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Abstract. In control applications, controllers for different plants are
usually designed with different methods. Although these plants share
common characteristics, these are generally designed in isolation. Re-
cently, several researchers have studied the problem of continuously learn-
ing a sequence of related learning tasks. A challenge in continual learning
is the phenomenon of catastrophic forgetting of knowledge of previous
tasks which have been integrated into a neural network model. In this
paper we evaluate the feasibility of modelling different controllers us-
ing continual learning. We explore regression versions of state-of-the-art
methods and demonstrate that even the simplest continual learning ap-
proach decreases the overall Mean Average Error (MAE) by 39% of the
MAE achieved by a non-continual strategy. Furthermore, a method based
on dynamically expanding the network can achieve an overall MAE which
is only 18% of the non-continual MAE. Given these results, we also pro-
pose a set of new metrics that allow us to characterise the nature of
catastrophic forgetting that occurs for these continual learning methods.

Keywords: Continual learning · catastrophic forgetting.

1 Introduction

Many control methods are available for controlling a wide variety of systems
(plants) [8, 12, 17, 23, 28, 32]. Typical control schemes include PID control, feed-
back control, sliding mode control among others [30, 31]. Most of these systems
usually have similar characteristics and can be reduced to standard forms such
as state-space models. Most of the practical systems are subjected to variations
due to various factors such as heat, dust, wear and tear [29]. However, con-
trol methods are commonly designed in isolation for each system. This results in
redesign/tuning/re-calibration of existing controllers, which is a time-consuming
and tedious task which might need to be carried out a few times each year.

An alternative strategy to avoid redesign/re-calibration is by treating these
plant control schemes as continual learning tasks. Each of these schemes can be
considered as a single task which is learned sequentially. This can help to avoid
the need for learning from scratch by potentially using the knowledge acquired
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in other plant control schemes. Therefore, a single neural network can be used to
control different plants which can be used in a wide range of similar problems.
An example of this approach is depicted in Figure 1.

Plant	T-2Plant	T-1Plant	TPlant	T+1Plant	T+2

T T-1 T-2T+1T+2

Previous	Learning	TasksFuture	Learning	Tasks
Current
	Task

Learned	Model

Fig. 1: Generalised controller modelled as a continual learning problem.

Continual learning has been an increasingly active area of research in deep
neural networks [16]. In continual learning, a machine learning system observes a
sequence of tasks from a particular domain. Training examples of these tasks are
observed sequentially. A long-standing challenge in continual learning systems is
the problem of catastrophic forgetting of knowledge of previous tasks. This is also
known as the stability-plasticity dilemma which has been studied for decades [5].
A single network that is used to learn a sequence of tasks should be plastic or
adaptive enough to accommodate knowledge of new tasks, while at the same
time be stable enough to not forget knowledge of previous tasks.

A range of methods have been proposed to tackle the problem of catastrophic
forgetting in supervised continual learning systems. These methods can be clas-
sified in three groups [9]: 1) memory replay methods, which rely on storing or
generating some training examples of previous tasks which are re-used in future
tasks, 2) regularisation-based methods, which rely on regularising the objective
function to be optimised for each incoming task therefore controlling how param-
eters or weights learned for previous tasks change, and 3) parameter-isolation
methods, which rely on allocating sub-networks to specific tasks, by possibly
changing the network size as more tasks are sequentially observed. More recent
methods combine two or more of these strategies.

In this paper, we study the problem of designing generalised controllers as
a continual learning problem. Experiments are carried out using three exist-
ing state-of-the-art continual learning methods. Since these existing continual
learning approaches were originally proposed to solve classification problems, re-
gression versions of these algorithms are proposed for the generalised controller
domain. We accompany this exploration by two new metrics to characterise the
amount and the type of catastrophic forgetting. Our main contributions are:
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1. We propose an approximation to the problem of optimising multiple con-
trollers using continual learning. Each of these problems is treated as a
learning task with training examples observed sequentially.

2. We perform a systematic evaluation of continual learning methods for learn-
ing a generalised controller, which includes state-of-the-art metrics in contin-
ual learning such as overall accuracy, accuracy per task and time complexity.
For this we cast existing continual learning methods which are originally de-
signed for classification problems as regression methods.

3. We propose two new metrics for better characterising the levels and types
of catastrophic forgetting occurring in a system.

2 Existing Research

The challenge of learning systems that learn a sequence of tasks was first studied
more than two decades ago [26]. Several approaches from transfer, multitask, and
lifelong learning have been categorised as alternatives for learning a sequence of
tasks [27]. These approaches explored the ability of a learning system to improve
the performance while more training examples were observed and tasks were
learned. Silver [25] described lifelong learning systems that retain the knowledge
and use that to learn new tasks more efficiently and effectively. Silver and Mercer
[24] studied lifelong learning in the context of neural networks. More recently,
three core properties of lifelong learning systems were identified [6,7]: 1) learning
new tasks by leveraging knowledge from previous tasks, 2) learning continuously
and incrementally, 3) retaining knowledge acquired during previous tasks.

Continual learning tackles the problem of lifelong learning of a sequence of
tasks using deep neural networks. Recently, continual learning has gained increas-
ing interest in the context of deep neural networks. Research has focused on the
problem of catastrophic forgetting of knowledge of previous tasks while learn-
ing new tasks and integrating knowledge into an existing deep neural network.
Parisi et al. [16] and De Lange et al. [9] describe methods to tackle the problem
of catastrophic forgetting, which are typically categorised into: 1) regularisation-
based methods to impose constraints on how the network changes as new tasks
are observed [13], 2) memory management and dual-memories for memory re-
play, e.g. long-term and short-term memories [15,18,19] and, 3) dynamic network
architectures that can change as more tasks are observed, e.g. by expanding or
shrinking sub-networks [22,33]. The problem of catastrophic forgetting was also
studied in the context of knowledge consolidation in neural networks [20, 21]
which recently has been extended to deep neural networks [1]. More recently,
research has been conducted that goes beyond catastrophic forgetting and work
towards knowledge improvement as tasks are learned sequentially [3, 4].

An additional remarkable challenge in continual learning systems is measur-
ing their performance. Diaz-Rodriguez et al. [10] surveyed and proposed a set
of metrics to measure a variety of characteristics of continual learning systems.
These metrics include: accuracy, backward transfer of knowledge, and forward
transfer of knowledge [15], among others. Other studies have proposed specific
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metrics to determine the gain in performance while tasks are learned sequen-
tially [2], and to determine the ratio of catastrophic forgetting at the end of
learning [14].

3 Methodology

Continual learning systems are composed of a set of T = {T1, T2, . . . , Tl} tasks
observed in sequence. In supervised learning, each of these tasks is about learn-
ing a mapping from an input feature space X to an output feature space Y.
This mapping is represented by a function f = X → Y. A training set D =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, for training vectors x sampled from the input
feature space X and their corresponding outputs y sampled from the output
feature space Y, is usually available for learning. A challenge in supervised con-
tinual learning is that the distributions D of multiple tasks usually differ, i.e.
DT1
6= DT2

6= . . .DTl
, making it hard for a model to fit well all the tasks. A deep

neural network model learns a set of parameters or weights θ as a representation
of the learned function f = X− > Y.

The phenomenon of catastrophic forgetting is experienced when a model
loses its ability to retain knowledge of previous tasks as more tasks are learned.
Therefore, the accuracy of these tasks is affected while more tasks are learned. A
number of approaches have been proposed to deal with this problem, including
methods to protect existing knowledge, methods to retain part of the data from
previous tasks, and methods to dynamically expand a network [9,16]. Section 2
provides a summary of existing research in this area.

We explore three existing methods that tackle catastrophic forgetting from
three different angles: 1) EWC [13], which regularises learning of new tasks
with respect to existing knowledge, 2) OWM, which combines regularisation
and retention of data from previous tasks for replay and, 3) DEN [33], a method
that allows to dynamically expand a network as new tasks are learned. We
explore variants of these methods for our sequence of regression tasks for multiple
controllers. We also propose two new metrics to characterise the level and type of
forgetting experienced by each of these approaches in the context of a generalised
controller.

3.1 Methods

EWC [13] is a regularisation-based method for continual learning. The problem
of EWC at a given task T is to find a set of parameters θT that are optimal for
that task while avoiding too much deviations from the set of parameters θT−1
learned for tasks observed before task T . The function L to be optimised at task
T is given by:

L(θT ) = L(θT ) +
∑
i

λ

2
Fi(θT,i, θ

∗
T−1,i) (1)
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where Fi is the Fisher information matrix applied to each parameter i for the
current task, θT,i, and each parameter i for a previous task, θ∗T−1,i. The parame-
ter λ controls the influence of previous tasks. In our regression version of EWC,
named EWCReg, the function L is a loss function for regression such as Mean
Absolute Error (MAE).

OWM regularises learning of new network parameters by forcing parame-
ters or weights learned on new tasks to be orthogonal to the subspace spanned
by inputs from previous tasks. To find the direction orthogonal to these in-
puts, the method first finds a projector P = I − A(ATA + αI)−1A, where
A = {x1,x2, . . . ,xn} i.e. the columns of A consists of past inputs, I is the unit
matrix and α is a small constant. Note that AT denotes the transpose of A.
During gradient descent at a learning task T , the parameter vector θ is modified
according to:

θT = ηPT−1θT (2)

where PT−1 is the projector of previously learned inputs for the task T −1. The
parameter η is the learning rate. Similar to OWM for classification problems,
the loss function of the proposed regression variant, named OWMReg, can be
any loss function used for the regression.

DEN is a dynamic network expansion method that tackles the problem of
catastrophic forgetting during learning of a new task in three steps: 1) selective
retraining of parameters affected by the new task, 2) dynamic expansion of
selected layers and units of the network, 3) split and duplication of selected
units of the network. A new task is first trained on the current version of the
network while enforcing its parameters or weights to be sparse. Then, in the first
step, a sub-network S is identified. This sub-network contains parameters that
are connected to the outputs of the current task. Re-training of this sub-network
is performed by minimising:

min
θS
T

L(θT
S ;θST−1,DT ) + µ

∥∥∥θST∥∥∥
2

(3)

where θST corresponds to the parameters for the sub-network S on the current
task T , θST−1 is the set of parameters for this sub-network on the previous task
and DT is the training data for the current task. µ is a regularisation parameter.

The second step uses group sparse regularisation to dynamically decide the
number of neurons to be added to a particular layer L, by minimising:

min
θL
N

L(θLN ;θLT−1,DT ) + µ
∥∥∥θLN∥∥∥

1
+ γ

∑
g

∥∥∥θL,g
N

∥∥∥
2

(4)

where g ∈ G is a group defined on the parameters for each neuron. The network
is expanded using (4), when the loss is above a user-specified threshold. In that
case, the network is expanded by k units, with k is a user-defined parameter.

In the final step, the network is split/duplicated by solving:

min
θT

L(θT ;DT ) + λ ‖θT − θT−1‖22 (5)
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where λ is the L2 regularisation parameter. In our regression version of DEN,
named DENReg, the loss functions L used in (3), (4) and (5) can be any typical
loss function for regression problems such as MAE.

3.2 Metrics to Characterise catastrophic forgetting

In this section, we propose two new metrics whose objective is to provide more
insights into the behaviour of a continual learning system. The first metric de-
termines the level of forgetting of a task once the full sequence of tasks has been
learned. This metric is similar in nature to the catastrophic forgetting ratio pro-
posed by Lee et al. [14], which measures the final performance on a task with
respect to the best performance that can be achieved for that particular task. In
the present study, the final performance of a task is compared with respect to
its performance for the first time. This identifies the level of forgetting which is
caused by including that task as part of a continual learning system rather than
learning it in a non-continual manner. The forgetting level for a particular task
T is formally defined as FLT = P tl

T −P
tT
T where the overall level of forgetting of

task T , FLT , is the difference between the performance P at the final time step
of the sequence tl and the performance P on that task at the initial time step on
which that task was learned, tT . Note that the level of forgetting has different
behaviours depending on the type of performance metrics used. For example, for
performance metrics measuring accuracy, a task which experiences low levels of
forgetting has an FLT close to zero. Small negative values denote low levels of
forgetting, while positive values would denote a gain in performance. Similarly,
for performance metrics measuring error, such as MAE, a task experiencing low
levels of forgetting should have an FLT close to zero. However, in this case
small positive values denote low levels of forgetting, while negative values for
this metric will denote gain in performance.

This first metric can effectively help quantify the level of forgetting. However,
it is interesting to look at various types of forgetting which may often occur in
a continual learning system. Gama et al. [11] provide some ideas into a useful
categorisation about changes or drift in dynamic learning systems. Similarly to
online learning, in the context of continual learning it is important to understand
the nature of changes in performance, which could occur: 1) abruptly ( i.e when
tasks experience high levels of forgetting suddenly at a single time step in the
sequence), 2) incrementally (i.e. when tasks experience and accumulate forget-
ting across several consecutive time steps of the sequence) or 3) gradually (i.e.
when forgetting levels are experienced across several time steps with a seasonal
pattern of performance increasing and decreasing over consecutive time steps).
This categorisation may help to profile forgetting, and therefore to react to this
more appropriately for different tasks.

To determine if abrupt forgetting is occurring for a task, we first need to de-
termine the maximum level of forgetting for that task at any pair of consecutive
time steps using: MFT = max (P t

T − P
t−1
T ), ∀ t ∈ {0, 1, . . . , l}.
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Next, given a constant threshold τa, a task is said to be experiencing abrupt
forgetting if:

MFT

FLT
≤ τa and MFT × FLT > 0 (6)

To determine if a task is experiencing incremental forgetting up to some level
τi for li consecutive time steps, the following metric can be used:(∑ P t

T − P
t−1
T

FLT
≤ τi

)
≥ li (7)

for all t ∈ {0, 1, . . . , l}.
Finally, to determine if a task is experiencing gradual forgetting up to some

level τg for up to lg consecutive time steps, the following metric can be used:(∑
abs

(
P t
T − P

t−1
T

FLT

)
≤ τg

)
≥ lg (8)

Note that this last metric could effectively identify gradual forgetting irrespective
of the direction of forgetting.

4 Experiments and Results

We evaluate the feasibility of various methods described in earlier sections for
an example of controlling a DC motor. We investigate learning a sequence of
plant control schemes using the three continual learning methods explained in
Section 3: EWCReg, OWMReg and DENReg. The performance of these learning
methods are compared with Vanilla CL and Vanilla NonCL. Note that Vanilla CL
learn tasks sequentially without considering the effects of catastrophic forgetting
while Vanilla NonCL learns all the tasks at once. We also measure the level and
nature of forgetting using the two metrics proposed in Section 3.

Experiments are carried out by generating datasets for 20 tasks. For each
task, the parameters of the DC motor were changed. A dataset for a specific
task is generated by making the DC motor to follow a fixed trajectory. Each task
is composed of 7, 500 training examples, 1, 500 validation examples and 1, 500
test examples, and 21 input features. One of the input features corresponds to
previously observed speeds of a DC motor, while the other 20 features correspond
to the values of y in the previous 20 times. The output feature y corresponds to
speed of the motor. Note that for Vanilla NonCL, all training examples available
for each task are used. For the other methods, the first 1, 000 training examples
are used, to simulate real-world continual learning scenarios where training data
is scarce. We arranged 30 randomly selected task orders, ensuring that each task
is the first task of the sequence for at least one of these orders. Results are
averaged across task orders, unless stated otherwise. To make these tasks more
varied, random noise is added to 50% of the training examples. Furthermore,
the order of the input features are shuffled randomly for each task, except for
Vanilla NonCL which is not subject to any of the above types of noise.
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Table 1: Mean MAE and total training time after training all 20 tasks sequen-
tially, averaged across task orders.

Method Mean MAE Training Time (sec.)

DENReg 0.252± 0.001 501.0± 18.3

EWCReg 0.401± 0.048 6, 330.0± 190.34

OWMReg 0.364± 0.038 276.0± 12.4

Vanilla CL 0.538± 0.106 179.00± 19.1

Vanilla NonCL 1.36± 0.068 7.18± 0.34

4.1 Hyper-Parameter Settings

For all methods under evaluation, a two-layer neural network with 200 units in
each layer is trained. We use 1, 000 epochs of batches containing 128 training
examples per batch. The learning rate is set to 0.001 in all cases. In all cases
except OWMReg, we use gradient descent to optimise MAE. For OWMReg, a
momentum optimiser of value 0.99 is used, which also optimises MAE. EWC λ
parameter is set to the number of tasks, 20. We use 200 validation examples from
each previous tasks to construct the Fisher information matrix in EWCReg. For
OWMReg, α parameter is set to 10. For DENReg, we set the lambda sparsity
parameter L1 to 0.001 and L2 to 0.0001. The group LASSO lambda is set to
0.001, the number of units to be increased in the expansion process is set to
5, the threshold for dynamic expansion is 0.1 and the threshold for split and
duplication is set to 0.1.

4.2 Overall Performance

The MAE from sequential learning of all the tasks and the total training time
at the end of the sequence of tasks, averaged across task orders, are presented in
Table 1. A naive method such as Vanilla CL, with no control for catastrophic for-
getting, outperforms the approach of Vanilla NonCL. EWCReg and OWMReg
achieve lower MAE than Vanilla CL, demonstrating the ability of these meth-
ods to avoid catastrophic forgetting. However, the training time of EWCReg
is approximately 35 times more compared to Vanilla CL. DENReg clearly out-
performs counterparts with a final MAE of 0.252, which is only 18% of Vanilla
NonCL and 47% of Vanilla CL. In terms of training time, DENReg requires only
3 times more training time than Vanilla CL. The mean MAE averaged across
task orders at each timestep of the sequence is presented in Figure 2 (left), for
DENReg, EWCReg, OWMReg and Vanilla CL. Although the MAE of Vanilla
CL decreases with addition of more tasks over time, its performance is poorer
compared to other parameter-isolation methods such as DENReg, OWMReg and
EWCReg.

4.3 Performance per Task

Figure 2 (right) shows MAE of each task as each consecutive task is learned. This
result is shown as an example for one of the task orders used in the experiments.
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Fig. 2: Mean MAE of tasks learned sequentially, at each timestep, across all task
orders, overall (left) and per task (right).

Vanilla CL achieves a low MAE for each of these tasks, when these are learned
for the first time. However, high levels of catastrophic forgetting are experienced
as new tasks are learned. EWCReg also experiences forgetting after a task is
learned for the first time, although at a lower rate than Vanilla CL. OWMReg
experiences forgetting during the initial task (Task 1). However, it is capable of
retaining knowledge of previous tasks with small forgetting later in the sequence.
DENReg is stable for the full sequence of 20 tasks. The result for DENReg is
consistent with previous findings for this method, where it has been shown that
DEN performs well when the number of tasks is relatively small [4].

Similarly, Figure 3 (left) explores MAE of each task when these are learned
for the first time, averaged across task orders. Vanilla CL learns tasks for the first
time with low MAE. However, contrasting to Figure 3 (right), tasks learned using
this method are always affected in their performance in the next timestep. On the
other hand, OWMReg tends to perform worse than other methods while learning
tasks for the first time. However, as depicted in Figure 3 (right), this allows the
method to control catastrophic forgetting later in the sequence. EWCReg and
DENReg achieve values of MAE which are more similar to Vanilla CL when
tasks are learned for the first time.

4.4 Characterisation of catastrophic forgetting

Figure 3 (right) shows levels of forgetting for tasks presented in Figure 3 (left),
for all the methods under evaluation. Overall forgetting levels, for all tasks in
this sequence, are: Vanilla CL, 0.376, EWCReg, 0.129, OWMReg, 0.0137, and
DENReg, 0.0. Consistent with previous results, DENReg does not experience
forgetting once the sequence of tasks is finished. Table 2 shows the types of
forgetting experienced by each method and task, for a specific task order. The
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Fig. 3: Left: Mean MAE of tasks when tasks are learned for the first time, for all
task orders. Right: Forgetting level for each task, measured as the difference of
MAE at the last timestep of the sequence and the MAE on the first time a task
was learned, for a specific task order.

abrupt forgetting threshold τa was set to 0.95. Incremental forgetting would
occur if the level of forgetting is at least τi = 0.05 of the level of forgetting for
that task for at least 3 consecutive timesteps. Similarly, gradual forgetting would
occur if the level of forgetting is at least τg = 0.01 of the level of forgetting for that
task for at least 2 consecutive timesteps, regardless of the direction of forgetting.
Methods such as EWCReg and Vanilla CL experience abrupt forgetting for all
the tasks. OWMReg, on the contrary, experiences different kinds of forgetting.
DENReg experiences no forgetting at all according to the thresholds set, as
shown previously in Figure 2 (right).

Table 2: Types of forgetting experienced, for a specific task order.
Type of Drift DENReg EWCReg OWMReg Vanilla CL

Abrupt 0 19 11 19

Incremental 0 0 1 0

Gradual 0 0 1 0

No/Unclassified 20 1 7 1

5 Conclusions

We investigated the applicability of a continual learning approach to the prob-
lem of learning a sequence of controllers. We explored a variety of state-of-the-
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art continual learning methods. Experiments demonstrated that the problem of
learning multiple controllers can be formulated as a continual learning problem.
This approach achieves much lower levels of error than learning all these con-
trollers in a non-sequential manner. Furthermore, state-of-the-art methods that
allow dynamic network expansion showed a potential to retain the knowledge of
previous controller tasks and help to avoid the problem of catastrophic forget-
ting in this context, for a small number of tasks. These promising results leave
as future work the problem of exploring more complex scenarios of controllers
that are designed to systems such as generic classes of linear systems, T-S fuzzy
nonlinear systems, or control systems composed of a larger number of tasks.
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