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Associations Between Cannabis Use, Abdominal Fat 
Phenotypes and Insulin Traits
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Abstract

Background: General obesity has been linked to dysregulation of the 
endocannabinoid system in humans. However, there is a lack of stud-
ies on the relationship between cannabis use and specific abdominal 
fat phenotypes. The aim was to investigate the associations between 
cannabis use and magnetic resonance imaging-derived fat pheno-
types, as well as indices of insulin sensitivity and insulin secretion.

Methods: In this cross-sectional study, magnetic resonance imaging 
was used to quantify subcutaneous fat volume (SFV), visceral fat 
volume (VFV), intra-hepatic fat deposition (IHFD), intra-pancreatic 
fat deposition (IPFD) and skeletal muscle fat deposition (SMFD) 
by two independent observers. Insulin sensitivity was determined 
based on HOMA-IS, Raynaud index and Matsuda index, whereas 
insulin secretion was determined based on HOMA-β, insulinogenic 
index 30’ and insulinogenic index 60’. A validated questionnaire 
was used to ascertain participants’ cannabis use. Linear regression 
models were constructed, adjusting for demographics, glycated he-
moglobin, physical activity, tobacco smoking and alcohol consump-
tion.

Results: A total of 120 individuals were included. Cannabis use ex-
plained 9.2% of variance in IHFD, 4.4% in SMFD, 3.4% in VFV, 
0.4% in SFV and 0.2% in IPFD. Regular cannabis users had signifi-
cantly greater IHFD compared with never users, in both the unad-
justed (P = 0.002) and all adjusted (P = 0.002; P = 0.008) analyses. 
The other fat phenotypes did not differ significantly between either 
regular or non-regular users compared with never users. Regular can-
nabis users had significantly greater insulin secretion (as defined by 
the insulinogenic index 60’) compared with never users, in both the 
unadjusted (P = 0.049) and all adjusted (P = 0.003; P = 0.004) analy-
ses. Cannabis use explained 20.3% of variance in the insulinogenic 
index 60’, but was not significantly associated with the other indices 
of insulin secretion. There were no significant differences in indices 

of insulin sensitivity in either regular or non-regular cannabis users 
compared with never users.

Conclusion: Regular cannabis use may be a risk factor for non-alco-
holic fatty liver disease (but not IPFD) and may alter the neuromodu-
lation of insulin secretion. Further investigations are now warranted 
to elucidate the mechanisms underlying these associations.
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Introduction

The Cannabis sativa plant is among the earliest crops culti-
vated by man and its use dates back to 2737 BC [1]. In recent 
decades, with the discovery of the endocannabinoid system 
(ECS), there has been an increasing trend towards legalizing 
medicinal cannabis use. To date, 33 US states have legalized 
cannabis for medicinal use, with 11 of these also allowing rec-
reational use [2]. The US Food and Drug Administration has 
approved the use of cannabis-based drugs for the treatment of 
seizures associated with Lennox-Gastaut syndrome and Dravet 
syndrome, for nausea and vomiting associated with cancer 
chemotherapy in patients who have been unresponsive to first-
line treatments, and for anorexia associated with weight loss 
in acquired immunodeficiency syndrome patients [3]. Given 
the numerous health claims and the increasing trend towards 
decriminalization of cannabis, there has been a call to better 
understand the acute and chronic risks of cannabis use. Meme-
dovich and colleagues [2] reviewed the current literature on 
cannabis use-related health effects. Of the 68 studies analyzed, 
they found 62 reported various adverse outcomes [2]. How-
ever, these effects are not completely understood and research 
is far from sufficient to recommend a “safe” therapeutic dose 
of cannabis-based drugs.

In the context of metabolic health, the relationship be-
tween cannabis use and metabolic sequelae has been spec-
ulated. “Marijuana”, the most commonly used recreational 
form of cannabis, contains high concentrations of Δ-9-THC 
(the main psychoactive constituent of the plant), which is 
known to have appetite-inducing properties [4]. Cannabinoid 
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receptors (CB1R and CB2R) are present both centrally and pe-
ripherally, and their endogenous ligands, endocannabinoids, 
play a central role in appetite regulation, energy balance, li-
pid metabolism, insulin sensitivity and β-cell function [5]. A 
clear association exists between ECS dysregulation and the 
development of obesity and type 2 diabetes. Animal stud-
ies have demonstrated that chronic CB1R stimulation favors 
adiposity, independent of calorie intake [4]. Several experi-
mental models have shown metabolic effects from peripheral 
CB1R activation, including increased lipogenesis in hepato-
cytes and adipocytes, reduced insulin responsiveness of myo-
cytes, as well as impaired insulin sensitivity and secretion 
in the pancreatic β cells [4]. Consistent with these findings, 
human clinical trials using CB1R antagonists have proven to 
be effective in reducing body weight as well as improving 
dyslipidemia and insulin sensitivity [4]. These findings from 
human and animal studies suggest that cannabis use may be 
not innocuous and may be privy to the pathophysiology of 
metabolic syndrome.

Evidence for cannabis use and obesity has been derived 
largely from experimental models and epidemiological data 
using body mass index (BMI) [6, 7]. More recently, focus has 
shifted to the distribution of fat, including visceral and ec-
topic, as a greater predictor of metabolic risk [8]. Muniyappa 
and colleagues [4] have demonstrated a relative visceral adi-
posity and adipose tissue insulin resistance (IR) in chronic 
cannabis users, suggesting differential and tissue-specific ef-
fects of regular cannabis use. In the context of ectopic fat 
deposition, only preliminary studies have linked cannabis 
use with the risk of fatty liver, which have predominantly 
been animal studies [9, 10]. Magnetic resonance (MR) im-
aging has emerged as the “gold standard” for differentiating 
the abdominal fat compartments and quantifying ectopic fat, 
such as in the liver and pancreas. To date, no attempts have 
been made to comprehensively characterize the phenotype of 
fat deposition (using validated MR-derived measurements) 
associated with cannabis use. Further, it has not been inves-
tigated how the distribution of fat (both visceral and ectopic) 
associated with cannabis use affects insulin secretion and 
sensitivity.

The primary aim of this study was to investigate the asso-
ciation between cannabis use and MR-derived fat phenotypes. 
The secondary aim was to evaluate the association between 
cannabis use and insulin traits.

Materials and Methods

Study design and study population

This was a cross-sectional study, which represented a sub-
project within the main project. The main project focused on 
intra-pancreatic fat deposition (IPFD) after an attack of pan-
creatitis and its results were published elsewhere [11]. Partici-
pants with available data on cannabis use were included in the 
present study if they were of at least 18 years of age, provided 
written informed consent, and had a history of pancreatitis. Ex-
clusion criteria were other diseases of the exocrine pancreas, 

interventions involving the pancreas, malignancy, pregnancy, 
celiac disease, cystic fibrosis, history of steroid use, or medi-
cal evaluation or treatment for acute infectious or inflammatory 
conditions within the preceding 6 months [11]. Individuals with 
contraindications to MR imaging (e.g. electronic device im-
plantations, metallic foreign bodies) were also excluded from 
this study. The study was approved by the Health and Disability 
Ethics Committee (13/STH/182) and conducted in compliance 
with the ethical standards of the responsible institution on hu-
man subjects as well as with the Helsinki Declaration.

Ascertainment of cannabis use

At the time of MR acquisition, participants completed a 
standardized questionnaire, which asked about their history 
of cannabis use. They were first asked “Have you ever used 
marijuana?”. Those who answered no to this question were cat-
egorized as “never” cannabis users. Those who answered yes to 
this question were “ever” cannabis users, and were then asked 
“How often did/do you use marijuana?”. The options for this 
question were: 1) Occasionally; 2) Less than once per week; 3) 
Once per week; 4) 2 - 3 times per week; and 5) Daily. Answers 
to this question were used to categorize participants into “non-
regular” and “regular” cannabis users, where “non-regular” us-
ers were defined as less than once per week (answers 1-2) and 
“regular” users defined as one or more times per week (answers 
3-5), respectively, in line with published literature [12].

MR imaging protocol

All participants underwent abdominal MR scans, performed 
at the Centre of Advanced Magnetic Resonance Imaging (The 
University of Auckland) using a 3.0 Tesla MAGNETOM 
Skyra MR scanner (Siemens, Erlangen, Germany). The de-
tailed protocol was described elsewhere [11]. In brief, while 
in the supine position, participants were asked to breath-hold 
during end expiration. Axial T1-weighted volumetric inter-
polated breath-hold examination Dixon sequence was ap-
plied with the following parameters: true form abdomen shim 
mode; field of view (FOV), 420 mm; base resolution, 320; 
echo time (TE), 1.27 ms, 2.5 ms; repetition time (TR), 3.85 
ms; flip angle, 9; pixel bandwidth, 920 Hz; slice thickness, 
5 mm. Four types of images were generated: in-phase, out-
of-phase, fat and water images. These images were retrieved 
from the MR scanner and exported as DICOM files after 
which they were analyzed using ImageJ software (National 
Institutes of Health, USA).

Subcutaneous fat volume (SFV) and visceral fat volume (VFV)

Quantification of SFV and VFV was conducted from the L2 
to the L5 levels by segmentation of the subcutaneous and vis-
ceral fat compartments using the free-hand tool of ImageJ. 
Care was taken to exclude all non-adipose tissue, abdominal 
organs and blood vessels from the measurement of visceral 
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fat. The calculation of volumes required summation of the 
pixel contents (from the complete series of slices) and multi-
plying by the total pixel area and slice thickness, as described 
elsewhere [13].

Intra-pancreatic fat deposition (IPFD)

IPFD (%) was measured using the “MR-opsy” technique, as 
per previously published protocol [14]. In brief, two candidate 

slices (of 5 mm thickness), with clear visualization of the pan-
creas, were selected from the series of abdominal MR scans. 
Three regions of interest were placed in the head, body and 
tail region of the pancreas for estimation of IPFD (Fig. 1a, b). 
A thresholding range of 1-20% was applied, to eliminate po-
tential inclusion of the non-parenchymal tissue within the se-
lected region of interest (including blood vessels, visceral fat 
and the main pancreatic duct), as previously described [14]. 
IPFD was calculated as the average pancreatic fat fraction of 
both slices.

Figure 1. Fat phenotypes measurements for a 78-year-old European man who was never smoker and had low-to-moderate aver-
age alcohol consumption. (a, b) Intra-pancreatic fat deposition measurement by region of interest placement in the head, body 
and tail of the pancreas on out-of-phase and fat images. (c, d) Intra-hepatic fat deposition measurement with placement of the 
voxel within the liver and spectroscopy data using fat and water signals collected at the time of scan acquisition. (e, f) Skeletal 
muscle fat deposition measurement with selection of total erector spinae muscle area and quantification of fat pixels using the 
thresholding function of ImageJ.
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Intra-hepatic fat deposition (IHFD)

IHFD (%) was determined using single-voxel MR-spectrosco-
py. A 20 × 20 × 20 mm voxel was positioned in the right lobe 
of the liver ≥ 10 mm away from the edge, bile ducts and blood 
vessels (Fig. 1c). Automated shimming was performed prior to 
signal acquisition to improve B0 homogeneity. Spectra were 
acquired using a free-breathing navigator-triggered spin echo 
acquisition with TR = 3,000 ms, TE = 33 ms, 50 averages. 
Acquisition time for each spectrum was 5 min. Both water-
suppressed and non-water-suppressed spectra were acquired, 
with the non-water-suppressed spectrum acting as a reference 
for IHFD quantification (Fig. 1d). Spectra were processed and 
analyzed using SIVIC (San Francisco, CA, USA) [15]. MR 
spectroscopy-derived IHFD was defined as follows: fat frac-
tion = area under fat peak/(area under combined fat and water 
peaks) × 100%.

Skeletal muscle fat deposition (SMFD)

Total muscle area and intra-muscular fat area of erector spinae 
muscles were measured using a single axial slice at the lower 
endplate of L3 vertebra, as it had previous been demonstrated 
that the L3 level is a reliable marker for total skeletal muscle 
fat [16]. The free-hand tool of ImageJ was used to outline the 
left and right erector spinae muscles followed by measure-
ment of total pixel content (Fig. 1e) [16]. Further, to calculate 
the intra-muscular fat area, the threshold-function of ImageJ 
was used to convert grayscale pixels into binary images, us-
ing global histogram-derived method (Fig. 1f). Care was taken 
not to include extra-muscular fat (i.e. beyond the fascial layer 
of the erector spinae muscles). Total muscle area and intra-
muscular fat area were calculated by multiplying the selected 
total pixel content with pixel surface area. The ratio of fat-free 
cross-sectional muscle area to total cross-sectional muscle area 
was determined by subtracting intra-muscular fat area from the 
total muscle area and dividing this value by the total muscle 
area. SMFD was defined as follows: fat fraction = (1 - fat-free 
cross-sectional muscle area to total cross-sectional muscle area 
ratio) × 100%.

Inter-observer reliability

Two observers, blinded to participant characteristics and group 
allocation, measured SFV, VFV, IPFD and SMFD indepen-
dently. Average measurement values of the two independent 
measurements were used for all statistical analyses. Inter-ob-
server reliability of measurements was evaluated using intra-
class correlation coefficients (ICCs), with < 0.5, 0.5 - 0.75, 
0.75 - 0.9 and > 0.9 being indicative of poor, moderate, good 
and excellent inter-rater reliability, respectively [11].

Laboratory analyses

Participants underwent a mixed meal test at the COSMOS 

Clinic at the University of Auckland (New Zealand). Ve-
nous blood samples were taken at baseline following at least 
8 h overnight fast. All participants consumed a standardized 
mixed meal of BOOST® drink and venous blood samples were 
collected at fasting and post-prandially [17]. Glycated he-
moglobin (HbA1c) and plasma glucose were analyzed at the 
tertiary referral medical laboratory, LabPlus (Auckland, New 
Zealand). Participants’ diabetes status was determined based 
on their HbA1c level at the time of MR acquisition. Insulin 
and C-peptide were measured using the MILLIPLEX MAP 
Human metabolic hormone magnetic bead panel based on the 
Luminex xMAP technology (Luminex Corporation, Austin). 
Results were calculated based on the fluorescent reporter sig-
nals recorded by the Luminex xPONENT software (MILLI-
PLEX Analyst 5.1).

Insulin traits

Three measures of insulin sensitivity: HOMA-IS (fasting), 
Raynaud index (fasting) and Matsuda index (post-prandially), 
and three measures of insulin secretion: HOMA-β (fasting), in-
sulinogenic index 30’ (post-prandial) and insulinogenic index 
60’ (post-prandial), were calculated according to previously 
published protocols [17]. HOMA-IS was calculated as 1/HO-
MA-IR, with HOMA-IR values obtained using the HOMA2 
calculator (version 2.2.3 Diabetes Trials Unit, University of 
Oxford). The Raynaud index was calculated with the formula 
40/Ins0, where Ins0 represents the insulin value at fasting. The 
Matsuda index was calculated using the formula:

( )( )0 0 mean mean

1
Glu  Ins Glu  Ins

where Glu0 represents the blood glucose level at fasting, and 
Glumean/Insmean represents the average blood glucose and insu-
lin values during the mixed meal test.

HOMA-β was calculated with fasting insulin and glucose 
values using the HOMA2 calculator (version 2.2.3 Diabetes 
Trials Unit, University of Oxford). Insulinogenic index 30’and 
60’ were calculated as (Ins30 - Ins0)/(Glu30 - Glu0) and (Ins60 
- Ins0)/(Glu60 - Glu0), where Ins30/Ins60 and Glu30/Glu60 repre-
sent the insulin value and blood glucose level at 30 and 60 min 
following consumption of mixed meal.

Other variables

Body mass index (BMI) was calculated using the formula 
(BMI = W/Ht2), weight (W) in kilograms (kg) divided by 
height (m) squared (Ht2). Participants’ weight was measured 
in kg using a digital scale (rounded to the nearest 0.1 kg) and 
their height measured in cm using a wall-mounted stadiometer 
(rounded to the nearest 0.5 cm). The administered question-
naire also collected information on tobacco smoking, alcohol 
consumption and physical activity. Tobacco smoking was cat-
egorized as never, former, light (< 20 cigarettes/day) and mod-
erate-heavy (≥ 20 cigarettes/day). Alcohol consumption was 
categorized according to average daily consumption into none 
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(0 g/day), light to moderate (1 - 40 g/day) and excess (> 40 g/
day). A binary variable was generated for physical activity sta-
tus, defined as less or more than 2.5 h of moderate-to-vigorous 
physical activity per week.

Statistical analyses

All statistical analyses were performed using SPSS for Win-
dows Version 25 (SPSS Inc., Chicago, IL, USA). Extreme 
values in the data (defined as cases with values/standardized 
residuals greater than ± 3 standard deviations) were considered 
outliers and were excluded from the analyses [13]. Data were 
expressed as median and interquartile range (IQR) or frequen-
cy count and percentage (%) for continuous and categorical 
variables, respectively. Differences in baseline characteristics 
between never, non-regular and regular cannabis users were 
examined using analysis of variance (for continuous variables) 
and Chi-squared test (for categorical variables).

Statistical analyses were performed in two stages. First, 
to investigate the variation in each fat phenotype (SFV, VFV, 
IPFD, IHFD and SMFD) explained by cannabis use, the most 
robust R2 metric from univariate linear regression analysis was 
yielded for each association. Regular and non-regular canna-
bis users were compared with never cannabis users (reference 
group). Further, multiple variable linear regression models 
were used to adjust for potential confounders. For each of 
the five fat phenotypes as separate dependent variables, three 
models were constructed: 1) Unadjusted; 2) Adjusted for age, 
sex and ethnicity; and 3) Adjusted for age, sex, ethnicity, 
HbA1c, physical activity, tobacco smoking status and alcohol 
consumption. Values were reported as the B-coefficients, 95% 
confidence intervals (CIs) and associated P-values.

Second, to investigate the associations between canna-
bis use and the six indices of insulin sensitivity (HOMA-IS, 
Raynaud index and Matsuda index) and insulin secretion 
(HOMA-β, insulinogenic index 30’ and insulinogenic index 
60’), univariate and multiple variable linear regression mod-
els were used. As in the first stage of analysis, regular and 
non-regular cannabis users were compared with never can-
nabis users for each of the six insulin sensitivity/secretion 
indices as separate dependent variables. To investigate the 
variation in each insulin sensitivity/secretion index explained 
by cannabis use, the most robust R2 metric from the univari-
ate analysis was yielded for each association. The same three 
models were constructed as above. A two-sided P-value of 
less than 0.05 was considered statistically significant in all 
analyses.

Results

Characteristics of participants

A total of 120 individuals were recruited into the study, of 
whom 91 were never cannabis users, 21 were non-regular 
cannabis users and 8 were regular cannabis users. For the 
fat phenotypes of the total cohort, mean ± standard deviation 

SFV was 3,090 ± 1,432cm3, VFV was 2,158 ± 1,140 cm3, 
IPFD was 9.52±1.79%, IHFD was 10.14±9.40% and SMFD 
was 15.15±6.81%. For the insulin sensitivity indices of the 
total cohort, mean ± standard deviation HOMA-IS was 0.67 
± 0.40, Raynaud index was 4.18 ± 8.17 and Matsuda index 
was 0.72 ± 0.51. For the insulin secretion indices of the total 
cohort, mean ± standard deviation HOMA-β was 151.28 ± 
82.52, insulinogenic index 30’ was 0.62 ± 1.18 and insulino-
genic index 60’ was 0.65 ± 0.44. Characteristics of the study 
participants according to cannabis use group are presented in 
Table 1.

Associations between cannabis use and the fat phenotypes 
in the study groups

The inter-rater reliability of the measurements of the MRI-
derived fat phenotypes was as follows: ICC of 0.998 for SFV, 
0.997 for VFV, 0.970 for IPFD and 0.984 for SMFD.

Cannabis use contributed the most to variance in IHFD 
(R2 = 9.2%), followed by SMFD (R2 = 4.4%), then VFV (R2 
= 3.4%). Cannabis use contributed the least to variance in 
IPFD (R2 = 0.2%) (Fig. 2). IHFD was significantly greater in 
regular cannabis users when compared with never cannabis 
users, in both the unadjusted (P = 0.002) and two adjusted 
(P = 0.002; P = 0.008) models. Non-regular cannabis users 
did not have significantly greater IHFD compared with never 
cannabis users (Table 2). SFV was significantly greater in 
regular cannabis users when compared with never cannabis 
users, in the unadjusted analysis (P = 0.024). This was not 
significant in the two adjusted models (Table 2). There were 
no significant differences in VFV, IPFD or SMFD when com-
pared with never cannabis users, regardless of their level of 
cannabis use.

Associations between cannabis use and the insulin traits 
in the study groups

Cannabis use contributed the most to variance in the Raynaud 
index (R2 = 8.2%) out of all the insulin sensitivity indices. 
Cannabis use explained 0.6% of variance in both HOMA-IS 
and the Matsuda index. There were no significant differences 
in HOMA-IS, Matsuda index, or Raynaud index when com-
pared with never cannabis users, in both the unadjusted and 
two adjusted models (Table 3).

Cannabis use contributed the most to variance in the in-
sulinogenic index 60’ (R2 = 20.3%) out of all the insulin se-
cretion indices. Cannabis use explained 4.4% of variance in 
the HOMA-β index and 1.7% of variance in the insulinogenic 
index 30’. Insulinogenic index 60’ was significantly greater in 
regular cannabis users when compared with never cannabis 
users, in both the unadjusted (P = 0.049) and two adjusted (P 
= 0.003; P = 0.004) models. Non-regular cannabis users did 
not have significantly higher insulinogenic index 60’compared 
with never cannabis users (Table 3). There were no significant 
differences in the insulinogenic index 30’ or HOMA-β when 
compared with never cannabis users, in both the unadjusted 
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and two adjusted models (Table 3).

Discussion

This study has investigated the association between cannabis 
use and comprehensively characterized fat phenotypes derived 
from MR imaging, including visceral and subcutaneous fat as 
well as ectopic fat in the liver, pancreas and skeletal muscle. 
Further, this study has presented data on the association be-
tween cannabis use and several indices of insulin sensitivity 
and secretion (both fasting and post-prandial). All MR-derived 
measurements completed by two independent observers had 

excellent inter-rater reliability (ICC > 0.9). Further, the used 
statistical models accounted for potential covariates in both 
analyses of cannabis use with fat phenotypes and cannabis 
use with insulin traits. We report two main findings from this 
study. First, regular cannabis users had significantly greater 
IHFD (but not SFV, VFV, IPFD or SMFD) compared with 
never cannabis users. This remained significant after adjusting 
for age, sex, ethnicity, HbA1c, tobacco smoking, alcohol con-
sumption and physical activity. Moreover, the amount of vari-
ance explained by cannabis use was greatest for IHFD (R2 = 
9.2%). Second, regular cannabis users had significantly greater 
insulin secretion (as defined by the insulinogenic index 60’) 
when compared with never cannabis users, whereas insulin 

Table 1.  Baseline Characteristics of the Study Cohort

Characteristics Never cannabis users Non-regular cannabis users Regular cannabis users P-value
No. of individuals 91 21 8
Age, years 58 (47 - 69) 52 (43 - 61) 54 (45 - 63) 0.015
Sex 0.203
  Men 59 (64.8%) 17 (81%) 7 (87.5%)
  Women 32 (35.2%) 4 (19%) 1 (12.5%)
BMI, kg/m2 26.8 (22.3 - 31.3) 27.9 (24.9 - 30.9) 34.3 (30.3 - 38.3) 0.170
Ethnicity 0.092
  European 40 (44%) 10 (47.6%) 1 (12.5%)
  Maori 14 (15.4%) 6 (28.6%) 4 (50%)
  Pacific Islander 2 (2.1%) 0 1 (12.5%)
  Asian 16 (17.6%) 3 (14.3%) 0
  Other 19 (20.9%) 2 (9.5%) 2 (25%)
HbA1c, mmol/mol 39 (36 - 42) 37 (34 - 40) 35 (33 - 37) 0.293
Insulin, mU/L 9.80 (6.23- 16.38) 12.0 (6.25 - 17.5) 12.9 (5.35 - 14.2) 0.072
C-peptide, nmol/L 0.57 (0.40 - 0.83) 0.58 (0.43 - 0.92) 0.48 (0.22 - 0.61) 0.108
Diabetes status 0.437
  Normoglycemia 65 (71.4%) 15 (71.4%) 5 (62.5%)
  Prediabetes 19 (20.9%) 5 (23.8%) 3 (37.5%)
  Diabetes 5 (5.5%) 1 (4.76%) 0 (0%)
Physical activity (n = 96) 0.049
  Inactive (< 2.5 h/week) 16 (22.5%) 7 (33.3%) 4 (66.7%)
  Active (> 2.5 h/week) 55 (77.5%) 12 (66.7%) 2 (33.3%)
Tobacco smoking 0.024
  Never 44 (48.4%) 3 (10.4%) 0
  Former 30 (33.0%) 11 (51.7%) 4 (50%)
  Light 8 (8.8%) 4 (20.7%) 2 (25%)
  Moderate-heavy 9 (9.8%) 3 (17.2%) 2 (25%)
Alcohol consumption (n = 113) 0.192
  None (0 g/day) 28 (33.3%) 9 (44.8%) 4 (50%)
  Low-moderate (< 40 g/day) 44 (52.4%) 9 (34.5%) 1 (12.5%)
  Excess (≥ 40 g/day) 12 (14.3%) 3 (20.7%) 3 (37.5%)

Data are presented as median and interquartile range or frequency counts and percentages. BMI: body mass index; HbA1c: glycated hemoglobin.



Articles © The authors   |   Journal compilation © J Clin Med Res and Elmer Press Inc™   |   www.jocmr.org 383

Stuart et al J Clin Med Res. 2020;12(6):377-388

sensitivity was not significantly altered in cannabis users.
This study presents novel findings and there are many 

unknowns regarding the mechanisms that underlie them. We 
speculate that, at least in part, our results may be attributed to 
upregulated neurohumoral stimulation from the central ECS, 
which is supported by evidence of the effect of cannabis use 
on autonomic regulation of β-cell secretion [18, 19]. The ECS 
is a neuromodulatory system that acts on both the central and 
peripheral nervous systems, as well as non-neural peripheral 
sites [18]. CB1Rs are present in all sites involved in the control 
of energy homeostasis. While CB1Rs are predominantly found 
in the central nervous system, lower levels are detected in 
skeletal muscle, liver, pancreas and gastrointestinal tract [18]. 
CB1Rs are among the most abundant G-protein coupled recep-
tors expressed in the brain and are present in the forebrain, 
basal ganglia, cerebellum, hippocampus and cerebral cortex 
[20]. The ECS is the main central system involved in appetite-
regulation and food intake. Pharmacologic administration of 
CB1 agonists increases food consumption and, in the case of 
Δ-9-THC, has been observed even in satiated animals [4, 5, 
20]. Moreover, systemic CB1R blockade by SR141716A (ri-
monabant) reduces food intake in both fed and fasted animals 
[20]. Its modulation of food intake is believed to be two-fold. 
First, through mesolimbic pathways and dopaminergic release, 
it activates the reward mechanisms for food consumption (usu-
ally of highly palatable foods). Second, through hypothalamic 
regulation of the level and/or activity of anorectic and orexi-
genic mediators that induce appetite. CB1R expression in the 
hypothalamus, a key area for the regulation of energy balance, 
is relatively low but highly efficient, and activation stimulates 
the release of key neurotransmitters (including but not lim-
ited to noradrenaline and serotonin). Both noradrenaline and 
serotonin are key neurohumoral regulators of insulin secre-
tion, and they can exert both stimulatory and inhibitory effects 

on the pancreatic β cells [21]. Acute increases in sympathetic 
neurotransmission initially inhibit insulin secretion but over 
longer periods elevate its plasma levels. While it is assumed 
that noradrenaline mediates the inhibitory actions of sympa-
thetic stimulation on glucose-stimulated insulin secretion, it is 
accepted that it also has stimulatory actions through its direct 
activation of β2-adrenoreceptors and α2-adrenoreceprtors on 
both the β and α cells [22]. Serotonin can also influence insu-
lin output, either by stimulating cellular receptors to enhance 
release of noradrenaline from islet sympathetic terminals, or 
through direct intracellular regulation of insulin release [21]. 
It could be speculated then that stimulation of the central ECS 
enhances autonomic neurotransmission to the pancreatic islet 
cells and induces supraphysiologic insulin secretion. Insulin 
drives glucose uptake into cells where it is either stored or 
used directly as fuel. The predominant sites of glucose up-
take are the liver, skeletal muscle and adipocytes. Ectopic fat 
deposition typically reflects the failure of intracellular lipid 
homeostasis to prevent lipotoxicity as a consequence of ac-
cumulation of saturated lipid-storing white adipocytes [23]. In 
a hyperinsulinemic state, glucose uptake may exceed the en-
ergy requirements of the cells and lead to excess glucose stor-
age, driving fatty infiltration into organs such as the liver. The 
above arguments suggest that significantly increased IHFD in 
regular cannabis users observed in the present study might be 
due to chronic stimulation of CB1Rs promoting excess insulin 
secretion. Cannabinoids are also known to activate PPARγ, the 
isoform of PPARs that mediates some of the metabolic effects 
seen with both endo- and phyto-cannabinoids. Palomba and 
colleagues [24] recently recognized a potential role for PPARγ 
in the modulation of leptin activity by hypothalamic CB1Rs, 
which further supports the effect of cannabis through CB1 R 
mediation.

We found cannabis use was significantly associated with 

Figure 2. Contribution of cannabis use to variance in each of the fat phenotypes in the study cohort. Data are presented as the 
R2 metric (%). SFV: subcutaneous fat volume; VFV: visceral fat volume; IPFD: intra-pancreatic fat deposition; IHFD: intra-hepatic 
fat deposition; SMFD: skeletal muscle fat deposition.
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the insulinogenic index 60’ (reflecting increased insulin se-
cretion at 60 min following mixed meal) but no significant 
changes in insulin sensitivity. The lack of observed difference 
in insulin sensitivity is unsurprising, given the overall studied 
population did not have marked abnormalities of glucose me-
tabolism. Moreover, the group of regular cannabis users had 
lower median HbA1c (35 mmol/mol) than both non-regular 
(37 mmol/mol) and never (39 mmol/mol) users (Table 1). In-
creased insulin secretion may reflect an augmented insulin re-
sponse following cannabis use and suggests the potential role 
of CB1Rs in the gastrointestinal tract. DiPatrizo and colleagues 
[25] found that a diet high in fat altered intestinal endocan-
nabinoid levels, which upregulated CB1Rs in vagal nerve fi-
bres. Investigations of β-cell function historically have used 
intravenous glucose. As far as the oral route is concerned, the 
relationship becomes more complex and is influenced by the 
rate of glucose absorption, neural activation, and incretin ac-
tion. Incretins, such as glucose-dependent insulinotropic poly-
peptide (GIP) and glucagon like peptide-1 (GLP-1), enhance 
insulin secretion in response to nutrients and are responsible 
for the augmented response to glucose when given orally 
rather than intravenously [26]. Several animal models have 
isolated CB1Rs on enteroendocrine cells in rodents and have 
suggested these play a role in the regulation of incretin secre-
tion [27]. Chia and colleagues [26] demonstrated a significant 
increase in fasting and 60 min post-oral glucose tolerance test 
GIP levels following administration of a CB1R agonist, but no 
change in GLP-1 levels. They also found an increase in GIP 
levels in obese individuals, suggesting increased GIP is likely 
a consequence of increased endocannabinoid levels. Further, 
rodents fed dietary linoleic acid (which increased weight gain) 
were found to have elevated endocannabinoid levels in both 
the liver and the gut [28]. Linoleic acid is also an endogenous 
activator of PPARs, which have further been implicated in the 
regulation of metabolism and energy homeostasis. The above 
arguments may explain why we found increased insulin secre-
tion, but no significant change in insulin sensitivity.

Another possible explanation for our findings is that pe-
ripheral CB1Rs may be preferentially distributed in particu-
lar sites and result in augmented physiological effects from 
stimulation of the ECS. Peripheral CB1Rs play an important 
role in glucose homeostasis by modulating lipogenesis in the 
liver and adipose tissue. CB1R activation enhances de novo 
lipogenesis and triglyceride accumulation in hepatocytes and 
adipocytes, while minimizing lipolysis and fatty acid oxida-
tion [28]. Liu and colleagues [29] demonstrated a reversal 
of diet-induced IHFD through peripheral CB1R blockade in 
rodents. They also found increased fatty acid oxidation with 
CB1R blockade in mice both with and without diet-induced 
obesity. This suggests a possible propensity for cannabis-relat-
ed effects on hepatocytes over other peripheral cell types, due 
to more concentrated CB1Rs than in other peripheral sites. Al-
ternatively, the differing effects of Δ-9-THC on fat deposition 
may be due to variable expression of CB1 and CB2 receptors in 
the peripheral ECS. While CBR expression has been shown in 
the islets of Langerhans, evidence is conflicting on the recep-
tor subtypes in each of the different islet cells [19]. Previous in 
vivo experiments on rodents demonstrated metabolic derange-
ment with reduced glucose uptake following administration of 

CB1 agonists, but the opposite with CB2 agonists [30]. Given 
the lack of research conducted on CB2Rs, both in their relative 
distribution and functions, we can only speculate their func-
tion in both metabolic dysfunction and ectopic fat deposition. 
Greater understanding of the interplay between the two types 
of cannabinoid receptors is needed to understand how canna-
bis differentially affects various organs and systems in human 
studies. Given that the relative expressions of CB1 to CB2 re-
ceptors in the peripheral tissues are currently unknown, vari-
ability in the level of expression in the liver compared with the 
pancreas or skeletal muscle may explain the increased IHFD 
compared with other fat phenotypes.

The present study has several limitations. First, the ques-
tionnaire asked about cannabis use did not specify the type of 
cannabis product or the mode of administration. Second, the 
relative amounts of Δ-9-THC versus non-Δ-9-THC cannabi-
noids in the used cannabis preparations are unknown. However, 
our question referred to “marijuana”, which is most frequently 
referred in the literature as recreational cannabis (with much 
greater Δ-9-THC than non-Δ-9-THC) [4]. Therefore, we as-
sumed the effects seen were more the consequence of Δ-9-THC 
and not the CBD components (which are frequently used for 
therapeutic purposes). Third, there is a risk of under-reporting 
when asking about substance use. This would have resulted in 
our study yielding more conservative findings. Fourth, this was 
a post-hoc analysis of data on participants recruited into a study 
on sequelae of pancreatitis. Although all the 120 individuals had 
a history of mild pancreatitis, no individual had signs of acute 
inflammation on their MR scans and all had complete clinical 
resolution of their pancreatitis prior to MR acquisition [31, 32]. 
This also provided a relatively homogenous group of individu-
als who had a detailed clinical phenotype [33, 34]. They were 
also potentially a population with greater pain concerns due to 
their history of pancreatitis and subsequent impaired quality of 
life [35]. Hence, they could be considered an at-risk group for 
cannabis use or dependence, or potentially could be considered 
a group that may benefit from the therapeutic use of cannabis if 
delivered in controlled conditions [36]. Fifth, some individuals 
with diabetes received insulin, which may have influenced ab-
dominal body fat composition. However, the effect is unlikely 
to be material as none of the participants in the regular cannabis 
use group and only three participants in the other two groups 
received insulin. Sixth, the number of regular cannabis users 
was rather limited. This study is considered pilot and hypothe-
sis-generating. Power calculations of future studies in the field 
will benefit from the data presented here. Seventh, the analyses 
did not adjust for BMI or waist circumference. Whilst it is ac-
knowledged that these parameters might have influenced the 
studied associations, it is also acknowledged that these are less 
accurate than MR-derived visceral and subcutaneous fat com-
partments (used as dependent variable in the present study) for 
metabolic health. Adjusting the studied associations for BMI or 
waist circumference would have introduced multicollinearity 
into the regression analyses and therefore undermined the sta-
tistical assumptions [13]. Last, given the cross-sectional nature 
of the study, inference of causality between cannabis use and 
fat phenotypes or insulin traits cannot be made. However, to 
the best of our knowledge, no longitudinal study has been con-
ducted in humans on cannabis use. Future studies are now war-
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ranted to track temporal changes in fat phenotypes with regular 
cannabis use, both recreationally and therapeutically.

In conclusion, our study presents first data on the differen-
tial association between cannabis use and MR-derived fat phe-
notypes, including SFV, VFV, IPFD, IHFD and SMFD. Our 
results show significantly greater IHFD (but not SFV, VFV, 
IPFD or SMFD) in regular cannabis users compared with nev-
er cannabis users, both in the unadjusted and adjusted analy-
ses. Cannabis use contributes most to variance in IHFD, and 
least to IPFD. Our results show significantly altered insulin 
secretion (but not insulin sensitivity) in regular cannabis users 
compared with never cannabis users. These findings provide 
novel insights into the relationship between cannabis use, dif-
ferent abdominal fat phenotypes, and insulin traits, the knowl-
edge on which will likely increase in the future.
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