

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New
Zealand).

This thesis may be consulted by you, provided you comply with the
provisions of the Act and the following conditions of use:

• Any use you make of these documents or images must be for
research or private study purposes only, and you may not make
them available to any other person.

• Authors control the copyright of their thesis. You will recognise the
author's right to be identified as the author of this thesis, and due
acknowledgement will be made to the author where appropriate.

• You will obtain the author's permission before publishing any
material from their thesis.

To request permissions please use the Feedback form on our webpage.
http://researchspace.auckland.ac.nz/feedback

General copyright and disclaimer

In addition to the above conditions, authors give their consent for the
digital copy of their work to be used subject to the conditions specified on
the Library Thesis Consent Form and Deposit Licence.

Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and
contains no corrections. The print copy, usually available in the University
Library, may contain alterations requested by the supervisor.

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm

A FRAMEWORK FOR ANNOTATING AND

VISUALIZING CELLML MODELS

SARALA M. WIMALARATNE

Supervised by: Dr. Matt D. B. Halstead and Associate Professor Poul F. Nielsen

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Biomedical Engineering

The University of Auckland, New Zealand

May 2009

 i

To Sajith, mom, dad, and sister for their unconditional love

 ii

ABSTRACT

The Physiome Project was established to develop tools for international collaboration and

sharing physiological knowledge in the form of biological models and experimental data. The

CellML language was developed in response to the need for a high-level language to

represent and exchange mathematical models of biological processes.

The language provides a flexible framework for describing the dynamics of biological

processes but does not explicitly lend itself to capturing the underlying biological concepts

such as the entities and processes that these models represent. The relationship between the

biological process and the mathematical model describing the biological process is also often

complex. This makes it difficult to see the biological concepts which the CellML structures

represent. A framework which supports visualizing the biological concepts and its

relationship to the underlying CellML model would provide a very useful toolset for

understanding the biological concepts modeled in CellML.

The CellML models need to be annotated with biological concepts in order to provide the

machine interpretable data for generating a visual representation. We have developed an

ontological framework which can be used to explicitly annotate CellML models with physical

and biological concepts, a method to derive a simplified biological view from the

annotations, a visual language for representing all biophysical processes captured in the

CellML models, and a method to map the visual language to the ontological framework in

order to automate the generation of visual representations of a model.

The proposed method of model visualization produces a result that is dependent on the

structure of the CellML models which requires modelers to structure the model in a way that

best describes the biophysical concepts and abstractions they wish to demonstrate. Our

argument is that this leads to a best practice approach to building and organizing models.

As a part of this research, a software tool for visualizing CellML models was developed.

This tool combines the visual language and the ontologies to generate visualizations that

depict the physical and biological concepts captured in CellML models and enables different

communities in diverse disciplines to more easily understand CellML models within the

biological domain they represent.

As research continues, with further improvement to the framework it would be possible

to visually construct composite CellML models by selecting high level biological concepts.

 iii

ACKNOWLEDGEMENT

I express my sincere gratitude towards my supervisors Dr Matt Halstead and Associate

Professor Poul Nielsen for their enormous efforts giving guidance and encouragement

throughout the course of this project.

I wish to gratefully acknowledge, Professor Peter Hunter, Dr Edmund Crampin,

Associate Professor Gill Dobbie, Dr Catherine Lloyd, Dr Mike Cooling, and Dr

Vijayaraghavan Rajagopal for their advice and assistance.

I am also thankful to a number of international researchers for fruitful discussions and

stimulating suggestions on several aspects of this work; Dr Hiroaki Kitano, Dr Nicolas Le

Novère, Dr Michael Hucka, Dr Emek Demir, Ms Yukiko Matsuoka, and Dr Akira Funahashi.

I am grateful for financial assistance from the University of Auckland in the form of a

doctoral scholarship. Also to the Education New Zealand Study Abroad Award to Japan and

a number of conference and travel grants. Without these financial supports this work would

have been impossible.

I wish to thank my fellow postgraduate students and administrative staff at the Auckland

Bioengineering Institute for providing a friendly atmosphere.

Finally thanks to my in-laws for their support and encouragement during this study.

 iv

TABLE OF CONTENT

ABSTRACT .. II

ACKNOWLEDGEMENT .. III

TABLE OF CONTENT ... IV

LIST OF FIGURES ... VII

LIST OF TABLES .. IX

ABBREVIATIONS ... X

1 INTRODUCTION .. 1

1.1 Modeling languages for describing mathematical models of biology 2

1.1.1 Markup languages for describing mathematical models of biology 2

1.1.1.1 CellML ... 3

1.1.1.2 Systems biology markup language (SBML) .. 4

1.1.2 Ontological languages for describing mathematical models of biology 5

1.2 Identifying the problem in detail .. 6

1.2.1 Prototype development... 7

1.3 Journal publications from this thesis .. 13

2 GUIDELINES FOR STRUCTURING CELLML MODELS ... 15

2.1 Introduction ... 15

2.2 Methods .. 19

2.2.1 Identification and representation of biophysical concepts and common

mathematical constructs... 21

2.2.2 Reconstruction of the original biological concepts by combining the

components, providing model-specific values and using generic components 23

2.2.3 Use of encapsulation to partition the details of a model into a hierarchy of

components ... 24

2.3 Results ... 25

2.3.1 Modularization of the G protein-coupled receptor (GPCR) cycle.................... 25

2.3.2 Modularization of the Hodgkin–Huxley model... 30

2.3.3 Modularization of the Noble model .. 34

2.4 Discussion ... 36

3 BIOPHYSICAL ANNOTATION AND REPRESENTATION OF CELLML MODELS 40

 v

3.1 Introduction ... 40

3.2 Methods .. 44

3.2.1 Transformation of a CellML/XML model into a CellML/OWL model 45

3.2.2 Annotation of a CellML/OWL model to a CellMLBiophysical/OWL model .. 48

3.2.2.1 Annotating physical information ... 49

3.2.2.2 Annotating biological information... 51

3.2.3 Simplification of a CellMLBiophysical/OWL model...................................... 53

3.3 Results ... 55

3.3.1 Representing the K_Ionic_Flow model in CellML ... 55

3.3.2 Translating the K_Ionic_Flow CellML model into a CellML/OWL model 56

3.3.3 Annotating the K_Ionic_Flow CellML/OWL instances to

CellMLBiophysical/OWL instances .. 56

3.3.4 Simplifying the K_Ionic_Flow CellMLBiophysical/OWL model to show the

biological view .. 57

3.4 Discussion ... 62

4 A METHOD FOR VISUALIZING CELLML MODELS ... 66

4.1 Introduction ... 66

4.2 Methods .. 70

4.2.1 The development of a standardized visual language for representing the

physical and biological processes captured in the CellML models 71

4.2.1.1 A visual language for representing physical concepts .. 71

4.2.1.2 A visual language for representing the biological concepts 72

4.2.2 The representation of the visual language in computer readable form 74

4.2.3 The mapping of the visual language to the CellMLBiophysical/OWL ontology..

 .. 76

4.2.4 The development of an algorithm for generating visualizations of CellML

models .. 78

4.2.4.1 Generating visualizations of the physical concepts in a CellML model 78

4.2.4.2 Generating visualizations of the biological concepts in a CellML model 79

4.3 Results ... 81

4.4 Discussion ... 86

5 A SOFTWARE TOOL FOR VISUALIZING CELLML MODELS 90

5.1 Introduction ... 90

 vi

5.2 Implementation.. 92

5.2.1 Application of the CellMLViewer .. 93

5.2.1.1 Visualizing CellML models without annotated biophysical data 95

5.2.1.2 Annotating CellML models with biophysical concepts and visual language data 96

5.2.1.3 Visualizing the annotated CellML models capturing the underlying physical and

biological concepts ... 97

5.2.1.4 Layout the diagrams to illustrate the sequence of biological interactions 98

5.2.1.5 Storing visual representations.. 98

5.2.2 System architecture .. 99

5.3 Discussion ... 100

5.4 Availability and requirements .. 102

6 CONCLUSIONS .. 103

REFERENCES ... 108

 vii

LIST OF FIGURES

Figure 1.1: A signaling cascade regulating L-type calcium channel 6

Figure 1.2: Structuring and storing biological knowledge using XML 8

Figure 1.3: Notation for visualizing the underlying biology modeled in CellML 9

Figure 1.4: Glyphs represented in SVG ... 10

Figure 1.5: Sequence diagram illustrating the functionality supported by the prototype tool 11

Figure 1.6: Visualization of cAMP/PKA cascade regulating L-type calcium channel

generated from the prototype tool .. 12

Figure 2.1: CellML structure ... 17

Figure 2.2: The three modularizing steps applied to an example, formation of receptor–

ligand–G protein phosphorylated complex .. 20

Figure 2.3: Schematic diagram of the GPCR pathway ... 26

Figure 2.4: The set of CellML models developed to describe the GPCR cycle 27

Figure 2.5: The GPCR cycle modeled in CellML .. 29

Figure 2.6: A set of models describing several electrophysiological concepts 31

Figure 2.7: Description of the Hodgkin–Huxley model in CellML....................................... 33

Figure 2.8: Describing the Noble model in CellML ... 35

Figure 3.1: Modeling the formation of cyclic adenosine monophosphate (cAMP) in BioPAX

 ... 43

Figure 3.2: CellML structures.. 46

Figure 3.3: Example of a metadata definition .. 48

Figure 3.4: CellMLBiophysical/OWL ontology top-level class structure 49

Figure 3.5: A physical-entity graph generated for a CellML model 50

Figure 3.6: The mapping between Physical instances and Biological instances 52

Figure 3.7: Application of the reducing rules ... 54

Figure 3.8: Modeling the potassium ionic current described in Hodgkin-Huxley model 56

Figure 3.9: The K_Ionic_Flow model .. 57

Figure 3.10: Annotating the imported K_Channel shown in Figure 3.9 59

Figure 3.11: Annotated Hodgkin-Huxley model .. 61

Figure 4.1: Schematic diagram illustrating a CellMLBiophysical/OWL model 70

Figure 4.2: A notation for visualizing physical concepts .. 72

Figure 4.3: A notation for representing biological concepts ... 73

 viii

Figure 4.4: Template codes describing the visual language .. 75

Figure 4.5: Class structure of the VisualTemplate/OWL ontology 77

Figure 4.6: Mappings for generating the physical view .. 79

Figure 4.7: Mappings for generating the biological view ... 80

Figure 4.8: Visualizing the K_Ionic_Flow model .. 83

Figure 4.9: Physical view generated for the Hodgkin–Huxley model 84

Figure 4.10: Biological view generated for the Hodgkin-Huxley model 85

Figure 5.1: Sequence diagram for user activity flow for visualizing and annotating CellML

models .. 94

Figure 5.2: A visualization generated for a CellML model without annotations 95

Figure 5.3: A CellMLBiophysical/OWL model loaded in Protégé 96

Figure 5.4: Biological view generated from an annotated CellMLBiophysical/OWL model 98

Figure 5.5: Schematic diagram of the system architecture underlying the model visualization

tool CellMLViewer ... 99

Figure 5.6: Model associations .. 100

 ix

LIST OF TABLES

Table 4.1: Relationship between the GenericNode instances and the glyph types used in the

K_Ionic_Flow model .. 82

Table 4.2: Relationship between the connections and the glyph types used in the

K_Ionic_Flow model .. 82

Table 4.3: Relationship between the GenericNode instances and the glyph types used in the

Hodgkin-Huxley model ... 85

Table 4.4: Relationship between the connections and the glyph types used in the Hodgkin-

Huxley model.. 85

 x

ABBREVIATIONS

AC Adenylyl cyclase

ATP Adenosine triphosphate

BioPAX Biological pathways exchange

cAMP Cyclic adenosine monophosphate

COPASI Complex pathway simulator

COR Cellular open resource

CSML Cell system markup language

CSO Cell system ontology

DOM Document object model

FMA Foundational model of anatomy ontology

Gd G Protein with attached guanosine diphosphate

Gi Inhibitory G protein

GO Gene ontology

GPCR G protein-coupled receptor

Gs Stimulatory G protein

Gt G protein with attached guanosine triphosphate

GUI Graphical user interface

IP3 Inositol 1,4,5-trisphosphate

K Potassium

L Ligand

MathML Mathematical markup language

MATLAB Matrix laboratory

MIM Molecular interaction maps

Na Sodium

OBO Open biological ontology

OWL Web ontology language

OWL-DL Web ontology language – descriptive logic

PATIKA Pathway analysis tools for integration and knowledge acquisition

PCEnv Physiome CellML environment

PKA Protein kinase A

PMR Physiome model repository

 xi

R Receptor

Rg Receptor-G protein complex

R1 Receptor-ligand complex

R1g Receptor–ligand–G protein complex

R1gp Receptor–ligand–G protein phosphorylated complex

RDF Resource description framework

RDFS Resource description framework schema

SBML Systems biology markup language

SBO Systems biology ontology

SVG Scalable vector graphics

XLink XML linking language

XML Extensible markup language

Chapter 1 - Introduction

 1

1 INTRODUCTION

The development of quantitative models to understand the dynamics of complex biological

processes is increasing due to the rapid growth of biotechnology and experimental techniques

[1]. This knowledge is acquired across different disciplines such as physiology, biomedicine,

biophysics, and engineering, generating a need for a consistent method for representing,

storing, and exchanging these mathematical models.

There exist many ways for representing and solving mathematical models of biological

processes. Most models are published in journals using standard mathematical representation.

These may be solved by writing model-specific computer code using tools such as MATLAB

[2]. However, the specificity of such code fails to support the sharing, exchange, and reuse of

models. Furthermore, to accurately interpret mathematical equations presented in journals,

readers and writers should have a common understanding of the terms that are being used.

The meanings of most terms are generally captured in the text but this could still lead to

misinterpretation of the writer‟s intension. To reduce such confusion, modelers may use

common Extensible Markup Language (XML) [3] standards such as content Mathematical

Markup Language (MathML) [4] or OpenMath [5] to represent the mathematics of a model,

which can then be solved using tools that support these standards combined with model

specific computer code. This allows modelers to represent exchangeable mathematics but

Chapter 1 - Introduction

 2

requires the writing of specific software for model simulation. During late 1990s a set of tools

were developed to allow modelers to build and simulate models. This tool set includes:

Virtual Cell [6] which can be used to develop and simulate detailed biochemical pathways; E-

Cell [7] which can be used to build and simulate biochemical and genetic processes; COPASI

(Complex Pathway Simulator) [8] which can be used to build and simulate biochemical

pathways in cells; and JSim [9] which can be used for building quantitative numeric models

and analyzing them with respect to experimental reference data. However, these tools are

specific to particular biological domains and integrating models generated from different

software is, in general, extremely difficult. In response to the need for a high-level language

to represent and exchange mathematical models of biological processes, independent of the

different model-building software packages, biological modeling communities started

looking at developing tool-independent modeling languages for building biological models.

1.1 MODELING LANGUAGES FOR DESCRIBING MATHEMATICAL

MODELS OF BIOLOGY

This section describes a set of modeling languages developed to represent mathematical

models of biological concepts that can be used in various computer applications to solve the

models.

1.1.1 MARKUP LANGUAGES FOR DESCRIBING MATHEMATICAL MODELS OF

BIOLOGY

Extensible Markup Language (XML) is a meta-language published by the World Wide Web

Consortium [10]. It provides a flexible way to express data in a computer readable form

independent of software applications. The language provides flexibility to represent any kind

of data, ranging from simple text, complex mathematics to domain specific knowledge. It is

also the backbone of many internet-related standards. Furthermore, XML supports integration

with other standards such as Resource Description Framework (RDF) [11], a standard for

defining data about data which is often referred to as metadata. These characteristics have

lead to the development of a number of markup languages for describing mathematical

models of biological process:

 CellML [12] – for describing the mathematics, topology, and metadata of biological

processes;

Chapter 1 - Introduction

 3

 The Systems Biology Markup Language (SBML) [13] – for representing models in

systems biology;

 The Cell System Markup Language (CSML) [14] – for modeling biological pathways;

 The Virtual Cell Markup Language (VCML) [15] – for describing biological and

mathematical models and specifications for analysis to be performed on those models.

CellML and SBML are currently the most widely used XML markup languages for

describing mathematical models of biological process.

1.1.1.1 CellML

CellML promotes consistency between computational and published models and establishes a

flexible framework for the reuse of models and model repositories [16]. The CellML

repository contains over 360 models covering a wide range of biological processes including

signal transduction pathway, metabolic, electrophysiological, calcium dynamics,

immunology, cell cycle, and smooth and skeletal muscle models [17].

CellML models are constructed using a network of interconnected components. A

component is the basic unit of a CellML model, containing variables, mathematical

equations, which define the relationships between the variables, units, and metadata [18].

Connections specify how variables are shared between the components [18]. CellML

supports a feature called encapsulation to hide a set of components from the rest of the model

[18]. CellML‟s import feature can be used to import components, connections and units other

models to reuse. This enables users to reuse parts of existing models and provides an efficient

framework for model building. The structure of CellML and these features are discussed in

detail in Chapter 2.

The CellML language also uses other XML-based standards such as MathML, XML

Linking Language (XLink) [19], and RDF, to represent mathematics, import other models,

and describe metadata, respectively.

CellML is one of the standard languages used for model representation in the Physiome

Project [20]. The Physiome Project is a global public-domain effort to describe the

physiology and functional behavior of mammalian physiology. It requires the integration of

models over a wide range of spatial and temporal scales, and collaboration between research

groups around the world. This effort aims to address the difficulties associated with

representing and integrating different levels of biological knowledge ranging from nano-

Chapter 1 - Introduction

 4

scale, cells, tissues, to organ level. Markup languages are being defined to encode the models

in a consistent form to support their representation, storage, exchange, and simulation.

Currently CellML is mainly used to model biological processes occurring at the sub cellular

to tissue level scales [1].

In order to support the CellML user community needs, the CellML development team is

working on:

 the CellML level 1.2 specification [21] to improve and extend the descriptive capabilities

of the CellML language;

 the Physiome Model Repository (PMR) [22] to facilitate model upload, storage, and

download;

 model curation to ensure that the mathematics from the publication is accurately

represented in the CellML and validating the models with respect to their function and

output;

 model annotation to add context to CellML elements, simulation data, graphing data, and

to facilitate database searching;

 an Application Programming Interface [23] to provide a standard interface for

applications to manipulate and process CellML documents;

 tools such as OpenCell [24] for creating, simulating, analyzing and graphing simulation

data.

1.1.1.2 Systems biology markup language (SBML)

SBML is mainly used to model biochemical reactions, signaling pathways, metabolic

pathways, and gene regulation networks [13]. Modelers can describe biological components

using compartments and species. Their dynamic behavior is described using reactions, events,

and mathematical rules. The BioModels database [25] contains a large number of ready-to-

use curated SBML models.

SBML also uses other XML-based standards such as MathML to represent mathematics.

SBML also defines a method for the association of its components to Systems Biology

Ontology (SBO) [26] terms in order to provide a biological context for the model.

SBML is the de facto standard for representing systems biology models [27]. Systems

biology is a new field of study that focuses on investigating complex interactions in

biological systems. In this field, the main emphasis is placed on understanding the structure,

Chapter 1 - Introduction

 5

dynamics, control methods, and design methods of gene regulatory networks and biochemical

pathways [28]. SBML facilitates qualitative and quantitative modeling, storing, and exchange

of models of biological systems.

Currently there is a large community support for the use and improvement of the SBML

language. This includes the development of:

 the SBML level 2 [29] specification to improve the SBML language;

 the SBO [30] for annotating SBML models;

 the BioModels database [26] to store, search and retrieve published SBML models;

 Application Programming Interfaces [31] to provide interfaces for applications to work

with SBML documents and integrate them with applications such as Mathematica [32]

and MATLAB [2];

 over 120 software tools [33] for creating, simulating, analyzing, and visualizing SBML

models including graphing simulation data.

1.1.2 ONTOLOGICAL LANGUAGES FOR DESCRIBING MATHEMATICAL MODELS

OF BIOLOGY

Recent ontology-based approaches to solving domain specific problems have gained the

interest of the scientific community. An ontology is a formal specification of concepts and

relations between concepts within a domain of knowledge. It defines a common vocabulary

and set of rules to unambiguously represent information [34].

The Web Ontology Language – Descriptive Logic (OWL-DL) [35] and the Open

Biological Ontology (OBO) [36] are the two most widely-used ontological representation

languages among the biological community. They have different levels of expressivity, rules

for capturing knowledge, and computational properties. OWL-DL is a highly expressive

language for building knowledge bases and provides powerful reasoning methods. The OBO

file format is a subset of OWL-DL and provides a simpler framework for constructing

ontologies and reasoning. Details and the usage of the OWL language are further discussed in

Chapter 3.

The Cell System Ontology (CSO) [37] is being developed to explore the benefits of using

an ontology to represent quantitative and qualitative aspects of biochemical pathways. The

ontology supports the storage of modeling, visualization, and simulation data. CSO is

Chapter 1 - Introduction

 6

expressed in OWL-DL and uses the reasoning capabilities to check the consistency of

biological pathway models.

1.2 IDENTIFYING THE PROBLEM IN DETAIL

Generally journal articles describing mathematical models of biological concepts use

schematic diagrams to represent the biological concepts that are being modeled in order to

make it easier for readers to comprehend the mechanisms being described. Figure 1.1 shows a

schematic diagram of the cAMP/PKA cascade regulating the L-type calcium channel [38].

Figure 1.1: A signaling cascade regulating L-type calcium channel

A schematic of the cAMP/PKA cascade regulating L-type calcium channel. Figure

derived from [(Kamp and Hell, 2000), Figure 2A].

The diagram in Figure 1.1 clearly conveys the biological entities involved in the pathway

but the diagram by itself is insufficient for interpreting all the biological concepts being

modeled due to the ambiguous use of icons. For example it does not uniquely identify the

different biological processes that occur in the pathway. To interpret the diagram correctly it

needs to be supported with text that describe the underlying biological concepts being

illustrated. The legend accompanying this figure is:

“Stimulation of b1AR or b2AR leads to Gs-mediated activation of AC and increased

production of cAMP, which stimulates PKA. PKA can then phosphorylate the channel

at multiple potential sites indicated schematically by the single P in the diagram. The

PKA phosphorylated site(s) is then sensitive to the phosphatases PP1 and PP2A.

Chapter 1 - Introduction

 7

Whereas b1AR regulation causes more global increases in cAMP, b2AR stimulation

can result in highly localized cAMP level changes and regulation. Regulatory proteins

may be localized to the channel by an AKAP for PKA and by binding of PP2A to the C

terminus of the channel. Muscarinic M2 receptors can oppose the bAR upregulation of

ICa by acting through Gi to inhibit AC [38].”

Combined, the figure and the legend allow readers to interpret the biological processes as

intended by the writer.

CellML provides sufficient flexibility to describe the above model in a way that closely

represents the entities and processes described in the diagram but this is often not done when

constructing models. In many models, the biological knowledge is implicit in the names of

components and variables. Understanding the relationship between the diagram and the

CellML model can be time-consuming and lead to misinterpretation of the models.

The goal of this work is to provide a method to generate detailed biological visualizations

directly from CellML models, where the models themselves contain explicit descriptions of

biological meaning. The goal is to also establish the use of a well-understood visual

terminology that can be used to represent this meaning without a textual explanation.

A prototype tool was developed to understand the problems in detail and identify specific

tasks. This involved investigating a method to define the biological concepts modeled in

CellML, a visual language to represent these concepts, and programmatically generating

visualizations of the biological concepts. The next section describes the development of the

prototype tool.

1.2.1 PROTOTYPE DEVELOPMENT

This section discusses a method and software for generating a visual representation of the

pathway described in section 1.2; the cAMP/PKA cascade regulating L-type calcium channel.

Since the CellML model does not explicitly represent the biological knowledge, an

intermediate level is introduced to represent a biological model. The aim of the biological

model is to capture biological processes and entities, and the relationships between them.

This biological model integrated with a visual language can be used to visualize the biology

of the CellML model.

XML is used to structure and store the biological knowledge (Figure 1.2). The entity

element describes the biological species. It has three attributes:

 id - specifies a unique identifier for the biological entity;

Chapter 1 - Introduction

 8

 name - name of the biological entity;

 type - type of the biological entity.

The process element group the entities involved in a particular biological process. The

connection element to state whether the biological entity involved in a particular process is

acting as reactants, products, or modifiers. Each connection element has two attributes:

 entityid - refers to an entity;

 type - specifies whether it is a reactant, product, or modifier.

Figure 1.2: Structuring and storing biological knowledge using XML

(a) Visual representation of the way in which the XML schema models the

underlying biological process, formation of Adrenaline_Beta_1AR. Beta_1AR,

Adrenanline, and Adrenaline_Beta_1AR is encoded using the Entity element. The

reaction is encoded using the Process element. Relationships between the entities

and the reaction are represented using the Connection element. (b) XML model

capturing the underlying biology. Code segment describes the entities, process,

and the relationship between the entities represented in the Adrenaline_Beta_1AR

reaction model in XML.

A set of visual glyphs were developed to visualize these biological entities, processes,

and the relationships captured in the XML file. Various shapes are used to represent protein,

receptor, closed ion channel, opened ion channel, small molecule and complex (Figure 1.3).

A set of connection glyphs are used to represent the roles activator, catalyst, reactant,

product, and inhibitor (Figure 1.3).

Entities

Connections

Processes

Entities

a

b <ontology>

<entity id="0" name="Adrenaline" type="receptor"/>

<entity id="1" name="Beta_1AR" type="protein"/>

<entity id="2" name="Adrenaline_Beta_1AR" type="complex"/>

<process type=”process”>

<connection entityid="0" type="reactant"/>

<connection entityid="1" type="reactant"/>

<connection entityid="2" type="product"/>

</process>

</ontology>

Chapter 1 - Introduction

 9

Figure 1.3: Notation for visualizing the underlying biology modeled in

CellML

(a) Glyphs for representing the entities. (b) A glyph for representing the processes.

(c) Glyphs for representing the connections.

To enable programmatic generation of diagrams, these visual objects need be represented

in computer readable form. This is achieved using Scalable Vector Graphics (SVG) [39].

SVG is an XML-based interoperable graphics standard for 2-dimensional graphics and can be

used to programmatically render graphics from database data to enable dynamic image

updates. Details and the usage of SVG are further discussed in Chapter 4.

To store the graphics shown in Figure 1.3 a SVG file (symbols.svg) was formed. The

code segment in Figure 1.4a shows the composition of the graphics for an ion. The circle

element specifies the symbol for the ion. The base element specifies the area coverage by the

graphic object and the handler element specifies the connection points that can be used to

connect glyphs together. Figure 1.4b shows a segment of the graphics for representing

connections. Line and arrow coordinates are calculated and set at runtime.

a b

c

Chapter 1 - Introduction

 10

View of the above code

base

handler

All the components specified

in the above code

<g id="ion" name="ion" >

<circle cx="20" cy="20" r="20" style="fill:#2ae188;stroke:#000000;stroke-width:1.0000000" />

<rect id="base" x="0" y="0" width="40" height="40" style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none"/>

<path id="handler" d="M 20,0 L 40,20 L 20,40 L 0,20 Z " style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none"/>

</g>

<g id="product" name="product">

<line id="line" x1="100px" y1="100px" x2="150px" y2="150px" stroke="black" stroke-width="2"/>

<path id="arrow" d="M 0,0 L 50,25 L 100,0 Z" style="fill:#000000;stroke:#000000;stroke-width:1.0000000" />

</g>

a

b

Figure 1.4: Glyphs represented in SVG

(a) Code segment representing an ion. (b) Code segment representing a product

connection.

A prototype tool was developed in Java to generate diagrams by reading the XML file

and the SVG graphics. Values of the type attributes encoded in the XML file are used as the

key to find the related SVG graphics that needs to be integrated to generate a visualization.

The sequence diagram drawn in Figure 1.5 illustrates a detailed breakdown of the behavior

and the functions supported by the tool. The steps from 1 to 7 shows the actions executed to

generate a visualization for the selected biological model. The tool did not support automated

layout of diagrams but it provided a graphical user interface to allow modelers to layout these

glyphs to highlight the sequence of biological events.

Chapter 1 - Introduction

 11

Software Application CellML Libraries

Use interface System tools SVG glyphsBiological Model Visual Representation

(1) Visualise a biological model

(8) Layout the visual representation

(9) Save the visual representation

(3) Retrieve the biological model

(2) Select the biological model

(4) Find related glyphs

(5) Retrieve the related glyphs

(6) Generate a visualisation

(7) Display the visual representation

Figure 1.5: Sequence diagram illustrating the functionality supported by the

prototype tool

Numbered event sequence shows the steps for generating a visualization for a

selected model.

The visualization generated for cAMP/PKA cascade regulating L-type calcium channel

using the prototype tool is illustrated in Figure 1.6. This diagram also shows how the visual

language identifies the entities, processes, and modifiers. Glyphs with different shapes

identify different types of biological entities. Lines with different types of line-ends represent

the reactants, products, catalysts, inhibition, and activation.

Chapter 1 - Introduction

 12

Figure 1.6: Visualization of cAMP/PKA cascade regulating L-type calcium

channel generated from the prototype tool

The diagram identifies channels, proteins, small molecules, receptors, and

complexes with unique glyphs. Processes are drawn as gray circles. The

connections show the relationship between the processes and the entities.

Note that the XML biological model representing the CellML model is not mapped to the

original CellML model. In order to visualize a CellML model via this biological model, these

need to be linked. To enable this mapping, a modeler will need to restructure the CellML

model by grouping or encapsulating components so that it captures the biological model that

the modeler wishes to represent.

The prototype illustrated a simple method for creating a biological model, a simple visual

language, and a tool that combines these developments, which could be used to generate a

visualization of biological concepts captured in a CellML model. It highlighted the

challenges that need to be addressed in detail to generate visualizations starting from CellML

models depicting the underlying biological concepts. This includes:

 guidelines for structuring a CellML model. In order to visualize and annotate the

underlying biology of CellML models, they need to be structured in a way that groups the

biological concepts;

 representing the underlying biological concepts in CellML models. A method for

capturing the underlying biological concepts which can be used to generate a graphical

representation of the processes and entities;

Chapter 1 - Introduction

 13

 a visual language for representing the biological concepts modeled in CellML models and

a method to associating it to the CellML elements;

 a tool that combines the notation, biology, and CellML to generate visualizations.

The next chapters explore these challenges.

Chapter 2 describes building smaller models that isolate biological concepts, and using

these to build complex biological systems. These help to provide a clearer representation of

the biophysical processes in the CellML model.

Chapter 3 describes developing an ontological framework representing the underlying

physical and biological concepts modeled in CellML and annotating these to the model.

Chapter 4 describes an extension of the ontological framework to combine a visual

language together with CellML ontologies and an algorithm for producing visual

representations of the biology.

Chapter 5 describes the development of a software tool to combine CellML, ontological

framework, and the visual language to support the visualization of the physical and biological

concepts and its relationship of the underlying CellML model.

1.3 JOURNAL PUBLICATIONS FROM THIS THESIS

 S. M. Wimalaratne, M. D. B. Halstead, C. M. Lloyd, M. T. Cooling, E. J. Crampin, and P.

F. Nielsen. Facilitating Modularity and Reuse: Guidelines for Structuring CellML 1.1

Models by Isolating Common Biophysical Concepts. Experimental Physiology, 2009, 94,

472-485.

 S. M. Wimalaratne, M. D. B. Halstead, C. M. Lloyd, E. J. Crampin, and P. F. Nielsen.

Biophysical annotation and representation. Bioinformatics, 2009, 25, 2263–2270

 S. M. Wimalaratne, M. D. B. Halstead, C. M. Lloyd, M. T. Cooling, E. J. Crampin, and P.

F. Nielsen. A method for visualizing CellML models. Bioinformatics, 2009, 25, 3012-

3019.

 D. A. Beard, R. Britten, M. T. Cooling, A. Garny, M. D.B. Halstead, P. J. Hunter, J.

Lawson, C. M. Lloyd, J. Marsh, A. Miller, D. Nickerson, P. M. F. Nielsen, T. Nomura, S.

Subramanium, S. M. Wimalaratne, T. Yu. CellML metadata standards, associated tools

and repositories. Philosophical Transactions of the Royal Society A, 2009, 367, 1845-

1867.

Chapter 1 - Introduction

 14

 N. L. Novère, S. Moodie, A. Sorokin, M. Hucka, F. Shreiber, H. Mi, E. Demir, K.

Wegner, M.Aladjem, S. M. Wimalaratne, F. Bergman, R. Gauges, P. Ghazal, K. Hideya,

L. Li, Y. Matsuoka, A. Villeger, M. Courtot, U. Dogrusoz, T. Freeman, A. Funahashi, S.

Ghosh, A. Jouraku, S.Kim, F. Kolpakov, A. Luna, S. Sahle, S. Watterson, I. Goryanin, D.

Kell, K. Kohn, H. Kitano. The Systems Biology Graphical Notation. Nature

Biotechnology, 2009, 27, 735 – 741.

Chapter 2 – Facilitating Modularity and Reuse

 15

2 GUIDELINES FOR STRUCTURING CELLML MODELS

The flexible structure of CellML allows modelers to construct mathematical models of the

same biological system in many different ways. However, some modeling styles do not

naturally lead to clear abstractions of the biophysical concepts and produce CellML models

that are hard to understand and from which it is difficult to isolate parts that may be useful for

constructing other models. This chapter advocates building CellML models which represents

common biophysical concepts and, using these, to build mathematical models of biological

processes that provide a close correspondence between the CellML model and the underlying

biological process. Subsequently, models of higher complexity can be constructed by reusing

these modularized CellML models in part or in whole. Development of CellML models that

best describe the underlying biophysical concepts thus avoids the need to code models from

scratch and enhances the extensibility, reusability, consistency, and interpretation of the

models.

2.1 INTRODUCTION

CellML provides a flexible structure that is used to represent mathematical models describing

a wide range of biological concepts. The CellML specifications describe the rules for

constructing models, encoding the mathematics, embedding metadata about models, and

Chapter 2 – Facilitating Modularity and Reuse

 16

processing models [40]. Below, the elements of a CellML representation that describes a

mathematical model of a biological process is briefly introduced. Then the potential pitfalls in

some modeling styles are discussed.

CellML consists of 16 elements (Figure 2.1a). The model element is the root of a CellML

model. It contains a list of import, units, component, connection, group, and/or Resource

Description Framework (RDF) [11] elements. The import element lists imported components

or units from other models. The units element is used to define the units that are associated

with the model variables. The component element defines the building block of CellML

models. Each component consists of a set of variable elements and math elements. The

variables have attributes such as an initial value, units, public interface, and private interface.

The math elements contain a set of mathematical equations that describe the behavior of the

component within the model. These mathematical equations, embedded in a math element,

are expressed using content Mathematical Markup Language (MathML) [4]. The connection

element links two variables in different components together to allow the values of these

variables to be exchanged between components within a model.

The group element can be used to introduce a hierarchy of components to the CellML

model. It forms a tree with parent, child and sibling properties. Currently, CellML supports

both containment, to describe the physical structure of the model, and encapsulation, to hide

information about a set of components from the rest of the model. Each component has

variables with public and private interfaces. The parent–child relationship within an

encapsulation group is established by connecting the child component‟s public interface

variables to the parent component‟s private interface variables. Components that are

encapsulated by the same parent are called the sibling set. The parent component hides the

details of the child components from the rest of the model, but amongst the sibling set they

are visible.

Resource Description Framework (RDF) is a standard format for describing metadata.

RDF elements are used to store metadata about a model or parts within the model. Several

metadata specifications have been developed to represent particular kinds of information.

These are as follows. First, the CellML Metadata Specification 1.0 to store information such

as bibliographical reference details from which the model was taken and the biological

species that are involved in the model. This specification also describes how metadata in

general are represented within a model [41]. Second, the Simulation Metadata Specification

to store particular simulation information such that specific results can be reproduced via a

Chapter 2 – Facilitating Modularity and Reuse

 17

simulation tool [42]. Third, the Graph Metadata Specification, which details a method on how

to use the model simulation results to provide two-dimensional graphical representations

[43].

Public

interface

Private

interface

Public

interface

Private

interface

Public

interface

Private

interface

Public

interface

Private

interface

Connection

Connection

Connection

Connection

Encapsulated components

Model X

Model Y

Imported

Component A

Variables

MathML

Public

interface

Private

interface

Import

model

import

units

group

units

component

unit

relationshipRef

componentRef

component

connection

variable

math

mapComponent

mapVariable

RDF

a

b

Component D

Variables

MathML

Component B

Variables

MathML

Component C

Variables

MathML

Component A

Variables

MathML

Figure 2.1: CellML structure

(a) The hierarchical structure of the CellML language. (b) Illustration of a CellML

model using imports and encapsulation. Model X consists of three components, A,

B and C. These are organized inside an encapsulation group, where A is the parent

of B and C. Model Y imports component A from model X and contains one

component named D. The parent component A in the encapsulation group in

model X connects to component D in model Y via public interface variables.

CellML models form a network of interconnected components. Figure 2.1b illustrates a

generic example using imports and encapsulation. The parent–child relationship within the

encapsulation group in model X is established by connecting the public interface variables of

component B to the private interface variables of component A. Components B and C are

siblings within the encapsulation group and connect via their public interfaces. Component A

is regarded as the parent of the encapsulated group and is part of the top-level component set

in the CellML model hierarchy. The top-level components are explicitly imported into other

models using the CellML import feature and the encapsulated components are implicitly

imported via the encapsulating component. For example, model Y explicitly imports

component A. Components B and C, and their connections, are implicitly imported.

Chapter 2 – Facilitating Modularity and Reuse

 18

The encapsulation feature supported in CellML provides a flexible structure that can be

used to model multiple levels of detail. It can be used to plug different representations of a

particular biophysical concept into and out of models without having to change the top-level

model. Encapsulation can be used to replace components with simple formulations with

component hierarchies that implement a particular subsystem in detail, thus reducing the

complexity of the top-level model.

The import feature provides a simple method to construct integrated models by reusing

existing models, either in part or in whole, within new models. The reuse of models helps to

reduce errors and maintain consistency across models. The challenge is to develop a robust

model that can be easily manipulated, integrated and extended after the model has been built.

The CellML specifications offer few guidelines for how to use the above elements to

produce clear, reusable models. A mathematical model of a biological process can be

represented in CellML in many different ways. The structure of a model mainly depends on

the individual author‟s modeling style. CellML models can be constructed such that:

 one component can model multiple processes, which has the effect of hiding the details of

the underlying biophysical concepts;

 parts of a concept are distributed over many components, with no clear identification of

the underlying biophysical ideas;

 parameters, initial values, constants and approximated constants, which represent

biophysical relations between variables, are defined within a component that describes the

mathematics for a particular biological process, thus tightly coupling a component with

the model-specific values; or

 the same mathematical construct can be structured in many different ways, presenting a

problem of consistency across models.

These model structures make it harder for potential users to interpret the underlying

biophysical concepts represented in the models. They also make it difficult to combine and

reuse a particular biophysical concept because it is hard to isolate the reusable parts of the

models.

Clever modularization and reuse of models has been studied in the past. The theoretical

work of Ernst-Dieter Gillies and its implementation in ProMot/Diva focuses on modularizing

biochemical processes [44, 45]. The methodology follows network theory [46] which

promote reusable modeling entities that lead to the development of a modeling library within

Chapter 2 – Facilitating Modularity and Reuse

 19

the modeling tool ProMot. Modelica [47] is another language that supports modularized

modeling of physical systems. It is based on Hilding Elmqvist and Francois E. Cellier work

on modeling of physical systems following object oriented paradigm to facilitate the reuse of

modeling knowledge via exchange of models and model libraries [48, 49].

Here we explore the process of constructing CellML 1.1 models to capture different

levels of abstraction and identify reoccurring patterns that capture specific biophysical

concepts in complex biological systems, thus enabling modelers to build models that are easy

to interpret, reuse and extend. We refer to this process as „modularization‟ of a CellML

model. We present three guidelines for enhancing model structure by:

1. isolating biophysical concepts that can be shared between models at the component or

whole model level;

2. constructing models combining the components, providing model-specific values and

isolated biophysical concepts, which clearly identify the building blocks;

3. using encapsulation to reduce the complexity of models by creating sub-models or to

expose points where different implementations of particular details can be swapped in and

out.

2.2 METHODS

This section details the process of constructing modularized CellML models following the

three guidelines. An example is used to demonstrate this process, starting from a set of

equations that are then transformed into a modularized CellML model. Figure 2.2a details the

starting set of equations for modeling the following reaction: formation of receptor–ligand–G

protein phosphorylated complex, Rlg→Rlgp.

Chapter 2 – Facilitating Modularity and Reuse

 20

Formation_of_Rlgp

Reaction_Rlg_Rlgp

Rlgp

Biochem_Rlg_Rlgp

InitEntit ies

Time

Rlg

J
dt

pdR

Ja
dt

dR

RkfJ a

lg

)1(
lg

lg

pRR
kf

lglg a

b

d

Rlg[S]

Rlgp[S]

kf

Rlg[D]

Rlg[F]

Rlgp[D]

Rlgp[F]

Rlg[ID]

Rlgp[ID]

Key

[D] – density

[ID] – initial density

[T] – time

[F] – flux

[S] – stoichiometry

model

Component Name

[Descript ion]

(Imported

component name)

variable

[type]

Environment Model

Integrator Model

Uncatalysed_1r_1p Model

Formation_of_Rlgp_Reaction

Colours represent:

Integrator Reaction

[aA -> bB]

JBJ

JaAJ

AkfJ a

_

)1(_

J
dt

Ed

)(

c

Repeating mathematical construct

Step1

Well-known biophysical concept

Step2

Init ial values:

2

2

00.0lg

01.0lg

mpR

mR

Rate constant:
14104 skf

Integrator

E[ID]

E[F]

T[T]

E[D]

Reaction

[aA -> bB]

A[D]

B[D]

A[S]

B[S]

A[F]

B[F]

kf

Step3

Cellml_Units

[List of units]
Environment

Time T[T]

Integrator Integrator

Integrator

E[ID]

E[F]

T[T]

E[D]

Uncatalysed_1r_1pUncatalysed_1r_1p

Step4

Reaction

[aA -> bB]

A[D]

B[D]

A[S]

B[S]

A[F]

B[F]

kf

Step1

Step2

Step3

Biochem_Rlg_Rlgp

[Parameters for

Rlg -> Rlgp]

InitEntit ies

[Set up init ial

values]

Rlg[S]=1

Rlgp[S]=1

kf=4×10 - 4

Rlg[ID]=0.01

Rlgp[ID]=0

T[T]=0

Formation_of_Rlgp

Reaction_Rlg_Rlgp

(Reaction component imported

from Uncatalysed_1r_1p model)

Rlgp

(Integrator component imported

from Integrator model)

Time

(Time component imported from

Environment model)

Rlg

(Integrator component imported

from Integrator model)

Biochem_Rlg_Rlgp InitEntit ies

T[T]

T[T]

T[T]

Formation_of_Rlgp

Reaction_Rlg_Rlgp

Rlgp

Biochem_Rlg_Rlgp

InitEntit ies

Time

Rlg

Rlg[S]

Rlgp[S]

kf

Rlg[D]

Rlg[F]

Rlgp[D]

Rlgp[F]

Rlg[ID]

Rlgp[ID]
T[T]

T[T]

T[T]

Encapsulated components

Rlg_Rlgp_Reaction

[Encapsulating component]

Rlg[S]

Rlgp[S]

kf

Rlgp[ID]

T[T]

Rlg[ID]

T[T]

Step1

Step2

Formation_of_Rlgp_Reaction

Reaction_Rlg_Rlgp

Rlgp

Rlg
Rlg[D]

Rlg[F]

Rlgp[D]

Rlgp[F]

Encapsulated components

Rlg_Rlgp_Reaction

[Encapsulating component]

Rlg[S]

Rlgp[S]

kf

Rlgp[ID]

T[T]

Rlg[ID]

T[T]

Formation_of_Rlgp_Dataset1

Biochem_Rlg_Rlgp

InitEntit ies

Time

Rlg[S]

Rlgp[S]

kf

Rlg[ID]

Rlgp[ID]

T[T] T[T]

Rlg_Rlgp_Reaction

kf – forward rate constant

E, A, and B – species

T - time

Rlg –receptor-ligand-G protein complex

Rlgp – receptor-ligand-G protein phosphorylated complex

)1(
lg

 Ja
dt

dR

J
dt

pdR

lg

J
dt

pdR

Ja
dt

dR

RkfJ a

lg

)1(
lg

lg

JBJ

JaAJ

AkfJ a

_

)1(_

J
dt

Ed

)(

Figure 2.2: The three modularizing steps applied to an example, formation of

receptor–ligand–G protein phosphorylated complex

(a) Mathematical equations for modeling the reaction. (b) The construction of

reusable models, as follows: Step 1, identify repeating mathematical constructs;

Step 2, isolate these mathematical constructs into separate components; Step 3,

Chapter 2 – Facilitating Modularity and Reuse

 21

generalize the interfaces to components; and Step 4, separate these components

into models according to their categories. (c) The reconstruction of the original

biological concepts, as follows: Step 1, isolate constants, parameters and initial

values into their own components and assign their values; Step 2, import generic

components; and Step 3, assign values to the variables in generic components by

connecting them to the variables of the model-specific components. (d) the

definition of encapsulated components, as follows: Step 1, group components

using the encapsulation feature; and Step 2, separate encapsulated groups into

individual models.

2.2.1 IDENTIFICATION AND REPRESENTATION OF BIOPHYSICAL CONCEPTS AND

COMMON MATHEMATICAL CONSTRUCTS

Most models consist of a small set of mathematical constructs, each of which repeat. These

often differ from other similar constructs in their constants and parameters that, in turn,

specify their biophysical detail. Examples of these include equations describing rate kinetics

to model stoichiometric reactions, Michaelis–Menten kinetics for modeling enzyme–substrate

reactions and the Nernst potential equation for describing reversal potentials. Other

ubiquitous mathematical constructs may also appear for pure mathematical convenience.

Examples of these are the integration of reaction outputs where these are pooled in a model,

and summing up a set of fluxes.

CellML 1.1 provides a mechanism by which repeating mathematical constructs can be

represented once but specified as many times as required within a target model, each with

specific constants or parameters. There are four steps to achieve this, as follows.

Step 1: (a) Identifying ubiquitous mathematical constructs that repeat throughout the model;

and (b) identifying mathematical constructs that represent well-known biophysical

phenomena.

In Figure 2.2b, Step 1 shows cases of (a) ubiquitous mathematical construct, i.e. the

integration of the outputs of Rlg and Rlgp from the reaction; and (b) mathematics identifying

a well-known biophysical concept, reaction kinetics for a first order, irreversible, mass action

kinetics reaction, in a continuous scheme for one reactant and one product.

Step 2: Isolating the repeating mathematical expressions into separate components. These are

referred to as „generic‟ components and contain mathematical equations that describe a

particular biophysical concept.

Chapter 2 – Facilitating Modularity and Reuse

 22

In Figure 2.2b, Step 2 shows the two components that are defined, Integrator and

Reaction, which describe the integrator and the kinetics equation, respectively.

Step 3: Generalizing the interfaces to components. To make these components reusable, the

equations and the interfaces of the components need to be generalized by defining variables

that depend on other components, to pass in their parameters or constant values. When

defining variables in CellML, it is possible to include the parameters or constant values using

the initial value attribute, but this leads to components that are specific to modeling a

particular biological concept, which restricts the reuse of the components. The variables of

the generic components should not have values assigned to them using the initial value

attribute.

In Figure 2.2b, Step 3 shows the Integrator and Reaction components associated with

variables. The Integrator component defines variables to capture the initial area density (or

concentration) of an entity (E[ID]), flux of an entity (E[F]), time variable (T[T]), and the

calculated density (or concentration) of an entity (E[D]). The Reaction component defines

variables to describe the density (or concentration) of the reactant (A[D]) and product (B[D]),

the stoichiometry of the reactant (A[S]) and product (B[S]), the flux of the reactant (A[F])

and product (B[F]), and the forward reaction rate constant (kf). The example model defines

initial values for Rlg and Rlgp and states the value of the reaction rate constant, but these

initial and constant values for these variables are not assigned within the integrator and

reaction components themselves. Since the Integrator component does not have any model-

specific values, it can be used to calculate the rate of change of both Rlg and Rlgp entities.

Similarly, the Reaction component can be used to model any first-order irreversible mass

action kinetics reaction, in a continuous scheme for one reactant and one product.

Step 4: Separating generic components into individual models. The generic components can

be categorized and separated into models according to the types of biophysical concepts that

are being modeled. This enables modelers to more easily identify the generic components.

In Figure 2.2b, Step 4 shows the Integrator model and the Uncatalyzed_1r_1p model that

are defined to categorize the Integrator component and the Reaction component, respectively.

The Uncatalyzed_1r_1p model can be used to define components describing irreversible and

reversible reaction kinetics involving one reaction and one product. The Environment model

contains the Time component. Note that a separate model is introduced to describe the units.

This prevents modelers from having to code the units for each of the models. It is also useful

Chapter 2 – Facilitating Modularity and Reuse

 23

to construct a separate component for defining the time variable because it is shared between

models.

2.2.2 RECONSTRUCTION OF THE ORIGINAL BIOLOGICAL CONCEPTS BY

COMBINING THE COMPONENTS, PROVIDING MODEL-SPECIFIC VALUES

AND USING GENERIC COMPONENTS

Each model is associated with a unique set of measured or calculated values. These include

constants, such as rate constants of each reaction, parameters, such as stoichiometry of

species of each reaction, and initial values, such as initial concentrations of the species.

CellML provides a method for setting up these model specific values to reconstruct the

original biological concepts. There are three steps to achieve this, as follows.

Step 1: Isolating all constants, parameters and initial values into their own components. The

generic components do not define model-specific values and force the modeler to build

separate components to describe such values. The variables inside the specific components

have values assigned to them which are specific to the biological model.

The Biochem_Rlg_Rlgp component shown in Figure 2.2c Step 1 defines the values for

the formation of the phosphorylated receptor–ligand–G protein complex (Rlgp), Rlg ->Rlgp.

These values include the stoichiometry of Rlg (Rlg[S]) and Rlgp (Rlgp[S]), and the forward

rate constant of the reaction (kf). Similarly, the InitEntities component defines the initial

densities of Rlg (Rlg[D]) and Rlgp (Rlgp[D]).

Step 2: Importing generic components. Here the generic components are connected with

specific components to allow the modeler to assign specific values to the variables. To

achieve this, import the relevant generic components that contain the mathematical

expressions for modeling the biological processes. Rename these generic components

according to the specific biophysical concepts that are being modeled.

The generic components shown in Figure 2.2b Step 4 are imported to model the reaction.

The Reaction component from the Uncatalysed_1r_1p model is imported to describe the

formation of Rlgp. As illustrated in Figure 2.2c Step 2, this component is identified as

Reaction_R1g_R1gp in the Formation_of_Rlgp model. The Integrator component is imported

twice from the Integrator model to calculate the rate of change of Rlg and Rlgp. These

components are identified as Rlg and Rlgp, respectively, in the Formation_of_Rlgp model.

Chapter 2 – Facilitating Modularity and Reuse

 24

Step 3: Assigning values to the variables in generic components. The values of the variables

of the generic components are set by connecting them to the variables of the model-specific

components. Connect the variables in the specific components to the appropriate variables in

the generic components.

Figure 2.2c Step 3 illustrates the resulting model once the variables R1g[S], R1gp[S], and

kf in Biochem_R1g_R1gp (the specific component) are connected to the variables A[S],

B[S], and kf in Reaction_R1g_R1gp (the Reaction generic component). The variables

R1g[ID] and R1gp[ID] in InitEntities (the specific component) are connected to E[ID] in Rlg

(the Integrator generic component) and E[ID] in Rlgp (the Integrator generic component) to

provide the initial densities.

2.2.3 USE OF ENCAPSULATION TO PARTITION THE DETAILS OF A MODEL INTO A

HIERARCHY OF COMPONENTS

Most biological systems, and their representation in mathematical models, are very complex.

It is possible to reduce this complexity by structuring it into sub-models. Often a group of

components, each of which may represent a different biophysical concept, may form a known

biological mechanism that is repeated throughout other models.

The CellML encapsulation feature can be used to group components with the following

aims: (1) to reduce the complexity of a model by creating sub-models; or (2) to provide

mechanisms for plugging in different implementations of a particular detail of a model. The

advantage of this method is that all the mappings remain intact, which obviates the need to

reconnect all the variables. There are two steps to achieve this, as follows.

Step 1: Grouping components using the encapsulation feature. Group together a set of

components that create an assembled biological concept. Introduce a component that would

make the encapsulated components visible to the top-level model.

Following the example model, the Reaction_R1g_R1gp, R1g, and R1gp components can

be used in another model with a different set of constants, parameters, and initial conditions.

The R1g_R1gp_Reaction component defines the R1g[ID], R1gp[ID], R1g[S], R1gp[S], kf,

and T[T] variables. These variables allow modelers to set values for the encapsulated

components (Figure 2.2d Step 1). It also defines R1g[D] and R1gp[D] variables, allowing

modelers to access the values of R1g[D] and R1gp[D].

Chapter 2 – Facilitating Modularity and Reuse

 25

Step 2: Separating encapsulated groups into individual models. To further reduce the

dependency between components, it is useful to move the encapsulated set of components

and their related connections into a separate model. To access a set of encapsulated

components that reside in a different model, it is necessary to import the encapsulating

component into the top-level model.

As illustrated in Figure 2.2 Step 2, the Reaction_R1g_R1gp, R1g, R1gp, and

R1g_R1gp_Reaction components and the connections between the encapsulated components

can be moved to a different model. This reduces the complexity of the Formation_of_Rlgp

model by minimizing the number of components and connections at the top level. The

R1g_R1gp_Reaction component can be imported to the Formation_of_Rlgp model to access

the encapsulated components Reaction_R1g_R1gp, R1g, and R1gp.

2.3 RESULTS

Several examples are used to illustrate the process of modularization of CellML models to

clarify the relationships between the model and the biological processes described by the

model, and to allow reuse of components between models.

2.3.1 MODULARIZATION OF THE G PROTEIN-COUPLED RECEPTOR (GPCR)

CYCLE

Cooling et al. (2007) [50] described a GPCR cycle in their model of hypertrophic signaling

pathways in the heart. Their model consists of a set of biochemical reactions using mass

action kinetics. We use this example to illustrate model construction by isolating commonly

used reaction kinetics into reusable generic components. The GPCR cycle consists of several

biochemical interactions between a set of biological entities. Following Cooling et al. (2007)

[50], these entities are as follows:

 R (receptor);

 Rl (receptor–ligand complex);

 Gd (G protein with attached guanosine diphosphate);

 Rg (receptor–G protein complex);

 Rlg (receptor–ligand–G protein complex);

 Rlgp (receptor–ligand–G protein phosphorylated complex);

 Gt (G protein with attached guanosine triphosphate).

Chapter 2 – Facilitating Modularity and Reuse

 26

There are six reactions that occur between these entities summarized in Figure 2.3, as

follows:

 the formation of receptor-ligand complex, R1: L+R↔Rl;

 the formation of receptor-G protein complex, R2: R+Gd↔Rg;

 the formation of receptor-ligand-G protein complex, R3: Rl+Gd↔Rlg;

 the formation of receptor-ligand-G protein complex, R4: L+Rg↔Rlg;

 the formation of receptor-ligand-G protein phosphorylated complex, R5: Rlg→Rlgp;

 the dissociation of receptor-ligand-G protein complex, R6: Rlg→Rl+Gt.

Figure 2.3: Schematic diagram of the GPCR pathway

The arrows indicate the products of the reactions. Bidirectional reactions have

arrows pointing to both the reactants and the products. For further explanation, see

main text. Figure derived from Figure 2 of Cooling et al. (2008) [51], with

permission.

The mathematical equations in the GPCR model describe rate laws and conservation

laws. The first step of the modularization process is to identify the biophysical processes and

common mathematical formulations. Figure 2.4 illustrates the set of CellML models that

were developed to model the components and which capture the generic biophysical

equations of rate laws and conservation laws described in the GPCR cycle. These are as

follows:

Chapter 2 – Facilitating Modularity and Reuse

 27

 the Environment model, which contains one component called time containing the

variable time;

 the Integrator model, which contains a component with an equation to calculate the rate

of change for an entity;

 the Rate_Constant model, which contains a component with an equation to calculate the

reverse rate constant;

 the Uncatalysed_2r_1p_r model, which contains a component called Reaction describing

the mathematics for a second-order forward reaction with two reactants, a first-order

reverse reaction, reversible mass action kinetics and a continuous scheme;

 the Uncatalysed_1r_2p model, which contains one component with the mathematics for

first-order irreversible mass action kinetics and a continuous scheme for one reactant and

two products;

 the Uncatalysed_1r_1p model, which has one component containing the mathematics for

first-order irreversible mass action kinetics and a continuous scheme for one reactant and

one product;

 the Sum model, which contains a component for adding together the fluxes of the

reactions.

Cellml_Units

[List of units]

Key

[D] – density

[ID] – initial density

[F] – flux

[S] – stoichiometry

[T] – time

kf – forward rate constant

kr – reverse rate constant

Kd – rate constant

E, A, B, and AB – species

T - time

model

Component

[Description]

mathematics

variable

[type]

Environment Model

Integrator Model

Rate_Constant Model

Sum Model

Uncatalysed_1r_1p Model

Uncatalysed_1r_2p Model

Uncatalysed_2r_1p Model

Colours represent:

Integrator

Integrator

EJ
timed

Ed
_

)(

)(

E[ID]

E[F]

T[T]

E[D]

Environment

Time T[T]

Sum

Sum_of_2

21 valvalsum

val1[F]

val2[F]

sum[F]

Rate_Constant

Reverse_Rate

Kdkfkr

kf

kr

Kd

Uncatalysed_2r_1p_r

Reaction

[aA + bB <-> cAB]

JABJ

JbBJ

JaAJ

ABkrBAkfJ cba

)1(_

)1(_

A[D]

B[D]

AB[D]

A[S]

B[S]

AB[S]

A[F]

B[F]

AB[F]

kf

kr

Uncatalysed_1r_1pUncatalysed_1r_1p

Reaction

[aA -> bB]

JBJ

JaAJ

AkfJ a

_

)1(_

A[D]

B[D]

A[S]

B[S]

A[F]

B[F]

kf

Uncatalysed_1r_2p

Reaction

[cAB -> aA +bB]

)1(

_

_

JcABJ

JbBJ

JaAJ

ABkfJ c

A[D]

B[D]

AB[D]

A[S]

B[S]

AB[S]

A[F]

B[F]

AB[F]

kf

Figure 2.4: The set of CellML models developed to describe the GPCR cycle

These models contain generic components with generalized equations. The colors

in these models are used to identify the imported components in Figure 2.5.

Chapter 2 – Facilitating Modularity and Reuse

 28

Figure 2.5 demonstrates the way in which these generic components can be used to build

the final model the GPCR cycle. The Reaction component from the Uncatalyzed_2r_1p_r

model is imported four times to model the R1, R2, R3, and R4 reactions. The Reverse_Rate

component in the Rate_Constant model is imported three times to calculate the reverse rate

constants for the reactions R1, R2, and R4. The Integrator component is imported eight times

to model the L, R, Rl, Gd, Rg, Rlg, Rlgp, and Gt entities. It is a requirement of CellML that

connecting variables must have the same unit dimensions. This feature is used for model

validation, but results in the duplication of components with similar mathematics where the

variables are assigned different units.

The Sum_of _2 component from the Sum model is imported four times to add the L, R,

Gd, and Rg fluxes. In cases where more than two fluxes are involved, the fluxes are added

together by connecting multiple Sum_of_2 components. For example, Rlg requires three

Sum_of_2 components to be connected together in order to calculate the total flux.

The white boxes on the left and right of Figure 2.5 list the components that have been

defined to provide the reaction kinetic parameters and initial conditions for the imported

components.

Chapter 2 – Facilitating Modularity and Reuse

 29

GPCR_Cycle_Model

L

(Integrator

component)

Reaction_L_R_Rl

[L+R<->Rl]

(Reaction

component)

Reaction_Rl_Gd_Rlg

[Rl+Gd<->Rlg]

(Reaction

component)

Reaction_Rlg_Rl_Gt

[Rlg->Rl+Gt]

(Reaction

component)

Reaction_Rlg_Rlgp

[Rlg->Rlgp]

(Reaction

component)

Biochem_L_R_Rl

[Parameters for

L + R <-> Rl]

Total_J_L

(Sum_of_2

component)

Reaction_R_Gd_Rg

[R+Gd<->Rg]

(Reaction

component)

Reaction_L_Rg_Rlg

[L+Rg<->Rlg]

(Reaction

component)

R

(Integrator

component)

Rl

(Integrator

component)

Rg

(Integrator

component)

Rlgp

(Integrator

component)

Gt

(Integrator

component)

Biochem_R_Gd_Rg

[Parameters for

R + Gd <-> Rg]

Biochem_Rl_Gd_Rlg

[Parameters for

Rl + Gd <-> Rlg]

Biochem_L_Rg_Rlg

[Parameters for

L + Rg <-> Rlg]

Biochem_Rlg_Rlgp

[Parameters for

Rlg -> Rlgp]

Biochem_Rlg_Rl_Gt

[Parameters for

Rlg -> Rl + Gt]

Total_J_R

(Sum_of_2

component)

Total_J_Rl

(two Sum_of_2

components)

Gd

(Integrator

component)

Total_J_Gd

(Sum_of_2

component)

Total_J_Rg

(Sum_of_2

component)

Rlg

(Integrator

component)

Total_J_Rlg

(three Sum_of_2

components)

L[F]

L[IC]

Gd[ID]

R[ID]

Rl[ID]

Rg[ID]

Rlg[ID]

Rlgp[ID]

Gt[ID]

InitEntit ies

[Set up init ial

values]

Time

(Time

component)

R1_reverse_rate

(Reverse_Rate

component)

R2_reverse_rate

(Reverse_Rate

component)

R4_reverse_rate

(Reverse_Rate

component)

Key [C] – concentrat ion

[IC] – in it ial concentrat ion

[D] – density

[ID] – in it ial density

[S] – stoichiometry

[F] – f lux

[T] – t ime

kf – forward rate constant

kr – reverse rate constant

L[S]

R[S]

Rl [S]

R[S]

Gd[S]

Rg[S]

Rl [S]

Gd[S]

Rlg[S]

kf

kr

L[S]

Rg[S]

Rlg[S]

Rlg[S]

Rlgp[S]

kf

Rlg[S]

Rl[S]

Gt[S]

kf

kf

kr

kf

Kd

kf

kr

kf

Kd

kf

kr

kf

Kd

L[F]

L[C]

R[F]

L[F]

R[D]

Rl [F]

Rl [F]

Rl [D]

Gd[F]

Gd[F]

Gd[D]

Rg[F]

Rg[F]

Rg[D]

Rlg[F]

Rlg[F]

Rlg[D]

Rlgp[F]

Rlgp[D]

Gt[F]

Gt[D]

model

Component Name

[Descript ion]

(Imported

component name)

variable

[type]

Environment Model

Integrator Model

Rate_Constant Model

Sum Model

Uncatalysed_1r_1p Model

Uncatalysed_1r_2p Model

Uncatalysed_2r_1p Model

Colours represent:L – ligand

R – receptor

Rl – receptor-ligand complex

Gd – G protein with attached GDP

Rg – receptor-G protein complex

Rlg – receptor-ligand-G protein complex

Rlgp – receptor-ligand-G protein phosphorylated complex

Gt – G protein with attached GTP

T[T]

T[T]

T[T]

T[T]

T[T]

T[T]

T[T]

T[T]

T[T]

Figure 2.5: The GPCR cycle modeled in CellML

The model has a modular structure to facilitate component reuse. The lines

between components are directionless intentionally, since they represent the

quantities that are shared between components.

Chapter 2 – Facilitating Modularity and Reuse

 30

2.3.2 MODULARIZATION OF THE HODGKIN–HUXLEY MODEL

In general, electrophysiological models describe ion flow through channels, exchangers,

pumps and membrane leakages. For example, the seminal Hodgkin–Huxley model [52]

describes the action potential in squid giant axons. The model includes a description of a

sodium current through a gated sodium channel, a potassium current through a potassium

channel, and a small leakage current across the cell surface membrane [52]. Most of these

channels are reused in other electrophysiological models, many of which are contained in the

CellML repository. The identification of each of these as functional units that make up a

complete electrophysiological model would make it easier to understand these models and

also increase the reusability of these channels.

Figure 2.6, demonstrates the components that contain a set of commonly used equations

when modeling voltage-gated channel activity. These include the following:

 the Nernst_Potential model, which contains one component with the mathematics for

calculating the reversal potential (EA);

 the Current model, which contains one component for calculating the current flowing

through a channel (I A);

 the Gate model, which contains one component with the mathematics describing the gate

opening and closing kinetics;

 the Membrane_Potential model, which contains one component with the mathematics for

describing the membrane potential;

 the Sum model, which contains one component for summing ionic currents.

Chapter 2 – Facilitating Modularity and Reuse

 31

Cellml_Units

[List of units]

Key [C] – concentration

[E] – reversal potential

[T] – time

[I] – current

[CP] – capacitance

[Z] – ion valance

[L] – dimensionless

[IL] – dimensionless (initial value)

[TE] – absolute temperature

[F] – faraday’s constant

[G] – conductance

[V] – membrane potential

[R] – universal gas constant

A and E – species

x – gate

alpha and beta– gate constants

V – voltage

M – membrane

Ao – species outside

Ai – species inside

model

Component

[Description]

mathematics

variable

[type]

Current Model

Environment Model

Gate Model

Integrator Model

Membrane_Potential Model

Nernst_Potential Model

Sum Model

Colours represent:

Environment

Time T[T]

Sum

Sum_of_2_Ionic

21 valvalsum

val1[I]

val2[I]

sum[I]

Nernst_Potential

Nernst_Potential

i

o

A

A
A

A

Fz

RT
E ln

A[E]

A[Z]

Ao[C]

Ai[C]

[R]

[F]

T[TE]

Membrane_Potential

M_Potential

m

A
m

C

I
V

V[V]

A[I]

M[CP]

Integrator Integrator

Integrator

EJ
timed

Ed
_

)(

)(

E[IL]

E[F]

T[T]

E[L]

CurrentCurrent

Ionic_Current

 AAA EVGI

A[I]

A[E]

A[G]

V[V]

Gate

Gate

 xxJ 1

alpha[L]

beta[L]

x[L]

J[L]

Figure 2.6: A set of models describing several electrophysiological concepts

Note that all the models contain reusable generic components. For this reason „A‟

is used to denote the ion (which could be sodium, potassium, calcium or chloride)

and „x‟ is used to denote the gate (which could be m, h, or j in the case of the

sodium channel). The colors in these models are used to identify the imported

components in Figure 2.7 and Figure 2.8.

The generic components consist of a set of simplified equations commonly used in the

literature when modeling voltage-gated channel activity. These can be reused to calculate

model-specific values. For example, the Nernst Potential component can be used to calculate

the Nernst potential of any ion.

Figure 2.7a illustrates the way in which the Hodgkin–Huxley model is built using these

generic components, multiple levels of imports and encapsulation. One of each of the

Ionic_Current and M_Potential generic components is imported to model the leakage current

and membrane potential, respectively. The Sum_of_2_Ionic component is imported twice and

connected together to add the sodium, potassium, and leakage ionic currents.

Figure 2.7b shows a model created to describe the sodium channel. This model contains

the Na_Conductance and generic Ionic_Current components to calculate the sodium

conductance and ionic current, respectively. The generic Gate component is imported twice

to model the m and h gates. Each gate component is connected to an imported Integrator

Chapter 2 – Facilitating Modularity and Reuse

 32

component to calculate the rate of change of the gate activity over time. The Fast_m_Gate

and Fast_h_Gate components provide parameters for calculating the rates of opening and

closing of the m and h gates, respectively. Together, these components model the sodium

channel. Since this formulation is frequently used in the literature, the encapsulation feature

is used to group these components together to enable reuse of this entire sodium channel. The

Na_Channel component makes the encapsulated components visible to the external models.

The Hodgkin_Huxley model imports the Na_Channel component from the Na_Ionic_Current

model. Similarly, Figure 2.7c illustrates how the K_Channel component is modeled.

The sodium, potassium and leakage current reversal potentials (ENa, EK, and EL,

respectively) are not calculated using the Nernst potential equation. Instead, they are

calculated in terms of the membrane equilibrium potential (ER). Three components, called

Na_Nernst_Potential, K_Nernst_Potential, and L_Nernst_Potential, are introduced to

calculate these reversal potentials because they define approximated constants.

The Na_Ionic_Current and K_Ionic_Current models can also be simplified further by

abstracting the sodium and potassium gates into two separate models.

Chapter 2 – Facilitating Modularity and Reuse

 33

Hodgkin_Huxley

Na_Channel

(Na_Channel

component)

Leakage_Current

(Ionic_Current

component)

Sum_of_3

(two sum_of_2_Ionic

components)

Mem_Potential

(M_Potential component)

Na_Nernst_Potential

115 ERENa

K_Channel

(K_Channel

component)

Time

(Time component)

Constants

[Set up constants]

V

(Integrator

component)

K_Nernst_Potential

12 EREk

L_Nernst_Potential

613.10 EREl

a

K[G]

L[G]

Na[E]

L[E]

K[E]

Na[G]

i_L[I]

i_Na[I]

i_K[I]

ER[V]

ER[V]

ER[V]

T[T]

T[T]

T[T]

V[V]

V[V]

V[V]

V[V]

Total_i[I]

M[CP]
V[IV]

Key [G] – conductance

[T] – time

[I] – current

[E] – reversal potential

[V] – voltage

[CP] – capacitance

[IL] – dimensionless (initial value)

[L] – dimensionless

[IV] – initial voltage

model

Component

[Description]

mathematics

variable

[type]

Current Model

Environment Model

Gate Model

Integrator Model

K_Ionic_Current Model

Membrane_Potential Model

Na_Ionic_Current Model

Sum Model

Colours represent:Na – sodium

K – potassium

m, h, and n – gate

alpha and beta– gate constants

V – voltage

T – time

Na_Ionic_CurrentNa_Ionic_Current

Na_Conductance
Ionic_Current

(Ionic_Current component)

Na_Channel

[Encapsulating

component]

Encapsulated components

m_Gate

(Gate component)

h_Gate

(Gate component)
Fast_h_Gate

[h gate parameters]

Fast_m_Gate

[m gate parameters]

h

(Integrator component)

m

(Integrator component)

hmGG NaNa 3

b

V[V]

V[V]

Na[E]

Na[I]

V[V]

h[IL]

T[T]

m[IL]

T[T]

alpha[L]

beta[L]

alpha[L]

beta[L]

Na[G]

Na[G]

m[L]

m[L]

h[L]

h[L]

K_Ionic_Current

K_Conductance
Ionic_Current

(Ionic_Current component)

K_Channel

[Encapsulating

component]

Encapsulated components

n_Gate

(Gate component)
Fast_n_Gate

[n gate parameters]

n

(Integrator component)

4
KK nGG

c

V[V]

alpha[L]

beta[L]

K[G]

K[G]

n[L]

n[IL]

T[T]

n[L]

K[E]

K[I]

V[V]

Initial_Values

[Set up init ial values]

Figure 2.7: Description of the Hodgkin–Huxley model in CellML

(a) A representation of the Hodgkin–Huxley model using the reusable generic

components illustrated in Figure 2.6 and encapsulation to hide the calculations for

Chapter 2 – Facilitating Modularity and Reuse

 34

the sodium channel activity. (b) The structure of the CellML model which

encapsulates the sodium ionic current with two gates. (c) The structure of the

CellML model which encapsulates the potassium ionic current with one gate. The

lines between components are directionless intentionally, since they represent the

quantities that are shared between components.

2.3.3 MODULARIZATION OF THE NOBLE MODEL

The Noble model describes the long-lasting action and pacemaker potentials of the Purkinje

fibers of the heart [53]. It is developed from the equations of the Hodgkin–Huxley model.

The potassium current equations defined in the Noble model identify potassium ion flow

through two types of channels in the membrane. The sodium current equations are very

similar to those of Hodgkin–Huxley model but use different parameters. Here we describe the

construction of the Nobel model from generic components, as well as by reuse of components

from the Na_Ionic_Current and K_Ionic_Current models developed for the Hodgkin–Huxley

model.

Figure 2.8a illustrates the top-level Noble model. Similar to the Hodgkin–Huxley model,

Ionic_Current, M_Potential, and Sum_of_2 Ionic components are imported to model the

leakage current, membrane potential, and total ionic currents, respectively.

Na_Nernst_Potential, K_Nernst_Potential, L_Nernst_Potential, Constants, and Initial_Values

components defined in the Noble model describe the model-specific values.

Figure 2.8 shows the extended Na_Ionic_Current model that is developed to support the

sodium ionic current defined in the Noble model. The Fast_m_Gate_Noble and

Fast_h_Gate_Noble components are introduced to provide the gate parameters defined in the

Noble model. The GNa_Noble component calculates the sodium conductance. The

Na_Channel_Noble component defines an encapsulated group, which includes the

components needed for modeling the sodium current defined in the Noble model. A set of

new connections is introduced to connect the new components with the existing components.

The Na_Channel_Noble component is imported into the Noble model. Similarly, Figure 2.8c

illustrates the extended K_Ionic_Current model developed to model the flow of potassium

ions as described in the Noble model.

Chapter 2 – Facilitating Modularity and Reuse

 35

Noble

Na_Channel

(Na_Channel_Noble

component)

Leakage_Current

(Ionic_Current

component)

Sum_of_3

(two sum_of_2_Ionic

components)

Mem_Potential

(M_Potential component)

Na_Nernst_Potential

K_Channel

(K_Channel_Noble

component)

Time

(Time component)

Constants

[Set up constants]

V

(Integrator

component)

Initial_Values

[Set up init ial values]

K_Nernst_Potential

L_Nernst_Potential

a

K[G]

L[G]

Na[E]

L[E]

K[E]

Na[G]

i_L[I]

i_Na[I]

i_K[I]

T[T]

T[T]

T[T]

V[V]

V[V]

V[V]

V[V]

Total_i[I]

M[CP]
V[IV]

c

Key [G] – conductance

[T] – time

[I] – current

[E] – reversal potential

[V] – voltage

[CP] – capacitance

[IL] – dimensionless (initial value)

[L] – dimensionless

[IV] – initial voltage

model

Component

[Description]

mathematics

variable

[type]

Current Model

Environment Model

Gate Model

Integrator Model

K_Ionic_Current Model

Membrane_Potential Model

Na_Ionic_Current Model

Sum Model

Colours represent:Na – sodium

K – potassium

m, h, and n – gate

alpha and beta– gate constants

V – voltage

T – time

Na_Ionic_Current

Na_Conductance Ionic_Current

(Ionic_Current

component)

Encapsulated components

m_Gate

(Gate component)

h_Gate

(Gate component)

Fast_h_Gate

[h gate parameters]

Fast_m_Gate

[m gate parameters]

h

(Integrator component)

m

(Integrator component)

Fast_h_Gate_Noble

[h gate parameters]

Fast_m_Gate_Noble

[m gate parameters]

Na_Channel

[Encapsulating component]
Na_Channel_Noble

[Encapsulating component]

GNa_Noble

140 NaNa GGhmGG NaNa 3

b

V[V]

V[V]

Na[E]

Na[I]

V[V]

h[IL]

T[T]

m[IL]

T[T]

alpha[L]

beta[L]

alpha[L]

beta[L]

Na[G]

Na[G]

m[L]

m[L]

h[L]

h[L]

Na[G]

K_Ionic_Current

K_Conductance Ionic_Current

(Ionic_Current

component)

K_Channel

[Encapsulating component]

Encapsulated components

n_Gate

(Gate component)

Fast_n_Gate

[n gate parameters]n

(Integrator component)

K_Channel_Noble

[Encapsulating component]

Fast_n_Gate_Noble

[n gate parameters]

GK_Noble

21 KKK GGG

GK2_Noble

4
KK nGG

V[V]

alpha[L]

beta[L]

K1[G]

K[G]

n[L]n[IL]

T[T]

n[L]

K[E]

K[I]

V[V]

V[V]

K[G]

K2[G]

c

Figure 2.8: Describing the Noble model in CellML

Chapter 2 – Facilitating Modularity and Reuse

 36

(a) A representation of the Noble model using the reusable generic components

illustrated in Figure 2.6. (b) Extended Na_Ionic_Current model to describe the

sodium current with new parameters defined in the Noble model. A new

encapsulation group is introduced to group the components related to the Noble

model. The Na_Channel, Fast_m_Gate, and Fast_j_Gate components are shaded in

dark grey because they are not used to model the Noble model. (c) Extended

K_Ionic_Current model to describe the potassium current defined in the Noble

model. The K_Channel and Fast_n_Gate components shaded in dark grey are not

used to model the Noble model. The lines between components are directionless,

since they represent the quantities that are shared between components.

2.4 DISCUSSION

The process described here isolates the biophysical concepts represented in a CellML model

into logical abstractions, which helps modelers to avoid creating complex representations of

biophysical concepts in CellML and provides a better correlation between the CellML model

and the underlying biological process it describes.

The development of models with different levels of abstraction is dependent on the

personal preferences of the modeler. It is not always useful to force specific levels of

abstraction onto the modeler. However, careful attention needs to be given to cases where

various components would be well suited to being modular, so that the outcome is a model

that is amenable to reuse. The building of reusable generic components is a necessary process

to improve the interpretation and reuse of CellML models.

Use of generic components also reduces the complexity of the modeling process. When a

model is constructed without imports, the mathematics and variables of each component

often need to be repeated. Every component needs to be read in order to understand a model

in its entirety. Use of common components simplifies the process of understanding complex

models by preventing modelers from having to read the mathematics of every component.

Models can also be abstracted to capture sets of biological concepts and can be

encapsulated and reused in more complex models. The GPCR cycle model can be

encapsulated and reused to model the Inositol 1,4,5-trisphosphate (IP3) signaling cascade

[50]. The conceptual modularization of the IP3 signaling cascade has been previously

described by Cooling et al. (2008) [51]. While that study isolated the GPCR cycle, we are

Chapter 2 – Facilitating Modularity and Reuse

 37

further componentizing modules to identify the reusable components within the GPCR cycle

to make it easier to interpret the model and identify the individual processes and entities.

Generic components should be used where possible when building a model, and the

approximated constants should only be used when there is insufficient information to use the

generic component. Since most of the models are not complete, models will generally have

some approximated constants. The advantage of modularization is that the modeler can

replace these approximated constant components with the generic components at a later stage

when key unknown values become available. For example, the Na_Nernst_Potential

component in the Hodgkin–Huxley model can be replaced by the Nernst_Potential

component when the internal and external sodium concentrations are known. This illustrates

how the isolation of biophysical concepts allows modelers to build reusable and extensible

models that are easier to interpret and extend with new information.

The Hodgkin–Huxley example demonstrates how encapsulation may be used to reduce

the complexity of a model. The Hodgkin_Huxley model imports the Na_Channel component

from the Na_Ionic_Current model, thereby reducing the complexity of the top-level model by

hiding calculations of the sodium gate activities and current flow from the Hodgkin_Huxley

model. It also shows how the encapsulated groups may be reused across other

electrophysiological models by importing the Na_Channel, which would enable visibility to

the encapsulated components.

As research continues, models are improved and new parameters are defined.

Development of models by isolation of the biophysical concepts also supports better

extension and reusability of parts of models. The Noble example illustrates how components

of existing models, that were developed to build the Hodgkin–Huxley model, can be reused.

This method of reuse is not possible with the existing Hodgkin–Huxley model in the CellML

repository, owing to the way it has been structured with tight coupling between components

that model different biophysical concepts and model-specific values. In summary, the import

and encapsulation features can be used to modularize models, build models from

biophysically based components and promote the reuse of CellML models.

While the most commonly used biophysical concepts will be relatively straightforward to

define and introduce into a library of models of generic components, we acknowledge that

the development of such a library covering all the biophysical concepts in CellML models

will be a comparatively lengthy process. Currently, these generic components are identified

Chapter 2 – Facilitating Modularity and Reuse

 38

by the modeler. A next step is to introduce a method to generate the biophysical concepts

modeled in generic components through mathematical normalization. For example: aA+bB-

>cC+dD can be used to generate every kinetic reaction. The aim would be to introduce a

meta-model, which captures the normalized mathematical equation, and combine it with a

rule set that could be used to manipulate the meta-model in order to generate the generic

CellML components that capture elementary biophysical concepts.

The modularity principle of the network theory introduced by Gilles identifies two types

of elementary units called components and coupling elements [46, 54]. Components define

physical quantities like energy, mass, or momentum and coupling elements describe the

fluxes between components. Components and coupling elements can be defined on different

hierarchical modeling levels. Components and coupling elements can be aggregated to a

single component on a higher level or elementary units on one level may be decomposed into

components and coupling units on a lower level [46, 54]. This modularity work described by

Gilles was explored later in the project. Extending the modularization guidelines for CellML

described here would benefit from further exploration of the interesting modularity concepts

described by Gilles.

Reduction of the complexity at the top level increases the consistency and ease of reuse

of CellML models. However, this results in a complex organization of components, abstract

variables and connections. The editing and creation of such a CellML model at the XML

level is difficult. Therefore, it would be useful to provide tools to permit visual creation and

viewing of CellML models to support the effective use of generic components and

encapsulation.

This study also brought to light a number of opportunities for improving the CellML

language. The formation of mathematical operations over arbitrary numbers of inputs is not

possible in CellML. It requires modelers to import the same components multiple times, for

example, importation of the Sum_of_2_Ionic component twice to add sodium, potassium, and

leakage currents in the Hodgkin–Huxley example. This increases the number of components

and connections, consequently increasing the complexity of the model. Such mathematical

operations are common in modeling biophysical models. Introduction of multiplexers and

variables that can carry matrices will help to reduce the number of imported components and

connections further. This feature will not enable the reuse of more models but it will reduce

the complexity of models.

Chapter 2 – Facilitating Modularity and Reuse

 39

Systems Biology Modeling Language (SBML) [13] is another mathematical modeling

language developed specifically for describing biochemical networks. The structure of SBML

itself captures some of the biophysical concepts described in the model. For example, it

defines reactions where the kinetic laws are described. In contrast, CellML is abstract, and

components do not define what can be included. By modularizing CellML models, we are

able to identify and isolate these reactions. The SBML specification does not currently

support features to enable reuse of existing models [29]. This forces modelers to construct

models from scratch and acts as a barrier to share the models. The advantages of using

CellML are that it provides the flexibility required to model different types of biological

concepts and it also contains the features necessary to construct reusable models.

The existing CellML Model Repository [17] is composed mostly of CellML 1.0 models.

Many of the models form reasonable abstractions of biophysical processes. However, they

would benefit from further attention to encapsulation. The CellML 1.0 specification does not

support imports, and these models are unable to benefit from the movement of common

structures into shared resources. It is the intention of the CellML community to translate the

existing CellML 1.0 models into a CellML 1.1 format using the import and encapsulation

features to build a library of common and reusable components and models. The aim is to

provide a library of generic component models that can be used to build specific biological

concepts.

The biophysical concepts isolated in the CellML models are not conveyed in a machine-

interpretable manner. This requires the annotation of CellML elements to an ontology

defining biophysical concepts. For example, the generic components describing mass action

kinetics in the GPCR cycle can have one-to-one mappings to Systems Biology Ontology

(SBO) [26] rate law terms. This is discussed in the next chapter.

The building of models by following the modularity principles should enable modelers to

develop models that are easier to interpret and reuse. Integration of these with an ontological

framework will enable modelers to overcome some of the difficulties associated with

building complex biological cell models.

Chapter 3 – Biophysical annotation and representation of CellML models

 40

3 BIOPHYSICAL ANNOTATION AND REPRESENTATION

OF CELLML MODELS

The focus of CellML is the representation of mathematical formulations of biological

processes. The language captures the mathematical and model building constructs well but

does not lend itself to capturing the biology these models represent. Such information needs

to be represented as metadata. The previous chapter demonstrated how to structure models in

a way that it best describes the biophysical concepts and abstractions that the modeler wishes

to demonstrate. This chapter describes the development of an ontological framework for

annotating CellML models with biophysical concepts. We demonstrate that, by using these

ontological mappings, in combination with a set of graph reduction rules, it is possible to

represent the underlying biological process described in a CellML model.

3.1 INTRODUCTION

CellML models do not capture biological information explicitly in their model properties.

This feature of the CellML language enhances its flexibility, enabling it to describe a wide

range of biological processes without the need to include a large number of domain-specific

language constructs. The result of this, though, is that biological information, such as the

Chapter 3 – Biophysical annotation and representation of CellML models

 41

entities and processes described by the model, are not represented or only weakly implied in

the variable and component names. Physical data, such as units of measurement and type of

mathematical formulation, are captured in the units of the variables and the structure of the

mathematical equations. Complicated relationships often exist between the biological process

and the mathematical model describing the biological process. A biological concept may be

represented using several mathematical equations and variables, spread across multiple

components, to form a complex CellML structure. It is a difficult task to pull together the

relevant information to discover the underlying biology.

A parallel specification to the CellML/XML language specification, the CellML

Metadata specification [41], provides a method for attributing extra information to CellML

elements. The CellML metadata specification uses the Resource Description Framework

(RDF)[11] and RDF Schema (RDFS) [55], which are standard formats based on XML, for

describing metadata. A CellML-specific element, <cmeta:bio_entity>, is used to define

biological entity metadata. A biological entity can refer to a human readable name, database

identifier, or both. This provides a simple method for annotating CellML elements with

biological data.

This kind of annotation only provides a simple labeling mechanism and fails to capture

the relationships between biological processes and entities. One could argue that information

about these relationships is captured implicitly in the „connection‟ structures of CellML that

represent the transfer of quantities between mathematical operations. But transforming such

information into meaningful biological descriptions is very complex; it also misses the

intention here which is to help the author to accurately describe the biological knowledge or

intention of the mathematical model they are presenting.

An ontology is a formal representation of a set of concepts, and the relations between

those concepts, within a specific domain of knowledge. It defines a common vocabulary and

set of rules to unambiguously represent information [34]. Formalizing data in an ontological

format involves clearly identifying concepts, defining the characteristics of these concepts,

providing specific instances of the concepts, and describing ways in which concepts and

instances can be related.

Biological ontologies are being used to define a standard representation of biological

models [56]. There exist many biological ontologies which capture different domains of

Chapter 3 – Biophysical annotation and representation of CellML models

 42

biology. Ontologies that are particularly relevant to the annotation of physical and biological

concepts modeled in CellML include:

1. BioPAX ontology – which describes metabolic pathway data, molecular binding

interactions, hierarchical pathways, and some signal transduction pathway and gene

regulatory network concepts [57];

2. Foundational model of anatomy ontology (FMA) – which captures the structural

relationships between the organs and tissues of the human body [58];

3. Gene ontology (GO) – which represents genes, gene products, and gene sequences of a

variety of plant, animal and microbial genomes [59];

4. NCI thesaurus – which provides a reference terminology for describing cancers, drugs,

therapies, anatomy, genes, pathways, cellular and subcellular processes, proteins, and

experimental organisms [60];

5. Systems biology ontology (SBO) – which addresses biological concepts related to

computational modeling [30].

A controlled vocabulary is an organized list of terms that are used to annotate data so that

they can be easily retrieved. The ontologies listed from 2 to 5 provide controlled vocabularies

which could be used for annotating CellML structures representing biological entities and

processes or, as in the case of SBO, can also be used to annotate the physical concepts such

as quantitative parameters and mathematical expressions modeled in CellML. Such an

annotated CellML model can often result in an overcomplicated representation of the

underlying biophysical concepts. The notion of „views‟ can be useful here to refer to

simplified representations of the complex annotated CellML models. One such view would

be a „biological view‟ that explicitly shows the biological processes and entities, and the

relationships between them. However, these ontologies alone do not provide the means for

creating a biological view which can be used to show the underlying biological concepts and

relationships captured in a CellML model. Whereas BioPAX describes biological concepts in

such a way that a biological view can be built. BioPAX provides a set of classes that can be

used to model a large number of the biological process and entity types described in CellML

models. The process types include transport, covalent, non-covalent, and modulation

interactions. The entity types include protein, complex, small molecule, RNA, and DNA.

Supplementary Material A describes the initial research carried out to compare the ontologies

BioPAX, SBO, and GO.

Chapter 3 – Biophysical annotation and representation of CellML models

 43

Figure 3.1 shows the way in which BioPAX can be used to build an abstract model of the

formation of cyclic adenosine monophosphate (cAMP) [38].

Key

Class Name

(Instance name) PROPERTY NAME

SmallMolecule

(ATP)

Protein

(Gs)

Protein

(Gi)

Protein

(AC)

SmallMolecule

(cAMP)

BiochemicalReaction

(formationOfcAMP)

Catalysis

(CatalysisOfcAMP)

Modulat ion

(PModulat ionOfAC)
Modulat ion

(NModulat ionOfAC)

LEFT RIGHT

CONTROLLED

CONTROLLER

CONTROLLED CONTROLLED

CONTROLLERCONTROLLER

domain range

Figure 3.1: Modeling the formation of cyclic adenosine monophosphate

(cAMP) in BioPAX

In BioPAX concepts such as proteins or reaction types are defined using Classes,

objects such as specific proteins are expressed as instances, and the relationship

between the objects are defined using properties. Adenylyl cyclase (AC) catalyses

this reaction, stimulatory G protein (Gs) positively modulates the catalysis process,

and inhibitory G protein (Gi) negatively modulates the catalysis process. The

process of the formation of cAMP is modeled using the BiochemicalReaction

class. AC, stimulatory G protein (Gs) and inhibitory G protein (Gi) entities are

represented using the Protein class. Adenosine triphosphate (ATP) and cAMP are

represented using the SmallMolecule class. The interaction between AC and the

biochemical process is identified as a Catalysis process. The interactions between

the G proteins and the Catalysis process are identified as Modulation processes.

A limitation of BioPAX at present is that, while it captures the concepts and relations

surrounding biochemical pathways, it does not provide an equally rich set for

electrophysiological concepts. For example, BioPAX cannot be used to represent a transport

process via a voltage activated gated channel. Even though BioPAX can be extended to

support the modeling of electrophysiological processes, the difficulty is that these concepts

have to be recast in the form of biochemical mechanisms, which is often not the relevant

interpretation required by the modeler at the point of annotation.

Although it is possible to add biological meaning to CellML elements by mapping each

component to a BioPAX process instance and each variable to a BioPAX entity instance, the

semantic differences between BioPAX and CellML models make it harder to establish a one-

Chapter 3 – Biophysical annotation and representation of CellML models

 44

to-one relationship with BioPAX instances and CellML elements. For example, the

components in a CellML model that do not have any biological meaning (i.e. components

calculating rate constants) cannot be mapped to a BioPAX instance. Furthermore, without an

explicit mapping between CellML and BioPAX, it makes it harder to understand the

relationship between the CellML elements and BioPAX instances. These limitations make it

difficult to adopt BioPAX as a standard to annotate the biological and physical concepts

modeled in CellML. Initial efforts to use BioPAX to annotate CellML models are further

described in Supplementary Material B section 2.

Hence, in the absence of an existing ontology which is capable of fully annotating a

CellML model with physical and biological information, we were compelled to develop our

own ontological framework. Here we describe the process of developing such a framework

which is designed to structure the biophysical concepts captured in CellML models and allow

modelers to explicitly annotate a CellML model with physical and biological information.

The annotated information is used to help users to clearly indentify the underlying physical

concepts captured in the CellML model, without the need to go through all the individual

CellML elements. Similarly, the same information can also be used to construct a biological

view of the CellML model.

3.2 METHODS

Our ontological framework is modeled using the Web Ontology Language (OWL) [35].

OWL is a knowledge representation language which is based on RDF/RDFS. It provides

additional modeling concepts along with formal semantics when compared with XML and

RDF. OWL can be used to represent concepts, relations between them, and identify members

of these concepts. The OWL properties describe the relationships between instances or

constraints defining necessary and sufficient conditions for being classified as a member of a

class. This class-based knowledge representation enables automated reasoning to check the

consistency of models. OWL also provides the basis for efficient querying mechanisms and,

furthermore, it can easily be integrated with other ontologies.

OWL has three sublanguages OWL-Lite, OWL-DL, and OWL-Full. OWL-Lite can be

used to construct a classification hierarchy and simple constraints with limited

expressiveness. OWL-DL is conceptually based on descriptive logic and supports maximum

expressiveness while maintaining computational completeness and decidability. OWL-Full

supports maximum expressiveness with no computational guarantees. We use OWL-DL to

Chapter 3 – Biophysical annotation and representation of CellML models

 45

construct our ontologies to take advantage of its ability to model incomplete and irregular

knowledge, which is well suited for modeling biological facts [61].

The process we describe here for the construction of a biological view of a CellML

model involves three steps:

1. transformation of the CellML/XML model into an OWL format (CellML/OWL). This

uses an ontology for representing CellML models and a method for binding elements of

these back to the CellML/XML model;

2. annotation of the CellML/OWL model to an OWL model of biophysical concepts. This

involves developing an ontology that represents the physical and biological concepts that

are described in CellML models (CellMLBiophysical/OWL);

3. simplification of the CellMLBiophysical/OWL model using the ontological mappings, in

combination with a set of graph reducing rules, to represent the underlying biological

view of the CellML model.

3.2.1 TRANSFORMATION OF A CELLML/XML MODEL INTO A CELLML/OWL

MODEL

The CellML/OWL ontology represents a CellML/XML model in OWL (Figure 3.2).

CellML/OWL models are created by a programmed transform that for each element in the

CellML/XML model, creates the analogous representation in the CellML/OWL model.

Chapter 3 – Biophysical annotation and representation of CellML models

 46

CellMLOWL

NamedNode

* name (single string)

Component

[*] name (single string), + hasMaths (multiple Maths),

+ hasVariable (multiple Variable), + hasPhysicalProcess (single PhysicalProcess)

ImportedComponent

[*] name (single string), * componentRef (single string),

[+] hasMaths (multiple Maths), [+] hasVariable (multiple Variable),

[+] hasPhysicalProcess (single PhysicalProcess)

Units

[*] name (single string), + hasUnit (multiple Unit)

Variable

[*] name (single string), * units (single string),

* public_interface (single string), * private_interface (single string),

* initial_value (single float), + hasPhysicalEntity (single PhysicalEntity)

Unit

* units (single string), * prefix (single string), * exponent (single float)

ImportedUnits

[*] name (single string), * unitsRef (single string),

[+] hasUnit (multiple Unit)

Connection

+ hasMapComponent (single MapComponent), + hasMapVariable (multiple MapVariable)

Group

* relationshipRef (single string), + hasComponentRef (multiple ComponentRef)

ComponentRef

+ hasComponentRef (multiple ComponentRef), + component_ref (single Component)

MapComponent

+ hasComponent1 (single Component), + hasComponent2 (single Component)

MapVariable

+ hasVariable1 (single Variable), + hasVariable2 (single Variable),

+ hasEqualityProcess (single EqualityProcess)

Maths

* equation (multiple string), * importString (multiple string)

Import

* importString (multiple string), + hasImportedComponent (multiple ImportedComponent),

+ hasImportedUnits (multiple ImportedUnits)

Model

[*] name (single string), * importString (multiple string),

+ hasImport (multiple Import), + hasUnits (multiple Units),

+ hasComponent (single Component), + hasConnection (single Connection)

(a)

Class name

* datatype property (cardinality datatype)

+ object property (cardinality object)

[]properties applied via the parent classes

Parent class Sub class

(b)

element

attribute

Keys for the diagrams in:

model

name, list of namespaces

import

list of namespaces

units

name

group

units

name,units_ref

component

name, component_ref

unit

prefix,units,exponent

relationshipRef

relationship

componentRef

component

component

name

connection

variable

name, public_interface, private_interface, initial_value, uints

math

list of namespaces

mapComponents

component1, component2

mapVariable

variable1, variable2

RDF

a b

Figure 3.2: CellML structures

(a) The CellML/OWL ontology class structure. The CellML/OWL classes capture

the CellML/XML elements while the CellML/OWL properties capture the CellML

attributes and their relationships. (b) The CellML/XML hierarchical structure.

CellML/XML imports declare relations to other models and references components

intended to be imported when the model is instantiated in a simulation/processing software

[62]. If these declarations are mirrored in the CellML/OWL model, we would have a list of

imported models and components. The imported components can be annotated using the

Import elements, but it is impossible to annotate separate instances of variables defined

within the imported components. As a result the CellML/OWL model represents the full

instantiation such that all import references are resolved into explicit instances of components

within the model. Using this approach it is possible to annotate the same component with

different biophysical annotations at the top level. For example: GPCR model imports the

integrator component multiple times, each of which is annotated with different biological

Chapter 3 – Biophysical annotation and representation of CellML models

 47

concepts. It is important to note that the implicit imports supported via encapsulated groups

are not expressed as explicit instances in the CellML/OWL model.

The Import class in the CellML/OWL ontology should not be confused with owl:import

statements in the OWL language. OWL refers to imports as importing concepts and relations

from other resources. In CellML/OWL the import class represents the result of importing

components in models referenced in the CellML/XML import declarations. The

CellML/OWL model stores instances of imported components inside the current model

allowing users to annotate variable metadata and imported components with respect to the

importing model.

In order to express biophysical concepts that the CellML Component, Connection, and

Variable elements represent, we define the property hasPhysicalProcess,

hasMathematicalEquality, and hasPhysicalEntity, respectively in these classes. The process

of defining values for these is explained in step 2.

The transformation of CellML/XML into CellML/OWL does not currently include

metadata elements. Including these could provide some value and would make the

transformation more complete

Instances of every OWL class require a unique identifier which is declared as an rdf:ID

in the OWL/XML syntax. The CellML metadata specification defines a cmeta:id attribute to

uniquely identify CellML elements [41]. The values of cmeta:id can thus be used as the

rdf:ID in the CellML/OWL model instances. It is important to note that the imported

components have cmeta:ids associated to them within the imported statement which is

different to any existing cmeta:id that may exist on the component in the original model. As

imported variable and math elements are not uniquely identified within a particular CellML

model description, additional processing is required to create rdf:ID values for these

elements. The formula for creating the rdf:ID values for imported variable and math elements

is: rdf:ID of imported variable/math = {cmeta:id of imported component}+ “_”+{cmeta:id of

variable/math defined in the imported model}.

CellML/OWL models are generated from CellML/XML models by traversing through

the XML Document Object Model (DOM) and creating CellML/OWL instances. The

generated CellML/OWL model instances are mapped to the original CellML model using the

RDF. The RDF statement explicitly maps a CellML cmeta:id to a CellML/OWL rdf:ID. The

RDF statement has:

Chapter 3 – Biophysical annotation and representation of CellML models

 48

 a subject: http://www.sarala.bioeng.auckland.ac.nz/example.cellml#A_A;

 a predicate:http://www.sarala.bioeng.auckland.ac.nz/cellmlowlbinding.rdf #cbinding;

 an object: http://www.sarala.bioeng.auckland.ac.nz/example.owl#A_A.

This maps CellML variable with cmeta:id A_A to CellML/OWL instance with rdf:ID A_A

(Figure 3.3). The CellML/OWL model is stored in a separate OWL file and the RDF

references are written back to the CellML/XML file.

<model…>

<component…>

<variable cmeta:id="A_A" name="A" private_interface="none" public_interface="out" units="micromolar" initial_value="1"/>

…

</component>

</model>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cob ="http://www.sarala.bioeng.auckland.ac.nz/cellmlowlbinding/">

<rdf:Description rdf:about="#A_A">

<cob:cbinding rdf:resource="http://www.sarala.bioeng.auckland.ac.nz/example.owl#A_A"/>

</rdf:Description>

…

</rdf:RDF>

…

<co:Variable rdf:ID="A_A">

<co:hasPhysicalEntity rdf:resource="exampleBio.owl#A_A"/>

<co:units>micromolar</co:units>

<co:private_interface>none</co:private_interface>

<co:public_interface>out</co:public_interface>

<co:initial_value>1</co:initial_value>

<co:name>A</co:name>

</co:Variable>

…

a

b

Figure 3.3: Example of a metadata definition

(a) Fragment of a CellML/XML model highlighting the RDF mapping for variable

A. (b) Fragment of the CellML/OWL model capturing the CellML/XML variable

A description in OWL.

3.2.2 ANNOTATION OF A CELLML/OWL MODEL TO A

CELLMLBIOPHYSICAL/OWL MODEL

Now that we have the model represented in CellML/OWL, the next step is to define the

physical and biological information the elements of the model represent. To support this,

CellMLBiophysical/OWL ontology was developed. It includes two ontologies, Physical and

Biological. The Physical ontology captures the physical quantitative information and

concepts captured in mathematical expressions. The Biological ontology captures the

biological entities and processes. The CellMLBiophysical/OWL model defines the concepts

and relations both within and between these ontologies (Figure 3.4).

Chapter 3 – Biophysical annotation and representation of CellML models

 49

CellMLBiophysical

Physical

* name (single string), * xref (multiple string)

Biological

* name (single string), * xref (multiple string)

GenericNode

* name (single string), * ruleSet (multiple string),

+ connects (multiple GenericNode), * refPhysical (multiple Physical)

Class name

* datatype property (cardinality datatype)

+ object property (cardinality object)

Key

PhysicalEntity

[*] name (single string), [*]xref (multiple string),

+ refBioEntity (single BiologicalEntity), + refBioRole (single BiologicalRole),

+ refBioCompartment (single BiologicalCompartment)

PhysicalProcess

[*] name (single string), [*]xref (multiple string),

+ physicalEntity (multiple PhysicalEntity),

+ refBioProcess (single BiologicalProcess)

BiologicaEntity

[*] name (single string), [*]xref (multiple string)

BiologicalProcess

[*] name (single string), [*]xref (multiple string)

BiologicalRole

[*] name (single string), [*]xref (multiple string)

[]properties applied via the parent classes

Parent class Sub class

BiologicalCompartment

[*] name (single string), [*]xref (multiple string)

Figure 3.4: CellMLBiophysical/OWL ontology top-level class structure

The CellMLBiophysical/OWL ontology consists of the Physical, Biological, and

GenericNode class structures and defines properties which link the instances of

these classes.

The process of attributing physical and biological concepts to the CellML elements in

CellML/OWL is a two step process of:

1. attributing physical meaning to the variables and components in the CellML/OWL model

2. attributing biological meaning (where relevant) to the physical attributes defined in 1.

3.2.2.1 Annotating physical information

Physical concepts are mapped in a one-to-one relationship between the CellML elements

(components, variables, and connections) in the CellML/OWL model and the physical

concepts defined in the Physical subclass tree. Here we describe the physical concepts

modeled in CellML models explicitly by treating:

 every variable as a physical entity to capture the quantitative data defined in units of the

variables;

 every component as a physical process to capture the type of mathematical formulations

defined within components.

These concepts are represented by the PhysicalEntity and PhysicalProcess classes. Instances

of these classes form the values of the hasPhysicalEntity and hasPhysicalProcess properties

Chapter 3 – Biophysical annotation and representation of CellML models

 50

within CellML/OWL models. In order to support the complete transformation of all the

information in a CellML model, the connections are also treated as a process of equivalence

(MathematicalEquality).

The Physical subclass tree also captures the relationships between variables, components,

and connections. Every component defines a set of variables and every connection contains

mappings between variables in two components. These are captured by the physicalEntity

property defined in the PhysicalProcess class. This effectively creates a process-entity graph

(Figure 3.5).

physicalEntity

physicalEntity

physicalEntity

Variable

(PhysicalEntity)

Variable

(PhysicalEntity)

physicalEntity
Variable

(PhysicalEntity)

Component

(PhysicalProcess)

Connection

(PhysicalProcess)

physicalEntity

Component

(PhysicalProcess)
physicalEntity

Variable

(PhysicalEntity)

physicalEntity

Variable

(PhysicalEntity)

Figure 3.5: A physical-entity graph generated for a CellML model

A schematic diagram showing the relationship between CellML elements

(components, variables and connections) and the underlying physical instances and

relationships.

The subclasses of the PhysicalProcess class are intended to define physical processes

commonly modeled in CellML. These include:

 MassActionKinetics - components describing mass action kinetics;

 EnzymeKinetics - components describing enzyme kinetics;

 Pooling - components with integrators;

 IonicCurrent - components calculating ionic currents;

 NernstPotential - components calculating Nernst potentials;

 PotentialDifference - components calculating potential differences;

 RateConstant: components calculating rate constants;

 ConversionFactor - components calculating conversion factors;

 Parameter - components providing parameters;

 MathematicalEquality - CellML connections.

The subclasses of the PhysicalEntity class define terms representing the physical

dimensions of the variables in the CellML model. These include: Area, Capacitance,

Chapter 3 – Biophysical annotation and representation of CellML models

 51

Concentration, Conductance, Constant, Current, Dimensionless, Flux, Stoichiometry, Time,

Voltage, and Volume.

A CellMLBiophysical/OWL model is programmatically generated, which consists of

instances of PhysicalProcess and PhysicalEntity classes, and the relationship between them.

These instances need to be specialized to the relevant subclasses manually using the classes

supported by the Physical subclass tree. Model developers can use external tools, such as

Protégé [63] or SWOOP [64], to complete this task.

3.2.2.2 Annotating biological information

The result of the previous step is a physical process entity graph that needs to be annotated

with biological information. Biological concepts are mapped in a one-to-many relationship to

instances of PhysicalEntity and PhysicalProcess, i.e. multiple physical entities can point to

the same biological concept. The biological subclass tree of the CellMLBiophysical/OWL

ontology has been developed to capture the biological concepts covered in the example

models used in this work. This includes biological processes (BiologicalProcess) that occur

between entities (BiologicalEntity), function of participation (BiologicalRole) of a biological

entity in relation to a particular process, and a specific location (BiologicalCompartment) of

the entity in a biological system.

The PhysicalProcess instances that have biological significance are annotated with

BiologicalProcess instances via the refBioProcess property (Figure 3.6). The

BiologicalProcess class is subdivided into:

 BiochemicalReaction - to capture reactions where one or more biological entities undergo

covalent changes to form one or more different biological entities;

 Transport - to describe the transport of biological entities from one compartment to

another compartment;

 ComplexAssembly - to capture the reactions where complexes are formed via non-

covalent interactions.

If a particular PhysicalProcess instance is mapped to a biological process instance, then

this instance must have at least one PhysicalEntity instance which, in turn, has mappings to

both BiologicalEntity and BiologicalRole instances (Figure 3.6). This is important as the aim

is to develop a biological view that represents the underlying relationships between biological

processes and entities. It is also important to note that the biological view is “connected” by

way of the connectivity of the physical model.

Chapter 3 – Biophysical annotation and representation of CellML models

 52

The PhysicalEntity instances that have biological significance are annotated with

BiologicalEntity instances via the refBioEntity property. The BiologicalEntity class is

subdivided into:

 Complex - to capture the biological entities bound together by non-covalent links;

 Protein - to describe the biological entities with a sequence of amino acids;

 SmallMolecule - to capture bioactive molecules that are not peptides;

 PhysicalFactor - which captures physical factors such as voltage.

In cases where these PhysicalEntity instances are mapped to PhysicalProcesses with a

biological significance, they may also be annotated with a BiologicalRole instance (Figure

3.6). The BiologicalRole class is subdivided into:

 Modifier - which captures the modification types such as activator, catalyst and inhibitor;

 Reactant - which describes reactants;

 Product - which captures the reaction products.

These PhysicalEntity instances may also be annotated with a BiologicalComparment

instance via the refBioComparment property to capture the location of the biological entity.

CellMLBiophysical/OWL model

Biological instances

Physical instances and the relationships

physicalEntity

refBioProcess

Variable1

(PhysicalEntity)
physicalEntity

Variable2

(PhysicalEntity)

Component1

(PhysicalProcess)

formationOfB

(BiochemicalProcess)

refBioEntity

A

(SmallMolecule)

B

(SmallMolecule)

reactant

(Reactant)

product

(Product)

refBioEntityrefBioRole refBioRole

Figure 3.6: The mapping between Physical instances and Biological instances

The PhysicalEntity instance Variable1 is mapped to the BiologicalEntity instance

A and the Role instance reactant. The PhysicalEntity instance Variable2 is

mapped to the BiologicalEntity instance B and the Role instance product.

PhysicalProcess instance component1 is mapped to the BiochecmicalProcess

instance formationOfB.

The choice of physical and biological subclasses here serve only to reflect those

necessary for the examples in this work and additional examples such as G protein-coupled

receptor (GPCR) cycle described by Cooling et al. [50]. These examples can be downloaded

at http://www.cellml.org/tools/downloads/cellml-viewer. In practice these classes would be

Chapter 3 – Biophysical annotation and representation of CellML models

 53

expanded, where the goal is to reflect all those concepts relevant to all models in the

repository.

3.2.3 SIMPLIFICATION OF A CELLMLBIOPHYSICAL/OWL MODEL

The result of the previous step provides a complete representation of all physical entities,

processes, and interpretations of these into biological entities, processes, and roles. For even

simple CellML models the result can be a very large and complex looking biophysical

representation. Here we describe a method to reduce this complexity to produce simplified

views by implementing a graph reduction algorithm.

The aim is to collapse the process-entity graph by:

 simplifying the graph consolidating sub graphs or groups of nodes;

 ensuring there is no loss of information in this process.

We have identified four collapsing rules which depend on the relationships between

entities and processes. The meaningfulness and validity of applying these to a particular

instance is based on the ontological information.

The four collapsing rules and the cardinality constraints are:

1. entity(1*)-process(=1)-entity(1*) can be collapsed into an entity;

2. process(1*)-entity(=1)-process(1*) can be collapsed into a process;

3. terminal_entity(1*)-process(=1) can be collapsed into a process;

4. terminal_process(1*)-entity(=1) can be collapsed into an entity.

[(1*) - one-to-many, (1=) - exactly one, terminal entities refer to entities that are connected to

only one process, and terminal processes refer to processes that are connected to only one

entity]

These rules are then applied to a selected set of nodes in the process-entity graph on the

basis of their ontological properties. We have identified a set of specific cases that are used in

the example models:

1. a MathematicalEquality process (rule 1);

2. a processes which has entities mapped to the same biological term such as Pooling

processes which capture integration of N fluxes of a particular biological entity to

produce its concentration. (rule 1);

3. entities connected to processes which map to the same biological process (rule 2) because

these processes together describe a particular biological term;

Chapter 3 – Biophysical annotation and representation of CellML models

 54

4. entities and processes which are not associated with biological meaning such as time (rule

3 & rule 4).

The application of the rules is selective and manual, allowing a user to highlight

particular details and hide others. Applying these rules in the same order provides a

consistent output. However, applying these rules in a different sequence can result in

different outputs, implying that a particular CellMLBiophysical model can have multiple

biological views.

Applying the reduction process to the annotated CellMLBiophysical/OWL model

involves three steps:

1. creating a generic node graph with a reference to the original physical instances. This is

illustrated by the dotted lines between the CellMLBiophysical/OWL model and generic

model in Figure 3.7;

2. applying the rules recursively to collapse the generic node graph. The starting node of the

graph is arbitrary but the node type depends on the rule. For example when applying rule

1, the starting node can be any generic node that references the MathematicalEquality

(case 1);

3. each iteration creates a new generic node graph to store the output from each step.

When the generic nodes are collapsed, the references to the physical entity and process

instances are accumulated in the new generic node. The generic node thus retains enough

information to build a conceptual representation of what entities and processes (physical or

biological) make up a node.

E

E

P

Biological

instances

E

Physical

instances

P

Generic

instances

N

N

N

N

N’

N’

After

applying

rule1

Protein A

Concentration A

EqualityProcess

Con_1

Concentration A

Pooling

A

GenericNode

GN_1

GenericNode

GN_2

GenericNode

GN_3

GenericNode

GN_4

GenericNode

GN_1

GenericNode

GN_2

Figure 3.7: Application of the reducing rules

Chapter 3 – Biophysical annotation and representation of CellML models

 55

Applying rule 1 to collapse physical entity instances that are mapped to a common

biological instance (case 2).

A GenericNode class has been introduced to the CellMLBiophysical/OWL ontology to

store the generic node graph (Figure 3.4). It has the following set of properties: name: which

refers to the name of the generic node; connects: which references connected generic nodes;

and refPhysical: which refers to the accumulated physical nodes. Each of these physical

nodes points to a particular biological concept. Each generic node graph is saved in a separate

OWL file which imports the CellML/OWL model.

3.3 RESULTS

Here we illustrate the process for annotating CellML models and applying the reducing rules

to generate the underlying biological views using a simple example. Below we focus on

annotating and representing the flow of potassium ions (K_Ionic_Flow) modeled in the

Hodgkin–Huxley model [52]. Then the annotated Hodgkin–Huxley model is illustrated.

3.3.1 REPRESENTING THE K_IONIC_FLOW MODEL IN CELLML

The model is first represented in CellML by structuring it in such a way that best describes

the biophysical concepts and abstractions (Figure 3.8) [65] (Chapter 2). It is built using

generic components, multiple levels of imports, and encapsulation. The top level

K_Ionic_Flow model defines a set of components which describe:

 potassium Nernst potentials (K_Nernst_Potential);

 potassium currents through a potassium channel (K_Channel);

 membrane potential and the rate of change of voltage (Mem_Potential and V);

 constant values, initial values, and time (Constants, Initial_Values, and Time).

Chapter 3 – Biophysical annotation and representation of CellML models

 56

K_Ionic_Flow

Mem_Potential

(M_Potential component)

K_Channel

(K_Channel

component)

Time

(Time component)

Constants

[Set up constants]

V

(Integrator

component)
Initial_Values

[Set up init ial values]

K_Nernst_Potential

12 EREk

K[G]

K[E] i_K[I]

ER[V]

V[V]

J[F]

M[CP]

E[IV]

Key [G] – conductance

[T] – time

[I] – current

[E] – reversal potential

[V] – voltage

[CP] – capacitance

[IV] – initial voltage

[F] – flux

model

Component

[Description]

mathematics

variable

[type]

Environment Model

Integrator Model

K_Ionic_Current Model

Membrane_Potential Model

Colours represent:A and E – species

M – membrane

K – potassium

n – gate

alpha and beta– gate constants

V – voltage

A[I]

J[F]

E[V]

V[IV]

M[CP]

K[E]

K[G]

T[T] T[T]

T[T]

ER[V]

Figure 3.8: Modeling the potassium ionic current described in Hodgkin-

Huxley model

The model reuses some of the generic components described in Figure 2.6 to

calculate model specific values. The M_Potential generic component is imported

to model the membrane potential. Mem_Potential component is connected to an

imported Integrator component to calculate the rate of change of the voltage over

time. The K_Ionic_Flow model imports the K_Channel component from the

K_Ionic_Current model (Figure 2.7c). K_Nernst_Potential component calculate

the reversal potential in terms of the membrane equilibrium potential (ER). The

arcs are directionless intentionally, as they represent the quantities that are shared

between components.

3.3.2 TRANSLATING THE K_IONIC_FLOW CELLML MODEL INTO A

CELLML/OWL MODEL

The resulting CellML/OWL model defines an OWL instance for each CellML element

described in the top level K_Ionic_Flow model. It also defines instances for the explicitly

imported components, variables, and mathematics such as the K_Channel. It does not define

instances for implicitly imported components, variables, mathematics, and connections such

as the components grouped using encapsulation.

3.3.3 ANNOTATING THE K_IONIC_FLOW CELLML/OWL INSTANCES TO

CELLMLBIOPHYSICAL/OWL INSTANCES

The annotated CellMLBiophysical/OWL model created for the K_Ionic_Flow model is

shown in Figure 3.9a. Every CellML variable is represented as a specific PhysicalEntity

instance. For example, variables associated with currents (i_K[I] and A[I]) are identified as a

Chapter 3 – Biophysical annotation and representation of CellML models

 57

Current instance. Similarly, every CellML component is represented as a specific

PhysicalProcess instance. For example, the components describing the currents such as

K_Current are identified as IonicCurrent instances. All the connections are represented as

MathematicalEquality (Con[EP]) instances.

Figure 3.9a also shows the biological annotations for the K_Ionic_Flow model. The gate

n is identified as a protein state. The potassium current is identified as a transport process.

The Ek instance mapped to the K ionic current is also mapped to the K (BiologicalEntity),

reactant (BiologicalRole), and IC (compartment) instances.

K_Ionic_Flow

Constants[PR]

V[PL]

M[CP]

Con[EP]

Con[EP]

Con[EP]

A[I]

Con[EP]
M[CP]

Con[EP]

Con[EP]

K_Nernst_Potential[NP]

ER[V]

Con[EP]

ER[V]

Mem_Potential[PD]

Con[EP]

Init ial_Values[PR]

a

Ek[V] K[S]

K_Transport[TP]K_Channel[ICO]

Time[PR]

T[T]

T[T]

T[T]Con[EP]

Con[EP]

K_Ionic_Flowb

K_Transport[TP]

3

Key

Physical Entity Types
[T]-Time
[V]-Voltage
[IV]-Init ialVoltage
[I]-Current
[L]-Dimensionless
[G]-Conductance
[CP]-Capacitance

Physical Process Types
[PR]-Parameter
[PL]-Pooling
[ICO]-IonicCurrent
[NP]-NernstPotential
[PD]-PotentialDifference
[EP]-EqualityProcess

X

X

Physical entity instance

Physical process instance

physicalEntity property which

connects the entit ies to

processes

Biological entity instance

Biological process instance

Biological role instance

Physical entity instance

annotated to a biological

entity instance

Biological Entity Types
[P]-Protein
[S]-SmallMolecule
[PF]-PhysicalFactor

Biological Process Types
[TP]-Transport

Biological Role
[R]-Reactant
[PO]-Product
[A]-Activator

Biological Compartment Types
[CM]-Compartment

Instance Name[Type]

X X

Biological compartment instance

A and E – species

M – membrane

K – potassium

n – gate

V – voltage

T – time

IC – intracellular

EC – extracellular

Con – connection

V[IV] V[PF]

X Generic node instance

K[S]

R1[R]

IC[CM]

1

n[P]

R4[A]
4

V[PF]

R4[A]
5

K[S]

R2[PO]

EC[CM]

2

K[G] K[S]

J[F] V[PF]

E[IV] V[PF]

E[V] V[PF]

Ek[V] K[S] R1[R] IC[CM]

n[L] n[P] R4[A]

EC[CM]i_K[I] K[S] R2[PO]

V [V] V[PF] R4[A]Gk[CD] K[S]

Figure 3.9: The K_Ionic_Flow model

(a) The CellMLBiophysical/OWL model generated for the K_Ionic_Flow model.

(b) The biological view showing the biological mappings that can be retrieved via

the annotations.

3.3.4 SIMPLIFYING THE K_IONIC_FLOW CELLMLBIOPHYSICAL/OWL

MODEL TO SHOW THE BIOLOGICAL VIEW

The CellMLBiophysical/OWL model is collapsed by applying the reducing rules. Figure 1b

shows the resulting biological view that is generated for the K_Ionic_Flow example. Each

node points to a biological annotation via the biophysical relationships. For example node 3

Chapter 3 – Biophysical annotation and representation of CellML models

 58

in the diagram references physical instances that are mapped to the K_Transport biological

instance. This biological view essentially captures the underlying biological concepts

described in the K_Ionic_Flow model. The order of specific cases that are used to collapse

this model includes:

 collapsing all the MathematicalEquality processes (Con[EP]) (case 1);

 collapsing the Pooling process V[PL] which have entities mapped to the same biological

term V (case 1);

 collapsing the entities T[T] and processes K_Nernst_Potential[NP] Constants[P],

Mem_Potential[PD], Initial_Values[P], and Time[T] which have no biological meaning

(case 4).

To clarify the annotation process further, a more detailed diagram which focuses on

annotation of the K_Channel component is shown in Figure 3.10.

Chapter 3 – Biophysical annotation and representation of CellML models

 59

ImportedComponent

name: K_Channel

componentRef: K_Channel

<component name="K_Channel">

<variable name="Gk" private_interface="out" public_interface="in" units="milliS_per_cm2"/>

<variable name="T" private_interface="out" public_interface="in" units="millisecond"/>

<variable name="V" private_interface="out" public_interface="in" units="millivolt"/>

<variable name="n" initial_value="0.325" private_interface="out" units="dimensionless"/>

<variable name="Ek" private_interface="out" public_interface="in" units="millivolt"/>

<variable name="i_K" private_interface="in" public_interface="out" units="microA_per_cm2"/>

</component>

Variable

name: Gk, private_interface: out, public_interface: in

Variable

name: T, private_interface: out, public_interface: in

Variable

name: V, private_interface: out, public_interface: in

Variable

name: n, private_interface: out, public_interface: in,

initial_value: 0.325

Variable

name: Ek, private_interface: out, public_interface: in

Variable

name: i_K, private_interface: in, public_interface: out

a

hasVariable

hasVariable

hasVariable

hasVariable

hasVariable

Class: PhysicalProcess

name: K_Channel

hasVariable

hasPhysicalProcess

PhysicalEntity

name: Gk

PhysicalEntity

name: Ek

PhysicalEntity

name: V

PhysicalEntity

name: n

PhysicalEntity

name: T

PhysicalEntity

name: i_K

hasPhysicalEntity

hasPhysicalEntity

hasPhysicalEntity

hasPhysicalEntity

hasPhysicalEntity

hasPhysicalEntity physicalEntity

physicalEntity

physicalEntity

physicalEntity

physicalEntity

physicalEntity

CellML/OWL CellMLBiophysical/OWL Physical
b

IonicCurrent

name: K_Channel

Voltage

name: V

Dimensionless

name: n

Conductance

name: Gk

Voltage

name: Ek

Current

name: i_K

Time

name: T
physicalEntity

physicalEntity

physicalEntity

physicalEntity

physicalEntity

physicalEntity

TransportProcess

name: K_Transport

SmallMolecule

name: Potassium

Protein

name: n_gate

Reactant

name: R1

Product

name: R2

Activator

name: R4

Compartment

name: Intracellular

Compartment

name: Extracellular

PhysicalFactor

name: Voltage

refBioProcess

refBioEntity

refBioRole

refBioRole

refBioEntity

refBioEntity

refBioRole

refBioEntity

refBioCompartment

refBioCompartment

refBioRole

refBioEntity

c d

GenericNode

name: GN_1

GenericNode

name: GN_2

GenericNode

name: GN_3

GenericNode

name: GN_4

GenericNode

name: GN_5

GenericNode

name: GN_6

GenericNode

name: GN_7
connects

connects

connects

connects

connects

connects

IonicCurrent

name: K_Channel

Voltage

name: V

Dimensionless

name: n

Conductance

name: Gk

Voltage

name: Ek

Current

name: i_K

Time

name: T

refPhysical

refPhysical

refPhysical

refPhysical

refPhysical

refPhysical

refPhysical

Key

Class name

Datatype property name: value

Object property namedomain range

CellMLBiophysical/OWL

Physical

CellMLBiophysical/OWL

Biological

CellMLBiophysical/OWL

GenericNode

CellMLBiophysical/OWL

Physical

Figure 3.10: Annotating the imported K_Channel shown in Figure 3.9

(a) CellML code of the K_Channel component that is imported from the

K_Ionic_Current model. The K_Channel component contains five variables Gk,

Ek, I_k, h, V, and T to define potassium conductance, equilibrium potential of the

potassium ion, potassium current, gate activity, membrane potential, and time,

respectively. (b) A part of the CellML/OWL model generated for the imported

component K_Channel. The ImportedComponent class is used to represent the

K_Channel component. The Variable class is used to capture the variables Gk,

Ek, I_k, h, V, and T. The CellML/OWL instances are annotated to

CellMLBiophysical/OWL Physical instances. (c) Annotated

CellMLBiophysical/OWL instances. The K_Channel is identified as a

IonicCurrent. The Gk, Ek, I_k, h, V, and T physical instances are typed according

to their units as Conductance, Voltage, Current, Dimensionless, Voltage, and

time, respectively. The physical entities that can be related to biological concepts

Chapter 3 – Biophysical annotation and representation of CellML models

 60

are mapped to biological instances. For example Gk represents potassium

conductance therefore it is mapped to the Potassium biological instance. (d) The

starting set of GenericNode instances generated from the

CellMLBiophysical/OWL instances. This is used to apply the reducing rules.

The process of annotating and representing the complete Hodgkin-Huxley model is

illustrated in Figure 3.11. Every CellML variable is represented as a specific PhysicalEntity

instance (Figure 3.11a). For example, variables associated with a current such as i_Na, i_K,

and i_L are identified as Current instances. Similarly, every CellML component is

represented as a specific PhysicalProcess instance. For example, the components describing

the currents such as Leakage_Current are identified as IonicCurrent instances. All the

connections are represented as MathematicalEquality instances. The gates m, h, and n are

identified as protein states. The potassium current, sodium current, and the leakage current

are identified as transport processes. The Ek instance mapped to the K ionic current is also

mapped to the K (BiologicalEntity), reactant (BiologicalRole), and IC (compartment)

instances (Figure 3.11a).

A biological view showing the biological mappings that can be retrieved via the

annotations (Figure 3.11b). Node 1, 2, and 3 reference physical instances that are mapped to

the Na_Transport, L_Transport, and K_Transport biological process instances, respectively.

The rest of the nodes reference physical instances that are mapped to biological entity, role,

and compartment instances. This biological view essentially captures the underlying

biological concepts described in the Hodgkin–Huxley model. The order of specific cases that

are used to collapse this model includes: collapsing all the MathematicalEquality processes

(Con[EP]) (case 1); collapsing the Pooling process V[PL] which have entities mapped to the

same biological term V (case 1); collapsing the entities T[T] and processes

K_Nernst_Potential[NP], L_Nernst_Potential[NP], Na_Nernst_Potential[NP], Constants[P],

Sum_of_2[PL], Sum_of_3[PL], Mem_Potential[PD], Initial_Values[P], and Time[T] which

has no biological meaning (case 4).

Chapter 3 – Biophysical annotation and representation of CellML models

 61

Hodgkin_Huxley

Hodgkin_Huxley

Constants[PR]

V[PL]

M[CP]

Sum_of_2[PL]

sum[I]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP] Con[EP]

A[I]
Con[EP]

Con[EP]

Con[EP]

M[CP]

Con[EP]

Con[EP]

K_Nernst_Potential[NP]

Ek[V]

Con[EP]

ER[V]

L_Nernst_Potential[NP]

Na_Nernst_Potential[NP]

Con[EP]

ER[V]

Con[EP]

ER[V]

Mem_Potential[PD]

Con[EP]

Init ial_Values[PR]

a

b

Ek[V] K[S]

El[V] ion[S]

h[G] h[P] R4[A]

n[P]

R4[A]
12

K[S]

R2[PO]

ion[S]

R1[R]

K[S]

R1[R]

Na[S]

R1[R]

h[P]

R4[A]
10

m[P]

R4[A]
11

Na[S]

R2[PO]

ion[S]

R2[P]

V[PF]

R4[A]
13

L_Transport[TP]

2

K_Transport[TP]

3

Na_Transport[TP]

1

Ena[V] Na[S]

Key

Physical Entity Types
[T]-Time
[V]-Voltage
[IV]-Init ialVoltage
[I]-Current
[L]-Dimensionless
[G]-Conductance
[CP]-Capacitance

X

X

Physical entity instance

Physical process instance

physicalEntity property which

connects the entit ies to

processes

Biological entity instance

Biological process instance

Biological role instance

Physical entity instance

annotated to a biological

entity instance

Physical Process Types
[PR]-Parameter
[PL]-Pooling
[ICU]-IonicCurrent
[NP]-NernstPotential
[PD]-PotentialDifference
[EP]-MathematicalEquality

Biological Entity Types
[P]-Protein
[C]-Complex
[S]-SmallMolecule
[PF]-PhysicalFactor

Biological Process Types
[TP]-Transport

Instance Name[Type]

X X

iNa[I] Na[S] R1[R] EC[CM]

Ek[V] K[S] R1[R] IC[CM]

El[V] ion[S] R1[R] EC[CM]

Biological compartment instance

IC[CM]

IC[CM]

EC[CM]

EC[CM]

EC[CM]

IC[CM]

Na – sodium

K – potassium

m, h, and n – gate

V – voltage

T – time

IC – intracellular

EC – extracellular

val – value

Biological Role
[R]-Reactant
[PO]-Product
[A]-Activator

Biological Compartment
Types
[CM]-Compartment

6

8

4

9

5

7

n[L] n[P] R4[A]

Sum_of_3[PL]

sum[I]

val[I]

Con[EP]

Na[S]val[I]val[I] ion[S]

val[I] K[S]

J[F] V[PF]
A[G] ion[S]

Gk[G] K[S] Gl[G] ion[S]

GNa[G] Na[S]

V[V] V[PF] R4[A]

V[V] V[PF] R4[A]

V[IV] V[PF]

V [V] V[PF] R4[A]

Na[G] Na[S]

Na[G] K[S]

J[F] V[PF]

E[V] V[PF]

E[IV] V[PF]

Time[PR]

T[T]

T[T]Con[EP]

Con[EP]

T[T]

T[T]

Con[EP]

EC[CM]i_K[I] K[S] R2[PO]

IC[CM]A[I] ion[S] R2[PO]

Ena[V] Na[S] R2[PO] IC[CM]

Na_Transport[TP]Na_Ionic_Current[ICU]

L_Transport[TP]Leakage_Current[ICU]

K_Transport[TP]K_Channel[ICU]

m[L] m[P] R4[A]

Figure 3.11: Annotated Hodgkin-Huxley model

(a) The CellMLBiophysical/OWL model generated for the Hodgkin–Huxley

model. (b) The biological view showing the biological mappings that can be

retrieved via the annotations.

Chapter 3 – Biophysical annotation and representation of CellML models

 62

3.4 DISCUSSION

Here we have presented a method for the incorporation of ontologies with CellML that can be

used to annotate the biophysics of a model, and generate ontological representations, to

highlight the underlying biological view.

Our ontological framework provides a fully integrated system, allowing modelers to

traverse between models. A CellML/OWL model provides the necessary layer for integrating

a CellML model with a CellMLBiophysical/OWL model which explicitly captures the

physical and biological concepts. The CellMLBiophysical/OWL model is then collapsed to

generate a biological view which is much easier to interpret. The biological view contains

links to the collapsed biophysical instances which have one-to-one relationships with the

CellML/OWL component, variable, and connection instances. This allows modelers to trace

back to the original CellML elements from a particular biological view.

The CellMLBiophysical/OWL model explicitly identifies the physical concepts in the

CellML model. This makes it easier for readers to identify the computational modeling

constructs used in the model. For example, the K_channel component is typed as an

IonicCurrent identifying that the component is responsible for calculating a current generated

by an ion flow. The K_channel component does not contain any mathematics itself, but

instead it encapsulates a set of components that are involved in calculating the current flow

through the potassium channel.

Even though the K_Ionic_Flow CellMLBiophysical/OWL model (Figure 3.9a) captures

the biological concepts it is difficult for readers to interpret the underlying processes. The

graph reduction rules reduce the complexity of the annotated K_Ionic_Flow model by

collapsing together the physical instances that point to identical biological concepts. The

resulting biological view (Figure 3.9b) shows a simplified representation of the underlying

biological concepts by highlighting the transport processes, gated channels, and the

relationships between them.

The ontology based rules for applying the generic rules that we have identified can be

used to apply the reduction rules to collapse most of the signal transduction pathway and

electrophysiological models. These can fail when applied to other types of models described

in the CellML model repository. However, more specific cases can be identified by applying

it to different types of models. Due to the wide range of models in the CellML model

Chapter 3 – Biophysical annotation and representation of CellML models

 63

repository, it may not be possible to come up with a generic set of cases to collapse all

models but a set of specific cases depending on the model category.

Note that the rules we have identified are used to simplify the process-entity graph using

the biological annotations in this work. The advantage of this rule set is that these can be

applied to simplify the process-entity graph using a different context by identifying specific

cases. As research continues, it is one our goals to annotate the CellMLBiophysical/OWL

models with mathematical constructs which can be used to reduce the complexity of a

CellML model.

The biological and physical annotations depend on the modeler‟s interpretation of the

model. The reducing rules depend on the biophysical annotations. Having different

annotations may result in different biological views. This allows modelers to change the

annotations to emphasize or hide details. Modelers can also choose the order of graph

reduction rules applied. By changing the order of rules, it is possible to generate different

biological views for some models. A particular CellML model may thus have multiple

biological views.

The topology of the biological view also depends on the topology of the CellML model.

The CellML model structure has a direct effect on the topology and complexity of the

CellMLBiophysical/OWL model. If a CellML model is incomplete or invalid, the generated

CellMLBiophysical/OWL model might be difficult to annotate with biological concepts,

resulting in an uninteresting collapsed model. When building the topology of the CellML

model, the modeler thus needs to reflect the biophysical abstractions that she is trying to

communicate [65]. Note that this process also helps modelers to construct modular CellML

models by clearly separating out the underlying biophysical concepts.

The K_Ionic_Flow model example shown here demonstrates the way in which the

CellML models can be collapsed to represent the underlying biological concepts without any

loss of information. The CellML models are structured to clearly separate the biophysical

concepts. This is reflected in the resulting CellMLBiophysical/OWL model, as highlighted in

the dotted areas (Figure 3.9a). Note that the CellMLBiophysical/OWL model does not

capture implicitly imported encapsulated concepts such as the details of calculations of the

gated channel. However, it does identify the explicitly imported variables such as n-gate,

which is typed as a Dimensionless instance in the physical domain and Protein in the

biological domain.

Chapter 3 – Biophysical annotation and representation of CellML models

 64

The CellMLBiophysical/OWL and BioPAX both can be used to develop biological views

but the way in which the views are represented is different. BioPAX represents a biological

process as having properties directly specifying participants. In contrast, in

CellMLBiophysical/OWL the biological participants of a process are reached indirectly

through the physical entity instances. Even though this makes querying of biological data

more complex, it supports querying of physical concepts captured in CellML models.

The CellMLBiophysical/OWL ontology does not provide a complete ontology for

annotating all the CellML models in the repository. It supports most of the biophysical

concepts covered in signal transduction pathway and electrophysiological models. However,

it can also be extended to support additional biophysical concepts and relationships by

introducing new classes, properties, and restrictions. The CellMLBiophysical/OWL models

can also be annotated against external ontologies and vocabularies to take advantage of

existing knowledge definitions. Every class within the CellMLBiophysical/OWL ontology

has an xref property to enable the model developer to map the class to an external resource

such as terms in GO or SBO. For example annotating a BiologicalEntity instance against the

voltage-gated sodium channel complex in the cellular component ontology in GO provides

information about the BiologicalEntity instance, such as it is a protein complex and part of

the plasma membrane. SBO can be used to annotate the physical entity and process instances

with quantitative parameter concepts and mathematical expression concepts, respectively, to

provide physical significance. The biological entity and process instances can be annotated

with SBO participant concepts and event concepts, respectively, to provide additional

biological meaning.

One of the advantages of the CellML import element is the ability to reuse previously

defined models in new model descriptions. As mentioned in the section 3.2.1 OWL:Import

cannot be used to achieve the same semantic results. It is feasible to achieve the same

modular approach in OWL without using a domain specific CellML import concept by

introducing meta-classes/meta-models which could then be used to build OWL models.

However, this was not addressed in this work as the intension of our work was to reflect the

CellML/XML in OWL to provide a method to attribute properties to the CellML elements.

The workflow discussed in this chapter involves programmatic and manual manipulation

of the models. A software package has been developed to programmatically generate the

ontological representations of a CellML model. The package is developed in Java to run on

any platform. Currently it has only been tested on Widows but as research continues this tool

Chapter 3 – Biophysical annotation and representation of CellML models

 65

will be tested in other environments. This tool is freely available at

http://www.cellml.org/tools/downloads/cellml-viewer. The manual process includes the

construction of the CellML model and its subsequent annotation. The generated

CellMLBiophysical/OWL model needs to be manually annotated with specific physical and

biological concepts using external OWL editors such as Protégé [63].

The error-prone and time-consuming manual annotation process can be effectively

simplified by reusing annotated CellML models. It is our intension to replace these manual

processes with formal or automated methods in order to support the effective programmatic

construction of biological views. Errors that may occur during the processes of annotation of

biological concepts can be reduced by introducing a rigor peer-reviewed workflow similar to

that of publication in journals. The annotation of physical concepts can be improved by

implementing a method for variable typing, and unit and process translation by using an

ontological representation of mathematical equations. The construction of CellML models

can be further improved by introducing a library of annotated reusable components and

models [65]. Such a library could then be used to automatically link components and

integrate models to create more complex annotated models. The generic node model which

holds bindings through to all relevant components could be used to generate or formulate a

function of all relevant pieces of specific annotation.

The outcome of this research offers an extensible ontological framework which allows

modelers to:

 build CellML models by abstracting biophysical concepts;

 annotate the CellML models with physical and biological concepts;

 reduce the complexity of the underlying biophysical model by generating a simplified

biological view;

 integrate CellML models with external controlled vocabularies and other modeling

standards.

Chapter 4 – A method for visualizing CellML models

 66

4 A METHOD FOR VISUALIZING CELLML MODELS

CellML models can be very complicated, making it difficult to interpret the underlying

physical and biological concepts and relationships captured/described in the mathematical

model. The previous chapter described a set of ontologies that were developed to explicitly

annotate the biophysical concepts represented in the CellML models. This chapter presents a

framework that combines a visual language, together with CellML ontologies, to support the

visualization of the underlying physical and biological concepts described by the

mathematical model and also their relationships with the CellML model. Automated CellML

model visualization assists in the interpretation of model concepts and facilitates model

communication and exchange between different communities.

4.1 INTRODUCTION

The creation and simulation of CellML models are supported by a set of software tools,

including OpenCell and Cellular Open Resource (COR) [62]. The main features supported by

these tools include text-based editing, tree views, graphical views, running simulations, and

graphing of simulation results of CellML models [62, 66, 67]. Modelers are encouraged to

share their models with the community by adding them to the CellML Model Repository

[17]. The Physiome Model Repository (PMR) [22] is a software product designed to facilitate

Chapter 4 – A method for visualizing CellML models

 67

the upload, storage, curation, download, and viewing of the models in the CellML model

repository.

CellML models comprise networks of interconnected components. The language

supports a mechanism for importing components from one model into another. This feature

facilitates the building of complex, composite models of function, it encapsulates hierarchies

of detailed mechanisms (therefore hiding much of the model complexity). Imports can be

used to easily build upon existing models (without the need to start from scratch), or they can

be utilized in libraries of pre-defined functional components.

However, the result of such language features and flexibility is that the specific details of

biological and physical concepts can end up distributed over a complex interconnected

network. This makes it difficult to identify what elements of a model contribute to a concept.

It also makes it harder for a modeler to maintain a clear conceptual picture of the underlying

biological mechanisms described by the model, especially when that model is large, complex

and/or composite.

Existing software tools have attempted to address some of these issues. Each model entry

in the PMR has an option to view a rendered list of the mathematical equations described in

that particular model. OpenCell, a tool for editing and simulating CellML models, provides a

tree view of the CellML model, allowing the user to more easily view the units, components,

variables, connections and mathematical equations in a particular model. Further, physical

quantitative information about the model can be derived via the defined units of the variables.

To highlight the biological concepts described in CellML models, almost all the model

entries in the PMR include a schematic diagram of the underlying biological concepts being

described by that particular CellML model. These same schematic diagrams can be included

in OpenCell session files as Scalable Vector Graphics (SVG) [39] with annotations to the

CellML variables and components. These clickable diagrams allow the user to trace the

different behaviors of each variable in the model over the time course of the simulation.

Currently these schematic diagrams are created manually, to reflect the diagrams often

found in the published papers from which the CellML model has been derived. However,

diagram creation is time-consuming and can be an error-prone process. Further, the ad hoc

nature of these diagrams often requires textual support, usually in the form of a figure legend

that describes the underlying biological concepts being illustrated. We suggest that such

diagram generation would benefit from a visual language that could be used to provide

Chapter 4 – A method for visualizing CellML models

 68

consistent graphical notations. A visual language is a way of expressing the semantics of a

specific domain in a multi-dimensional space using visual symbolic notations [68]. A good

visual language should be easily recognizable and simple to learn.

The embedded SVG diagrams in OpenCell are manually annotated to their corresponding

variables in the CellML model. This is achieved by mapping each SVG glyph to a single

CellML variable via the scripting language Javascript. Javascript enables programmatic

access to objects in OpenCell and allows modelers to interact with these SVG diagrams

within the OpenCell graphical user interface. Modelers can then select glyphs in the diagram

to watch the simulation graph of the mapped variable.

There are several problems associated with this method of building schematic diagrams

and the binding of variables from models to diagrams:

 the schematic diagrams do not capture the composite nature that can exist in the

underlying CellML models.

 there is no existing method to build new visual representations of models that are

composites of existing models. The glyphs in the diagram can be annotated to variables in

the composite model as well as imported components;

 the manual creation of diagrams can be an error-prone process, especially for the larger,

more complex models. In particular, there are no methods in place to ensure that all the

biological elements described in the CellML models are represented in the diagram;

 this manual process is labor-intensive and time consuming.

The aim of the work described here is to find a visual language suitable for representing

the underlying biophysical concepts captured in a CellML model. We also define a formal

method to consistently apply this visual language to diagram generation.

Many alternative visual languages have been developed to visualize biological models.

These include, BioD [69], Molecular Interaction Maps (MIM) [70], the state transition

diagram notation supported in CellDesigner [71], BioUML [72], Pathway Analysis Tool for

Integration and Knowledge Acquisition (PATIKA) [73, 74], Cell Illustrator [75], PathSys

[76], BioPath [77], Edinburgh Pathway Notation (EPN) [78], and insilicoIDE [79]. A matrix

developed to compare the notations supported in CellDesigner, PATIKA, MIM, and EPN is

illustrated in Supplementary Material C. Despite their considerable number, identifying a

suitable visual language for a particular type of model can present a challenge, as they are

often domain specific and can have different underlying schemas of how biological meaning

Chapter 4 – A method for visualizing CellML models

 69

should be modeled and displayed. To address these issues, there has been a consortium

approach to developing a common visual notation: the Systems Biology Graphical Notation

(SBGN) [80]. This aims to draw on the experiences of existing visual languages to formulate

a single, standard graphical notation of biology that is vital for the interpretation and sharing

of biological knowledge between different research communities.

The SBGN community has identified three main types of visual representations:

1. process diagrams which represent a sequence of interactions between biochemical

entities;

2. entity-relationship diagrams which depict interactions which occur if the relevant entities

are present;

3. activity flow diagrams which represent the influences between entities.

The models in the PMR encompass a wide range of molecular processes. The SBGN

process diagram can represent all the molecular processes and interactions that occur between

biological entities, and their outcomes. This particular type of visual representation provides a

promising option for visualizing CellML models. However, since SBGN is currently in a

state of rapid evolution, we have also been developing our own visual language in parallel to

this effort. That said, we are contributing to the discussions and development of SBGN and

we have found guidance for the development of our own visual language through this

collaboration.

The generation of diagrams for CellML models using a visual language requires the

language to be mapped to the CellML elements. In turn, this mapping process requires the

CellML language to explicitly identify the underlying biophysical concepts being modeled.

To achieve this, a biophysical ontology was developed to explicitly capture the physical and

biological concepts in a CellML model [81]. The goal here is to develop a method to

construct and map a visual language to the biophysical ontology which in turn can be used to

visualize the physical and biological concepts described in CellML models.

In this chapter we address these issues by describing:

 a visual language for representing the physical and biological concepts modeled in

CellML;

 a method to map the visual language to the concepts defined in the biophysical ontology;

 an algorithm that combines the visual language with the ontologies in order to facilitate

the automated generation of visual representations of the CellML models.

Chapter 4 – A method for visualizing CellML models

 70

In the following section we describe the ontologies and strategy developed to map

physical and biological concepts in a CellML model to a visual representation of the model,

and illustrate the approach with a simple example.

4.2 METHODS

The previous chapter described an ontology to annotate and represent CellML models, which

we will use as the basis for developing our approach. The biophysical ontology, which is

referred to as CellMLBiophysical/OWL [81], is based on the Web Ontology Language

(OWL) [35]. It captures the underlying physical and biological concepts and relationships

described in a CellML model. The CellMLBiophysical/OWL ontology is made up of two

distinct ontologies; the Physical and the Biological. The Physical ontology captures the

physical quantitative information and mathematical expressions in a CellML model. It creates

a process-entity graph where the process represents a CellML component or a connection

while the entity represents a variable (Figure 4.1). The Biological ontology captures the

biological processes and entities described in a CellML model. The

CellMLBiophysical/OWL ontology defines the concepts and relationships both within and

between these ontologies.

CellMLBiophysical/OWL model

physicalEntity

refBioProcess

Variable1

(PhysicalEntity)
physicalEntity

Variable2

(PhysicalEntity)

Component1

(PhysicalProcess)

formationOfB

(BiochemicalProcess)

refBioEntity

A

(Protein)

B

(Complex)

reactant

(Reactant)

product

(Product)

refBioEntityrefBioRole refBioRole

connects connects

refbiophysical refbiophysical refbiophysical

Biological view with

mappings to physical

instances

Physical instances with

mappings to biological

instances

Biological instances

Node0 Node1 Node2

Key

OWL Property Biological or physical entity instance

Biological or physical process instanceGeneric Node instance

Figure 4.1: Schematic diagram illustrating a CellMLBiophysical/OWL model

The figure illustrates an annotated CellMLBiophysical/OWL model generated for

a CellML model with one component and two variables. In the physical domain,

components (Component1) is typed as a Process and variables (Variable1 and

Variable2) are typed as PhysicalEntities. These physical entities are annotated to

Biological instances via properties (Variable1 PhysicalEntity instance is mapped

to Protein A biological instance via the refBioEntity property). GenericNode

Chapter 4 – A method for visualizing CellML models

 71

instances are generated by reducing the physical-entity graph according to the

biological annotations. These GenericNode instances maps to the Physical

instances which, in turn, have mappings to Biological instances.

An instantiation of this ontology, which we refer to as a CellMLBiophysical/OWL model

capturing the biophysical concepts modeled in a particular CellML model, results in a

relatively complicated representation. A simplified view of these representations is generated

by applying a graph reducing algorithm to the CellMLBiophysical/OWL model. This

simplified view is a node-edge graph with mappings to physical instances which, in turn,

have mappings to biological instances (Figure 4.1). This simplified view, together with

biological mappings, can be used to highlight the underlying biological concepts and

relationships described by the CellML model [81] (Chapter 2).

The framework for generating visual representations for CellML models involves four

steps:

1. the development of a standardized visual language for representing the physical and

biological processes captured in CellML models. This involves designing a set of visual

glyphs which have one-to-one mappings with the physical and biological concepts

represented in the CellMLBiophysical/OWL models;

2. the representation of the visual language in a computer readable form;

3. the mapping of the visual notation to the CellMLBiophysical/OWL ontology. This

involves developing an ontology (VisualTemplate/OWL) that maps to the visual language

which, in turn, is mapped to concepts in the CellMLBiophysical/OWL ontology;

4. the development of an algorithm for generating visualizations of CellML models based on

these ontological mappings.

4.2.1 THE DEVELOPMENT OF A STANDARDIZED VISUAL LANGUAGE FOR

REPRESENTING THE PHYSICAL AND BIOLOGICAL PROCESSES CAPTURED

IN THE CELLML MODELS

The goal here is to develop visual elements to represent the physical and biological concepts

captured in the CellMLBiophysical/OWL ontology.

4.2.1.1 A visual language for representing physical concepts

A visualization should ensure that the detail of the underlying physical information described

by the model is correctly and fully represented. A CellMLBiophysical/OWL model instance

Chapter 4 – A method for visualizing CellML models

 72

captures the relationships between all the CellML elements (components, variables, and

connections) as a process-entity graph. A detailed visualization can be constructed by

identifying each of these processes and entities with a one-to-one mapping, i.e. every process,

entity, and connection can be identified by a unique glyph.

There are often many physical process and entity concepts associated with a

CellMLBiophysical/OWL model that need to be visualized [81] (Chapter 2). The

visualization should also uniquely identify these physical processes and entities. One solution

would be to provide a separate glyph for each type of process and entity. However, this

would not necessarily be very helpful to the modeler as it requires them to remember the

meaning of many different symbols. We have thus chosen to use text labels, in addition to a

reasonably small, distinct set of glyphs, to support the visualization of

CellMLBiophysical/OWL models (Figure 4.2). The type of the entity or process, which is

captured in CellMLBiophysical Class name, is written in italics, whilst the name of the entity

or process is written in standard text.

Figure 4.2: A notation for visualizing physical concepts

 (a) A glyph for visualizing physical entities. (b) Glyph set for visualizing physical

processes. A separate (EqualityProcess) is used to represent the

MathematicalEquality class instances in the CellMLBiophysical/OWL ontology

which intern represents the CellML connections. (c) A glyph for visualizing the

relationship between the physical entities and processes.

The rules for constructing a visual representation of a CellML model are based on the

underlying process-entity graph. There is a unique glyph for each PhysicalEntity,

PhysicalProcess, and the relationship between the entities (physicalEntity).

4.2.1.2 A visual language for representing the biological concepts

Here we aim to develop the visual language elements required for representing the biological

processes (BiologicalProcess), entities (BiologicalEntity), and the function of participation

(BiologicalRole) of a biological entity in relation to a particular process.

Chapter 4 – A method for visualizing CellML models

 73

A set of glyphs has been developed to uniquely identify:

 biological entities such as small molecules, proteins, complexes, physical factors, and null

elements (Figure 4.3a);

 biological processes such non-enzyme catalyzed covalent reaction (BiochemicalProcess),

non-covalent reaction (ComplexProcess), enzyme catalyzed reaction (EnzymeProcess),

movement of biological entities from one location to another (TransportProcess), and the

process of degrading a physical entity (DegratationProcess) (Figure 4.3b);

 biological roles such as catalysis, activation, inhibition, reactant, and product (Figure

4.3c).

Figure 4.3: A notation for representing biological concepts

(a) Glyph set for visualizing biological entities. (b) Glyph set for visualizing

biological processes. (c) Glyph set for visualizing biological roles.

The rules for constructing a biological visual representation are based on the simplified

view which captures the underlying biological concepts in a CellML model. A biological

visual representation is generated by forming a one-to-one mapping between the biological

concepts and the visual elements, or glyphs. i.e. each GenericNode is mapped to either a

BiologicalProcess glyph or a BiologicalEntity glyph; whilst the Role glyph is used to

represent the relationship between a biological entity and a biological process.

Chapter 4 – A method for visualizing CellML models

 74

4.2.2 THE REPRESENTATION OF THE VISUAL LANGUAGE IN COMPUTER

READABLE FORM

To support the computer based manipulation of a visual language, it is important to find a

standard format for representing the visual language in a computer readable form. To be

suited for the visualization of CellML models, such a representation would have to support

two dimensional graphics for representing the visual language, dynamic image updates to

automatically construct visual representations from the CellML models, in addition to an

interactive environment to track the user‟s mouse activity on the graphics.

 SVG is an XML-based graphics standard for representing two-dimensional graphics.

SVG supports vector graphics shapes, images, and text. Graphical objects can be grouped,

styled, transformed, and composited into previously rendered objects. The feature set

includes nested transformations, clipping paths, alpha masks, filter effects, and template

objects. Use of XML enhances the searchability and the accessibility of the SVG graphics,

and also allows the use of Java to generate SVG code to render graphics from database

content to enable dynamic image updates. Interactive SVG content can also be executed

using mouse events, and it allows users to initiate hyperlinks to traverse to new web pages

and layout the objects. These features make SVG a well suited visual representation format

for our particular needs.

SVG consists of large number of elements. The svg element is the root of a SVG

document. For the work described here we use the basic types of drawing elements such as

text (text), shapes (rect, line, and cir), and paths (path). Each of these elements can be

associated with attributes to define properties such as dimensions (width and height), unique

identifier (id), coordinates (x and y), transformation (transform), and style (style). The g

element is used to group the drawing elements together. It can also be associated with

attributes such as id (id), coordinates (x and y), and transformation (transform).

Each visual element shown in Figure 4.2 and Figure 4.3 has been coded up in SVG,

allowing these glyphs to be reused when generating the visual representation of a particular

CellML model. The remainder of this chapter refers to these glyphs as templates. Three SVG

files are used to store the entity, process, and role visual elements.

The template for representing a generic entity is illustrated in Figure 4.4a. The rect

element is used to draw the base rectangle of a glyph. It specifies the size of the area covered

by the graphic object. The handler element specifies the points that are used to connect a

Chapter 4 – A method for visualizing CellML models

 75

glyph to other glyphs such as role glyphs. Note that in Figure 4.3a each visual element has a

specific shape to identify whether it represents a small molecule, protein, complex, or a

physical factor. These shapes inside the base rectangle are represented using the cir element

for drawing circles and the path element for drawing different shapes. The g element is used

to group these elements together to form a specific template. A text element is added to

display the type and name of a particular entity. The id attribute of the g element contains a

unique identifier to recognize each glyph in a model and the transformation attribute specifies

the position of the glyph in a particular coordinate system.

The template for representing a generic process is illustrated in Figure 4.4b. Similar to

the entity template, the process template also defines a base and a handler. The base for the

process template is a circle which is described using cir element. The shapes inside the base

circle which identify each of the different processes are represented by path elements.

The template for representing a generic role is illustrated in Figure 4.4c. Every role type

(Figure 4.3c) consists of a line and another shape drawn at one end of each line. The line

element is used to draw the line of each glyph. The additional shapes associated with each of

the visual elements can be drawn using the line, cir, or path SVG elements.

Figure 4.4: Template codes describing the visual language

<g id="genericEntity" name=" genericEntity " transform="translate(0.0,100.0) scale(1.0,1.0)">

 <rect id="base" x="0" y="0" rx="5" ry="5" width="50" height="34" style="fill:#183d9a;stroke:none;stroke-width:1.0000000" />
 (SVG elements describing the shapes inside the base)
 <path id="handler" d="M 25,0 L 50,17 L 25,34 L 0,17 Z " style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none"/>

</g>

View of the code below

All elements specified in the be code below

Handler

Base

<g id="genericProcess" transform="translate(30.0,0.0)" >

 <circle id = "base" r="10" cx="10" cy="10" style="fill:#459a18;stroke-width:1;stroke:none"/>
 (SVG elements describing the shapes inside the base)
 <path id="handler" d="M 10,0 L 20,10 L 10,20 L 0,10 Z " style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none" />
</g>

All elements specified in the code below

Handler

a

b

<g id="genericRole" name=" genericRole">
 <line id="line" x1="100px" y1="100px" x2="150px" y2="150px" stroke="#8B0A50" stroke-width="1"/>
 (SVG elements describing the additional shapes attached to the line)
</g>

Base

c

View of the code below

Chapter 4 – A method for visualizing CellML models

 76

(a) SVG graphic and the template code for representing the generic entity template

(b) SVG graphic and the template code for defining the generic process (c) SVG

graphic and the template code to define the generic role

4.2.3 THE MAPPING OF THE VISUAL LANGUAGE TO THE

CELLMLBIOPHYSICAL/OWL ONTOLOGY

The visual language represents the concepts captured in CellMLBiophysical/OWL ontology

which, in turn, captures the biophysical concepts modeled in CellML. The goal here is to map

the visual elements to the biophysical concepts described in the CellMLBiophysical/OWL

ontology. This can be achieved by developing an intermediate OWL ontology

(VisualTemplate/OWL) with mappings to the SVG visual elements. This provides two

loosely coupled ontologies which are then free to evolve independently. Currently the

VisualTemplate/OWL class structure mirrors the top level CellMLBiophysical/OWL class

structure, thus making mapping between the two ontologies a relatively straightforward

process.

The VisualTemplate/OWL ontology class structure is illustrated in Figure 4.5. The top

level VisualTemplate class has two properties: a url to store the URLs of the SVG files that

contain the glyphs; and an svgId to store the value of the id attribute of the g element. It has

two subclasses; a Biological class and a Physical class. These two classes are used to

represent the biological glyphs and the physical glyphs, respectively. The Biological class has

three subclasses:

1. a BiologicalEntity class to reference to biological entity glyphs (Figure 4.3a);

2. a BiologicalProcess class to reference to biological processes glyphs (Figure 4.3b);

3. a BiologicalRole class to reference to biological role glyphs (Figure 4.3c).

Similarly the Physical class can also be further divided into three subclasses:

1. a PhysicalEntity class to reference to physical entity glyphs (Figure 4.2a);

2. a PhysicalProcess class to reference to physical process glyphs (Figure 4.2b);

3. a PhysicalRole class to reference to physical role glyphs (Figure 4.2c).

Chapter 4 – A method for visualizing CellML models

 77

VisualTemplate

* url (single string), * svgid (single string)

Physical

[*] url (single string), [*]svgid (single string)

Biological

[*] url (single string), [*]svgid (single string)

Class name

* datatype property (cardinality datatype)

[]properties applied via the parent classes

Parent class Sub class

Key

PhysicalEntity

[*] url (single string), [*]svgid (single string)

PhysicalProcess

[*] url (single string), [*]svgid (single string)

BiologicaEntity

[*] url (single string), [*]svgid (single string))

BiologicalProcess

[*] url (single string), [*]svgid (single string)

BiologicalRole

[*] url (single string), [*]svgid (single string)

PhysicalRole

[*] url (single string), [*]svgid (single string)

Figure 4.5: Class structure of the VisualTemplate/OWL ontology

An instance in a CellMLBiophysical/OWL model needs to reference an instance of a

VisualTemplate/OWL model. This mapping is achieved by introducing a property called

visualTemplate to the top class of the CellMLBiophysical/OWL ontology,

CellMLBiophysical. The set of rules for model annotation includes mapping each

CellMLBiophysical/OWL:

 BiologicalEntity instance to a VisualTemplate/OWL BiologicalEntity instance;

 BiologicalProcess instance to a VisualTemplate/OWL BiologicalProcess instance;

 BiologicalRole instance to a VisualTemplate/OWL BiologicalRole instance;

 PhysicalEntity instance to a VisualTemplate/OWL PhysicalEntity instance and a

PhysicalRole instance;

 PhysicalProcess instance to a VisualTemplate/OWL PhysicalProcess instance.

Note that the CellMLBiophysical/OWL PhysicalEntity instance is mapped to both a

VisualTemplate/OWL PhysicalEntity instance and a PhysicalRole instance. The relationship

between a CellMLBiophysi-cal/OWL PhysicalEntity and a PhysicalProcess is captured via

the physicalEntity property. OWL properties describe relationships between OWL class

instances. Here we want to express the relationship between the physicalEntity property and

the PhysicalRole class instance which cannot be expressed in OWL.

In summary, there is a many-to-one relationship between CellMLBio-physical/OWL and

VisualTemplate/OWL instances. i.e. many instances of a CellMLBiophysical/OWL

(Physical/Biological) can be mapped to a single VisualTemplate/OWL (Physical/Biological)

instance. These mappings between each CellMLBiophysical/OWL class instance and each

Chapter 4 – A method for visualizing CellML models

 78

VisualTemplate/OWL class instance allow us to obtain defined references to the SVG visual

element templates shown in Figure 4.2 and Figure 4.3.

4.2.4 THE DEVELOPMENT OF AN ALGORITHM FOR GENERATING

VISUALIZATIONS OF CELLML MODELS

Here we describe the process of generating a visualization once a CellMLBiophysical/OWL

model has been mapped to the VisualTemplate/OWL instances. The following section

describes the algorithm for generating the physical and biological visual representations of a

CellML model.

4.2.4.1 Generating visualizations of the physical concepts in a CellML model

There is a one-to-one mapping between a CellMLBiophysical/OWL model, representing the

physical concepts in a CellML model, and the visual elements in a schematic diagram. Every

PhysicalProcess and PhysicalEntity is represented using the PhysicalProcess and

PhysicalEntity glyph, respectively. The relationship between the PhysicalProcess and

PhysicalEntity captured via the physicalEntity property is captured using the PhysicalRole

glyph. This one-to-one association should not be confused with the explicit many-to-one

mapping that exists in the CellMLBiophysical/OWL and the VisualTemplate/OWL discussed

in the previous section.

The algorithm for visualizing physical concepts is thus relatively simple:

1. create a SVG document to describe the visualization;

2. for each CellMLBiophysical/OWL (PhysicalEntity and PhysicalProcess) instance retrieve

the mapped VisualTemplate/OWL (PhysicalEntity and PhysicalProcess) instance (Figure

4.6). Then retrieve the mapped SVG template, copy it to the created SVG document and

set the label (type and name);

3. for each CellMLBiophysical/OWL PhysicalEntity instance retrieve a

VisualTemplate/OWL PhysicalRole instance (Figure 4.6). Then retrieve the mapped SVG

template, copy it to the created SVG file and set the coordinates of the lines so that they

form the connections between the underlying CellMLBiophysical/OWL PhysicalEntity

and PhysicalProcess;

4. generate the coordinates for the PhysicalEntity and PhysicalProcess glyphs. A simple

algorithm has been written to control the layout of the process and entity glyphs, and this

ensures they do not overlap.

Chapter 4 – A method for visualizing CellML models

 79

Visualising physical concepts

CellMLBiophysical/OWL model

Variable1

(PhysicalEntity)

Variable2

(PhysicalEntity)

Component1

(PhysicalProcess)

Physical instances with

mappings to

VisualTemplate instances

VisualTemplate instances

Key

OWL Property Physical entity instance

Physical process instance

physicalEntity physicalEntity

visualTemplate visualTemplate visualTemplate

PhysicalEntity

PhysicalRole

PhysicalProcess

VisualTemplate instance

SVG templates

Entity glyph

Process glyph

Role glyph

Figure 4.6: Mappings for generating the physical view

Component1 PhysicalProcess instance is mapped to PhysicalProcess

VisualTemplate/OWL instance which in turn references the PhysicalProcess

glyph. Variable1 and Variable2 PhysicalEntity instances are mapped to

PhysicalEntity VisualTemplate/OWL instance which in turn references the

PhysicalEntity glyph. These also map to PhysicalRole VisualTemplate/OWL

instance which in turn maps to the Role glyph. These mappings are then used to

generate a physical view.

4.2.4.2 Generating visualizations of the biological concepts in a CellML model

There is a one-to-one mapping between a collapsed, simplified view of a CellML model and

its biological visualization. Retrieving biological visual elements for the simplified view of

the model requires traversing from physical mappings to biological mappings to visual

template mappings. Figure 4.7 illustrates these mappings. The algorithm for visualizing the

biological concepts in a CellML model has five steps:

1. create a SVG file to describe the visualization;

2. for each GenericNode retrieve the common biological concept mapping via the

CellMLBiophysical/OWL (PhysicalEntity and PhysicalProcess) instances;

Chapter 4 – A method for visualizing CellML models

 80

3. if the mapped biological concept is a CellMLBiophysical/OWL (BiologicalProcess or

BiologicalEntity) instance, then retrieve the mapped SVG template via the

VisualTemplate/OWL (BiologicalProcess or BiologicalEntity) instance, copy it to the

created SVG file and set the label;

4. for each mapped CellMLBiophysical/OWL BiologicalRole instance, retrieve the mapped

SVG template, copy it to the created SVG file and define the coordinates of the lines such

that they form the connections between the underlying GenericNodes;

5. generate the coordinates for the BiologicalEntity and BiologicalProcess glyphs such that

they do not overlap.

SVG templates

CellMLBiophysical/OWL model

physicalEntity

refBioProcess

Variable1

(PhysicalEntity)
physicalEntity

Variable2

(PhysicalEntity)

Component1

(PhysicalProcess)

formationOfB

(BiochemicalProcess)

refBioEntity

A

(Protein)

B

(Protein)

reactant

(Reactant)

product

(Product)

refBioEntityrefBioRole refBioRole

connects connects

refbiophysical refbiophysical refbiophysical

Biological view with

mappings to physical

instances

Physical instances with

mappings to biological

instances

Biological instances

Node0 Node1 Node2

VisualTemplate instances

Protein

Reactant

BiochemicalProcess

visualTemplate visualTemplatevisualTemplatevisualTemplate visualTemplate

Product

Visualising biological concepts

Key

OWL Property Biological entity instance

Biological process instanceVisualTemplate instance

Figure 4.7: Mappings for generating the biological view

The GenericNode edge graph is generated by reducing the physical-entity graph

according to the Biological annotations to generate the biological view. These

GenericNode instances map to the Physical instances which in turn maps to

Biological instances. These Biological instances are mapped to

VisualTemplate/OWL instances which in turn references SVG glyphs. For

example: Variable1 PhysicalEntity instance is mapped to Protein A Bio-logical

entity which maps to Protein VisualTemplate/OWL instance. The Protein

Chapter 4 – A method for visualizing CellML models

 81

VisualTemplate/OWL instance is mapped to the Protein SVG glyph. These

mappings are then used to generate a visualization of the biological model

4.3 RESULTS

Here we use a simple example to illustrate the application of this methodology to create a

visual representation. Below we focus on representing a part of the Hodgkin–Huxley model;

the flow of potassium ions (K_Ionic_Flow). Then the complete visualization of the Hodgkin–

Huxley model is illustrated.

First, the CellMLBiophysical/OWL model is annotated with physical and biological

concepts [81]. Figure 3.9a shows the K_Ionic_Flow CellMLBiophysical/OWL model which

identifies each physical entity and process type and the relationships described in the model.

This diagram essentially shows the CellML model structure with annotated physical

information. The PhysicalEntity instances depict CellML variables. For example, the Current

instance potassium (i_K) is represented as a variable in the CellML. Similarly, the

PhysicalProcess instances depict CellML components. For example, the Pooling instance V is

represented as a component in CellML. MathematicalEquality instances show the CellML

connections. Figure 3.8 illustrates the K_Ionic_Flow CellML model.

The model‟s biological annotations are also illustrated in Figure 3.9a. The potassium

channel gate n is identified as a protein state. The K_Channel instance is identified as

transport process. The Ek instance mapped to the K ionic current is also mapped to the K

(BiologicalEntity), reactant (BiologicalRole), and IC (compartment) instances.

The annotated CellMLBiophysical/OWL model is then used to generate the visual

representation of the physical concepts by applying the algorithm described in the above

method section. Figure 4.8a shows the diagram which is generated when the visual language

is used to represent the physical concepts captured in the K_Ionic_Flow model shown in

Figure 3.9a. The PhysicalProcess instances K_Nernst_Potential, K_Channel, Mem_Potential,

V, Constants, Initial_Values, and Time in the model are represented using the

PhysicalProcess glyph. The CellMLBiophysical/OWL MathematicalEquality instances (Con)

are represented using the EqualityProcess glyph, while all the PhysicalEntity instances are

represented using the PhysicalEntity glyph.

The generic node-edge graph with the biological annotations that can be retrieved from

the ontological mappings is shown in Figure 3.9b. Node 3 references physical instances that

Chapter 4 – A method for visualizing CellML models

 82

are mapped to the K_Transport biological process instance. The rest of the nodes reference

physical instances that are mapped to biological entity, role, and compartment instances. This

biological view captures the underlying biological concepts described in the K_Ionic_Flow

model.

Figure 4.8b shows the diagram which is generated when the visual language is used to

represent the biological concepts captured in the K_Ionic_Flow model. Each GenericNode

node instance is represented using a glyph.

The relationships between the nodes in Figure 3.9b and Figure 4.8b are listed in Table

4.1.

GenericNode instances Glyph type

3 TransportProcess glyph

1 and 2 SmallMolecule glyph

4 Protein glyph

5 PhysicalFactor glyph

Table 4.1: Relationship between the GenericNode instances and the glyph

types used in the K_Ionic_Flow model

The relationships between the GenericNode nodes are represented using Role glyphs

(namely; reactant, product or activator). The relationships between the connections presented

in Figure 3.9b and Figure 4.8b are listed in Table 4.2.

Connections Glyph type

3 – 4 and 3 – 5 Activator glyph

3 – 1 Reactant glyph

3 – 2 Product glyph

Table 4.2: Relationship between the connections and the glyph types used in

the K_Ionic_Flow model

Chapter 4 – A method for visualizing CellML models

 83

Figure 4.8: Visualizing the K_Ionic_Flow model

(a) Physical view generated for the K_Ionic_Flow model. (b) Visual representation

depicting the biological view.

The visualizations generated for the complete Hodgkin–Huxley model is illustrated in

Figure 4.9 and Figure 4.10. The annotated Hodgkin–Huxley CellMLBiophysical/OWL model

(Figure 3.11a) is used to generate the visual representation of the physical concepts. The

PhysicalProcess instances Na_Nernst_Potential, K_Nernst_Potential, L_Nernst_Potential,

Na_Channel, K_Channel, Leakage_Current, Sum_of_3, Mem_Potential, V, Constants,

Initial_Values, and Time in the Hodgkin–Huxley CellMLBiophysical/OWL model are

represented using the PhysicalProcess glyph. The CellMLBiophysical/OWL

MathematicalEquality instances (Con) are represented using the EqualityProcess glyph, while

all the PhysicalEntity instances are represented using the PhysicalEntity glyph.

Chapter 4 – A method for visualizing CellML models

 84

Figure 4.9: Physical view generated for the Hodgkin–Huxley model

Figure 4.10 shows the diagram which is generated when the visual language is used to

represent the biological concepts captured in the Hodgkin-Huxley model.

Chapter 4 – A method for visualizing CellML models

 85

Figure 4.10: Biological view generated for the Hodgkin-Huxley model

The relationships between the nodes in Figure 3.11b and Figure 4.10 are listed in Table

4.3.

GenericNode instances Glyph type

1, 2, and 3 TransportProcess glyph

4, 5, 6, 7, 8, and 9 SmallMolecule glyph

10, 11, and 12 Protein glyph

13 PhysicalFactor glyph

Table 4.3: Relationship between the GenericNode instances and the glyph

types used in the Hodgkin-Huxley model

The relationships between the connections presented in Figure 3.11b and Figure 4.10 are

listed in Table 4.4.

Connections Glyph type

10 – 1, 11 – 1, 12– 3, 13 – 1, 13 – 2, and 13 – 3 Activator glyph

4 – 1, 6 – 2, and 8 – 3 Reactant glyph

5 – 1, 7 – 2, and 9 – 3 Product glyph

Table 4.4: Relationship between the connections and the glyph types used in

the Hodgkin-Huxley model

Chapter 4 – A method for visualizing CellML models

 86

4.4 DISCUSSION

The method described above facilitates the process of automatically generating visual

representations of CellML models, allowing modelers to more easily see all the underlying

physical and biological concepts captured in the mathematical description.

Two different notation sets were developed to visualize the underlying physical and

biological concepts modeled in the CellML models. The visual representation of the physical

concepts has a one-to-one mapping with the underlying CellML model. This visualization is

very detailed and has a limited set of nodes with textual descriptions, making it easier to see

the physical concepts captured by the model. In contrast, the visualization of the biological

concepts has a many-to-one mapping with the underlying CellML model. This visualization

is relatively simple, using a small set of unique glyphs which results in the creation of

schematic diagrams in which the underlying biology can easily be interpreted.

The final appearances of both the physical and biological visualizations depend heavily

on how the CellML model has been annotated. Different coding styles also generate different

visualizations. Any mistakes created at the annotation level will flow through to the final

visual representations. Only a properly annotated CellML model will accurately generate the

correct physical and biological visualizations.

The flexible structure of CellML allows modelers to construct mathematical models of

the same biological system in many different ways. The different CellML model structures

also generate different visualizations since the annotations, and the application of the

reduction rules to generate biological views of models, depend on the structure of the model.

When structuring the CellML model, the modeler thus needs to reflect the biophysical

abstractions that he or she is trying to communicate [65]. Unforeseen outcome is an

indication of an unstructured model thus this process also helps modelers to construct

modular CellML models.

Interpreting the underlying physical relationships and the biological views of a CellML

model from a CellMLBiophysical/OWL representation can be a challenging task. The

diagrammatic representations generated using the method described in this chapter clearly

show the underlying physical and biological concepts captured in the CellML model. For the

Hodgkin-Huxley model example, Figure 4.9 identifies and labels the physical processes and

entities. Similarly, Figure 4.10 identifies the sodium, potassium, and leakage ion transport

Chapter 4 – A method for visualizing CellML models

 87

reactions and the gated channels. These diagrams are much easier to interpret than having to

read through either the raw XML of the CellML model or its ontological representation.

InsilicoIDE is a tool which is capable of visualizing, editing, and creating CellML

models [79]. The visualizations generated by insilicoIDE focus on representing the

components, variables, and connections in a model. InsilioIDE supports a collapsing feature

which can be used to simplify visualizations of complex CellML models. The models are

simplified according to their encapsulation hierarchy in contrast to using higher level

biological information. InsilicoIDE currently does not focus on visually representing the

biophysical concepts modeled in CellML models.

The development of modularized CellML models allows modelers to construct larger

models using smaller models, resulting in compact top-level models. Even for a small

modularized CellML model such as the Hodgkin-Huxley model, the physical view can be

relatively complex. It is our aim to allow modelers to drill down or expand the imported

models. This will result in rather complex diagrams. As research continues we will be

looking at improving the editor, or using external editors such as Donnart [82], to support the

visualization of such complex models.

Such improved tool support could also be used to enhance the visualization of large

biological models. The biological visualization generated for the reasonably complex IP3

model [50] can be downloaded at http://www.cellml.org/tools/downloads/cellml-

viewer/releases/1.0rc2. This model can be separated into three simpler functional modules

GPCR, PLC-beta, and IP3 in CellML [51]. Such a modularized model can be used to

generate a simpler top-level biological view.

In the biological visualization of the K_Ionic_Flow model (Figure 4.8b), it should be

noted that the glyph used to represent ion channel is different to the conventional ion channel

representation supported in text books and publications, which tend to focus on the

movement of ions through the channel. In contrast, our representation of a channel and a

voltage as an activator in a biochemical reaction is unusual, and this may be the basis for

another operation of visual notation. SBGN supports a similar notation for visualizing ion

transport. One potential solution would be to collapse the detailed process of ion transport

through a membrane via a channel protein into a more conventional style diagram which is

well known in the electrophysiological modeling community.

Chapter 4 – A method for visualizing CellML models

 88

Currently the glyph set for visualizing the biological representation (Figure 4.3) of a

CellML model only contains the visual symbols that are needed to visualize signal

transduction pathways and electrophysiological models. To support the wide range of model

types which are currently in the CellML Model Repository, this glyph set will have to be

extended. It is also our intention to adopt SBGN in future for visualizing the underlying

biological concepts in CellML models. One possible solution we are currently exploring is

using the VisualTemplate/OWL ontology to map to a SBGN process diagram representation

[80]. The entity glyphs we describe here are similar to SBGN entity pool nodes, while the

process glyphs are similar to SBGN process nodes, and the role glyphs are similar to SBGN

connecting arcs. By representing SBGN notation in SVG, and subsequently linking the

VisualTemplate/OWL ontology to these SVG elements, users will be able to visualize

biological views of the CellML model using SBGN.

The development of the VisualTemplate/OWL ontology, as a separate ontology to store

references to the visual templates, also provides a flexible ontological framework that could

be used to visualize other biological models, particularly if the CellML-specific biological

ontology is replaced by an external ontology such as BioPAX. For example, the BioPAX

ontology can be extended to annotate to the instances the VisualTemplate/OWL ontology,

and these mappings can be used to generate visual representations. The generation of such

visual diagrams depends on the underlying ontological representation of the model. For

example BioPAX identifies catalysis as a separate process and defines a concept of

modulators which act on the catalysis process. This scenario cannot currently be visualized

using our visual language or SBGN, as it does not support the concept of processes acting on

processes. The generation of such a diagram would thus require a different visual language

(Supplementary Material B Section 3).

Further, there may be problems in visualizing CellML models which have a large number

of nodes. We acknowledge that the work described here does not address diagram layout

issues. However, for large models it is time consuming to manually control the layout the

diagrams. As research continues it is vital for us to develop an algorithm which automatically

controls the layout of the diagrams in order to allow modelers to easily see the sequence of

events described by a model.

Finally, we are aware that the biological visualization of the K_Ionic_Flow model shown

in Figure 4.8b does not show the compartment information captured in the ontological

representation of the model. It is possible to define compartments in the

Chapter 4 – A method for visualizing CellML models

 89

VisualTemplate/OWL ontology by introducing a Compartment class. We are proposing that

the visual language can be extended to support compartments as rectangular boxes. To

interpret such a diagram correctly, we would need to illustrate the relationship between the

entities and a compartment. One possible way to achieve this would be to arrange the entities

inside the compartment. This would involve the development of an algorithm to control the

layout of the entities and processes inside the compartment.

In conclusion, the main outcomes of this research include:

 a visual language that is simple to interpret but is sufficiently expressive to represent the

underlying physical and biological concepts captured in CellML models;

 a specification for building visual templates that support this visual language;

 a set of rules for binding the visual templates to biological concepts within the

CellMLBiophysical/OWL ontology via the VisualTemplate/OWL ontology; and

 an algorithm that combines the visual language and the ontologies to automatically

generate the schematic diagrammatic representations of the CellML models.

Chapter 5 – A software tool for visualising CellML models

 90

5 A SOFTWARE TOOL FOR VISUALIZING CELLML

MODELS

A number of tools have been developed to create and simulate CellML models but there is

limited support for visualizing the underlying biophysical concepts captured in the

mathematical models. This chapter describes the implementation and application of a

software tool called CellMLViewer that integrates CellML models with the CellML

ontological framework and the visual language in order to automatically generate visual

representations of CellML models. CellMLViewer provides a user interface for visualizing

the biophysical concepts modeled in CellML. Users can manipulate the layout of these

dynamic representations to create diagrams highlighting the sequence of events. These

diagrams can also be exchanged over the web without the use of the tool.

5.1 INTRODUCTION

A range of tools has been developed to support working with CellML models [83]. These

include OpenCell [24], COR [66], JSim [9], Virtual Cell [6], and insilicoIDE [84]. These

existing tools have contributed greatly to the creation, validation, and simulation of CellML

models. In addition, they also support the graphical analysis of the simulated results.

Chapter 5 – A software tool for visualising CellML models

 91

The CellML Model Repository contains over 380 models representing a wide range of

biological processes [17]. In order to understand the physical and biological concepts

captured in these CellML models, modelers need to read the XML-based CellML code, refer

back to the relevant peer-reviewed publication from which the model was derived, and often

contact the original authors of the mathematical model for clarification. Combined, these

steps frequently constitute a time consuming process for a modeler who is looking to

implement, or further develop, existing models. Facilitating the automated visualization of

the physical and biological concepts captured in a CellML model would enable modelers to

easily identify the models of interest and allow them to quickly understand the processes

being described.

There exist many tools which have been developed to visualize molecular interaction

networks, including CellDesigner [85], Cytoscape [86], Virtual Cell [6] and PATIKA [73].

These tools provide interfaces to visually create, edit, and manipulate the layout of large

biological models. Cell Illustrator and Virtual Cell can be used to import CellML models.

Visualizations are generated by translating the CellML representation into their internal

representation. As the CellML models do not explicitly capture the biophysical data, the

diagrams are not focused on representing the physical and biological concepts modeled in

CellML. Instead, the models are often visualized as networks of interconnected components.

Another limitation is that these tools only support the import of CellML 1.0 models.

The CellML editing and simulation tool OpenCell has started to address the issue of

model visualization by displaying schematic diagrams summarizing the mathematical model.

These diagrams are often based on figures from the original publication, and currently they

are created by hand. There are no methods in place to validate the diagrams to ensure that all

the biological concepts captured in a model are displayed. The ad hoc nature of these

diagrams often requires readers to refer to the original publication in order to correctly

interpret the biological concepts being displayed.

To resolve the issue of automated model visualization, we have developed

 an ontological framework which can be used to represent the underlying biophysical

concepts captured in the CellML models [81] (Chapter 3);

 a visual language that consistently describes the underlying biophysical concepts in the

CellML models [87] (Chapter 4);

 a method to integrate the visual language to the ontological framework [87] (Chapter 4).

Chapter 5 – A software tool for visualising CellML models

 92

Here we describe a stand-alone software tool (CellMLViewer) which uses this ontological

framework to visualize CellML models.

This chapter addresses the specific steps that a modeler has to follow to create

visualizations for CellML models. These include:

1. visualizing CellML models without annotated biophysical data;

2. annotating CellML models with biophysical concepts and visual language data which can

be used to generate more informative visualizations;

3. visualizing the annotated CellML models capturing the underlying physical and

biological concepts;

4. layout the diagrams to highlight relevant biological concepts;

5. storing visual representations for reuse or publish them online.

5.2 IMPLEMENTATION

Chapters 3 and 4 described an ontological framework for visualizing CellML models, which

we will use as the basis for developing our approach. Our ontological framework is

constructed using the Web Ontology Language (OWL) [35]. It consists of multiple

ontologies:

 CellML/OWL: which captures CellML/XML model in OWL format [81]. It provides an

intermediate layer that allows us to map a CellML/XML model to other OWL based

ontologies (Chapter 3);

 CellMLBiophysical/OWL: which is constructed using Physical and Biological ontologies

for capturing the physical and biological concepts modeled in CellML models [81]. The

CellMLBiophysical/OWL model defines the concepts and relations both within and

between Physical and Biological ontologies (Chapter 3);

 VisualTemplate/OWL: which stores references to the visual language that has been

developed to represent CellML models. Each CellMLBiophysical/OWL instance is

mapped to a VisualTemplate/OWL instance [87] (Chapter 4).

A set of algorithms are also defined to generate these intermediate ontological

representations and mapping between them. These include:

 an algorithm for transforming an CellML/XML model into an CellML/OWL model. This

involves generating a CellML/OWL instance for each CellML/XML element including

the explicitly imported components and the variables and math elements within them.

Chapter 5 – A software tool for visualising CellML models

 93

Each CellML/XML element is mapped to a CellML/OWL instance using the CellML

metadata specification [41, 81] (Chapter 3);

 an algorithm for creating the initial CellMLBiophysical/OWL model and annotation to

the CellML/OWL model [81]. This involves generating a CellMLBiophysical/OWL

PhysicalEntity, PhysicalProcess, and MathematicalEquality class instance for each

CellML/OWL Variable, Component, and Connection class instance, respectively.

(Chapter 3);

 an algorithm for simplifying the CellMLBiophysical/OWL model using the biological

ontological mappings, in combination with a set of graph reducing rules, to represent the

underlying biological view of the CellML model [81] (Chapter 3);

 an algorithm for generating physical and biological visualizations of CellML models

using the ontological mappings. The physical view is created using the

CellMLBiophysical/OWL physical instances and retrieving the relevant SVG glyphs via

the VisualTemplate/OWL mappings. Similarly, the biological view is created using

simplified CellMLBiophysical/OWL model and retrieving the relevant SVG glyphs via

the VisualTemplate/OWL mappings [87] (Chapter 4).

The next section discusses the application of the CellMLViewer to generate a

visualization for a CellML model. We then outline the architecture of the tool, which has

been developed to facilitate the generation of the intermediate models and mappings during

the process of visualizing the biophysical concepts captured in the CellML models.

5.2.1 APPLICATION OF THE CELLMLVIEWER

The CellMLViewer provides a simple interactive interface to represent and layout the

visualizations but does not provide support for manual annotation of the

CellMLBiophysical/OWL models. OWL editors such as Protégé can be used to annotate

these models. Here we describe each of the steps to illustrate how a CellML model can be

annotated and visualized. We also briefly describe the behavior of the tools following the

actions of the modeler (Figure 5.1).

Chapter 5 – A software tool for visualising CellML models

 94

Ontologies CellML librariesToolsModeller

(13) Open generated CellMLBiophysical/OWL model (Open)

(1) Select a CellML model to visualise (Open CellML Model)

(20) Open special ised CellMLBiophysical/OWL model (Open Biophysical Model)

(22) Save biological view

(30) Save visual representation

Modeller

(19) Save annotated model

CellMLVisualizer Protege CellMLLibrariesOntologies

(6) Write the CellML/OWL references back to CellML

(12) Display the CellMLBiophysical/OWL model visualisat ion

(2) Load CellML/OWL ontology

(4) Generate a CellML/OWL model

(10) Save the top level CellMLBiophysical/OWL

(9) Generate a top level CellMLBiophysical/OWL model with references to visual templates

(5) Save generated CellML/OWL model

(3) CellML/OWL ontology

(7) Load CellMLBiophysical/OWL and VisualTemplate/OWL ontologies

(8) CellMLBiophysical/OWL and VisualTemplate/OWL ontologies

(11) Generate visal isat ions for the CellMLBiophysical/OWL model

(17) Save CellMLBiophysical/OWL and VisualTemplate/OWL ontologies

(18) Annotate i t with physical, biological, and visual template data

(16) Add new biological or visual template data if needed

(21) Generate biological view

(24) Display the visualisat ion for CellMLBiophysical/OWL model

(25) Open biological view

(23) Generate visal isat ions for CellMLBiophysical/OWL model

(26) Generate visal isat ions for the biological view

(28) Manually layout visual elements

(29) Save visualisat ion

(27) Display the biological view

(31) Open Complete Model

(32) Go to 23

(33) Open Visualisat ion (34) Load Visualisat ion and the relavent ontological models

(35) ontological models and visualsation

(36) Display the visualisat ion

(15) CellMLBiophysical/OWL and VisualTemplate/OWL ontologies

(14) Load CellMLBiophysical/OWL and VisualTemplate/OWL ontologies

Figure 5.1: Sequence diagram for user activity flow for visualizing and

annotating CellML models

Chapter 5 – A software tool for visualising CellML models

 95

5.2.1.1 Visualizing CellML models without annotated biophysical data

The CellML models without biophysical annotations can be loaded onto the CellMLViewer

by selecting „Open CellML Model‟ option. In order to generate a visualization, the

CellMLViewer executes a series of steps. The OWL ontology is used to generate a

CellML/OWL representation of the CellML/XML model. The CellML/OWL model is used

to generate a CellMLBiophysical/OWL model with mappings to the VisualTemplate/OWL

ontology (Figure 5.1 steps 1-12). The CellMLBiophysical/OWL model is then used to

generate a diagram which identifies CellML components as physical processes, variables as

physical entities, and connections as mathematical equality processes (Figure 5.2). The

intermediate model representations are saved in the local file system.

Figure 5.2: A visualization generated for a CellML model without annotations

Chapter 5 – A software tool for visualising CellML models

 96

5.2.1.2 Annotating CellML models with biophysical concepts and visual

language data

The CellMLBiophysical/OWL model generated from the previous action consists of

instances of PhysicalProcess and PhysicalEntity classes, and the relationship between them.

These instances can be specialized to the relevant subclasses using the classes supported by

the Physical ontology. The Physical instances can be further annotated with biological

concepts using the classes supported by the Biological ontology. This manual annotation

process is carried out using Protégé.

Protégé provides a graphical user interface for working with OWL models. Figure 5.3

shows a CellMLBiophysical/OWL model loaded on to Protégé (Figure 5.1 steps 13-19). The

INDIVIDUALS tab is used to annotate the instances. The CLASS BROWSER panel list the

classes captured in the CellMLBiophysical/OWL ontology. Individuals of a particular class

are listed in the INSTANCE BROWSER panel. The CellMLBiophysical/OWL Physical

instances can be specialized by dragging the instances into the related classes. Properties of

the instances such as biological and visual template data can be set using the INDIVIDUAL

EDITOR panel.

Figure 5.3: A CellMLBiophysical/OWL model loaded in Protégé

Chapter 5 – A software tool for visualising CellML models

 97

Protégé can also be used to extend the CellMLBiophysical/OWL and

VisualTemplate/OWL class structure to add new concepts. New Classes can be added by

navigating to the OWL Classes tab.

5.2.1.3 Visualizing the annotated CellML models capturing the underlying

physical and biological concepts

The annotated CellMLBiophysical/OWL model can be loaded to the CellMLViewer by

selecting „Open Biophysical Model‟ option. This action will execute the algorithm for

generating visualizations using the ontological mappings. The output diagram of the

annotated CellMLBiophysical/OWL model identifies the physical processes and entities

according to their specialized types (Figure 5.1 steps 20-25).

The „Open Biophysical Model‟ action also executes the reducing algorithm to generate

the condensed, simplified view (Figure 5.1 step 24). The „View‟ menu allows users to swap

between the physical and biological views (Figure 5.4).

Chapter 5 – A software tool for visualising CellML models

 98

Figure 5.4: Biological view generated from an annotated

CellMLBiophysical/OWL model

5.2.1.4 Layout the diagrams to illustrate the sequence of biological interactions

The CellMLViewer provides an interactive graphical user interface. Modelers can move the

visual objects around the canvas to highlight relevant biological concepts (Figure 5.1 step

30). Moving over objects will prompt the user with a tooltip which contains more information

about the object (Figure 5.4).

5.2.1.5 Storing visual representations

The visualizations can be saved into locations specified by the user (Figure 5.1 steps 31-32).

It is also possible to re-open a saved SVG representation in the CellMLViewer. These

Chapter 5 – A software tool for visualising CellML models

 99

diagrams retain the layout information that has previously been defined (Figure 5.1 steps 33-

36). This action also loads the OWL models associated with it.

5.2.2 SYSTEM ARCHITECTURE

The CellMLViewer is developed in Java to allow the application to run on multiple different

platforms. It also allowed us to use existing Java APIs to work with CellML models, SVG

representations, and OWL models.

The overall architecture of the system consists of three tiers: a graphical user interface

(GUI) tier which provides the interface for users to carryout tasks; a logic tier which

implements the algorithms that were listed above; and a repository where CellML, OWL, and

SVG documents are stored (Figure 5.5).

Generating visualizations

of CellML models

GUI

UI layer Logic layer

CellML models

OWL models

SVG

representations

Repository

Ontologies

Batik API to work

with SVG

Jena OWL API to

work with OWL

CellML API to

work with CellML
Transforming the CellML/XML

model into an CellML/OWL

Creating CellMLBiophysical/

OWL model and mapping it to

the CellML/OWL model

Simplifying the

CellMLBiophysical/OWL model

CellMLBiophysical/OWL

(CBO) package

GenericNode

(GN) package

draw

GraphNode

(GN) package

Batik

GUI API

Figure 5.5: Schematic diagram of the system architecture underlying the

model visualization tool CellMLViewer

The CellMLViewer GUI is integrated with the Batik API [88]to display the visual

representations. Batik is an open source Java-based toolkit for working with Scalable Vector

Graphics (SVG) format. It can be used to display, generate or manipulate SVG diagrams. A

UI component, Batik JSVGCanvas is used to display SVG graphics and also support the

interactive use of the visual content such as graphic selection and the movement of objects to

generate a biologically realistic model network diagram.

The logic layer separates the algorithms used for generating model visualizations from

the UI layer and the repository layer. The external java packages: Jena API [89], CellML

API, and Batik API are used to create, read, write, and modify the OWL, CellML, and SVG

resources, respectively. In addition to these external resources we have developed our own

Chapter 5 – A software tool for visualising CellML models

 100

set of packages to instantiate the intermediate models and to draw the application specific

graphics. These include:

 cbo – to instantiate the CellMLBiophysical/OWL model;

 gn – to instantiate the simplified view generated (GenericNode/OWL model) by reducing

the CellMLBiophysical/OWL model;

 gm – creates a graph model which separates the ontological models from the

visualization. It is used as the underlying model for visualizing both the physical and the

biological views;

 draw – to draw application specific shapes by changing SVG Document Object Model

(SVG DOM).

The process of generating visualizations for CellML models creates several intermediate

models. These models explicitly reference each other. CellML/XML models have references

to CellML/OWL models. These CellML/OWL models have references to

CellMLBiophysical/OWL models. It is possible to have many GenericNode/OWL models to

a particular CellMLBiophysical/OWL model depending on the order of rules applied to

reduce the model. Therefore a separate OWL file is created to save the GenericNode/OWL

models. These models reference back to the original CellMLBiophysical/OWL models. Each

visual representation has a reference to the simplified view and the CellMLBiophysical/OWL

model. The associations between these models are summarized in Figure 5.6.

CellML/XML CellML/OWL CellMLBiophysical/OWL GenericNode/OWL

Visual Representation

1 1 1 1 1 *

1

1

1

1

Figure 5.6: Model associations

The lines describe the cardinality relationship between the instances. 1 denotes to

one and * denotes to many.

5.3 DISCUSSION

Here we have presented a tool that can be used to:

 generate CellML/OWL models;

 generate initial CellMLBiophysical/OWL models which are ready for further

specialization;

Chapter 5 – A software tool for visualising CellML models

 101

 provide an interface to visualize the biological and physical concepts captured in CellML

models;

 provide an interface to layout the diagrams to represent the sequence of interactions

between the biological entities.

The SVG graphics generated by CellMLViewer can be exchanged via the web and can be

viewed with any web browsers with SVG support. Even though viewing the diagrams

through web browsers does not allow modelers to interact with the model, it is a simple way

of communicating the underlying biological concepts. With such a goal in mind, we intend to

upload these schematic diagrams on the CellML Model Repository website together with the

model descriptions.

Although the CellMLViewer is a vast improvement on the current system of hand-

generating the schematic diagrams of the CellML models, we acknowledge that the tool does

have its limitations. For example, it can become slow when handling large models containing

more than 200 nodes. When the number of elements on the canvas increases, the support

operations become slow. As research continues this feature needs to be enhanced by

improving the algorithm implementations as well as the batik SVG renderer. Faster rendering

of SVG has been the subject of several recent discussions on the Batik mailing list [88].

A further limitation of CellMLViewer is lack of a built-in model annotation interface.

Currently users have to look to external software tools, such as Protégé, to annotate the

CellMLBiophysical/OWL models. Protégé is a fairly advanced and complex tool, and it

would be advantageous to have an interface which would facilitate the annotation of the

CellMLBiophysical/OWL models within the CellMLViewer itself.

Currently the CellMLViewer does not support the automated layout of diagrams. Users

are required to manipulate the layout of the diagrams manually by moving the objects around.

This feature allows modelers to arrange the diagram to highlight the biological concepts of

interest. However, when working with large models this can be a time consuming task. In

these situations it would be useful to provide a basic automated layout, which can be

subsequently rearranged by the user if required.

Currently the SVG diagrams, CellML/OWL and CellMLBiophysical/OWL models are

saved as individual files in the local file system. These need to be moved to PMR to allow

public access to the CellML users. The CellMLViewer tool needs to be able to connect to

such a repository to retrieve and store models and visual representations.

Chapter 5 – A software tool for visualising CellML models

 102

The CellMLViewer tool is developed following best practice methods to allow

developers to easily extend the system. The three tier architecture is used to logically separate

the processes. A set of loosely coupled packages are developed to work with intermediate

model representations. Each algorithm is tested by writing unit tests. As the tool evolves, it is

our intention to carry out unit testing, integration testing, and user evolutions.

It is also our intention to enhance the tool to visualize the composite nature of the

CellML models. The CellML encapsulation feature allows modelers to hide information

about a set of components from rest of the model. The user interface will be extended to

provide controls to hide and expose details of models captured via the CellML encapsulation

hierarchy.

Finally, we intend to integrate the CellMLViewer with the editing and simulation

environment OpenCell, in order to provide a complete CellML modeling framework.

5.4 AVAILABILITY AND REQUIREMENTS

Project name: CellMLViewer

Project home page: http://www.cellml.org/tools/downloads/cellml-viewer

Operating system(s): Platform independent

Programming language: Java

Other requirements: Java 1.5 or higher

License: GNU GPL

Chapter 6 – Conclusions

 103

6 CONCLUSIONS

The aim of this work was to provide a software framework to visualize the underlying

biology of the CellML models. While focusing on visualization of CellML models, this thesis

presents solutions for a number of challenges to the CellML modeling community. These

include:

 constructing models that clearly identifies the biophysical processes;

 a method to capture the biophysical concepts modeled in CellML models and explicitly

annotating CellML elements with the biophysical concepts;

 a visual language for representing the biophysical concepts and a method to bind them to

the CellML elements;

 a software tool that combines the visual language and the biophysical concept to generate

visualizations for CellML models.

Chapter 2 discusses a set of guidelines for modularizing a CellML model in a way that

best describes the biophysical concepts and abstractions the modeler wish to demonstrate.

This method helps modelers to construct models that can easily be reused and extended to

build more complex models. Developing modularized models also increases the consistency

across models and improves interpretation of the complex CellML models.

Chapter 6 – Conclusions

 104

The modularization process identifies a structured way to build new CellML models but

modularizing the 360 models that currently exist in the CellML repository remain as a

challenge. This problem can be partially resolved by starting with modeling commonly used

biophysical concepts (such as reaction kinetics) and basic models (such as Hodgkin-Huxley

model) that have been extensively extended over time. Modelers can then reuse and extend

these smaller models to build more complex models.

A formal justification for the guidelines was not carried out during this work as it was not

our intension. The guidelines were developed following a set of examples which provided the

best arrangement for generating diagrams. As research continues, it is our intension to

explore the theories behind modularization and reuse of models, such as network theory [46],

to validate the modularized concepts captured in CellML models.

Chapter 3 discusses annotating CellML models with physical and biological meaning.

The physical annotations enable modelers to interpret the CellML model in terms of the

mathematical functions and physical qualitative data, without the need to go through all the

individual CellML elements. The annotated biophysical model is used to construct a

simplified view that highlights the underlying biological concepts which is easier to interpret.

The biophysical ontology developed during this work only reflects the concepts found in

the example models. As new models are annotated, the ontology needs to be extended to

support the additional concepts. The intension is to also map instances of biological and

physical terms to existing external ontologies and controlled vocabularies such as SBO [30],

OPB [90], GO [59], ChEBI [91], and BioPAX [92]. This allows modelers to take advantage

of existing knowledge definitions.

The construction of simplified views uses a reducing algorithm which consists of a

generic and specific set of rules. The generic rule set does not require further improvements

as it can be applied on any instance of a biophysical model. The specific rule set is dependent

on the interpretation of the biophysical annotations. It can be improved to support collapsing

of different types of CellML models in the repository as needed.

The CellML repository needs to be improved to facilitate storage and querying of

ontological models. Use of ontologies enhances the querying of CellML models. Biophysical

annotations can be used to query physical and biological details of a CellML model. A goal

would be to populate the Biological ontology with entities and processes used in CellML

models and annotate the physical instances against the common biological concepts. This will

Chapter 6 – Conclusions

 105

enable modelers to query the CellML repository to find models that interest them according

to the underlying biological annotations. For example it would possible find all the models

which uses a particular ion channel. It is also our intension to extend this framework to

generate composite models using OWL reasoner.

Chapter 4 describes a visual language developed to represent the biophysical concepts

modeled in CellML and a method to map it to the ontological framework. These annotations

are then used to generate visualizations for CellML models to help modelers to easily

recognize the biophysical concepts modeled in CellML without having to go through the

complex ontological representation.

Two separate visual representations are generated that represent the physical and

biological concepts. The physical view represents the structure of a CellML model in terms

of Components, Variables, and Connections with the physical annotations. The biological

view uniquely identifies biological entities, processes, and roles. Together these views can be

used to not only to interpret the biophysical concepts but also understand the structure of a

CellML model.

Extending the biophysical ontology to support additional physical concepts does not

require extending the glyph set as the different physical types are represented using text. In

contrast, additional biological concepts supported by extending the biophysical ontology or

integrated with external ontologies or controlled vocabularies will require additional glyphs if

the new concepts need to be uniquely identified in a diagram.

The development of the ontological framework focuses on generating the underlying

biological view of the CellML model. Therefore, the biophysical annotations, application of

the reducing rules, and visual language are all developed focusing on generating biological

visualizations. However, it provides an extensible ontological framework for annotating the

CellML elements against other ontologies, use the reducing rules to collapse the CellML

model focusing on different ontological properties, and a visual language to visualize these

new concepts. For example the CellMLBiophysical/OWL model can be annotated with an

ontology defining mathematical constructs; a set of specific rules can be developed to reduce

the complexity of a CellML by simplifying the mathematical constructs, and the simplified

CellML model can be visualized by creating a set of new glyphs.

The biological visualizations are generated from the reduced model which in turn

depends on the annotations and the structure of the CellML model. Therefore a particular

Chapter 6 – Conclusions

 106

CellML model can have multiple visualizations. The visualizations can be used as an aid to

dictate the structure of CellML model and its annotations. This helps modelers to build

modularized CellML models grouping the underlying biological concepts.

Chapter 5 describes the CellMLViewer tool that combines CellML, the ontological

framework, and the visual language to generate visualizations. It provides a simple graphical

user interface for modelers to interact with the visualizations. The tool can be used to

generate a visual representation and layout the visualization to highlight sequence of

biological interactions. This image can be saved as a SVG file which can then be published

on the Physiome Model Repository.

While this work has provided significant contribution towards building and visualizing

modularized annotated CellML models, it provides limited tool support for efficient

construction of these models. The tasks of constructing modularized models, annotating

biophysical information, and laying out visualizations are all manual steps which can be time

consuming and error prone. As research continues, the tool support needs to be improved to

provide interfaces to visually construct modularized CellML models and laying out visual

elements, programmatically annotating physical concepts by interpreting the units and

mathematics, and providing intelligent suggestions for biological annotations. It is also the

intention to enhance the tool support to allow modelers to visually traverse between the

models and complement annotations to generate different visualizations.

We also acknowledge that it is important to visualize the dynamics of the modeled

processes as they are dynamic by nature. This work focuses on the initial attempt to visualize

CellML models by only looking at visualizing the static biological concepts modeled in

CellML. The final diagrams have references to CellML variables or processes and the values

of those variables can be reflected in the final diagram. The workflow for generating

visualizations does not lose information during the process. As research continues, we will be

looking at ways to represent this dynamic information. Use of SVG will also help to extend

this work to support dynamic changing of visualizations.

While this work focuses on CellML, it is a generic solution which can be extended to

visualize other model representations, including SBML models. The CellML/OWL ontology

is specific to CellML as it captures the structure of a CellML model. The

CellMLBiophysical/OWL ontology captures biophysical concepts and can be used to

annotate SBML models. The annotated models can then be visualized discussed this thesis.

Chapter 6 – Conclusions

 107

The method of using OWL to integrate information can also be used to visualize ontology

based models such as BioPAX. As research continues, we will be looking at using this

workflow for visualizing SBML and BioPAX models.

Biologists make extensive use of diagrams, a form of pictures, when communicating

information. The diagrammatic representations created by this framework explicitly preserve

the information about the topological and geometric relations among the biological entities

and processes. The diagrams are unambiguously defined, contain sufficient information and

are based on well-defined notation which allows domain experts to interpret complex

biological diagrams in the same way. Such diagrams can not only be used for communicating

information, but also further enhance understanding of the complex nature of biological

systems and discovery of new knowledge.

The outcome of this research offers an extensible and constructive software framework

for working with CellML models. It helps modelers by promoting construction of:

 CellML models that are easier to interpret and reuse;

 annotated CellML models that clearly identify the biophysical concepts;

 visualizations that help to understand the biophysical concepts captured in their complex

structures.

 108

REFERENCES

1. Hunter, P.J. and T.K. Borg, Integration from proteins to organs: the Physiome Project.

Nature Reviews Molecular Cell Biology, 2003. 4.

2. MATLAB, The MathWorks. [Available online from http://www.mathworks.com/], 2009.

3. Bray, T., et al., Extensible Markup Language (XML) 1.0 (Fifth Edition). [Available

online from http://www.w3.org/TR/2008/REC-xml-20081126/], 2008.

4. Ausbrooks, R., et al., Mathematical Markup Language (MathML) Version 2.0.

[Available online from http://www.w3.org/TR/MathML2/], 2003.

5. S.Buswell, et al., The OpenMath Standard V2. [Available online from

http://www.openmath.org/], 2004.

6. Loew, L.M. and J.C. Schaff, The Virtual Cell: a software environment for computational

cell. TRENDS in Biotechnology, 2001. 19.

7. Tomita, M., et al., E-Cell: software environment for whole-cell simulation.

Bioinformatics, 1999. 15(1): p. 72-84.

8. Hoops, S., et al., COPASI - a COmplex PAthway SImulator. Bioinformatics, 2006.

22(24): p. 3067-3074.

9. Bassignthwaighte, J., JSim. [Available online from http://www.physiome.org/jsim/],

2009.

10. W3C, World Wide Web Consortium. [Available online from http://www.w3.org/], 2009.

11. Herman, I., R. Swick, and D. Brickley, Resource Description Framework (RDF).

[Available online from http://www.w3.org/RDF/], 2004.

12. Lloyd, C.M., M.D.B. Halstead, and P.F. Nielsen, CellML: its future, present and past.

Progress in Biophysics & Molecular Biology, 2004. 85: p. 433-450.

13. Hucka, M., et al., The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics, 2003. 19:

p. 524–531.

14. Nagasaki, M., et al., Cell System Markup Language (CSML). [Available online from

http://www.csml.org/documentation/csml-30-specification/], 2007.

http://www.mathworks.com/%5d
http://www.w3.org/TR/2008/REC-xml-20081126/%5d
http://www.w3.org/TR/MathML2/%5d
http://www.openmath.org/%5d
http://www.physiome.org/jsim/%5d
http://www.w3.org/%5d
http://www.w3.org/RDF/%5d
http://www.csml.org/documentation/csml-30-specification/%5d

 109

15. VCell, The VCML Specification Version 0.4. [Available online from

http://ntcnp.org/twiki/bin/view/VCell/VcmlSpec], 2009.

16. Hedley, W.J., et al., A short introduction to CellML. Philosophical Transactions of the

Royal Society, 2001(359): p. 1073-1089.

17. Lloyd, C.M., et al., The CellML Model Repository. Bioinformatics, 2008. 24(18): p.

2122–2123.

18. Cuellar, A.A., et al., An overview of CellML 1.1, a biological model description

language. Simulation, 2003. 79(12): p. 740-747.

19. DeRose, S., E. Maler, and D. Orchard, XML Linking Language (XLink) Version 1.0.

[Available online from http://www.w3.org/TR/xlink/], 2001.

20. Hunter, P.J., The IUPS Physiome Project: a framework for computational physiology.

Progress in Biophysics & Molecular Biology, 2004. 85: p. 551–569.

21. CellML, The CellML specifications. [Available online from

http://www.cellml.org/specifications], 2009.

22. PMR, Physiome Model Repository. [Available online from

http://www.cellml.org/tools/pmr/], 2009.

23. CellMLAPI, CellML Application Programming Interface. [Available online from

http://www.cellml.org/tools/api/], 2009.

24. OpenCell, An environment for working with CellML models. [Available online from

http://www.cellml.org/tools/opencell/], 2009.

25. Novère, N.L., BioModels. [Available online from http://www.ebi.ac.uk/biomodels/],

2009.

26. SBO, Systems Biology Ontology. [Available online from http://www.ebi.ac.uk/sbo/],

2006.

27. Hucka, M., et al., Evolving a lingua franca and associated software infrastructure for

computational systems biology: the Systems Biology Markup Language(SBML) project.

Systems Biology, 2004. 1(1).

28. Kitano, H., Systems Biology: A Brief Overview. Science, 2002. 295(5560): p. 1662-1664.

http://ntcnp.org/twiki/bin/view/VCell/VcmlSpec%5d
http://www.w3.org/TR/xlink/%5d
http://www.cellml.org/specifications%5d
http://www.cellml.org/tools/pmr/%5d
http://www.cellml.org/tools/api/%5d
http://www.cellml.org/tools/opencell/%5d
http://www.ebi.ac.uk/biomodels/%5d
http://www.ebi.ac.uk/sbo/%5d

 110

29. Hucka, M., et al., Systems Biology Markup Language (SBML) Level 2: Structures and

Facilities for Model Definitions. [Available online from

http://sbml.org/Documents/Specifications], 2007.

30. Novère, N.L., Model storage, exchange and integration. BMC Neuroscience, 2006. 7: p.

1471-2202.

31. Keating, S., et al., libSBML. [Available online from http://sbml.org/Software/libSBML],

2009.

32. Mathematica, Wolfram Mathematica. [Available online from

http://www.wolfram.com/], 2009.

33. Hucka, M., SBML Software Guide. [Available online from

http://sbml.org/SBML_Software_Guide], 2009.

34. Noy, N.F. and D.L. McGuinness, Ontology Development 101: A Guide to Creating Your

First Ontology. 2001.

35. McGuinness, D.L. and F.v. Harmelen, OWL Web Ontology Language Overview.

[Available online from http://www.w3.org/TR/owl-features/], 2004.

36. OBO, The Open Biomedical Ontologies. [Available online from

http://www.obofoundry.org/], 2009.

37. Jeong, E., et al., Cell System Ontology: Representation for Modeling, Visualizing, and

Simulating Biological Pathways. In Silico Biology, 2007. 7: p. 623–638.

38. Kamp, T.J. and J.W. Hell, Regulation of Cardiac L-Type Calcium Channels by Protein

Kinase A and Protein Kinase C. Circulation Research, 2000. 87: p. 1095-1102.

39. Ferraiolo, J., F. Jun, and D. Jackson, Scalable Vector Graphics (SVG) 1.1 Specification.

[Available online from http://www.w3.org/TR/SVG/], 2003.

40. Cuellar, A., et al., CellML 1.1 Specification. [Available online from

http://dev.cellml.org/specifications/cellml_1.1/], 2005.

41. Cuellar, A.A., M. Nelson, and W. Hedley, CellML Metadata 1.0 Specification.

[Available online from

http://www.cellml.org/specifications/metadata/cellml_metadata_1.0], 2006.

42. Miller, A., Simulation Metadata Specification. [Available online from

http://www.cellml.org/specifications/metadata/simulations], 2007.

http://sbml.org/Documents/Specifications%5d
http://sbml.org/Software/libSBML%5d
http://www.wolfram.com/%5d
http://sbml.org/SBML_Software_Guide%5d
http://www.w3.org/TR/owl-features/%5d
http://www.obofoundry.org/%5d
http://www.w3.org/TR/SVG/%5d
http://dev.cellml.org/specifications/cellml_1.1/%5d
http://www.cellml.org/specifications/metadata/cellml_metadata_1.0%5d
http://www.cellml.org/specifications/metadata/simulations%5d

 111

43. Nickerson, D. and A. Miller, CellML Graph Metadata Specification - 02. [Available

online from http://www.cellml.org/specifications/metadata/graphs], 2007.

44. Mirschel, S., et al., PROMOT: modular modeling for systems biology. Bioinformatics,

2009. 25(5): p. 687–689.

45. Ginkel, M., et al., Modular modeling of cellular systems with ProMoT/Diva.

Bioinformatics, 2003. 19(9): p. 1169–1176.

46. Gilles, E.D., Network Theory for Chemical Processes. Chemical Engineering

Technology, 1998. 21(2): p. 121-132.

47. Modellica, Modeling of Complex Physical Systems. [Available online from

http://www.modelica.org/], 2009.

48. Elmqvist, H., F.E. Cellier, and M. Otter, Determining Models, in The Control Handbook,

W.S. Levine, Editor. 1995, IEEE Press. p. 99-112.

49. Elmqvist, H., F.E. Cellier, and M. Otter. Object Oriented Modeling of Hybrid Systems. in

European Simulation Symposium. 1993.

50. Cooling, M., P. Hunter, and E.J. Crampin, Modeling Hypertrophic IP3 Transients in the

Cardiac Myocyte. Biophysical Journal, 2007. 93: p. 3421-3433.

51. Cooling, M.T., P.J. Hunter, and E.J. Crampin, Modelling biological modularity with

CellML. IET Systems Biology, 2008. 2(2): p. 73-79.

52. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and its

application to conductance and excitation in nerve. The Journal of Physiology, 1952.

117(4): p. 500-544.

53. Noble, D., A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre

action and place-maker potentials. Journal of Physiology, 1962. 160: p. 317-352.

54. Mangold, M., S. Motz, and E.D. Gilles, A network theory for the structured modelling of

chemical processes. Chemical Engineering Science, 2002. 57(19): p. 4099-4116.

55. Brickley, D. and R.V. Guha, RDF Vocabulary Description Language 1.0: RDF Schema.

[Available online from http://www.w3.org/TR/rdf-schema/], 2004.

56. Stevens, R., C.A. Goble, and S. Bechhofer, Ontology-based knowledge representation

for bioinformatics. Briefings in Bioinformatics, 2000. 1(4): p. 398-414.

http://www.cellml.org/specifications/metadata/graphs%5d
http://www.modelica.org/%5d
http://www.w3.org/TR/rdf-schema/%5d

 112

57. BioPAX, BioPAX - Biological Pathway Exchange Language. [Available online from

http://www.biopax.org/], 2005.

58. Rosse, C. and J.L.V. Mejino, A reference ontology for biomedical informatics: the

Foundational Model of Anatomy. Biomedical Informatics, 2003. 36: p. 478-500.

59. Ashburner, M., et al., Gene Ontology: tool for the unification of biology. Nature

Genetics, 2000. 25: p. 25 - 29.

60. Sioutos, N., et al., NCI Thesaurus: A semantic model integrating cancer-related clinical

and molecular information. Biomedical Informatics, 2007. 40: p. 30–43.

61. Stevens, R., et al., Using OWL to model biological knowledge. Human-Computer

Studies, 2007. 65: p. 583-594.

62. Garny, A., et al., CellML and associated tools and techniques. Philosophical

Transactions of the Royal Society A, 2008. 366(1878): p. 3017-3043.

63. Protege, Protégé: ontology editor and knowledge-base framework. [Available online

from http://protege.stanford.edu/], 2009.

64. SWOOP, Semantic Web Ontology Editor. [Available online from

http://www.mindswap.org/2004/SWOOP/], 2009.

65. Wimalaratne, S.M., et al., Facilitating Modularity and Reuse: Guidelines for Structuring

CellML 1.1 Models by Isolating Common Biophysical Concepts. Experimental

Physiology, 2008. 94: p. 472-485.

66. Garny, A., et al., Cellular Open Resource (COR): current status and future directions.

Philosophical Transactions of the Royal Society A, 2009. 367(1895): p. 1885-1905.

67. Beard, D.A., et al., CellML metadata standards, associated tools and repositories.

Philosophical Transactions of the Royal Society A, 2009. 367(1895): p. 1845-1867.

68. Kremer, R. Visual Languages for Knowledge Representation. in Eleventh Workshop on

Knowledge Acquisition. 1998. Canada:

http://ksi.cpsc.ucalgary.ca/KAW/KAW98/kremer/.

69. Cook, D.L., J.F. Farley, and S.J. Tapscott, A basis for a visual language for describing,

archiving and analysing functional models of complex biologial systems. Genome

Biology, 2001. 2: p. 0012.1–0012.10.

http://www.biopax.org/%5d
http://protege.stanford.edu/%5d
http://www.mindswap.org/2004/SWOOP/%5d
http://ksi.cpsc.ucalgary.ca/KAW/KAW98/kremer/

 113

70. Kohn, K.W., et al., Molecular Interaction Maps of Bioregulatory Networks: A General

Rubric for Systems Biology. Molecular Biology of the Cell, 2005. 17(1): p. 1-13.

71. Kitano, H., et al., Using process diagrams for the graphical representation of biological

networks. Nature Biotechnology, 2005. 23(8): p. 961-966.

72. Kolpakov, F.A. BioUML – Framework for visual modeling and simulation biological

systems. in Proc. Int. Conf. Bioinf. of Genome Regulation and Structure. 2002.

73. Demir, E., et al., Patika: an integrated visual environment for collaborative construction

and analysis of cellular pathways. Bioinformatics, 2002. 18: p. 996-1003.

74. Demir, E., et al., An ontology for collaborative construction and analysis of cellular

pathways. Bioinformatics, 2004. 20: p. 349-356.

75. Doi, A., et al., Constructing Biological Pathway Models with Hibrid Functional Petri

Nets. In Silico Biology, 2004. 4: p. 271-291.

76. Baitaluk, M., et al., PathSys: integrating molecular interaction graphs for systems

biology. BMC Bioinformatics, 2006. 7(55): p. doi: 10.1186/1471-2105-7-55.

77. Schreiber, F., High Quality Visualization of Biochemical Pathways in BioPath. In Silico

Biology, 2002. 2(2): p. 59-73.

78. Moodie, S., et al., A Graphical Notation to Describe the Logical Interactions of

Biological Pathways. Journal of Integrative Bioinformatics, 2006. 3(2): p. 36–46.

79. Suzuki, Y., et al. A Platform for in silico Modeling of Physiological Systems II. CellML

Compatibility and Other Extended Capabilities. in 30th Annual International IEEE

EMBS Conference. 2008. Vancouver, British Columbia, Canada. 573 - 576.

80. Novère, N.L., et al., The Systems Biology Graphical Notation. Nature Biotechnology,

2009. 27: p. 735 - 741.

81. Wimalaratne, S.M., et al., Biophysical annotation and representation of CellML models.

Bioinformatics, 2009. 25: p. 2263-2270.

82. Dunnart, Constraint-Based Diagram Editor. [Available online from

http://www.csse.monash.edu.au/~mwybrow/dunnart/], 2009.

83. Garny, A., et al., CellML and associated tools and techniques. Philosophical

Transactions of the Royal Society A, 2008. 366(1878): p. 3017-3043.

http://www.csse.monash.edu.au/~mwybrow/dunnart/%5d

 114

84. insilicoIDE, Integrated Development Environment. [Available online from

http://www.physiome.jp/downloads/], 2009.

85. Funahashi, A., M. Morohashi, and H. Kitano, CellDesigner: a process diagram editor

for gene-regulatory and biochemical networks. Biosilico, 2003. 1: p. 159-162.

86. Shannon, P., et al., Cytoscape: A Software Environment for Integrated Models of

Biomolecular Interaction Networks. Genome Research, 2003. 13: p. 2498-2504.

87. Wimalaratne, S.M., et al., A method for visualizing CellML models. Bioinformatics,

2009. 25(22): p. 3012-3019.

88. Batik, Batik SVG Toolkit. [Available online from http://xmlgraphics.apache.org/batik/],

2009.

89. Jena, Jena 2 Ontology API. [Available online from

http://jena.sourceforge.net/ontology/index.html], 2009.

90. Cook, D.L., et al. Bridging Biological Ontologies and Biosimulation: The Ontology of

Physics for Biology. in AMIA 2008 Symposium Proceedings. 2008.

91. Degtyarenko, K., et al., ChEBI: a database and ontology for chemical entities of

biological interest. Nucleic Acids Res., 2008. 36: p. D344–D350.

92. Luciano, J.S. and R.D. Stevens, e-Science and biological pathway semantics. BMC

Bioinformatics, 2007. 8: p. 1471-2105.

http://www.physiome.jp/downloads/%5d
http://xmlgraphics.apache.org/batik/%5d
http://jena.sourceforge.net/ontology/index.html%5d

	coversheet.pdf
	http://researchspace.auckland.ac.nz
	ResearchSpace@Auckland
	Copyright Statement
	General copyright and disclaimer
	Note : Masters Theses

