
1

Recommending Open Source Software Projects to Developers

Shahab Bayati
Information Systems and Operations Management

University of Auckland School of Business
s.bayati@auckland.ac.nz

Arvind K Tripathi
Information Systems and Operations Management

University of Auckland School of Business
a.tripathi@auckland.ac.nz

Ravi Bapna
Information Systems and Operations Management

Carlson School of Management

University of Minnesota
rbapna@umn.edu

Electronic copy available at: https://ssrn.com/abstract=3642052

mailto:s.bayati@auckland.ac.nz
mailto:a.tripathi@auckland.ac.nz
mailto:rbapna@umn.edu

2

ABSTRACT

Growing popularity of OSS has attracted millions of developers to social coding platforms such as

GitHub.com. However, it appears that OSS software is becoming a victim of its own success because

finding the right project, among millions of projects hosted on social coding platforms, is a gruelling

task for developers. Lack of mismatch among developers and projects has resulted in high developer

turnover and project failures. In this context, the evolving nature of developers’ preferences and

projects’ goals, complicates matching of developers and projects.

This paper proposes a new artefact based on collaborative filtering (CF) recommendation

technique to recommend OSS projects to developers. The dynamic nature of projects’ evolution and

the developers preferences makes this a very different problem than, say, recommending products to

consumers. Our proposed method uses developers’ socio-technical activities to capture their evolving

preferences and project goals, and creates an implicit personalized project rating/ranking for

developers. A multi-criteria decision-making technique is used to generate an overall rating based

on developers’ different types of activities. The proposed artefact has been evaluated with the real-

world data from GitHub. Our results show that developers who join projects that we recommend, are

among the top contributors on these recommended projects, and vice versa for the developers who

join projects that we don’t recommend. The comparison of proposed method with other state of the

art collaborative filtering approaches shows promising results.

Electronic copy available at: https://ssrn.com/abstract=3642052

3

INTODUCTION

Compared to its proprietary counterpart, Open Source Software (OSS) and applications are

innovative, easier to use and have lower development cost (Paulson et al. 2004). Due to these

qualities, OSS paradigm has gained tremendous popularity in recent years, even among traditional

software companies such as Apple (Apple.com, 2015). Software firms who perceived OSS as a threat,

have now changed their business model and started partnering with, and sponsoring OSS projects.

Currently a large number of popular OSS projects are owned and sponsored by companies such as

Facebook, Twitter, Uber, etc. This popularity growth and business interest has attracted scores of

software developers to OSS ecosystem who wish to join and contribute to OSS projects hosted on

social coding platforms such as GitHub.com, SourceForge.net, and Bitbucket.org. However, therein

lies a challenge for the developers- how to find the right project to make contribution among millions

of projects hosted on these social coding platforms?

Since OSS projects are a result of volunteer contributions, developers collaborate on these projects

on their own terms. Therefore, social coding platforms, facilitate developers’ collaborative

preferences (preferences, hereafter) to maximize developers’ ‘collaborative utility’ (Blincoe, et al.,

2016). Note that, developers’ preferences (patterns) are observable from developers’ socio-technical

activities stored in OSS repositories. These patterns are diverse, representing diversity in developers’

preferences and global nature of OSS teams (Dabbish, et. al., 2012). Since harmonious collaboration

among team members are critical for success and productivity of OSS projects, we contend that

considering developers’ preferences are critical in matching them with OSS projects for long-term

success of OSS ecosystem. OSS literature has argued that developers’ collaborative network (captures

with whom they collaborate) drive their project selection (Hann, et al., 2008). We add to this literature

and argue that developers’ preferences (captures how they collaborate) are also critical in their project

selection.

Electronic copy available at: https://ssrn.com/abstract=3642052

4

GitHub one of the large social coding platforms, aims to act as a clearinghouse between OSS projects

and developers, and facilitates a feature called Explore GitHub. However, Explore GitHub just allows

searching for trending projects and is not a recommendation agent that can match developers and

projects. We argue that the sheer size of these platforms makes is very difficult for both projects and

developers to find a good match. As of 2019, GitHub has more than 50 million developers and 100

millions of projects. Figure 1 shows a few samples posts from a prominent online community forum

Stackoverflow, highlighting how developers appeal for help to find appropriate projects and project

owners look for OSS contributors.

Figure1. Evidence from StackOverflow.com: Left panel: Developers seeking OSS projects; Right panel: OSS projects

looking for contributors.

Since open source software powers large and small corporations alike, it plays a significant role in

economic growth and therefore developers’ sustained associations and contributions to these projects

are very critical for their long-term success. Current state of art approaches recommend project

Supply Demand

Electronic copy available at: https://ssrn.com/abstract=3642052

5

selection based on project popularity (Jarczyk et al. 2014), license type (van Osch et al. 2011) and

previous ties (Hahn et al. 2008; Jarczyk et al. 2014; van Osch et al. 2011) but are limited in many

ways. For example, popular projects may attract more contributors (Fronchetti et al. 2019; Nielek et

al. 2016), however, high turnover of OSS developers confirms that developers should evaluate

projects with various metrics and not only the reputation (Bayati 2018). Developers joining projects

based on prior ties (Hahn et al. 2008) is inefficient because it doesn’t account for evolving nature of

developers’ preferences and project goals, and approach is not scalable for millions of developers and

projects hosted on social coding platforms. Overall, these filtering mechanism aren’t effective in OSS

ecosystem due to its size and dynamic nature, resulting into low retention rates of developers

(Schilling et al. 2012b). Recent studies confirm that a large number of developers leave OSS projects

due to inappropriate project selection (Steinmacher et al. 2015) leading to project failure (Schilling

2012).

Scholars argue that a recommender system to recommend projects to developers is critical for long-

term sustainability of OSS projects and communities (Jiang et al. 2016). Recommender systems are

software applications that predict user preferences based on different approaches, such as

Collaborative filtering (CF), content-based recommendation, knowledge base and hybrid systems

(Ricci et al. 2011). Mining software repositories (MSR) techniques have been used to design

recommender systems for software engineering (RSSE), but these are mainly focused on supporting

software developers/practitioners and project managers in a variety of tasks such as Bug triaging,

finding experts (Anvik et al. 2006; Anvik and Murphy 2011; Badashian et al. 2015; Naguib et al.

2013; Shokripour et al. 2013), source code suggestion (Holmes and Murphy 2005), etc. in the

software development life cycle (SDLC) (Robillard et al. 2010), partly because recommending

projects to developers is not trivial, as we discuss next.

Recommending OSS projects to developers is different from recommending products to consumers

in online markets due to following challenges. First, OSS projects are not static, like other products,

and evolve over time (Schafer et al. 1999; Wang et al. 2015). For example, OSS projects’ content,

Electronic copy available at: https://ssrn.com/abstract=3642052

6

associated developers, goals, organization, requirements, structure and governing policies change

over time and influence developers’ preferences. Second, developers themselves are different from

online consumers. Over time developers’ knowledge and skills change based on their contribution

and engagement with OSS ecosystem, thereby changing their preferences. Developers’ preferences

also change with their experience. For example, experienced and skilled developers deserve and

desire higher roles in projects (Robillard et al. 2014). Third, developers’ rating for OSS projects are

needed to design a collaborative filtering (CF) based recommender system. However, there is no

mechanism on GitHub, or other social coding platforms to capture developers’ ranking for OSS

projects. Although, developers’ watch list of projects can be used to construct their project rankings,

but it’d not be helpful because- a) measurement is binary (1 if a project is on the watch list) and not

ranked, b) watching doesn’t signal developers’ intent to contribute and c) developers’ interests in

OSS projects are temporal and dynamic, therefore, explicit rating would not be useful. In this

research, we address all these three issues by developing a personalized project rankings for

developers, which are used in a recommender system to recommend projects to developers.

Since there is no rating mechanism on GitHub to capture developers’ interests in OSS projects, this

study aims to design a new personalized project rating mechanism for developers. Using developers’

socio-technical activities in OSS projects, openly available on GitHub, we employ implicit feedback

(Kelly and Teevan 2003) approach to compute personalized project ratings. While many studies have

used/developed implicit ratings in absence of explicit ratings from the users(Choi et al. 2012; Lee et

al. 2010), however, none of them are comparable to our context where both developers’ preferences

and projects’ goals are changing over time.

Developers are heterogeneous in their project selection and motivation for contribution. Scholars

argue that multiple criterion such as socialization, learning new skills, gaining reputation and many

other social and technical factors drive how developers select projects for contribution (Fang and

Neufeld 2009; Roberts et al. 2006). Since project selection is a multi-criteria decision-making

process, our artefact for personalize project rankings takes that into account. Multi-criteria

Electronic copy available at: https://ssrn.com/abstract=3642052

7

recommender systems (MCRS) are studied in a wide range of domains and applications such as e-

commerce and entertainment (Adomavicius and Kwon 2015; Palanivel and Sivakumar 2010).

Compared to general recommender systems, MCRS consider various features of an item, rate them

separately and aggregate later for an overall rating for the item. Since developers may have different

and evolving preference for their socio-technical activities, we apply MCRS approach in our

recommender system. Details are discussed in our artefact.

We follow Design Science Research (DSR) methodology (Hevner et al. 2004) and Peffers’ model

(Peffers et al. 2007) for designing this new artefact. Figure 2 shows our research phases in a schematic

model. Figure 2 illustrates the performed phases in the first iteration to design a time-discounted

implicit feedback rating technique. The main contributions of this research are following. First, we

use developers' socio- technical activities, to implicitly rate these projects. Second, in creating the

personalized project rankings, we account for the changes in developers' preferences and projects'

goals over time, which is different from existing studies on OSS project selection (Allaho and Lee

2013; van Osch et al. 2011). Third, we consider the project selection as a multi-criteria decision-

making (MCDM) process and therefore develop a multi-criteria recommender system (MCRS) to

make a personalized project recommendation. Based on the abovementioned contributions the

research question of this study is "How to design a multi-criteria recommender system when both

consumers (developers) and products (projects) are evolving over time?”

This paper follows recommended structure for DSR studies (Gregor and Hevner 2013). The next

section describes related work to OSS studies in information systems literature, the socio-technical

analysis in OSS domain and RSSEs. Later we introduce the research method, which provides details

of the proposed artefact followed by the evaluation process. Finally, we summarize the contributions

and limitations of this study and provide directions for future research.

Electronic copy available at: https://ssrn.com/abstract=3642052

8

Figure 2. Research Model based on (Hevner et al. 2004) guidelines and (Peffers et al. 2007)Model

RELATED WORK

In this section, we discuss the literature on how developers join OSS projects, how OSS projects

attract and retain developers and recommender systems in software engineering. We summarize these

streams of literature and highlight our contribution.

Joining Open Source Projects

A large number of studies have established that developers are driven by a mix of intrinsic, extrinsic,

ideological and community motivations (Alexy and Leitner 2011; Krishnamurthy et al. 2014; Von

Krogh et al. 2003) to make contributions to OSS projects. However, we are yet to understand how

these motivated developers select or join OSS projects. Since, developers’ volunteer contributions

are key to the success of OSS projects (Von Krogh et al. 2003), it is critical to expand our

understanding on how developers find and join OSS projects. Note that matching developers’ skills

and preferences with project goals is key for sustainable contributions (Schilling et al. 2012b).

Scholars have examined developers’ project selection process but these studies have mostly

investigated the antecedents of joining a project. These studies find that the rate of code commit

(Nielek et al. 2016), license type of projects (van Osch et al. 2011), required skillset (Terceiro et al.

2012), project reputation and popularity (Jarczyk et al., 2014; Fronchetti et al., 2019) , previous social

D
S

R
 G

u
id

el
in

es

(H
ev

ne
r

et
 a

l.
20

04
)

D
S

R
 P

ro
ce

ss
 M

od
el

(P
ef

fe
rs

 e
t

al
.
20

07
)

1 Problem
Identification

Difficulties in
finding a
suitable project
for contribution

2 Define
Objectives &
Solutions

Designing a
rating
mechanism
based on
developers’
socio-technical-
collaborative
activities.

3 Design &
Development

Proposing
time-based
implicit
feedback
rating
mechanism to
be used in a
multi-criteria
OSS project
recommender

4 Demonstration

Implement the
rating algorithm
prototype on
GitHub data as
proof-of-concept

5 Evaluation

Evaluation of
rating accuracy
using MAE,
RMSE and MSE

6 communication

Publishing results
in related journal
issues.

G2:
Problem

Relevance

G4:
Research

Contribution

G1 & G6: Design
as an Artefact &

Design as a Search
Process

G3: Design Evaluation
G7:

Communic
ation of

Research

G5: Research Rigor

Electronic copy available at: https://ssrn.com/abstract=3642052

9

ties and peer influence (Allaho and Lee 2013; Hahn et al. 2006) , and contribution of popular

developers (Blincoe et al. 2016; Schilling et al. 2012b) are major drivers for developers’ joing a

project. While these studies highlight drivers of joining a project, they are thin on investigating the

role of developers’ preferences in joining new projects. When developers’ preferences are not aligned

with project goals, developers are likely to leave the project or remain inactive even after joining. For

example, it has been shown that selecting a project only based on project popularity or high rate of

activity, e.g., number of commits, may lead to developer attrition (Bayati and Peiris 2018)because

sustained contributions requires alignment between developer preferences and project attributes and

requirements. Indeed, studies have documented high attrition rates in OSS community in recent years

(Steinmacher et al. 2018).

One can argue that finding and selecting a project, out of millions available, is a complex and a time

consuming process. Thus, developers rely on their social network to find and join OSS projects.

Recent studies have shown two prominent trends among developers joining OSS projects- 1) based

on prior ties and 2) based on popularity of developers/projects. First one argues that prior

collaborations and ties with project members or project owners may affect developers’ decision to

join a project (Hahn et al. 2008). However, there are three problems with this approach- 1) it limits

the opportunities for both developers and OSS projects, 2) developers’ preferences change since their

prior ties and 3) newcomers are at a disadvantage with this approach. For example, GitHub lists

almost 100 million OSS projects; therefore, relying only on previous ties to find projects is not only

difficult for developers but also limiting and inefficient for the OSS ecosystem. Second, a set of

studies have shown that developers follow popular developers (Blincoe et al. 2016; Nielek et al. 2016)

and projects (Fronchetti et al. 2019; Jarczyk et al. 2014) to find and join OSS projects. However,

there are three problems with this approach, 1) popularity can be driven by many factors, 2) needs of

popular projects and developers’ skills may not be aligned and finally, 3) this approach is not scalable

when it comes to matching millions of developers to projects. Further, this may lead to distortions in

OSS ecosystem where some projects get flooded with developers while others close due to lack of

Electronic copy available at: https://ssrn.com/abstract=3642052

10

volunteer contributions. Our work contributes to this literature by arguing that developers’

preferences should play an important role in project selection and therefore we propose an approach

to recommend projects to developers based on their preferences.

Attracting and retaining OSS developers

It is not only developers who face challenges in finding OSS projects that match with their

preferences, OSS project owners also strive for motivated developers whose skills and expertise

match with the project requirements (Figure 1), because absence of that leads to developer attrition.

Unfortunately, developers turnover is high in OSS projects and therefore, retention of developers is

one of the biggest challenges for open source projects (Schilling 2014). In fact, four out of five

projects fail due to lack of sustained contributions (Schilling et al. 2012b).

According to the Recruitment theory the person-job fit and person-team fit are critical for sustained

contributions (Edwards, 1991). This matching or fitness can be assessed both from developer and

project perspective, using objective or subjective measurements. For example, using crosssectional

data, Sharma et al. (2010) examined the effect of developers’ perceived fit with OSS projects on

developers’ turnover. While their study was among the first to highlight the need for a fit between

developers and projects, it cannot be scaled for matching devlopers and projects as we propose in this

study because- a) their study relied on subjective assessment, which is questionable, b) it only

considered developer’s perspective, without considering projects, and finally, c) in a dynamic

environment where both project and developers evolve over time, a cross-sectional assessment has

many limitations. Some of these issues were addressed by Schilling et al. (2012b), who focused on

students contributing to Google Summer of Code project. Authors used students’ historical

contributions and associations with the project to objectively measure person-job fit and person-team

fit and concluded the importance of these fitness meaures on sustained contributions in OSS projects.

While they highlighted the importance of using historical activities data to measure fit, their study

was focussed on one project and didn’t account for the evolving nature of developers and projects in

OSS ecosystem. Further, their study was narrowly focussed on one technical activity whereas

Electronic copy available at: https://ssrn.com/abstract=3642052

11

literature has argued that both social and technical activities are important for matching developers

to projects.

Software development in general and OSS in particular are social coding activities, which require

developers’ social along with technical skills for sustained contributions (Bird et al. 2009).

Developers’ social commitments (Schilling et al. 2013), social ties (Schilling 2012) and social identity

with OSS community drives their sustained participation in OSS projects (Chou and He 2011; Fang

and Neufeld 2009). Therefore developers’ social and technical skills should be aligned with that of

project members and project goals (Schilling et al. 2012b), which is often not the case and lacks in

developers’ project selection process leading to higher attrition rates. Our research aims to address

this issue by recommending projects to developers d based on developers’ social and technical

activities/preferences.

Scholars used Herzberg’s two factor theory to examine developers’ dissatisfaction in open source

community (Yu et al. 2012) and found that developers who use the software for personal use have

lower dissatisfaction than others. The significant role of personal needs highlights the value of

personalized rating technique for project selection. Other similar studies find that project

characteristics and developers skills affect turnover rate in OSS community (Sharma et al. 2012).

Overall, we observe that on one side, the literature has shown the effect of project attributes on

turnover (Chengalur-Smith et al. 2010; Oh et al. 2016; Schilling et al. 2012a; Shah 2006; Yamashita

et al. 2016), but on the other side, another stream of literature shows the effect of developers’

skills/preferences on turnover (Sharma et al. 2012; Steinmacher et al. 2015; Yu et al. 2012). Drawing

from these two streams, we argue that lower turnover in OSS may depend on adequately matching

socio-technical attributes of both developer and projects. Therefore, we use socio-technical activities

for both projects and developers over time to create personalized project rankings.

Electronic copy available at: https://ssrn.com/abstract=3642052

12

Recommender Systems in Software Engineering (RSSE)

Literature on Recommender systems in software engineering (RSSE) (Robillard et al. 2014) has

mainly focused on software development related issues, such as, Bug triaging, finding experts (Anvik

et al. 2006; Anvik and Murphy 2011; Badashian et al. 2015; Naguib et al. 2013; Shokripour et al.

2013), source code suggestion (Holmes and Murphy 2005), design pattern recommendation (Palma

et al. 2012), tracking updates (Zimmermann et al. 2005), requirement management (Maalej and

Thurimella 2009), recommending pull request reviewers (Yu et al. 2016), following (Schall 2014)

and experts (Allaho and Lee 2014). While these studies tackle interesting issues, they lack on

following two challenges- 1) these studies do not address the demand and supply issues in OSS, which

is recommending projects to developers. Note that recommending projects to developers is

challenging due to continuous changes in Developers’ preferences and projects’ goals over time. And,

2) most of these studies have used MSR (mining software repositories) techniques, such as source

code analysis, developers’ communication, and project historical data analysis to develop

recommender systems (Anvik et al. 2006; Yu et al. 2016). Instead of using traditional MSR

techniques, we have used large-scale data analysis techniques to query GitHub to obtain developers’

preferences from their social and technical activities and developed personalized implicit project

ratings for individual developers.

OVERALL FRAMEWORK

While it is common knowledge that developers’ technical skills are critical for development and

success of OSS, research is thin on the role of developers’ social skills in OSS development.

Researchers argue that software applications are an outcome of collaboration among developers and

other project members. Specifically in OSS projects where a software artefact is developed with

technical knowledge and interactions with a large and diverse project community, both social and

technical activities are important and influential in project success or failure (Bird et al. 2009).

Knowledge creation in OSS is influenced by social structure and member’s network cohesion (Singh

et al. 2011), and social structure of the OSS project and associated community has an effect on team

Electronic copy available at: https://ssrn.com/abstract=3642052

13

activity (Wu and Goh 2009). Therefore, developers’ social skills are critical for their acceptance and

success in the OSS community (Carillo et al. 2017; Qureshi and Fang 2011). Holistically,

communication, collaboration and coordination between various stakeholders (Syeed and

Hammouda, 2013), including community members, is crucial for success and survival of these

projects.

Theory of translucence (Erickson and Kellogg 2000) lays the foundation of a system that facilitates

asynchronous communication, coordination and collaboration between geographically diverse, large

groups of developers, required for OSS development. We argue that OSS social coding platforms,

e.g., GitHub, are social translucent systems. These coding platforms have key characteristics-

visibility, awareness and accountability (Erickson and Kellogg 2000) outlined in the theory of

translucence, critical for communications and collaborations among OSS developers. For example,

GitHub allows developers to be visible to others, aware of other developers and accountable for their

actions and behaviours, thereby supports consistent behaviour in groups and communities (Barreto,

Karapanos and Nunes, 2011), and enables interaction and collaboration among OSS community

members. Developers’ activities on GitHub are open and transparent allowing community members

to learn and evaluate their skills, goals and preferences. This openness has spurred collaboration and

contribution in OSS projects.

Extant literature has used developers’ social and technical activities to infer their goals, expertise and

fit with OSS projects (Dabbish et al. 2012; Tsay et al. 2014b) and also for evaluating their contribution

on OSS projects (Tsay et al. 2014a; Tsay et al. 2014b). While scholars agree that OSS developers’

social and technical skills are critical for their contribution in OSS ecosystem, literature is scattered

on what constitutes social and technical activities. We extend this literature and propose to classify

developers’ activities as social, technical and collaborative. We contribute1 to this stream of literature

1 We test our design artefact against both classifications- 1) Social and Technical, as suggested in the extant
literature, and 2) Social, Technical and Collaborative, that we propose in this study. See details in section –
Robustness Checks.

Electronic copy available at: https://ssrn.com/abstract=3642052

14

by adding collaborative activities along with social and technical activities. These activities, over time

across different projects, are used to measure developers’ preferences and developing a personalized

implicit project ranking for OSS developers. These rankings are then used as an input to a

recommender system to recommend projects to developers. Next, we discuss developers’ social,

technical and collaborative activities in OSS projects.

Social Activities

In OSS ecosystem, communities are built around OSS projects and play an important role in success

of these projects (Carillo et al. 2016; Daniel et al. 2018). Developers’ affiliations with peers in project

community affect project success (Grewal et al. 2006) and social structure, which eventually affects

their contribution and knowledge creation in OSS projects (Singh et al. 2011).

Developers’ social activities in OSS projects indicate their desire and ability to connect and affiliate

with other developers, and integrate with the project team (Gharehyazie, et al., 2015). Understanding

the value of social activities, social coding platforms such as GitHub use a ‘following’ feature

(Blincoe, et al., 2016), similar to the one on social media platforms such as Twitter. Following activity

is used as a measure of developers’ social activity(Lee et al. 2013; Moqri et al. 2018). Following is

different from participation, and it is referred as affiliation (Goggins and Petakovic 2014) and

awareness(Wu et al. 2014) , and therefore, supports the awareness characteristic of the theory of

translucence.

By following someone, a developer receives the latest information, such as participation and

contribution activities about the followed developers. Following influences actions and contributions,

leads followers to new projects (Badashian and Stroulia 2016; Blincoe et al. 2016), and is often

considered more influential than contribution in OSS ecosystem (Blincoe, et al., 2016). Indeed, social

recommender systems are using following feature, to measure friendship and trust to find similar users

(Montaner et al. 2002; Schall 2014; Yang et al. 2014).

Electronic copy available at: https://ssrn.com/abstract=3642052

15

Following also leads to social influence (Cha et al. 2010) and social ties which affect developers’

level of interest in a project (Hahn et al. 2006; Hannebauer and Gruhn 2017). We argue that following

and followed by activities among peers within a project affect social structure and cohesion and

therefore, developers’ affiliation and commitment (Singh et al. 2011) and contribution (Wu and Goh

2009) for the project. We use these activities as a measure of developers’ social activities in a project

(Figure 6).

Technical Activities

A social coding platform such as GitHub hosts millions of OSS projects and facilitates features such

as distributed development, issue tracking, online build process, code review and source control, etc.

just to name a few. Developers’ technical activities are related to any type of coding and development

submissions (Sarker et al. 2019; Vasilescu et al. 2016) and there is a little ambiguity about core

technical activities in OSS communities (Badashian et al. 2014; Tsay et al. 2014a), which are

Commits, Issues and Pull Requests (see Figure 6). Following the literature, we count these core

technical activities (Vasilescu et al. 2015) to measure developers’ technical activities (Figure 6).

Figure 3 shows two of these technical activities to illustrate the process of commits, pull requests and

associated discussions. It shows that a developer has forked a project from main (master) branch,

committed changes in the forked version and then submitted a pull request to the core members to

review her changes/commit. This pull request triggers discussion before commits in the forked project

are merged with the main project (master branch). Next, we describe all the three technical activities-

commit, issue and pull request (Vasilescu et al. 2015).

Figure 3. Commit, Pull Requests and Discussion in an OSS project on GitHub

Electronic copy available at: https://ssrn.com/abstract=3642052

16

On GitHub, developers can make a copy of an OSS project to make changes to the source code. These

changes are saved on their copy, also termed as forked project. This event (saving changes) is named

as Commit. Commits can vary in their size and importance. Following OSS literature (Badashian et

al. 2014; Vasilescu et al. 2013), we use the number commits to measure a developer’s technical

activity and her interest in a project.

Open source community allows contributions in variety of ways (Crowston and Howison 2005). For

example, some of the volunteers play (test) with the OSS software and list bugs and required features

via a system called issue tracking. On GitHub, the term Issue is used for bugs and features reported

by developers or other contributors. Project coordinators assign Issues to developers based on their

expertise (Anvik and Murphy 2011). Successful resolution of issues are critical for project quality

and success (Bissyandé et al. 2013; Jurado and Rodriguez 2015). Number of Issues assigned to a

developer signals her expertise and measures her interest in a project and therefore, can be used to

measure developer’s technical activity in a project.

In distributed software engineering, developers work on their assigned issues and development tasks

on their local repositories (forked version). Whenever they want to merge their code into the main

repository, they send a request for merging, which is called Pull Request. A pull request is checked

for suitability following standard policies. After acceptance, it is merged with the master repository

for production purposes. Software engineering literature has named this strategy as pull-based

software development (Yu et al. 2016). Pull Request has been used in software engineering literature

to examine developers’ contribution (Badashian et al. 2014; Gousios et al. 2016). We use the number

of pull requests to measure a developer’s technical activity and her interest in a project.

We understand that the number of commits, pull requests and reported issues is not the perfect way

to measure technical activities/contributions, because these contributions may vary in terms of their

size, complexity, efficiency and their overall effect. For example, a code commit may vary from just

adding or removing a few lines of code to huge in-depth changes in multiple correlated source code.

Electronic copy available at: https://ssrn.com/abstract=3642052

17

However, most of the studies in literature have used these proxies to measure developers’

contributions (Daniel and Stewart 2016; Grewal et al. 2006; Singh et al. 2011) due to measurement

challenges associated with other matrices.

Collaborative Activities

Interactions and discussion among developers are critical in distributed software development

environment (Guzman et al. 2014; Guzzi et al. 2013). In OSS communities, most of these interactions

are text-based, in the form of reviews, comments, messages, and e-mails. These conversations help

enhance products’ technical features (Guzman et al. 2014; Guzzi et al. 2013). Figure 4, shows an

example of how contributors discuss a submitted commit via commit comments.

Figure 4. Evidence of commit comments

Literature generally considers the discussion/comment in OSS as a social activity (Gharehyazie et al.

2015; Sarker et al. 2019; Vasilescu et al. 2015). For example, communications regarding issues, etc.

(Gharehyazie, et al., 2015) and comments on commits, pull requests, etc. (Vasilescu, et al., 2015)

have been considered as social activities. However, we contend that discussion/comment on an issue

or pull request is not a mere social activity because issues or pull requests are assigned to developers

based on their technical expertise (Anvik and Murphy 2011) and are not open to anyone intending to

Electronic copy available at: https://ssrn.com/abstract=3642052

18

just socialize. Developers require technical expertise to discuss about different facets of a bug or a

requested feature while they are reviewing the source code. Along with the technical knowledge, they

also need to follow the social norms of the community during these discussions and therefore, these

activities are somewhere in between purely technical or social and truly measure the collaborative

aspect of OSS ecosystem. These activities require collaboration in a form of discussion/commenting,

where more than one developer work on the same artefact, using different ICT tools, such as emails,

instant messaging, and web-based applications (Xuan and Filkov, 2014) and therefore, we term them

as collaborative activities. We use three types of interactions-commit comments, issue comments and

pull request comments, to measure developers’ collaborative activities in a project (Figure 6).

Several developers may comment on a commit to increase the quality of the commit, and of the

project as whole. Though only registered contributors can write commit comments, but these

comments are public for scrutiny and participation purpose. Commit comments reveal developers’

expertise, behaviour, participation and engagement with the development process (Guzman et al.

2014; Pletea et al. 2014).

Similar to commit, developers collaborate by commenting to increase the quality of issue resolution,

at any stage, from opening to closing. Issue Comments are technical in nature and help developers

collaborate in their contribution to OSS project.

Before accepting or rejecting a pull request, project coordinators and senior project members discuss

different aspects of the request via Pull Request Comments. Each pull-request may invoke a bunch

of reviews/comments in form of back and forth exchange between developers before acceptance. Pull

request comments provide a critical tool for evaluating, assessing and reviewing (Yu et al. 2016) pull

requests.

While we measure the contributions by the count of comments, etc., we understand that comments’

size and importance may also vary. For example, a comment from an expert or a core member may

have different effect compared to a comment from a new or inexperienced developer. However, count

Electronic copy available at: https://ssrn.com/abstract=3642052

19

is used as a proxy in the literature in OSS (Sarker et al. 2019; Vasilescu et al. 2015) and social media

(De Vries et al. 2012; Swani et al. 2017).

Developers’ socio-technical activities in OSS community have been used for project reputation

analysis and its usability evaluation (Dabbish et al. 2012). We use these socio-technical activities to

measure developers’ preferences for projects. These preferences are used to rank order their preferred

projects, which is very important for developing a recommendation system for OSS projects (Hahn

et al. 2008).

We follow design science research (DSR) 6-step process model (Peffers et al. 2007) as shown in

Figure 2. Our main contribution is an artefact, which is a time-based implicit feedback rating

mechanism for open source projects based on developers’ social, technical and collaborative activities

in a social coding environment.

Figure 5. Implicit Project Rating Module

Our proposed framework is shown in Figure 5. We divide developers’ activities in three main

categories- Social, Technical and Collaborative (Figure 6). Using time discounted activities (Dabbish

et al. 2012), our rating module calculates developers’ preferences in projects on a 1 to 5 scale. This

rating module is one of the main contributions of this study that is presented as an algorithm, which

we will discuss in next section.

Developers

Projects

Technical
Activities: (Code
Commits, Pull
Requests, Assigned
Issues)

Time
Hierarchy

(Year,
Quarter,

Rating

UAT

Rates

Collaborative
Activities:
Commit Comments,
Issue Comments,
Pull Request
Comment
Social
Activities:
Following, Followed
By

Electronic copy available at: https://ssrn.com/abstract=3642052

20

Figure 6. Hierarchical categories of social coding activities.

In this study, we have applied implicit feedback approach for collaborative filtering (CF)

recommendation (Kelly and Teevan 2003; Lee et al. 2008; Palanivel and Sivakumar 2010). Implicit

feedback rating approach is used when, 1) direct ratings are not possible/available, and/or 2) the rating

values are temporal and dynamic (Hu et al. 2008; Lee et al. 2008). Both of these issues are relevant

in our context. First, GitHub does not provide a mechanism for developers to rate OSS projects and

second, developers’ activities on projects change over time, which may affect their project rankings.

Our approach deals with both of these challenges. We discuss the details of rating mechanisms in the

next section.

We use personalized project ratings generated via implicit feedback approach for collaborative

filtering (CF) recommendation because CF has been used to predict users' interests based on choices

of other similar users (Ricci et al. 2011). CF is independent of the content of items and there is no

need for complex similarity calculation because it is based on similarity in preference (project

ratings). We now present a general memory-based CF approach which uses Pearson or Cosine

correlation similarity (Ricci et al. 2011). Equation 1 shows our proposed approach to predict

developer d’s rating for a project p, where. D is the list of top N most similar developers (in terms of

their project ratings) and k is the normalization factor shown in equation 2. Sim(d,d’) calculates the

similarity between developer d and d’ (Equation 3a).

Social Coding
Activities

Social

Following

Followed By

Technical

Commit

Issue

Pull Request

Collaborative

Commit
Comment

Issue
Comment

Pull Request
Comment

Electronic copy available at: https://ssrn.com/abstract=3642052

21

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑑𝑑, 𝑝𝑝) = 𝑘𝑘 � 𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑,𝑑𝑑′) × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑′, 𝑝𝑝)
𝑑𝑑′∈𝐷𝐷

 (1)

𝑘𝑘 =
1

∑ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑑𝑑,𝑑𝑑′)𝑑𝑑′∈𝐷𝐷

(2)

The Pearson Correlation similarity is calculated based on Equation 3a, where r represents rating and

Pxy represent a list of common projects between user x and y. One could use other approaches such

as Cosine similarity (Equation 3b), widely used in in the literature (Ricci et al. 2011), or other

similarity metrics like Jaccard and Euclidean distance (Ricci et al. 2011). We do not discuss other

CF approaches because comparing different approaches is not the focus of this study.

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =
∑ (𝑟𝑟𝑥𝑥,𝑝𝑝 − 𝑟𝑟𝑥𝑥)(𝑟𝑟𝑦𝑦,𝑝𝑝 − 𝑟𝑟𝑦𝑦) 𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥

�∑ (𝑟𝑟𝑥𝑥,𝑝𝑝 − 𝑟𝑟𝑥𝑥) 2 ∑ (𝑟𝑟𝑦𝑦,𝑝𝑝 − 𝑟𝑟𝑦𝑦) 2𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥 𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥

(3a)

𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =
∑ 𝑟𝑟𝑥𝑥,𝑝𝑝 𝑟𝑟𝑦𝑦,𝑝𝑝 𝑝𝑝∈𝑃𝑃𝑥𝑥𝑥𝑥

�∑ 𝑟𝑟𝑥𝑥,𝑝𝑝
2 ∑ 𝑟𝑟𝑦𝑦,𝑝𝑝

2
𝑝𝑝∈𝑃𝑃𝑦𝑦 𝑝𝑝∈𝑃𝑃𝑥𝑥

(3b)

ARTEFACT DESCRIPTION

This study proposes a novel implicit rating mechanism for rating open source projects based on

developers’ social, technical and collaborative activities. Project ratings are an input to a collaborative

filtering recommender system to recommend the most appropriate project for a developer. Details of

the rating technique are presented below in Algorithm 1. For ease of exposition, we scaled the

developers’ project ratings from 1 to 5, where 5 represents the highest interest value.

Algorithm 1: Time-Based Implicit Feedback for OSS Projects

Inputs:

Developers (List of Developers N)

Prjs (List of Projects M)

Activities (List of Developers’ Activities in GitHub Projects)

ActivityTypes (K)

Output:

CubeRatings (Cube K*N*M of Developers’ implicit rates for Projects in each Activity)

Procedure:

For each activityk in ActivityTypes

For each developern in Developers

For each projectmin Prjs

Xn,m= SUM(DPT(developern, projectm, timet))

Electronic copy available at: https://ssrn.com/abstract=3642052

22

For each developern in Developers

For each projectm in Prjs

ActivityRatingsn,m=Rates(developern, projectm, X)

CubeRatingsk,n,m= ActivityRatingsn,m

In Algorithm 1, two functions are used- DPT(x,y,z) and Rates(x,y,z). For a given activity type, DPT

(Developer, Project, Time period) calculates total time-discounted activity of a developer d, on a

specific project p, in time period t (Equation 4). Algorithm 1 receives four inputs- a list of developers,

a list of OSS projects, a list of activities performed by developers on projects with their timestamps,

and a list of different activity types. The output of the Algorithm 1 is a cube of implicit feedback

ratings (CubeRatings), which can be used for predicting developers’ preference. The dimensions of

the cube are activity type, developers and projects. Each cell in the rating cube contains the calculated

rate value. In Algorithm 1, The function SUM(argument) summarizes all the DPT returned values for

different time periods in one cell of matrix X, which we discuss later.

𝐷𝐷𝐷𝐷𝐷𝐷(𝑑𝑑, 𝑝𝑝, 𝑡𝑡) =
∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑑𝑑 𝑜𝑜𝑜𝑜 𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡

𝑓𝑓(𝑡𝑡) + 1

(4)

𝑓𝑓(𝑡𝑡) = (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑡𝑡) (5)

𝑓𝑓(𝑡𝑡) = (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑡𝑡)(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑡𝑡) (6)

Equation 4, demonstrates DPT functionality in detail. Activities are time discounted, giving more

weight to the ones in recent periods (Lee et al. 2008; Robbes and Röthlisberger 2013), as shown in

Equation 4. This time-discounting approach accounts for changes in preferences and goals for both

developers and projects. Therefore, OSS project recommendation system in our artefact is a multi-

criterion decision-making process (MCDM),

For the ease of exposition, we have considered linear discounting (Equation 5) however, our artefact

can handle any other forms of discounting (e.g., exponential, Equation 6). Further, linear approach

has been commonly used in the literature (Robbes and Röthlisberger 2013) because it performs well.

The Rates function (Equation 7) calculates developers’ rates (ratings) to their contributed projects

based on DPT. The summation of all DPT for an activity type for each developer on a specific project

Electronic copy available at: https://ssrn.com/abstract=3642052

23

is stored in a matrix X, where rows and columns are developers and projects. This matrix is an input

to Rates function (Equation 7).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑑𝑑, 𝑝𝑝,𝑋𝑋) =

𝑋𝑋[𝑑𝑑, 𝑝𝑝]
∑ 𝑋𝑋[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑖𝑖], 𝑝𝑝]𝑁𝑁
𝑖𝑖=0

𝑁𝑁
∑ 𝑋𝑋[𝑀𝑀
𝑘𝑘=0 𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑘𝑘]] × 1

∑ 𝑋𝑋[𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷[𝑗𝑗],𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃[𝑘𝑘]]𝑁𝑁
𝑗𝑗=0

𝑁𝑁

(7)

In equation 7, d and p represent the developer and project, M is the number of projects and N is the

number of developers. X[a,b] refers to the element Xa,b of matrix X. Our approach for rate calculation

considers two different ways to normalize the rates value. First, we divide a developer’s total activity

in a specific project by the average activities of other developers in the same project, during the same

time. This allows us to capture developer’s relative interest in that project compared to other

contributors. Second, by normalizing developer's relative interest for a project with other projects this

developer contributes, we capture developer's relative preference for this project compared to other

projects. The value of the rating is stored in a matrix, ActivityRatings (see Algorithm 1), which is for

a specific activity, say commit. Similar exercise is performed for each of the eight activities (2 for

social, 3 for technical and 3 for collaborative) to generate ActivityRatings for each activity. Together

all these ActivityRatings are compiled in CubeRatings. Note that CubeRatings is a three-dimensional

matrix whereas ActivityRatings is a two dimensional matrix (see Algorithm 1). We illustrate the

working of algorithm 1 via an example, later in this section.

The CubeRatings matrix is three dimensional but we desire a two-dimensional rating matrix with

dimensions as developers and projects. Therefore, we calculate an OverallRatings matrix, which is

two dimensional. We argue that developers’ preferences for activities may vary and it is less likely

that developers have equal preference for the all the activity types. For example, a developer may

partake in social, technical and collaborative activities but they contribute mostly via commits (a

technical activity), and thus commit activity should get a higher weightage when computing project

ratings for this developer. Therefore, we compute weights for each activity type for every developer

to reflect their activity preference in their project ratings. Equation 8 demonstrates a generic approach

Electronic copy available at: https://ssrn.com/abstract=3642052

24

to estimate weights for each activity. Here d, a and p, represent developers, selected activity, and

project, respectively. Wd,a demonstrates the weightage for activity a for developer d.

𝑊𝑊𝑑𝑑,𝑎𝑎 =
∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑎𝑎,𝑑𝑑,𝑝𝑝]𝑝𝑝

1
𝑛𝑛∑ ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑎𝑎,𝑑𝑑, 𝑝𝑝]𝑝𝑝

𝑛𝑛
𝑑𝑑

(8)

Algorithm 2, is an implementation based on equation 8 to calculate ModeratedWeights matrix (see

Algorithm 2). This matrix is two dimensional. In Algorithm 2, we calculate the average number of

activities for all developers and check the variance of the current user with the average.

Algorithm 2: Developers’ Interest Calculation on Each Activity Type

Inputs:

Developers (List of Developers with size N)

Prjs (List of Projects with size M)

Activities (List of Developers’ Activities in GitHub Projects)

ActivityTypes (with size K)

Output:

ModeratedWeight (Matrix N*K of Developers’ Weight for Each Activity Type)

Procedure:

For each activitya in ActivityTypes

C=0, S=0

For each developerd in Developers

Ad,a=0

For each projectp in Prjs

Xd,p= SUM(DPT(developerd, projectp,timet))

Ad,a=Ad,a+Xd,p

S=S+ Ad,a

C=C+1

Avga=S/C

For a=1 to K

For d=1 to N

Weightd,a=Ad,a/Avga

For a=1 to K

SumWeight=0

For d=1 to N

SumWeightd= SumWeightd+ Weightd,a

For a=1 to K

For d=1 to N

ModeratedWeightd,a= Weightd,a/ SumWeightd

Electronic copy available at: https://ssrn.com/abstract=3642052

25

The moderated weight is calculated to understand the importance of each activity for a developer.

Overall rating is derived from multiplying the moderated weight with the value of cube rating cells

as shown in Algorithm 3. We now elaborate Algorithm 3 with an example. For example, consider

<0.6, 0.1, 0.3> as the moderated weights for a developer for three different type of activities. Further,

this developer contributed in 2 projects and rates in her CubeRatings matrix for both the projects

(based on all three activities) are <<2,3,3>, <5,1,2>>. By applying algorithm 3, we get

<<0.6*2+0.1*3+0.3*3>, <0.6*5+0.1*1+0.3*2>> which results into <2.4, 3.7> as overall rating of

this developer for these two projects. However, if we consider equal weights (for each activity) we

get <(2+3+3)/3, (5+1+2)/3)>, or <2.67, 2.67>for both the projects. We see that with equal weights,

both projects are ranked at the same level (<2.67, 2.67>) whereas by considering developers’

preferences for different activities (Algorithm 3), second project is ranked higher (<2.4, 3.7>). Overall

ratings can be calculated using equation 9. Where the CubeRatings function represents the calculated

rate on activity a in project p for developer d (refer to formula 4). Wd,a demonstrates the weightage

for activity a for developer d, as shown in equation 8. We have proposed a generic form, but our

approach is modular and can adopt to any different approach for estimating weights, such as equal

weighting for each activity. The OR function populates the cells of OverallRating matrix.

𝑂𝑂𝑂𝑂(𝑑𝑑,𝑝𝑝) = � 𝑊𝑊𝑑𝑑,𝑎𝑎 × 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎,𝑑𝑑,𝑝𝑝)
𝑎𝑎

 (9)

Algorithm 3 shows the calculation of Moderated Rates while different criteria for developers’

interests applied on their activities.

Algorithm 3: Multi-Criteria Overall Rating Calculation

Inputs:

Developers (List of Developers with size N)

Prjs (List of Projects with size M)

Activities (List of Developers’ Activities in GitHub Projects)

ActivityTypes (with size K)

ModeratedWeight (Matrix N*K of Developers’ Weight for Each Activity Type)

CubeRatings (Cube N*M*K of Developers’ implicit rates for Projects in each Activity)

Output:

OverallRatings (Matrix N*M of Developers’ overall rates for Projects)

Electronic copy available at: https://ssrn.com/abstract=3642052

26

Procedure:

For each activitym in ActivityTypes

For each developera in Developers

OverallRatingsa,b =0

For each projectb in Prjs

OverallRatingsa,b = (OverallRatingsa,b + (ModeratedWeighta,m* CubeRatingsa,b,m))

We now illustrate our Algorithm 1 via an example. Figure 7 shows the main steps of applying

Algorithm 1. In follows, we show steps for generating an ActivityRatings matrix (see Algorithm 1)

for one activity. As shown in Algorithm 1, there is one ActivityRatings matrix for each activity.

CubeRatings matrix is just accumulation of all these ActivityRatings matrices (see Algorithm 1).

CubeRatings matrix is then multiplied by moderated weights matrix to generated OverallRatings (see

Algorithm 3).

Figure 7. An Illustrative Example of Algorithm 1

We start by collecting data on developers’ specific type of activity, e.g., commit on projects, from

previous five quarters (Table 1, Figure 7). Let’s say that we have collected data for five quarters (time

periods), from Q1 (t=1) to Q5 (t=5). Our goal is to compute implicit project ratings at the end of

quarter 5 (Q5). In Table 2 of Figure 7, linearly discounted activities are calculated using equations 4

and 5. For example, in Table 2, the discounted activity for Dev_A, Prj_K, in Q1 is 17.4 (87/(5-1+1))

Electronic copy available at: https://ssrn.com/abstract=3642052

27

and the discounted activity for Dev_A, Prj_K, in Q2 is 8 (32/(5-2+1)). In the next stage, we group all

the discounted activities for developers (Table 3a) and projects (Table 3b) separately to capture their

trend. For example, in Q1, Dev_A has done 22.4 (17.4+4.6+0.4) discounted activities across three

projects, K, L and M (Table 3a). Similarly, there were 18.2 (17.4+0.8) discounted activities in Proj_K

from all the developers (developers A and D) in Q1 (Table 3b). We also calculate the average

contribution (discounted activity) from developer and project perspective. For example, developer A

worked on 3 projects and her average contribution on a project was 81.9 (last column of Table 3a).

We performed similar calculations in Table 3b for projects. In fourth step (Figure 7, Table 4), we aim

to estimate developers’ relative performance on each project. We first divide the total activity of a

developer on a project by the average of activities on that project. For example, we divide developer

A’s total activity on project K (198.7, first row, last column of Table 2) by average contribution on

project K by any member (100.3, first row, last column of Table 3b), which results into 1.98

(198.7/100.3), and is shown in the first row and column of Table 4. This means, that developer A’s

contribution on project K is almost double of the average contribution on project K during this period

(Q1-Q5). We now do similar calculation for all the projects for developer A. We sum up all the

relative activity/project for all the developers. For Dev_A, it results into 3.18 (1.98+1.06+0.14) as

shown in Table 4 of Figure 7. We now divide developer A’s relative preference for all projects by

this total (3.18 for developer A) as shown in Table 4 of Figure 7. The highest value is the most

interesting project for a developer, is rated as 5 and rest are scaled accordingly. Since we used commit

activities for this example, the outcome of this exercise is a ActivityRatings matrix (Table 5, Figure

7) for commit activity. We generate similar ActivityRatings for all eight activities (2 for social, 3 for

technical and 3 for collaborative). All these eight ActivityRatings put together form the CubeRatings

matrix (see Algorithm 1). CubeRatings is a three-dimensional matrix which is multiplied with

ModeratedWeight matrix (Algorithm 2 and 3) to generate the OverallRatings matrix, which is two

dimensional with developers and projects as two dimensions. The OverallRatings matrix is an input

to a CF recommender system.

Electronic copy available at: https://ssrn.com/abstract=3642052

28

Figure 8. Illustration of Algorithm 3

Figure 8 schematically explains how ModeratedWeight matrix (Algorithm 2) is applied to

CubeRatings to generate the OveralRatings. Table 1 in Figure 8, shows developers’ perceived interest

in each activity (ModeratedWeight matrix). These weights are applied to the CubeRatings matrix (see

Algorithm 3) to generate the final OverallRatings matrix (Table 3, Figure 8), which is the main

contribution of this study. We design an artefact for implicitly rating projects based on developers’

social, technical and collaborative activities across different projects. These rating (OverallRatings)

are used for recommending projects to OSS developers. We now discuss the data and evaluation of

our proposed artefact.

DATA COLLECTION

We collected data from GitHub, which is the largest open source software repository. As of 2019

GitHub has more than 50 million users and 100 million of projects. Although GitHub provides a

RESTful API for data collection, currently, two main archives store and collect GitHub’s data in

different formats. GhTorrent (Gousios 2013) and GitHub Archive (Grigorik 2012) provide different

type of data access to GitHub. We selected GhTorrent (Gousios 2013) because it provides a regular

Electronic copy available at: https://ssrn.com/abstract=3642052

29

SQL-based data dump along with MongoDB data dumps facilitating Big Data analytics needed for

this study and GhTorrent, it is the most used data set in GitHub analytics (Cosentino et al. 2017).

We collected data on projects that were created between 13/1/2008 to 18/6/2015, which resulted into

a total of 20,048,071 projects and 7,210,741 unique users. We report summary statistics in Table 1,

which shows the size and diversity of the activities in OSS projects hosted on GitHub and therefore

confirms the challenges for developers to find a suitable project.

First Date Last Date Number

of User

Number

of Project

Non-forked

Projects (original)

Avg(Project/Usr) Avg(Usr/Project)

13/01/2008 18/06/2015 7,210,741 20,048,071 10,647,788 1.5072 3.2961
Commit Commit

Comment

Issue Issue

Comment

Pull Request Pull Request

Comment

Follow

260,619,933 2,017,971 18,895,174 32,304,278 7,946,946 4,312,419 7,022,950

Table 1. A Summary of GhTorrent Data Dump

From this data dump, we remove personal, dead, forked and unreal projects (Kalliamvakou et al.

2014) resulting into a dataset containing projects that are original, and are not forked from any other

project (Kalliamvakou et al. 2016). We removed all the public projects converted to private or deleted

from GitHub. To reduce the size of dataset for evaluating our proposed artefact, we only focused on

developers who joined the GitHub in a specific month (January 2012) and collected all their social,

technical and collaborative activities on GitHub for a period of three years. We selected year 2012

because GitHub got matured in year 2012 (Moqri et al. 2018; Nielek et al. 2016). Figure 9 shows the

distribution of contributed projects by developers who joined in January 2012. This distribution

follows a power law distribution. Figure 9 shows that more than 85% of contributors participated in

5 or fewer projects.

Electronic copy available at: https://ssrn.com/abstract=3642052

30

Figure 9. Distribution of number of contributed projects for GitHub members

Further analysis of this data showed that developers who work on 5 or more projects, contribute (in

terms of commits) almost five times higher than those who work on 4 or less projects. In other words,

the total number of commits by bottom 85% is about the same as the number of commits by top 15%

developers. These statistics shows the influence of these active developers in the OSS community.

Since developers’ contributions are key to success and survival of OSS community, we want to focus

on top 15% developers who do the heavy lifting in the community. Following this observation, we

focus on these active developers to test our artefact. Note that these 15% are among the developers

who joined GitHub in January 2012, a very small subset of the whole community. Our sample for

evaluating the artefact contains 254 projects and 84 developers, which is the outcome of our data

cleaning phase. Our sample size is comparable to other similar studies that have used data from

GitHub (Blincoe, et al., 2016). We acknowledge that we have not considered developers’

activities/contributions outside of GitHub, which may affect their overall preferences. However,

GitHub is by far the largest repository and adequately considers developers’ preferences, thus has

been used in a large number of studies (Sarker et al. 2019; Vasilescu et al. 2016).

As discussed earlier, we only focussed on developers with at least five projects in their baskets, to

reduce the sparsity of the rating matrix. Rating matrix sparsity and cold start are challenging issues

in collaborative filtering (CF) systems (Lam et al. 2008; Lu et al. 2015). We put a limit on the

minimum number projects a developer works on, for following reasons. First, since we want to

0
1000
2000
3000
4000
5000
6000
7000

1 6 11 16 21 26 31 37 46 52 65 76 11
0

15
0

19
0

Distribution of Projects for Developers

Total

Electronic copy available at: https://ssrn.com/abstract=3642052

31

evaluate our approach with state of the art techniques, we need to have a fairly populated project-

developer matrix to make a meaningful comparison. Second, to employ collaborative filtering

technique, we need to have some prior on developers' contribution to find similar/preferred projects.

Third, developers participating in multiple projects are more active than others, and it is critical to

recommend them suitable projects because they make the bulk of the contribution to OSS projects

(Vasilescu et al. 2016).

 Commit Commit

Comment

Issue Issue

Comment

Pull

Request

Pull

Request

Comment

Following Followed

By

Commit 1 0.1978 0.1651 0.3661 0.4607 0.2425 0.0747 0.0878

Commit

Comment

0.1978 1 0.2658 0.3854 0.2671 0.2484 -0.0101 0.0526

Issue 0.1651 0.2658 1 0.2021 0.3002 0.1299 -0.0190 0.0522

Issue

Comment

0.3661 0.3854 0.2021 1 0.5706 0.3100 0.0337 0.0991

Pull Request 0.4607 0.2671 0.3002 0.5706 1 0.4159 0.0472 0.1393

Pull Request

Comment

0.2425 0.2484 0.1299 0.3100 0.4159 1 -0.0203 0.0854

Following 0.0747 -0.0101 -0.0190 0.0337 0.0472 -0.0203 1 0.4102

Followed By 0.0878 0.0526 0.0522 0.0991 0.1393 0.0854 0.4102 1

Table 2. Correlation analysis for developers

We collected quarterly data (Yamashita et al. 2016) because the average timeframe of minor releases

in GitHub is approximately three months. However, our artefact is flexible to handle any duration.

We report Pearson correlations of all selected activities for developers (Table 2) and do not find any

high correlations. Table 3 illustrates the descriptive statistics of the sample dataset used for

evaluation.

Variable Description Mean Median Max Min
Users per Project Number of users per project 12.60 7 295 4

Projects per user Number of projects per user 6.92 7 9 5

Commit per user Number of commits per user 35.77 0 768 0

Commit Comments per
user

Number of commit comments per
user

0.036 0 1 0

Issues per user Number of issues per user 0.38 0 10 0

Electronic copy available at: https://ssrn.com/abstract=3642052

32

Table 3. Data descriptive statistics (84 developers across 254 projects)

EVALUATION

This study proposes a novel artefact for recommending OSS projects to developers. This artefact is

presented in the form of an algorithm and implemented as a Proof-of-Concept (Gregor and Hevner

2013; Iivari 2015) for evaluation purpose, using the real world data. For novel approaches and

artefacts, proof-of-concept or prototyping is sufficient to validate the applicability of the proposed

solution (Gregor and Hevner 2013). The proof-of-concept prototype of our personalized project rating

mechanism is implemented by using MySQL R-DBMS and C# programming language. We have

used RecommenderLab R package (Hahsler 2011) to check the accuracy of rating technique. We

compared our approach with two general approaches- Popular item recommendation and Random

item recommendation, which are available in RecoimmenderLab R package. Next section introduces

our evaluation process in depth.

Figure 10 introduces the evaluation process using holdout technique- Leave-K-Out (Cremonesi et al.

2008). In this process, randomly selected data-points are removed from OverallRatings matrix. Then

we use remaining data points in the OverallRatings matrix to predict the ratings (using

RecoimmenderLab R package) that were randomly removed. The error rates are measured by

comparing the predicted rates with the actual values. We illustrate this method via an example in

Figure 10. Step 1 in Figure 10 shows the OverallRatings matrix. From this matrix, developer B’s

rating for project L and developer D’s rating for project M are randomly removed (see Step 2). We

now use the remaining ratings in Table 2, Figure 10, to predict these randomly removed values and

compare the predicted ratings with actual ratings to estimate prediction errors. Using 1-NN

developers (first nearest neighbourhood) similarity metrics, developer B is similar to C and developer

D is also similar to C (see step 3 in Figure 10). The prediction outcome would be developer B’s rating

Issue Comments per
user Number of issue comments per user 4.12 0 221 0

Pull Request per user Number of pull requests per user 13.49 0 492 0

Pull Request Comments
per user

Number of pull requests comments
per user

1.81 0 120 0

Electronic copy available at: https://ssrn.com/abstract=3642052

33

on project L as “3” which is equivalent to the actual rating (error =0). For developer D on project M

the predicted rate is 5 resulting in the difference of “1” scale from the actual rating (see step 4 in

Figure 10).

Figure 10. Collaborative filtering evaluation process

In this study, we have compared our proposed moderated OverallRatings with four baseline

approaches based on Average, Max, Popular and Random computation methods. Note that we

computed ActivityRatings matrix for each activity and then by using weights (preferences) for each

activity, generated the OverallRatings matrix. In Average approach, we give equal weights to each

activity to compute the OverallRatings matrix. The Max approach, considers the maximum rating

among all different activities (from ActivityRating matrix) as overall rates. This approach only

considers the ratings for the highest weighted activity and ignores the rest. In Popular approach, only

most contributed projects are selected to compute OverallRatings. And finally, the Random approach,

relies on randomly picked ratings. We analysed the accuracy of our approach by dividing our overall

rating matrix into two sets. One for training and one for testing. We used different sizes of training

and testing sets to test robustness of our results. We used following combinations of training and

testing sets- 1) 70%, and 30%), 2) 80% and 20%), and 3) 90% and 10%.

We ran our test for 100 times to reach the consistent values for our measures. This iterative process

is done because the training and testing sets are selected randomly and may show different values

based on the sparsity of rating matrix in each division. Following literature in recommender systems

(Ricci et al. 2011), we have used RMSE (Root Mean Square Error), MSE (Mean Square Error) and

Dev_C is Similar to Dev_B

Dev_C is Similar to Dev_D

Prediction
Dev_B, Prj_L ~3; Error= 0

Dev_D, Prj_M ~5; Error= 1

Electronic copy available at: https://ssrn.com/abstract=3642052

34

MAE (Mean Absolute Error) to test the accuracy of our approach. Table 4 shows the average values

for each measure on different training and testing set splits.

Table 4. Evaluation result

 Average Max Proposed Moderated-Approach

 RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE

70-30 0.281 0.098 0.079 0.645 0.471 0.162 0.179 0.044 0.048

80-20 0.307 0.114 0.096 0.736 0.689 0.229 0.185 0.054 0.059

90-10 0.334 0.177 0.135 0.708 0.800 0.262 0.178 0.057 0.070

 Popular Random

 RMSE MSE MAE RMSE MSE MAE

70-30 0.845 0.772 0.364 1.036 1.104 0.605

80-20 0.848 0.816 0.385 1.075 1.209 0.641

90-10 0.840 0.879 0.413 1.106 1.322 0.683

Figure 11 graphically represents the average values for different approaches we tested and it shows

the lowest error rate for our proposed rating technique compare to others approaches. In Figure 11,

the first chart on left shows RMSE, middle one illustrates MSE and right one MAE. Each chart shows

results for all five approaches, from left to right: Average, Max, Moderated, Popular, and Random.

Figure 11. Comparison of different recommendation techniques.

The result of comparison shows that our proposed technique outperforms other approaches. The worst

estimation belongs to the Random approach and the closer one to our proposed method is the Average

approach. It is clear as we increase the size of training set from 70% to 90% the accuracy of predicted

values decrease. We suspect that as testing set becomes smaller, (10%) the sparsity of matrix increases

and affects the prediction accuracy. Note that our proposed approach does not suffer with this

problem. We also observe that though Popular approach doesn’t perform better than our proposed

Electronic copy available at: https://ssrn.com/abstract=3642052

35

approach, the performance of Popular approach is consistent (see Figure 11) for all the training and

testing set combinations because one would get almost a similar set of popular projects in the all

training-testing set combinations and the popular metric is not a user-dependent metric. Figure 12

shows the boxplots of RMSE, MSE, and MAE for 100 cases captured for (80%, 20%) of each

technique. Figure 12 shows the distribution and range of errors for all the evaluation methods. It is

clear that our proposed moderated approach performs best among all.

Figure 12. Different techniques comparison from left to right RMSE, MSE, and MAE

Our collaborative filtering method used Z-score for rating matrix normalization, Cosine similarity is

used to find the similarity of developers and K-Nearest Neighbourhood is used to find the K similar

developers to the focal developer (Hahsler 2011; Ricci et al. 2011).

From the implementation and complexity perspective, our approach is scalable and computationally

efficient because the rating algorithm (Algorithm 1) can run in parallel on multiple machines.

Running in parallel provides better performance as the numerator and denominator of the Rates

function (Equation 7) are independent. Map/Reduce (Shang et al. 2010) is a good choice for

processing different parts of Algorithm 1. We can apply Mapper function to calculate activities in

different machines and in the reducer sum it up for developers and projects. Note that the X matrix is

created only once and it just requires updating activities from the most recent time period. Based on

the offline creation and calculation of X Matrix, this algorithm can perform well in the real-time high-

performance recommendation. We can apply the same parallelism techniques for Algorithm 2 as well.

Electronic copy available at: https://ssrn.com/abstract=3642052

36

Empirical Evaluation

One pertinent question is what happens if a developer joins the project recommended by our artefact.

To answer this question, we examine developers’ performance if they join the project recommended

by our recommender system.

Sample selection for this evaluation followed a similar criterion as discussed in Data Collection

section. As earlier, we focussed on active developers, who work on more than five projects, and who

joined GitHub in 2012 (Moqri et al. 2018; Nielek et al. 2016). To evaluate our artefact, not only we

needed active developers, but also needed projects with enough socio-technical activities of

developers, to run our recommendation engine. Note that rating matrix sparsity and cold start are

challenging to and collaborative filtering (CF) system (Lam et al. 2008; Lu et al. 2015) and thus are

also a limitation of our approach.

We used a sample of 17 active developers associated with 294 OSS projects. OverallRating matrix

ranked 7 projects as high ranked and 12 projects as low ranked projects. Recall that developers are

recommended to join high ranked projects and not recommended to join low ranked projects. We find

that developers who joined high ranked projects, were among top 17% of developers in those projects

based on their contributions. Further, in the first year of joining these projects, developers’

contribution on these projects was higher compared to developers’ total contribution on rest of their

projects. In contrast, developers who joined low-ranked projects, were below average in terms of

contributions on the project they joined. Further, their overall contribution to these projects was lower

than other projects they were associated with. These findings suggest that developers joining our

recommended projects is a win-win for both, the developers and the projects.

ROBUSTNESS CHECKS

To test the robustness of our proposed approach, we perform two robustness checks, first by changing

the dataset for evaluating the artefact and second by the changing the measurement of socio-technical

activities. We describe them next.

Electronic copy available at: https://ssrn.com/abstract=3642052

37

It is possible that performance of our method was driven by our sample that was based on developers

joining GitHub in a particular month (January 2012). To address this concern, we collected another

dataset for developers joining in January 2013 and followed same selection criterion as discussed in

Data Collection section. Further, we also changed the time interval for calculating developers’ social,

technical and collaborative activities. Instead of using quarterly activities of the developers, we used

six-monthly data. This dataset resulted into 237developers and 41 projects. We find that though our

moderated approach still performed the best, but error rates were slightly higher compared to our

results using quarterly data in the earlier dataset. Again, in this case, Average approach was next best

after our proposed approach. We don’t report results here for brevity.

Recall that to measure developers’ socio-technical activities, prior literature has focussed on six

activity types- commit, issues and pull request as technical activities and commit comments, pull

request comments and issue comments as social activities. Following the literature in software

engineering (Xuan and Filkov, 2014), we added following and followed by as social activities and

termed commit comments, pull request comments and issue comments as collaborative activities.

Thus, we expanded the measurement of socio-technical activities (8 activities) to social, technical

and collaborative activities (see section Overall Framework). To test the robustness of our proposed

approach, we also performed the evaluation of our artefact based on the older measurement of

developers’ socio-technical activities (using only 6 activities). We find that the error rate was slightly

higher; however, it was expected because we ignored two activities (used 6 as opposed to 8). These

results underscore the need of using developers’ social activities (following and followed by) to

measure their socio-technical activities in OSS projects.

CONCLUSIONS AND FUTURE WORK

Literature in Open source software looks at OSS projects as an outcome of developers’ socio-

technical activities. Indeed, software development and OSS in particular is an outcome of co-creation

which requires lot more than developers’ hard technical skills. Recent studies confirm that along with

Electronic copy available at: https://ssrn.com/abstract=3642052

38

technical skills, developers’ social skills are also looked at before they get accepted in OSS projects

(Gharehyazie et al. 2015).

Scholars agree that while developers contribute to many OSS projects, they certainly prefer some

projects more than others (Hahn et al. 2008; Jarczyk et al. 2014; Tsoy and Staples 2018; van Osch et

al. 2011). Further, not only they have different preferences for these projects, there preferences

change over time, partly because both developers and OSS projects evolve over time (Happel and

Maalej 2008; Robillard et al. 2014). Building on this this literature, we argue that developers’

activities/contributions to OSS projects reveal lot more than mere associations with these projects.

We argue that a detailed look at their activities/contributions on OSS projects can unlock the secret

and can reveal the extent and evolving nature of their preferences for projects, based on, how much,

how often and what they contribute on these projects. We address these issues by developing an

artefact that can recommend projects to developers as we discuss next.

This study presents a framework for developing a personalized OSS project ranking mechanism for

developers. Our framework proposes to use developers’ historical activities/contributions on social

coding platforms such as GitHub, to create an implicit feedback rating mechanism for the projects

they contributed. Developers’ activities on these social coding platforms are transparent and therefore

support the viability of the proposed framework and ranking mechanism. Since these rankings are

personalized for each developer based on their contributions, these project rankings are then used for

recommending OSS projects to developers using collaborative filtering (CF) technique. This

recommender system is expected to match interested developers to projects in a way to reduce

developers’ attrition (Steinmacher et al. 2015) and project failure (Schilling 2012) which has

threatened the growth and sustainability of OSS ecosystem in recent years.

The OSS project recommendation that we propose, is a multi-criteria decision-making problem. The

project recommendation is built on developers’ interest/contribution in social, collaborative and

technical activities. On one side, we considered the temporal changes in developers’ contributions

Electronic copy available at: https://ssrn.com/abstract=3642052

39

over time, in terms of projects and activity types. And, on the other side, we considered the changes

in projects’ internal activities over time.

Overall, this study makes two main contributions to the literature. First, we propose to categorize

developers’ activities/contributions as Social, Technical and Collaborative activities. Existing work

categorizes these activities as either social or technical. We add a new category- collaborative

activities. Prior work has discussed the importance of developers’ socio-technical activities in OSS

ecosystem but literature is scattered with often contradictory findings/recommendations on

categorization of these activities (Moqri et al. 2018; Sarker et al. 2019). We propose a coherent

categorization of these activities based on literature in software engineering.

Second, we develop an artefact to generate personalized project rankings for developers. Since

developers do not directly rate projects, we use developers’ historical contributions via social,

technical and collaborative activities across different projects to capture their preferences and create

implicit feedback ratings. Ratings are moderated based on the proposed multi-criteria decision

making approach to compute the overall moderated ratings of projects. The moderated overall ratings

are an input to a collaborative filtering recommender system. As a proof-of-concept, the proposed

approach is evaluated based on a real longitudinal dataset of OSS projects and developers hosted on

GitHub. We compared the proposed rating method with other possible state of the art approaches,

and find that our approach shows high accuracy in term of distance between real and predicted data.

Our contributions are presented in the format of three algorithms and implemented as a prototype

application.

However, similar to other studies this research has some limitations, which are discussed next. First,

the dataset comprises of developers’ activities only on GitHub while developers may have contributed

to projects hosted on Bitbucket, GitLab, SourceForge or other repositories. Although adding these

repositories may provide a more complete dataset of developers’ activities, it may not affect this study

for following reasons. 1) A change in the dataset does not affect the design our project ranking

Electronic copy available at: https://ssrn.com/abstract=3642052

40

mechanism, the main contribution of this study, 2) GitHub is by far the largest repository, which

means, GitHub data can provide dominant patterns in the OSS community, 3). We have focused on

GitHub data since 2012, when it was accepted as the most matured OSS repository (Moqri et al. 2018;

Nielek et al. 2016). Further, the prospect of using a third party data integrator such as OpenHub

(Ohloh) is not helpful because Ohloh only collects data on a small number of OSS projects which is

not comparable with size and scale of GitHub and not all the GitHub contributors are listed on Ohloh

and therefore, GitHub data has been used in many studies (Cosentino et al. 2017; Sarker et al. 2019).

Second, Collaborative filtering is sensitive to the matrix sparsity and as we have used the general

collaborative filtering technique in this study, this study may also suffer from this problem. Matrix

factorization and model-based techniques such as clustering (Ricci et al. 2011) may help in this

situation. We need to evaluate the quality of proposed rating approach in the sparse cases with the

mentioned techniques.

Third, similar to other pure user-based collaborative filtering technique this artefact may face cold

start problems with (Lam et al. 2008) new projects and developers with the low historical background.

Future research aims to use the combination of knowledge-based recommender systems and model-

based techniques to address this limitation.

Fourth, we have evaluated our proposed model with the limited number of GitHub projects and

developers as a proof-of-concept. We only selected developers who contributed to at least 5 projects

to overcome the cold-start and sparsity issues of collaborative filtering. However, cold-start and

sparsity are always challenging in any collaborative filtering based recommendation system

(Adomavicius and Tuzhilin 2005). Further, we argue that using this same dataset, our approach

outperformed other baseline approaches.

Fifth, in recommending projects to developers, we didn’t account for developers’ preferences in

programming languages, topics, licences and prior ties, etc. We argue that we indirectly account for

these by using collaborative filtering approach.

Electronic copy available at: https://ssrn.com/abstract=3642052

41

And finally, the sample size used for the proof-of-concept may be small, however, it is comparable

to other studies (Blincoe, et al., 2016). Note, that our dataset is small because the period of data

collection is also restricted. To address this issue we have evaluated our artefact with other datasets

to validate our proposed technique.

In summary, we argue that while extant literature has investigated how developers’ prior ties with

other developers affect their decision to join an OSS project (Hahn et al. 2008), we add to that

literature and develop a recommender system that recommends projects considering developers’

preferences and projects’ goals beyond developers’ ties with other developers. In future research, we

aim to merge this approach with knowledge based and content-based techniques to develop a hybrid

recommender system. Future work can also use social connectivity to measure similarities among

developers. Another possible extension to the current method would be applying model-based

technique such as clustering on developers to reduce the matrix sparsity and cold-start problem.

Electronic copy available at: https://ssrn.com/abstract=3642052

42

REFERENCES

Adomavicius, G., and Kwon, Y. 2015. "Multi-Criteria Recommender Systems," in
Recommender Systems Handbook. Springer, pp. 847-880.

Adomavicius, G., and Tuzhilin, A. 2005. "Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions," IEEE
transactions on knowledge and data engineering (17:6), pp. 734-749.

Alexy, O., and Leitner, M. 2011. "A Fistful of Dollars: Are Financial Rewards a Suitable
Management Practice for Distributed Models of Innovation?," European
Management Review (8:3), pp. 165-185.

Allaho, M. Y., and Lee, W.-C. 2013. "Analyzing the Social Ties and Structure of
Contributors in Open Source Software Community," Advances in Social Networks
Analysis and Mining (ASONAM), 2013 IEEE/ACM International Conference on:
IEEE, pp. 56-60.

Allaho, M. Y., and Lee, W.-C. 2014. "Increasing the Responsiveness of Recommended
Expert Collaborators for Online Open Projects," Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge
Management: ACM, pp. 749-758.

Anvik, J., Hiew, L., and Murphy, G. C. 2006. "Who Should Fix This Bug?," Proceedings
of the 28th international conference on Software engineering: ACM, pp. 361-370.

Anvik, J., and Murphy, G. C. 2011. "Reducing the Effort of Bug Report Triage:
Recommenders for Development-Oriented Decisions," ACM Transactions on
Software Engineering and Methodology (TOSEM) (20:3), p. 10.

Badashian, A. S., Esteki, A., Gholipour, A., Hindle, A., and Stroulia, E. 2014.
"Involvement, Contribution and Influence in Github and Stack Overflow,"
Proceedings of 24th Annual International Conference on Computer Science and
Software Engineering: IBM Corp., pp. 19-33.

Badashian, A. S., Hindle, A., and Stroulia, E. 2015. "Crowdsourced Bug Triaging,"
Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on: IEEE, pp. 506-510.

Badashian, A. S., and Stroulia, E. 2016. "Measuring User Influence in Github: The Million
Follower Fallacy," CrowdSourcing in Software Engineering (CSI-SE), 2016
IEEE/ACM 3rd International Workshop on: IEEE, pp. 15-21.

Bayati, S. 2018. "Understanding Newcomers Success in Open Source Community,"
Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings: ACM, pp. 224-225.

Bayati, S., and Peiris, K. 2018. "Road to Success: How Newcomers Gain Reputation in
Open Source Community," in: PACIS 2018. Japan.

Bird, C., Nagappan, N., Gall, H., Murphy, B., and Devanbu, P. 2009. "Putting It All
Together: Using Socio-Technical Networks to Predict Failures," Software
Reliability Engineering, 2009. ISSRE'09. 20th International Symposium on: IEEE,
pp. 109-119.

Bissyandé, T. F., Lo, D., Jiang, L., Reveillere, L., Klein, J., and Le Traon, Y. 2013. "Got
Issues? Who Cares About It? A Large Scale Investigation of Issue Trackers from
Github," Software Reliability Engineering (ISSRE), 2013 IEEE 24th International
Symposium on: IEEE, pp. 188-197.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., and Damian, D. 2016.
"Understanding the Popular Users: Following, Affiliation Influence and Leadership
on Github," Information and Software Technology (70), pp. 30-39.

Carillo, K., Huff, S., and Chawner, B. 2017. "What Makes a Good Contributor?
Understanding Contributor Behavior within Large Free/Open Source Software
Projects–a Socialization Perspective," The Journal of Strategic Information
Systems (26:4), pp. 322-359.

Electronic copy available at: https://ssrn.com/abstract=3642052

43

Carillo, K. D. A., Marsan, J., and Negoita, B. 2016. "Towards Developing a Theory of
Toxicity in the Context of Free/Open Source Software & Peer Production
Communities," in: SIGOPEN 2016.

Cha, M., Haddadi, H., Benevenuto, F., and Gummadi, P. K. 2010. "Measuring User
Influence in Twitter: The Million Follower Fallacy," Icwsm (10:10-17), p. 30.

Chengalur-Smith, I., Sidorova, A., and Daniel, S. 2010. "Sustainability of Free/Libre
Open Source Projects: A Longitudinal Study," Journal of the Association for
Information Systems (11:11), p. 657.

Choi, K., Yoo, D., Kim, G., and Suh, Y. 2012. "A Hybrid Online-Product Recommendation
System: Combining Implicit Rating-Based Collaborative Filtering and Sequential
Pattern Analysis," electronic commerce research and applications (11:4), pp.
309-317.

Chou, S. W., and He, M. Y. 2011. "The Factors That Affect the Performance of Open
Source Software Development–the Perspective of Social Capital and Expertise
Integration," Information Systems Journal (21:2), pp. 195-219.

Cosentino, V., Izquierdo, J. L. C., and Cabot, J. 2017. "A Systematic Mapping Study of
Software Development with Github," IEEE Access (5), pp. 7173-7192.

Cremonesi, P., Turrin, R., Lentini, E., and Matteucci, M. 2008. "An Evaluation
Methodology for Collaborative Recommender Systems," 2008 International
Conference on Automated Solutions for Cross Media Content and Multi-Channel
Distribution: IEEE, pp. 224-231.

Crowston, K., and Howison, J. 2005. "The Social Structure of Free and Open Source
Software Development," First Monday (10:2).

Crowston, K., Howison, J., and Annabi, H. 2006. "Information Systems Success in Free
and Open Source Software Development: Theory and Measures," Software
Process: Improvement and Practice (11:2), pp. 123-148.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. 2012. "Social Coding in Github:
Transparency and Collaboration in an Open Software Repository," Proceedings of
the ACM 2012 conference on computer supported cooperative work: ACM, pp.
1277-1286.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. 2013. "Leveraging Transparency,"
IEEE software (30:1), pp. 37-43.

Daniel, S., Midha, V., Bhattacherhjee, A., and Singh, S. P. 2018. "Sourcing Knowledge
in Open Source Software Projects: The Impacts of Internal and External Social
Capital on Project Success," The Journal of Strategic Information Systems (27:3),
pp. 237-256.

Daniel, S., and Stewart, K. 2016. "Open Source Project Success: Resource Access, Flow,
and Integration," The Journal of Strategic Information Systems (25:3), pp. 159-
176.

De Vries, L., Gensler, S., and Leeflang, P. S. 2012. "Popularity of Brand Posts on Brand
Fan Pages: An Investigation of the Effects of Social Media Marketing," Journal of
interactive marketing (26:2), pp. 83-91.

Erickson, T., and Kellogg, W. A. 2000. "Social Translucence: An Approach to Designing
Systems That Support Social Processes," ACM transactions on computer-human
interaction (TOCHI) (7:1), pp. 59-83.

Fang, Y., and Neufeld, D. 2009. "Understanding Sustained Participation in Open Source
Software Projects," Journal of Management Information Systems (25:4), pp. 9-
50.

Fronchetti, F., Wiese, I., Pinto, G., and Steinmacher, I. 2019. "What Attracts Newcomers
to Onboard on Oss Projects? Tl; Dr: Popularity," IFIP International Conference on
Open Source Systems: Springer, pp. 91-103.

Gharehyazie, M., Posnett, D., Vasilescu, B., and Filkov, V. 2015. "Developer Initiation
and Social Interactions in Oss: A Case Study of the Apache Software Foundation,"
Empirical Software Engineering (20:5), pp. 1318-1353.

Electronic copy available at: https://ssrn.com/abstract=3642052

44

Goggins, S., and Petakovic, E. 2014. "Connecting Theory to Social Technology
Platforms: A Framework for Measuring Influence in Context," American
Behavioral Scientist (58:10), pp. 1376-1392.

Gousios, G. 2013. "The Ghtorent Dataset and Tool Suite," Proceedings of the 10th
Working Conference on Mining Software Repositories: IEEE Press, pp. 233-236.

Gousios, G., Storey, M.-A., and Bacchelli, A. 2016. "Work Practices and Challenges in
Pull-Based Development: The Contributor's Perspective," Software Engineering
(ICSE), 2016 IEEE/ACM 38th International Conference on: IEEE, pp. 285-296.

Gregor, S., and Hevner, A. R. 2013. "Positioning and Presenting Design Science
Research for Maximum Impact," MIS quarterly (37:2), pp. 337-355.

Grewal, R., Lilien, G. L., and Mallapragada, G. 2006. "Location, Location, Location: How
Network Embeddedness Affects Project Success in Open Source Systems,"
Management Science (52:7), pp. 1043-1056.

Grigorik, I. 2012. "The Github Archive." Mar.
Guzman, E., Azócar, D., and Li, Y. 2014. "Sentiment Analysis of Commit Comments in

Github: An Empirical Study," Proceedings of the 11th Working Conference on
Mining Software Repositories: ACM, pp. 352-355.

Guzzi, A., Bacchelli, A., Lanza, M., Pinzger, M., and Van Deursen, A. 2013.
"Communication in Open Source Software Development Mailing Lists," Mining
Software Repositories (MSR), 2013 10th IEEE Working Conference on: IEEE, pp.
277-286.

Hahn, J., Moon, J. Y., and Zhang, C. 2006. "Impact of Social Ties on Open Source Project
Team Formation," IFIP International Conference on Open Source Systems:
Springer, pp. 307-317.

Hahn, J., Moon, J. Y., and Zhang, C. 2008. "Emergence of New Project Teams from
Open Source Software Developer Networks: Impact of Prior Collaboration Ties,"
Information Systems Research (19:3), pp. 369-391.

Hahsler, M. 2011. "Recommenderlab: A Framework for Developing and Testing
Recommendation Algorithms," Southern Methodist University).

Hannebauer, C., and Gruhn, V. 2017. "On the Relationship between Newcomer
Motivations and Contribution Barriers in Open Source Projects," Proceedings of
the 13th International Symposium on Open Collaboration: ACM, p. 2.

Happel, H.-J., and Maalej, W. 2008. "Potentials and Challenges of Recommendation
Systems for Software Development," Proceedings of the 2008 international
workshop on Recommendation systems for software engineering: ACM, pp. 11-
15.

Hevner, A., Salvatore, M., Jinsoo, P., and Sudha, R. 2004. "Design Science in
Information Systems Research," MIS quarterly (28:1), pp. 75-105.

Holmes, R., and Murphy, G. C. 2005. "Using Structural Context to Recommend Source
Code Examples," Proceedings of the 27th international conference on Software
engineering: ACM, pp. 117-125.

Hu, Y., Koren, Y., and Volinsky, C. 2008. "Collaborative Filtering for Implicit Feedback
Datasets," Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on:
Ieee, pp. 263-272.

Iivari, J. 2015. "Distinguishing and Contrasting Two Strategies for Design Science
Research," European Journal of Information Systems (24:1), pp. 107-115.

Jarczyk, O., Gruszka, B., Jaroszewicz, S., Bukowski, L., and Wierzbicki, A. 2014. "Github
Projects. Quality Analysis of Open-Source Software," in Social Informatics.
Springer, pp. 80-94.

Jiang, J., Lo, D., He, J., Xia, X., Kochhar, P. S., and Zhang, L. 2016. "Why and How
Developers Fork What from Whom in Github," Empirical Software Engineering),
pp. 1-32.

Electronic copy available at: https://ssrn.com/abstract=3642052

45

Jurado, F., and Rodriguez, P. 2015. "Sentiment Analysis in Monitoring Software
Development Processes: An Exploratory Case Study on Github's Project Issues,"
Journal of Systems and Software (104), pp. 82-89.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian, D.
2014. "The Promises and Perils of Mining Github," Proceedings of the 11th
working conference on mining software repositories: ACM, pp. 92-101.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian, D.
2016. "An in-Depth Study of the Promises and Perils of Mining Github," Empirical
Software Engineering (21:5), pp. 2035-2071.

Kelly, D., and Teevan, J. 2003. "Implicit Feedback for Inferring User Preference: A
Bibliography," Acm Sigir Forum: ACM, pp. 18-28.

Krishnamurthy, S., Ou, S., and Tripathi, A. K. 2014. "Acceptance of Monetary Rewards
in Open Source Software Development," Research Policy (43:4), pp. 632-644.

Lam, X. N., Vu, T., Le, T. D., and Duong, A. D. 2008. "Addressing Cold-Start Problem
in Recommendation Systems," Proceedings of the 2nd international conference
on Ubiquitous information management and communication: ACM, pp. 208-211.

Lee, M. J., Ferwerda, B., Choi, J., Hahn, J., Moon, J. Y., and Kim, J. 2013. "Github
Developers Use Rockstars to Overcome Overflow of News," CHI'13 Extended
Abstracts on Human Factors in Computing Systems: ACM, pp. 133-138.

Lee, S. K., Cho, Y. H., and Kim, S. H. 2010. "Collaborative Filtering with Ordinal Scale-
Based Implicit Ratings for Mobile Music Recommendations," Information Sciences
(180:11), pp. 2142-2155.

Lee, T. Q., Park, Y., and Park, Y.-T. 2008. "A Time-Based Approach to Effective
Recommender Systems Using Implicit Feedback," Expert systems with
applications (34:4), pp. 3055-3062.

Lu, J., Wu, D., Mao, M., Wang, W., and Zhang, G. 2015. "Recommender System
Application Developments: A Survey," Decision Support Systems (74), pp. 12-
32.

Maalej, W., and Thurimella, A. K. 2009. "Towards a Research Agenda for
Recommendation Systems in Requirements Engineering," Second International
Workshop on Managing Requirements Knowledge.

Montaner, M., López, B., and de la Rosa, J. L. 2002. "Opinion-Based Filtering through
Trust," International Workshop on Cooperative Information Agents: Springer, pp.
164-178.

Moqri, M., Mei, X., Qiu, L., and Bandyopadhyay, S. 2018. "Effect of “Following” on
Contributions to Open Source Communities," Journal of Management Information
Systems (35:4), pp. 1188-1217.

Naguib, H., Narayan, N., Brugge, B., and Helal, D. 2013. "Bug Report Assignee
Recommendation Using Activity Profiles," Mining Software Repositories (MSR),
2013 10th IEEE Working Conference on: IEEE, pp. 22-30.

Nielek, R., Jarczyk, O., Pawlak, K., Bukowski, L., Bartusiak, R., and Wierzbicki, A. 2016.
"Choose a Job You Love: Predicting Choices of Github Developers," 2016
IEEE/WIC/ACM International Conference on Web Intelligence (WI): IEEE, pp.
200-207.

Oh, W., Moon, J. Y., Hahn, J., and Kim, T. 2016. "Research Note—Leader Influence on
Sustained Participation in Online Collaborative Work Communities: A Simulation-
Based Approach," Information Systems Research (27:2), pp. 383-402.

Palanivel, K., and Sivakumar, R. 2010. "A Study on Implicit Feedback in Multicriteria E-
Commerce Recommender System," Journal of Electronic Commerce Research
(11:2), p. 140.

Palma, F., Farzin, H., Gueheneuc, Y.-G., and Moha, N. 2012. "Recommendation System
for Design Patterns in Software Development: An Dpr Overview," Proceedings of
the Third International Workshop on Recommendation Systems for Software
Engineering: IEEE Press, pp. 1-5.

Electronic copy available at: https://ssrn.com/abstract=3642052

46

Paulson, J. W., Succi, G., and Eberlein, A. 2004. "An Empirical Study of Open-Source
and Closed-Source Software Products," IEEE Transactions on Software
Engineering (30:4), pp. 246-256.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. 2007. "A Design
Science Research Methodology for Information Systems Research," Journal of
management information systems (24:3), pp. 45-77.

Pletea, D., Vasilescu, B., and Serebrenik, A. 2014. "Security and Emotion: Sentiment
Analysis of Security Discussions on Github," Proceedings of the 11th working
conference on mining software repositories: ACM, pp. 348-351.

Qureshi, I., and Fang, Y. 2011. "Socialization in Open Source Software Projects: A
Growth Mixture Modeling Approach," Organizational Research Methods (14:1),
pp. 208-238.

Ricci, F., Rokach, L., and Shapira, B. 2011. Introduction to Recommender Systems
Handbook. Springer.

Robbes, R., and Röthlisberger, D. 2013. "Using Developer Interaction Data to Compare
Expertise Metrics," Proceedings of the 10th Working Conference on Mining
Software Repositories: IEEE Press, pp. 297-300.

Roberts, J. A., Hann, I.-H., and Slaughter, S. A. 2006. "Understanding the Motivations,
Participation, and Performance of Open Source Software Developers: A
Longitudinal Study of the Apache Projects," Management science (52:7), pp. 984-
999.

Robillard, M. P., Maalej, W., Walker, R. J., and Zimmermann, T. 2014. Recommendation
Systems in Software Engineering. Springer.

Robillard, M. P., Walker, R. J., and Zimmermann, T. 2010. "Recommendation Systems
for Software Engineering," Software, IEEE (27:4), pp. 80-86.

Sarker, F., Vasilescu, B., Blincoe, K., and Filkov, V. 2019. "Socio-Technical Work-Rate
Increase Associates with Changes in Work Patterns in Online Projects," in: ICSE
2019. Canada.

Schafer, J. B., Konstan, J., and Riedl, J. 1999. "Recommender Systems in E-Commerce,"
Proceedings of the 1st ACM conference on Electronic commerce: ACM, pp. 158-
166.

Schall, D. 2014. "Who to Follow Recommendation in Large-Scale Online Development
Communities," Information and Software Technology (56:12), pp. 1543-1555.

Schilling, A. 2012. "Links to the Source-a Multidimensional View of Social Ties for the
Retention of Floss Developers," Proceedings of the 50th annual conference on
Computers and People Research: ACM, pp. 103-108.

Schilling, A. 2014. "What Do We Know About Floss Developers' Attraction, Retention,
and Commitment? A Literature Review," System Sciences (HICSS), 2014 47th
Hawaii International Conference on: IEEE, pp. 4003-4012.

Schilling, A., Laumer, S., and Weitzel, T. 2012a. "Train and Retain: The Impact of
Mentoring on the Retention of Floss Developers," Proceedings of the 50th annual
conference on Computers and People Research: ACM, pp. 79-84.

Schilling, A., Laumer, S., and Weitzel, T. 2012b. "Who Will Remain? An Evaluation of
Actual Person-Job and Person-Team Fit to Predict Developer Retention in Floss
Projects," System Science (HICSS), 2012 45th Hawaii International Conference
on: IEEE, pp. 3446-3455.

Schilling, A., Laumer, S., and Weitzel, T. 2013. "Together but Apart: How Spatial,
Temporal and Cultural Distances Affect Floss Developers' Project Retention,"
Proceedings of the 2013 annual conference on Computers and people research:
ACM, pp. 167-172.

Shah, S. K. 2006. "Motivation, Governance, and the Viability of Hybrid Forms in Open
Source Software Development," Management science (52:7), pp. 1000-1014.

Electronic copy available at: https://ssrn.com/abstract=3642052

47

Shang, W., Adams, B., and Hassan, A. E. 2010. "An Experience Report on Scaling Tools
for Mining Software Repositories Using Mapreduce," Proceedings of the IEEE/ACM
international conference on Automated software engineering: ACM, pp. 275-284.

Sharma, P. N., Hulland, J., and Daniel, S. 2012. "Examining Turnover in Open Source
Software Projects Using Logistic Hierarchical Linear Modeling Approach," IFIP
International Conference on Open Source Systems: Springer, pp. 331-337.

Shokripour, R., Anvik, J., Kasirun, Z. M., and Zamani, S. 2013. "Why So Complicated?
Simple Term Filtering and Weighting for Location-Based Bug Report Assignment
Recommendation," Proceedings of the 10th Working Conference on Mining
Software Repositories: IEEE Press, pp. 2-11.

Singh, P. V., Tan, Y., and Mookerjee, V. 2011. "Network Effects: The Influence of
Structural Capital on Open Source Project Success," Mis Quarterly), pp. 813-829.

Steinmacher, I., Pinto, G., Wiese, I. S., and Gerosa, M. A. 2018. "Almost There: A Study
on Quasi-Contributors in Open-Source Software Projects," 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE): IEEE, pp. 256-266.

Steinmacher, I., Silva, M. A. G., Gerosa, M. A., and Redmiles, D. F. 2015. "A Systematic
Literature Review on the Barriers Faced by Newcomers to Open Source Software
Projects," Information and Software Technology (59), pp. 67-85.

Swani, K., Milne, G. R., Brown, B. P., Assaf, A. G., and Donthu, N. 2017. "What
Messages to Post? Evaluating the Popularity of Social Media Communications in
Business Versus Consumer Markets," Industrial Marketing Management (62), pp.
77-87.

Terceiro, A., Souza, R., and Chavez, C. 2012. "Patterns for Engagement in Free
Software Projects," Proceedings of the 9th Latin-American Conference on Pattern
Languages of Programming: ACM, p. 3.

Tsay, J., Dabbish, L., and Herbsleb, J. 2014a. "Influence of Social and Technical Factors
for Evaluating Contribution in Github," Proceedings of the 36th international
conference on Software engineering: ACM, pp. 356-366.

Tsay, J., Dabbish, L., and Herbsleb, J. 2014b. "Let's Talk About It: Evaluating
Contributions through Discussion in Github," Proceedings of the 22nd ACM
SIGSOFT international symposium on foundations of software engineering: ACM,
pp. 144-154.

Tsoy, M., and Staples, D. S. 2018. "Role of Reputation Cues in Trust Formation for a
Developer's Decision to Join Open Source Software Projects,").

van Osch, W., Adelaar, T., and Pith, M. 2011. "So Many Developers, So Many Projects:
Toward a Motivation-Based Theory of Project Selection," AMCIS.

Vasilescu, B., Blincoe, K., Xuan, Q., Casalnuovo, C., Damian, D., Devanbu, P., and
Filkov, V. 2016. "The Sky Is Not the Limit: Multitasking across Github Projects,"
2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE):
IEEE, pp. 994-1005.

Vasilescu, B., Filkov, V., and Serebrenik, A. 2013. "Stackoverflow and Github:
Associations between Software Development and Crowdsourced Knowledge,"
Social Computing (SocialCom), 2013 International Conference on: IEEE, pp. 188-
195.

Vasilescu, B., Serebrenik, A., and Filkov, V. 2015. "A Data Set for Social Diversity
Studies of Github Teams," Proceedings of the 12th Working Conference on Mining
Software Repositories: IEEE Press, pp. 514-517.

Von Krogh, G., Spaeth, S., and Lakhani, K. R. 2003. "Community, Joining, and
Specialization in Open Source Software Innovation: A Case Study," Research
Policy (32:7), pp. 1217-1241.

Von Krogh, G., and Von Hippel, E. 2006. "The Promise of Research on Open Source
Software," Management science (52:7), pp. 975-983.

Electronic copy available at: https://ssrn.com/abstract=3642052

48

Wang, H., Guo, X., Zhang, M., Wei, Q., and Chen, G. 2015. "Predicting the Incremental
Benefits of Online Information Search for Heterogeneous Consumers," Decision
Sciences).

Wu, J., and Goh, K. Y. 2009. "Evaluating Longitudinal Success of Open Source Software
Projects: A Social Network Perspective," System Sciences, 2009. HICSS'09. 42nd
Hawaii International Conference on: IEEE, pp. 1-10.

Wu, Y., Kropczynski, J., Shih, P. C., and Carroll, J. M. 2014. "Exploring the Ecosystem
of Software Developers on Github and Other Platforms," Proceedings of the
companion publication of the 17th ACM conference on Computer supported
cooperative work & social computing: ACM, pp. 265-268.

Xie, T., Thummalapenta, S., Lo, D., and Liu, C. 2009. "Data Mining for Software
Engineering," Computer:8), pp. 55-62.

Yamashita, K., Kamei, Y., McIntosh, S., Hassan, A. E., and Ubayashi, N. 2016. "Magnet
or Sticky? Measuring Project Characteristics from the Perspective of Developer
Attraction and Retention," Journal of Information Processing (24:2), pp. 339-
348.

Yang, X., Guo, Y., Liu, Y., and Steck, H. 2014. "A Survey of Collaborative Filtering Based
Social Recommender Systems," Computer Communications (41), pp. 1-10.

Yu, Y., Benlian, A., and Hess, T. 2012. "An Empirical Study of Volunteer Members'
Perceived Turnover in Open Source Software Projects," System Science (HICSS),
2012 45th Hawaii International Conference on: IEEE, pp. 3396-3405.

Yu, Y., Wang, H., Yin, G., and Wang, T. 2016. "Reviewer Recommendation for Pull-
Requests in Github: What Can We Learn from Code Review and Bug
Assignment?," Information and Software Technology).

Zimmermann, T., Dallmeier, V., Halachev, K., and Zeller, A. 2005. "Erose: Guiding
Programmers in Eclipse," Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications: ACM, pp. 186-187.

Electronic copy available at: https://ssrn.com/abstract=3642052

