

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

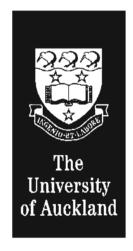
General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.

THE FETAL ORIGINS HYPOTHESIS IN TWIN CHILDREN: A METABOLIC EVALUATION

Dr Craig Alan Jefferies

Department of Paediatrics and Liggins Institute,


Faculty of Medical and Health Sciences,

University of Auckland, New Zealand.

A thesis submitted in fulfillment of the requirements

for the degree of Doctorate of Medicine,

The University of Auckland, 2007.

ABSTRACT

This thesis explores whether low birth weight affects glucose homeostasis and other aspects of the metabolic syndrome in twin children. The key parameter studied is insulin resistance, and whether insulin resistance is also associated with abnormalities in blood pressure or other aspects of the metabolic syndrome. This thesis is a comparison of twins to singletons, rather than being a study of these traits within twin pairs.

The fetal origins hypothesis suggests that low birth weight ultimately is associated with adult onset diseases namely coronary heart disease, glucose intolerance and hypertension. All twins to a degree are born prematurely and with low birth weight. It is unclear whether their metabolism in later life reflects this, or alternatively reflects their uniqueness as twins irrespective of birth weight. This thesis reviews how adaptation for their unique fetal life has affected in particular, glucose homeostasis in twins.

Insulin resistance has been consistently identified prior to the onset of both type 2 diabetes mellitus and hypertension and is also the primary metabolic abnormality persisting from programming of the undernourished fetus. Both small-for-gestational-age and prematurely born infants are insulin resistant when examined in mid-childhood. It has been postulated that this represents an attempt of the fetus to salvage itself from a state of inadequate nutrition. Twins when examined in this thesis are also shown to be insulin resistant, or to have a reduction in insulin sensitivity. This insulin

resistance was independent of low birth weight and prematurity, and reflected a unique twin effect.

Examing blood pressure precisely revealed that twins had increased night-time blood pressure, a feature also seen in a variety of pre-hypertensive states. However, there was no association between low birth weight and any 24 hour blood pressure monitoring parameter in twins. Twins also had elevated leptin levels but reduced TNF-alpha levels in twins irrespective of birth weight or prematurity.

Twins have unique metabolic profiles which are not correlated with low birth weight, and twins should be considered an exception to the fetal origins hypothesis.

ACKNOWLEDGEMENTS

I am indebted to my wife and family for allowing me to pursue a career in Paediatrics, Endocrinology and Research; thank you Lalita, Samuel, Alexander, Joshua and Matthew. I am also indebted to the perseverance and support of my teachers, mentors, friends and now colleagues: Wayne Cutfield and Paul Hofman.

During the course of this work I have thoroughly enjoyed coming into contact with colleagues from many different disciplines, and I am thankful for their collaboration: Dr Jeff Keelan, Dr(s) Knoblauch and Fred Luft, Dr Elizabeth Robinson, and Dr William Wong. To the nurses who have helped me with these studies; Gail Gilles, Jill Rolfe and Margaret McGregor. Special thanks also to Dr John Kirkland and the NZ Multiple Birth Association.

Thanks to the funding bodies, without whom I would never have had the finances to accomplished the research: Novo Nordisk, Pfizer, The Lottery Commission, The Maurice and Phyllis Paykel Trust, and in particular the Joan Mary Reynolds Trust.

The chapters of this thesis are based on the following publications.

Jefferies CA, Hofman PL, Knoblauch H, Luft FC, Robinson EM, Cutfield WS. Insulin resistance in healthy pre-pubertal twins. J Pediatrics 2004; 144(5):608-13.

Jefferies CA, Hofman PL, Wong W, Robinson EM, Cutfield WS. Increased nocturnal blood pressure in healthy pre-pubertal twins. J Hypertens 2003; 21:1319; 21:1319-24.

Jefferies CA, Hofman PL, Keelan, JA, Robinson, EM, Cutfield WS. Insulin resistance is not due to persistently elevated serum tumour necrosis-alpha levels in small for gestational age, premature, or twin children. Pediatr Diabetes. 2004 Mar; 5(1):20-5.

Jefferies, CA, P Hofman, W Cutfield, *Starship Children's Hospital, New Zealand.* Book Chapter 3. Fetal Influences on Insulin Resistance in "Insulin Resistance in Children and Adolescents". Editors: Denis Daneman and Jill Hamilton (The Hospital for Sick Children, University of Toronto) 2005. NOVA SCIENCE PUBLISHERS, INC.

Awards arising from these works.

 Jefferies C. Twin pressure on the fetal origins hypothesis. Royal Australasian College of Physicians and Paediatric Society Meeting, Auckland October 2001.

Winner of the RACP Young Investigator Award, 2001 Auckland, New Zealand

 Jefferies C. Pre-pubertal Twin Children are Insulin Resistant. Royal Australasian College of Physicians and Paediatric Society Meeting, Auckland October 2001.

Winner of the Paediatric Society Young Investigator Award 2001, Auckland, New Zealand.

Jefferies C. Australasian Paediatric Endocrine Group (APEG) award 2000.
 Twins are insulin resistant.

Winner of the Young Investigator Award, November 2000, Sydney, Australia.

AUTHOR'S CONTRIBUTIONS

Chapter 4

I assisted in study design, attended the ethics application meeting and wrote the changes/rebuttals required, met with contacts from the New Zealand Multiple Birth Association and recruited all the subjects. I wrote and designed the successful grant which funded the study, performed the majority of the FSIGT tests and insulin assays, analysed the data with the biostatistician, and wrote the manuscript and rebuttal for successful publication.

Chapter 5

I wrote the successful grant for the ABPM monitors and recruited all the subjects. Programmed the ABPM cuffs, downloaded the traces, analysed the results with the biostatistician, and wrote the submission and rebuttals for successful publication.

Chapters 6& 7

I was involved in study design, sourcing of the TNF-alpha kits and liaising with the scientist to perform the assays, analysed the data with the biostatistician, and wrote the submission and rebuttals for successful publication. I sourced the leptin kits and organised the Auckland Hospital laboratory to perform the assays.

TABLE OF CONTENTS

ABSTRACT	
ACKNOWLEDGEMENTS	IV
AUTHOR'S PUBLICATIONS	v
AUTHOR'S CONTRIBUTIONS	
LIST OF FIGURES	XII
1) THE FETAL ORIGINS HYPOTHESIS	1
THE FETAL ORIGINS OR BARKER HYPOTHESIS	1
Coronary heart disease	
Glucose intolerance	
Hypertension	
Low birth weight and obesity	
Low birth weight as a predictor of mortality	
Criticisms of the FOH	
Animal models of fetal programming	
Programming and other organs Thrifty phenotype or thrifty genotype	
The relevance of fetal influences on T2DM	
INSULIN RESISTANCE AND THE METABOLIC SYNDROME	
Insulin resistance and the development of T2DM.	
Insulin resistance and hypertension	
Hypothalamic-Pituitary-Adrenal axis and insulin resistance	
INSULIN RESISTANCE IN SGA CHILDREN	
INSULIN RESISTANCE IN CHILDREN BORN PREMATURELY	
2) TWINS AND THE FOH	
Monozygotic twins	
Dizygotic twins	
The post-natal growth of twins	
Twins and the study of human disease	
The twin study	
TWINS AND THE FETAL ORIGINS HYPOTHESIS	
Twin animal models and the FOH Birth weight and ischaemic heart disease in twins	
Mortality in twins	
Birth weight and BP in twins	
TWINS AND INSULIN RESISTANCE	
3) TOOLS FOR EVALUATING INSULIN SENSITIVITY	
OGTT	
Insulin Tolerance Test	
Insulin suppression test	
Glucose clamp technique	
Other methodologies with fasting glucose/insulin evaluation	
Forearm perfusion technique	
FSIGT Minimal model	
4) INSULIN SENSITIVITY IN TWINS	
INTRODUCTION	
Methodology	
Exclusion Criteria	
Methods	
Statistical Analysis	

	RESULTS	
	Insulin sensitivity	
	Glucose effectiveness and glucose disposal coefficient	
	Birth weight and S ₁ in twins	59
	Gestation and S _I in Twins	59
	Birth weight Effects within Twin Pairs	
	Zygosity	
	Other Influences on S ₁	
	PPARy Polymorphism and S ₁	
	DISCUSSION	
	CONCLUSION	69
5)	BLOOD PRESSURE IN TWINS	. 71
	INTRODUCTION	.71
	METHODOLOGY	. 72
	Statistics	73
	RESULTS	. 74
	Birth weight and BP	
	Twins compared to Singleton Controls	
	Dipping	
	Cortisol	
	DISCUSSION	
	CONCLUSIONS	. 88
6	TNF-ALPHA IN TWINS	80
6)		. 09
	INTRODUCTION	. 89
	Adiponectin	90
	Resistin	
	IL-6	
	METHODOLOGY	
	RESULTS	
	Insulin sensitivity	96
	Plasma Cortisol	
	DISCUSSION	. 99
7)	LEPTIN IN TWINS	103
	INTRODUCTION	103
	Leptin and Insulin Resistance	
	Leptin and SGA	
	Twins and Leptin	
	METHODOLOGY	108
	RESULTS	109
	Comparing Twins to Controls	
	Leptin and S ₁	111
	Leptin and birth weight in twins	111
	BP	
	Free fatty acids	
	DISCUSSION	114
8)	FINAL DISCUSSION	118
	THE FETAL ORIGINS HYPOTHESIS AND TWINS	118
	TWINS AND INSULIN SENSITIVITY	119
	TWINS AND BLOOD PRESSURE PROFILES.	
	TWINS AND THE METABOLIC SYNDROME	121
	CONCLUSION	121
Al	PPENDICES	
	1) ANIMAL MODELS OF FETAL PROGRAMMING	122
	2) GLUCOSE AND INSULIN HOMEOSTASIS	
	Insulin Secretion	
	Insulin Secretion Insulin Action	
	3) TWIN STUDIES OF DIABETES MELLITUS.	
	· · · · · · · · · · · · · · · · · · ·	

4) CONSENT FORMS AND ETHICS	
REFERENCES	

LIST OF TABLES

Table 2-1: Insulin indices, β -cell function and S_1 in twins	37
Table 3-1: Parameters inherent and derived from the Minmod4	49
Table 4-1: Clinical characteristics of the twin and control groups	55
Table 4-2: Glucose and insulin regulation parameters. 5	56
Table 4-3: Glucose homeostasis parameters in MZ and DZ twins6	52
Table 4-4: Clinical characteristics and the PPARy polymorphism6	55
Table 5-1: Clinical characteristics of the twin subjects. 7	75
Table 5-2: BP parameters for the twin subjects. 7	75
Table 5-3: BP and anthropometric parameters according to zygosity	76
Table 5-4: Parameters in lighter vs. heavier born twins. 7	79
Table 5-5: Clinical parameters of twins compared to controls. 8	31
Table 5-6: ABPM parameters adjusted for height strata. 8	32
Table 6-1: Proteins secreted by adipocytes that act as signalling molecules	39
Table 6-2: Potential mechanisms of TNF-alpha mediated insulin resistance9	92
Table 6-3: Comparison of the clinical characteristics of the study groups9)5
Table 6-4: TNF-alpha, cortisol and S_I in the control and study groups9)8
Table 7-1: Clinical parameters. 11	0
Table 7-2: Clinical parameters of twins based on zygosity11	2
Table A3-1: Twin studies of diabetes mellitus	35

LIST OF FIGURES

Figure 1-1: Coronary heart disease as a function of birth weight4
Figure 1-2: Cumulative risk of T2DM with abnormalities of S ₁ 16
Figure 1-3: Insulin excursions during FSIGT in SGA children20
Figure 1-4: Insulin indices in prematurely born children
Figure 2-1: Birth weight in twins and gestational age
Figure 2-2: Prenatal weights with both twin weights combined
Figure 2-3: Individual glucose disposal rates during the clamp in twins
Figure 3-1: The hyperbolic relationship between S_1 and β -cell secretion
Figure 3-2: Hyperglycaemic clamp in adolescents45
Figure 3-3: The hypothetical minimal model48
Figure 4-1: Glucose excursions during FSIGT55
Figure 4-2: Insulin excursions during FSIGT
Figure 4-3: Acute insulin response during FSIGT
Figure 4-4: Hyperbolic relationship between S _I & AIR
Figure 4-5: S ₁ and birth weight
Figure 4-6: S ₁ and gestation in twins
Figure 4-7: S_1 in the lighter vs. heavier born twins
Figure 4-8: S ₁ in MZ and DZ twins61
Figure 4-9: Concordance for S ₁ in MZ twins61
Figure 4-10: BMI SDS & S ₁ 62
Figure 4-11: S ₁ and current age63

Figure 4-12: S ₁ and pre-natal steroids.	64
Figure 4-13: S_I in twins with the PPAR γ polymorphism	64
Figure 5-1: Height SDS vs. systolic 24-hour BP & diastolic 24-hour BP	77
Figure 5-2: Height vs. 24-hr systolic and diastolic BP.	77
Figure 5-3: Daytime BP vs. birth weight	80
Figure 5-4: Daytime systolic BP in height strata	82
Figure 5-5: Nighttime systolic BP in height strata	82
Figure 5-6: Daytime diastolic BP in height strata	83
Figure 5-7: Nighttime diastolic BP in height strata.	83
Figure 5-8: Systolic dipping in twin subjects	84
Figure 6-1: TNF-alpha levels in the control and study groups.	96
Figure 6-2: Cortisol concentrations in the control and study groups	97
Figure 7-1: Leptin regulation	105
Figure 7-2: Leptin in twins & controls.	110
Figure 7-3 A & B: Leptin correlates within MZ and DZ twins	113
Figure 7-4: Free fatty acids and leptin.	114
Figure A2-1: The disposal of a typical 100gm hypothetical meal	126
Figure A2-2: The control of glucose homeostasis in T2DM.	127
Figure A2-3: The hyperbolic relationship between insulin secretion and insulin	
resistance	128
Figure A2-4: The characteristics of the five facilitated-diffusion glucose transport	ers.
	131

ABBREVIATIONS

AIR	Acute Insulin Response
ABPM	Ambulatory Blood Pressure Monitoring
BMI	Body Mass Index
BP	Blood Pressure
DZ	Dizygotic
FOH	Fetal Origins Hypothesis
FSIGT	Frequently Sampled IV Glucose Tolerance Test
IUGR	Intrauterine Growth Retardation
K _G	Glucose Disposal Coefficient
MODY	Maturity Onset of Diabetes in the Young
N/7	
MZ	Monozygotic
MZ OGTT	Monozygotic Oral Glucose Tolerance Test
OGTT	Oral Glucose Tolerance Test
OGTT PPARy	Oral Glucose Tolerance Test Peroxisome Proliferator Activated Receptor γ
OGTT PPARy SDS	Oral Glucose Tolerance Test Peroxisome Proliferator Activated Receptor γ Standard Deviation Score
OGTT PPARy SDS SGA	Oral Glucose Tolerance Test Peroxisome Proliferator Activated Receptor γ Standard Deviation Score Small-for-Gestational Age
OGTT PPARγ SDS SGA S _G	Oral Glucose Tolerance Test Peroxisome Proliferator Activated Receptor γ Standard Deviation Score Small-for-Gestational Age Glucose effectiveness
OGTT PPARy SDS SGA S _G S _I	Oral Glucose Tolerance Test Peroxisome Proliferator Activated Receptor γ Standard Deviation Score Small-for-Gestational Age Glucose effectiveness Insulin Sensitivity