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Abstract
Aim:	Producing	quantitative	descriptions	of	large-	scale	biodiversity	patterns	is	chal-
lenging,	particularly	where	biological	sampling	is	sparse	or	inadequate.	This	issue	is	
particularly	problematic	in	marine	environments,	where	sampling	is	both	difficult	and	
expensive,	often	resulting	in	patchy	and/or	uneven	coverage.	Here,	we	evaluate	the	
ability	of	Gradient	Forest	(GF)	modelling	to	describe	broad-	scale	marine	biodiversity	
patterns,	using	a	large	dataset	that	also	provided	opportunity	to	investigate	the	ef-
fects	of	sample	size	on	model	stability.
Location:	New	Zealand’s	Extended	Continental	Shelf	to	depths	of	2,000	m.
Methods:	GF	models	were	used	to	analyse	and	predict	spatial	patterns	of	demersal	
fish	 species	 turnover	 (beta	 diversity)	 using	 an	 extensive	 demersal	 fish	 dataset	
(>27,000	research	trawls)	and	high-	resolution	environmental	data	layers	(1	km2	grid	
resolution).	GF	models	were	fitted	using	various	sized,	mutually	exclusive	subsets	of	
the	demersal	fish	data	to	explore	the	effect	of	variation	in	numbers	of	training	obser-
vations	on	model	performance	and	stability.	A	final	GF	model	using	13,917	samples	
was	used	to	transform	the	environmental	layers,	which	were	then	classified	to	pro-
duce	30	spatial	groups;	the	ability	of	these	groups	to	identify	fish	samples	with	simi-
lar	composition	was	evaluated	using	independent	sample	data.
Results:	Model	fitting	using	varying	sized	subsets	of	the	data	indicated	only	minimal	
changes	 in	model	 outcomes	when	using	>7,000	observations.	A	multiscale	 spatial	
classification	of	marine	environments	created	using	results	from	a	final	GF	model	fit-
ted	using	~14,000	samples	was	highly	effective	at	summarizing	spatial	variation	 in	
both	fish	assemblage	composition	and	species	turnover.
Main conclusions:	 The	hierarchical	 nature	of	 the	 classification	 supports	 its	 use	 at	
varying	levels	of	classification	detail,	which	is	advantageous	for	conservation	plan-
ning	at	differing	spatial	scales.	This	approach	also	facilitates	the	incorporation	of	in-
formation	 on	 intergroup	 similarities	 into	 conservation	 planning,	 allowing	 greater	
protection	of	distinctive	groups	likely	to	support	unusual	assemblages	of	species.
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spatial	patterns,	species	turnover
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1  | INTRODUC TION

Sound	 conservation	 planning	 and	 management	 at	 the	 ecosystem	
level	 depend	 heavily	 on	 the	 reliable	 characterization	 of	 biodiver-
sity	 patterns,	 often	 across	 large	 regions	 (Ferrier,	Manion,	 Elith,	 &	
Richardson,	2007;	Margules	&	Pressey,	2000).	 Ideally,	 this	charac-
terization	is	based	on	quantitative	information	describing	different	
components	of	diversity,	including	not	only	the	distributions	of	indi-
vidual	species	and/or	communities,	but	also	of	emergent	properties	
such	 as	 alpha	 diversity	 (local	 richness)	 and	 beta	 diversity	 (species	
turnover	 along	 spatial	 or	 environmental	 gradients;	Harrison,	Ross,	
&	Lawton,	1992;	Legendre,	Borcard,	&	Peres-	Neto,	2005;	Nekola	&	
White,	2002;	Shmida	&	Wilson,	1985).	These	latter	two	components	
are	particularly	valuable	for	spatial	planning;	while	the	total	number	
of	 species	 (alpha	 diversity)	 contributes	 to	 the	 relative	 importance	
of	 an	 area	 for	 conservation,	 it	 is	 the	 rate	 of	 species	 turnover	 be-
tween	sites	that	largely	determines	the	optimal	spatial	arrangement	
of	 conservation	 areas	 (Arponen,	Moilanen,	&	 Ferrier,	 2008;	 Bush,	
Harwood,	Hoskins,	Mokany,	&	Ferrier,	2016;	McKnight	et	al.,	2007;	
Nekola	 &	 White,	 1999,	 2002;	 Socolar,	 Gilroy,	 Kunin,	 &	 Edwards,	
2016).

Unfortunately,	 producing	 quantitative	 descriptions	 of	 large-	
scale	 biodiversity	 patterns	 is	 challenging,	 particularly	 where	 bio-
logical	 sampling	 is	 sparse	 or	 inadequate	 (Elith	 et	al.,	 2006;	 Leaper	
et	al.,	2011;	Morán-	Ordóñez,	Lahoz-	Monfort,	Elith,	&	Wintle,	2017).	
It	 is	often	particularly	problematic	 in	marine	environments,	where	
sampling	is	both	difficult	and	expensive,	resulting	in	patchy	and/or	
irregular	coverage	(Leathwick,	Elith,	Francis,	Hastie,	&	Taylor,	2006;	
Thomson	 et	al.,	 2014).	 Spatial	 classifications	 of	 environments	 are	
one	tool	commonly	used	to	overcome	these	difficulties,	particularly	
at	larger	spatial	scales	(Snelder	et	al.	2007).	Such	classifications	typi-
cally	use	more	readily	available	environmental	data	to	group	together	
sites	likely	to	have	similar	biological	character.	These	classifications	
can	 be	 used	 to	 identify	 areas	 that	 are	 likely	 to	 respond	 in	 similar	
ways	to	human	activity	or	management	actions	(Bailey,	1983),	to	de-
fine	standards	 for	 the	management	of	human	 impacts	 (Omernik	&	
Bailey,	1997),	to	stratify	sites	for	surveying	and	monitoring	programs	
(Hawkins	et	al.,	2000)	or	to	identify	priority	areas	for	conservation	
management	(Leathwick	et	al.,	2012).	Earlier	classification	methods	
relied	largely	on	subjective,	expert	decision-	making	(e.g.,	thematic	or	
hierarchical	classifications,	Roff,	Taylor,	and	Laughren	(2003)),	while	
a	 number	 of	 recent	 classifications	 use	 quantitative	 approaches,	
sometimes	with	manually	 imposed	rules	 (Snelder	and	Biggs,	2002)	
or,	 alternatively,	 use	 numerical	 classification	 procedures	 to	 group	
sites	(Belbin,	1993).	In	addition,	qualitative	classifications	often	lack	
information	on	within-	class	variation	in	the	community	composition	
(Leaper	 et	al.,	 2011),	 instead	 relying	 on	 subjective	 alignment	 with	
coarse	categorical	habitat	features,	that	is,	seagrass	beds,	rocky	reef,	
sand	and	mud	(Mumby	et	al.,	2008).	Regardless,	subjective	decisions	
are	required	in	the	choice	of	environmental	factors,	how	they	should	
be	weighted	and	whether	transformations	should	be	applied	to	in-
crease	 their	 ability	 to	 distinguish	 biodiversity	 patterns	 (Leathwick	
et	al.,	2011).

One	approach	 to	overcoming	 this	difficulty	 is	 to	combine	con-
tinuous	environmental	data	with	biological	samples	(Anderson	et	al.,	
2016;	 Dunstan,	 Althaus,	 Williams,	 &	 Bax,	 2012),	 using	 analytical	
tools	that	quantitatively	assess	the	role	that	different	environmen-
tal	 factors	 play	 in	 influencing	 biodiversity	 patterns	 (Ferrier	 et	al.,	
2004;	Pitcher	et	al.,	2012).	Results	are	then	used	to	control	the	se-
lection,	weighting	and	 transformation	of	environmental	predictors	
to	be	classified,	increasing	the	ability	of	the	classification	groups	to	
represent	spatial	variation	in	biodiversity	character.	Generalized	dis-
similarity	modelling	 (GDM—Ferrier	 et	al.,	 2007;	 Ferrier,	 2002)	was	
one	of	the	first	techniques	to	explicitly	model	relationships	between	
environment	and	species	turnover.	It	uses	a	generalized	linear	mod-
elling	 framework	 to	 identify	 transformations	of	 the	environmental	
predictors	that	maximize	their	ability	to	predict	biological	distances	
(Bray–Curtis	 similarity)	 between	 sample	 sites.	 The	 fitted	 transfor-
mations	can	then	be	used	to	predict	community	turnover	across	the	
entire	study	region,	including	within	areas	lacking	biological	samples	
(Ferrier	et	al.,	2007).

A	second	technique,	Gradient	Forest	(GF;	Pitcher,	Ellis,	and	Smith,	
2011)	is	a	more	recent	development	that	produces	similar	outputs	to	
GDM,	but	using	a	 fundamentally	different	approach	 (Leaper	et	al.,	
2011).	While	GDM	fits	a	single	regression	model	that	describes	the	
relationship	between	environment	and	species	turnover,	a	GF	model	
consists	 of	 an	 aggregation	 of	Random	Forest	 (RF;	Breiman,	 2001)	
models,	each	of	which	describes	the	environmental	relationships	of	
an	individual	species.	Once	these	models	have	been	fitted,	the	infor-
mation	that	they	contain	about	the	relative	importance	of	different	
predictors,	 and	where	 changes	 in	 the	 presence	 (or	 abundance)	 of	
the	modelled	species	occur	along	each	of	their	ranges,	is	aggregated	
and	used	to	build	transforms	that	maximize	for	each	predictor	their	
correspondence	with	species	 turnover	 (Pitcher	et	al.,	2011).	These	
transforms	 closely	 resemble	 those	 produced	 by	GDM	and	 can	 be	
used	 in	 similar	ways,	 for	 example,	 these	 values	 can	 be	 calculated	
across	extensive	geographic	areas,	with	the	transformed	predictors	
then	classified	to	define	spatial	groups	that	capture	variation	in	spe-
cies	composition	and	turnover,	making	them	potentially	well	suited	
as	 input	 to	 conservation	planning	 analyses.	The	more	 incremental	
approach	to	model	fitting	in	GF	makes	it	particularly	well	suited	to	
the	analysis	of	large	datasets,	whose	size	can	be	limiting	in	GDM.

Here,	we	evaluate	the	ability	of	GF	to	describe	broad-	scale	bio-
diversity	patterns	for	conservation	planning.	The	analysis	combines	
high-	resolution	 environmental	 data	 (1	km2	 grid	 resolution)	 across	
New	 Zealand’s	 Extended	 Continental	 Shelf	 to	 depths	 of	 2,000	m	
and	distributional	data	for	253	demersal	fish	species	from	c.	27,000	
research	 trawls.	We	begin	by	exploring	 relationships	between	 the	
size	of	the	training	dataset	and	model	stability,	using	results	to	iden-
tify	 a	 conservatively	generous	 training	dataset	with	which	 to	 fit	 a	
final	model.	Results	from	this	final	model	are	used	to	transform	the	
environmental	layers	to	maximize	their	correspondence	with	species	
turnover,	with	numerical	classification	of	 these	transformed	 layers	
then	used	to	define	spatial	groups	having	similar	species	composi-
tion.	Finally,	we	assess	the	ability	of	this	classification	to	represent	
variation	in	both	species	composition	and	turnover,	crucial	“success”	
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factors	 if	 the	 classification	 is	 to	 have	utility	 for	 systematic	 broad-	
scale	conservation	planning.

2  | METHODS

2.1 | Study area

The	 study	 area	 consisted	 of	 those	 parts	 of	 the	 New	 Zealand	
Extended	 Continental	 Shelf	 (Figure	1)	 with	 depths	 in	 the	 range	
0–2,000	m;	 including	 deeper	 regions	 would	 have	 been	 desir-
able,	but	fish	samples	from	sites	deeper	than	2,000	m	are	limited	
(Figure	1a).	New	Zealand	has	a	long	and	narrow	land	mass	extend-
ing	 across	 a	wide	 latitudinal	 range	 (≈35–48°S),	 resulting	 in	 a	 di-
verse	range	of	environmental	conditions	in	its	surrounding	waters	
(Bradford-	Grieve,	Lewis,	&	Stanton,	1991;	Leathwick	et	al.,	2006).	
The	 dominant	 oceanographic	 feature	 is	 the	 Subtropical	 Front	
(STF),	 a	 highly	 productive	 zone	 of	mixing	 between	 high	 salinity,	
nutrient-	poor,	warm,	 northern	waters	 and	 low	 salinity,	 nutrient-	
rich,	 cold,	 southern	waters	 (Figure	1b).	Currents	 flow	 in	an	east-
ward	direction	along	the	STF	but	are	deflected	southwards	around	
the	lower	South	Island,	returning	north	along	the	east	coast	of	the	
South	 Island	 to	 resume	 their	 eastwards	 flow	along	 the	Chatham	
Rise	(Figure	1b;	Bradford-	Grieve	et	al.,	2006).	Several	gyres	occur	
within	 this	 mixing	 zone,	 mostly	 to	 the	 east	 of	 the	 North	 Island	

(Figure	1b;	 Bradford-	Grieve	 et	al.,	 2006).	 Although	 the	 waters	
surrounding	New	Zealand	do	not	have	 large	areas	of	continental	
shelf,	extensive	submarine	plateaus	are	located	to	the	east,	south	
and	west:	 the	Chatham	Rise	 to	 the	 east	 (Leathwick	 et	al.,	 2006)	
(Figure	1a);	the	Bounty	Plateau,	Pukaki	Rise	and	Campbell	Plateau	
and	 Rise	 to	 the	 south	 and	 south-	east	 (Figure	1a);	 and	 the	 Lord	
Howe	Rise	and	Challenger	Plateau	to	the	west	(Figure	1a).	Deeper	
abyssal	waters	occur	in	the	south-	west	of	the	study	area	along	the	
Puysegur	Trench	and	in	the	north-	east	along	the	Kermadec	Trench	
(Figure	1a).

2.2 | Biological data

Fish	are	the	most	abundant	and	diverse	group	of	vertebrate	animals	
on	earth	and	play	a	key	role	in	structuring	marine	ecosystems;	inter-
actions	within	and	between	fish	species	and	their	physical	environ-
ment	are	important	in	defining	community	structure,	diversity	and	
stability	 in	marine	ecosystems	 (Francis,	Hurst,	McArdle,	Bagley,	&	
Anderson,	2002).

Demersal	 fish	 abundance	data	used	 for	 this	 analysis	were	 col-
lected	 during	 research	 trawl	 surveys	 conducted	 between	 1979	
and	2005;	the	majority	of	these	data	are	available	from	the	NIWA	
Environmental	 Information	 Browser	 (https://ei.niwa.co.nz/;	
Figure	1).	To	minimize	the	effects	of	variation	 in	 individual	species	

F IGURE  1 Maps	of	the	study	region	(New	Zealand	Extended	Continental	Shelf,	black	dashed	line)	showing:	(a)	bathymetry,	sample	
locations	(grey	dots)	and	feature	names	used	in	the	text;	(b)	approximate	positions	and	direction	of	travel	of	the	Tasman	Front	(TF	and	its	
associated	currents:	the	east	Auckland	Current	(EAUC)	and	East	Cape	Current	(ECC)	in	the	north-	east,	and	the	Westland	Current	(WC)	and	
D’Urville	Current	(DC)	in	the	West	of	the	study	area),	Subtropical	Front	(STF)	and	Subantarctic	Front	(SAF	and	the	Antarctic	Circumpolar	
Current	(ACC)).	Adapted	from	Carter	(2001)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

https://ei.niwa.co.nz/
www.wileyonlinelibrary.com
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catchability	among	surveys,	especially	given	the	sometimes	incom-
plete	documentation	of	trawl	parameters,	species	catch	information	
was	 reduced	 to	 a	 presence/absence	 level	 (Hewitt,	Wang,	 Francis,	
Lundquist,	 &	Duffy,	 2015;	 Leathwick	 et	al.,	 2006).	 The	 final	 data-
set	included	observations	of	253	species	at	27,440	sample	locations	
(Figure	1a).	 Some	 geographic	 bias	 is	 evident	 in	 the	 distribution	 of	
samples,	 with	 many	 trawls	 made	 at	 43–45°S,	 reflecting	 the	 high	
priority	given	to	surveying	commercially	important	species,	that	is,	
hoki	(Macruronus novaezelandiae),	orange	roughy	(Hoplostethus atlan-
ticus)	and	oreos	(mainly	Allocyttus niger and Pseudocyttus maculatus)	
(Francis	et	al.,	2002)	on	the	Challenger	Plateau	and	Chatham	Rise.	
In	some	areas,	difficult	terrain	resulted	in	a	paucity	of	tows,	for	ex-
ample,	 the	 narrow	 and	 topographically	 complex	 continental	 shelf	
off	 Fiordland	 (on	 the	West	 coast	 at	 45–46°S)	 and	 the	 Kermadec	
and	 Colville	 Ridges	 (Figure	1a;	 Francis	 et	al.,	 2002).	 This	 sampling	
bias	was	not	specifically	addressed	here	as	it	was	assumed	that	the	
substantial	number	of	observations	across	a	broad	range	of	environ-
mental	gradients	provided	adequate	coverage	for	species	distribu-
tion	modelling.

2.3 | Environmental data

To	capture	variability	in	the	marine	environments	surrounding	New	
Zealand,	eighteen	high-	resolution	gridded	environmental	predictors,	
mostly	at	a	native	resolution	of	250	m,	were	collated	and	imported	
into	ArcGIS	(version	10.4).	These	variables	were	selected	based	on	
their	 known	 influence	 on	 demersal	 fish	 settlement,	 growth,	 sur-
vival	 and	 distribution	 (Beentjes,	 Bull,	 Hurst,	 &	 Bagley,	 2002;	 Bull,	
Livingston,	Hurst,	&	Bagley,	2001;	Francis	et	al.,	2002;	Kendrick	&	
Francis,	2002;	Leathwick	et	al.,	2006,	2012)	and	consequent	 likely	
influence	 on	 fish	 species	 assemblage	 composition	 and	 turnover	
(Table	1).	For	example,	several	physicochemical	variables	are	 likely	
to	 be	 critical	 physical	 determinants	 of	 habitat	 suitability	 for	most	
fish	 species,	 including	 annual	 averages	 of	 seafloor	 temperature	
(BotTemp),	 salinity	 (BotSal),	 nitrate	 (BotNi),	 oxygen	 (BotOxy)	 and	
silicate	(BotSil);	benthic	sediment	disturbance	(Beddist),	which	is	an	
important	 feature	 in	 shallower	 depths	 (<200	m);	 ocean	 productiv-
ity,	as	described	by	vertically	generalized	production	model	(VGPM),	
with	complementary	information	on	surface	water	productivity	pro-
vided	by	a	spatial	summary	of	gradients	in	sea	surface	temperature	
(SstGrad);	other	variables	that	act	as	surrogates	for	a	range	of	cor-
related	 biophysical	 variables,	 for	 example,	Depth	 (Bathy),	 seafloor	
roughness	(Roughness)	and	sediment	type	(Sed).	Although	most	of	the	
chosen	ocean	climate	variables	(e.g.,	seafloor	temperature,	BotTemp)	
were	 formulated	as	mean	annual	 statistics,	one	variable	described	
the	annual	range	in	temperature	(e.g.,	the	annual	temperature	range,	
SeasTDiff),	showing	greatest	variability	in	inshore	waters.

Several	predictors	showed	strong	collinearity,	 for	example,	be-
tween	 depth	 and	 seafloor	 temperature,	 salinity	 and	 oxygen	 sat-
uration	 (Ellis,	 Smith,	 &	 Pitcher,	 2012).	 Although	 GF	 modelling	 is	
reasonably	robust	to	correlated	variables	due	to	the	 incorporation	
of	a	conditional	permutation	approach	in	the	calculation	of	predic-
tor	 importance	 (for	 further	 information	 see	 Ellis	 et	al.	 (2012)),	 the	

use	 of	 highly	 correlated	 variables	 generally	 provides	 only	minimal	
improvement	in	prediction	accuracy	and	complicates	interpretation	
of	 model	 outcomes.	 Consequently,	 three	 of	 the	 most	 highly	 cor-
related	 variables	 were	 excluded:	 dynamic	 oceanography,	 oxygen	
saturation	 at	 depth	 and	 apparent	 oxygen	 utilization	 (Table	1).	 The	
remaining	15	variables	were	retained	for	all	models,	ignoring	correla-
tions,	as	all	were	thought	to	likely	be	of	ecophysiological	importance	
(see	Supporting	 information	Figure	S1	 for	 correlations	of	 the	 final	
variables	included	in	the	model	and	Table	1	for	description	of	vari-
ables).	Prior	to	model	fitting,	values	for	each	environmental	variable	
were	derived	 for	all	 trawl	 locations	by	overlaying	 these	onto	each	
of	the	environmental	predictor	layers	using	the	raster	package	in	R	
(Hijmans	&	van	Etten,	2012).

2.4 | Model fitting and evaluation

GF	modelling	has	two	components:	the	production	of	a	random	for-
est	model	(Breiman,	2001)	for	each	of	the	input	species	(using	an	ex-
tended	modelling	procedure	in	R	package	“extendedForest”;	Liaw	&	
Wiener,	2002)	and	the	collation	of	all	the	individual	split	points	from	
these	models	to	calculate	species	turnover	along	each	environmen-
tal	gradient	(using	the	R	package	“gradientForest”;	Ellis	et	al.,	2012).	
All	analyses	were	undertaken	in	the	statistical	computing	software	
R	(R	Core	Team,	2013).

Random	Forest	models	 (Breiman,	2001)	fit	an	ensemble	of	re-
gression	(abundance	data)	or	classification	tree	(presence/absence	
data)	models	describing	 the	 relationship	between	the	distribution	
of	 an	 individual	 species	 and	 some	 set	 of	 environmental	 variables	
(Ellis	et	al.,	2012).	The	predictive	power	of	 the	 individual	Random	
Forest	models	is	evaluated	using	a	measure	of	R2

f	for	each	species	f 
(the	proportion	of	out-	of-	bag	variance	explained;	Ellis	et	al.,	2012).	
The	importance	of	each	predictor	variable	(measured	as	R2)	 in	the	
model	 is	assessed	by	quantifying	 the	degradation	 in	performance	
when	each	predictor	variable	is	randomly	permuted	(Pitcher	et	al.,	
2012)	 using	 a	 conditional	 approach	which	 accounts	 for	 collinear-
ity	 between	 predictor	 variables	 (Ellis	 et	al.,	 2012).	 GF	 aggregates	
the	values	of	the	tree	splits	from	the	Random	Forest	models	for	all	
species’	models	with	positive	fits	(R2

f		>	0)	to	develop	empirical	dis-
tributions	that	represent	species	turnover	along	each	environmen-
tal	gradient	(Compton,	Bowden,	Pitcher,	Hewitt,	&	Ellis,	2013;	Ellis	
et	al.,	2012;	Pitcher	et	al.,	2012).	The	turnover	function	is	measured	
in	dimensionless	R2	units	where	species	with	highly	predictive	ran-
dom	forest	models	 (high	R2

f	values)	have	greater	 influence	on	the	
turnover	 functions	 than	 those	 with	 low	 predictive	 power	 (lower	
R2

f).	The	shapes	of	these	turnover	curves	describe	the	rate	of	com-
positional	change	along	each	environmental	predictor;	steep	parts	
of	 the	 curve	 indicate	 fast	 assemblage	 turnover,	 and	 flatter	 parts	
of	the	curve	indicate	more	homogenous	regions	(Ellis	et	al.,	2012;	
Pitcher	et	al.,	2012).

In	an	initial	set	of	analyses,	we	fitted	GF	models	using	subsam-
ples	of	the	full	dataset	to	investigate	the	relationship	between	sam-
ple	size	and	model	performance	and	stability	as	measured	by	species	
predictive	performance	(R2

f),	environmental	predictor	contributions	
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(R2)	 and	 predictor	 responses.	 Separate	 GF	 models	 were	 fitted	 to	
five	mutually	 exclusive	 subsets	 of	 1,000,	 2,000,	 3,000	 and	5,000	
observations	 and	 four	mutually	 exclusive	 subsets	 of	 6,860	 obser-
vations,	all	of	which	were	randomly	selected	from	the	full	dataset.	
Although	distributional	data	for	inadequately	sampled	species	(e.g.,	
<30	occurrences)	are	generally	considered	as	unsuitable	for	fitting	
individual	species	distribution	models	(SDMs;	Leathwick	et	al.	2006,	
Hewitt	et	al.	2015),	here	all	species	with	more	than	10	observations	
were	included	in	the	analyses.	This	is	because	the	GF	model	consists	
of	a	set	of	Random	Forest	models	weighted	by	their	goodness-	of-	
fit;	as	a	consequence,	any	species	model	with	a	positive	R2

f	 is	able	
to	contribute	 to	 the	combined	estimate	of	 species	 turnover,	while	
those	with	no	predictive	power	are	automatically	discarded.

Based	on	results	from	these	analyses,	the	full	dataset	was	split	
into	two	randomly	selected,	mutually	exclusive	subsets,	each	con-
taining	13,917	observations;	a	final	GF	model	was	fitted	to	the	first	
of	these	subsets,	while	the	second	subset	was	used	only	for	model	
evaluation	as	described	below.	The	species	turnover	functions	pro-
duced	by	the	final	GF	model	were	used	to	create	a	transformed	set	
of	environmental	predictor	layers	(using	the	predict	function;	Pitcher	
et	al.,	2011),	with	values	 in	these	 layers	representing	species	turn-
over	along	the	range	of	each	environmental	predictor.

This	 set	of	 transformed	environmental	 layers	was	 further	ana-
lysed	in	two	ways.	First,	variation	within	the	transformed	environ-
mental	 layers	was	 summarized	using	principal	 component	 analysis	
(PCA;	Pitcher	et	al.,	2011)	to	provide	a	generalized	description	of	re-
lationships	between	species	turnover	and	environment.	Second,	the	
transformed	environmental	dataset	was	classified	 in	 two	stages	 in	
R	(Leathwick	et	al.	2011)	to	produce	a	classification	map	more	suit-
able	for	conservation	planning	purposes.	In	the	first	stage,	the	2.48	
million	data	points	were	clustered	to	form	500	initial	groups	using	
nonhierarchical,	k-	medoids	clustering	with	the	Manhattan	distance	
metric	as	implemented	in	the	function	clara	in	the	R	package	“clus-
ter”	(Maechler,	Rousseeuw,	Struyf,	Hubert,	&	Hornik,	2017).	To	allow	
the	classification	to	be	used	at	varying	levels	of	detail,	relationships	
between	these	500	groups	were	then	summarized	by	agglomerative	
clustering	using	flexible	UPGMA,	the	Manhattan	metric	and	a	value	
for	beta	of	−0.1	(Belbin,	Faith,	&	Milligan,	1992),	as	implemented	in	
the	function	agnes	in	the	R	package	“cluster”	(Maechler	et	al.,	2017).	
Results	from	the	classification	analysis	were	mapped	geographically	
to	allow	inspection	of	outcomes	at	varying	degrees	of	classification	
detail	through	the	range	from	10	to	100	groups	in	steps	of	ten.	We	
describe	results	here	at	a	30-	group	level	of	classification	to	simplify	
presentation,	although	a	higher	level	of	classification	could	be	more	
appropriately	 applied	 in	 conservation	 planning,	 particularly	 for	 in-
shore	waters	where	greater	variation	occurs	at	 finer	spatial	 scales	
(Leathwick	et	al.,	2012;	Snelder	et	al.,	2007;	see	Section	4).

The	ability	of	the	transformed	environmental	layers,	classified	at	
a	30-	group	level,	to	summarize	species	composition	and	turnover	as	
recorded	 in	the	biological	data	was	evaluated	by	spatial	overlay	of	
the	location	of	each	biological	sample	in	the	training	dataset	onto	a	
digital	map	of	the	classification,	tagging	them	with	the	classification	
group	occurring	there.	A	matrix	was	then	constructed	describing	the	

average	species	composition	of	observations	 in	each	classification	
group,	and	this	was	used	to	calculate	extended	biological	intergroup	
distances	using	the	Bray–Curtis	distance	measure	with	the	functions	
distance	 and	 stepacross	 implemented	 in	 the	 R	 package	 “ecodist”	
(Goslee	&	Urban,	2007).	Correlations	were	then	calculated	between	
these	biological	distances	and	 the	equivalent	 intergroup	distances	
(Manhattan	metric)	 from	 the	 classification	of	 the	 transformed	en-
vironmental	 layers;	because	of	the	noise	 inherent	 in	the	 individual	
species	observations,	we	report	these	correlations	for	those	groups	
with	at	least	100	and	200	biological	observations,	that	is,	sufficient	
to	derive	a	reliable	estimate	of	average	species	composition.	Finally,	
we	repeated	this	process	using	the	independent	evaluation	dataset	
of	13,917	observations	to	test	the	utility	of	the	classification	to	sum-
marize	species	turnover	in	a	completely	independent	set	of	samples.

3  | RESULTS

3.1 | Effects of variation in numbers of training 
observations on Gradient Forest models

The	number	of	 species	effectively	modelled	 (i.e.,	with	an	R2
f	 	>	0),	

their	predictive	performance	(R2
f)	and	the	relative	contributions	of	

environmental	predictors	(R2)	were	all	sensitive	to	the	number	of	ob-
servations	used	for	model	fitting.	On	average,	only	202	species	out	
of	 253	were	 effectively	modelled	when	 1,000	 observations	were	
used	for	model	fitting	(Figure	2a),	but	this	number	increased	steadily	
with	 increasing	dataset	 size,	gradually	plateauing	off	 to	a	mean	of	
249	species	in	the	four	models	fitted	with	6,860	observations.

The	mean	predictive	performance	also	 increased	with	 increas-
ing	 sample	 size	but	only	 across	 those	85	 species	 that	were	effec-
tively	modelled	in	all	five	of	the	initial	models	fitted	to	the	smallest	
dataset	 (1,000	 observations)	 and	 in	 all	 subsequent	 models	 (dark	
grey—Figure	2b).	There	was	a	progressive	and	significant	increase	in	
predictive	performance	for	these	species	up	to	about	5,000	obser-
vations	(albeit	these	mean	increases	in	predictive	performance	were	
small,	range:	0.51–0.54);	only	muted	further	increases	occurred	be-
yond	this.	By	contrast,	when	the	mean	predictive	performance	was	
calculated	across	all	species	effectively	modelled	in	each	model	from	
the	different	sized	datasets,	there	was	no	increase	in	predictive	per-
formance	with	 increasing	 dataset	 size	 (light	 grey	 bars—Figure	2b);	
this	 largely	 reflected	 the	 increased	 inclusion	 of	 species	 with	 few	
observations	 as	 the	 size	 of	 the	 training	 dataset	 was	 increased,	
with	 models	 for	 these	 species	 generally	 having	 lower	 predictive	
performance.

Marked	differences	were	also	apparent	in	the	relative	contribu-
tions	 of	 the	 different	 environmental	 predictors	 across	 the	models	
fitted	 with	 datasets	 of	 varying	 size	 (Figure	3).	 In	 GF	models	 with	
low	 sample	 number	 (1,000	 samples),	 bathymetry	 (Bathy)	 was	 the	
most	 influential	 environmental	 predictor	 in	 the	 analysis,	 followed	
closely	by	dissolved	oxygen	at	depth	 (BotOxy),	 tidal	 current	 speed	
(TidalCurr),	 temperature	 at	 depth	 (BotTemp)	 and	 salinity	 at	 depth	
(BotSal;	 Figure	3).	 While	 these	 same	 environmental	 predictors	
continued	 to	 play	 a	 dominant	 role	 as	 the	 number	 of	 observations	
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used	for	model	fitting	increased,	their	order	of	importance	differed	
(Figure	3).	 Although	 Bathy	 showed	 a	 small	 increase	 in	 its	 contri-
bution	 in	GF	models	 fitted	with	 larger	numbers	of	 samples	 (6,860	
observations),	 the	 contributions	of	BotOxy, TidalCurr, BotTemp and 
BotSal,	 each	became	more	 important	 than	depth	with	 larger	 sam-
ple	 sizes.	 Importantly,	 the	 stability	 of	 these	 contributions	 also	 in-
creased	as	sample	size	increased	(i.e.,	standard	errors	of	their	means	
decreased).

3.2 | The final model Gradient Forest model

The	final	GF	model	was	fitted	using	all	13,917	observations	 in	our	
training	dataset,	assuming	that	further	increasing	the	number	of	ob-
servations	was	unlikely	to	yield	any	substantial	increase	in	predictive	
performance;	all	available	species	(n	=	253)	had	an	R2

f	greater	than	
zero	in	this	model.	Species	performance	in	this	model	(R2

f)	averaged	
0.521,	with	a	range	from	0.300	 (Eurypharynx pelecanoides—pelican	
eel)	 to	 0.913	 (Hoplostethus atlanticus—orange	 roughy);	 there	 was	
a	 weak	 but	 positive	 curvilinear	 relationship	 between	 numbers	 of	
positive	observations	for	species	and	their	predictive	performance	
(Figure	4).	The	five	species	with	the	lowest	R2

f	values	(0.3–0.4)	had	
a	mean	of	125	positive	observations,	while	the	five	species	with	the	
highest	R2

f	values	(0.8–0.913)	had	a	mean	of	4,558	positive	observa-
tions	(see	Supporting	information	Table	S1	for	a	full	 list	of	species,	
number	of	positive	observations	and	their	associated	R2

f	values).
Environmental	 transformations	 from	 the	 final	GF	model,	 con-

structed	 using	 the	 split	 information	 contained	 in	 the	 individual	
species	models,	indicate	both	the	overall	influence	of	each	environ-
mental	predictor	and	 the	cumulative	changes	 in	 species	 turnover	
along	its	range	(Figure	5),	while	the	ranges	of	the	fitted	functions	
indicate	the	relative	amounts	of	species	turnover	associated	with	
each	predictor.	Steep	parts	of	the	curve	 indicate	fast	assemblage	
turnover,	and	flatter	parts	of	the	curve	indicate	more	homogenous	

regions	 (Ellis	 et	al.,	 2012;	 Pitcher	 et	al.,	 2012).	 Greatest	 species	
turnover	 was	 associated	 with	 the	 predictor	 describing	 dissolved	
oxygen	concentrations	at	depth	(BotOxy)	(maximum	cumulative	im-
portance:	0.06),	followed	closely	by	salinity	at	depth	(BotSal),	tidal	
current	speed	(TidalCurr)	and	temperature	at	depth	(BotTemp),	with	
maximum	 values	 for	 these	 ranging	 from	 0.04	 to	 0.05	 (Figure	5).	
Turnover	 in	 relation	 to	 other	 environmental	 predictors	was	 gen-
erally	 lower	(ranging	from	0.005	to	0.04).	Inspection	of	the	fitted	
functions	for	these	predictors	indicate	that	most	had	broadly	linear	
relationships	with	species	 turnover,	although	a	number	showed	a	
levelling	off	 in	 species	 turnover	 at	 higher	 values,	 for	 example,	 at	
depths	>1,500	m,	 tidal	 current	 speeds	>1.0	m/s	and	dissolved	or-
ganic	matter	>0.6	mgC	m−2 day−1.

F IGURE  2 Numbers	of	species	effectively	modelled	and	their	predictive	performance	as	a	function	of	training	data	sample	size—separate	
Gradient	Forest	models	were	fitted	using	five	independent	samples	of	1,000	through	5,000	observations	and	four	samples	of	6,860	
independent	observations;	results	from	a	single	final	model	using	13,917	observations	are	included	for	comparison.	(a)	Mean	numbers	of	
fish	species	effectively	modelled	versus	sample	size.	(b)	Mean	predictive	performance	(R2

f)	for	all	demersal	fish	species	included	in	each	GF	
analyses	(light	grey	bars)	and	mean	predictive	performance	(R2

f)	for	fish	species	successfully	fitted	in	all	24	models	(n = 85—dark	grey	bars)	
versus	sample	size.	Error	bars	in	all	plots	show	the	standard	error	of	the	mean
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3.3 | Classification of the transformed 
environmental layers

A	 generalized	 model	 of	 fish	 species	 turnover	 in	 New	 Zealand’s	
Extended	 Continental	 Shelf	 to	 depths	 of	 2,000	m	 was	 produced	
using	GF	(Supporting	information	Figure	S2).	Although	the	classifi-
cation	of	the	transformed	environmental	layers	is	capable	of	being	

viewed	at	widely	varying	levels	of	detail,	for	parsimony,	we	describe	
thirty	 groups	 here	 (Figure	6).	 These	 vary	widely	 not	 only	with	 re-
spect	to	the	transformed	environmental	predictors	 (Figure	7a),	but	
also	in	their	geographic	distributions	and	extents	(Figure	6b,c),	and	
their	physical	and	biological	characteristics,	as	described	by	the	raw	
environmental	predictors	and	species	distribution	data	(Supporting	
information	Table	S2).

Broadly,	 environmental	 differences	 between	 classification	
groups	were	relatively	muted	in	the	deepest	waters	(e.g.,	groups	1,	
2	and	13	and	groups	3–6,	10	left	of	Figure	7a,	top	Figure	6),	but	dif-
ferences	in	temperature,	oxygen	and	salinity	become	increasingly	
important	in	intermediate	and	shallow	depths,	for	example,	groups	
7,	9	and	14	occur	 in	more	saline,	 less	oxygenated	waters	 (centre	
of	both	Figures	6	and	7a)	and	groups	8,	20,	26	and	28–30	occur	
in	 less	 saline,	 more	 oxygenated	 waters	 (centre	 of	 Figure	6	 and	
lower	middle	of	Figure	7a).	Variation	 in	productivity,	 sea	 surface	
temperature	 gradients,	 tidal	 currents,	 suspended	 sediments	 and	
dissolved	organic	matter	were	important	differentiating	factors	in	
shallow,	 inshore	waters	 (lower	Figure	6	and	right	of	Figure	7a).	A	
more	detailed	description	of	the	geographic	distributions,	extents	
and	physical	and	biological	characteristics	of	the	30-	group	classifi-
cation	and	a	larger	scale	map	of	the	classified	environmental	layers	
is	contained	in	the	Supporting	information	Figure	S3.

F IGURE  4  Individual	species	R2	versus	numbers	of	positive	
observations	for	the	final	Gradient	Forest	model	using	13,917	
observations.	The	black	line	represents	a	line	of	best	fit	for	
illustrative	purposes
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3.4 | Model validation

Comparison	 of	 distances	 for	 the	 final	 classification	 of	 the	 trans-
formed	 environmental	 layers,	 with	 an	 equivalent	 set	 of	 biologi-
cal	distances	calculated	using	biological	 samples	 from	our	 training	
dataset,	grouped	after	allocation	 to	 their	corresponding	classifica-
tion	group,	indicates	that	the	classification	is	highly	effective	at	cap-
turing	biological	 turnover	and	 therefore	compositional	differences	
between	the	underlying	biological	samples.	When	calculated	using	
those	 classification	 groups	 represented	by	200	or	more	biological	
samples,	distances	between	pairs	of	groups	in	the	transformed	envi-
ronmental	space	have	a	correlation	of	0.934	with	equivalent	biologi-
cal	distances	between	the	same	pairs	of	groups	(Figure	8a).	Similar	
results	were	obtained	when	this	comparison	was	repeated	using	the	
13,917	trawl	observations	that	were	withheld	from	the	final	model	
fitting	to	allow	independent	evaluation	of	model	performance	(cor-
relation	=	0.919,	Figure	8b).	The	respective	correlations	maintained	

a	 high	 level	 (0.926	 and	0.912,	 respectively)	when	 this	 comparison	
was	repeated	using	all	pairwise	comparisons	between	groups	sup-
ported	by	100	or	more	trawl	observations.

4  | DISCUSSION

Results	from	our	analysis	indicate	that	Gradient	Forest	modelling	is	
capable	of	effectively	combining	irregular	species	distribution	data	
with	spatially	continuous	environmental	data	layers	to	create	a	com-
prehensive	 description	 of	 spatial	 variation	 in	 species	 composition	
and	turnover,	in	our	case	for	demersal	fish	species	in	New	Zealand’s	
Extended	Continental	Shelf	to	depths	of	2,000	m.	In	particular,	the	
environmental	 transforms	 generated	 by	 our	 final	 model	 allowed	
the	creation	of	a	multiscale	spatial	classification	of	marine	environ-
ments	 that,	when	 assessed	 using	 both	 the	 training	 samples	 and	 a	
large	set	of	 independent	samples,	proved	to	be	highly	effective	 in	

F IGURE  6 Dendrogram	describing	
similarities	between	30	demersal	fish	
groups	defined	by	classification	of	
transformed	environmental	layers	for	the	
seas	within	the	New	Zealand	Extended	
Continental	Shelf	to	a	depth	of	2,000	m	
after	transformation	using	a	Gradient	
Forest	model	fitted	to	presence–absence	
data	from	13,917	research	trawls.	See	
text	for	a	broad	description	of	groups	is	
provided
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summarizing	both	variation	in	fish	assemblage	composition	and	spe-
cies	turnover,	as	indicated	by	the	high	correlation	between	environ-
mental	and	compositional	distances	between	pairs	of	classification	
groups.	In	broad	terms,	this	result	is	consistent	with	other	analyses	
using	 Gradient	 Forests	 in	 marine	 environments	 (Compton	 et	al.	
2013;	Thomson	et	al.	 2014),	 although	we	note	 that	most	of	 these	
were	carried	out	over	more	limited	geographic	extents	and	in	shal-
lower	waters.

Spatial	patterns	of	turnover	in	New	Zealand’s	demersal	fish	spe-
cies	described	by	our	30-	group	classification	were	strongly	related	
to	latitudinal	changes	in	water	mass	and	their	associated	frontal	fea-
tures	 (STF,	TF,	SAF,	Figure	1b;	Foster,	Givens,	Dornan,	Dunstan,	&	
Darnell,	2013;	Francis	et	al.,	2002;	Hill,	Lucieer,	Barrett,	Anderson,	
&	 Williams,	 2014;	 Hill	 et	al.,	 2017).	 Although	 environmental	 dif-
ferences	 between	 classification	 groups	 were	 relatively	 muted	 in	
the	 deepest	 waters,	 differences	 in	 temperature,	 oxygen	 and	 sa-
linity	 become	 increasingly	 important	 in	 intermediate	 and	 shallow	

depths.	Variation	in	productivity,	sea	surface	temperature	gradients,	
tidal	 currents,	 suspended	 sediments	 and	 dissolved	 organic	matter	
were	 important	 differentiating	 factors	 in	 shallow,	 inshore	 waters,	
where	latitudinal	differences	in	environment	are	in	turn	reflected	in	
marked	 differences	 in	 fish	 species	 assemblages.	 These	 results	 are	
broadly	 consistent	with	 those	 from	other	New	Zealand	 studies	 at	
various	 spatial	 scales	 ranging	 from	 regional	 to	 national,	 for	 exam-
ple,	in	Francis	et	al.	(2002),	Bull	et	al.	(2001),	Beentjes	et	al.	(2002),	
Kendrick	and	Francis	(2002),	Snelder	et	al.	(2007).	Using	correspon-
dence	and	cluster	analysis,	these	studies	identified	depth,	and	to	a	
lesser	extent,	water	temperature,	 latitude	(as	a	proxy	for	tempera-
ture	and	water	mass)	and	major	oceanographic	features	as	import-
ant	 variables	 structuring	 variation	 in	 species	 composition.	 While	
superficially	similar	to	the	earlier	classification	of	the	oceans	around	
New	Zealand	 by	 Snelder	 et	al.	 (2007),	 our	GF	 classification	 incor-
porates	important	advances	through	use	of	a	more	comprehensive	
set	of	ocean	climate	predictors	and	an	evidence-	based	approach	to	

F IGURE  7 Distributions	in	PCA	and	geographic	space	of	30	groups	defined	by	classification	of	transformed	environmental	layers	for	the	
seas	within	the	New	Zealand	Extended	Continental	Shelf	(dashed	line)	to	a	depth	of	2,000	m;	transformations	were	derived	from	a	Gradient	
Forest	model	fitted	to	13,917	research	trawls	(Supporting	information	Figure	S2).	Colours	are	based	on	the	first	three	axes	of	a	PCA	analysis	
applied	to	the	group	means	for	each	of	the	transformed	predictor	variables,	so	that	similarities/differences	in	colour	correspond	broadly	
to	intergroup	similarities/differences	with	respect	to	the	transformed	environmental	variables.	(a)	Distributions	of	groups	in	PCA	space,	
with	vectors	indicating	correlations	with	the	eight	most	important	environmental	predictors	and	symbol/font	size	indicating	the	relative	
size	of	the	group	area;	(b)	geographic	distributions	of	groups	across	New	Zealand’s	Extended	Continental	Shelf	(dashed	line);	(c)	geographic	
distribution	of	groups	at	finer	scales,	centred	on	Cook	Strait	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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transformation	of	predictors	prior	to	classification.	This	results	in	a	
classification	that	more	evenly	divides	parallel	variations	in	species	
composition,	making	it	more	strongly	suited	for	systematic	conser-
vation	planning	purposes.

Although	the	species	distribution	data	we	used	mostly	provided	
adequate	 spatial	 coverage	of	 our	 study	 area,	 several	 large,	 outlying	
sections	had	few	or	no	trawl	stations,	notably	the	submarine	ridges	
and	steep	slopes	around	the	margins	of	the	Campbell	and	Bounty	pla-
teaus.	Predictions	of	fish	richness	for	these	areas,	produced	during	a	
previous	study	using	a	subset	of	the	data	used	here,	had	wider	confi-
dence	intervals	than	more	intensively	sampled	areas	(Leathwick	et	al.,	
2006),	 indicating	that	further	limited	sampling	would	most	likely	im-
prove	confidence	in	our	results	in	these	locations.	A	measure	of	un-
certainty	of	species	turnover	could	be	calculated	(similarly	to	Thomson	
et	al.,	2014)	although	this	does	not	readily	expand	to	assessing	con-
fidence	 in	 assemblage	 classification.	 Alternatively,	 other	 modelling	
methods	such	as	Regions	of	Common	Profile	(RCP)	could	be	used	to	
estimate	 confidence	 of	 assemblage	 classification	 and	which	 can	 be	
validated	spatially	using	the	probabilities	of	occurrence	of	the	individ-
ual	species	of	the	training	samples	(Foster	et	al.,	2013;	Hill	et	al.,	2017).

4.1 | The effect of variation in numbers of training 
observations on Gradient Forest models

As	a	tool,	GF	appears	well	suited	to	the	analysis	of	the	often	sparse	
or	 patchily	 distributed	data	 that	 are	 typically	 available	 in	marine	
environments.	Although	a	GF	model	could	accommodate	all	the	ca.	
27,800	observations	available	to	us,	use	of	randomly	selected	in-
dependent	data	subsets	indicated	that	both	the	number	of	species	
effectively	modelled	and	their	mean	predictive	performance	(R2

f)	
stabilized	when	using	~25%	of	the	total	available	dataset	(ca.	7,000	
observations).	Although	the	mean	species	predictive	performance	
did	 not	 vary	 greatly	 with	 sample	 number,	 small	 but	 consistent	

increases	 occurred	 for	 individual	 species	 R2
f	 as	 the	 size	 of	 the	

training	 dataset	 was	 increased.	We	 interpret	 this	 result	 as	most	
likely	 indicating	 that	 species	 that	 have	 good	 observational	 sup-
port	 in	 the	models	 fitted	 to	 small	datasets,	 show	 further	predic-
tive	 refinement	as	more	observations	are	added;	however,	mean	
predictive	performance	across	all	species	models	fitted	when	using	
larger	datasets	showed	little	positive	trend	because	improvements	
in	well-	fitted	species	were	offset	by	 the	 lower	predictive	perfor-
mance	for	rarer	species	that	came	into	play	as	the	size	of	the	train-
ing	dataset	increased.

A	 common	 set	 of	 environmental	 predictors	 (Bathy, BotOxy, 
TidalCurr, BotTemp and BotSal)	 played	 a	 dominant	 role	 in	 models	
fitted	with	widely	varying	numbers	of	observations,	although	with	
some	resorting	of	their	order	of	importance	with	increasing	sample	
size	 (Bosch,	 Tyberghein,	Deneudt,	Hernandez,	&	de	Clerck,	 2017;	
Pitcher	et	al.,	2012).	Those	predictors	showing	the	largest	changes	
in	 importance	 with	 increasing	 sample	 size	 were	 predictors	 that	
were	largely	invariant	except	in	a	few	specific	locations,	for	exam-
ple,	dissolved	organic	matter	(Disorgm)	which	varies	only	in	coastal	
waters,	 and	 sea	 surface	 temperature	 gradient	 (SstGrad)	 which	
shows	locally	high	values	in	areas	of	ocean	mixing	and	along	sharply	 
defined	current	boundaries,	but	often	with	little	variation	elsewhere.	
With	increasing	sample	number,	these	locally	divergent	sites	were	
better	represented	in	the	model,	and	their	ability	to	influence	model	
outcomes	was	increased.	Therefore,	we	recommend	an	explicit	ex-
amination	of	 the	 relative	 influence	of	predictor	 variables	 across	 a	
range	of	 sample	 sizes,	 as	 an	 additional	 consideration	when	deter-
mining	the	most	appropriate	split	of	data	into	training	and	validation	
subsets	to	ensure	representation	of	the	full	environmental	gradient	
of	 the	study	area.	Here,	ca.	7,000	observations	were	adequate	 to	
predict	demersal	fish	turnover	across	a	2,461,926	km2	study	area	al-
though	this	is	likely	to	differ	for	other	geographic	locations	and	taxa.

An	additional	consideration	when	analysing	datasets	accumu-
lated	for	purposes	other	than	biodiversity	description	is	GF’s	more	
relaxed	 assumptions	 about	 species	 absence	 compared	 to	GDM.	
Whereas	the	latter	was	primarily	designed	to	work	with	data	list-
ing	all	species	present	at	each	of	some	set	of	sample	sites	(Ferrier	
et	al.,	 2007),	 the	 individual	 classification	 tree	 regressions	 fitted	
in	 a	GF	model	make	 the	 less	 stringent	 assumption	 that	nonpos-
itive	occurrences	for	each	species	can	be	treated	as	an	assumed	
absence	(Pitcher	et	al.,	2011).	While	this	is	less	ideal	than	the	use	
of	true	presence–absence	data,	models	fitted	under	this	assump-
tion	 can	 still	 produce	 reasonably	 robust	 predictions	 of	 species	
distributions,	particularly	when	the	assumed	absences	are	drawn	
from	a	broader	set	of	samples	for	the	same	biotic	group	(Elith	&	
Leathwick,	2009;	Elith	et	al.,	2006).	 In	the	GF	models	presented	
here,	true	presence/absences	were	used.

4.2 | Critical appraisal of the “final” Gradient 
Forest model

Although	 our	 repeated	 analyses	 with	 subsamples	 of	 the	 training	
dataset	indicated	minimal	changes	in	model	stability	with	expansion	

F IGURE  8 Extended	biological	distances	of	samples	grouped	
according	to	Gradient	Forest	model	classification	with	more	than	
200	observations	against	distance	in	transformed	environmental	
space	of	samples	(a)	training	data	(used	in	the	full	Gradient	Forest	
model)	and	(b)	independent	evaluation	data
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of	the	data	beyond	ca.	7,000	samples,	we	adopted	a	relatively	con-
servative	stance,	fitting	our	“final”	model	with	13,917	observations	
or	 half	 of	 the	 available	 data;	 the	other	 half	we	used	 solely	 for	 in-
dependent	 evaluation	 of	 our	 “final”	 model.	We	 could	 have	 fitted	
models	to	a	higher	proportion	of	the	total	number	of	observations	(a	
typical	ratio	is	75:25),	but	we	had	the	luxury	of	a	very	large	dataset;	
consideration	should	be	given	to	using	a	higher	fraction	of	the	sam-
ple	data	when	using	 smaller	datasets.	The	253	 individual	Random	
Forest	models	 in	this	 final	GF	model	had	relatively	high	predictive	
performance	values	(mean	R2

f	of	0.521	and	range	of	0.3–0.913),	and	
all	showed	at	least	some	predictive	ability.	These	results	are	unusual	
for	marine	species	distribution	studies;	in	a	model	comparison	study,	
Elith	et	al.	(2006)	found	that	only	half	of	the	marine	species	included	
in	the	study	had	useable	models	and	few	had	high	predictive	power	
even	 for	 tree	 ensemble	 models	 (BRT	 and	 MAXENT),	 which	 con-
sistently	outperformed	more	established	 regression	methods	 (e.g.,	
GLM,	GAM	and	MARS).

There	was	a	weak	curvilinear	relationship	between	numbers	of	
positive	observations	for	species	and	their	predictive	performance,	
that	is,	more	frequently	occurring	species	had	better	fitting	models,	
although	those	with	the	lowest	frequencies	still	had	R2

f	values	>0.3.	
Interestingly,	there	was	a	broad	range	of	R2

f	(0.41–0.86)	for	species	
with	 moderate–high	 observations	 (1,000–4,000),	 reflecting	 per-
haps	the	cosmopolitan	distribution	of	some	species	(e.g.,	Bassanago 
spp.,	low	R2

f)	and	the	more	aggregated	nature	of	others	(e.g.,	orange	
roughy,	 high	 R2

f;	 see	 Supporting	 information	 Table	 S1).	 Evidence	
from	 other	 studies	 indicates	 that	 species	 with	 limited	 geographic	
range	and	environmental	 tolerances	are	generally	better	modelled	
than	those	with	greater	ranges	(Guisan	et	al.,	2013;	Morán-	Ordóñez	
et	al.,	2017;	Thomson	et	al.,	2014)	because	widespread	species	are	
less	likely	to	have	sharp	easily	identifiable	environmental	thresholds	
that	clearly	delineate	their	most	suitable	environmental	conditions	
(Morán-	Ordóñez	 et	al.,	 2017).	 Reduced	 model	 fit	 could	 be	 influ-
enced	by	historical	events,	human	activities,	population	and	species	
dynamics	(e.g.,	recruitment,	competition,	predation	and	facilitation)	
(Elith	&	Leathwick,	2009)	and	temporal	environmental	patterns	(e.g.,	
diurnal,	tidal	and	seasonal	cycles	and	fluctuating	weather	patterns)	
not	accounted	for	here	(Compton	et	al.,	2013;	Pitcher	et	al.,	2012).	
The	lack	of	consideration	of	these	factors	in	a	quantitative	manner	
does	not	invalidate	the	use	of	the	GF	model	for	management,	but	it	
should	be	noted	that	the	representation	of	assemblages	shown	here	
is	a	 (spatially	and	 temporally)	 smoothed	representation	of	 the	 raw	
data	and	 further	work	on	 integrating	more	explicit	predictors	 into	
GF	modelling	would	be	of	interest	(Compton	et	al.,	2013;	Thomson	
et	al.,	2014).

In	general,	there	was	a	linear	relationship	between	species	turn-
over	 along	 the	 individual	 environmental	 gradients,	 although	 there	
was	a	plateauing	in	turnover	in	parts	of	the	range	of	some	variables,	
for	example,	the	decrease	 in	species	turnover	at	depths	>1,500	m,	
with	 species	 composition	 showing	 minimal	 further	 change	 with	
further	 increases	 in	 depth.	A	 lack	 of	 steep	 slopes	 in	 the	 turnover	
functions	indicates	that	species	distributions	generally	overlap	to	a	
high	degree,	which	is	consistent	with	findings	from	other	studies	of	

shelf	fish	assemblages	both	in	New	Zealand	and	elsewhere	(Beentjes	
et	al.,	 2002;	 Bianchi,	 1991;	 Farina,	 Freire,	 &	 González-	Gurriarán,	
1997;	Fujita,	Inada,	&	Ishito,	1995).

4.3 | Usefulness of Gradient Forest models for 
conservation planning

In	 our	 view,	 the	 strong	 discrimination	 of	 fish	 distribution	 pat-
terns	across	New	Zealand’s	Extended	Continental	Shelf	shown	by	
our	 classification	 of	 the	 transformed	 environmental	 layers	 pro-
duced	by	our	“final”	GF	analysis	makes	it	well	suited	as	a	primary	
input	 to	 systematic	 spatial	 conservation	planning	 analyses	 (e.g.,	
using	 spatial	 planning	 software	 such	 as	 Zonation	 (Lehtomäki	 &	
Moilanen,	 2013)	 or	Marxan	 (Ball,	 Possingham,	&	Watts,	 2009)).	
In	addition,	significant	gains	can	be	expected	if	such	analyses	are	
implemented	using	prioritization	 tools	 that,	 rather	 than	 treating	
all	 groups	as	equally	different	 from	each	other,	 take	account	of	
their	 varying	 intergroup	 similarities,	 allowing	greater	priority	 to	
be	given	to	more	distinctive	species	assemblages	as	can	be	imple-
mented,	 for	example,	 in	Zonation	 (Leathwick,	Moilanen,	Ferrier,	
and	Julian	2010).

Given	the	hierarchical	nature	of	the	classification,	consideration	
will	be	required	as	to	what	constitutes	the	most	appropriate	level	
of	 classification	 detail	 for	 conservation	 planning	 purposes.	Here,	
we	have	chosen	to	describe	the	classification	at	a	30-	group	 level	
to	 facilitate	 communication;	 however,	 our	 testing	 of	 correlations	
between	environmental	and	biological	distances	at	higher	levels	of	
classification	 detail	 (up	 to	 100	 groups)	 indicate	 that	 these	 levels	
can	 provide	 even	 greater	 discrimination	 of	 compositional	 differ-
ences	and	species	turnover	than	those	presented	here.	In	addition,	
using	a	higher	number	of	classification	groups	is	likely	to	be	more	
appropriate	 for	 a	 regional	 scale	 analysis,	 particularly	 for	 inshore	
areas	where	there	is	a	greater	heterogeneity	in	environmental	con-
ditions.	 Alternatively,	 regional	 patterns	 may	 be	 better	 described	
by	analyses	using	 regional	 subsets	of	 the	data,	 particularly	 if	 the	
mix	of	factors	controlling	species	turnover	varies	region	by	region.	
Results	presented	here	would	be	of	use	for	a	gap	analysis	of	assem-
blages	currently	protected	in	MPAs	(Leaper	et	al.,	2011)	and	would	
allow	evidence-	based	targeting	of	underrepresented	assemblages	
for	further	sampling	and/or	protection	(Ferrier	et	al.,	2007;	Pitcher	
et	al.,	2007).

Finally,	consideration	will	be	required	of	which	other	taxonomic	
groups	 should	 be	 included	 in	 any	 operational	 conservation	 plan-
ning;	for	example,	models	describing	the	distributions	of	macroal-
gae	 and	benthic	 invertebrates	 could	be	used	 in	 conjunction	with	
our	model	for	demersal	fish	(Thomson	et	al.,	2014).	Data	for	these	
different	taxonomic	groups	could	be	analysed	using	a	prioritization	
analysis	with	separate	spatial	 layers	describing	each	classification	
of	interest	(Geange	et	al.,	2017).	Alternatively,	GF	modelling	allows	
the	combination	of	results	from	different	datasets	into	a	single	uni-
fied	 classification	 through	 the	 averaging	 of	 the	 species	 turnover	
functions	 across	 taxonomic	 groups	 (see	 example	 in	 Pitcher	 et	al.	
2012),	an	approach	that	GF	facilitates	through	its	ability	to	handle	
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differences	in	survey	methods,	sampling	devices	and/or	measure-
ment	scales	 (counts,	weights,	abundance	and	presence/absences;	
Ellis	et	al.,	2012).	However,	because	 this	 type	of	 analysis	has	not	
been	undertaken	to	our	knowledge	using	such	widely	differing	tax-
onomic	groups,	we	are	uncertain	as	to	whether	this	would	provide	
an	adequate	spatial	representation	of	all	the	species	of	interest	(C.	
R.	Pitcher,	pers.	comm.	2018)	and	suggest	this	as	a	topic	for	future	
investigation.

5  | CONCLUSION

Gradient	Forest	modelling	provided	an	effective	way	to	combine	
research	trawl	records	with	a	set	of	relevant	environmental	data	
layers	 to	 create	 a	 generalized	model	 of	 demersal	 fish	 composi-
tional	turnover	across	a	very	large	spatial	extent	(New	Zealand’s	
Extended	Continental	Shelf	to	depths	of	2,000	m).	However,	the	
recent	 development	 of	 Gradient	 Forest	 modelling	 means	 that	
some	 aspects	 of	 using	 its	 outputs	 require	 further	 investigation.	
Of	 note	 is	 a	 lack	 in	 understanding	 of	 changes	 in	 environmental	
predictor	importance	with	varying	scale	(geographic	and	richness	
of	 sampling)	 and	best	practice	 for	use	 in	 conservation	planning,	
although	 further	 work	 is	 currently	 underway	 to	 further	 inform	
these	areas.	Although	an	extensive	set	of	sampling	locations	was	
available	for	the	training	and	validation	of	the	model,	results	here	
suggest	that	model	performance	stabilized	when	using	a	relatively	
low	number	of	 samples	 (~5,000–7,000).	 This	 provides	 a	 key	 ad-
vantage	when	modelling	marine	species	where	sampling	is	often	
irregularly	distributed,	opportunistic	 (presence	only)	and	expen-
sive.	The	resulting	spatial	description	of	species	composition	and	
turnover	in	New	Zealand	demersal	fish	assemblages	will	be	highly	
valuable	for	underpinning	evidence-	based	conservation	planning.
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