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Multicomponent transporters are used by bacteria to transport a wide range of nutrients.
These systems use a substrate-binding protein to bind the nutrient with high affinity and
then deliver it to a membrane-bound transporter for uptake. Nutrient uptake pathways are
linked to the colonisation potential and pathogenicity of bacteria in humans and may be
candidates for antimicrobial targeting. Here we review current research into bacterial
multicomponent transport systems, with an emphasis on the interaction at the membrane,
as well as new perspectives on the role of lipids and higher oligomers in these complex
systems.
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INTRODUCTION

All bacteria must scavenge and take up nutrients from their environment to survive. The cellular
repertoire of transporter proteins is responsible for both the uptake of essential nutrients such as
carbohydrates, amino acids, and metals into the cell, as well as the efflux of toxins and antimicrobial
agents out of the cell (Saier, 2000). Transporter proteins therefore play key roles in bacterial
colonisation, pathogenesis, and antimicrobial resistance (Putman et al., 2000; Brown et al., 2008;
Siegel and Weiser, 2015). In contrast to channel proteins, which catalyse the high-flux of molecules
down a concentration gradient, transporters can couple uphill substrate translocation with the
movement of ions down their electrochemical gradient (secondary active transporters), or by using
processes such as ATP hydrolysis (primary active transporters). These processes enable bacteria to
scavenge nutrients that may be scarce (Nikaido and Saier, 1992).

There are many different families of bacterial transporter proteins, with differing folds, substrate
specificities, and mechanisms of transport. In this review, we focus on transporter systems that utilise
a substrate-binding protein (SBP) to deliver nutrients to the membrane component. These types of
transport systems are very substrate specific, which has been shown to provide a competitive
advantage to pathogenic bacteria during colonisation and infection; for example, the uptake of
carbohydrates such as sialic acid and fucose (Almagro-Moreno and Boyd, 2009; Ng et al., 2013),
amino acids such as L-glutamate (Colicchio et al., 2009), and metal ions such as zinc (Nielubowicz
et al., 2010) and iron (Perry et al., 2015). Multicomponent transporters are thought to be particularly
advantageous in environments with low nutrient availability, and during different stages of infection
where bacteria can upregulate transporters to suit their environments (Sanchez-Ortiz et al., 2021).
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Two important families of multicomponent active
transporters are of particular interest: the widely studied ATP-
binding cassette (ABC) transporters and the less understood
tripartite ATP-independent periplasmic (TRAP) transporters.
ABC transporters are found across all kingdoms of life, with
many eukaryotic ABC transporters implicated in disease states
(Gerlach et al., 1986; Gros et al., 1986; Hyde et al., 1990; Higgins,
1992; Borst and Elferink, 2002;Wolf et al., 2012). The role of ABC
transporters in bacterial pathogenicity is well established (Tanaka
et al., 2018), and ABC classes that lack homologs in eukaryotes
have been explored as potential drug targets against Gram-
positive bacteria (Counago et al., 2012). In contrast, TRAP
transporters are not found in eukaryotes and are only present
in bacteria and archaea (Forward et al., 1997; Kelly and Thomas,
2001; Fischer et al., 2010; Mulligan et al., 2011). Moreover, TRAP
transporters are important for host colonisation and persistence
by pathogenic bacteria (Severi et al., 2005; Almagro-Moreno and
Boyd, 2009; Jenkins et al., 2010), thus representing an attractive
therapeutic target. This link between transport by TRAPs and
pathogenicity is comprehensively reviewed by Rosa et al. (2018).

ABC and TRAP transporters differ considerably in sequence,
structure and mechanism of transport. ABC transporters are
primary active transporters that use energy from ATP binding
or hydrolysis to drive large structural rearrangements of the
membrane domains—in particular, rearrangement between
outward- and inward-facing orientations (Locher, 2016). The
mechanism of TRAP transport is unresolved, but it is clear that
they operate via a secondary active transport mechanism, coupling
target molecule transport to the movement of cations down an
electrochemical gradient (Mulligan et al., 2009). Common to both
of these systems is the use of a high-affinity SBP to unload
substrates to the integral membrane domain (Berntsson et al.,
2010; Fischer et al., 2015). In ABC transporters, the general
mechanism of substrate unloading involves distortion of the
SBP upon docking at the membrane domain (Locher, 2016).
This rearrangement lowers the affinity of the interaction
between ligand and SBP, allowing substrate release for transport.
It is not yet known if this is the same for TRAP transporters.

Given their link to the pathogenesis and survival strategy of
bacteria, both ABC and TRAP transporters present as interesting
targets for antimicrobial development. Inhibiting the SBP is an
obvious strategy that has been shown to impede bacterial growth
and pathogenesis in vivo (Ilari et al., 2016). Inhibiting substrate
binding at the membrane components, or the protein-protein
interaction at the membrane are strategies to be considered.
Others have considered using the SBP in a “Trojan horse”
mechanism to deliver bactericidal agents into the cell (Wilson
et al., 2016). Understanding the structure-function relationships
of these transporters is therefore key to chemical targeting and
antimicrobial design (Scalise et al., 2020). Here we review the
interplay of prokaryotic ABC and TRAP transporters with their
cognate SBPs, as well as new perspectives on the structure and
function of these systems.

Multicomponent Transporter Prevalence
The prevalence of multicomponent transporter genes in bacteria
varies considerably. The micro-environment that the cell

occupies is linked to the number and the type of transporter a
bacterium may possess, with the number of transporters in the
genome being generally proportional to genome size (Davidson
et al., 2008). ABC transporter proteins are by far the most
abundant of transporters, typically accounting for half of the
transporters in a bacterial genome. Escherichia coli has a 4.6 Mb
genome and encodes 78 ABC transporter systems, typical for a
genome of this size. In contrast,Mycobacterium tuberculosis has a
4.4 Mb genome and encodes only 38 ABC systems, while
Agrobacterium tumefaciens has a 5.7 Mb genome that encodes
over 200 ABC systems (Davidson et al., 2008). M. tuberculosis
lives a parasitic intracellular nutrient-rich lifestyle where the
requirement to select nutrients that are low in abundance has
been lost, whereas A. tumefaciens lives in the soil, a highly
competitive environment. Recent comparative genomics of
clinically significant pathogenic bacteria, such as Salmonella
enterica, E. coli and species of Bacteroides show that ABC
transporters are among the most commonly encoded
transporter system, comprising 20–30% of all transporter
proteins in the strains examined (Do et al., 2017; Zafar and
Saier, 2018).

TRAP transporter prevalence in bacterial genomes is variable.
The TransportDB 2.0 database (http://www.membranetransport.
org/transportDB2/index.html) shows that out of the 2,722
prokaryotic genomes analysed in the database, 1,252 (46%)
have at least one TRAP system in the genome. Some species
have only one TRAP system (E. coli 042), others have over 20
(Silicibacter pomeroyi DSS-3 and Chromohalobacter salexigens
DSM 3043) (Mulligan et al., 2007; Elbourne et al., 2017).
Moreover, TRAP proteins appear more common in bacteria
that live in saline environments (Mulligan et al., 2007). It
seems likely that these species have adapted to exploit the high
sodium concentration in their surrounding environments by
utilising a sodium gradient to power transport as opposed to
ATP. In addition, Bergauer et al. (2018) observed that TRAP
transporters are more prevalent in bacteria that live at depths
greater than 500 m compared to those between 0 and 500 m. The
authors hypothesise that in deep sea oligotrophic conditions,
TRAP transporters are more advantageous than ABC
transporters as their transport is less energy-consuming due to
a reduced requirement for ATP hydrolysis.

Multicomponent Transporter Architecture
Buried in the lipid membrane, transporter proteins are
intrinsically hydrophobic and traditionally, they are difficult to
isolate and characterise. Nonetheless, there have been significant
improvements in membrane protein purification methodologies,
particularly with the development of new detergents and
membrane mimetics. Importantly, these improvements have
led to an expansion in the number of membrane protein
structures, although they are still under-represented in the
PDB and notably, no TRAP transporter membrane protein
structure has been experimentally determined.

ABC transporter structure: As of writing, 85 experimentally
determined structures of ABC transporters have been deposited
in the PDB, revealing wide structural diversity. Common to all
ABC transporters is a dimeric membrane-bound component
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(homo- or hetero-) that brings together two transmembrane
domains (TMDs) and two nucleotide-binding domains
(NBDs), otherwise known as ATP-binding cassettes
(Figure 1). The NBDs, which in some cases may be fused to a
TMD, hydrolyse ATP and drive conformational changes in the
transmembrane domains that in turn allow for the substrate to
pass through the membrane. Recent studies suggest that either
the binding, or the hydrolysis of ATP provides the “power stroke”
for transport, and this varies between systems (Mishra et al., 2014;
Stefan et al., 2020). NBDs are highly conserved in structure and
sequence, but the TMDs are less so, which reflects the diversity in
transported substrates. Historically, ABC transporters have been
classified by sequence alignments and substrate specificity, which
has separated the transporters into three classes. However, a surge
in the number of ABC transporter structures deposited in the
PDB has led others to rethink this classification system—a seven
class system where ABC transporters are classified based on their
transmembrane domain fold is now suggested (Thomas et al.,
2020).

The TMD monomer consists of anywhere between four and
ten transmembrane helices (TMH), plus a small number of
connecting and coupling α-helices. The number and topology
of helices dictate the seven ABC transporter classes that are now
proposed. Classically, ABC transporters that import using an SBP
are categorised as either Type I (small), with five to eight TMH
per subunit, or Type II (large), with ten TMH per subunit. A
coupling helix on the cytoplasmic surface interacts tightly with
the NBD. Each NBD consists of two sub-domains: a larger RecA-
like domain and a smaller α-helical domain that is unique to ABC
transporters. Several highly conserved motifs help identify NBDs,

including the Walker A and B motifs, and the signature ABC
motif (Thomas and Tampe,́ 2020).

For Type I and Type II ABCs the periplasmic surface of the
TMD serves as a docking interface for the SBP. All SBPs,
including those from both ABC and TRAP systems, share a
common architecture—two α/β domains linked by a hinge
region about which the SBP can open and close around a
ligand, which is likened to a “Venus flytrap” mechanism
(Scheepers et al., 2016). Some experimental evidence favours
induced-fit over conformational selection as the mechanism of
substrate binding to the SBP (Gouridis et al., 2015), although it
is unclear whether this is the case for all systems. This
mechanism of conformational change and the
conformational equilibria could both have implications for
how the protein-protein interaction occurs, and the transport
cycle overall.

TRAP transporter structure: TRAP transporters are a major
class of secondary transporters used by both bacteria and archaea
to import a range of carboxyl and sulfonate-containing
molecules, including C4-dicarboxylates, α-keto acids, aromatic
substrates, and amino acids (Rosa et al., 2018). TRAPs couple
transport of these molecules to the movement of cations (Na+)
down an electrochemical gradient, and also utilise a high-affinity
SBP. SBPs were previously thought to be unique to ABC
transporters, until the discovery of the first TRAP transporter
system, dctPQM, from Rhodobacter capsulatus (Forward et al.,
1997). To date, there are no experimentally determined structures
of the membrane domains of TRAP transporters, limiting our
understanding. Unlike ABC systems, the TRAP membrane
component is almost always heterodimeric. Typically, the

FIGURE 1 | Multicomponent transporters. Left, an experimentally determined structure of the type I ABC importer ModBC-A from A. fulgidus (PDB ID: 2ONK).
Middle, an experimentally determined structure of the type II ABC importer BtuCD-F from E. coli (PDB ID: 2QI9) (Hollenstein et al., 2007; Hvorup et al., 2007). Right, a
hypothetical model of the TRAP transporter YiaMN-O from E. coli that was generated by Ovchinnikov et al. (2014) using comparative modelling in RosettaCM. The
substrate-binding proteins (SBPs) dock to the transmembrane domains (TMDs) at the periplasmic surface of the inner membrane. ABC transporter nucleotide-
binding domains (NBDs) situated in the cytoplasm catalyse the hydrolysis of ATP. The TRAP transporter facilitates the movement of sodium ions across the membrane.
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TRAP membrane domains are comprised of a large or “M”
domain, estimated to be 12–14 TMH with a predicted
NOutCOut topology, and a small or “Q” domain made up of 4
TMH, with an experimentally determined NInCIn topology
(Wyborn et al., 2001). Together with the SBP (or P domain),
they make up the “tripartite” system (Figure 1).

A number of TRAP SBPs have been characterised structurally
and biochemically (Muller et al., 2006; Johnston et al., 2008;
Gangi Setty et al., 2014), generally showing the canonical SBP
tertiary structure. Using a structural genomics approach, Vetting
et al. (2015) solved 60 high-resolution crystal structures of SBPs
(46 unique) greatly expanding the knowledge base for these
transporter systems.

In a small proportion of TRAP transporters, the Q and the M
domains are fused together and expressed as a single
polypeptide. Rarer still are fusions of the Q domain to the P
domain. For the majority of TRAP transporters, these domains
are transcribed separately, and oligomerise via an unknown
mechanism to form a functional transporter (Kelly and Thomas,
2001). The large membrane domain is predicted to form the
translocation channel, and is a part of the ion transporter
superfamily (Rabus et al., 1999). The function of the small
membrane domain is unknown, but it is hypothesised that
the small domain could function as a chaperone for the
folding of the large domain, or act as a landing pad for the
SBP (Mulligan et al., 2011).

The best-studied members of the TRAP transporter family are
the non-fused Vibrio cholerae and the fused (Q and M domains)
Haemophilus influenzae SiaPQM systems. These TRAPs
transport sialic acids, a family of nine-carbon amino sugars,
the most common of which is N-acetylneuraminic acid (North
et al., 2018). The focus on these systems is due to the growing
interest in the role of sialic acid as an important nutrient source
for pathogenic bacteria in vivo (North et al., 2016; North et al.,
2018; Wahlgren et al., 2018; Davies et al., 2019; Coombes et al.,
2020; Horne et al., 2021). Electrochemical studies have been used
to characterise the transport of sialic acid through the H.
influenzae SiaPQM system (Mulligan et al., 2009).
Proteoliposome assays identified that transport by SiaQM
(membrane domains) is predominantly unidirectional. Efflux
of sialic acid from the proteoliposome could only be achieved
with an excess of unliganded SiaP (at conditions considered
unlikely to be physiologically relevant). This study also
identified that at least two Na+ ions are coupled to the
transport of sialic acid and that transport could not be driven
by a pH gradient or membrane potential alone. These data
strengthen the aforementioned argument that TRAP
transporters have lower energetic costs in marine
environments. More data is required to ascertain whether all
TRAP transporters are Na+-dependent and have this coupling
stoichiometry.

Current Models for Protein:Protein
Interactions at the Membrane
Recently, it has been shown that SBPs can adopt a wide range of
conformations that can activate transport and that both

transported and non-transported ligands can adopt similar
conformations in solution. While the SBP is the primary
specificity determinant for the target molecule, it is suggested
that the fate of the transported ligand can also be determined by
selectivity at the membrane domain, or by a slow opening of the
SBP, preventing translocation (de Boer et al., 2019). In both
situations, it is clear that the docking and allosteric interaction of
these domains is key in the transport cycle. Whereas there is
ample structural data to define this interaction in ABC systems,
there is currently no experimentally determined structural data of
the membrane components to guide our understanding of this
interaction in the TRAP transporters (Figure 1).

For both ABC and TRAP transporters, docking of the SBP
must trigger conformational changes in the membrane domains,
and in the case of ABC transporters, catalytic transformations at
the NBDs. How the soluble SBP and membrane-bound
transporter interact is therefore key to understanding the
transport cycle. Within the ABC transporter family, there is
wide variation in how the SBP interacts with the transporter
domain. The interactions have been well-characterised in the
maltose-specific ABCMalFGK2, where it was shown that the SBP
MalE interacts with the periplasmic loops of MalFG. The crystal
structure of ModB2C2A (PDB ID: 2ONK) shows both SBP lobes
interacting with the TMDs (Figure 1), with six salt bridges per
domain (Hollenstein et al., 2007). In comparison, the BtuCD-F
structure (PDB ID: 2QI9) has a very different interacting surface
that reflects the asymmetric structure of the SBP, and only one
salt bridge per domain (Hvorup et al., 2007).

Vigonsky et al. (2013) examined this interaction with two
different Type II ABC transporters with the same substrate
specificity (molybdate and tungstate), and crucially found that
the interaction at the membrane is completely different between
the two systems. In one system, ModBC-A from Archaeglobus
fulgidus, the SBP appears to form a low-affinity, transient
complex with the membrane domain that is stabilised by
ligand binding. Contrastingly, the H. influenzae molybdate/
tungstate ABC transporter has a high-affinity interaction that
is destabilised by both ligand and nucleotide binding (Vigonsky
et al., 2013). Mulligan et al. (2009) tested whether the V. cholerae
TRAP SiaP could deliver substrate to the H. influenzae SiaQM
membrane domains, but found no transport in a proteoliposome
assay. These data together highlight the specificity of the
interactions between the SBP and the membrane domains in
these multicomponent systems.

Once the complex has formed, the substrate must pass to
the membrane domain. The general model for this involves the
disruption or distortion of the SBP high-affinity binding
pocket by loops of the membrane domain. In ABC
transporters, there is variation in the affinity for substrates
within the membrane domain. Local concentrations of
substrate are important to consider here, while the
temporary binding pocket has only moderate affinity, with a
Kd in the mM range—substrate concentration in the tunnel is
thought to be at least two orders of magnitude greater than
this. In Type II transporters, such as the well-studied E. coli
vitamin B12 transporter BtuCD-F (PDB ID: 2QI9), there is no
substrate binding pocket, and the substrate is released into a
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hydrophobic pocket with no measurable affinity—likened to a
“Teflon” cavity. The interactions within the BtuCD-F system,
as well as the Type I ModBC-A transporter, have been studied
using surface plasmon resonance and single-molecule
fluorescence resonance energy transfer (FRET), and more
recently by native mass spectrometry (Fiorentino et al.,
2019). This variation in interaction perhaps reflects the
diversity of both SBP folds and, as elaborated below, general
mechanisms of transport.

Mechanisms of Transport
The alternating-access model is the dominant descriptor of
substrate transport for ABC transporters (Locher, 2016). In its
simplest form, this model involves conformational changes in
the membrane domains that expose the substrate-binding site
to either side of the membrane, which is achieved through an
allosteric coupling of intracellular and extracellular gates
within the transporter. The alternating-access model can be
further divided into three distinct types: the rocker-switch, the
rocking-bundle (or gated-pore) and the elevator model (Drew
and Boudker, 2016). For descriptive purposes and in brief,
if a typical transporter protein is described as two bundles
(with an N- and a C-terminal domain), structurally similar
bundles rearrange in a symmetrical fashion around a
central substrate-binding site in the rocker-switch model;
structurally dissimilar bundles rearrange asymmetrically
around a central substrate-binding site in the rocking-
bundle model; and in the elevator mechanism the two
bundles are highly divergent, with one of them remaining
fixed and immobile within the membrane, while the other
moves against this bundle to physically translocate the
substrate to the other side of the membrane in an elevator-
type fashion (Drew et al., 2021).

Amodel of transport by TRAP transporters has been proposed
and is based upon the alternating-mechanism seen in Type I ABC
transporters (Mulligan et al., 2009). Recent work has started to
uncover potential “scoop loops” in the membrane domains of
TRAP transporters (Peter et al., 2021). Additionally, Darby et al.
(2019) have found that disruption of the ordered waters within
the binding cleft of an SBP can dramatically alter substrate
binding affinity. They discovered that a mutation made on the
surface of the protein was able to severely disrupt ligand binding
at the distal (∼4.7 Å) binding site. This may hint at how the
membrane domains allosterically modulate the SBP—a subtle
interaction at the surface of the binding protein may be all that is
required to trigger the release of the substrate. This type of
interaction fits with experiments performed by Marinelli et al.
(2011), where the authors constructed an SBP mutant that is
biased toward an open conformation, which in turn had a
markedly lower affinity for substrate—providing some
evidence that the binding affinity may be allosterically
modulated. Recently, crystal structures of the V. cholerae SiaP,
combined with single-molecule FRET experiments have shown
that the conformational change is primarily substrate-induced
(Glaenzer et al., 2017). More experimental evidence is required to
better understand the transport cycle, particularly how the loop
regions of the TRAP transporter interact with the SBP, and in

general, how TRAP transporters function—this is a key
knowledge gap in the field.

Co-Evolution and its Potential for Defining
Substrate-Binding Protein:Membrane
Protein Interactions
An emerging tool for understandingmulticomponent transporter
systems is the analysis of co-varying residues. In particular, new
statistical methods now allow for an accurate prediction of co-
varying residues, in turn thought to be co-evolving. These residue
pairs are a very good predictor of spatial proximity (Marks et al.,
2011; Jones et al., 2012; Kamisetty et al., 2013). This is of
particular interest in the case of both ABC and TRAP
transporters, where the subunits are functionally connected
and appear to operate independently of other proteins (Juan
et al., 2008). The abundance of sequences available for both
families make them suitable for this kind of analysis.

Co-evolution has been successfully used to predict the SBP:
TMD complex of an ABC transporter. Ovchinnikov et al. (2014)
docked the SBP (MetQ) to the TMDs (MetI) of the E. coli
methionine transporter MetNIQ using co-evolution restraints
generated by the GREMLIN tool. At the time, the structure of the
MetNIQ complex had not been determined, but has since been
solved (PDB ID: 6CVL). Strikingly, a comparison of these two
structures shows the remarkable accuracy of these predictions
(Figure 2). The accuracy of this method was confirmed using a
benchmark set, where nearly all identified co-varying residues
were in contact in the already solved complex structure. Co-
evolution analysis was used to both inform the building of a
comparative model of the TRAP transporter Q and M domains
using Rosetta, as well as the docking of the P domain (Figure 1)
(Ovchinnikov et al., 2014). This model, although yet to be verified
experimentally, gives us the first structural picture of the
membrane domains, and may be of use to inform mechanistic
experiments.

Importance of Lipids for Multicomponent
Transporters
It is apparent that the lipid environment within which a
membrane protein transporter is embedded plays an
important role in modulating stability and activity. There are a
wide variety of membrane mimetics currently available for
transporter purification and characterisation, with different
levels of similarity to the cell membrane. These include
micelles, bicelles, peptidiscs, saposins, amphipols, styrene
maleic acid lipid particles (SMALPs), nanodiscs, and
liposomes (Chorev and Robinson, 2020). Each mimetic can
result in substantially different transporter conformations and
activities compared to the native environment of the protein.
There are several examples of ABC transporters displaying
significantly higher activity and/or stability when reconstituted
into lipid environments, such as nanodiscs or liposomes,
compared to their apparent activity when measured in
detergent micelles. Examples of this include Wzm-Wzt, P-gp,
and MalFGK2 (O’Mara and Mark, 2012; Bao et al., 2013; Bi et al.,
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2018). O’Mara and Mark (2012) carried out molecular dynamics
simulations using the crystal structure of P-gp and found that this
conformation of P-gp was stable, yet when inserted into model
membranes the structure quickly deformed.

The bacterial ABC transporter MsbA, which can function both
as a lipid flippase and a drug transporter, adopts a different
conformation in lipid nanodiscs (via cryo-EM) than that
observed when crystallised with detergent (Ward et al., 2007;
Mi et al., 2017). Studies on MsbA comparing structure and
activity in detergent to that in nanodiscs or liposomes
observed the lowest activity in detergent (Kawai et al., 2011;
Arana et al., 2019). MsbA is also significantly more stable in lipid
carrier systems when compared MsbA in detergent or amphipol
(Kehlenbeck et al., 2019). Although there is no substitute for
native lipids, some detergents appear to be better at retaining
functional activity, such as the maltose-neopentyl glycol (MNG)
class. These are mild detergents that better mimic the classic two-
tailed lipid structure, with a quaternary “linking” carbon that
restricts the conformational flexibility of the molecule (Chae
et al., 2010). Compared to another commonly used detergent,
n-Dodecyl β-D-maltoside (DDM), MNG is predicted to pack
more efficiently around the transmembrane region (Lee et al.,
2020).

The composition of the lipid membrane varies between
bacteria and can also change with their environment.
Common lipids include phosphatidylglycerol (PG), cardiolipin
(CL), phosphatidylethanolamine (PE) as well as methylated
derivatives of PE such as phosphatidylcholine (PC)
(Sohlenkamp and Geiger, 2016). Furthermore, the distribution
of lipids within the bilayer is asymmetric. There are several
studies comparing transporter activity in PC and PE lipids
(Ahn et al., 2000; Gustot et al., 2010; Bao et al., 2013; Rice
et al., 2014). One key observation here is that compared to the
quaternary ammonium head groups of PC, the primary
ammonium head groups of PE have greater hydrogen bonding
potential and form specific interactions with transporter amino
acid side chains (Immadisetty et al., 2019).

With the known importance of lipids for transporter function,
it is essential that new methods are developed for their
identification and for determining their role in transporter
function. Native mass spectrometry is emerging as a valuable

technique to investigate protein-lipid interactions. Typical
identification of required lipids and their interactions with
transporters centre around in vivo studies, X-ray
crystallography, and cryo-EM, which are challenging, time-
consuming, and often low resolution, not allowing for proper
tail and head identification (Bolla et al., 2019). High-energy native
mass spectrometry has been gaining momentum in the field to
identify lipids linked to function. Using a mild detergent for the
purification of the ABC transporter TmrAB, successive
delipidation, mass spectrometry, and ATPase assays showed a
subset of closely associated lipids remain after detergent
solubilisation. Critically, as more lipids were extracted from
TmrAB, evidenced from the mass spectra, the corresponding
ATPase activity decreased (Bechara et al., 2015).

The role of lipids in the assembly and function of the TRAP
family is yet to be established but it is conceivable that interfacial
lipids may play some role in the stability of the heterodimeric
complex.

Oligomeric State and Implications for
Function
Transporters, especially those that use an SBP, are typically
functional as single transporter units. The possibility of larger
assemblies occurring in the crowded environment of the
membrane should be considered, where it is estimated that the
protein composition may be as high as 30–55% of the membrane
area (Linden et al., 2012). These assemblies may function
independently of each other, or the conformational changes
may be linked between protomers. Many studies do not take
place in the membrane, or with measurement of oligomeric state
in mind. There have been cases of higher-order ABC transporter
oligomerisation (tetramers and above), but as most structural
work is performed in detergents, physiologically relevant
oligomerisation may be missed. Several biophysical techniques
can accurately determine transporter oligomeric state in
detergent, but in these experiments, it can be difficult to
discriminate between cohabitation in the micelle and
biologically relevant oligomerisation. Recently, the
dicarboxylate transporter VcINDY from V. cholerae (which is
of the divalent anion-sodium symporter family) has been shown

FIGURE 2 | Co-evolution analysis as a tool to explore SBP:TMD interactions in multicomponent systems. The predicted MetIQ structure (Ovchinnikov et al., 2014)
maps well on to the MetNIQ crystal structure (MetN not displayed) (Nguyen et al., 2018). The top co-evolved residues between the two components are in similar
positions, with the predicted complex correctly orienting the SBP.
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to form dimers, although transport via an elevator-type
mechanism does not appear to be coupled between protomers
(Mancusso et al., 2012; Mulligan et al., 2016). The biological
relevance of this behaviour is not yet clear.

In ABC transporters, dimerisation of two subunits generates
the active transporter core that binds the cognate SBP. Higher-
order oligomers of the transporter core have been implicated in
the function of several families of mammalian ABC transporters,
but less is known about the oligomeric status in bacteria. One
example is theM. tuberculosis ABC transporter Rv1747, which is
important for M. tuberculosis growth in hosts and has recently
been found to form higher-order assemblies termed
“nanoclusters” at the membrane (Heinkel et al., 2019). Super-
resolution microscopy was used to observe these clusters, where it
appears the clustering is driven by oligomerisation and phase
separation behaviour of a cytoplasmic regulatory module. The
role of transporter oligomerisation in this clustering is unclear,
although ABC transporter oligomerisation and subsequent co-
localisation has been reported for human systems.
Oligomerisation may conceivably improve transport efficiency
via cooperativity, which has been seen in ABC transporters where
an SBP is fused to the transport domain (Biemans-Oldehinkel
and Poolman, 2003).

Recently, several ABC SBPs from the bacterium Thermotoga
maritima have been identified to form homodimers that act as an
allosteric switch (Li et al., 2017). These dimers dissociate into
monomers upon ligand binding as a proposed form of
transporter regulation. Another SBP from T. maritima, the
arginine binding protein TmArgBP, is anchored to the
membrane and forms a C-terminal helix-swapped dimer that
could simultaneously interact with two ABC transporter cores
(Ruggiero et al., 2014).

It is not known whether oligomerisation can occur with the
integral membrane component of TRAP transporters (e.g.,
heterotetramers, where the heterodimer species oligomerise) as
the structure is undetermined, although dimeric TRAP SBPs have
been structurally characterised by crystallography (Gonin et al.,
2007; Vetting et al., 2015). These dimeric SBPs (of which many
homologs are predicted by sequence) have an extended C-terminal

helix away from the ligand-binding site that swaps over to form a
dimer, positioning the binding sites in a back-to-back arrangement.
Although it may be predicted, no cooperative binding was seen in
the first example of these dimeric SBPs, TakP (Gonin et al., 2007).
Any functional advantages of dimeric SBPs are still unknown,
although dimerisation could conceivably increase transport
efficiency, or be a part of the mechanism.

Our current examples of multicomponent transporters are
functional without forming larger assemblies, but there are
examples of SBP oligomerisation. This area has not expanded
much over the last decade, potentially due to the difficulty of
studying these systems. Examples could appear with future work
in lipid systems such as nanodiscs.

CONCLUSION

Both the TRAP and ABC transporter systems enable bacteria
to selectively import nutrients and are therefore important for
colonisation and persistence. While much is known about ABC
transporters, from how they bind and interact with substrate-
binding proteins, to the conformational transitions of the
membrane and nucleotide-binding domains, relatively little
is known about TRAP transporters. It is clear that in ABC
transporter systems there are a number of different
mechanisms of transport, and it is not a case of one-size-
fits-all. The current model of the TRAP transport cycle needs
further experimental testing, with the key knowledge gap being
that there are no experimentally determined structures of the
membrane domains. Further research into how these
transporter systems function in the membrane environment
is also required.
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