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Abstract

Aim: Producing quantitative descriptions of large-scale biodiversity patterns is chal-
lenging, particularly where biological sampling is sparse or inadequate. This issue is
particularly problematic in marine environments, where sampling is both difficult and
expensive, often resulting in patchy and/or uneven coverage. Here, we evaluate the
ability of Gradient Forest (GF) modelling to describe broad-scale marine biodiversity
patterns, using a large dataset that also provided opportunity to investigate the ef-
fects of sample size on model stability.

Location: New Zealand'’s Extended Continental Shelf to depths of 2,000 m.
Methods: GF models were used to analyse and predict spatial patterns of demersal
fish species turnover (beta diversity) using an extensive demersal fish dataset
(>27,000 research trawls) and high-resolution environmental data layers (1 km? grid
resolution). GF models were fitted using various sized, mutually exclusive subsets of
the demersal fish data to explore the effect of variation in numbers of training obser-
vations on model performance and stability. A final GF model using 13,917 samples
was used to transform the environmental layers, which were then classified to pro-
duce 30 spatial groups; the ability of these groups to identify fish samples with simi-
lar composition was evaluated using independent sample data.

Results: Model fitting using varying sized subsets of the data indicated only minimal
changes in model outcomes when using >7,000 observations. A multiscale spatial
classification of marine environments created using results from a final GF model fit-
ted using ~14,000 samples was highly effective at summarizing spatial variation in
both fish assemblage composition and species turnover.

Main conclusions: The hierarchical nature of the classification supports its use at
varying levels of classification detail, which is advantageous for conservation plan-
ning at differing spatial scales. This approach also facilitates the incorporation of in-
formation on intergroup similarities into conservation planning, allowing greater

protection of distinctive groups likely to support unusual assemblages of species.

KEYWORDS
beta diversity, biodiversity, Gradient Forest models, marine, predictive models, sample size,
spatial patterns, species turnover
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1 | INTRODUCTION

Sound conservation planning and management at the ecosystem
level depend heavily on the reliable characterization of biodiver-
sity patterns, often across large regions (Ferrier, Manion, Elith, &
Richardson, 2007; Margules & Pressey, 2000). Ideally, this charac-
terization is based on quantitative information describing different
components of diversity, including not only the distributions of indi-
vidual species and/or communities, but also of emergent properties
such as alpha diversity (local richness) and beta diversity (species
turnover along spatial or environmental gradients; Harrison, Ross,
& Lawton, 1992; Legendre, Borcard, & Peres-Neto, 2005; Nekola &
White, 2002; Shmida & Wilson, 1985). These latter two components
are particularly valuable for spatial planning; while the total number
of species (alpha diversity) contributes to the relative importance
of an area for conservation, it is the rate of species turnover be-
tween sites that largely determines the optimal spatial arrangement
of conservation areas (Arponen, Moilanen, & Ferrier, 2008; Bush,
Harwood, Hoskins, Mokany, & Ferrier, 2016; McKnight et al., 2007;
Nekola & White, 1999, 2002; Socolar, Gilroy, Kunin, & Edwards,
2016).

Unfortunately, producing quantitative descriptions of large-
scale biodiversity patterns is challenging, particularly where bio-
logical sampling is sparse or inadequate (Elith et al., 2006; Leaper
et al., 2011; Moran-Ordofez, Lahoz-Monfort, Elith, & Wintle, 2017).
It is often particularly problematic in marine environments, where
sampling is both difficult and expensive, resulting in patchy and/or
irregular coverage (Leathwick, Elith, Francis, Hastie, & Taylor, 2006;
Thomson et al., 2014). Spatial classifications of environments are
one tool commonly used to overcome these difficulties, particularly
at larger spatial scales (Snelder et al. 2007). Such classifications typi-
cally use more readily available environmental data to group together
sites likely to have similar biological character. These classifications
can be used to identify areas that are likely to respond in similar
ways to human activity or management actions (Bailey, 1983), to de-
fine standards for the management of human impacts (Omernik &
Bailey, 1997), to stratify sites for surveying and monitoring programs
(Hawkins et al., 2000) or to identify priority areas for conservation
management (Leathwick et al., 2012). Earlier classification methods
relied largely on subjective, expert decision-making (e.g., thematic or
hierarchical classifications, Roff, Taylor, and Laughren (2003)), while
a number of recent classifications use quantitative approaches,
sometimes with manually imposed rules (Snelder and Biggs, 2002)
or, alternatively, use numerical classification procedures to group
sites (Belbin, 1993). In addition, qualitative classifications often lack
information on within-class variation in the community composition
(Leaper et al., 2011), instead relying on subjective alignment with
coarse categorical habitat features, that is, seagrass beds, rocky reef,
sand and mud (Mumby et al., 2008). Regardless, subjective decisions
are required in the choice of environmental factors, how they should
be weighted and whether transformations should be applied to in-
crease their ability to distinguish biodiversity patterns (Leathwick
etal., 2011).

One approach to overcoming this difficulty is to combine con-
tinuous environmental data with biological samples (Anderson et al.,
2016; Dunstan, Althaus, Williams, & Bax, 2012), using analytical
tools that quantitatively assess the role that different environmen-
tal factors play in influencing biodiversity patterns (Ferrier et al.,
2004; Pitcher et al., 2012). Results are then used to control the se-
lection, weighting and transformation of environmental predictors
to be classified, increasing the ability of the classification groups to
represent spatial variation in biodiversity character. Generalized dis-
similarity modelling (GDM—Ferrier et al., 2007; Ferrier, 2002) was
one of the first techniques to explicitly model relationships between
environment and species turnover. It uses a generalized linear mod-
elling framework to identify transformations of the environmental
predictors that maximize their ability to predict biological distances
(Bray-Curtis similarity) between sample sites. The fitted transfor-
mations can then be used to predict community turnover across the
entire study region, including within areas lacking biological samples
(Ferrier et al., 2007).

A second technique, Gradient Forest (GF; Pitcher, Ellis, and Smith,
2011) is a more recent development that produces similar outputs to
GDM, but using a fundamentally different approach (Leaper et al.,
2011). While GDM fits a single regression model that describes the
relationship between environment and species turnover, a GF model
consists of an aggregation of Random Forest (RF; Breiman, 2001)
models, each of which describes the environmental relationships of
an individual species. Once these models have been fitted, the infor-
mation that they contain about the relative importance of different
predictors, and where changes in the presence (or abundance) of
the modelled species occur along each of their ranges, is aggregated
and used to build transforms that maximize for each predictor their
correspondence with species turnover (Pitcher et al., 2011). These
transforms closely resemble those produced by GDM and can be
used in similar ways, for example, these values can be calculated
across extensive geographic areas, with the transformed predictors
then classified to define spatial groups that capture variation in spe-
cies composition and turnover, making them potentially well suited
as input to conservation planning analyses. The more incremental
approach to model fitting in GF makes it particularly well suited to
the analysis of large datasets, whose size can be limiting in GDM.

Here, we evaluate the ability of GF to describe broad-scale bio-
diversity patterns for conservation planning. The analysis combines
high-resolution environmental data (1 km? grid resolution) across
New Zealand’s Extended Continental Shelf to depths of 2,000 m
and distributional data for 253 demersal fish species from c. 27,000
research trawls. We begin by exploring relationships between the
size of the training dataset and model stability, using results to iden-
tify a conservatively generous training dataset with which to fit a
final model. Results from this final model are used to transform the
environmental layers to maximize their correspondence with species
turnover, with numerical classification of these transformed layers
then used to define spatial groups having similar species composi-
tion. Finally, we assess the ability of this classification to represent
variation in both species composition and turnover, crucial “success”
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FIGURE 1 Maps of the study region (New Zealand Extended Continental Shelf, black dashed line) showing: (a) bathymetry, sample
locations (grey dots) and feature names used in the text; (b) approximate positions and direction of travel of the Tasman Front (TF and its
associated currents: the east Auckland Current (EAUC) and East Cape Current (ECC) in the north-east, and the Westland Current (WC) and
D’Urville Current (DC) in the West of the study area), Subtropical Front (STF) and Subantarctic Front (SAF and the Antarctic Circumpolar
Current (ACC)). Adapted from Carter (2001) [Colour figure can be viewed at wileyonlinelibrary.com]

factors if the classification is to have utility for systematic broad-
scale conservation planning.

2 | METHODS

2.1 | Study area

The study area consisted of those parts of the New Zealand
Extended Continental Shelf (Figure 1) with depths in the range
0-2,000 m;
able, but fish samples from sites deeper than 2,000 m are limited

including deeper regions would have been desir-

(Figure 1a). New Zealand has a long and narrow land mass extend-
ing across a wide latitudinal range (=35-48°S), resulting in a di-
verse range of environmental conditions in its surrounding waters
(Bradford-Grieve, Lewis, & Stanton, 1991; Leathwick et al., 2006).
The dominant oceanographic feature is the Subtropical Front
(STF), a highly productive zone of mixing between high salinity,
nutrient-poor, warm, northern waters and low salinity, nutrient-
rich, cold, southern waters (Figure 1b). Currents flow in an east-
ward direction along the STF but are deflected southwards around
the lower South Island, returning north along the east coast of the
South Island to resume their eastwards flow along the Chatham
Rise (Figure 1b; Bradford-Grieve et al., 2006). Several gyres occur
within this mixing zone, mostly to the east of the North Island

(Figure 1b; Bradford-Grieve et al., 2006). Although the waters
surrounding New Zealand do not have large areas of continental
shelf, extensive submarine plateaus are located to the east, south
and west: the Chatham Rise to the east (Leathwick et al., 2006)
(Figure 1a); the Bounty Plateau, Pukaki Rise and Campbell Plateau
and Rise to the south and south-east (Figure 1a); and the Lord
Howe Rise and Challenger Plateau to the west (Figure 1a). Deeper
abyssal waters occur in the south-west of the study area along the
Puysegur Trench and in the north-east along the Kermadec Trench
(Figure 1a).

2.2 | Biological data

Fish are the most abundant and diverse group of vertebrate animals
on earth and play a key role in structuring marine ecosystems; inter-
actions within and between fish species and their physical environ-
ment are important in defining community structure, diversity and
stability in marine ecosystems (Francis, Hurst, McArdle, Bagley, &
Anderson, 2002).

Demersal fish abundance data used for this analysis were col-
lected during research trawl surveys conducted between 1979
and 2005; the majority of these data are available from the NIWA
Environmental (https://ei.niwa.co.nz/;

Information  Browser

Figure 1). To minimize the effects of variation in individual species
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catchability among surveys, especially given the sometimes incom-
plete documentation of trawl parameters, species catch information
was reduced to a presence/absence level (Hewitt, Wang, Francis,
Lundquist, & Duffy, 2015; Leathwick et al., 2006). The final data-
set included observations of 253 species at 27,440 sample locations
(Figure 1a). Some geographic bias is evident in the distribution of
samples, with many trawls made at 43-45°S, reflecting the high
priority given to surveying commercially important species, that is,
hoki (Macruronus novaezelandiae), orange roughy (Hoplostethus atlan-
ticus) and oreos (mainly Allocyttus niger and Pseudocyttus maculatus)
(Francis et al., 2002) on the Challenger Plateau and Chatham Rise.
In some areas, difficult terrain resulted in a paucity of tows, for ex-
ample, the narrow and topographically complex continental shelf
off Fiordland (on the West coast at 45-46°S) and the Kermadec
and Colville Ridges (Figure 1a; Francis et al., 2002). This sampling
bias was not specifically addressed here as it was assumed that the
substantial number of observations across a broad range of environ-
mental gradients provided adequate coverage for species distribu-

tion modelling.

2.3 | Environmental data

To capture variability in the marine environments surrounding New
Zealand, eighteen high-resolution gridded environmental predictors,
mostly at a native resolution of 250 m, were collated and imported
into ArcGIS (version 10.4). These variables were selected based on
their known influence on demersal fish settlement, growth, sur-
vival and distribution (Beentjes, Bull, Hurst, & Bagley, 2002; Bull,
Livingston, Hurst, & Bagley, 2001; Francis et al., 2002; Kendrick &
Francis, 2002; Leathwick et al., 2006, 2012) and consequent likely
influence on fish species assemblage composition and turnover
(Table 1). For example, several physicochemical variables are likely
to be critical physical determinants of habitat suitability for most
fish species, including annual averages of seafloor temperature
(BotTemp), salinity (BotSal), nitrate (BotNi), oxygen (BotOxy) and
silicate (BotSil); benthic sediment disturbance (Beddist), which is an
important feature in shallower depths (<200 m); ocean productiv-
ity, as described by vertically generalized production model (VGPM),
with complementary information on surface water productivity pro-
vided by a spatial summary of gradients in sea surface temperature
(SstGrad); other variables that act as surrogates for a range of cor-
related biophysical variables, for example, Depth (Bathy), seafloor
roughness (Roughness) and sediment type (Sed). Although most of the
chosen ocean climate variables (e.g., seafloor temperature, BotTemp)
were formulated as mean annual statistics, one variable described
the annual range in temperature (e.g., the annual temperature range,
SeasTDiff), showing greatest variability in inshore waters.

Several predictors showed strong collinearity, for example, be-
tween depth and seafloor temperature, salinity and oxygen sat-
uration (Ellis, Smith, & Pitcher, 2012). Although GF modelling is
reasonably robust to correlated variables due to the incorporation
of a conditional permutation approach in the calculation of predic-
tor importance (for further information see Ellis et al. (2012)), the

use of highly correlated variables generally provides only minimal
improvement in prediction accuracy and complicates interpretation
of model outcomes. Consequently, three of the most highly cor-
related variables were excluded: dynamic oceanography, oxygen
saturation at depth and apparent oxygen utilization (Table 1). The
remaining 15 variables were retained for all models, ignoring correla-
tions, as all were thought to likely be of ecophysiological importance
(see Supporting information Figure S1 for correlations of the final
variables included in the model and Table 1 for description of vari-
ables). Prior to model fitting, values for each environmental variable
were derived for all trawl locations by overlaying these onto each
of the environmental predictor layers using the raster package in R
(Hijmans & van Etten, 2012).

2.4 | Model fitting and evaluation

GF modelling has two components: the production of a random for-
est model (Breiman, 2001) for each of the input species (using an ex-
tended modelling procedure in R package “extendedForest”; Liaw &
Wiener, 2002) and the collation of all the individual split points from
these models to calculate species turnover along each environmen-
tal gradient (using the R package “gradientForest”; Ellis et al., 2012).
All analyses were undertaken in the statistical computing software
R (R Core Team, 2013).

Random Forest models (Breiman, 2001) fit an ensemble of re-
gression (abundance data) or classification tree (presence/absence
data) models describing the relationship between the distribution
of an individual species and some set of environmental variables
(Ellis et al., 2012). The predictive power of the individual Random
Forest models is evaluated using a measure of sz for each species f
(the proportion of out-of-bag variance explained; Ellis et al., 2012).
The importance of each predictor variable (measured as R?) in the
model is assessed by quantifying the degradation in performance
when each predictor variable is randomly permuted (Pitcher et al.,
2012) using a conditional approach which accounts for collinear-
ity between predictor variables (Ellis et al., 2012). GF aggregates
the values of the tree splits from the Random Forest models for all
species’ models with positive fits (sz > 0) to develop empirical dis-
tributions that represent species turnover along each environmen-
tal gradient (Compton, Bowden, Pitcher, Hewitt, & Ellis, 2013; Ellis
et al.,, 2012; Pitcher et al., 2012). The turnover function is measured
in dimensionless R? units where species with highly predictive ran-
dom forest models (high RZf values) have greater influence on the
turnover functions than those with low predictive power (lower
R2f). The shapes of these turnover curves describe the rate of com-
positional change along each environmental predictor; steep parts
of the curve indicate fast assemblage turnover, and flatter parts
of the curve indicate more homogenous regions (Ellis et al., 2012;
Pitcher et al., 2012).

In an initial set of analyses, we fitted GF models using subsam-
ples of the full dataset to investigate the relationship between sam-
ple size and model performance and stability as measured by species
predictive performance (sz), environmental predictor contributions
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(R?) and predictor responses. Separate GF models were fitted to
five mutually exclusive subsets of 1,000, 2,000, 3,000 and 5,000
observations and four mutually exclusive subsets of 6,860 obser-
vations, all of which were randomly selected from the full dataset.
Although distributional data for inadequately sampled species (e.g.,
<30 occurrences) are generally considered as unsuitable for fitting
individual species distribution models (SDMs; Leathwick et al. 2006,
Hewitt et al. 2015), here all species with more than 10 observations
were included in the analyses. This is because the GF model consists
of a set of Random Forest models weighted by their goodness-of-
fit; as a consequence, any species model with a positive R2f is able
to contribute to the combined estimate of species turnover, while
those with no predictive power are automatically discarded.

Based on results from these analyses, the full dataset was split
into two randomly selected, mutually exclusive subsets, each con-
taining 13,917 observations; a final GF model was fitted to the first
of these subsets, while the second subset was used only for model
evaluation as described below. The species turnover functions pro-
duced by the final GF model were used to create a transformed set
of environmental predictor layers (using the predict function; Pitcher
et al.,, 2011), with values in these layers representing species turn-
over along the range of each environmental predictor.

This set of transformed environmental layers was further ana-
lysed in two ways. First, variation within the transformed environ-
mental layers was summarized using principal component analysis
(PCA,; Pitcher et al., 2011) to provide a generalized description of re-
lationships between species turnover and environment. Second, the
transformed environmental dataset was classified in two stages in
R (Leathwick et al. 2011) to produce a classification map more suit-
able for conservation planning purposes. In the first stage, the 2.48
million data points were clustered to form 500 initial groups using
nonhierarchical, k-medoids clustering with the Manhattan distance
metric as implemented in the function clara in the R package “clus-
ter” (Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2017). To allow
the classification to be used at varying levels of detail, relationships
between these 500 groups were then summarized by agglomerative
clustering using flexible UPGMA, the Manhattan metric and a value
for beta of -0.1 (Belbin, Faith, & Milligan, 1992), as implemented in
the function agnes in the R package “cluster” (Maechler et al., 2017).
Results from the classification analysis were mapped geographically
to allow inspection of outcomes at varying degrees of classification
detail through the range from 10 to 100 groups in steps of ten. We
describe results here at a 30-group level of classification to simplify
presentation, although a higher level of classification could be more
appropriately applied in conservation planning, particularly for in-
shore waters where greater variation occurs at finer spatial scales
(Leathwick et al., 2012; Snelder et al., 2007; see Section 4).

The ability of the transformed environmental layers, classified at
a 30-group level, to summarize species composition and turnover as
recorded in the biological data was evaluated by spatial overlay of
the location of each biological sample in the training dataset onto a
digital map of the classification, tagging them with the classification
group occurring there. A matrix was then constructed describing the
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average species composition of observations in each classification
group, and this was used to calculate extended biological intergroup
distances using the Bray-Curtis distance measure with the functions
distance and stepacross implemented in the R package “ecodist”
(Goslee & Urban, 2007). Correlations were then calculated between
these biological distances and the equivalent intergroup distances
(Manhattan metric) from the classification of the transformed en-
vironmental layers; because of the noise inherent in the individual
species observations, we report these correlations for those groups
with at least 100 and 200 biological observations, that is, sufficient
to derive a reliable estimate of average species composition. Finally,
we repeated this process using the independent evaluation dataset
of 13,917 observations to test the utility of the classification to sum-

marize species turnover in a completely independent set of samples.

3 | RESULTS

3.1 | Effects of variation in numbers of training
observations on Gradient Forest models

The number of species effectively modelled (i.e., with an R2f >0),
their predictive performance (sz) and the relative contributions of
environmental predictors (R%) were all sensitive to the number of ob-
servations used for model fitting. On average, only 202 species out
of 253 were effectively modelled when 1,000 observations were
used for model fitting (Figure 2a), but this number increased steadily
with increasing dataset size, gradually plateauing off to a mean of
249 species in the four models fitted with 6,860 observations.

The mean predictive performance also increased with increas-
ing sample size but only across those 85 species that were effec-
tively modelled in all five of the initial models fitted to the smallest
dataset (1,000 observations) and in all subsequent models (dark
grey—Figure 2b). There was a progressive and significant increase in
predictive performance for these species up to about 5,000 obser-
vations (albeit these mean increases in predictive performance were
small, range: 0.51-0.54); only muted further increases occurred be-
yond this. By contrast, when the mean predictive performance was
calculated across all species effectively modelled in each model from
the different sized datasets, there was no increase in predictive per-
formance with increasing dataset size (light grey bars—Figure 2b);
this largely reflected the increased inclusion of species with few
observations as the size of the training dataset was increased,
with models for these species generally having lower predictive
performance.

Marked differences were also apparent in the relative contribu-
tions of the different environmental predictors across the models
fitted with datasets of varying size (Figure 3). In GF models with
low sample number (1,000 samples), bathymetry (Bathy) was the
most influential environmental predictor in the analysis, followed
closely by dissolved oxygen at depth (BotOxy), tidal current speed
(TidalCurr), temperature at depth (BotTemp) and salinity at depth
(BotSal; Figure 3). While these same environmental predictors
continued to play a dominant role as the number of observations
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FIGURE 2 Numbers of species effectively modelled and their predictive performance as a function of training data sample size—separate
Gradient Forest models were fitted using five independent samples of 1,000 through 5,000 observations and four samples of 6,860
independent observations; results from a single final model using 13,917 observations are included for comparison. (a) Mean numbers of
fish species effectively modelled versus sample size. (b) Mean predictive performance (sz) for all demersal fish species included in each GF
analyses (light grey bars) and mean predictive performance (sz) for fish species successfully fitted in all 24 models (n = 85—dark grey bars)
versus sample size. Error bars in all plots show the standard error of the mean

used for model fitting increased, their order of importance differed
(Figure 3). Although Bathy showed a small increase in its contri-
bution in GF models fitted with larger numbers of samples (6,860
observations), the contributions of BotOxy, TidalCurr, BotTemp and
BotSal, each became more important than depth with larger sam-
ple sizes. Importantly, the stability of these contributions also in-
creased as sample size increased (i.e., standard errors of their means

decreased).

3.2 | The final model Gradient Forest model

The final GF model was fitted using all 13,917 observations in our
training dataset, assuming that further increasing the number of ob-
servations was unlikely to yield any substantial increase in predictive
performance; all available species (n = 253) had an R2f greater than
zero in this model. Species performance in this model (sz) averaged
0.521, with a range from 0.300 (Eurypharynx pelecanoides—pelican
eel) to 0.913 (Hoplostethus atlanticus—orange roughy); there was
a weak but positive curvilinear relationship between numbers of
positive observations for species and their predictive performance
(Figure 4). The five species with the lowest R2f values (0.3-0.4) had
a mean of 125 positive observations, while the five species with the
highest sz values (0.8-0.913) had a mean of 4,558 positive observa-
tions (see Supporting information Table S1 for a full list of species,
number of positive observations and their associated sz values).
Environmental transformations from the final GF model, con-
structed using the split information contained in the individual
species models, indicate both the overall influence of each environ-
mental predictor and the cumulative changes in species turnover
along its range (Figure 5), while the ranges of the fitted functions
indicate the relative amounts of species turnover associated with
each predictor. Steep parts of the curve indicate fast assemblage

turnover, and flatter parts of the curve indicate more homogenous

Contributions

Environmental predictors

FIGURE 3 Relative importance of environmental variables for
predicting demersal fish species turnover as assessed by Gradient
Forest models; bars show the mean contribution of each predictor,
averaged across five models, and using 1,000 observations (light
grey; n = 5) and 6,860 observations (dark grey; n = 4). Error bars
show the standard error of the mean

regions (Ellis et al.,, 2012; Pitcher et al., 2012). Greatest species
turnover was associated with the predictor describing dissolved
oxygen concentrations at depth (BotOxy) (maximum cumulative im-
portance: 0.06), followed closely by salinity at depth (BotSal), tidal
current speed (TidalCurr) and temperature at depth (BotTemp), with
maximum values for these ranging from 0.04 to 0.05 (Figure 5).
Turnover in relation to other environmental predictors was gen-
erally lower (ranging from 0.005 to 0.04). Inspection of the fitted
functions for these predictors indicate that most had broadly linear
relationships with species turnover, although a number showed a
levelling off in species turnover at higher values, for example, at
depths >1,500 m, tidal current speeds >1.0 m/s and dissolved or-

ganic matter >0.6 mgC m2 day_l.
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3.3 | Classification of the transformed
environmental layers

A generalized model of fish species turnover in New Zealand’s
Extended Continental Shelf to depths of 2,000 m was produced
using GF (Supporting information Figure S2). Although the classifi-
cation of the transformed environmental layers is capable of being

0 2,000 4,000 6,000 8,000 10,000
Observations

FIGURE 4 Individual species R? versus numbers of positive
observations for the final Gradient Forest model using 13,917
observations. The black line represents a line of best fit for
illustrative purposes

sy irnuions VTRV

viewed at widely varying levels of detail, for parsimony, we describe
thirty groups here (Figure 6). These vary widely not only with re-
spect to the transformed environmental predictors (Figure 7a), but
also in their geographic distributions and extents (Figure éb,c), and
their physical and biological characteristics, as described by the raw
environmental predictors and species distribution data (Supporting
information Table S2).

Broadly, environmental differences between classification
groups were relatively muted in the deepest waters (e.g., groups 1,
2 and 13 and groups 3-6, 10 left of Figure 7a, top Figure 6), but dif-
ferences in temperature, oxygen and salinity become increasingly
important in intermediate and shallow depths, for example, groups
7, 9 and 14 occur in more saline, less oxygenated waters (centre
of both Figures 6 and 7a) and groups 8, 20, 26 and 28-30 occur
in less saline, more oxygenated waters (centre of Figure 6 and
lower middle of Figure 7a). Variation in productivity, sea surface
temperature gradients, tidal currents, suspended sediments and
dissolved organic matter were important differentiating factors in
shallow, inshore waters (lower Figure 6 and right of Figure 7a). A
more detailed description of the geographic distributions, extents
and physical and biological characteristics of the 30-group classifi-
cation and a larger scale map of the classified environmental layers
is contained in the Supporting information Figure S3.
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3.4 | Model validation

Comparison of distances for the final classification of the trans-
formed environmental layers, with an equivalent set of biologi-
cal distances calculated using biological samples from our training
dataset, grouped after allocation to their corresponding classifica-
tion group, indicates that the classification is highly effective at cap-
turing biological turnover and therefore compositional differences
between the underlying biological samples. When calculated using
those classification groups represented by 200 or more biological
samples, distances between pairs of groups in the transformed envi-
ronmental space have a correlation of 0.934 with equivalent biologi-
cal distances between the same pairs of groups (Figure 8a). Similar
results were obtained when this comparison was repeated using the
13,917 trawl observations that were withheld from the final model
fitting to allow independent evaluation of model performance (cor-

relation = 0.919, Figure 8b). The respective correlations maintained

text for a broad description of groups is
provided

a high level (0.926 and 0.912, respectively) when this comparison
was repeated using all pairwise comparisons between groups sup-

ported by 100 or more trawl observations.

4 | DISCUSSION

Results from our analysis indicate that Gradient Forest modelling is
capable of effectively combining irregular species distribution data
with spatially continuous environmental data layers to create a com-
prehensive description of spatial variation in species composition
and turnover, in our case for demersal fish species in New Zealand’s
Extended Continental Shelf to depths of 2,000 m. In particular, the
environmental transforms generated by our final model allowed
the creation of a multiscale spatial classification of marine environ-
ments that, when assessed using both the training samples and a
large set of independent samples, proved to be highly effective in
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FIGURE 7 Distributions in PCA and geographic space of 30 groups defined by classification of transformed environmental layers for the
seas within the New Zealand Extended Continental Shelf (dashed line) to a depth of 2,000 m; transformations were derived from a Gradient
Forest model fitted to 13,917 research trawls (Supporting information Figure S2). Colours are based on the first three axes of a PCA analysis
applied to the group means for each of the transformed predictor variables, so that similarities/differences in colour correspond broadly

to intergroup similarities/differences with respect to the transformed environmental variables. (a) Distributions of groups in PCA space,
with vectors indicating correlations with the eight most important environmental predictors and symbol/font size indicating the relative

size of the group area; (b) geographic distributions of groups across New Zealand'’s Extended Continental Shelf (dashed line); (c) geographic
distribution of groups at finer scales, centred on Cook Strait [Colour figure can be viewed at wileyonlinelibrary.com]

summarizing both variation in fish assemblage composition and spe-
cies turnover, as indicated by the high correlation between environ-
mental and compositional distances between pairs of classification
groups. In broad terms, this result is consistent with other analyses
using Gradient Forests in marine environments (Compton et al.
2013; Thomson et al. 2014), although we note that most of these
were carried out over more limited geographic extents and in shal-
lower waters.

Spatial patterns of turnover in New Zealand'’s demersal fish spe-
cies described by our 30-group classification were strongly related
to latitudinal changes in water mass and their associated frontal fea-
tures (STF, TF, SAF, Figure 1b; Foster, Givens, Dornan, Dunstan, &
Darnell, 2013; Francis et al., 2002; Hill, Lucieer, Barrett, Anderson,
& Williams, 2014; Hill etal., 2017). Although environmental dif-
ferences between classification groups were relatively muted in
the deepest waters, differences in temperature, oxygen and sa-
linity become increasingly important in intermediate and shallow

depths. Variation in productivity, sea surface temperature gradients,
tidal currents, suspended sediments and dissolved organic matter
were important differentiating factors in shallow, inshore waters,
where latitudinal differences in environment are in turn reflected in
marked differences in fish species assemblages. These results are
broadly consistent with those from other New Zealand studies at
various spatial scales ranging from regional to national, for exam-
ple, in Francis et al. (2002), Bull et al. (2001), Beentjes et al. (2002),
Kendrick and Francis (2002), Snelder et al. (2007). Using correspon-
dence and cluster analysis, these studies identified depth, and to a
lesser extent, water temperature, latitude (as a proxy for tempera-
ture and water mass) and major oceanographic features as import-
ant variables structuring variation in species composition. While
superficially similar to the earlier classification of the oceans around
New Zealand by Snelder et al. (2007), our GF classification incor-
porates important advances through use of a more comprehensive
set of ocean climate predictors and an evidence-based approach to
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FIGURE 8 Extended biological distances of samples grouped

according to Gradient Forest model classification with more than
200 observations against distance in transformed environmental

space of samples (a) training data (used in the full Gradient Forest
model) and (b) independent evaluation data

transformation of predictors prior to classification. This results in a
classification that more evenly divides parallel variations in species
composition, making it more strongly suited for systematic conser-
vation planning purposes.

Although the species distribution data we used mostly provided
adequate spatial coverage of our study area, several large, outlying
sections had few or no trawl stations, notably the submarine ridges
and steep slopes around the margins of the Campbell and Bounty pla-
teaus. Predictions of fish richness for these areas, produced during a
previous study using a subset of the data used here, had wider confi-
dence intervals than more intensively sampled areas (Leathwick et al.,
2006), indicating that further limited sampling would most likely im-
prove confidence in our results in these locations. A measure of un-
certainty of species turnover could be calculated (similarly to Thomson
et al., 2014) although this does not readily expand to assessing con-
fidence in assemblage classification. Alternatively, other modelling
methods such as Regions of Common Profile (RCP) could be used to
estimate confidence of assemblage classification and which can be
validated spatially using the probabilities of occurrence of the individ-

ual species of the training samples (Foster et al., 2013; Hill et al., 2017).

4.1 | The effect of variation in numbers of training
observations on Gradient Forest models

As atool, GF appears well suited to the analysis of the often sparse
or patchily distributed data that are typically available in marine
environments. Although a GF model could accommodate all the ca.
27,800 observations available to us, use of randomly selected in-
dependent data subsets indicated that both the number of species
effectively modelled and their mean predictive performance (sz)
stabilized when using ~25% of the total available dataset (ca. 7,000
observations). Although the mean species predictive performance
did not vary greatly with sample number, small but consistent

increases occurred for individual species sz as the size of the
training dataset was increased. We interpret this result as most
likely indicating that species that have good observational sup-
port in the models fitted to small datasets, show further predic-
tive refinement as more observations are added; however, mean
predictive performance across all species models fitted when using
larger datasets showed little positive trend because improvements
in well-fitted species were offset by the lower predictive perfor-
mance for rarer species that came into play as the size of the train-
ing dataset increased.

A common set of environmental predictors (Bathy, BotOxy,
TidalCurr, BotTemp and BotSal) played a dominant role in models
fitted with widely varying numbers of observations, although with
some resorting of their order of importance with increasing sample
size (Bosch, Tyberghein, Deneudt, Hernandez, & de Clerck, 2017,
Pitcher et al., 2012). Those predictors showing the largest changes
in importance with increasing sample size were predictors that
were largely invariant except in a few specific locations, for exam-
ple, dissolved organic matter (Disorgm) which varies only in coastal
waters, and sea surface temperature gradient (SstGrad) which
shows locally high values in areas of ocean mixing and along sharply
defined current boundaries, but often with little variation elsewhere.
With increasing sample number, these locally divergent sites were
better represented in the model, and their ability to influence model
outcomes was increased. Therefore, we recommend an explicit ex-
amination of the relative influence of predictor variables across a
range of sample sizes, as an additional consideration when deter-
mining the most appropriate split of data into training and validation
subsets to ensure representation of the full environmental gradient
of the study area. Here, ca. 7,000 observations were adequate to
predict demersal fish turnover across a 2,461,926 km? study area al-
though this is likely to differ for other geographic locations and taxa.

An additional consideration when analysing datasets accumu-
lated for purposes other than biodiversity description is GF’'s more
relaxed assumptions about species absence compared to GDM.
Whereas the latter was primarily designed to work with data list-
ing all species present at each of some set of sample sites (Ferrier
et al., 2007), the individual classification tree regressions fitted
in a GF model make the less stringent assumption that nonpos-
itive occurrences for each species can be treated as an assumed
absence (Pitcher et al., 2011). While this is less ideal than the use
of true presence-absence data, models fitted under this assump-
tion can still produce reasonably robust predictions of species
distributions, particularly when the assumed absences are drawn
from a broader set of samples for the same biotic group (Elith &
Leathwick, 2009; Elith et al., 2006). In the GF models presented
here, true presence/absences were used.

4.2 | Critical appraisal of the “final” Gradient
Forest model

Although our repeated analyses with subsamples of the training
dataset indicated minimal changes in model stability with expansion
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of the data beyond ca. 7,000 samples, we adopted a relatively con-
servative stance, fitting our “final” model with 13,917 observations
or half of the available data; the other half we used solely for in-
dependent evaluation of our “final” model. We could have fitted
models to a higher proportion of the total number of observations (a
typical ratio is 75:25), but we had the luxury of a very large dataset;
consideration should be given to using a higher fraction of the sam-
ple data when using smaller datasets. The 253 individual Random
Forest models in this final GF model had relatively high predictive
performance values (mean R2f of 0.521 and range of 0.3-0.913), and
all showed at least some predictive ability. These results are unusual
for marine species distribution studies; in a model comparison study,
Elith et al. (2006) found that only half of the marine species included
in the study had useable models and few had high predictive power
even for tree ensemble models (BRT and MAXENT), which con-
sistently outperformed more established regression methods (e.g.,
GLM, GAM and MARS).

There was a weak curvilinear relationship between numbers of
positive observations for species and their predictive performance,
that is, more frequently occurring species had better fitting models,
although those with the lowest frequencies still had R2f values >0.3.
Interestingly, there was a broad range of R2f (0.41-0.86) for species
with moderate-high observations (1,000-4,000), reflecting per-
haps the cosmopolitan distribution of some species (e.g., Bassanago
spp., low sz) and the more aggregated nature of others (e.g., orange

roughy, high R%; see Supporting information Table S1). Evidence

from other studfies indicates that species with limited geographic
range and environmental tolerances are generally better modelled
than those with greater ranges (Guisan et al., 2013; Moran-Ordéiiez
et al., 2017; Thomson et al., 2014) because widespread species are
less likely to have sharp easily identifiable environmental thresholds
that clearly delineate their most suitable environmental conditions
(Moran-Ordonez et al., 2017). Reduced model fit could be influ-
enced by historical events, human activities, population and species
dynamics (e.g., recruitment, competition, predation and facilitation)
(Elith & Leathwick, 2009) and temporal environmental patterns (e.g.,
diurnal, tidal and seasonal cycles and fluctuating weather patterns)
not accounted for here (Compton et al., 2013; Pitcher et al., 2012).
The lack of consideration of these factors in a quantitative manner
does not invalidate the use of the GF model for management, but it
should be noted that the representation of assemblages shown here
is a (spatially and temporally) smoothed representation of the raw
data and further work on integrating more explicit predictors into
GF modelling would be of interest (Compton et al., 2013; Thomson
et al,, 2014).

In general, there was a linear relationship between species turn-
over along the individual environmental gradients, although there
was a plateauing in turnover in parts of the range of some variables,
for example, the decrease in species turnover at depths >1,500 m,
with species composition showing minimal further change with
further increases in depth. A lack of steep slopes in the turnover
functions indicates that species distributions generally overlap to a
high degree, which is consistent with findings from other studies of
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shelf fish assemblages both in New Zealand and elsewhere (Beentjes
et al.,, 2002; Bianchi, 1991; Farina, Freire, & Gonzalez-Gurriaran,
1997; Fujita, Inada, & Ishito, 1995).

4.3 | Usefulness of Gradient Forest models for
conservation planning

In our view, the strong discrimination of fish distribution pat-
terns across New Zealand'’s Extended Continental Shelf shown by
our classification of the transformed environmental layers pro-
duced by our “final” GF analysis makes it well suited as a primary
input to systematic spatial conservation planning analyses (e.g.,
using spatial planning software such as Zonation (Lehtomaki &
Moilanen, 2013) or Marxan (Ball, Possingham, & Watts, 2009)).
In addition, significant gains can be expected if such analyses are
implemented using prioritization tools that, rather than treating
all groups as equally different from each other, take account of
their varying intergroup similarities, allowing greater priority to
be given to more distinctive species assemblages as can be imple-
mented, for example, in Zonation (Leathwick, Moilanen, Ferrier,
and Julian 2010).

Given the hierarchical nature of the classification, consideration
will be required as to what constitutes the most appropriate level
of classification detail for conservation planning purposes. Here,
we have chosen to describe the classification at a 30-group level
to facilitate communication; however, our testing of correlations
between environmental and biological distances at higher levels of
classification detail (up to 100 groups) indicate that these levels
can provide even greater discrimination of compositional differ-
ences and species turnover than those presented here. In addition,
using a higher number of classification groups is likely to be more
appropriate for a regional scale analysis, particularly for inshore
areas where there is a greater heterogeneity in environmental con-
ditions. Alternatively, regional patterns may be better described
by analyses using regional subsets of the data, particularly if the
mix of factors controlling species turnover varies region by region.
Results presented here would be of use for a gap analysis of assem-
blages currently protected in MPAs (Leaper et al., 2011) and would
allow evidence-based targeting of underrepresented assemblages
for further sampling and/or protection (Ferrier et al., 2007; Pitcher
etal., 2007).

Finally, consideration will be required of which other taxonomic
groups should be included in any operational conservation plan-
ning; for example, models describing the distributions of macroal-
gae and benthic invertebrates could be used in conjunction with
our model for demersal fish (Thomson et al., 2014). Data for these
different taxonomic groups could be analysed using a prioritization
analysis with separate spatial layers describing each classification
of interest (Geange et al., 2017). Alternatively, GF modelling allows
the combination of results from different datasets into a single uni-
fied classification through the averaging of the species turnover
functions across taxonomic groups (see example in Pitcher et al.
2012), an approach that GF facilitates through its ability to handle
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differences in survey methods, sampling devices and/or measure-
ment scales (counts, weights, abundance and presence/absences;
Ellis et al., 2012). However, because this type of analysis has not
been undertaken to our knowledge using such widely differing tax-
onomic groups, we are uncertain as to whether this would provide
an adequate spatial representation of all the species of interest (C.
R. Pitcher, pers. comm. 2018) and suggest this as a topic for future

investigation.

5 | CONCLUSION

Gradient Forest modelling provided an effective way to combine
research trawl records with a set of relevant environmental data
layers to create a generalized model of demersal fish composi-
tional turnover across a very large spatial extent (New Zealand'’s
Extended Continental Shelf to depths of 2,000 m). However, the
recent development of Gradient Forest modelling means that
some aspects of using its outputs require further investigation.
Of note is a lack in understanding of changes in environmental
predictor importance with varying scale (geographic and richness
of sampling) and best practice for use in conservation planning,
although further work is currently underway to further inform
these areas. Although an extensive set of sampling locations was
available for the training and validation of the model, results here
suggest that model performance stabilized when using a relatively
low number of samples (~5,000-7,000). This provides a key ad-
vantage when modelling marine species where sampling is often
irregularly distributed, opportunistic (presence only) and expen-
sive. The resulting spatial description of species composition and
turnover in New Zealand demersal fish assemblages will be highly

valuable for underpinning evidence-based conservation planning.
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