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Abstract
Aim: Producing quantitative descriptions of large-scale biodiversity patterns is chal-
lenging, particularly where biological sampling is sparse or inadequate. This issue is 
particularly problematic in marine environments, where sampling is both difficult and 
expensive, often resulting in patchy and/or uneven coverage. Here, we evaluate the 
ability of Gradient Forest (GF) modelling to describe broad-scale marine biodiversity 
patterns, using a large dataset that also provided opportunity to investigate the ef-
fects of sample size on model stability.
Location: New Zealand’s Extended Continental Shelf to depths of 2,000 m.
Methods: GF models were used to analyse and predict spatial patterns of demersal 
fish species turnover (beta diversity) using an extensive demersal fish dataset 
(>27,000 research trawls) and high-resolution environmental data layers (1 km2 grid 
resolution). GF models were fitted using various sized, mutually exclusive subsets of 
the demersal fish data to explore the effect of variation in numbers of training obser-
vations on model performance and stability. A final GF model using 13,917 samples 
was used to transform the environmental layers, which were then classified to pro-
duce 30 spatial groups; the ability of these groups to identify fish samples with simi-
lar composition was evaluated using independent sample data.
Results: Model fitting using varying sized subsets of the data indicated only minimal 
changes in model outcomes when using >7,000 observations. A multiscale spatial 
classification of marine environments created using results from a final GF model fit-
ted using ~14,000 samples was highly effective at summarizing spatial variation in 
both fish assemblage composition and species turnover.
Main conclusions: The hierarchical nature of the classification supports its use at 
varying levels of classification detail, which is advantageous for conservation plan-
ning at differing spatial scales. This approach also facilitates the incorporation of in-
formation on intergroup similarities into conservation planning, allowing greater 
protection of distinctive groups likely to support unusual assemblages of species.
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1  | INTRODUC TION

Sound conservation planning and management at the ecosystem 
level depend heavily on the reliable characterization of biodiver-
sity patterns, often across large regions (Ferrier, Manion, Elith, & 
Richardson, 2007; Margules & Pressey, 2000). Ideally, this charac-
terization is based on quantitative information describing different 
components of diversity, including not only the distributions of indi-
vidual species and/or communities, but also of emergent properties 
such as alpha diversity (local richness) and beta diversity (species 
turnover along spatial or environmental gradients; Harrison, Ross, 
& Lawton, 1992; Legendre, Borcard, & Peres-Neto, 2005; Nekola & 
White, 2002; Shmida & Wilson, 1985). These latter two components 
are particularly valuable for spatial planning; while the total number 
of species (alpha diversity) contributes to the relative importance 
of an area for conservation, it is the rate of species turnover be-
tween sites that largely determines the optimal spatial arrangement 
of conservation areas (Arponen, Moilanen, & Ferrier, 2008; Bush, 
Harwood, Hoskins, Mokany, & Ferrier, 2016; McKnight et al., 2007; 
Nekola & White, 1999, 2002; Socolar, Gilroy, Kunin, & Edwards, 
2016).

Unfortunately, producing quantitative descriptions of large-
scale biodiversity patterns is challenging, particularly where bio-
logical sampling is sparse or inadequate (Elith et al., 2006; Leaper 
et al., 2011; Morán-Ordóñez, Lahoz-Monfort, Elith, & Wintle, 2017). 
It is often particularly problematic in marine environments, where 
sampling is both difficult and expensive, resulting in patchy and/or 
irregular coverage (Leathwick, Elith, Francis, Hastie, & Taylor, 2006; 
Thomson et al., 2014). Spatial classifications of environments are 
one tool commonly used to overcome these difficulties, particularly 
at larger spatial scales (Snelder et al. 2007). Such classifications typi-
cally use more readily available environmental data to group together 
sites likely to have similar biological character. These classifications 
can be used to identify areas that are likely to respond in similar 
ways to human activity or management actions (Bailey, 1983), to de-
fine standards for the management of human impacts (Omernik & 
Bailey, 1997), to stratify sites for surveying and monitoring programs 
(Hawkins et al., 2000) or to identify priority areas for conservation 
management (Leathwick et al., 2012). Earlier classification methods 
relied largely on subjective, expert decision-making (e.g., thematic or 
hierarchical classifications, Roff, Taylor, and Laughren (2003)), while 
a number of recent classifications use quantitative approaches, 
sometimes with manually imposed rules (Snelder and Biggs, 2002) 
or, alternatively, use numerical classification procedures to group 
sites (Belbin, 1993). In addition, qualitative classifications often lack 
information on within-class variation in the community composition 
(Leaper et al., 2011), instead relying on subjective alignment with 
coarse categorical habitat features, that is, seagrass beds, rocky reef, 
sand and mud (Mumby et al., 2008). Regardless, subjective decisions 
are required in the choice of environmental factors, how they should 
be weighted and whether transformations should be applied to in-
crease their ability to distinguish biodiversity patterns (Leathwick 
et al., 2011).

One approach to overcoming this difficulty is to combine con-
tinuous environmental data with biological samples (Anderson et al., 
2016; Dunstan, Althaus, Williams, & Bax, 2012), using analytical 
tools that quantitatively assess the role that different environmen-
tal factors play in influencing biodiversity patterns (Ferrier et al., 
2004; Pitcher et al., 2012). Results are then used to control the se-
lection, weighting and transformation of environmental predictors 
to be classified, increasing the ability of the classification groups to 
represent spatial variation in biodiversity character. Generalized dis-
similarity modelling (GDM—Ferrier et al., 2007; Ferrier, 2002) was 
one of the first techniques to explicitly model relationships between 
environment and species turnover. It uses a generalized linear mod-
elling framework to identify transformations of the environmental 
predictors that maximize their ability to predict biological distances 
(Bray–Curtis similarity) between sample sites. The fitted transfor-
mations can then be used to predict community turnover across the 
entire study region, including within areas lacking biological samples 
(Ferrier et al., 2007).

A second technique, Gradient Forest (GF; Pitcher, Ellis, and Smith, 
2011) is a more recent development that produces similar outputs to 
GDM, but using a fundamentally different approach (Leaper et al., 
2011). While GDM fits a single regression model that describes the 
relationship between environment and species turnover, a GF model 
consists of an aggregation of Random Forest (RF; Breiman, 2001) 
models, each of which describes the environmental relationships of 
an individual species. Once these models have been fitted, the infor-
mation that they contain about the relative importance of different 
predictors, and where changes in the presence (or abundance) of 
the modelled species occur along each of their ranges, is aggregated 
and used to build transforms that maximize for each predictor their 
correspondence with species turnover (Pitcher et al., 2011). These 
transforms closely resemble those produced by GDM and can be 
used in similar ways, for example, these values can be calculated 
across extensive geographic areas, with the transformed predictors 
then classified to define spatial groups that capture variation in spe-
cies composition and turnover, making them potentially well suited 
as input to conservation planning analyses. The more incremental 
approach to model fitting in GF makes it particularly well suited to 
the analysis of large datasets, whose size can be limiting in GDM.

Here, we evaluate the ability of GF to describe broad-scale bio-
diversity patterns for conservation planning. The analysis combines 
high-resolution environmental data (1 km2 grid resolution) across 
New Zealand’s Extended Continental Shelf to depths of 2,000 m 
and distributional data for 253 demersal fish species from c. 27,000 
research trawls. We begin by exploring relationships between the 
size of the training dataset and model stability, using results to iden-
tify a conservatively generous training dataset with which to fit a 
final model. Results from this final model are used to transform the 
environmental layers to maximize their correspondence with species 
turnover, with numerical classification of these transformed layers 
then used to define spatial groups having similar species composi-
tion. Finally, we assess the ability of this classification to represent 
variation in both species composition and turnover, crucial “success” 
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factors if the classification is to have utility for systematic broad-
scale conservation planning.

2  | METHODS

2.1 | Study area

The study area consisted of those parts of the New Zealand 
Extended Continental Shelf (Figure 1) with depths in the range 
0–2,000 m; including deeper regions would have been desir-
able, but fish samples from sites deeper than 2,000 m are limited 
(Figure 1a). New Zealand has a long and narrow land mass extend-
ing across a wide latitudinal range (≈35–48°S), resulting in a di-
verse range of environmental conditions in its surrounding waters 
(Bradford-Grieve, Lewis, & Stanton, 1991; Leathwick et al., 2006). 
The dominant oceanographic feature is the Subtropical Front 
(STF), a highly productive zone of mixing between high salinity, 
nutrient-poor, warm, northern waters and low salinity, nutrient-
rich, cold, southern waters (Figure 1b). Currents flow in an east-
ward direction along the STF but are deflected southwards around 
the lower South Island, returning north along the east coast of the 
South Island to resume their eastwards flow along the Chatham 
Rise (Figure 1b; Bradford-Grieve et al., 2006). Several gyres occur 
within this mixing zone, mostly to the east of the North Island 

(Figure 1b; Bradford-Grieve et al., 2006). Although the waters 
surrounding New Zealand do not have large areas of continental 
shelf, extensive submarine plateaus are located to the east, south 
and west: the Chatham Rise to the east (Leathwick et al., 2006) 
(Figure 1a); the Bounty Plateau, Pukaki Rise and Campbell Plateau 
and Rise to the south and south-east (Figure 1a); and the Lord 
Howe Rise and Challenger Plateau to the west (Figure 1a). Deeper 
abyssal waters occur in the south-west of the study area along the 
Puysegur Trench and in the north-east along the Kermadec Trench 
(Figure 1a).

2.2 | Biological data

Fish are the most abundant and diverse group of vertebrate animals 
on earth and play a key role in structuring marine ecosystems; inter-
actions within and between fish species and their physical environ-
ment are important in defining community structure, diversity and 
stability in marine ecosystems (Francis, Hurst, McArdle, Bagley, & 
Anderson, 2002).

Demersal fish abundance data used for this analysis were col-
lected during research trawl surveys conducted between 1979 
and 2005; the majority of these data are available from the NIWA 
Environmental Information Browser (https://ei.niwa.co.nz/; 
Figure 1). To minimize the effects of variation in individual species 

F IGURE  1 Maps of the study region (New Zealand Extended Continental Shelf, black dashed line) showing: (a) bathymetry, sample 
locations (grey dots) and feature names used in the text; (b) approximate positions and direction of travel of the Tasman Front (TF and its 
associated currents: the east Auckland Current (EAUC) and East Cape Current (ECC) in the north-east, and the Westland Current (WC) and 
D’Urville Current (DC) in the West of the study area), Subtropical Front (STF) and Subantarctic Front (SAF and the Antarctic Circumpolar 
Current (ACC)). Adapted from Carter (2001) [Colour figure can be viewed at wileyonlinelibrary.com]

https://ei.niwa.co.nz/
www.wileyonlinelibrary.com
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catchability among surveys, especially given the sometimes incom-
plete documentation of trawl parameters, species catch information 
was reduced to a presence/absence level (Hewitt, Wang, Francis, 
Lundquist, & Duffy, 2015; Leathwick et al., 2006). The final data-
set included observations of 253 species at 27,440 sample locations 
(Figure 1a). Some geographic bias is evident in the distribution of 
samples, with many trawls made at 43–45°S, reflecting the high 
priority given to surveying commercially important species, that is, 
hoki (Macruronus novaezelandiae), orange roughy (Hoplostethus atlan-
ticus) and oreos (mainly Allocyttus niger and Pseudocyttus maculatus) 
(Francis et al., 2002) on the Challenger Plateau and Chatham Rise. 
In some areas, difficult terrain resulted in a paucity of tows, for ex-
ample, the narrow and topographically complex continental shelf 
off Fiordland (on the West coast at 45–46°S) and the Kermadec 
and Colville Ridges (Figure 1a; Francis et al., 2002). This sampling 
bias was not specifically addressed here as it was assumed that the 
substantial number of observations across a broad range of environ-
mental gradients provided adequate coverage for species distribu-
tion modelling.

2.3 | Environmental data

To capture variability in the marine environments surrounding New 
Zealand, eighteen high-resolution gridded environmental predictors, 
mostly at a native resolution of 250 m, were collated and imported 
into ArcGIS (version 10.4). These variables were selected based on 
their known influence on demersal fish settlement, growth, sur-
vival and distribution (Beentjes, Bull, Hurst, & Bagley, 2002; Bull, 
Livingston, Hurst, & Bagley, 2001; Francis et al., 2002; Kendrick & 
Francis, 2002; Leathwick et al., 2006, 2012) and consequent likely 
influence on fish species assemblage composition and turnover 
(Table 1). For example, several physicochemical variables are likely 
to be critical physical determinants of habitat suitability for most 
fish species, including annual averages of seafloor temperature 
(BotTemp), salinity (BotSal), nitrate (BotNi), oxygen (BotOxy) and 
silicate (BotSil); benthic sediment disturbance (Beddist), which is an 
important feature in shallower depths (<200 m); ocean productiv-
ity, as described by vertically generalized production model (VGPM), 
with complementary information on surface water productivity pro-
vided by a spatial summary of gradients in sea surface temperature 
(SstGrad); other variables that act as surrogates for a range of cor-
related biophysical variables, for example, Depth (Bathy), seafloor 
roughness (Roughness) and sediment type (Sed). Although most of the 
chosen ocean climate variables (e.g., seafloor temperature, BotTemp) 
were formulated as mean annual statistics, one variable described 
the annual range in temperature (e.g., the annual temperature range, 
SeasTDiff), showing greatest variability in inshore waters.

Several predictors showed strong collinearity, for example, be-
tween depth and seafloor temperature, salinity and oxygen sat-
uration (Ellis, Smith, & Pitcher, 2012). Although GF modelling is 
reasonably robust to correlated variables due to the incorporation 
of a conditional permutation approach in the calculation of predic-
tor importance (for further information see Ellis et al. (2012)), the 

use of highly correlated variables generally provides only minimal 
improvement in prediction accuracy and complicates interpretation 
of model outcomes. Consequently, three of the most highly cor-
related variables were excluded: dynamic oceanography, oxygen 
saturation at depth and apparent oxygen utilization (Table 1). The 
remaining 15 variables were retained for all models, ignoring correla-
tions, as all were thought to likely be of ecophysiological importance 
(see Supporting information Figure S1 for correlations of the final 
variables included in the model and Table 1 for description of vari-
ables). Prior to model fitting, values for each environmental variable 
were derived for all trawl locations by overlaying these onto each 
of the environmental predictor layers using the raster package in R 
(Hijmans & van Etten, 2012).

2.4 | Model fitting and evaluation

GF modelling has two components: the production of a random for-
est model (Breiman, 2001) for each of the input species (using an ex-
tended modelling procedure in R package “extendedForest”; Liaw & 
Wiener, 2002) and the collation of all the individual split points from 
these models to calculate species turnover along each environmen-
tal gradient (using the R package “gradientForest”; Ellis et al., 2012). 
All analyses were undertaken in the statistical computing software 
R (R Core Team, 2013).

Random Forest models (Breiman, 2001) fit an ensemble of re-
gression (abundance data) or classification tree (presence/absence 
data) models describing the relationship between the distribution 
of an individual species and some set of environmental variables 
(Ellis et al., 2012). The predictive power of the individual Random 
Forest models is evaluated using a measure of R2

f for each species f 
(the proportion of out-of-bag variance explained; Ellis et al., 2012). 
The importance of each predictor variable (measured as R2) in the 
model is assessed by quantifying the degradation in performance 
when each predictor variable is randomly permuted (Pitcher et al., 
2012) using a conditional approach which accounts for collinear-
ity between predictor variables (Ellis et al., 2012). GF aggregates 
the values of the tree splits from the Random Forest models for all 
species’ models with positive fits (R2

f  > 0) to develop empirical dis-
tributions that represent species turnover along each environmen-
tal gradient (Compton, Bowden, Pitcher, Hewitt, & Ellis, 2013; Ellis 
et al., 2012; Pitcher et al., 2012). The turnover function is measured 
in dimensionless R2 units where species with highly predictive ran-
dom forest models (high R2

f values) have greater influence on the 
turnover functions than those with low predictive power (lower 
R2

f). The shapes of these turnover curves describe the rate of com-
positional change along each environmental predictor; steep parts 
of the curve indicate fast assemblage turnover, and flatter parts 
of the curve indicate more homogenous regions (Ellis et al., 2012; 
Pitcher et al., 2012).

In an initial set of analyses, we fitted GF models using subsam-
ples of the full dataset to investigate the relationship between sam-
ple size and model performance and stability as measured by species 
predictive performance (R2

f), environmental predictor contributions 
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(R2) and predictor responses. Separate GF models were fitted to 
five mutually exclusive subsets of 1,000, 2,000, 3,000 and 5,000 
observations and four mutually exclusive subsets of 6,860 obser-
vations, all of which were randomly selected from the full dataset. 
Although distributional data for inadequately sampled species (e.g., 
<30 occurrences) are generally considered as unsuitable for fitting 
individual species distribution models (SDMs; Leathwick et al. 2006, 
Hewitt et al. 2015), here all species with more than 10 observations 
were included in the analyses. This is because the GF model consists 
of a set of Random Forest models weighted by their goodness-of-
fit; as a consequence, any species model with a positive R2

f is able 
to contribute to the combined estimate of species turnover, while 
those with no predictive power are automatically discarded.

Based on results from these analyses, the full dataset was split 
into two randomly selected, mutually exclusive subsets, each con-
taining 13,917 observations; a final GF model was fitted to the first 
of these subsets, while the second subset was used only for model 
evaluation as described below. The species turnover functions pro-
duced by the final GF model were used to create a transformed set 
of environmental predictor layers (using the predict function; Pitcher 
et al., 2011), with values in these layers representing species turn-
over along the range of each environmental predictor.

This set of transformed environmental layers was further ana-
lysed in two ways. First, variation within the transformed environ-
mental layers was summarized using principal component analysis 
(PCA; Pitcher et al., 2011) to provide a generalized description of re-
lationships between species turnover and environment. Second, the 
transformed environmental dataset was classified in two stages in 
R (Leathwick et al. 2011) to produce a classification map more suit-
able for conservation planning purposes. In the first stage, the 2.48 
million data points were clustered to form 500 initial groups using 
nonhierarchical, k-medoids clustering with the Manhattan distance 
metric as implemented in the function clara in the R package “clus-
ter” (Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2017). To allow 
the classification to be used at varying levels of detail, relationships 
between these 500 groups were then summarized by agglomerative 
clustering using flexible UPGMA, the Manhattan metric and a value 
for beta of −0.1 (Belbin, Faith, & Milligan, 1992), as implemented in 
the function agnes in the R package “cluster” (Maechler et al., 2017). 
Results from the classification analysis were mapped geographically 
to allow inspection of outcomes at varying degrees of classification 
detail through the range from 10 to 100 groups in steps of ten. We 
describe results here at a 30-group level of classification to simplify 
presentation, although a higher level of classification could be more 
appropriately applied in conservation planning, particularly for in-
shore waters where greater variation occurs at finer spatial scales 
(Leathwick et al., 2012; Snelder et al., 2007; see Section 4).

The ability of the transformed environmental layers, classified at 
a 30-group level, to summarize species composition and turnover as 
recorded in the biological data was evaluated by spatial overlay of 
the location of each biological sample in the training dataset onto a 
digital map of the classification, tagging them with the classification 
group occurring there. A matrix was then constructed describing the 

average species composition of observations in each classification 
group, and this was used to calculate extended biological intergroup 
distances using the Bray–Curtis distance measure with the functions 
distance and stepacross implemented in the R package “ecodist” 
(Goslee & Urban, 2007). Correlations were then calculated between 
these biological distances and the equivalent intergroup distances 
(Manhattan metric) from the classification of the transformed en-
vironmental layers; because of the noise inherent in the individual 
species observations, we report these correlations for those groups 
with at least 100 and 200 biological observations, that is, sufficient 
to derive a reliable estimate of average species composition. Finally, 
we repeated this process using the independent evaluation dataset 
of 13,917 observations to test the utility of the classification to sum-
marize species turnover in a completely independent set of samples.

3  | RESULTS

3.1 | Effects of variation in numbers of training 
observations on Gradient Forest models

The number of species effectively modelled (i.e., with an R2
f   > 0), 

their predictive performance (R2
f) and the relative contributions of 

environmental predictors (R2) were all sensitive to the number of ob-
servations used for model fitting. On average, only 202 species out 
of 253 were effectively modelled when 1,000 observations were 
used for model fitting (Figure 2a), but this number increased steadily 
with increasing dataset size, gradually plateauing off to a mean of 
249 species in the four models fitted with 6,860 observations.

The mean predictive performance also increased with increas-
ing sample size but only across those 85 species that were effec-
tively modelled in all five of the initial models fitted to the smallest 
dataset (1,000 observations) and in all subsequent models (dark 
grey—Figure 2b). There was a progressive and significant increase in 
predictive performance for these species up to about 5,000 obser-
vations (albeit these mean increases in predictive performance were 
small, range: 0.51–0.54); only muted further increases occurred be-
yond this. By contrast, when the mean predictive performance was 
calculated across all species effectively modelled in each model from 
the different sized datasets, there was no increase in predictive per-
formance with increasing dataset size (light grey bars—Figure 2b); 
this largely reflected the increased inclusion of species with few 
observations as the size of the training dataset was increased, 
with models for these species generally having lower predictive 
performance.

Marked differences were also apparent in the relative contribu-
tions of the different environmental predictors across the models 
fitted with datasets of varying size (Figure 3). In GF models with 
low sample number (1,000 samples), bathymetry (Bathy) was the 
most influential environmental predictor in the analysis, followed 
closely by dissolved oxygen at depth (BotOxy), tidal current speed 
(TidalCurr), temperature at depth (BotTemp) and salinity at depth 
(BotSal; Figure 3). While these same environmental predictors 
continued to play a dominant role as the number of observations 
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used for model fitting increased, their order of importance differed 
(Figure 3). Although Bathy showed a small increase in its contri-
bution in GF models fitted with larger numbers of samples (6,860 
observations), the contributions of BotOxy, TidalCurr, BotTemp and 
BotSal, each became more important than depth with larger sam-
ple sizes. Importantly, the stability of these contributions also in-
creased as sample size increased (i.e., standard errors of their means 
decreased).

3.2 | The final model Gradient Forest model

The final GF model was fitted using all 13,917 observations in our 
training dataset, assuming that further increasing the number of ob-
servations was unlikely to yield any substantial increase in predictive 
performance; all available species (n = 253) had an R2

f greater than 
zero in this model. Species performance in this model (R2

f) averaged 
0.521, with a range from 0.300 (Eurypharynx pelecanoides—pelican 
eel) to 0.913 (Hoplostethus atlanticus—orange roughy); there was 
a weak but positive curvilinear relationship between numbers of 
positive observations for species and their predictive performance 
(Figure 4). The five species with the lowest R2

f values (0.3–0.4) had 
a mean of 125 positive observations, while the five species with the 
highest R2

f values (0.8–0.913) had a mean of 4,558 positive observa-
tions (see Supporting information Table S1 for a full list of species, 
number of positive observations and their associated R2

f values).
Environmental transformations from the final GF model, con-

structed using the split information contained in the individual 
species models, indicate both the overall influence of each environ-
mental predictor and the cumulative changes in species turnover 
along its range (Figure 5), while the ranges of the fitted functions 
indicate the relative amounts of species turnover associated with 
each predictor. Steep parts of the curve indicate fast assemblage 
turnover, and flatter parts of the curve indicate more homogenous 

regions (Ellis et al., 2012; Pitcher et al., 2012). Greatest species 
turnover was associated with the predictor describing dissolved 
oxygen concentrations at depth (BotOxy) (maximum cumulative im-
portance: 0.06), followed closely by salinity at depth (BotSal), tidal 
current speed (TidalCurr) and temperature at depth (BotTemp), with 
maximum values for these ranging from 0.04 to 0.05 (Figure 5). 
Turnover in relation to other environmental predictors was gen-
erally lower (ranging from 0.005 to 0.04). Inspection of the fitted 
functions for these predictors indicate that most had broadly linear 
relationships with species turnover, although a number showed a 
levelling off in species turnover at higher values, for example, at 
depths >1,500 m, tidal current speeds >1.0 m/s and dissolved or-
ganic matter >0.6 mgC m−2 day−1.

F IGURE  2 Numbers of species effectively modelled and their predictive performance as a function of training data sample size—separate 
Gradient Forest models were fitted using five independent samples of 1,000 through 5,000 observations and four samples of 6,860 
independent observations; results from a single final model using 13,917 observations are included for comparison. (a) Mean numbers of 
fish species effectively modelled versus sample size. (b) Mean predictive performance (R2

f) for all demersal fish species included in each GF 
analyses (light grey bars) and mean predictive performance (R2

f) for fish species successfully fitted in all 24 models (n = 85—dark grey bars) 
versus sample size. Error bars in all plots show the standard error of the mean
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3.3 | Classification of the transformed 
environmental layers

A generalized model of fish species turnover in New Zealand’s 
Extended Continental Shelf to depths of 2,000 m was produced 
using GF (Supporting information Figure S2). Although the classifi-
cation of the transformed environmental layers is capable of being 

viewed at widely varying levels of detail, for parsimony, we describe 
thirty groups here (Figure 6). These vary widely not only with re-
spect to the transformed environmental predictors (Figure 7a), but 
also in their geographic distributions and extents (Figure 6b,c), and 
their physical and biological characteristics, as described by the raw 
environmental predictors and species distribution data (Supporting 
information Table S2).

Broadly, environmental differences between classification 
groups were relatively muted in the deepest waters (e.g., groups 1, 
2 and 13 and groups 3–6, 10 left of Figure 7a, top Figure 6), but dif-
ferences in temperature, oxygen and salinity become increasingly 
important in intermediate and shallow depths, for example, groups 
7, 9 and 14 occur in more saline, less oxygenated waters (centre 
of both Figures 6 and 7a) and groups 8, 20, 26 and 28–30 occur 
in less saline, more oxygenated waters (centre of Figure 6 and 
lower middle of Figure 7a). Variation in productivity, sea surface 
temperature gradients, tidal currents, suspended sediments and 
dissolved organic matter were important differentiating factors in 
shallow, inshore waters (lower Figure 6 and right of Figure 7a). A 
more detailed description of the geographic distributions, extents 
and physical and biological characteristics of the 30-group classifi-
cation and a larger scale map of the classified environmental layers 
is contained in the Supporting information Figure S3.

F IGURE  4  Individual species R2 versus numbers of positive 
observations for the final Gradient Forest model using 13,917 
observations. The black line represents a line of best fit for 
illustrative purposes
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3.4 | Model validation

Comparison of distances for the final classification of the trans-
formed environmental layers, with an equivalent set of biologi-
cal distances calculated using biological samples from our training 
dataset, grouped after allocation to their corresponding classifica-
tion group, indicates that the classification is highly effective at cap-
turing biological turnover and therefore compositional differences 
between the underlying biological samples. When calculated using 
those classification groups represented by 200 or more biological 
samples, distances between pairs of groups in the transformed envi-
ronmental space have a correlation of 0.934 with equivalent biologi-
cal distances between the same pairs of groups (Figure 8a). Similar 
results were obtained when this comparison was repeated using the 
13,917 trawl observations that were withheld from the final model 
fitting to allow independent evaluation of model performance (cor-
relation = 0.919, Figure 8b). The respective correlations maintained 

a high level (0.926 and 0.912, respectively) when this comparison 
was repeated using all pairwise comparisons between groups sup-
ported by 100 or more trawl observations.

4  | DISCUSSION

Results from our analysis indicate that Gradient Forest modelling is 
capable of effectively combining irregular species distribution data 
with spatially continuous environmental data layers to create a com-
prehensive description of spatial variation in species composition 
and turnover, in our case for demersal fish species in New Zealand’s 
Extended Continental Shelf to depths of 2,000 m. In particular, the 
environmental transforms generated by our final model allowed 
the creation of a multiscale spatial classification of marine environ-
ments that, when assessed using both the training samples and a 
large set of independent samples, proved to be highly effective in 

F IGURE  6 Dendrogram describing 
similarities between 30 demersal fish 
groups defined by classification of 
transformed environmental layers for the 
seas within the New Zealand Extended 
Continental Shelf to a depth of 2,000 m 
after transformation using a Gradient 
Forest model fitted to presence–absence 
data from 13,917 research trawls. See 
text for a broad description of groups is 
provided
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summarizing both variation in fish assemblage composition and spe-
cies turnover, as indicated by the high correlation between environ-
mental and compositional distances between pairs of classification 
groups. In broad terms, this result is consistent with other analyses 
using Gradient Forests in marine environments (Compton et al. 
2013; Thomson et al. 2014), although we note that most of these 
were carried out over more limited geographic extents and in shal-
lower waters.

Spatial patterns of turnover in New Zealand’s demersal fish spe-
cies described by our 30-group classification were strongly related 
to latitudinal changes in water mass and their associated frontal fea-
tures (STF, TF, SAF, Figure 1b; Foster, Givens, Dornan, Dunstan, & 
Darnell, 2013; Francis et al., 2002; Hill, Lucieer, Barrett, Anderson, 
& Williams, 2014; Hill et al., 2017). Although environmental dif-
ferences between classification groups were relatively muted in 
the deepest waters, differences in temperature, oxygen and sa-
linity become increasingly important in intermediate and shallow 

depths. Variation in productivity, sea surface temperature gradients, 
tidal currents, suspended sediments and dissolved organic matter 
were important differentiating factors in shallow, inshore waters, 
where latitudinal differences in environment are in turn reflected in 
marked differences in fish species assemblages. These results are 
broadly consistent with those from other New Zealand studies at 
various spatial scales ranging from regional to national, for exam-
ple, in Francis et al. (2002), Bull et al. (2001), Beentjes et al. (2002), 
Kendrick and Francis (2002), Snelder et al. (2007). Using correspon-
dence and cluster analysis, these studies identified depth, and to a 
lesser extent, water temperature, latitude (as a proxy for tempera-
ture and water mass) and major oceanographic features as import-
ant variables structuring variation in species composition. While 
superficially similar to the earlier classification of the oceans around 
New Zealand by Snelder et al. (2007), our GF classification incor-
porates important advances through use of a more comprehensive 
set of ocean climate predictors and an evidence-based approach to 

F IGURE  7 Distributions in PCA and geographic space of 30 groups defined by classification of transformed environmental layers for the 
seas within the New Zealand Extended Continental Shelf (dashed line) to a depth of 2,000 m; transformations were derived from a Gradient 
Forest model fitted to 13,917 research trawls (Supporting information Figure S2). Colours are based on the first three axes of a PCA analysis 
applied to the group means for each of the transformed predictor variables, so that similarities/differences in colour correspond broadly 
to intergroup similarities/differences with respect to the transformed environmental variables. (a) Distributions of groups in PCA space, 
with vectors indicating correlations with the eight most important environmental predictors and symbol/font size indicating the relative 
size of the group area; (b) geographic distributions of groups across New Zealand’s Extended Continental Shelf (dashed line); (c) geographic 
distribution of groups at finer scales, centred on Cook Strait [Colour figure can be viewed at wileyonlinelibrary.com]
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transformation of predictors prior to classification. This results in a 
classification that more evenly divides parallel variations in species 
composition, making it more strongly suited for systematic conser-
vation planning purposes.

Although the species distribution data we used mostly provided 
adequate spatial coverage of our study area, several large, outlying 
sections had few or no trawl stations, notably the submarine ridges 
and steep slopes around the margins of the Campbell and Bounty pla-
teaus. Predictions of fish richness for these areas, produced during a 
previous study using a subset of the data used here, had wider confi-
dence intervals than more intensively sampled areas (Leathwick et al., 
2006), indicating that further limited sampling would most likely im-
prove confidence in our results in these locations. A measure of un-
certainty of species turnover could be calculated (similarly to Thomson 
et al., 2014) although this does not readily expand to assessing con-
fidence in assemblage classification. Alternatively, other modelling 
methods such as Regions of Common Profile (RCP) could be used to 
estimate confidence of assemblage classification and which can be 
validated spatially using the probabilities of occurrence of the individ-
ual species of the training samples (Foster et al., 2013; Hill et al., 2017).

4.1 | The effect of variation in numbers of training 
observations on Gradient Forest models

As a tool, GF appears well suited to the analysis of the often sparse 
or patchily distributed data that are typically available in marine 
environments. Although a GF model could accommodate all the ca. 
27,800 observations available to us, use of randomly selected in-
dependent data subsets indicated that both the number of species 
effectively modelled and their mean predictive performance (R2

f) 
stabilized when using ~25% of the total available dataset (ca. 7,000 
observations). Although the mean species predictive performance 
did not vary greatly with sample number, small but consistent 

increases occurred for individual species R2
f as the size of the 

training dataset was increased. We interpret this result as most 
likely indicating that species that have good observational sup-
port in the models fitted to small datasets, show further predic-
tive refinement as more observations are added; however, mean 
predictive performance across all species models fitted when using 
larger datasets showed little positive trend because improvements 
in well-fitted species were offset by the lower predictive perfor-
mance for rarer species that came into play as the size of the train-
ing dataset increased.

A common set of environmental predictors (Bathy, BotOxy, 
TidalCurr, BotTemp and BotSal) played a dominant role in models 
fitted with widely varying numbers of observations, although with 
some resorting of their order of importance with increasing sample 
size (Bosch, Tyberghein, Deneudt, Hernandez, & de Clerck, 2017; 
Pitcher et al., 2012). Those predictors showing the largest changes 
in importance with increasing sample size were predictors that 
were largely invariant except in a few specific locations, for exam-
ple, dissolved organic matter (Disorgm) which varies only in coastal 
waters, and sea surface temperature gradient (SstGrad) which 
shows locally high values in areas of ocean mixing and along sharply  
defined current boundaries, but often with little variation elsewhere. 
With increasing sample number, these locally divergent sites were 
better represented in the model, and their ability to influence model 
outcomes was increased. Therefore, we recommend an explicit ex-
amination of the relative influence of predictor variables across a 
range of sample sizes, as an additional consideration when deter-
mining the most appropriate split of data into training and validation 
subsets to ensure representation of the full environmental gradient 
of the study area. Here, ca. 7,000 observations were adequate to 
predict demersal fish turnover across a 2,461,926 km2 study area al-
though this is likely to differ for other geographic locations and taxa.

An additional consideration when analysing datasets accumu-
lated for purposes other than biodiversity description is GF’s more 
relaxed assumptions about species absence compared to GDM. 
Whereas the latter was primarily designed to work with data list-
ing all species present at each of some set of sample sites (Ferrier 
et al., 2007), the individual classification tree regressions fitted 
in a GF model make the less stringent assumption that nonpos-
itive occurrences for each species can be treated as an assumed 
absence (Pitcher et al., 2011). While this is less ideal than the use 
of true presence–absence data, models fitted under this assump-
tion can still produce reasonably robust predictions of species 
distributions, particularly when the assumed absences are drawn 
from a broader set of samples for the same biotic group (Elith & 
Leathwick, 2009; Elith et al., 2006). In the GF models presented 
here, true presence/absences were used.

4.2 | Critical appraisal of the “final” Gradient 
Forest model

Although our repeated analyses with subsamples of the training 
dataset indicated minimal changes in model stability with expansion 

F IGURE  8 Extended biological distances of samples grouped 
according to Gradient Forest model classification with more than 
200 observations against distance in transformed environmental 
space of samples (a) training data (used in the full Gradient Forest 
model) and (b) independent evaluation data
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of the data beyond ca. 7,000 samples, we adopted a relatively con-
servative stance, fitting our “final” model with 13,917 observations 
or half of the available data; the other half we used solely for in-
dependent evaluation of our “final” model. We could have fitted 
models to a higher proportion of the total number of observations (a 
typical ratio is 75:25), but we had the luxury of a very large dataset; 
consideration should be given to using a higher fraction of the sam-
ple data when using smaller datasets. The 253 individual Random 
Forest models in this final GF model had relatively high predictive 
performance values (mean R2

f of 0.521 and range of 0.3–0.913), and 
all showed at least some predictive ability. These results are unusual 
for marine species distribution studies; in a model comparison study, 
Elith et al. (2006) found that only half of the marine species included 
in the study had useable models and few had high predictive power 
even for tree ensemble models (BRT and MAXENT), which con-
sistently outperformed more established regression methods (e.g., 
GLM, GAM and MARS).

There was a weak curvilinear relationship between numbers of 
positive observations for species and their predictive performance, 
that is, more frequently occurring species had better fitting models, 
although those with the lowest frequencies still had R2

f values >0.3. 
Interestingly, there was a broad range of R2

f (0.41–0.86) for species 
with moderate–high observations (1,000–4,000), reflecting per-
haps the cosmopolitan distribution of some species (e.g., Bassanago 
spp., low R2

f) and the more aggregated nature of others (e.g., orange 
roughy, high R2

f; see Supporting information Table S1). Evidence 
from other studies indicates that species with limited geographic 
range and environmental tolerances are generally better modelled 
than those with greater ranges (Guisan et al., 2013; Morán-Ordóñez 
et al., 2017; Thomson et al., 2014) because widespread species are 
less likely to have sharp easily identifiable environmental thresholds 
that clearly delineate their most suitable environmental conditions 
(Morán-Ordóñez et al., 2017). Reduced model fit could be influ-
enced by historical events, human activities, population and species 
dynamics (e.g., recruitment, competition, predation and facilitation) 
(Elith & Leathwick, 2009) and temporal environmental patterns (e.g., 
diurnal, tidal and seasonal cycles and fluctuating weather patterns) 
not accounted for here (Compton et al., 2013; Pitcher et al., 2012). 
The lack of consideration of these factors in a quantitative manner 
does not invalidate the use of the GF model for management, but it 
should be noted that the representation of assemblages shown here 
is a (spatially and temporally) smoothed representation of the raw 
data and further work on integrating more explicit predictors into 
GF modelling would be of interest (Compton et al., 2013; Thomson 
et al., 2014).

In general, there was a linear relationship between species turn-
over along the individual environmental gradients, although there 
was a plateauing in turnover in parts of the range of some variables, 
for example, the decrease in species turnover at depths >1,500 m, 
with species composition showing minimal further change with 
further increases in depth. A lack of steep slopes in the turnover 
functions indicates that species distributions generally overlap to a 
high degree, which is consistent with findings from other studies of 

shelf fish assemblages both in New Zealand and elsewhere (Beentjes 
et al., 2002; Bianchi, 1991; Farina, Freire, & González-Gurriarán, 
1997; Fujita, Inada, & Ishito, 1995).

4.3 | Usefulness of Gradient Forest models for 
conservation planning

In our view, the strong discrimination of fish distribution pat-
terns across New Zealand’s Extended Continental Shelf shown by 
our classification of the transformed environmental layers pro-
duced by our “final” GF analysis makes it well suited as a primary 
input to systematic spatial conservation planning analyses (e.g., 
using spatial planning software such as Zonation (Lehtomäki & 
Moilanen, 2013) or Marxan (Ball, Possingham, & Watts, 2009)). 
In addition, significant gains can be expected if such analyses are 
implemented using prioritization tools that, rather than treating 
all groups as equally different from each other, take account of 
their varying intergroup similarities, allowing greater priority to 
be given to more distinctive species assemblages as can be imple-
mented, for example, in Zonation (Leathwick, Moilanen, Ferrier, 
and Julian 2010).

Given the hierarchical nature of the classification, consideration 
will be required as to what constitutes the most appropriate level 
of classification detail for conservation planning purposes. Here, 
we have chosen to describe the classification at a 30-group level 
to facilitate communication; however, our testing of correlations 
between environmental and biological distances at higher levels of 
classification detail (up to 100 groups) indicate that these levels 
can provide even greater discrimination of compositional differ-
ences and species turnover than those presented here. In addition, 
using a higher number of classification groups is likely to be more 
appropriate for a regional scale analysis, particularly for inshore 
areas where there is a greater heterogeneity in environmental con-
ditions. Alternatively, regional patterns may be better described 
by analyses using regional subsets of the data, particularly if the 
mix of factors controlling species turnover varies region by region. 
Results presented here would be of use for a gap analysis of assem-
blages currently protected in MPAs (Leaper et al., 2011) and would 
allow evidence-based targeting of underrepresented assemblages 
for further sampling and/or protection (Ferrier et al., 2007; Pitcher 
et al., 2007).

Finally, consideration will be required of which other taxonomic 
groups should be included in any operational conservation plan-
ning; for example, models describing the distributions of macroal-
gae and benthic invertebrates could be used in conjunction with 
our model for demersal fish (Thomson et al., 2014). Data for these 
different taxonomic groups could be analysed using a prioritization 
analysis with separate spatial layers describing each classification 
of interest (Geange et al., 2017). Alternatively, GF modelling allows 
the combination of results from different datasets into a single uni-
fied classification through the averaging of the species turnover 
functions across taxonomic groups (see example in Pitcher et al. 
2012), an approach that GF facilitates through its ability to handle 
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differences in survey methods, sampling devices and/or measure-
ment scales (counts, weights, abundance and presence/absences; 
Ellis et al., 2012). However, because this type of analysis has not 
been undertaken to our knowledge using such widely differing tax-
onomic groups, we are uncertain as to whether this would provide 
an adequate spatial representation of all the species of interest (C. 
R. Pitcher, pers. comm. 2018) and suggest this as a topic for future 
investigation.

5  | CONCLUSION

Gradient Forest modelling provided an effective way to combine 
research trawl records with a set of relevant environmental data 
layers to create a generalized model of demersal fish composi-
tional turnover across a very large spatial extent (New Zealand’s 
Extended Continental Shelf to depths of 2,000 m). However, the 
recent development of Gradient Forest modelling means that 
some aspects of using its outputs require further investigation. 
Of note is a lack in understanding of changes in environmental 
predictor importance with varying scale (geographic and richness 
of sampling) and best practice for use in conservation planning, 
although further work is currently underway to further inform 
these areas. Although an extensive set of sampling locations was 
available for the training and validation of the model, results here 
suggest that model performance stabilized when using a relatively 
low number of samples (~5,000–7,000). This provides a key ad-
vantage when modelling marine species where sampling is often 
irregularly distributed, opportunistic (presence only) and expen-
sive. The resulting spatial description of species composition and 
turnover in New Zealand demersal fish assemblages will be highly 
valuable for underpinning evidence-based conservation planning.
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