Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Selective Cerebral Hypothermia For Term Infants Following Hypoxic Ischaemic Injury

Malcolm Richard Battin

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Medicine, the University of Auckland, 2008.
Abstract

Perinatal hypoxic ischaemic injury is an important cause of both neonatal death and long-term disability. The sequence of resuscitation followed by a latent phase then a secondary cascade of injury is well documented. This thesis covers key steps toward the utilization of selective hypothermia as an intervention during the latent phase to ameliorate the secondary injury and improve subsequent outcome.

The technique was shown to be both feasible and well tolerated. Specifically, a rectal temperature of 35 °C and 34.5 °C, in term infants with neonatal encephalopathy, was not associated with an excessive requirement for cardio-respiratory support. Although a decrease in heart rate occurred during cooling, this was expected and there was no significant change in blood pressure during either the cooling or rewarming phase. Additional reassuring findings were that neither major electrolyte disturbance; hypoglycaemia or haematological changes, including excessive haemorrhage, were observed during hypothermia.

The study of neurodevelopmental outcome established that selective cerebral hypothermia was not associated with late adverse effects and, in infants with moderate to severe encephalopathy, the combined cooled groups demonstrated a trend towards better outcome. These data confirmed the potential for selective cerebral hypothermia to provide neuroprotection following perinatal asphyxia. In further chapters cerebral CT scan was confirmed as a helpful adjunct to clinical staging in predicting neurodevelopmental outcome and important clinical experience was reported including rebound seizures following rewarming; sclerema neonatorum associated with hypothermia; and abnormal flow in the superior sagittal sinus, associated with perinatal asphyxia.

Lastly a review of infants assessed but not recruited to the CoolCap trial based on aEEG criteria was performed. As these aEEG criteria could be applied to future clinical use it was considered important to ensure large numbers of infants
with potential to benefit were not excluded from intervention. Neurodevelopmental status for those infants excluded by the aEEG criteria was largely favourable but a small number had adverse outcome and the majority manifested short term morbidity.

In conclusion, the work presented in this thesis suggests that intervention with selective hypothermia offers the potential to change disease progression and improve subsequent outcome following perinatal asphyxia at term.
Preface

There can be no greater motivating force than the sad experience of witnessing the evolving consequences of severe perinatal neurological injury; the newborn infant starts perfectly formed but by some tragic event, or events, is left devastated with cerebral palsy, seizures and microcephaly. Such misfortune is indeed a heavy loss for them, their families and society.

I came to New Zealand in 1997 to work as a neonatologist at National Women’s Hospital and very quickly became involved in the work on selective hypothermia as an intervention following perinatal asphyxia. The chance to offer some hope to families of affected babies was compelling in itself but the added opportunity to work with local and international collaborators and to be the site investigator for a large multicentre randomized controlled trial of selective cerebral hypothermia was truly an enlightening and rewarding experience. However, the true measure of the work will be in the transfer of the technique to routine clinical practice and hopefully the subsequent improvement in outcome for future infants.
Dedication

To my family: Paula, Georgia, Lydia and Toby who have missed me while I have been writing.
Acknowledgements

I would like to thank and acknowledge the following people:

- Tania Gunn for encouraging my interest in the field research
- Alistair Gunn for advice, support, review of basic science and assistance with analysis and writing of papers
- Juliet Penrice and Damien Armstrong for assistance with recruiting patients
- Claire West for providing me with local data from a regional review of neonatal encephalopathy
- Anne Dezoete for performing the 18 month Bayley assessments
- Jane Harding and Carl Kuschel for reading the draft thesis and providing constructive comment
Table of Contents

1 INTRODUCTION ... 1

1.1 Selective cerebral hypothermia for term infants following hypoxic ischaemic injury 1
 1.1.1 Transition at birth .. 2
 1.1.2 Fetal responses and normal labour .. 4

1.2 Definition of the terms ... 6

1.3 Infants at risk of adverse sequelae following perinatal asphyxia 7
 1.3.1 Studies using ventilation requirement as inclusion criteria 8
 1.3.2 Studies using Apgar scores as inclusion criteria ... 8
 1.3.3 Studies using Neonatal Encephalopathy as inclusion criteria 10
 1.3.4 Studies using seizures as inclusion criteria .. 11
 1.3.5 Population versus single centre studies ... 11
 1.3.6 Antecedents and associations of Neonatal Encephalopathy at term 13
 1.3.7 Temporal changes in incidence of perinatal asphyxia .. 18
 1.3.8 Temporal Trends in Cerebral Palsy ... 19
 1.3.9 Relationship between NE and Cerebral Palsy ... 20

1.4 Clinical and pathological aspects of HI in the term infant ... 23
 1.4.1 Distribution of brain injury .. 23
 1.4.2 Clinical neurological manifestations of HI injury .. 24
 1.4.3 Multisystem effects of HI insult ... 30
 1.4.4 Outcome Following Perinatal Asphyxia ... 36

1.5 Prediction of outcome .. 48
 1.5.1 Reasons for prediction .. 48
 1.5.2 Problems with prediction .. 49
 1.5.3 Methods of prediction .. 49
 1.5.4 Summary of methods for predicting encephalopathy or outcome 72

1.6 Pathways of neurological injury .. 73
 1.6.1 Primary energy failure .. 76
 1.6.2 Toxic excitatory neurotransmitters ... 77
 1.6.3 Oedema .. 78
 1.6.4 NMDA receptor .. 79
 1.6.5 Calcium mediated neuronal damage .. 79
 1.6.6 Neuronal Nitric Oxide .. 80
 1.6.7 Carbon monoxide .. 83
 1.6.8 Primary cell death .. 84
 1.6.9 Secondary cell death .. 85
 1.6.10 Other proposed factors ... 85

1.7 Neonatal management .. 93
 1.7.1 Resuscitation .. 94
 1.7.2 Resuscitation with 100% oxygen versus room air ... 94
 1.7.3 Other relevant areas of research in newborn resuscitation 95
 1.7.4 Management of the infant in Neonatal Unit ... 96
 1.7.5 Hypothermia .. 112
 1.7.6 Effect of hyperthermia on HI injury .. 114
 1.7.7 Effect of hypothermia on HI injury .. 115
 1.7.8 Major side effects of hypothermia .. 120
6 CLINICAL VIGNETTES ASSOCIATED WITH SELECTIVE CEREBRAL HYPOTHERMIA ... 183

6.1 Background .. 183

6.2 Rebound Seizures On Rewarming After Selective Hypothermia............................... 183
 6.2.1 Discussion .. 185

6.3 Abnormal sagittal sinus blood flow in a term infant following a perinatal hypoxic ischaemic insult. ... 188
 6.3.1 Discussion .. 196

6.4 Sclerema neonatorum .. 199
 6.4.1 Discussion .. 200

7 REVIEW OF INFANTS NOT RECRUITED TO THE COOLCAP TRIAL ... 203

7.1 Background .. 203

7.2 Method .. 205

7.3 Results .. 206
 7.3.1 Demographic data and presentation.. 207
 7.3.2 Neonatal course and neurodevelopmental outcome ... 208

7.4 Discussion .. 211

8 SUMMARY OF FINDINGS, DISCUSSION AND FUTURE RESEARCH DIRECTION .. 215

8.1 Summary Of Important Findings And Their Implications .. 216

8.2 Outstanding Issues .. 222

8.3 Future Research Directions .. 224

9 APPENDICIES .. 230

9.1 Appendix 1: Nursing Guideline For Care Of Infant Undergoing Selective Cerebral Cooling 230

9.2 Appendix 2 : Presentations And Publications Associated With The Research........... 332
Lists of Tables

TABLE 1. NON-CARDIOPULMONARY CHANGES OCCURRING AS PART OF BIRTH TRANSITION 3

TABLE 2. CONDITIONS THAT PREDISPOSE TO FETAL AND NEWBORN ASPHYXIA ADAPTED FROM VANNUCI (VANNUCI AND VANNUCI 1997) .. 13

TABLE 3. INCIDENCE OF MAJOR ORGAN PROBLEMS IN REPORTED SERIES (SEE TEXT FOR REFERENCES) 30

TABLE 4. RISK OF CEREBRAL PALSY WITH APGAR SCORES 0-3 AT VARYING TIME FROM BIRTH IN INFANTS GREATER THAN 2500g - DATA FROM NELSON AND ELLENBERG (NELSON AND ELLENBERG 1981) 39

TABLE 5. SUMMARY OF STUDIES (SEE TEXT FOR REFERENCES) REPORTING OUTCOME BASED ON SEVERITY OF NE (% SEVERE/DEAD) .. 40

TABLE 6. PREDICTION OF ADVERSE NEUROLOGICAL OUTCOME USING BEDSIDE EEG TOOLS .. 55

TABLE 7. SUMMARY OF RANDOMISED CONTROLLED STUDIES EXAMINING THE EFFECT OF AN INTERVENTION ON OUTCOME FOLLOWING PERINATAL ASPHYXIA .. 112

TABLE 8. CLINICAL CHARACTERISTICS FOR EACH STUDY GROUP .. 139

TABLE 9. RESPIRATORY SUPPORT REQUIRED BY THE STUDY INFANTS .. 141

TABLE 10. CARDIOVASCULAR SUPPORT REQUIRED BY STUDY INFANTS .. 144

TABLE 11. QT AND CORRECTED QT (QTc) INTERVALS FOR COOLED INFANTS .. 145

TABLE 12. CLINICAL CHARACTERISTICS OF STUDY GROUPS .. 162

TABLE 13. NEUROLOGICAL AND NEURODEVELOPMENTAL OUTCOME ON FOLLOW-UP .. 165

TABLE 14. CT SCAN RESULTS FOR THE WHOLE GROUP, COOLED AND NON-COOLED (CONTROL) GROUPS .. 177
List of Figures

FIGURE 1. SCHEMATIC REPRESENTATION OF MECHANISMS INVOLVED IN HI NEUROLOGICAL INJURY IN THE NEWBORN INFANT. ADAPTED FROM JOHNSTON (JOHNSTON ET AL. 2001).................76

FIGURE 2. INITIATION AND FIRST 6 HOURS OF COOLING IN A SPONTANEOUSLY BREATHING INFANT . 131

FIGURE 3. CHANGES IN RECTAL TEMPERATURE, HEART RATE AND MEAN ARTERIAL BLOOD PRESSURE OVER TIME. ... 142

FIGURE 4. EFFECT OF ANTICONVULSANTS ON TEMPERATURE AND MEAN ARTERIAL BLOOD PRESSURE.. ... 148

FIGURE 5. CHANGES IN RECTAL, NASOPHARYGEAL AND SKIN TEMPERATURE DURING REWARMING IN A TYPICAL INFANT. ... 149

FIGURE 6. INITIAL EXAMINATION OF CASE ONE WITH COLOUR DOPPLER OF THE SSS IN THE SAGITTAL PLANE. ... 192

FIGURE 7. INTERROGATION OF THE SSS IN THE SAGITTAL PLANE TAKEN SIX DAYS LATER.193
List of Abbreviated Terms

Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionate (AMPA)
Amplitude integrated EEG Recording (aEEG)
Anti Diuretic Hormone (ADH)
Beats per minute (BPM)
Brain Specific Proteins (BSPS)
Brainstem Auditory Evoked Responses (BAER)
Cerebral Blood Flow (CBF)
Cerebral Blood Flow Velocity (CBFV)
Cerebral Function Monitoring (CFM)
Cerebrospinal Fluid (CSF)
Computer Tomography (CT)
Concentration Ratio Of Phosphocreatine To Inorganic Phosphate ([Pcr]/[Pi])
Corrected QT (QTc)
Disseminated Intravascular Coagulation (DIC)
Electroencephalography (EEG)
Gamma Amino Butyric Acid (GABA)
Glial Fibrillary Acidic Protein (GFAP)
Glycine-Proline-Glutamate (GPE)
Grams (g)
Hypoxic Ischaemic Encephalopathy (HIE)
Hypoxic-Ischaemic (HI)
Insulin-Like Growth Factor-L (IGF-I)
International Normalised Ratio (INR)
Intracranial Pressure (ICP)
Lower Segment Caesarean Section (LSCS)
Magnetic Resonance imaging (MRI)
Magnetic Resonance Spectroscopy (MRS)
Mean Arterial Blood Pressure (MAP)
Negative Predictive Value (NPV)
Neonatal Encephalopathy (NE)
Neuronal Nitric Oxide Synthetase (Nnos)
Neuron Specific Enolase (NSE)
Partial Pressure of Oxygen (Pao2)
Persistent Pulmonary Hypertension (PPHN)
Poly(ADP-Ribose) Polymerase (PARP)
Positron Emission Tomography (PET)
Posterior Limb of the Internal Capsule (PLIC)
Proton (1H)
Resistive Index (RI)
Sclerema neonatorum (SN)
Somatosensory Evoked Potentials (SSEPS)
Standard Deviation (SD)
Subcutaneous fat necrosis of the newborn (SCFN)
Superior Sagittal Sinus (SSS)
Troponin T (TnT),
Visual Evoked Potentials (VEPS)
Weeks (Wks)
Years (Yrs)