http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the Library Thesis Consent Form.
Non-invasive method of measuring airway inflammation: exhaled nitric oxide

Dr Catherine Ann BYRNEs

FRACP, MBChB (New Zealand)
Graduate Certificate in Clinical Education (New South Wales)
Senior Lecturer & Honorary Consultant
Paediatric Respiratory Medicine

The University of Auckland
Department of Paediatrics
Faculty of Medical & Health Sciences
Private Bag 92019
Auckland 1142
New Zealand
Ph: 64 9 3737 599 extn 89770
Fax: 64 9 3737 486
Email: c.byrnes@auckland.ac.nz
Nitric oxide (NO) was well known to be a component of air pollution, often in the form of nitrogen dioxide (NO₂). However its importance in biological systems altered dramatically with the discovery in 1987 that it was the 'endothelial-derived relaxing factor'. Since then there has been an explosion of research on NO demonstrating that this gaseous molecule was a widespread physiological mediator and was simultaneously recognised as a vital component of immune function contributing to macrophage-mediated cytotoxicity. NO was therefore a key molecule in modulating inflammation, including airway inflammation.

The aim of this thesis was:
1. To adapt a NO chemiluminescence analyser from measuring airway pollution to measuring exhaled air in human subjects.
2. To measure NO levels in exhaled air in adult subjects.
3. To evaluate whether altering measurement parameters altered the levels of NO obtained.
4. To adapt this technique from adults to measure exhaled NO in children.
5. To compare levels of NO from healthy children to groups of asthmatic children on either bronchodilator therapy only, or on regular inhaled corticosteroids.
6. To compare the levels of NO in a pilot group of asthmatic children before and after commencement of inhaled corticosteroids.

Methods

A Dasibi Environmental Corporation Model 2107 chemiluminescence analyser was adapted specifically requiring a reduction in response time, which was achieved by modification of the circuitry and re-routing of the analogue signal directly to a chart recorder, achieving a reduction of the response time by 80%. Addition of a number of analysers allowed the measurement of exhaled NO, carbon dioxide (CO₂), mouth pressure and flow for each exhalation from total lung capacity. Twenty adult subjects (in total) were then studied looking at direct (NO, CO₂, mouth pressure) versus t-piece (with the addition of flow) measurements making five exhalations from total lung capacity, at 3-minute intervals (direct/t-piece/direct or t-piece/direct/t-piece in series). The area of NO under the curve versus the peak of the NO trace was compared and the exhalation pattern of NO versus CO₂ was compared. Measurement conditions were altered to evaluate the effect of individual parameters on the exhaled NO result. This included separately assessing different expiratory flows, different expiratory mouth pressures, the effect of a high versus a low background NO level and the
effect of drinking water (of varying temperatures) prior to exhalation. Healthy control children were then enrolled to the study from a local school (Park Walk Primary School) and compared with asthmatic children enrolled from outpatient clinics at the Royal Brompton Hospital. The asthmatic children were further divided into those on bronchodilator treatment only and those on regular inhaled corticosteroid therapy. NO was also measured before and two weeks after commencing inhaled corticosteroid therapy in previously steroid-naive asthmatics.

Results

It was possible to modify a chemiluminescence analyser to enable measurement of exhaled NO. In 12 healthy subjects (mean age 32 years, 6 males) peak direct NO levels were 84.8 parts per billion (ppb) (standard error of the mean (SEM) 14.0ppb), significantly higher than 41.2ppb (SEM 10.8ppb) measured via the t-piece system. The exhaled NO rose to an early peak and plateau while the CO₂ levels continued to rise to peak late in the exhalation. The mean times to peak NO levels were 32.2 seconds (s) (direct) and 23.1s (t-piece), which was significantly different from the mean times to peak CO₂ levels at 50.5s (direct) and 51.4s (t-piece, p<0.001). At peak NO level, the simultaneous CO₂ level of 4.9% (SEM 0.14%, direct) and 5.2% (SEM 0.18, t-piece) were significantly lower than the peak CO₂ achieved of 5.8% (SEM 0.21%, direct, p< 0.001) and 6.2% (SEM 0.28, t-piece, p<0.001). There was no difference between repeat direct or t-piece measurements.

With regard to varying measurement conditions, the mean peak concentrations of NO decreased by 35ppb (95% confidence intervals 25.7-43.4) from a mean of 79ppb (SEM 15.4ppb) at an expiratory flow rate of 250mls/min to 54.1ppb (SEM 10.7ppb) at 1100mls/min. The mean peak concentration of NO did not change significantly when mouth pressure was increased in eight of ten subjects, although in two it did decrease in the highest pressure. The mean NO concentration with machine and subjects sampling from a low NO reservoir was 123ppb (SEM 19.4), which was an increase from results obtained before at 81.9ppb, SEM 10.2ppb, p=0.001 95%, CI -19.9 to -62.7) and after at 94.2ppb (SEM 18.3ppb, p=0.017, 95% CI 6.0-5.18) sampling with high ambient NO levels. The mean peak NO concentration decreased from 94.4ppb (SEM 20.8) to 70.8ppb (SEM 16.5, p=0.002 95% CI 12.9-33.1) with water consumption.

In 39 healthy pre-pubertal children with a mean age of 9.9 years (range 9-11 years, 23 girls) the mean direct exhaled NO level was 49.6ppb (SD 37.8ppb, range 11.5-197.2ppb) compared with mean exhaled NO via t-piece sampling of 29.2ppb (SD 27.1ppb, range 5.1-141.2ppb).
There was no significant difference between boys and girls for either the direct or the t-piece recordings. In comparison with normal children, 15 asthmatic children on bronchodilator therapy only had much higher levels of exhaled NO at 126.1ppb via the direct system (SD 77.1ppb, p<0.001) and 109.5ppb via the t-piece system (SD 106.8ppb, p<0.001). In 16 asthmatics on regular inhaled corticosteroids the mean peak exhaled levels were significantly lower at 48.7ppb via the direct method (SD 43.3ppb, p<0.001) and via the t-piece system at 45.2ppb (SD 45.9ppb, p<0.01). There was no difference between the normal children and the asthmatic children who were on regular inhaled corticosteroids (p=0.9 direct, p=0.2 t-piece). There was no significant difference in CO₂, mouth pressure, duration of expiration and expiratory flows between the three groups or between the two methods (direct and t-piece). In six asthmatic children the mean peak exhaled NO levels fell from a medium peak level of 124.5ppb to 48.6ppb when measured before and two weeks after commencement of inhaled corticosteroids on treatment.

Discussion

This research showed it was possible to modify an NO chemiluminescence analyser to enable measurement of exhaled NO in adult and paediatric subjects. Furthermore, it was possible to measure both healthy and asthmatic children. There were significant differences between the exhalation pattern of NO and CO₂ suggesting that NO was produced in the airways, not at alveolar level, unlike CO₂. The measurement of exhaled NO required a standardised approach as exhaled NO levels decreased with increasing expiratory flow, when measuring at a time of high ambient NO concentration, and with consumption of either hot or cold water immediately preceding exhalation (such as might be given if a subject was coughing). The findings with expiratory mouth pressure were less certain, with a difference seen in only two of ten subjects.

The levels of exhaled NO measured in children aged 9-11 years were lower than that measured in the adult subjects. There was no difference between boys and girls, or with other parameters such as having a personal history of atopy, a family history of atopy, or the presence of a smoker or furry pets within the house-hold. These findings may have altered with increased numbers in this group and could possibly be a type two statistical error. The results of exhaled NO in asthmatic children on bronchodilator therapy only were significantly elevated compared to both normal children and asthmatic children treated with regular inhaled corticosteroids. The exhaled NO level also fell significantly by two weeks following the commencement of inhaled corticosteroid treatment in steroid-naive asthmatic children.
results suggested that the methods of measuring exhaled NO required standardization and that it could potentially be a non-invasive measure of airway inflammation to follow - particularly in children with asthma who were commencing inhaled steroid treatment.
Dedication

This is Dedicated:

To the strong women in my family from my great, great grandmother

to my sister Angela who always believes in me.
Acknowledgements

United Kingdom

Professor Andrew Bush invited me to a research position at the Royal Brompton Hospital and has been supportive from day one for both my research career and clinical training. His own approach I seek to emulate with his excellent clinical acumen, approach to children and their families. In addition, he maintains a huge research output and when working with him in this capacity his attention to detail and editing ability is superb. I, like most of the paediatric respiratory fraternity, count Andy, and his wife Sue Bush, as friends.

Professor Peter Barnes from the then National Heart & Lung Institute contributed valuable advice and supervised other research projects that I conducted. He rather bravely allowed me to join his laboratory as one of only three ‘medics’ among the 25 scientists from whom I learnt about statistics, information technology and attention to detail.

Dr Seinka Dinarevic assisted with the studies on the children and provided a link to the local school from where the children were recruited.

Park Walk Primary School, London who were approachable regarding the research and interested in assisting the study. The children enrolled from the school and from the Brompton Hospital clinics were terrific – humorous, enthusiastic, willing to help and could always be depended upon to question some factor about the testing or the research that I had not covered with them. They loved all the switches even more than I did.

Caroline Busst was the biomedical engineer who provided the main assistance with regard to modifying the analyser as we went through and assisted with troubleshooting whenever that was necessary. She brought completely different knowledge to mine to this project from an engineering and particularly electrical engineering capacity, which complimented the clinical and practical knowledge that I was able to offer.

I would like acknowledge the great ‘Fellows’ that I worked with at the Royal Brompton Hospital. We were embarking on clinical and research careers and it was great to be part of the group and they remain friends to this day; Paul Munyard, Lara Shekerdemian, Jane Davies, Clare Hogg, Kate Brown and Adam Jaffe.
New Zealand

The Paediatric Department at the Faculty of Health and Medical Sciences, University of Auckland all contributed particularly in the final days of submission assisting with proof-reading and formatting.

A very special thank you to Jan Tate the CF nurse specialist and friend who has always been very supportive and made my daily working life better, particularly at times of clinical overload. She also helped take the photos used in this thesis – late into the night.

Professor Innes Asher has always been supportive of myself in the clinical, research and teaching arenas and has helped greatly with her capacity, despite the many hats she currently wears, in offering advice and editing comments.

Dr Elizabeth Edwards who was my first research fellow, the first Ph.D student that I supervised which she completed before me and now both colleague and friend as well as fellow netball enthusiast.

Merrin Harger, project manager of subsequent research with whom I shared an office. She was amusing every day and left me one of her inspirational artworks when she left to embark on a new career as an artist (that we all were so talented).

Mirjana Jaksic, always generous with her own clinical time, I thank for supporting me in particular by picking up the occasional extra clinic, so that I could catch up.
Personal

My family has always been completely supportive in everything that I do and my parents, Daphne Mary Pemberton Byrnes and Brian Liston Dominic Byrnes, were thrilled to see me start at medical school all those many years ago, although, sadly, were not alive to see me graduate. And my special Aunt, Veronica Commins, who has supported my sister and myself through our careers and also, sadly, died before seeing this dedication to her years of generosity. My brothers, sisters and their families all offer their special supports – I feel lucky to be part of a large whanau, and I hope they will be pleased to see me emerge from my study.

It is a rare person who believes in you so wholeheartedly, even at times when you yourself have misgivings and I would like to thank my sister, Angela Platt-Byrnes, for ringing me every Saturday and every Sunday to ensure that I was … and to encourage me to be … sitting at my desk working on this thesis.

And to my own support network: Dr Sue Armstrong-Wahlers, Dr Michael Wahlers and Trudi Fava.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abstract</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Dedication</td>
<td>VI</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>VII</td>
</tr>
<tr>
<td></td>
<td>Contents</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>XV</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>XVI</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>XVIII</td>
</tr>
<tr>
<td>1</td>
<td>The burden of respiratory disease in New Zealand.</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The burden of paediatric respiratory disease in New Zealand</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>The burden of asthma disease in New Zealand</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>The diagnosis of asthma – the quandaries in children</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1</td>
<td>The asthma diagnosis in national and international guidelines</td>
<td>7</td>
</tr>
<tr>
<td>1.4.2</td>
<td>What is meant by 'wheeze'?</td>
<td>7</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Where does cough fit in?</td>
<td>10</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Investigations</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Treatment and concerns</td>
<td>21</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Possible adverse effects of asthma treatment in children</td>
<td>21</td>
</tr>
<tr>
<td>1.5.2</td>
<td>A marker for inflammation would be useful</td>
<td>23</td>
</tr>
<tr>
<td>1.6</td>
<td>Asthma as an inflammatory disease</td>
<td>24</td>
</tr>
<tr>
<td>1.6.1</td>
<td>What has been learnt from autopsy studies?</td>
<td>24</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Studies of inflammation using bronchoscopy and biopsy</td>
<td>25</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Studies of inflammation using bronchoalveolar lavage</td>
<td>29</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Inflammatory markers in induced sputum</td>
<td>31</td>
</tr>
<tr>
<td>1.6.4 (i)</td>
<td>Studies in adult subjects</td>
<td>31</td>
</tr>
<tr>
<td>1.6.4 (ii)</td>
<td>Induced sputum in children</td>
<td>34</td>
</tr>
<tr>
<td>1.6.4 (iii)</td>
<td>Technical aspects of bronchoscopy, bronchial biopsy, bronchoalveolar lavage and/or induced sputum</td>
<td>36</td>
</tr>
<tr>
<td>1.6.4 (iv)</td>
<td>Safety aspects of bronchoscopy, bronchial biopsy, bronchoalveolar lavage and/or induced sputum</td>
<td>38</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Studies of inflammatory markers in blood and urine</td>
<td>41</td>
</tr>
<tr>
<td>1.6.6</td>
<td>Comparison of inflammation results between the different samples</td>
<td>44</td>
</tr>
<tr>
<td>1.7</td>
<td>Chapter summary</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>Nitric oxide: pollutant to mediator</td>
<td>49</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>2.2</td>
<td>Pollution, nitrogen oxides and disease</td>
<td>49</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Concerns regarding pollution</td>
<td>49</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Disease and pollution</td>
<td>51</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Nitrogen oxides in pollution</td>
<td>56</td>
</tr>
<tr>
<td>2.3</td>
<td>The discovery of nitric oxide in biological systems</td>
<td>57</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Vascular control</td>
<td>57</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Immune function</td>
<td>60</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Nitric oxide – a common pathway</td>
<td>61</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Nitric oxide in physiological roles</td>
<td>62</td>
</tr>
<tr>
<td>2.3.4 (i)</td>
<td>Cardiovascular</td>
<td>62</td>
</tr>
<tr>
<td>2.3.4 (ii)</td>
<td>Nervous system – central and peripheral</td>
<td>64</td>
</tr>
<tr>
<td>2.3.4 (iii)</td>
<td>Host defence</td>
<td>66</td>
</tr>
<tr>
<td>2.4</td>
<td>Chapter summary</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>The synthesis, reactivity and control of nitric oxide</td>
<td>70</td>
</tr>
</tbody>
</table>
3.1 Introduction .. 70
3.2 Properties of nitric oxide 70
3.3 Reactions of nitric oxide 73
 3.3.1 Reactive nitrogen species and superoxide reactions .. 73
 3.3.2 Reactions with transition metals and metalloproteins ... 75
 3.3.3 Nitrogen thiols and amines 76
 3.3.4 Reaction with amino acids 77
 3.3.5 Reaction with lipids 77
 3.3.6 Reactions with genes 78
 3.3.7 Making sense of the reactions 78
3.4 Nitric oxide synthase isoenzymes 79
 3.4.1 Constitutive nitric oxide synthases 81
 3.4.2 Inducible nitric oxide synthase 82
 3.4.3 Control of the nitric oxide synthase isoenzymes 83
 3.4.3 (i) The constitutive forms 83
 3.4.3 (ii) The inducible form 85
 3.4.4 Nicotinamide adenine di-nucleotide phosphate oxidase and inducible nitric oxide synthase 87
 3.4.5 Drugs & other agents that affect the isoenzymes and nitric oxide production 88
 3.4.5 (i) Drugs .. 88
 3.4.5 (ii) Nitric oxide synthase inhibitors 89
3.5 Chapter summary ... 91

Chapter 4: Methods to measure nitric oxide 92
4.1 Introduction .. 92
4.2 L-arginine, L-citrulline and cyclic guanosine monophosphate 93
4.3 Methaemoglobin .. 93
4.4 Nitrite and nitrate .. 94
4.5 Nitric oxide .. 95
4.6 Chemiluminescence ... 97
 4.6.1 Calibration .. 103
 4.6.2 Safety and toxicity 104
4.7 Chapter summary ... 108

Chapter 5: Methodological assessment of the chemiluminescence analyser 110
5.1 Introduction .. 110
5.2 The equipment and personnel 110
 5.2.1 Chemiluminescence Analyser ‘Model 2107’ 110
 5.2.2 Capnograph, pressure transducer, flow meter and chart recorder 111
 5.2.3 Personnel ... 115
5.3 Direct versus reservoir measurement 116
5.4 Assessments of the analysers 117
5.5 Other measurements .. 120
5.6 Chapter summary ... 121

Chapter 6: Methodological studies of exhaled nitric oxide in healthy adult subjects: direct versus t-piece testing. 122
6.1 Introduction .. 122
6.2 Nitric oxide and the nitric oxide synthases in the lung 122
6.3 The need for methodological experiments 125
6.4 The aims of the exhaled nitric oxide methodological experiments 130
6.5 Setting up for the experiments 131
 6.5.1 Set-up and calibrations 131
 6.5.2 The exhalation protocol 136
 6.5.3 Ethics and Consent 138

XI
Chapter 7: Methodological studies of exhaled nitric oxide in healthy adult subjects: investigating test parameters

7.1 Introduction
7.2 Ethics, subjects, calibrations and statistical analysis
7.3 Methodological experiment two - effect of expiratory flow
 7.3.1 Hypothesis
 7.3.2 Aim
 7.3.3 Procedure
 7.3.4 Results
7.4 Methodological experiment three - effect of pressure
 7.4.1 Hypotheses
 7.4.2 Aim
 7.4.3 Procedure
 7.4.4 Results
7.5 Methodological experiment four - effect of ambient nitric oxide
 7.5.1 Hypothesis
 7.5.2 Aims
 7.5.3 Procedure
 7.5.4 Results
7.6 Methodological experiment five - effect of water consumption
 7.6.1 Hypothesis
 7.6.2 Aim
 7.6.3 Procedure
 7.6.4 Results
7.7 Discussion: which measurement factors alter nitric oxide levels?

Chapter 8: Exhaled nitric oxide in healthy and asthmatic children

8.1 Introduction
8.2 Ethics, consent, statistics and subjects
8.3 Methodology of exhaled nitric oxide measurement in healthy children
 8.3.1 Hypotheses
 8.3.2 Aims
 8.3.3 Protocol
 8.3.4 Results
8.4 Discussion: exhaled nitric oxide results in healthy children
8.5 Methodology of exhaled nitric oxide measurement in asthmatic children
 8.5.1 Background
 8.5.2 The asthmatic subjects
 8.5.3 Protocol
 8.5.4 Results
8.6 Discussion: exhaled nitric oxide in asthmatic children

Chapter 9: Exhaled and nasal NO to today
Chapter 9: Determinants of Nitric Oxide Levels

9.1 Introduction..202
9.2 Technical factors affecting results across research groups...202
9.3 Standardisation ..204
 9.3.1 Single breath online measurement ..205
 9.3.1 (i) Flow ..206
 9.3.1 (ii) Mouth pressure ...211
 9.3.1 (iii) Nasal clips and breath-holding ...212
 9.3.1 (iv) The recorded measurement ..213
 9.3.1 (v) The effect of ambient nitric oxide ...213
9.4 Online spontaneous or tidal breathing measurement ..214
9.5 Off-line measurement ..216
9.6 Nasal nitric oxide measurement ..220
9.7 Physiological alterations that may affect measurement ...221
 9.7.1 Size and gender ...221
 9.7.2 Age ...222
 9.7.3 Circadian rhythm ...223
 9.7.4 Menstrual cycle and pregnancy ..223
 9.7.5 Food and beverages ...224
 9.7.6 Summary of physiological factors that could alter nitric oxide levels224
9.8 Nitric oxide levels in asthma and atopy ...224
 9.8.1 Does nitric oxide correlate with other asthmatic inflammatory markers?225
 9.8.2 Does nitric oxide correlate with lung function and bronchial hyper-responsiveness? 226
 9.8.3 Can nitric oxide be used for diagnosis of asthma? ..227
 9.8.4 Is nitric oxide associated with symptoms and severity of asthma?229
 9.8.5 Can nitric oxide predict deterioration in asthma control?231
 9.8.6 What happens to nitric oxide during an acute asthma attack233
 9.8.7 What is the effect of atopy alone on nitric oxide? ...233
 9.8.8 Can nitric oxide be an outcome measure for assessing treatment?235
 9.8.8 (i) Corticosteroids ...235
 9.8.8 (ii) Anti-leukotriene receptor antagonists ...237
 9.8.8 (iii) Long acting β2 agonists ..238
 9.8.8 (iv) Nedocromil sodium ..239
 9.8.8 (v) Theophylline ..239
 9.8.8 (vi) Novel medications ...239
 9.8.9 Summary of nitric oxide in asthma and atopy ...240
9.9 Nitric oxide levels in primary ciliary dyskinesia ...241
9.10 Nitric oxide levels in cystic fibrosis ..242
9.11 Nitric oxide levels in bronchiectasis ..245
9.12 Nitric oxide levels in upper respiratory tract infections ..245
9.13 Nitric oxide levels in chronic obstructive pulmonary disease (COPD)246
9.14 Nitric oxide levels in smokers ...247
9.15 Nitric oxide levels in interstitial lung diseases ..249
9.16 Nitric oxide levels in exercise ..250
9.17 Nitric oxide measurements in infants ..252
 9.17.1 Methodology ...252
 9.17.2 Levels of nitric oxide in infants with different respiratory diseases256
 9.17.3 Prenatal and maternal effects on nitric oxide levels ..257
 9.17.4 Effects of treatment on nitric oxide levels ...257
 9.17.5 Summary of nitric oxide findings in infants ...257
9.18 Chapter summary ..258

Chapter 10: Reflections ..262

XIII
Appendices ... 265
References .. 273
List of Tables

Table 1.1: Alternative diagnoses in children with wheeze...8
Table 3.1: Properties of nitric oxide ...71
Table 3.2: Reactions with nitric oxide ...72
Table 3.3: The characteristics of the nitric oxide synthase isoenzymes81
Table 4.1: The companies providing chemiluminescence analysers adaptable for nitric oxide measurement in 1995..101
Table 5.1: The delay and response time of the NO, CO₂, mouth pressure and flow meter analysers used ..118
Table 6.1: The published results of exhaled nitric oxide in adults ..127
Table 6.2: Compete results for an individual subject ...143
Table 6.3 NO and CO₂ results from single exhalations in twelve adult subjects143
Table 7.1: NO, CO₂ and duration of each exhalation at different expiratory flows............157
Table 7.2: Comparison of the first and repeated last set of exhalations at the same expiratory flow ..161
Table 7.3: NO, CO₂ and duration of each exhalation at different expiratory mouth pressures ..162
Table 7.4: Comparison of the first and repeated last set of exhalations performed at the same expiratory mouth pressure ..162
Table 7.5: Exhaled NO results with high and low background NO concentrations168
Table 7.6: Exhaled CO₂ results with high and low background NO concentrations168
Table 8.1: Coefficients of variation of peak NO, peak CO₂ and mouth pressure measurements made by both the direct and t-piece systems, and of flow made by the t-piece system185
Table 9.1: The recommended standards for single breath and tidal breathing off-line NO measurement ..206
Table 9.2: The recommended standards for single breath and tidal breathing off-line NO measurement ..219
Table 9.3: The recommended standard for nasal NO measurement220
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Top 10 causes of avoidable admissions, 0-24 years, 1999</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Diagram of blood vessels in cross section showing the endothelial layer</td>
<td>59</td>
</tr>
<tr>
<td>3.1</td>
<td>The molecular structure of NO</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>The reaction to generate nitric oxide</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>The nitric oxide synthase reaction showing the generation of the constituent atoms of nitric oxide</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>The chemical structures of the nitric oxide synthase inhibitors</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical reaction between nitric oxide and ozone</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>Diagram of the chemiluminescence analyser</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>Relationship between chemiluminescence in millivolts to nitric oxide concentration in picomoles</td>
<td>100</td>
</tr>
<tr>
<td>4.5</td>
<td>Reaction equations used to release nitric oxide from other nitrogen compounds</td>
<td>103</td>
</tr>
<tr>
<td>5.1</td>
<td>Schematic diagram of how the analysers were placed</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>An example of tracing from the testing</td>
<td>113</td>
</tr>
<tr>
<td>5.3</td>
<td>Photographs of one of the children performing the exhalation</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Recording of the calibrations for NO, CO2 and pressure analysers</td>
<td>133</td>
</tr>
<tr>
<td>5.5</td>
<td>Recording of the calibration of the flow rotameter and pneumotachograph</td>
<td>135</td>
</tr>
<tr>
<td>5.6</td>
<td>Schematic diagrams of the two different types of connections: direct and t-piece measurements</td>
<td>137</td>
</tr>
<tr>
<td>5.7</td>
<td>Example of the chart recording rolls for the direct versus t-piece measurements</td>
<td>140</td>
</tr>
<tr>
<td>5.8</td>
<td>Example of recording on one subject – direct and t-piece measurements</td>
<td>141</td>
</tr>
<tr>
<td>5.9</td>
<td>Mean exhaled NO levels measured by direct and t-piece systems</td>
<td>142</td>
</tr>
<tr>
<td>5.10</td>
<td>Example of a recording for the two systems</td>
<td>142</td>
</tr>
<tr>
<td>5.11</td>
<td>Mean exhaled CO2 levels measured by direct and t-piece systems</td>
<td>144</td>
</tr>
<tr>
<td>5.12</td>
<td>Comparisons of the peak NO with area under the curve</td>
<td>145</td>
</tr>
<tr>
<td>5.13</td>
<td>Time to peak NO and peak CO2 measured by the direct system</td>
<td>146</td>
</tr>
<tr>
<td>5.14</td>
<td>Time to peak NO and peak CO2 measured by the t-piece system</td>
<td>147</td>
</tr>
<tr>
<td>5.15</td>
<td>CO2 levels at peak NO and at peak CO2 measured by the direct system</td>
<td>147</td>
</tr>
<tr>
<td>5.16</td>
<td>CO2 levels at peak NO and at peak CO2 measured by the t-piece system</td>
<td>148</td>
</tr>
<tr>
<td>5.17</td>
<td>Exhaled NO results with increasing expiratory flows</td>
<td>157</td>
</tr>
<tr>
<td>5.18</td>
<td>Example of the tracing in one subject at two different expiratory flows</td>
<td>158</td>
</tr>
<tr>
<td>5.19</td>
<td>The effect of pressure on the calibration gas measurement</td>
<td>160</td>
</tr>
<tr>
<td>5.20</td>
<td>Exhaled NO results at increasing expiratory mouth pressure</td>
<td>161</td>
</tr>
<tr>
<td>5.21</td>
<td>Measurement of exhaled NO incorporating the reservoir system</td>
<td>165</td>
</tr>
<tr>
<td>5.22</td>
<td>Photographs of the changing ambient NO concentration recordings</td>
<td>166</td>
</tr>
<tr>
<td>5.23</td>
<td>Recording from one subject showing NO results with exhalations from low and high background NO</td>
<td>167</td>
</tr>
<tr>
<td>5.24</td>
<td>The effect of high and low pressure on the calibration gas measurement</td>
<td>167</td>
</tr>
<tr>
<td>5.25</td>
<td>The effect of consuming water on the subsequent exhaled NO levels measured</td>
<td>170</td>
</tr>
<tr>
<td>5.26</td>
<td>Hyperbolic relationship between exhaled NO and sampling flow rate</td>
<td>172</td>
</tr>
<tr>
<td>5.27</td>
<td>Exhaled NO determined at single breath plateau concentrations at increasing expiratory flows and at increasing expiratory mouth pressures</td>
<td>173</td>
</tr>
<tr>
<td>6.1</td>
<td>Peak exhaled NO results in healthy children</td>
<td>183</td>
</tr>
<tr>
<td>6.2a</td>
<td>Comparison of peak exhaled NO in boys and girls measured by the direct system</td>
<td>184</td>
</tr>
<tr>
<td>6.2b</td>
<td>Comparison of peak exhaled NO in boys and girls measured by the t-piece system</td>
<td>184</td>
</tr>
</tbody>
</table>
Figure 8.3a: Mean peak exhaled NO levels in control and asthmatic children measured direct to the analysers ... 194
Figure 8.3b: Mean peak exhaled NO levels in control and asthmatic children measured via the t-piece sampling system ... 195
Figure 8.4a: The effect of commencing inhaled corticosteroid therapy on peak exhaled NO levels in asthmatic children measured via the direct method ... 196
Figure 8.4b: The effect of commencing inhaled corticosteroid therapy on peak exhaled NO levels in asthmatic children measured via the t-piece sampling system ... 196
Figure 9.1: A two-compartment model of NO exchange ... 208
Figure 9.2: Plateau nasal NO increasing with age ... 223
Figure 9.3: Diagram of the measurement of lung function and NO in an infant 253
Figure 10.1: Medline publications with a focus on nitric oxide research per year 1980-2006 262
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td><</td>
<td>less than</td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
</tr>
<tr>
<td>ABPA</td>
<td>allergic bronchopulmonary dysplasia</td>
</tr>
<tr>
<td>ATS</td>
<td>American Thoracic Society</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BAL</td>
<td>bronchoalveolar lavage</td>
</tr>
<tr>
<td>BH₄</td>
<td>tetrahydrobiopterin</td>
</tr>
<tr>
<td>BTS</td>
<td>British Thoracic Society</td>
</tr>
<tr>
<td>C3, C5</td>
<td>complement factor 3, complement factor 5</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine 3', 5' monophosphate</td>
</tr>
<tr>
<td>CAT1, CAT2, CAT2B, CAT 3</td>
<td>cationic amino acid proteins</td>
</tr>
<tr>
<td>CB</td>
<td>chronic bronchitis</td>
</tr>
<tr>
<td>CD3+</td>
<td>cell marker for T lymphocyte</td>
</tr>
<tr>
<td>CD4+</td>
<td>cell marker for T helper lymphocyte</td>
</tr>
<tr>
<td>CD8+</td>
<td>cell marker for T cytotoxic lymphocyte</td>
</tr>
<tr>
<td>CF</td>
<td>cystic fibrosis</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>cNOS</td>
<td>constituent nitric oxide synthase</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>Co</td>
<td>cobalt</td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CSF</td>
<td>central spinal fluid</td>
</tr>
<tr>
<td>Cu</td>
<td>copper</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>ECMO</td>
<td>extracorporeal membrane oxygenation</td>
</tr>
<tr>
<td>ECP</td>
<td>eosinophil cationic protein</td>
</tr>
<tr>
<td>ECRHS</td>
<td>European Community Respiratory Health Survey</td>
</tr>
<tr>
<td>EDRF</td>
<td>endothelial derived relaxing factor</td>
</tr>
</tbody>
</table>
ELISA Enzyme-linked immunosorbent assay
eNOS endothelial nitric oxide synthase
EPN/EPX eosinophilic neuraminidase
EPO eosinophilic peroxidise
ERS European Respiratory Society
ERSTF European Respiratory Society Task Force
FAD flavin adenosine dinucleotide
Fe iron
FEF_{25-75\%} forced expiratory flow at 25 to 75 percent of forced vital capacity
FEV₁ forced expiratory volume in 1 second
FEV₀.₅ forced expiratory volume in half a second
FMN flavin mononucleotide
FVC forced vital capacity
GINA Global Initiative for Asthma
GM-CSF Granulocyte macrophage – colony stimulating factor
GTP guanosine 5-triphosphate
H₂O water
H₂S hydrogen sulphide
HNO₂ nitrous acid
HRCT high resolution computerised tomography
ICAM1 intracellular adhesion molecule 1
IFNγ interferon gamma
IgA immunoglobulin A
IgG immunoglobulin G
IgE immunoglobulin E
IHCS inhaled corticosteroids
IL1, IL2, IL3, IL4, IL5, IL6, IL8, IL9, IL10, IL11, IL12, IL13, IL17 interleukin 1, interleukin 2, interleukin 3, interleukin 4, interleukin 5, interleukin 6, interleukin 8, interleukin 9, interleukin 10, interleukin 11, interleukin 12, interleukin 13, interleukin 17
iNOS inducible nitric oxide synthase
ISAAC International Study of Asthma and Allergies in Childhood
Kb kilobases
L/min litres per minute
LABA long acting β₂ agonist
LADA N"N" dimethyl L-arginine
LFA1 lympocyte function-associated antigen 1
L-NAME N" arginine methyl ester
L-NMMA N" monomethyl L-arginine
L-NOARG N"-nitroarginine
LNIO N- imino-ethyl-ornithine
LPC lysophosphotidylcholine
LPS lipopolysaccharide
LTC4, LTD4, LTE4 leukotriene C4, leukotriene D4, leukotriene E4
MBP major basic protein
mg/ml milligrams per millilitre
mls/min millilitres per minute
Mn manganese
mRNA messenger ribonucleic acid
N2 nitrogen
N2O nitrous oxide ("laughing gas")
N2O3 dihydrogen trioxide
N2O4 dihydrogen tetraoxide
NADPH nicotinamide adenosine di-nucleotide phosphate
NANC non adrenergic, non cholinergic (nerves)
NF-kB nuclear factor-kappa B
NHANES 1 National Health and Nutrition Examination Survey 1
nL/min nanolitres per minute
nNOS neuronal nitric oxide synthase
NO nitric oxide
NO + nitrosoium cation
NO- nitroxyil anion
NO2 nitrogen dioxide
NO2- nitrite
NO3- nitrate
NO2Tyr 3-nitrotyrosine
NOS nitric oxide synthase/s
NOx nitrogen oxides (usually NO, NO2 and NO3)
NZPAG New Zealand Paediatric Asthma Guidelines
O2 oxygen

XX
O$_2^-$: superoxide anion
O$_3$: ozone
OH$: hydroxyl anion
ONOO$: peroxynitrite
ONOOH: peroxynitrous acid
PaO$_2$: pulmonary artery oxygen
PCD: primary ciliary dyskinesia
PC$_{20}$: provocation concentration producing 20% fall in the forced expiratory volume in one second
PD$_{20}$: provocation dose producing 20% fall in the forced expiratory volume in one second
PEF: peak expiratory flow
Pmo: mouth pressure
ppb: parts per billion
ppm: parts per million
PM$_{10}$: particulate matter with a diameter of less than 10μm
redox: reduction oxidative reactions
ROC: receiver-operator curve
RS: sulphur thios
RSV: Respiratory Syncytial Virus
SD: standard deviation
SEM: standard error of the mean
sGC: soluble guanylate cyclase
SIGN: Scottish Intercollegiate Guidelines Network
SLE: systemic lupus erythematosis
SO$_2$: sulphur dioxide
TB: tuberculosis
TGFβ: transforming growth factor beta
T$_{h1}$: T helper lymphocyte cell type 1
T$_{h2}$: T helper lymphocyte cell type 2
T$_{h3}$: T helper lymphocyte cell type 3
TNFa: tumour necrosis factor alpha
TNFβ: tumour necrosis factor beta
type I (nNOS): Type I neuronal nitric oxide synthase
type II (iNOS): Type II induced nitric oxide synthase
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>type III (eNOS)</td>
<td>Type III endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>µg/ml</td>
<td>micrograms per millilitre</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations International Children’s Fund</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV light</td>
<td>ultraviolet light</td>
</tr>
<tr>
<td>V/Q</td>
<td>ventilation and perfusion ratio</td>
</tr>
<tr>
<td>Zn</td>
<td>zinc</td>
</tr>
</tbody>
</table>