making technique is used to generate an overall rating based 

on developers’ different types of activities. The proposed artefact has been evaluated with the real-

world data from GitHub. Our results show that developers who join projects that we recommend, are 

among the top contributors on these recommended projects, and vice versa for the developers who 

join projects that we don’t recommend. The comparison of proposed method with other state of the 

art collaborative filtering approaches shows promising results.  
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INTODUCTION 

Compared to its proprietary counterpart, Open Source Software (OSS) and applications are 

innovative, easier to use and have lower development cost (Paulson et al. 2004). Due to these 

qualities, OSS paradigm has gained tremendous popularity in recent years, even among traditional 

software companies such as Apple (Apple.com, 2015). Software firms who perceived OSS as a threat, 

have now changed their business model and started partnering with, and sponsoring OSS projects. 

Currently a large number of popular OSS projects are owned and sponsored by companies such as 

Facebook, Twitter, Uber, etc. This popularity growth and business interest has attracted scores of 

software developers to OSS ecosystem who wish to join and contribute to OSS projects hosted on 

social coding platforms such as GitHub.com, SourceForge.net, and Bitbucket.org. However, therein 

lies a challenge for the developers- how to find the right project to make contribution among millions 

of projects hosted on these social coding platforms?  

Since OSS projects are a result of volunteer contributions, developers collaborate on these projects 

on their own terms. Therefore, social coding platforms, facilitate developers’ collaborative 

preferences (preferences, hereafter) to maximize developers’ ‘collaborative utility’ (Blincoe, et al., 

2016). Note that, developers’ preferences (patterns) are observable from developers’ socio-technical 

activities stored in OSS repositories. These patterns are diverse, representing diversity in developers’ 

preferences and global nature of OSS teams (Dabbish, et. al., 2012). Since harmonious collaboration 

among team members are critical for success and productivity of OSS projects, we contend that 

considering developers’ preferences are critical in matching them with OSS projects for long-term 

success of OSS ecosystem. OSS literature has argued that developers’ collaborative network (captures 

with whom they collaborate) drive their project selection (Hann, et al., 2008). We add to this literature 

and argue that developers’ preferences (captures how they collaborate) are also critical in their project 

selection.  
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GitHub one of the large social coding platforms, aims to act as a clearinghouse between OSS projects 

and developers, and facilitates a feature called Explore GitHub.  However, Explore GitHub just allows 

searching for trending projects and is not a recommendation agent that can match developers and 

projects. We argue that the sheer size of these platforms makes is very difficult for both projects and 

developers to find a good match. As of 2019, GitHub has more than 50 million developers and 100 

millions of projects. Figure 1 shows a few samples posts from a prominent online community forum 

Stackoverflow, highlighting how developers appeal for help to find appropriate projects and project 

owners look for OSS contributors.  

 

Figure1. Evidence from StackOverflow.com: Left panel: Developers seeking OSS projects; Right panel:  OSS projects 

looking for contributors.   

Since open source software powers large and small corporations alike, it plays a significant role in 

economic growth and therefore developers’ sustained associations and contributions to these projects 

are very critical for their long-term success. Current state of art approaches recommend project 

Supply  Demand  
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selection based on project popularity (Jarczyk et al. 2014), license type (van Osch et al. 2011) and 

previous ties (Hahn et al. 2008; Jarczyk et al. 2014; van Osch et al. 2011) but are limited in many 

ways. For example, popular projects may attract more contributors (Fronchetti et al. 2019; Nielek et 

al. 2016), however, high turnover of OSS developers confirms that developers should evaluate 

projects with various metrics and not only the reputation (Bayati 2018). Developers joining projects 

based on prior ties (Hahn et al. 2008) is inefficient because it doesn’t account for evolving nature of 

developers’ preferences and project goals, and approach is not scalable for millions of developers and 

projects hosted on social coding platforms. Overall, these filtering mechanism aren’t effective in OSS 

ecosystem due to its size and dynamic nature, resulting into low retention rates of developers 

(Schilling et al. 2012b). Recent studies confirm that a large number of developers leave OSS projects 

due to inappropriate project selection (Steinmacher et al. 2015) leading to project failure (Schilling 

2012).  

Scholars argue that a recommender system to recommend projects to developers is critical for long-

term sustainability of OSS projects and communities (Jiang et al. 2016). Recommender systems are 

software applications that predict user preferences based on different approaches, such as 

Collaborative filtering (CF), content-based recommendation, knowledge base and hybrid systems 

(Ricci et al. 2011). Mining software repositories (MSR) techniques have been used to design 

recommender systems for software engineering (RSSE), but these are mainly focused on supporting 

software developers/practitioners and project managers in a variety of tasks such as Bug triaging, 

finding experts (Anvik et al. 2006; Anvik and Murphy 2011; Badashian et al. 2015; Naguib et al. 

2013; Shokripour et al. 2013), source code suggestion (Holmes and Murphy 2005), etc. in the 

software development life cycle (SDLC) (Robillard et al. 2010), partly because recommending 

projects to developers is not trivial, as we discuss next. 

Recommending OSS projects to developers is different from recommending products to consumers 

in online markets due to following challenges. First, OSS projects are not static, like other products, 

and evolve over time (Schafer et al. 1999; Wang et al. 2015). For example, OSS projects’ content, 
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associated developers, goals, organization, requirements, structure and governing policies change 

over time and influence developers’ preferences. Second, developers themselves are different from 

online consumers. Over time developers’ knowledge and skills change based on their contribution 

and engagement with OSS ecosystem, thereby changing their preferences. Developers’ preferences 

also change with their experience. For example, experienced and skilled developers deserve and 

desire higher roles in projects (Robillard et al. 2014). Third, developers’ rating for OSS projects are 

needed to design a collaborative filtering (CF) based recommender system. However, there is no 

mechanism on GitHub, or other social coding platforms to capture developers’ ranking for OSS 

projects. Although, developers’ watch list of projects can be used to construct their project rankings, 

but it’d not be helpful because- a) measurement is binary (1 if a project is on the watch list) and not 

ranked, b) watching doesn’t signal developers’ intent to contribute and c) developers’ interests in 

OSS projects are temporal and dynamic, therefore, explicit rating would not be useful. In this 

research, we address all these three issues by developing a personalized project rankings for 

developers, which are used in a recommender system to recommend projects to developers.  

Since there is no rating mechanism on GitHub to capture developers’ interests in OSS projects, this 

study aims to design a new personalized project rating mechanism for developers. Using developers’ 

socio-technical activities in OSS projects, openly available on GitHub, we employ implicit feedback 

(Kelly and Teevan 2003) approach to compute personalized project ratings. While many studies have 

used/developed implicit ratings in absence of explicit ratings from the users(Choi et al. 2012; Lee et 

al. 2010), however, none of them are comparable to our context where both developers’ preferences 

and projects’ goals are changing over time.  

Developers are heterogeneous in their project selection and motivation for contribution. Scholars 

argue that multiple criterion such as socialization, learning new skills, gaining reputation and many 

other social and technical factors drive how developers select projects for contribution (Fang and 

Neufeld 2009; Roberts et al. 2006). Since project selection is a multi-criteria decision-making 

process, our artefact for personalize project rankings takes that into account. Multi-criteria 
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recommender systems (MCRS) are studied in a wide range of domains and applications such as e-

commerce and entertainment (Adomavicius and Kwon 2015; Palanivel and Sivakumar 2010). 

Compared to general recommender systems, MCRS consider various features of an item, rate them 

separately and aggregate later for an overall rating for the item. Since developers may have different 

and evolving preference for their socio-technical activities, we apply MCRS approach in our 

recommender system. Details are discussed in our artefact. 

We follow Design Science Research (DSR) methodology (Hevner et al. 2004) and Peffers’ model 

(Peffers et al. 2007) for designing this new artefact. Figure 2 shows our research phases in a schematic 

model. Figure 2 illustrates the performed phases in the first iteration to design a time-discounted 

implicit feedback rating technique. The main contributions of this research are following. First, we 

use developers' socio- technical activities, to implicitly rate these projects. Second, in creating the 

personalized project rankings, we account for the changes in developers' preferences and projects' 

goals over time, which is different from existing studies on OSS project selection (Allaho and Lee 

2013; van Osch et al. 2011). Third, we consider the project selection as a multi-criteria decision-

making (MCDM) process and therefore develop a multi-criteria recommender system (MCRS) to 

make a personalized project recommendation. Based on the abovementioned contributions the 

research question of this study is "How to design a multi-criteria recommender system when both 

consumers (developers) and products (projects) are evolving over time?”  

This paper follows recommended structure for DSR studies (Gregor and Hevner 2013).  The next 

section describes related work to OSS studies in information systems literature, the socio-technical 

analysis in OSS domain and RSSEs. Later we introduce the research method, which provides details 

of the proposed artefact followed by the evaluation process. Finally, we summarize the contributions 

and limitations of this study and provide directions for future research. 
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Figure 2. Research Model based on (Hevner et al. 2004) guidelines and (Peffers et al. 2007)Model 

RELATED WORK 

In this section, we discuss the literature on how developers join OSS projects, how OSS projects 

attract and retain developers and recommender systems in software engineering. We summarize these 

streams of literature and highlight our contribution.  

Joining Open Source Projects  

A large number of studies have established that developers are driven by a mix of intrinsic, extrinsic, 

ideological and community motivations (Alexy and Leitner 2011; Krishnamurthy et al. 2014; Von 

Krogh et al. 2003) to make contributions to OSS projects. However, we are yet to understand how 

these motivated developers select or join OSS projects. Since, developers’ volunteer contributions 

are key to the success of OSS projects (Von Krogh et al. 2003), it is critical to expand our 

understanding on how developers find and join OSS projects. Note that matching developers’ skills 

and preferences with project goals is key for sustainable contributions (Schilling et al. 2012b). 

Scholars have examined developers’ project selection process but these studies have mostly 

investigated the antecedents of joining a project. These studies find that the rate of code commit 

(Nielek et al. 2016), license type of projects (van Osch et al. 2011), required skillset (Terceiro et al. 

2012), project reputation and popularity (Jarczyk et al., 2014; Fronchetti et al., 2019)  , previous social 

D
S

R
 G

u
id

el
in

es
 

(H
ev

ne
r 

et
 a

l. 
20

04
) 

D
S

R
 P

ro
ce

ss
 M

od
el
 

(P
ef

fe
rs

 e
t 

al
. 
20

07
) 

1 Problem 
Identification 

Difficulties in 
finding a 
suitable project 
for contribution 

2 Define 
Objectives & 
Solutions 

Designing a 
rating 
mechanism 
based on 
developers’ 
socio-technical-
collaborative 
activities. 

3 Design & 
Development 

Proposing 
time-based 
implicit 
feedback 
rating 
mechanism to 
be used in a 
multi-criteria 
OSS project 
recommender   

4 Demonstration 

Implement the 
rating algorithm 
prototype on 
GitHub data as 
proof-of-concept  

5 Evaluation 

Evaluation of 
rating accuracy 
using MAE, 
RMSE and MSE 

 

6 communication 

Publishing results 
in related journal 
issues. 

G2: 
Problem 

Relevance 

G4: 
Research 

Contribution 

G1 & G6: Design 
as an Artefact & 

Design as a Search 
Process 

G3: Design Evaluation 
G7: 

Communic
ation of 

Research  

G5: Research Rigor 

Electronic copy available at: https://ssrn.com/abstract=3642052



9 
 

ties and peer influence (Allaho and Lee 2013; Hahn et al. 2006) , and contribution of popular 

developers (Blincoe et al. 2016; Schilling et al. 2012b)  are major drivers for developers’ joing a 

project. While these studies highlight drivers of joining a project, they are thin on investigating the 

role of developers’ preferences in joining new projects. When developers’ preferences are not aligned 

with project goals, developers are likely to leave the project or remain inactive even after joining. For 

example,  it has been shown that selecting a project only based on project popularity or high rate of 

activity, e.g., number of commits, may lead to developer attrition (Bayati and Peiris 2018)because 

sustained contributions requires alignment between developer preferences and project attributes and 

requirements. Indeed, studies have documented high attrition rates in OSS community in recent years 

(Steinmacher et al. 2018).  

One can argue that finding and selecting a project, out of millions available, is a complex and a time 

consuming process. Thus, developers rely on their social network to find and join OSS projects. 

Recent studies have shown two prominent trends among developers joining OSS projects- 1) based 

on prior ties and 2) based on popularity of developers/projects. First one argues that prior 

collaborations and ties with project members or project owners may affect developers’ decision to 

join a project (Hahn et al. 2008). However, there are three problems with this approach- 1) it limits 

the opportunities for both developers and OSS projects, 2) developers’ preferences change since their 

prior ties and 3) newcomers are at a disadvantage with this approach. For example, GitHub lists 

almost 100 million OSS projects; therefore, relying only on previous ties to find projects is not only 

difficult for developers but also limiting and inefficient for the OSS ecosystem. Second, a set of 

studies have shown that developers follow popular developers (Blincoe et al. 2016; Nielek et al. 2016) 

and projects (Fronchetti et al. 2019; Jarczyk et al. 2014)  to find and join OSS projects. However, 

there are three problems with this approach, 1) popularity can be driven by many factors, 2) needs of 

popular projects and developers’ skills may not be aligned and finally, 3) this approach is not scalable 

when it comes to matching millions of developers to projects. Further, this may lead to distortions in 

OSS ecosystem where some projects get flooded with developers while others close due to lack of 
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volunteer contributions.  Our work contributes to this literature by arguing that developers’ 

preferences should play an important role in project selection and therefore we propose an approach 

to recommend projects to developers based on their preferences. 

Attracting and retaining OSS developers 

It is not only developers who face challenges in finding OSS projects that match with their 

preferences, OSS project owners also strive for motivated developers whose skills and expertise 

match with the project requirements (Figure 1), because absence of that leads to developer attrition. 

Unfortunately, developers turnover is high in OSS projects and therefore, retention of developers is 

one of the biggest challenges for open source projects (Schilling 2014). In fact, four out of five 

projects fail due to lack of sustained contributions (Schilling et al. 2012b).  

According to the Recruitment theory the person-job fit and person-team fit are critical for sustained 

contributions (Edwards, 1991). This matching or fitness can be assessed both from developer and 

project perspective, using objective or subjective measurements. For example, using crosssectional 

data, Sharma et al. (2010) examined the effect of developers’ perceived fit with OSS projects on 

developers’ turnover. While their study was among the first to highlight the need for a fit between 

developers and projects, it cannot be scaled for matching devlopers and projects as we propose in this 

study because- a) their study relied on subjective assessment, which is questionable, b) it only 

considered developer’s perspective, without considering projects, and finally, c) in a dynamic 

environment where both project and developers evolve over time, a cross-sectional assessment has 

many limitations.  Some of these issues were addressed by Schilling et al. (2012b), who focused on 

students contributing to Google Summer of Code project. Authors used students’ historical 

contributions and associations with the project to objectively measure person-job fit and person-team 

fit and concluded the importance of these fitness meaures on sustained contributions in OSS projects. 

While they highlighted the importance of using historical activities data to measure fit, their study 

was focussed on one project and didn’t account for the evolving nature of developers and projects in 

OSS ecosystem. Further, their study was narrowly focussed on one technical activity whereas 
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literature has argued that both social and technical activities are important for matching developers 

to projects. 

Software development in general and OSS in particular are social coding activities, which require 

developers’ social along with technical skills for sustained contributions (Bird et al. 2009).  

Developers’ social commitments (Schilling et al. 2013), social ties (Schilling 2012) and social identity 

with OSS community drives their sustained participation in OSS projects (Chou and He 2011; Fang 

and Neufeld 2009). Therefore developers’ social and technical skills should be aligned with that of 

project members and project goals (Schilling et al. 2012b), which is often not the case and lacks in 

developers’ project selection process leading to higher attrition rates. Our research aims to address 

this issue by recommending projects to developers d based on developers’ social and technical 

activities/preferences.  

Scholars used Herzberg’s two factor theory to examine developers’ dissatisfaction in open source 

community (Yu et al. 2012) and found that developers who use the software for personal use have 

lower dissatisfaction than others. The significant role of personal needs highlights the value of 

personalized rating technique for project selection. Other similar studies find that project 

characteristics and developers skills affect turnover rate in OSS community (Sharma et al. 2012). 

Overall, we observe that on one side, the literature has shown the effect of project attributes on 

turnover (Chengalur-Smith et al. 2010; Oh et al. 2016; Schilling et al. 2012a; Shah 2006; Yamashita 

et al. 2016), but on the other side, another stream of literature shows the effect of developers’ 

skills/preferences on turnover (Sharma et al. 2012; Steinmacher et al. 2015; Yu et al. 2012). Drawing 

from these two streams, we argue that lower turnover in OSS may depend on adequately matching 

socio-technical attributes of both developer and projects. Therefore, we use socio-technical activities 

for both projects and developers over time to create personalized project rankings. 
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Recommender Systems in Software Engineering (RSSE) 

Literature on Recommender systems in software engineering (RSSE) (Robillard et al. 2014) has 

mainly focused on software development related issues, such as, Bug triaging, finding experts (Anvik 

et al. 2006; Anvik and Murphy 2011; Badashian et al. 2015; Naguib et al. 2013; Shokripour et al. 

2013), source code suggestion (Holmes and Murphy 2005), design pattern recommendation (Palma 

et al. 2012), tracking updates (Zimmermann et al. 2005), requirement management (Maalej and 

Thurimella 2009), recommending pull request reviewers (Yu et al. 2016), following (Schall 2014) 

and experts (Allaho and Lee 2014). While these studies tackle interesting issues, they lack on 

following two challenges- 1) these studies do not address the demand and supply issues in OSS, which 

is recommending projects to developers. Note that recommending projects to developers is 

challenging due to continuous changes in Developers’ preferences and projects’ goals over time. And, 

2) most of these studies have used MSR (mining software repositories) techniques, such as source 

code analysis, developers’ communication, and project historical data analysis to develop 

recommender systems (Anvik et al. 2006; Yu et al. 2016). Instead of using traditional MSR 

techniques, we have used large-scale data analysis techniques to query GitHub to obtain developers’ 

preferences from their social and technical activities and developed personalized implicit project 

ratings for individual developers.  

OVERALL FRAMEWORK 

While it is common knowledge that developers’ technical skills are critical for development and 

success of OSS, research is thin on the role of developers’ social skills in OSS development. 

Researchers argue that software applications are an outcome of collaboration among developers and 

other project members. Specifically in OSS projects where a software artefact is developed with 

technical knowledge and interactions with a large and diverse project community, both social and 

technical activities are important and influential in project success or failure (Bird et al. 2009). 

Knowledge creation in OSS is influenced by social structure and member’s network cohesion (Singh 

et al. 2011), and social structure of the OSS project and associated community has an effect on team 

Electronic copy available at: https://ssrn.com/abstract=3642052



13 
 

activity (Wu and Goh 2009). Therefore, developers’ social skills are critical for their acceptance and 

success in the OSS community (Carillo et al. 2017; Qureshi and Fang 2011). Holistically, 

communication, collaboration and coordination between various stakeholders (Syeed and 

Hammouda, 2013), including community members, is crucial for success and survival of these 

projects. 

Theory of translucence  (Erickson and Kellogg 2000) lays the foundation of a system that facilitates 

asynchronous communication, coordination and collaboration between geographically diverse, large 

groups of developers, required for OSS development. We argue that OSS social coding platforms, 

e.g., GitHub, are social translucent systems. These coding platforms have key characteristics- 

visibility, awareness and accountability (Erickson and Kellogg 2000) outlined in the theory of 

translucence, critical for communications and collaborations among OSS developers. For example, 

GitHub allows developers to be visible to others, aware of other developers and accountable for their 

actions and behaviours, thereby supports consistent behaviour in groups and communities (Barreto, 

Karapanos and Nunes, 2011), and enables interaction and collaboration among OSS community 

members.  Developers’ activities on GitHub are open and transparent allowing community members 

to learn and evaluate their skills, goals and preferences. This openness has spurred collaboration and 

contribution in OSS projects.  

Extant literature has used developers’ social and technical activities to infer their goals, expertise and 

fit with OSS projects (Dabbish et al. 2012; Tsay et al. 2014b) and also for evaluating their contribution 

on OSS projects (Tsay et al. 2014a; Tsay et al. 2014b). While scholars agree that OSS developers’ 

social and technical skills are critical for their contribution in OSS ecosystem, literature is scattered 

on what constitutes social and technical activities. We extend this literature and propose to classify 

developers’ activities as social, technical and collaborative. We contribute1 to this stream of literature 

                                       
1 We test our design artefact against both classifications- 1) Social and Technical, as suggested in the extant 
literature, and 2) Social, Technical and Collaborative, that we propose in this study. See details in section – 
Robustness Checks. 
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by adding collaborative activities along with social and technical activities. These activities, over time 

across different projects, are used to measure developers’ preferences and developing a personalized 

implicit project ranking for OSS developers. These rankings are then used as an input to a 

recommender system to recommend projects to developers. Next, we discuss developers’ social, 

technical and collaborative activities in OSS projects. 

Social Activities 

In OSS ecosystem, communities are built around OSS projects and play an important role in success 

of these projects (Carillo et al. 2016; Daniel et al. 2018). Developers’ affiliations with peers in project 

community affect project success (Grewal et al. 2006) and social structure, which eventually affects 

their contribution and knowledge creation in OSS projects (Singh et al. 2011).  

Developers’ social activities in OSS projects indicate their desire and ability to connect and affiliate 

with other developers, and integrate with the project team (Gharehyazie, et al., 2015). Understanding 

the value of social activities, social coding platforms such as GitHub use a ‘following’ feature 

(Blincoe, et al., 2016), similar to the one on social media platforms such as Twitter. Following activity 

is used as a measure of developers’ social activity(Lee et al. 2013; Moqri et al. 2018). Following is 

different from participation, and it is referred as affiliation (Goggins and Petakovic 2014) and 

awareness(Wu et al. 2014) , and therefore, supports the awareness characteristic of the theory of 

translucence.  

By following someone, a developer receives the latest information, such as participation and 

contribution activities about the followed developers. Following influences actions and contributions, 

leads followers to new projects (Badashian and Stroulia 2016; Blincoe et al. 2016), and is often 

considered more influential than contribution in OSS ecosystem (Blincoe, et al., 2016). Indeed, social 

recommender systems are using following feature, to measure friendship and trust to find similar users 

(Montaner et al. 2002; Schall 2014; Yang et al. 2014).   
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Following also leads to social influence (Cha et al. 2010) and social ties which affect developers’ 

level of interest in a project (Hahn et al. 2006; Hannebauer and Gruhn 2017). We argue that following 

and followed by activities among peers within a project affect social structure and cohesion and 

therefore, developers’ affiliation and commitment (Singh et al. 2011) and contribution (Wu and Goh 

2009) for the project. We use these activities as a measure of developers’ social activities in a project 

(Figure 6).  

Technical Activities 

A social coding platform such as GitHub hosts millions of OSS projects and facilitates features such 

as distributed development, issue tracking, online build process, code review and source control, etc. 

just to name a few. Developers’ technical activities are related to any type of coding and development 

submissions (Sarker et al. 2019; Vasilescu et al. 2016)  and there is a little ambiguity about core 

technical activities in OSS communities (Badashian et al. 2014; Tsay et al. 2014a), which are 

Commits, Issues and Pull Requests (see Figure 6). Following the literature, we count these core 

technical activities (Vasilescu et al. 2015) to measure developers’ technical activities (Figure 6).   

Figure 3 shows two of these technical activities to illustrate the process of commits, pull requests and 

associated discussions. It shows that a developer has forked a project from main (master) branch, 

committed changes in the forked version and then submitted a pull request to the core members to 

review her changes/commit. This pull request triggers discussion before commits in the forked project 

are merged with the main project (master branch). Next, we describe all the three technical activities- 

commit, issue and pull request (Vasilescu et al. 2015). 

 

Figure 3. Commit, Pull Requests and Discussion in an OSS project on GitHub 
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On GitHub, developers can make a copy of an OSS project to make changes to the source code. These 

changes are saved on their copy, also termed as forked project. This event (saving changes) is named 

as Commit. Commits can vary in their size and importance. Following OSS literature (Badashian et 

al. 2014; Vasilescu et al. 2013), we use the number commits to measure a developer’s technical 

activity and her interest in a project.  

Open source community allows contributions in variety of ways (Crowston and Howison 2005). For 

example, some of the volunteers play (test) with the OSS software and list bugs and required features 

via a system called issue tracking. On GitHub, the term Issue is used for bugs and features reported 

by developers or other contributors. Project coordinators assign Issues to developers based on their 

expertise (Anvik and Murphy 2011).  Successful resolution of issues are critical for project quality 

and success (Bissyandé et al. 2013; Jurado and Rodriguez 2015). Number of Issues assigned to a 

developer signals her expertise and measures her interest in a project and therefore, can be used to 

measure developer’s technical activity in a project.   

In distributed software engineering, developers work on their assigned issues and development tasks 

on their local repositories (forked version). Whenever they want to merge their code into the main 

repository, they send a request for merging, which is called Pull Request. A pull request is checked 

for suitability following standard policies. After acceptance, it is merged with the master repository 

for production purposes. Software engineering literature has named this strategy as pull-based 

software development (Yu et al. 2016). Pull Request has been used in software engineering literature 

to examine developers’ contribution (Badashian et al. 2014; Gousios et al. 2016). We use the number 

of pull requests to measure a developer’s technical activity and her interest in a project. 

We understand that the number of commits, pull requests and reported issues is not the perfect way 

to measure technical activities/contributions, because these contributions may vary in terms of their 

size, complexity, efficiency and their overall effect. For example, a code commit may vary from just 

adding or removing a few lines of code to huge in-depth changes in multiple correlated source code. 

Electronic copy available at: https://ssrn.com/abstract=3642052



17 
 

However, most of the studies in literature have used these proxies to measure developers’ 

contributions (Daniel and Stewart 2016; Grewal et al. 2006; Singh et al. 2011) due to measurement 

challenges associated with other matrices.  

Collaborative Activities 

Interactions and discussion among developers are critical in distributed software development 

environment (Guzman et al. 2014; Guzzi et al. 2013). In OSS communities, most of these interactions 

are text-based, in the form of reviews, comments, messages, and e-mails. These conversations help 

enhance products’ technical features (Guzman et al. 2014; Guzzi et al. 2013). Figure 4, shows an 

example of how contributors discuss a submitted commit via commit comments.  

 

Figure 4. Evidence of commit comments 

Literature generally considers the discussion/comment in OSS as a social activity (Gharehyazie et al. 

2015; Sarker et al. 2019; Vasilescu et al. 2015). For example, communications regarding issues, etc. 

(Gharehyazie, et al., 2015) and comments on commits, pull requests, etc. (Vasilescu, et al., 2015) 

have been considered as social activities. However, we contend that discussion/comment on an issue 

or pull request is not a mere social activity because issues or pull requests are assigned to developers 

based on their technical expertise (Anvik and Murphy 2011) and are not open to anyone intending to 
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just socialize. Developers require technical expertise to discuss about different facets of a bug or a 

requested feature while they are reviewing the source code. Along with the technical knowledge, they 

also need to follow the social norms of the community during these discussions and therefore, these 

activities are somewhere in between purely technical or social and truly measure the collaborative 

aspect of OSS ecosystem. These activities require collaboration in a form of discussion/commenting, 

where more than one developer work on the same artefact, using different ICT tools, such as emails, 

instant messaging, and web-based applications (Xuan and Filkov, 2014) and therefore, we term them 

as collaborative activities. We use three types of interactions-commit comments, issue comments and 

pull request comments, to measure developers’ collaborative activities in a project (Figure 6).  

Several developers may comment on a commit to increase the quality of the commit, and of the 

project as whole. Though only registered contributors can write commit comments, but these 

comments are public for scrutiny and participation purpose. Commit comments reveal developers’ 

expertise, behaviour, participation and engagement with the development process (Guzman et al. 

2014; Pletea et al. 2014).  

Similar to commit, developers collaborate by commenting to increase the quality of issue resolution, 

at any stage, from opening to closing. Issue Comments are technical in nature and help developers 

collaborate in their contribution to OSS project.  

Before accepting or rejecting a pull request, project coordinators and senior project members discuss 

different aspects of the request via Pull Request Comments. Each pull-request may invoke a bunch 

of reviews/comments in form of back and forth exchange between developers before acceptance. Pull 

request comments provide a critical tool for evaluating, assessing and reviewing (Yu et al. 2016) pull 

requests.  

While we measure the contributions by the count of comments, etc., we understand that comments’ 

size and importance may also vary. For example, a comment from an expert or a core member may 

have different effect compared to a comment from a new or inexperienced developer. However, count 
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is used as a proxy in the literature in OSS (Sarker et al. 2019; Vasilescu et al. 2015) and social media 

(De Vries et al. 2012; Swani et al. 2017).  

Developers’ socio-technical activities in OSS community have been used for project reputation 

analysis and its usability evaluation (Dabbish et al. 2012). We use these socio-technical activities to 

measure developers’ preferences for projects. These preferences are used to rank order their preferred 

projects, which is very important for developing a recommendation system for OSS projects (Hahn 

et al. 2008).  

We follow design science research (DSR) 6-step process model (Peffers et al. 2007) as shown in 

Figure 2. Our main contribution is an artefact, which is a time-based implicit feedback rating 

mechanism for open source projects based on developers’ social, technical and collaborative activities 

in a social coding environment.  

  

Figure 5. Implicit Project Rating Module  

Our proposed framework is shown in Figure 5. We divide developers’ activities in three main 

categories- Social, Technical and Collaborative (Figure 6). Using time discounted activities (Dabbish 

et al. 2012), our rating module calculates developers’ preferences in projects on a 1 to 5 scale. This 

rating module is one of the main contributions of this study that is presented as an algorithm, which 

we will discuss in next section.   

Developers 

Projects 

Technical 
Activities:  (Code 
Commits, Pull 
Requests, Assigned 
Issues) 

Time 
Hierarchy 

(Year, 
Quarter, 

 

Rating 

UAT 

Rates 

Collaborative 
Activities: 
Commit Comments, 
Issue Comments, 
Pull Request 
Comment  
Social 
Activities: 
Following, Followed 
By 

Electronic copy available at: https://ssrn.com/abstract=3642052



20 
 

 

Figure 6. Hierarchical categories of social coding activities. 

In this study, we have applied implicit feedback approach for collaborative filtering (CF) 

recommendation (Kelly and Teevan 2003; Lee et al. 2008; Palanivel and Sivakumar 2010). Implicit 

feedback rating approach is used when, 1) direct ratings are not possible/available, and/or 2) the rating 

values are temporal and dynamic (Hu et al. 2008; Lee et al. 2008). Both of these issues are relevant 

in our context. First, GitHub does not provide a mechanism for developers to rate OSS projects and 

second, developers’ activities on projects change over time, which may affect their project rankings. 

Our approach deals with both of these challenges. We discuss the details of rating mechanisms in the 

next section.   

We use personalized project ratings generated via implicit feedback approach for collaborative 

filtering (CF) recommendation because CF has been used to predict users' interests based on choices 

of other similar users (Ricci et al. 2011). CF is independent of the content of items and there is no 

need for complex similarity calculation because it is based on similarity in preference (project 

ratings). We now present a general memory-based CF approach which uses Pearson or Cosine 

correlation similarity (Ricci et al. 2011). Equation 1 shows our proposed approach to predict 

developer d’s rating for a project p, where. D is the list of top N most similar developers (in terms of 

their project ratings) and k is the normalization factor shown in equation 2. Sim(d,d’) calculates the 

similarity between developer d and d’ (Equation 3a).  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑑𝑑, 𝑝𝑝) = 𝑘𝑘 � 𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑,𝑑𝑑′) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑′, 𝑝𝑝)
𝑑𝑑′∈𝐷𝐷

 (1) 

𝑘𝑘 =
1

∑ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑,𝑑𝑑′)𝑑𝑑′∈𝐷𝐷
 

(2) 

The Pearson Correlation similarity is calculated based on Equation 3a, where r represents rating and 

Pxy represent a list of common projects between user x and y. One could use other approaches such 

as Cosine similarity (Equation 3b), widely used in in the literature (Ricci et al. 2011), or other 

similarity metrics like Jaccard and Euclidean distance (Ricci et al. 2011).  We do not discuss other 

CF approaches because comparing different approaches is not the focus of this study. 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =
∑ (𝑟𝑟𝑥𝑥,𝑝𝑝 − 𝑟𝑟𝑥𝑥)(𝑟𝑟𝑦𝑦,𝑝𝑝 − 𝑟𝑟𝑦𝑦) 𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥

�∑ (𝑟𝑟𝑥𝑥,𝑝𝑝 − 𝑟𝑟𝑥𝑥) 2 ∑ (𝑟𝑟𝑦𝑦,𝑝𝑝 − 𝑟𝑟𝑦𝑦) 2𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥  𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥

 
(3a) 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =
∑ 𝑟𝑟𝑥𝑥,𝑝𝑝 𝑟𝑟𝑦𝑦,𝑝𝑝 𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥

�∑ 𝑟𝑟𝑥𝑥,𝑝𝑝
2 ∑ 𝑟𝑟𝑦𝑦,𝑝𝑝

2
𝑝𝑝∈𝑃𝑃𝑦𝑦  𝑝𝑝∈𝑃𝑃𝑥𝑥

 
(3b) 

ARTEFACT DESCRIPTION 

This study proposes a novel implicit rating mechanism for rating open source projects based on 

developers’ social, technical and collaborative activities. Project ratings are an input to a collaborative 

filtering recommender system to recommend the most appropriate project for a developer. Details of 

the rating technique are presented below in Algorithm 1. For ease of exposition, we scaled the 

developers’ project ratings from 1 to 5, where 5 represents the highest interest value.  

Algorithm 1: Time-Based Implicit Feedback for OSS Projects 

Inputs:  

Developers (List of Developers N) 

Prjs (List of Projects M) 

Activities (List of Developers’ Activities in GitHub Projects) 

ActivityTypes (K) 

Output: 

CubeRatings (Cube K*N*M of Developers’ implicit rates for Projects in each Activity) 

Procedure: 

For each activityk in ActivityTypes 

For each developern in Developers 

For each projectmin Prjs 

Xn,m= SUM(DPT(developern, projectm, timet)) 
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For each developern in Developers 

For each projectm in Prjs 

ActivityRatingsn,m=Rates(developern, projectm, X) 

CubeRatingsk,n,m= ActivityRatingsn,m 

 

In Algorithm 1, two functions are used- DPT(x,y,z) and Rates(x,y,z). For a given activity type, DPT 

(Developer, Project, Time period) calculates total time-discounted activity of a developer d, on a 

specific project p, in time period t (Equation 4). Algorithm 1 receives four inputs- a list of developers, 

a list of OSS projects, a list of activities performed by developers on projects with their timestamps, 

and a list of different activity types. The output of the Algorithm 1 is a cube of implicit feedback 

ratings (CubeRatings), which can be used for predicting developers’ preference. The dimensions of 

the cube are activity type, developers and projects. Each cell in the rating cube contains the calculated 

rate value. In Algorithm 1, The function SUM(argument) summarizes all the DPT returned values for 

different time periods in one cell of matrix X, which we discuss later. 

𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑, 𝑝𝑝, 𝑡𝑡) =
∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑑𝑑 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡

𝑓𝑓(𝑡𝑡) + 1
 

(4) 

𝑓𝑓(𝑡𝑡) = (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑡𝑡) (5) 

𝑓𝑓(𝑡𝑡) = (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑡𝑡)(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑡𝑡) (6) 

Equation 4, demonstrates DPT functionality in detail. Activities are time discounted, giving more 

weight to the ones in recent periods (Lee et al. 2008; Robbes and Röthlisberger 2013), as shown in 

Equation 4. This time-discounting approach accounts for changes in preferences and goals for both 

developers and projects. Therefore, OSS project recommendation system in our artefact is a multi-

criterion decision-making process (MCDM), 

For the ease of exposition, we have considered linear discounting (Equation 5) however, our artefact 

can handle any other forms of discounting (e.g., exponential, Equation 6). Further, linear approach 

has been commonly used in the literature (Robbes and Röthlisberger 2013) because it performs well. 

The Rates function (Equation 7) calculates developers’ rates (ratings) to their contributed projects 

based on DPT. The summation of all DPT for an activity type for each developer on a specific project 
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is stored in a matrix X, where rows and columns are developers and projects. This matrix is an input 

to Rates function (Equation 7).  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑, 𝑝𝑝,𝑋𝑋) =

𝑋𝑋[𝑑𝑑, 𝑝𝑝]
∑ 𝑋𝑋[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖], 𝑝𝑝]𝑁𝑁
𝑖𝑖=0

𝑁𝑁
∑ 𝑋𝑋[𝑀𝑀
𝑘𝑘=0 𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑘𝑘]] × 1

∑ 𝑋𝑋[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑗𝑗],𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑘𝑘]]𝑁𝑁
𝑗𝑗=0

𝑁𝑁

 

(7) 

In equation 7, d and p represent the developer and project, M is the number of projects and N is the 

number of developers. X[a,b] refers to the element Xa,b of matrix X. Our approach for rate calculation 

considers two different ways to normalize the rates value. First, we divide a developer’s total activity 

in a specific project by the average activities of other developers in the same project, during the same 

time. This allows us to capture developer’s relative interest in that project compared to other 

contributors. Second, by normalizing developer's relative interest for a project with other projects this 

developer contributes, we capture developer's relative preference for this project compared to other 

projects. The value of the rating is stored in a matrix, ActivityRatings (see Algorithm 1), which is for 

a specific activity, say commit. Similar exercise is performed for each of the eight activities (2 for 

social, 3 for technical and 3 for collaborative) to generate ActivityRatings for each activity. Together 

all these ActivityRatings are compiled in CubeRatings. Note that CubeRatings is a three-dimensional 

matrix whereas ActivityRatings is a two dimensional matrix (see Algorithm 1). We illustrate the 

working of algorithm 1 via an example, later in this section. 

The CubeRatings matrix is three dimensional but we desire a two-dimensional rating matrix with 

dimensions as developers and projects. Therefore, we calculate an OverallRatings matrix, which is 

two dimensional. We argue that developers’ preferences for activities may vary and it is less likely 

that developers have equal preference for the all the activity types. For example, a developer may 

partake in social, technical and collaborative activities but they contribute mostly via commits (a 

technical activity), and thus commit activity should get a higher weightage when computing project 

ratings for this developer. Therefore, we compute weights for each activity type for every developer 

to reflect their activity preference in their project ratings. Equation 8 demonstrates a generic approach 
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to estimate weights for each activity. Here d, a and p, represent developers, selected activity, and 

project, respectively. Wd,a demonstrates the weightage for activity a for developer d. 

𝑊𝑊𝑑𝑑,𝑎𝑎 =
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑎𝑎,𝑑𝑑,𝑝𝑝]𝑝𝑝

1
𝑛𝑛∑ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑎𝑎,𝑑𝑑, 𝑝𝑝]𝑝𝑝

𝑛𝑛
𝑑𝑑

 
(8) 

Algorithm 2, is an implementation based on equation 8 to calculate ModeratedWeights matrix (see 

Algorithm 2). This matrix is two dimensional. In Algorithm 2, we calculate the average number of 

activities for all developers and check the variance of the current user with the average. 

Algorithm 2:  Developers’ Interest Calculation on Each Activity Type 

Inputs:  

Developers (List of Developers with size N) 

Prjs (List of Projects with size M) 

Activities (List of Developers’ Activities in GitHub Projects) 

ActivityTypes (with size K) 

Output: 

ModeratedWeight (Matrix N*K of Developers’ Weight for Each Activity Type) 

Procedure: 

For each activitya in ActivityTypes 

C=0, S=0 

For each developerd in Developers 

Ad,a=0 

For each projectp in Prjs 

Xd,p= SUM(DPT(developerd, projectp,timet)) 

Ad,a=Ad,a+Xd,p 

S=S+ Ad,a 

C=C+1 

Avga=S/C 

For a=1 to K 

For d=1 to N 

Weightd,a=Ad,a/Avga 

For a=1 to K 

SumWeight=0 

For d=1 to N 

SumWeightd= SumWeightd+ Weightd,a 

For a=1 to K 

For d=1 to N 

ModeratedWeightd,a= Weightd,a/ SumWeightd 
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The moderated weight is calculated to understand the importance of each activity for a developer. 

Overall rating is derived from multiplying the moderated weight with the value of cube rating cells 

as shown in Algorithm 3. We now elaborate Algorithm 3 with an example. For example, consider 

<0.6, 0.1, 0.3> as the moderated weights for a developer for three different type of activities. Further, 

this developer contributed in 2 projects and rates in her CubeRatings matrix for both the projects 

(based on all three activities) are <<2,3,3>, <5,1,2>>. By applying algorithm 3, we get 

<<0.6*2+0.1*3+0.3*3>, <0.6*5+0.1*1+0.3*2>> which results into <2.4, 3.7> as overall rating of 

this developer for these two projects. However, if we consider equal weights (for each activity) we 

get <(2+3+3)/3, (5+1+2)/3)>, or <2.67, 2.67>for both the projects. We see that with equal weights, 

both projects are ranked at the same level (<2.67, 2.67>) whereas by considering developers’ 

preferences for different activities (Algorithm 3), second project is ranked higher (<2.4, 3.7>). Overall 

ratings can be calculated using equation 9. Where the CubeRatings function represents the calculated 

rate on activity a in project p for developer d (refer to formula 4). Wd,a demonstrates the weightage 

for activity a for developer d, as shown in equation 8. We have proposed a generic form, but our 

approach is modular and can adopt to any different approach for estimating weights, such as equal 

weighting for each activity. The OR function populates the cells of OverallRating matrix. 

𝑂𝑂𝑂𝑂(𝑑𝑑,𝑝𝑝) = � 𝑊𝑊𝑑𝑑,𝑎𝑎 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎,𝑑𝑑,𝑝𝑝)
𝑎𝑎

 (9) 

Algorithm 3 shows the calculation of Moderated Rates while different criteria for developers’ 

interests applied on their activities.  

Algorithm 3: Multi-Criteria Overall Rating Calculation 

Inputs:  

Developers (List of Developers with size N) 

Prjs (List of Projects with size M) 

Activities (List of Developers’ Activities in GitHub Projects) 

ActivityTypes (with size K) 

ModeratedWeight (Matrix N*K of Developers’ Weight for Each Activity Type) 

CubeRatings (Cube N*M*K of Developers’ implicit rates for Projects in each Activity) 

Output: 

OverallRatings (Matrix N*M of Developers’ overall rates for Projects) 
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Procedure: 

For each activitym in ActivityTypes 

For each developera in Developers 

OverallRatingsa,b =0 

For each projectb in Prjs 

OverallRatingsa,b = (OverallRatingsa,b + (ModeratedWeighta,m* CubeRatingsa,b,m  )) 

 

We now illustrate our Algorithm 1 via an example. Figure 7 shows the main steps of applying 

Algorithm 1. In follows, we show steps for generating an ActivityRatings matrix (see Algorithm 1) 

for one activity. As shown in Algorithm 1, there is one ActivityRatings matrix for each activity. 

CubeRatings matrix is just accumulation of all these ActivityRatings matrices (see Algorithm 1). 

CubeRatings matrix is then multiplied by moderated weights matrix to generated OverallRatings (see 

Algorithm 3). 

 

Figure 7. An Illustrative Example of Algorithm 1 

We start by collecting data on developers’ specific type of activity, e.g., commit on projects, from 

previous five quarters (Table 1, Figure 7). Let’s say that we have collected data for five quarters (time 

periods), from Q1 (t=1) to Q5 (t=5). Our goal is to compute implicit project ratings at the end of 

quarter 5 (Q5). In Table 2 of Figure 7, linearly discounted activities are calculated using equations 4 

and 5. For example, in Table 2, the discounted activity for Dev_A, Prj_K, in Q1 is 17.4 (87/(5-1+1)) 
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and the discounted activity for Dev_A, Prj_K, in Q2 is 8 (32/(5-2+1)). In the next stage, we group all 

the discounted activities for developers (Table 3a) and projects (Table 3b) separately to capture their 

trend. For example, in Q1, Dev_A has done 22.4 (17.4+4.6+0.4) discounted activities across three 

projects, K, L and M (Table 3a). Similarly, there were 18.2 (17.4+0.8) discounted activities in Proj_K 

from all the developers (developers A and D) in Q1 (Table 3b). We also calculate the average 

contribution (discounted activity) from developer and project perspective. For example, developer A 

worked on 3 projects and her average contribution on a project was 81.9 (last column of Table 3a). 

We performed similar calculations in Table 3b for projects. In fourth step (Figure 7, Table 4), we aim 

to estimate developers’ relative performance on each project. We first divide the total activity of a 

developer on a project by the average of activities on that project. For example, we divide developer 

A’s total activity on project K (198.7, first row, last column of Table 2) by average contribution on 

project K by any member (100.3, first row, last column of Table 3b), which results into 1.98 

(198.7/100.3), and is shown in the first row and column of Table 4. This means, that developer A’s 

contribution on project K is almost double of the average contribution on project K during this period 

(Q1-Q5). We now do similar calculation for all the projects for developer A. We sum up all the 

relative activity/project for all the developers. For Dev_A, it results into 3.18 (1.98+1.06+0.14) as 

shown in Table 4 of Figure 7. We now divide developer A’s relative preference for all projects by 

this total (3.18 for developer A) as shown in Table 4 of Figure 7. The highest value is the most 

interesting project for a developer, is rated as 5 and rest are scaled accordingly. Since we used commit 

activities for this example, the outcome of this exercise is a ActivityRatings matrix (Table 5, Figure 

7) for commit activity. We generate similar ActivityRatings for all eight activities (2 for social, 3 for 

technical and 3 for collaborative). All these eight ActivityRatings put together form the CubeRatings 

matrix (see Algorithm 1). CubeRatings is a three-dimensional matrix which is multiplied with 

ModeratedWeight matrix (Algorithm 2 and 3) to generate the OverallRatings matrix, which is two 

dimensional with developers and projects as two dimensions. The OverallRatings matrix is an input 

to a CF recommender system.  
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Figure 8. Illustration of Algorithm 3 

Figure 8 schematically explains how ModeratedWeight matrix (Algorithm 2) is applied to 

CubeRatings to generate the OveralRatings. Table 1 in Figure 8, shows developers’ perceived interest 

in each activity (ModeratedWeight matrix). These weights are applied to the CubeRatings matrix (see 

Algorithm 3) to generate the final OverallRatings matrix (Table 3, Figure 8), which is the main 

contribution of this study. We design an artefact for implicitly rating projects based on developers’ 

social, technical and collaborative activities across different projects.  These rating (OverallRatings) 

are used for recommending projects to OSS developers. We now discuss the data and evaluation of 

our proposed artefact.  

DATA COLLECTION  

We collected data from GitHub, which is the largest open source software repository. As of 2019 

GitHub has more than 50 million users and 100 million of projects. Although GitHub provides a 

RESTful API for data collection, currently, two main archives store and collect GitHub’s data in 

different formats. GhTorrent (Gousios 2013) and GitHub Archive (Grigorik 2012) provide different 

type of data access to GitHub. We selected GhTorrent (Gousios 2013) because it provides a regular 
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SQL-based data dump along with MongoDB data dumps facilitating Big Data analytics needed for 

this study and  GhTorrent, it is the most used data set in GitHub analytics (Cosentino et al. 2017).  

We collected data on projects that were created between 13/1/2008 to 18/6/2015, which resulted into 

a total of 20,048,071 projects and 7,210,741 unique users. We report summary statistics in Table 1, 

which shows the size and diversity of the activities in OSS projects hosted on GitHub and therefore 

confirms the challenges for developers to find a suitable project.  

First Date Last Date Number 

of User 

Number 

of Project 

Non-forked 

Projects (original) 

Avg(Project/Usr) Avg(Usr/Project) 

13/01/2008 18/06/2015 7,210,741 20,048,071 10,647,788 1.5072 3.2961 
Commit Commit 

Comment 

Issue Issue 

Comment 

Pull Request Pull Request 

Comment 

Follow 

260,619,933 2,017,971 18,895,174 32,304,278 7,946,946 4,312,419 7,022,950 

Table 1. A Summary of GhTorrent Data Dump 

From this data dump, we remove personal, dead, forked and unreal projects (Kalliamvakou et al. 

2014) resulting into a dataset containing projects that are original, and are not forked from any other 

project (Kalliamvakou et al. 2016). We removed all the public projects converted to private or deleted 

from GitHub. To reduce the size of dataset for evaluating our proposed artefact, we only focused on 

developers who joined the GitHub in a specific month (January 2012) and collected all their social, 

technical and collaborative activities on GitHub for a period of three years. We selected year 2012 

because GitHub got matured in year 2012 (Moqri et al. 2018; Nielek et al. 2016). Figure 9 shows the 

distribution of contributed projects by developers who joined in January 2012. This distribution 

follows a power law distribution. Figure 9 shows that more than 85% of contributors participated in 

5 or fewer projects.  
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Figure 9. Distribution of number of contributed projects for GitHub members 

Further analysis of this data showed that developers who work on 5 or more projects, contribute (in 

terms of commits) almost five times higher than those who work on 4 or less projects. In other words, 

the total number of commits by bottom 85% is about the same as the number of commits by top 15% 

developers. These statistics shows the influence of these active developers in the OSS community. 

Since developers’ contributions are key to success and survival of OSS community, we want to focus 

on top 15% developers who do the heavy lifting in the community. Following this observation, we 

focus on these active developers to test our artefact. Note that these 15% are among the developers 

who joined GitHub in January 2012, a very small subset of the whole community. Our sample for 

evaluating the artefact contains 254 projects and 84 developers, which is the outcome of our data 

cleaning phase. Our sample size is comparable to other similar studies that have used data from 

GitHub (Blincoe, et al., 2016).  We acknowledge that we have not considered developers’ 

activities/contributions outside of GitHub, which may affect their overall preferences. However, 

GitHub is by far the largest repository and adequately considers developers’ preferences, thus has 

been used in a large number of studies (Sarker et al. 2019; Vasilescu et al. 2016). 

As discussed earlier, we only focussed on developers with at least five projects in their baskets, to 

reduce the sparsity of the rating matrix. Rating matrix sparsity and cold start are challenging issues 

in collaborative filtering (CF) systems (Lam et al. 2008; Lu et al. 2015). We put a limit on the 

minimum number projects a developer works on, for following reasons. First, since we want to 
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evaluate our approach with state of the art techniques, we need to have a fairly populated project-

developer matrix to make a meaningful comparison. Second, to employ collaborative filtering 

technique, we need to have some prior on developers' contribution to find similar/preferred projects. 

Third, developers participating in multiple projects are more active than others, and it is critical to 

recommend them suitable projects because they make the bulk of the contribution to OSS projects 

(Vasilescu et al. 2016).  

 Commit Commit 

Comment 

Issue Issue 

Comment 

Pull 

Request 

Pull 

Request 

Comment 

Following Followed 

By 

Commit 1 0.1978 0.1651 0.3661 0.4607 0.2425 0.0747 0.0878 

Commit 

Comment 

0.1978 1 0.2658 0.3854 0.2671 0.2484 -0.0101 0.0526 

Issue 0.1651 0.2658 1 0.2021 0.3002 0.1299 -0.0190 0.0522 

Issue 

Comment 

0.3661 0.3854 0.2021 1 0.5706 0.3100 0.0337 0.0991 

Pull Request 0.4607 0.2671 0.3002 0.5706 1 0.4159 0.0472 0.1393 

Pull Request 

Comment 

0.2425 0.2484 0.1299 0.3100 0.4159 1 -0.0203 0.0854 

 

Following 0.0747 -0.0101 -0.0190 0.0337 0.0472 -0.0203 1 0.4102 

Followed By 0.0878 0.0526 0.0522 0.0991 0.1393 0.0854 0.4102 1 

Table 2. Correlation analysis for developers 

We collected quarterly data (Yamashita et al. 2016) because the average timeframe of minor releases 

in GitHub is approximately three months. However, our artefact is flexible to handle any duration. 

We report Pearson correlations of all selected activities for developers (Table 2) and do not find any 

high correlations. Table 3 illustrates the descriptive statistics of the sample dataset used for 

evaluation.  

Variable Description Mean Median Max Min 
Users per Project Number of users per project 12.60 7 295 4 

Projects per user Number of projects per user 6.92 7 9 5 

Commit per user Number of commits per user 35.77 0 768 0 

Commit Comments per 
user 

Number of commit comments per 
user 

0.036 0 1 0 

Issues per user Number of issues per user 0.38 0 10 0 
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Table 3. Data descriptive statistics (84 developers across 254 projects) 

EVALUATION 

This study proposes a novel artefact for recommending OSS projects to developers. This artefact is 

presented in the form of an algorithm and implemented as a Proof-of-Concept (Gregor and Hevner 

2013; Iivari 2015) for evaluation purpose, using the real world data. For novel approaches and 

artefacts, proof-of-concept or prototyping is sufficient to validate the applicability of the proposed 

solution (Gregor and Hevner 2013). The proof-of-concept prototype of our personalized project rating 

mechanism is implemented by using MySQL R-DBMS and C# programming language. We have 

used RecommenderLab R package (Hahsler 2011) to check the accuracy of rating technique. We 

compared our approach with two general approaches- Popular item recommendation and Random 

item recommendation, which are available in RecoimmenderLab R package. Next section introduces 

our evaluation process in depth. 

Figure 10 introduces the evaluation process using holdout technique- Leave-K-Out (Cremonesi et al. 

2008). In this process, randomly selected data-points are removed from OverallRatings matrix. Then 

we use remaining data points in the OverallRatings matrix to predict the ratings (using 

RecoimmenderLab R package) that were randomly removed. The error rates are measured by 

comparing the predicted rates with the actual values. We illustrate this method via an example in 

Figure 10. Step 1 in Figure 10 shows the OverallRatings matrix. From this matrix, developer B’s 

rating for project L and developer D’s rating for project M are randomly removed (see Step 2). We 

now use the remaining ratings in Table 2, Figure 10, to predict these randomly removed values and 

compare the predicted ratings with actual ratings to estimate prediction errors. Using 1-NN 

developers (first nearest neighbourhood) similarity metrics, developer B is similar to C and developer 

D is also similar to C (see step 3 in Figure 10). The prediction outcome would be developer B’s rating 

Issue Comments per 
user Number of issue comments per user 4.12 0 221 0 

Pull Request per user Number of pull requests per user 13.49 0 492 0 

Pull Request Comments 
per user 

Number of pull requests comments 
per user 

1.81 0 120 0 
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on project L as “3” which is equivalent to the actual rating (error =0). For developer D on project M 

the predicted rate is 5 resulting in the difference of “1” scale from the actual rating (see step 4 in 

Figure 10).  

 

Figure 10. Collaborative filtering evaluation process 

In this study, we have compared our proposed moderated OverallRatings with four baseline 

approaches based on Average, Max, Popular and Random computation methods. Note that we 

computed ActivityRatings matrix for each activity and then by using weights (preferences) for each 

activity, generated the OverallRatings matrix. In Average approach, we give equal weights to each 

activity to compute the OverallRatings matrix. The Max approach, considers the maximum rating 

among all different activities (from ActivityRating matrix) as overall rates. This approach only 

considers the ratings for the highest weighted activity and ignores the rest. In Popular approach, only 

most contributed projects are selected to compute OverallRatings. And finally, the Random approach, 

relies on randomly picked ratings. We analysed the accuracy of our approach by dividing our overall 

rating matrix into two sets. One for training and one for testing. We used different sizes of training 

and testing sets to test robustness of our results. We used following combinations of training and 

testing sets- 1) 70%, and 30%), 2) 80% and 20%), and 3) 90% and 10%.  

We ran our test for 100 times to reach the consistent values for our measures. This iterative process 

is done because the training and testing sets are selected randomly and may show different values 

based on the sparsity of rating matrix in each division. Following literature in recommender systems 

(Ricci et al. 2011), we have used RMSE (Root Mean Square Error), MSE (Mean Square Error) and 

Dev_C is Similar to Dev_B 

Dev_C is Similar to Dev_D 

Prediction 
Dev_B, Prj_L ~3; Error= 0 

Dev_D, Prj_M ~5; Error= 1 
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MAE (Mean Absolute Error) to test the accuracy of our approach. Table 4 shows the average values 

for each measure on different training and testing set splits. 

Table 4. Evaluation result 

 Average Max Proposed Moderated-Approach 

 RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE 

70-30 0.281 0.098 0.079 0.645 0.471 0.162 0.179 0.044 0.048 

80-20 0.307 0.114 0.096 0.736 0.689 0.229 0.185 0.054 0.059 

90-10 0.334 0.177 0.135 0.708 0.800 0.262 0.178 0.057 0.070 

 Popular Random 

 RMSE MSE MAE RMSE MSE MAE 

70-30 0.845 0.772 0.364 1.036 1.104 0.605 

80-20 0.848 0.816 0.385 1.075 1.209 0.641 

90-10 0.840 0.879 0.413 1.106 1.322 0.683 

 

Figure 11 graphically represents the average values for different approaches we tested and it shows 

the lowest error rate for our proposed rating technique compare to others approaches. In Figure 11, 

the first chart on left shows RMSE, middle one illustrates MSE and right one MAE. Each chart shows 

results for all five approaches, from left to right: Average, Max, Moderated, Popular, and Random. 

 

Figure 11. Comparison of different recommendation techniques. 

The result of comparison shows that our proposed technique outperforms other approaches. The worst 

estimation belongs to the Random approach and the closer one to our proposed method is the Average 

approach. It is clear as we increase the size of training set from 70% to 90% the accuracy of predicted 

values decrease. We suspect that as testing set becomes smaller, (10%) the sparsity of matrix increases 

and affects the prediction accuracy. Note that our proposed approach does not suffer with this 

problem. We also observe that though Popular approach doesn’t perform better than our proposed 
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approach, the performance of Popular approach is consistent (see Figure 11) for all the training and 

testing set combinations because one would get almost a similar set of popular projects in the all 

training-testing set combinations and the popular metric is not a user-dependent metric. Figure 12 

shows the boxplots of RMSE, MSE, and MAE for 100 cases captured for (80%, 20%) of each 

technique. Figure 12 shows the distribution and range of errors for all the evaluation methods. It is 

clear that our proposed moderated approach performs best among all. 

 

Figure 12. Different techniques comparison from left to right RMSE, MSE, and MAE 

Our collaborative filtering method used Z-score for rating matrix normalization, Cosine similarity is 

used to find the similarity of developers and K-Nearest Neighbourhood is used to find the K similar 

developers to the focal developer (Hahsler 2011; Ricci et al. 2011).  

From the implementation and complexity perspective, our approach is scalable and computationally 

efficient because the rating algorithm (Algorithm 1) can run in parallel on multiple machines. 

Running in parallel provides better performance as the numerator and denominator of the Rates 

function (Equation 7) are independent. Map/Reduce (Shang et al. 2010) is a good choice for 

processing different parts of Algorithm 1. We can apply Mapper function to calculate activities in 

different machines and in the reducer sum it up for developers and projects. Note that the X matrix is 

created only once and it just requires updating activities from the most recent time period. Based on 

the offline creation and calculation of X Matrix, this algorithm can perform well in the real-time high-

performance recommendation. We can apply the same parallelism techniques for Algorithm 2 as well. 

 

Electronic copy available at: https://ssrn.com/abstract=3642052



36 
 

Empirical Evaluation 

One pertinent question is what happens if a developer joins the project recommended by our artefact. 

To answer this question, we examine developers’ performance if they join the project recommended 

by our recommender system.  

Sample selection for this evaluation followed a similar criterion as discussed in Data Collection 

section. As earlier, we focussed on active developers, who work on more than five projects, and who 

joined GitHub in 2012 (Moqri et al. 2018; Nielek et al. 2016). To evaluate our artefact, not only we 

needed active developers, but also needed projects with enough socio-technical activities of 

developers, to run our recommendation engine. Note that rating matrix sparsity and cold start are 

challenging to and collaborative filtering (CF) system (Lam et al. 2008; Lu et al. 2015) and thus are 

also a limitation of our approach.  

We used a sample of 17 active developers associated with 294 OSS projects. OverallRating matrix 

ranked 7 projects as high ranked and 12 projects as low ranked projects. Recall that developers are 

recommended to join high ranked projects and not recommended to join low ranked projects. We find 

that developers who joined high ranked projects, were among top 17% of developers in those projects 

based on their contributions. Further, in the first year of joining these projects, developers’ 

contribution on these projects was higher compared to developers’ total contribution on rest of their 

projects. In contrast, developers who joined low-ranked projects, were below average in terms of 

contributions on the project they joined. Further, their overall contribution to these projects was lower 

than other projects they were associated with. These findings suggest that developers joining our 

recommended projects is a win-win for both, the developers and the projects.  

ROBUSTNESS CHECKS 

To test the robustness of our proposed approach, we perform two robustness checks, first by changing 

the dataset for evaluating the artefact and second by the changing the measurement of socio-technical 

activities. We describe them next.  

Electronic copy available at: https://ssrn.com/abstract=3642052



37 
 

It is possible that performance of our method was driven by our sample that was based on developers 

joining GitHub in a particular month (January 2012). To address this concern, we collected another 

dataset for developers joining in January 2013 and followed same selection criterion as discussed in 

Data Collection section. Further, we also changed the time interval for calculating developers’ social, 

technical and collaborative activities. Instead of using quarterly activities of the developers, we used 

six-monthly data. This dataset resulted into 237developers and 41 projects. We find that though our 

moderated approach still performed the best, but error rates were slightly higher compared to our 

results using quarterly data in the earlier dataset. Again, in this case, Average approach was next best 

after our proposed approach. We don’t report results here for brevity. 

Recall that to measure developers’ socio-technical activities, prior literature has focussed on six 

activity types- commit, issues and pull request as technical activities and commit comments, pull 

request comments and issue comments as social activities. Following the literature in software 

engineering (Xuan and Filkov, 2014), we added following and followed by as social activities and 

termed commit comments, pull request comments and issue comments as collaborative activities. 

Thus, we expanded the measurement of socio-technical activities (8 activities) to social, technical 

and collaborative activities (see section Overall Framework). To test the robustness of our proposed 

approach, we also performed the evaluation of our artefact based on the older measurement of 

developers’ socio-technical activities (using only 6 activities). We find that the error rate was slightly 

higher; however, it was expected because we ignored two activities (used 6 as opposed to 8). These 

results underscore the need of using developers’ social activities (following and followed by) to 

measure their socio-technical activities in OSS projects.  

CONCLUSIONS AND FUTURE WORK 

Literature in Open source software looks at OSS projects as an outcome of developers’ socio-

technical activities. Indeed, software development and OSS in particular is an outcome of co-creation 

which requires lot more than developers’ hard technical skills. Recent studies confirm that along with 
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technical skills, developers’ social skills are also looked at before they get accepted in OSS projects 

(Gharehyazie et al. 2015).  

Scholars agree that while developers contribute to many OSS projects, they certainly prefer some 

projects more than others (Hahn et al. 2008; Jarczyk et al. 2014; Tsoy and Staples 2018; van Osch et 

al. 2011). Further, not only they have different preferences for these projects, there preferences 

change over time, partly because both developers and OSS projects evolve over time (Happel and 

Maalej 2008; Robillard et al. 2014). Building on this this literature, we argue that developers’ 

activities/contributions to OSS projects reveal lot more than mere associations with these projects. 

We argue that a detailed look at their activities/contributions on OSS projects can unlock the secret 

and can reveal the extent and evolving nature of their preferences for projects, based on, how much, 

how often and what they contribute on these projects. We address these issues by developing an 

artefact that can recommend projects to developers as we discuss next.  

This study presents a framework for developing a personalized OSS project ranking mechanism for 

developers. Our framework proposes to use developers’ historical activities/contributions on social 

coding platforms such as GitHub, to create an implicit feedback rating mechanism for the projects 

they contributed. Developers’ activities on these social coding platforms are transparent and therefore 

support the viability of the proposed framework and ranking mechanism. Since these rankings are 

personalized for each developer based on their contributions, these project rankings are then used for 

recommending OSS projects to developers using collaborative filtering (CF) technique. This 

recommender system is expected to match interested developers to projects in a way to reduce 

developers’ attrition (Steinmacher et al. 2015) and project failure (Schilling 2012) which has 

threatened the growth and sustainability of OSS ecosystem in recent years.  

The OSS project recommendation that we propose, is a multi-criteria decision-making problem. The 

project recommendation is built on developers’ interest/contribution in social, collaborative and 

technical activities. On one side, we considered the temporal changes in developers’ contributions 
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over time, in terms of projects and activity types. And, on the other side, we considered the changes 

in projects’ internal activities over time.  

Overall, this study makes two main contributions to the literature. First, we propose to categorize 

developers’ activities/contributions as Social, Technical and Collaborative activities. Existing work 

categorizes these activities as either social or technical. We add a new category- collaborative 

activities. Prior work has discussed the importance of developers’ socio-technical activities in OSS 

ecosystem but literature is scattered with often contradictory findings/recommendations on 

categorization of these activities (Moqri et al. 2018; Sarker et al. 2019). We propose a coherent 

categorization of these activities based on literature in software engineering.  

Second, we develop an artefact to generate personalized project rankings for developers. Since 

developers do not directly rate projects, we use developers’ historical contributions via social, 

technical and collaborative activities across different projects to capture their preferences and create 

implicit feedback ratings. Ratings are moderated based on the proposed multi-criteria decision 

making approach to compute the overall moderated ratings of projects. The moderated overall ratings 

are an input to a collaborative filtering recommender system. As a proof-of-concept, the proposed 

approach is evaluated based on a real longitudinal dataset of OSS projects and developers hosted on 

GitHub. We compared the proposed rating method with other possible state of the art approaches, 

and find that our approach shows high accuracy in term of distance between real and predicted data. 

Our contributions are presented in the format of three algorithms and implemented as a prototype 

application. 

However, similar to other studies this research has some limitations, which are discussed next. First, 

the dataset comprises of developers’ activities only on GitHub while developers may have contributed 

to projects hosted on Bitbucket, GitLab, SourceForge or other repositories. Although adding these 

repositories may provide a more complete dataset of developers’ activities, it may not affect this study 

for following reasons.  1) A change in the dataset does not affect the design our project ranking 
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mechanism, the main contribution of this study, 2) GitHub is by far the largest repository, which 

means, GitHub data can provide dominant patterns in the OSS community, 3). We have focused on 

GitHub data since 2012, when it was accepted as the most matured OSS repository (Moqri et al. 2018; 

Nielek et al. 2016). Further, the prospect of using a third party data integrator such as OpenHub 

(Ohloh) is not helpful because Ohloh only collects data on a small number of OSS projects which is 

not comparable with size and scale of GitHub and not all the GitHub contributors are listed on Ohloh 

and therefore, GitHub data has been used in many studies (Cosentino et al. 2017; Sarker et al. 2019). 

Second, Collaborative filtering is sensitive to the matrix sparsity and as we have used the general 

collaborative filtering technique in this study, this study may also suffer from this problem. Matrix 

factorization and model-based techniques such as clustering (Ricci et al. 2011) may help in this 

situation. We need to evaluate the quality of proposed rating approach in the sparse cases with the 

mentioned techniques.  

Third, similar to other pure user-based collaborative filtering technique this artefact may face cold 

start problems with (Lam et al. 2008) new projects and developers with the low historical background. 

Future research aims to use the combination of knowledge-based recommender systems and model-

based techniques to address this limitation.  

Fourth, we have evaluated our proposed model with the limited number of GitHub projects and 

developers as a proof-of-concept. We only selected developers who contributed to at least 5 projects 

to overcome the cold-start and sparsity issues of collaborative filtering. However, cold-start and 

sparsity are always challenging in any collaborative filtering based recommendation system 

(Adomavicius and Tuzhilin 2005). Further, we argue that using this same dataset, our approach 

outperformed other baseline approaches. 

Fifth, in recommending projects to developers, we didn’t account for developers’ preferences in 

programming languages, topics, licences and prior ties, etc. We argue that we indirectly account for 

these by using collaborative filtering approach.  
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And finally, the sample size used for the proof-of-concept may be small, however, it is comparable 

to other studies (Blincoe, et al., 2016). Note, that our dataset is small because the period of data 

collection is also restricted. To address this issue we have evaluated our artefact with other datasets 

to validate our proposed technique. 

In summary, we argue that while extant literature has investigated how developers’ prior ties with 

other developers affect their decision to join an OSS project (Hahn et al. 2008), we add to that 

literature and develop a recommender system that recommends projects considering developers’ 

preferences and projects’ goals beyond developers’ ties with other developers. In future research, we 

aim to merge this approach with knowledge based and content-based techniques to develop a hybrid 

recommender system. Future work can also use social connectivity to measure similarities among 

developers. Another possible extension to the current method would be applying model-based 

technique such as clustering on developers to reduce the matrix sparsity and cold-start problem. 
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