

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

The Analysis of Eye Banking and Corneal Transplantation in New Zealand

Hussain Y Patel

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Medicine, University of Auckland 2007

ABSTRACT

The series of studies comprising this thesis was developed to answer a number of key inter-related questions in regard to eye banking and corneal transplantation in New Zealand.

The source and management of donor tissue procured by the New Zealand National Eye Bank (NZNEB) was analysed. Significant trends were identified with respect to donor demographics, donor procurement source, improved donor tissue processing and storage, decreased biological contamination, and increased utilization of corneal tissue.

Current trends and ethnicity differences in indications for penetrating keratoplasty (PKP) were investigated. Keratoconus was identified as the most common indication for PKP in New Zealand, accounting for a significantly higher proportion of PKPs than other published reports. Keratoconus was the most common indication for PKP throughout all ethnicity groups and was particularly common in the Maori and Polynesian populations. Significant trends were identified including an increase in the number of PKPs for regraft and Fuchs' endothelial dystrophy and a decrease for aphakic or pseudophakic bullous keratopathy and viral keratitis.

Survival and visual outcome following PKP in New Zealand was investigated using univariate and multivariate analysis. Several independent risk factors were identified that influenced outcome of PKP. Active inflammation at PKP, preexisting vascularisation, pre-operative glaucoma, small or large graft size, intraoperative complications, episodes of reversible rejection and a pre-operative

- 11 -

diagnosis of regraft, trauma or infection resulted in a significantly decreased survival rate. Advancing recipient age, active inflammation at the time of PKP, pre-existing vascularisation, pre-operative glaucoma, episodes of reversible rejection, bullous keratopathy, trauma and non-infective keratitis were associated with poor visual outcome.

Patient characteristics, indications, surgical details, and outcome of paediatric keratoplasty were analysed. Acquired non-traumatic indications accounted for the majority of paediatric keratoplasties in New Zealand. This study highlighted keratoconus as a particularly common indication for paediatric keratoplasty when compared to other countries. Survival and visual outcome was better for acquired compared to congenital indications.

The effects of corneal parameters on the measurement of endothelial cell density (ECD) in the normal eye were analysed. Corneal thickness appears to be negatively correlated to ECD in the normal cornea for all age groups. Corneal diameter is correlated to ECD measurement in children but not in adults. Corneal curvature was not significantly correlated to ECD measurement, but this needs further investigation.

Confocal microscopy and slit scanning topography were used to analyze endothelial morphology and function in the short and long term following PKP. The results of this study are in concordance with other published reports that have identified an accelerated loss of endothelial cells and more rapid development of abnormal endothelial cells in transplanted corneas compared to normal corneas.

ACKNOWLEDGEMENTS

The completion of this thesis would not have been achieved without the help and support of several individuals. Unfortunately it is not possible to mention each and every person who helped along the way, but I would like to thank the following individuals for their significant contribution to this thesis.

First and foremost I would like to thank Professor Charles McGhee for the special opportunity he gave me to undertake a research degree under his supervision in the Department of Ophthalmology, University of Auckland. Professor McGhee provided tremendous help, support and encouragement throughout the entire process of completing this thesis. He was involved in all of the studies that comprise this thesis and his help and advice with these was invaluable. Without Professor McGhee this thesis would never have been accomplished.

The New Zealand National Eye Bank (NZNEB) studies would not have been possible without the significant help of the current NZNEB manager Louise S Moffatt, and technicians Nigel Brooks and Helen Twohill.

I would like to acknowledge the fundamental contribution to this research by A/Prof Gillian Clover, founder and first Scientific Director of the NZNEB; the key role of Dr David Pendergrast, Clinical Director; the Chairman and Trustees of the NZNEB for their continued support, the past Managers, Transplant Coordinators, Scientific Staff; and Ophthalmologists of New Zealand, who have contributed to clinical and scientific aspects of the NZNEB over the last 13 years. I am particularly grateful to Dr Trevor Sherwin and Dr Sue Ormonde for their invaluable help and guidance with all of the studies in this thesis. I am also indebted to Dr Dipika Patel and Dr Nisha Sachdev for their assistance in the clinical studies that form part of this thesis.

Finally, I would like to thank my mother and father, Amina and Yusuf Patel, and my partner, Manou Moeung, for their encouragement and continued support of my academic pursuits.

TABLE OF CONTENTS

Index	Pages
Title page	I
Abstract	11 - 111
Acknowledgements	IV - V
Table of contents	VI - VII
List of figures and tables	VIII - X
List of abbreviations	XI - XIII

Section I:	Introduction	
Chapter 1:	The structure and function of the cornea	1 - 15
Chapter 2:	Contemporary eye bank techniques for corneal storage	16 - 20
Chapter 3:	Current techniques in corneal transplantation	21 - 27
Chapter 4:	The indications and outcome of penetrating keratoplasty	28 - 50

Section II: The New Zealand National Eye Bank Studies

Section III:	The analysis of the corneal endothelium in the normal eye and following penetrating keratoplasty	
Chapter 8:	The indications and outcome of paediatric corneal transplantation in New Zealand: 1991-2003	122 -150
Chapter 7:	The assessment of survival and visual outcome one year following corneal transplantation 1993 to 2002	95 -121
Chapter 6:	Current trends and ethnicity differences in indications for penetrating keratoplasty in New Zealand	78 - 94
Chapter 5:	The New Zealand National Eye Bank Studies 1991-2003: A review of the source and management of corneal tissue	51 - 77

Chapter 9:	The effects of corneal parameters on the assessment of	
	endothelial cell density in normal young adults	151 - 170

Chapter 10:	Confocal microscopy analysis of endothelial morphology and function in the short and long term following penetrating keratoplasty	171 - 195
Section IV:	Conclusions	
Chapter 11:	Conclusions	196 - 212
Section V:	Appendices	
Appendix 1:	Papers published from this thesis	213-214

- VIII -

LIST OF FIGURES AND TABLES

Number	Description	Page
Chapter 1		
Figure 1:1	Microscopic appearance of the cornea	4
Figure 1:2	Model of ion and water transport across corneal endothelium	13
Chapter 5		
Figure 5:1	The number of donors over the years of the study	56
Figure 5:2	The age distribution of donors	58
Figure 5:3	The mean age of donors over years of study	58
Figure 5:4	Trends in donor procurement source	59
Figure 5:5	Mean death to preservation interval over years of study	62
Figure 5:6	Average storage duration over years of study	63
Figure 5:7	Endothelial cell density of donor corneas	65
Figure 5:8	Percentage of donor corneas discarded due to biological contamination	66
Figure 5:9	Number of donor corneas transplanted versus discarded over years of study	68
Table 5:1	Cause of donor death and associated demographic data	60
Chapter 6		

Figure 6:1	Age range of PKP recipients	84
Table 6:1	Indications for PKP in New Zealand	83
Table 6:2	Indications for PKP based on gender	85

Table 6:3	Age and gender distribution for each ethnic group	87
Table 6:4	Indications for PKP based on ethnicity	88
Table 6:5	Annual number of PKPs per 100,000 population of each ethnic group	89

Chapter 7

Figure 7:1	Distribution of post-operative best corrected visual acuity	114
Table 7:1	Summary of demographic data for each pre-op diagnosis	100
Table 7:2	Causes of PKP failure	101
Table 7:3	Survival rates one-year post-operative	104
Table 7:4	Survival rates for different graft sizes	107
Table 7:5	Pre-operative diagnoses and different graft sizes	107
Table 7:6	Most common post-operative complications reported	110
Table 7:7	Multivariate analysis of risk factors associated with decreased PKP survival	112
Table 7:8	Post-operative visual acuity outcome for each pre-operative diagnosis	114
Table 7:9	Multivariate analysis of risk factors associated with poor visual acuity	116
Chapter 8		
Table 8:1	Indications for paediatric keratoplasty	128
Table 8:2	Age and gender distribution for each diagnostic group	129
Table 8:3	Indication for paediatric keratoplasty for different age groups	130
Table 8:4	Outcome of paediatric keratoplasty	134
Table 8:5	Paediatric keratoplasty outcome based on indication	134

Table 8:6	Indications for paediatric keratoplasty reported in the literature	136
Table 8:7	Summary of published survival rates in paediatric keratoplasty	138

Chapter 9

Figure 9:1	Relationship between central corneal thickness and ECD	161
Figure 9:2	Relationship between horizontal corneal diameter and ECD	162
Figure 9:3	Relationship between anterior corneal curvature and ECD	163
Figure 9:4	Relationship between posterior corneal curvature and ECD	163
Table 9:1	Corneal ECD characteristics of subjects in study	159
Table 9:2	Summary of Pearson's correlation coefficients for corneal parameters and endothelial parameters	164
Chapter 10		

Figure 10:1	Corneal histology using confocal microscopy	176
Figure 10:2	Orbscan topography data sheet	177
Table 10:1	Demographic and clinical information of subjects	179

LIST OF ABBREVIATIONS

ACD	Anterior chamber depth
ALK	Automated lamellar keratoplasty
ANOVA	Analysis of variance
BCVA	Best corrected visual acuity
BFS	Best fit sphere
BSCVA	Best spectacle corrected visual acuity
BSS	Balanced salt solution
ССТ	Central corneal thickness
CI	Confidence interval
CI	Correction Index
COVA	Coefficient of variation for cell area
COVL	Coefficient of variation for cell length
CLs	Contact lens
cm	Centimeter
CSR	Corneoscleral rim
Cyl	Cylinder
D	Dioptre
DPI	Death to preservation interval
ECCE	Extracapsular cataract extraction
ECD	Endothelial cell density
FU	Follow-up
Hz	Hertz
IN	Inferonasal
IOL	Intraocular lens
Т	Inferotemporal
L	Left
LE	Left eye

LK	Lamellar keratoplasty
LogMAR	Base ten logarithm of the minimum angle of resolution
MCA	Mean cell area
MHz	Megahertz
MK	McCarey and Kaufman
m	Month
mJ	Millijoule
mm	Millimetre
μm	Micrometre
nm	Nanometre
NZNEB	New Zealand National Eye Bank
OCM	Organ culture medium
PAR CTS	PAR Corneal Topography System
PC IOL	Posterior chamber intraocular lens
РКР	Penetrating keratoplasty
R	Right
RE	Right eye
RK	Radial keratotomy
RMS	Root mean square
SD	Standard deviation
SIA	
	Surgically induced astigmatism
SEM	Surgically induced astigmatism Standard error of the mean
SEM SEQ	Surgically induced astigmatism Standard error of the mean Spherical equivalent
SEM SEQ SimK	Surgically induced astigmatism Standard error of the mean Spherical equivalent Simulated keratometry
SEM SEQ SimK SN	Surgically induced astigmatism Standard error of the mean Spherical equivalent Simulated keratometry Superonasal
SEM SEQ SimK SN SPSS	Surgically induced astigmatism Standard error of the mean Spherical equivalent Simulated keratometry Superonasal Statistical Program for Social Scientists
SEM SEQ SimK SN SPSS ST	Surgically induced astigmatism Standard error of the mean Spherical equivalent Simulated keratometry Superonasal Statistical Program for Social Scientists Superotemporal

UBM	Ultrasound biomicroscopy
UCVA	Uncorrected visual acuity
US	Ultrasound
VA	Visual acuity