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ABSTRACT 

The Physiome Project was established to develop tools for international collaboration and 

sharing physiological knowledge in the form of biological models and experimental data. The 

CellML language was developed in response to the need for a high-level language to 

represent and exchange mathematical models of biological processes.  

The language provides a flexible framework for describing the dynamics of biological 

processes but does not explicitly lend itself to capturing the underlying biological concepts 

such as the entities and processes that these models represent. The relationship between the 

biological process and the mathematical model describing the biological process is also often 

complex. This makes it difficult to see the biological concepts which the CellML structures 

represent. A framework which supports visualizing the biological concepts and its 

relationship to the underlying CellML model would provide a very useful toolset for 

understanding the biological concepts modeled in CellML.  

The CellML models need to be annotated with biological concepts in order to provide the 

machine interpretable data for generating a visual representation. We have developed an 

ontological framework which can be used to explicitly annotate CellML models with physical 

and biological concepts, a method to derive a simplified biological view from the 

annotations, a visual language for representing all biophysical processes captured in the 

CellML models, and a method to map the visual language to the ontological framework in 

order to automate the generation of visual representations of a model. 

The proposed method of model visualization produces a result that is dependent on the 

structure of the CellML models which requires modelers to structure the model in a way that 

best describes the biophysical concepts and abstractions they wish to demonstrate. Our 

argument is that this leads to a best practice approach to building and organizing models.  

As a part of this research, a software tool for visualizing CellML models was developed. 

This tool combines the visual language and the ontologies to generate visualizations that 

depict the physical and biological concepts captured in CellML models and enables different 

communities in diverse disciplines to more easily understand CellML models within the 

biological domain they represent. 

As research continues, with further improvement to the framework it would be possible 

to visually construct composite CellML models by selecting high level biological concepts. 
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1 INTRODUCTION 

The development of quantitative models to understand the dynamics of complex biological 

processes is increasing due to the rapid growth of biotechnology and experimental techniques 

[1]. This knowledge is acquired across different disciplines such as physiology, biomedicine, 

biophysics, and engineering, generating a need for a consistent method for representing, 

storing, and exchanging these mathematical models.  

There exist many ways for representing and solving mathematical models of biological 

processes. Most models are published in journals using standard mathematical representation. 

These may be solved by writing model-specific computer code using tools such as MATLAB 

[2]. However, the specificity of such code fails to support the sharing, exchange, and reuse of 

models. Furthermore, to accurately interpret mathematical equations presented in journals, 

readers and writers should have a common understanding of the terms that are being used. 

The meanings of most terms are generally captured in the text but this could still lead to 

misinterpretation of the writer‟s intension. To reduce such confusion, modelers may use 

common Extensible Markup Language (XML) [3] standards such as content Mathematical 

Markup Language (MathML) [4] or OpenMath [5] to represent the mathematics of a model, 

which can then be solved using tools that support these standards combined with model 

specific computer code. This allows modelers to represent exchangeable mathematics but 
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requires the writing of specific software for model simulation. During late 1990s a set of tools 

were developed to allow modelers to build and simulate models. This tool set includes: 

Virtual Cell [6] which can be used to develop and simulate detailed biochemical pathways; E-

Cell [7] which can be used to build and simulate biochemical and genetic processes; COPASI 

(Complex Pathway Simulator) [8] which can be used to build and simulate biochemical 

pathways in cells; and JSim [9] which can be used for building quantitative numeric models 

and analyzing them with respect to experimental reference data. However, these tools are 

specific to particular biological domains and integrating models generated from different 

software is, in general, extremely difficult. In response to the need for a high-level language 

to represent and exchange mathematical models of biological processes, independent of the 

different model-building software packages, biological modeling communities started 

looking at developing tool-independent modeling languages for building biological models. 

1.1 MODELING LANGUAGES FOR DESCRIBING MATHEMATICAL 

MODELS OF BIOLOGY 

This section describes a set of modeling languages developed to represent mathematical 

models of biological concepts that can be used in various computer applications to solve the 

models. 

1.1.1 MARKUP LANGUAGES FOR DESCRIBING MATHEMATICAL MODELS OF 

BIOLOGY 

Extensible Markup Language (XML) is a meta-language published by the World Wide Web 

Consortium [10]. It provides a flexible way to express data in a computer readable form 

independent of software applications. The language provides flexibility to represent any kind 

of data, ranging from simple text, complex mathematics to domain specific knowledge. It is 

also the backbone of many internet-related standards. Furthermore, XML supports integration 

with other standards such as Resource Description Framework (RDF) [11], a standard for 

defining data about data which is often referred to as metadata. These characteristics have 

lead to the development of a number of markup languages for describing mathematical 

models of biological process:  

 CellML [12] – for describing the mathematics, topology, and metadata of biological 

processes; 



Chapter 1 - Introduction 

 3 

 The Systems Biology Markup Language (SBML) [13] – for representing models in 

systems biology; 

 The Cell System Markup Language (CSML) [14] – for modeling biological pathways; 

 The Virtual Cell Markup Language (VCML) [15] – for describing biological and 

mathematical models and specifications for analysis to be performed on those models. 

CellML and SBML are currently the most widely used XML markup languages for 

describing mathematical models of biological process. 

1.1.1.1 CellML 

CellML promotes consistency between computational and published models and establishes a 

flexible framework for the reuse of models and model repositories [16]. The CellML 

repository contains over 360 models covering a wide range of biological processes including 

signal transduction pathway, metabolic, electrophysiological, calcium dynamics, 

immunology, cell cycle, and smooth and skeletal muscle models [17].  

CellML models are constructed using a network of interconnected components. A 

component is the basic unit of a CellML model, containing variables, mathematical 

equations, which define the relationships between the variables, units, and metadata [18]. 

Connections specify how variables are shared between the components [18]. CellML 

supports a feature called encapsulation to hide a set of components from the rest of the model 

[18]. CellML‟s import feature can be used to import components, connections and units other 

models to reuse. This enables users to reuse parts of existing models and provides an efficient 

framework for model building. The structure of CellML and these features are discussed in 

detail in Chapter 2. 

The CellML language also uses other XML-based standards such as MathML, XML 

Linking Language (XLink) [19], and RDF, to represent mathematics, import other models, 

and describe metadata, respectively.  

CellML is one of the standard languages used for model representation in the Physiome 

Project [20]. The Physiome Project is a global public-domain effort to describe the 

physiology and functional behavior of mammalian physiology. It requires the integration of 

models over a wide range of spatial and temporal scales, and collaboration between research 

groups around the world. This effort aims to address the difficulties associated with 

representing and integrating different levels of biological knowledge ranging from nano-
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scale, cells, tissues, to organ level. Markup languages are being defined to encode the models 

in a consistent form to support their representation, storage, exchange, and simulation. 

Currently CellML is mainly used to model biological processes occurring at the sub cellular 

to tissue level scales [1]. 

In order to support the CellML user community needs, the CellML development team is 

working on: 

 the CellML level 1.2 specification [21] to improve and extend the descriptive capabilities 

of the CellML language;  

 the Physiome Model Repository (PMR) [22] to facilitate model upload, storage, and 

download; 

 model curation to ensure that the mathematics from the publication is accurately 

represented in the CellML and validating the models with respect to their function and 

output; 

 model annotation to add context to CellML elements, simulation data, graphing data, and 

to facilitate database searching; 

 an Application Programming Interface [23] to provide a standard interface for 

applications to manipulate and process CellML documents; 

 tools such as OpenCell [24] for creating, simulating, analyzing and graphing simulation 

data. 

1.1.1.2 Systems biology markup language (SBML) 

SBML is mainly used to model biochemical reactions, signaling pathways, metabolic 

pathways, and gene regulation networks [13]. Modelers can describe biological components 

using compartments and species. Their dynamic behavior is described using reactions, events, 

and mathematical rules. The BioModels database [25] contains a large number of ready-to-

use curated SBML models.  

SBML also uses other XML-based standards such as MathML to represent mathematics. 

SBML also defines a method for the association of its components to Systems Biology 

Ontology (SBO) [26] terms in order to provide a biological context for the model. 

SBML is the de facto standard for representing systems biology models [27]. Systems 

biology is a new field of study that focuses on investigating complex interactions in 

biological systems. In this field, the main emphasis is placed on understanding the structure, 
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dynamics, control methods, and design methods of gene regulatory networks and biochemical 

pathways [28]. SBML facilitates qualitative and quantitative modeling, storing, and exchange 

of models of biological systems.  

Currently there is a large community support for the use and improvement of the SBML 

language. This includes the development of:  

 the SBML level 2 [29] specification to improve the SBML language;  

 the SBO [30] for annotating SBML models; 

 the BioModels database [26] to store, search and retrieve published SBML models; 

 Application Programming Interfaces [31] to provide interfaces for applications to work 

with SBML documents and integrate them with applications such as Mathematica [32] 

and MATLAB [2]; 

 over 120 software tools [33] for creating, simulating, analyzing, and visualizing SBML 

models including graphing simulation data. 

1.1.2 ONTOLOGICAL LANGUAGES FOR DESCRIBING MATHEMATICAL MODELS 

OF BIOLOGY 

Recent ontology-based approaches to solving domain specific problems have gained the 

interest of the scientific community. An ontology is a formal specification of concepts and 

relations between concepts within a domain of knowledge. It defines a common vocabulary 

and set of rules to unambiguously represent information [34].  

The Web Ontology Language – Descriptive Logic (OWL-DL) [35] and the Open 

Biological Ontology (OBO) [36] are the two most widely-used ontological representation 

languages among the biological community. They have different levels of expressivity, rules 

for capturing knowledge, and computational properties. OWL-DL is a highly expressive 

language for building knowledge bases and provides powerful reasoning methods. The OBO 

file format is a subset of OWL-DL and provides a simpler framework for constructing 

ontologies and reasoning. Details and the usage of the OWL language are further discussed in 

Chapter 3. 

The Cell System Ontology (CSO) [37] is being developed to explore the benefits of using 

an ontology to represent quantitative and qualitative aspects of biochemical pathways. The 

ontology supports the storage of modeling, visualization, and simulation data.  CSO is 
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expressed in OWL-DL and uses the reasoning capabilities to check the consistency of 

biological pathway models. 

1.2 IDENTIFYING THE PROBLEM IN DETAIL 

Generally journal articles describing mathematical models of biological concepts use 

schematic diagrams to represent the biological concepts that are being modeled in order to 

make it easier for readers to comprehend the mechanisms being described. Figure 1.1 shows a 

schematic diagram of the cAMP/PKA cascade regulating the L-type calcium channel [38].  

 

Figure 1.1: A signaling cascade regulating L-type calcium channel  

A schematic of the cAMP/PKA cascade regulating L-type calcium channel. Figure 

derived from [(Kamp and Hell, 2000), Figure 2A]. 

The diagram in Figure 1.1 clearly conveys the biological entities involved in the pathway 

but the diagram by itself is insufficient for interpreting all the biological concepts being 

modeled due to the ambiguous use of icons. For example it does not uniquely identify the 

different biological processes that occur in the pathway. To interpret the diagram correctly it 

needs to be supported with text that describe the underlying biological concepts being 

illustrated. The legend accompanying this figure is:  

“Stimulation of b1AR or b2AR leads to Gs-mediated activation of AC and increased 

production of cAMP, which stimulates PKA. PKA can then phosphorylate the channel 

at multiple potential sites indicated schematically by the single P in the diagram. The 

PKA phosphorylated site(s) is then sensitive to the phosphatases PP1 and PP2A. 
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Whereas b1AR regulation causes more global increases in cAMP, b2AR stimulation 

can result in highly localized cAMP level changes and regulation. Regulatory proteins 

may be localized to the channel by an AKAP for PKA and by binding of PP2A to the C 

terminus of the channel. Muscarinic M2 receptors can oppose the bAR upregulation of 

ICa by acting through Gi to inhibit AC [38].” 

Combined, the figure and the legend allow readers to interpret the biological processes as 

intended by the writer.  

CellML provides sufficient flexibility to describe the above model in a way that closely 

represents the entities and processes described in the diagram but this is often not done when 

constructing models. In many models, the biological knowledge is implicit in the names of 

components and variables. Understanding the relationship between the diagram and the 

CellML model can be time-consuming and lead to misinterpretation of the models. 

The goal of this work is to provide a method to generate detailed biological visualizations 

directly from CellML models, where the models themselves contain explicit descriptions of 

biological meaning. The goal is to also establish the use of a well-understood visual 

terminology that can be used to represent this meaning without a textual explanation. 

A prototype tool was developed to understand the problems in detail and identify specific 

tasks. This involved investigating a method to define the biological concepts modeled in 

CellML, a visual language to represent these concepts, and programmatically generating 

visualizations of the biological concepts. The next section describes the development of the 

prototype tool.  

1.2.1 PROTOTYPE DEVELOPMENT 

This section discusses a method and software for generating a visual representation of the 

pathway described in section 1.2; the cAMP/PKA cascade regulating L-type calcium channel. 

Since the CellML model does not explicitly represent the biological knowledge, an 

intermediate level is introduced to represent a biological model. The aim of the biological 

model is to capture biological processes and entities, and the relationships between them. 

This biological model integrated with a visual language can be used to visualize the biology 

of the CellML model.  

XML is used to structure and store the biological knowledge (Figure 1.2). The entity 

element describes the biological species. It has three attributes: 

 id - specifies a unique identifier for the biological entity; 
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 name - name of the biological entity; 

 type - type of the biological entity. 

The process element group the entities involved in a particular biological process. The 

connection element to state whether the biological entity involved in a particular process is 

acting as reactants, products, or modifiers. Each connection element has two attributes: 

 entityid - refers to an entity; 

 type - specifies whether it is a reactant, product, or modifier. 

 

Figure 1.2: Structuring and storing biological knowledge using XML 

(a) Visual representation of the way in which the XML schema models the 

underlying biological process, formation of Adrenaline_Beta_1AR. Beta_1AR, 

Adrenanline, and Adrenaline_Beta_1AR is encoded using the Entity element. The 

reaction is encoded using the Process element. Relationships between the entities 

and the reaction are represented using the Connection element. (b) XML model 

capturing the underlying biology. Code segment describes the entities, process, 

and the relationship between the entities represented in the Adrenaline_Beta_1AR 

reaction model in XML. 

A set of visual glyphs were developed to visualize these biological entities, processes, 

and the relationships captured in the XML file. Various shapes are used to represent protein, 

receptor, closed ion channel, opened ion channel, small molecule and complex (Figure 1.3). 

A set of connection glyphs are used to represent the roles activator, catalyst, reactant, 

product, and inhibitor (Figure 1.3).   

Entities 

Connections 

Processes 

Entities 

a 

b <ontology>

<entity id="0" name="Adrenaline" type="receptor"/>

<entity id="1" name="Beta_1AR" type="protein"/>

<entity id="2" name="Adrenaline_Beta_1AR" type="complex"/>

<process type=”process”>

<connection entityid="0" type="reactant"/>

<connection entityid="1" type="reactant"/>

<connection entityid="2" type="product"/>

</process>

</ontology>
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Figure 1.3: Notation for visualizing the underlying biology modeled in 

CellML 

(a) Glyphs for representing the entities. (b) A glyph for representing the processes. 

(c) Glyphs for representing the connections. 

To enable programmatic generation of diagrams, these visual objects need be represented 

in computer readable form. This is achieved using Scalable Vector Graphics (SVG) [39]. 

SVG is an XML-based interoperable graphics standard for 2-dimensional graphics and can be 

used to programmatically render graphics from database data to enable dynamic image 

updates. Details and the usage of SVG are further discussed in Chapter 4. 

To store the graphics shown in Figure 1.3 a SVG file (symbols.svg) was formed. The 

code segment in Figure 1.4a shows the composition of the graphics for an ion. The circle 

element specifies the symbol for the ion. The base element specifies the area coverage by the 

graphic object and the handler element specifies the connection points that can be used to 

connect glyphs together. Figure 1.4b shows a segment of the graphics for representing 

connections. Line and arrow coordinates are calculated and set at runtime. 

a b 

c 
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View of the above code

base

handler

All the components specified

in the above code 

<g id="ion" name="ion" >

<circle cx="20" cy="20" r="20" style="fill:#2ae188;stroke:#000000;stroke-width:1.0000000" />

<rect id="base" x="0" y="0" width="40" height="40" style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none"/>

<path id="handler" d="M 20,0 L 40,20 L 20,40 L 0,20 Z " style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none"/>

</g>

<g id="product" name="product">

<line id="line" x1="100px" y1="100px" x2="150px" y2="150px" stroke="black" stroke-width="2"/>

<path id="arrow" d="M 0,0 L 50,25 L 100,0 Z" style="fill:#000000;stroke:#000000;stroke-width:1.0000000" />

</g>

a

b

 

Figure 1.4: Glyphs represented in SVG 

(a) Code segment representing an ion. (b) Code segment representing a product 

connection. 

A prototype tool was developed in Java to generate diagrams by reading the XML file 

and the SVG graphics. Values of the type attributes encoded in the XML file are used as the 

key to find the related SVG graphics that needs to be integrated to generate a visualization. 

The sequence diagram drawn in Figure 1.5 illustrates a detailed breakdown of the behavior 

and the functions supported by the tool. The steps from 1 to 7 shows the actions executed to 

generate a visualization for the selected biological model. The tool did not support automated 

layout of diagrams but it provided a graphical user interface to allow modelers to layout these 

glyphs to highlight the sequence of biological events.  
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Software Application CellML Libraries

Use interface System tools SVG glyphsBiological Model Visual Representation

(1) Visualise a biological model

(8) Layout the visual representation

(9) Save the visual representation

(3) Retrieve the biological model

(2) Select the biological model

(4) Find related glyphs

(5) Retrieve the related glyphs

(6) Generate a visualisation

(7) Display the visual representation

 

Figure 1.5: Sequence diagram illustrating the functionality supported by the 

prototype tool 

Numbered event sequence shows the steps for generating a visualization for a 

selected model. 

The visualization generated for cAMP/PKA cascade regulating L-type calcium channel 

using the prototype tool is illustrated in Figure 1.6. This diagram also shows how the visual 

language identifies the entities, processes, and modifiers. Glyphs with different shapes 

identify different types of biological entities. Lines with different types of line-ends represent 

the reactants, products, catalysts, inhibition, and activation.  
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Figure 1.6: Visualization of cAMP/PKA cascade regulating L-type calcium 

channel generated from the prototype tool 

The diagram identifies channels, proteins, small molecules, receptors, and 

complexes with unique glyphs. Processes are drawn as gray circles. The 

connections show the relationship between the processes and the entities. 

Note that the XML biological model representing the CellML model is not mapped to the 

original CellML model. In order to visualize a CellML model via this biological model, these 

need to be linked. To enable this mapping, a modeler will need to restructure the CellML 

model by grouping or encapsulating components so that it captures the biological model that 

the modeler wishes to represent. 

The prototype illustrated a simple method for creating a biological model, a simple visual 

language, and a tool that combines these developments, which could be used to generate a 

visualization of biological concepts captured in a CellML model. It highlighted the 

challenges that need to be addressed in detail to generate visualizations starting from CellML 

models depicting the underlying biological concepts. This includes: 

 guidelines for structuring a CellML model. In order to visualize and annotate the 

underlying biology of CellML models, they need to be structured in a way that groups the 

biological concepts; 

 representing the underlying biological concepts in CellML models. A method for 

capturing the underlying biological concepts which can be used to generate a graphical 

representation of the processes and entities; 
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 a visual language for representing the biological concepts modeled in CellML models and 

a method to associating it to the CellML elements; 

 a tool that combines the notation, biology, and CellML to generate visualizations. 

The next chapters explore these challenges.  

Chapter 2 describes building smaller models that isolate biological concepts, and using 

these to build complex biological systems. These help to provide a clearer representation of 

the biophysical processes in the CellML model.  

Chapter 3 describes developing an ontological framework representing the underlying 

physical and biological concepts modeled in CellML and annotating these to the model. 

Chapter 4 describes an extension of the ontological framework to combine a visual 

language together with CellML ontologies and an algorithm for producing visual 

representations of the biology. 

Chapter 5 describes the development of a software tool to combine CellML, ontological 

framework, and the visual language to support the visualization of the physical and biological 

concepts and its relationship of the underlying CellML model. 
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2 GUIDELINES FOR STRUCTURING CELLML MODELS 

The flexible structure of CellML allows modelers to construct mathematical models of the 

same biological system in many different ways. However, some modeling styles do not 

naturally lead to clear abstractions of the biophysical concepts and produce CellML models 

that are hard to understand and from which it is difficult to isolate parts that may be useful for 

constructing other models. This chapter advocates building CellML models which represents 

common biophysical concepts and, using these, to build mathematical models of biological 

processes that provide a close correspondence between the CellML model and the underlying 

biological process. Subsequently, models of higher complexity can be constructed by reusing 

these modularized CellML models in part or in whole. Development of CellML models that 

best describe the underlying biophysical concepts thus avoids the need to code models from 

scratch and enhances the extensibility, reusability, consistency, and interpretation of the 

models.   

2.1 INTRODUCTION  

CellML provides a flexible structure that is used to represent mathematical models describing 

a wide range of biological concepts. The CellML specifications describe the rules for 

constructing models, encoding the mathematics, embedding metadata about models, and 
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processing models [40]. Below, the elements of a CellML representation that describes a 

mathematical model of a biological process is briefly introduced. Then the potential pitfalls in 

some modeling styles are discussed.  

CellML consists of 16 elements (Figure 2.1a). The model element is the root of a CellML 

model. It contains a list of import, units, component, connection, group, and/or Resource 

Description Framework (RDF) [11] elements. The import element lists imported components 

or units from other models. The units element is used to define the units that are associated 

with the model variables. The component element defines the building block of CellML 

models. Each component consists of a set of variable elements and math elements. The 

variables have attributes such as an initial value, units, public interface, and private interface. 

The math elements contain a set of mathematical equations that describe the behavior of the 

component within the model. These mathematical equations, embedded in a math element, 

are expressed using content Mathematical Markup Language (MathML) [4]. The connection 

element links two variables in different components together to allow the values of these 

variables to be exchanged between components within a model. 

The group element can be used to introduce a hierarchy of components to the CellML 

model. It forms a tree with parent, child and sibling properties. Currently, CellML supports 

both containment, to describe the physical structure of the model, and encapsulation, to hide 

information about a set of components from the rest of the model. Each component has 

variables with public and private interfaces. The parent–child relationship within an 

encapsulation group is established by connecting the child component‟s public interface 

variables to the parent component‟s private interface variables. Components that are 

encapsulated by the same parent are called the sibling set. The parent component hides the 

details of the child components from the rest of the model, but amongst the sibling set they 

are visible. 

Resource Description Framework (RDF) is a standard format for describing metadata. 

RDF elements are used to store metadata about a model or parts within the model. Several 

metadata specifications have been developed to represent particular kinds of information. 

These are as follows. First, the CellML Metadata Specification 1.0 to store information such 

as bibliographical reference details from which the model was taken and the biological 

species that are involved in the model. This specification also describes how metadata in 

general are represented within a model [41]. Second, the Simulation Metadata Specification 

to store particular simulation information such that specific results can be reproduced via a 
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simulation tool [42]. Third, the Graph Metadata Specification, which details a method on how 

to use the model simulation results to provide two-dimensional graphical representations 

[43]. 
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Figure 2.1: CellML structure  

(a) The hierarchical structure of the CellML language. (b) Illustration of a CellML 

model using imports and encapsulation. Model X consists of three components, A, 

B and C. These are organized inside an encapsulation group, where A is the parent 

of B and C. Model Y imports component A from model X and contains one 

component named D. The parent component A in the encapsulation group in 

model X connects to component D in model Y via public interface variables. 

CellML models form a network of interconnected components. Figure 2.1b illustrates a 

generic example using imports and encapsulation. The parent–child relationship within the 

encapsulation group in model X is established by connecting the public interface variables of 

component B to the private interface variables of component A. Components B and C are 

siblings within the encapsulation group and connect via their public interfaces. Component A 

is regarded as the parent of the encapsulated group and is part of the top-level component set 

in the CellML model hierarchy. The top-level components are explicitly imported into other 

models using the CellML import feature and the encapsulated components are implicitly 

imported via the encapsulating component. For example, model Y explicitly imports 

component A. Components B and C, and their connections, are implicitly imported. 
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The encapsulation feature supported in CellML provides a flexible structure that can be 

used to model multiple levels of detail. It can be used to plug different representations of a 

particular biophysical concept into and out of models without having to change the top-level 

model. Encapsulation can be used to replace components with simple formulations with 

component hierarchies that implement a particular subsystem in detail, thus reducing the 

complexity of the top-level model. 

The import feature provides a simple method to construct integrated models by reusing 

existing models, either in part or in whole, within new models. The reuse of models helps to 

reduce errors and maintain consistency across models. The challenge is to develop a robust 

model that can be easily manipulated, integrated and extended after the model has been built.  

The CellML specifications offer few guidelines for how to use the above elements to 

produce clear, reusable models. A mathematical model of a biological process can be 

represented in CellML in many different ways. The structure of a model mainly depends on 

the individual author‟s modeling style. CellML models can be constructed such that: 

 one component can model multiple processes, which has the effect of hiding the details of 

the underlying biophysical concepts; 

 parts of a concept are distributed over many components, with no clear identification of 

the underlying biophysical ideas; 

 parameters, initial values, constants and approximated constants, which represent 

biophysical relations between variables, are defined within a component that describes the 

mathematics for a particular biological process, thus tightly coupling a component with 

the model-specific values; or 

 the same mathematical construct can be structured in many different ways, presenting a 

problem of consistency across models. 

These model structures make it harder for potential users to interpret the underlying 

biophysical concepts represented in the models. They also make it difficult to combine and 

reuse a particular biophysical concept because it is hard to isolate the reusable parts of the 

models. 

Clever modularization and reuse of models has been studied in the past. The theoretical 

work of Ernst-Dieter Gillies and its implementation in ProMot/Diva focuses on modularizing 

biochemical processes [44, 45]. The methodology follows network theory [46] which 

promote reusable modeling entities that lead to the development of a modeling library within 
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the modeling tool ProMot. Modelica [47] is another language that supports modularized 

modeling of physical systems. It is based on Hilding Elmqvist and Francois E. Cellier work 

on modeling of physical systems following object oriented paradigm to facilitate the reuse of 

modeling knowledge via exchange of models and model libraries [48, 49]. 

Here we explore the process of constructing CellML 1.1 models to capture different 

levels of abstraction and identify reoccurring patterns that capture specific biophysical 

concepts in complex biological systems, thus enabling modelers to build models that are easy 

to interpret, reuse and extend. We refer to this process as „modularization‟ of a CellML 

model. We present three guidelines for enhancing model structure by:  

1. isolating biophysical concepts that can be shared between models at the component or 

whole model level; 

2. constructing models combining the components, providing model-specific values and 

isolated biophysical concepts, which clearly identify the building blocks; 

3. using encapsulation to reduce the complexity of models by creating sub-models or to 

expose points where different implementations of particular details can be swapped in and 

out.  

2.2 METHODS 

This section details the process of constructing modularized CellML models following the 

three guidelines. An example is used to demonstrate this process, starting from a set of 

equations that are then transformed into a modularized CellML model. Figure 2.2a details the 

starting set of equations for modeling the following reaction: formation of receptor–ligand–G 

protein phosphorylated complex, Rlg→Rlgp. 
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Figure 2.2: The three modularizing steps applied to an example, formation of 

receptor–ligand–G protein phosphorylated complex  

(a) Mathematical equations for modeling the reaction. (b) The construction of 

reusable models, as follows: Step 1, identify repeating mathematical constructs; 

Step 2, isolate these mathematical constructs into separate components; Step 3, 
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generalize the interfaces to components; and Step 4, separate these components 

into models according to their categories. (c) The reconstruction of the original 

biological concepts, as follows: Step 1, isolate constants, parameters and initial 

values into their own components and assign their values; Step 2, import generic 

components; and Step 3, assign values to the variables in generic components by 

connecting them to the variables of the model-specific components. (d) the 

definition of encapsulated components, as follows: Step 1, group components 

using the encapsulation feature; and Step 2, separate encapsulated groups into 

individual models. 

2.2.1 IDENTIFICATION AND REPRESENTATION OF BIOPHYSICAL CONCEPTS AND 

COMMON MATHEMATICAL CONSTRUCTS  

Most models consist of a small set of mathematical constructs, each of which repeat. These 

often differ from other similar constructs in their constants and parameters that, in turn, 

specify their biophysical detail. Examples of these include equations describing rate kinetics 

to model stoichiometric reactions, Michaelis–Menten kinetics for modeling enzyme–substrate 

reactions and the Nernst potential equation for describing reversal potentials. Other 

ubiquitous mathematical constructs may also appear for pure mathematical convenience. 

Examples of these are the integration of reaction outputs where these are pooled in a model, 

and summing up a set of fluxes. 

CellML 1.1 provides a mechanism by which repeating mathematical constructs can be 

represented once but specified as many times as required within a target model, each with 

specific constants or parameters. There are four steps to achieve this, as follows.  

Step 1: (a) Identifying ubiquitous mathematical constructs that repeat throughout the model; 

and (b) identifying mathematical constructs that represent well-known biophysical 

phenomena.  

In Figure 2.2b, Step 1 shows cases of (a) ubiquitous mathematical construct, i.e. the 

integration of the outputs of Rlg and Rlgp from the reaction; and (b) mathematics identifying 

a well-known biophysical concept, reaction kinetics for a first order, irreversible, mass action 

kinetics reaction, in a continuous scheme for one reactant and one product. 

Step 2: Isolating the repeating mathematical expressions into separate components. These are 

referred to as „generic‟ components and contain mathematical equations that describe a 

particular biophysical concept. 
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In Figure 2.2b, Step 2 shows the two components that are defined, Integrator and 

Reaction, which describe the integrator and the kinetics equation, respectively. 

Step 3: Generalizing the interfaces to components. To make these components reusable, the 

equations and the interfaces of the components need to be generalized by defining variables 

that depend on other components, to pass in their parameters or constant values. When 

defining variables in CellML, it is possible to include the parameters or constant values using 

the initial value attribute, but this leads to components that are specific to modeling a 

particular biological concept, which restricts the reuse of the components. The variables of 

the generic components should not have values assigned to them using the initial value 

attribute.   

In Figure 2.2b, Step 3 shows the Integrator and Reaction components associated with 

variables. The Integrator component defines variables to capture the initial area density (or 

concentration) of an entity (E[ID]), flux of an entity (E[F]), time variable (T[T]), and the 

calculated density (or concentration) of an entity (E[D]). The Reaction component defines 

variables to describe the density (or concentration) of the reactant (A[D]) and product (B[D]), 

the stoichiometry of the reactant (A[S]) and product (B[S]), the flux of the reactant (A[F]) 

and product (B[F]), and the forward reaction rate constant (kf). The example model defines 

initial values for Rlg and Rlgp and states the value of the reaction rate constant, but these 

initial and constant values for these variables are not assigned within the integrator and 

reaction components themselves. Since the Integrator component does not have any model-

specific values, it can be used to calculate the rate of change of both Rlg and Rlgp entities. 

Similarly, the Reaction component can be used to model any first-order irreversible mass 

action kinetics reaction, in a continuous scheme for one reactant and one product. 

Step 4: Separating generic components into individual models. The generic components can 

be categorized and separated into models according to the types of biophysical concepts that 

are being modeled. This enables modelers to more easily identify the generic components.  

In Figure 2.2b, Step 4 shows the Integrator model and the Uncatalyzed_1r_1p model that 

are defined to categorize the Integrator component and the Reaction component, respectively. 

The Uncatalyzed_1r_1p model can be used to define components describing irreversible and 

reversible reaction kinetics involving one reaction and one product. The Environment model 

contains the Time component. Note that a separate model is introduced to describe the units. 

This prevents modelers from having to code the units for each of the models. It is also useful 
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to construct a separate component for defining the time variable because it is shared between 

models. 

2.2.2 RECONSTRUCTION OF THE ORIGINAL BIOLOGICAL CONCEPTS BY 

COMBINING THE COMPONENTS, PROVIDING MODEL-SPECIFIC VALUES 

AND USING GENERIC COMPONENTS  

Each model is associated with a unique set of measured or calculated values. These include 

constants, such as rate constants of each reaction, parameters, such as stoichiometry of 

species of each reaction, and initial values, such as initial concentrations of the species. 

CellML provides a method for setting up these model specific values to reconstruct the 

original biological concepts. There are three steps to achieve this, as follows.  

Step 1: Isolating all constants, parameters and initial values into their own components. The 

generic components do not define model-specific values and force the modeler to build 

separate components to describe such values. The variables inside the specific components 

have values assigned to them which are specific to the biological model.  

The Biochem_Rlg_Rlgp component shown in Figure 2.2c Step 1 defines the values for 

the formation of the phosphorylated receptor–ligand–G protein complex (Rlgp), Rlg ->Rlgp. 

These values include the stoichiometry of Rlg (Rlg[S]) and Rlgp (Rlgp[S]), and the forward 

rate constant of the reaction (kf). Similarly, the InitEntities component defines the initial 

densities of Rlg (Rlg[D]) and Rlgp (Rlgp[D]). 

Step 2: Importing generic components. Here the generic components are connected with 

specific components to allow the modeler to assign specific values to the variables. To 

achieve this, import the relevant generic components that contain the mathematical 

expressions for modeling the biological processes. Rename these generic components 

according to the specific biophysical concepts that are being modeled.  

The generic components shown in Figure 2.2b Step 4 are imported to model the reaction. 

The Reaction component from the Uncatalysed_1r_1p model is imported to describe the 

formation of Rlgp. As illustrated in Figure 2.2c Step 2, this component is identified as 

Reaction_R1g_R1gp in the Formation_of_Rlgp model. The Integrator component is imported 

twice from the Integrator model to calculate the rate of change of Rlg and Rlgp. These 

components are identified as Rlg and Rlgp, respectively, in the Formation_of_Rlgp model. 
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Step 3: Assigning values to the variables in generic components. The values of the variables 

of the generic components are set by connecting them to the variables of the model-specific 

components. Connect the variables in the specific components to the appropriate variables in 

the generic components. 

Figure 2.2c Step 3 illustrates the resulting model once the variables R1g[S], R1gp[S], and 

kf in Biochem_R1g_R1gp (the specific component) are connected to the variables A[S], 

B[S], and kf in Reaction_R1g_R1gp (the Reaction generic component). The variables 

R1g[ID] and R1gp[ID] in InitEntities (the specific component) are connected to E[ID] in Rlg 

(the Integrator generic component) and E[ID] in Rlgp (the Integrator generic component) to 

provide the initial densities. 

2.2.3 USE OF ENCAPSULATION TO PARTITION THE DETAILS OF A MODEL INTO A 

HIERARCHY OF COMPONENTS  

Most biological systems, and their representation in mathematical models, are very complex. 

It is possible to reduce this complexity by structuring it into sub-models. Often a group of 

components, each of which may represent a different biophysical concept, may form a known 

biological mechanism that is repeated throughout other models. 

The CellML encapsulation feature can be used to group components with the following 

aims: (1) to reduce the complexity of a model by creating sub-models; or (2) to provide 

mechanisms for plugging in different implementations of a particular detail of a model. The 

advantage of this method is that all the mappings remain intact, which obviates the need to 

reconnect all the variables. There are two steps to achieve this, as follows. 

Step 1: Grouping components using the encapsulation feature. Group together a set of 

components that create an assembled biological concept. Introduce a component that would 

make the encapsulated components visible to the top-level model.     

Following the example model, the Reaction_R1g_R1gp, R1g, and R1gp components can 

be used in another model with a different set of constants, parameters, and initial conditions. 

The R1g_R1gp_Reaction component defines the R1g[ID], R1gp[ID], R1g[S], R1gp[S], kf, 

and T[T] variables. These variables allow modelers to set values for the encapsulated 

components (Figure 2.2d Step 1). It also defines R1g[D] and R1gp[D] variables, allowing 

modelers to access the values of R1g[D] and R1gp[D]. 
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Step 2: Separating encapsulated groups into individual models. To further reduce the 

dependency between components, it is useful to move the encapsulated set of components 

and their related connections into a separate model. To access a set of encapsulated 

components that reside in a different model, it is necessary to import the encapsulating 

component into the top-level model. 

As illustrated in Figure 2.2 Step 2, the Reaction_R1g_R1gp, R1g, R1gp, and 

R1g_R1gp_Reaction components and the connections between the encapsulated components 

can be moved to a different model. This reduces the complexity of the Formation_of_Rlgp 

model by minimizing the number of components and connections at the top level. The 

R1g_R1gp_Reaction component can be imported to the Formation_of_Rlgp model to access 

the encapsulated components Reaction_R1g_R1gp, R1g, and R1gp. 

2.3 RESULTS 

Several examples are used to illustrate the process of modularization of CellML models to 

clarify the relationships between the model and the biological processes described by the 

model, and to allow reuse of components between models. 

2.3.1 MODULARIZATION OF THE G PROTEIN-COUPLED RECEPTOR (GPCR) 

CYCLE 

Cooling et al. (2007) [50] described a GPCR cycle in their model of hypertrophic signaling 

pathways in the heart. Their model consists of a set of biochemical reactions using mass 

action kinetics. We use this example to illustrate model construction by isolating commonly 

used reaction kinetics into reusable generic components. The GPCR cycle consists of several 

biochemical interactions between a set of biological entities. Following Cooling et al. (2007) 

[50], these entities are as follows: 

 R (receptor); 

 Rl (receptor–ligand complex); 

 Gd (G protein with attached guanosine diphosphate); 

 Rg (receptor–G protein complex); 

 Rlg (receptor–ligand–G protein complex); 

 Rlgp (receptor–ligand–G protein phosphorylated complex);  

 Gt (G protein with attached guanosine triphosphate).  
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There are six reactions that occur between these entities summarized in Figure 2.3, as 

follows:  

 the formation of receptor-ligand complex, R1: L+R↔Rl;  

 the formation of receptor-G protein complex, R2: R+Gd↔Rg; 

 the formation of receptor-ligand-G protein complex, R3: Rl+Gd↔Rlg; 

 the formation of receptor-ligand-G protein complex, R4: L+Rg↔Rlg;  

 the formation of receptor-ligand-G protein phosphorylated complex, R5: Rlg→Rlgp;  

 the dissociation of receptor-ligand-G protein complex, R6: Rlg→Rl+Gt. 

 

Figure 2.3: Schematic diagram of the GPCR pathway  

The arrows indicate the products of the reactions. Bidirectional reactions have 

arrows pointing to both the reactants and the products. For further explanation, see 

main text. Figure derived from Figure 2 of Cooling et al. (2008) [51], with 

permission.  

The mathematical equations in the GPCR model describe rate laws and conservation 

laws. The first step of the modularization process is to identify the biophysical processes and 

common mathematical formulations. Figure 2.4 illustrates the set of CellML models that 

were developed to model the components and which capture the generic biophysical 

equations of rate laws and conservation laws described in the GPCR cycle. These are as 

follows: 
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 the Environment model, which contains one component called time containing the 

variable time; 

 the Integrator model, which contains a component with an equation to calculate the rate 

of change for an entity; 

 the Rate_Constant model, which contains a component with an equation to calculate the 

reverse rate constant; 

 the Uncatalysed_2r_1p_r model, which contains a component called Reaction describing 

the mathematics for a second-order forward reaction with two reactants, a first-order 

reverse reaction, reversible mass action kinetics and a continuous scheme; 

 the Uncatalysed_1r_2p model, which contains one component with the mathematics for 

first-order irreversible mass action kinetics and a continuous scheme for one reactant and 

two products; 

 the Uncatalysed_1r_1p model, which has one component containing the mathematics for 

first-order irreversible mass action kinetics and a continuous scheme for one reactant and 

one product; 

 the Sum model, which contains a component for adding together the fluxes of the 

reactions. 
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Figure 2.4: The set of CellML models developed to describe the GPCR cycle 

These models contain generic components with generalized equations. The colors 

in these models are used to identify the imported components in Figure 2.5. 
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Figure 2.5 demonstrates the way in which these generic components can be used to build 

the final model the GPCR cycle. The Reaction component from the Uncatalyzed_2r_1p_r 

model is imported four times to model the R1, R2, R3, and R4 reactions. The Reverse_Rate 

component in the Rate_Constant model is imported three times to calculate the reverse rate 

constants for the reactions R1, R2, and R4. The Integrator component is imported eight times 

to model the L, R, Rl, Gd, Rg, Rlg, Rlgp, and Gt entities. It is a requirement of CellML that 

connecting variables must have the same unit dimensions. This feature is used for model 

validation, but results in the duplication of components with similar mathematics where the 

variables are assigned different units. 

The Sum_of _2 component from the Sum model is imported four times to add the L, R, 

Gd, and Rg fluxes. In cases where more than two fluxes are involved, the fluxes are added 

together by connecting multiple Sum_of_2 components. For example, Rlg requires three 

Sum_of_2 components to be connected together in order to calculate the total flux. 

The white boxes on the left and right of Figure 2.5 list the components that have been 

defined to provide the reaction kinetic parameters and initial conditions for the imported 

components. 
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Figure 2.5: The GPCR cycle modeled in CellML 

The model has a modular structure to facilitate component reuse. The lines 

between components are directionless intentionally, since they represent the 

quantities that are shared between components. 
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2.3.2 MODULARIZATION OF THE HODGKIN–HUXLEY MODEL 

In general, electrophysiological models describe ion flow through channels, exchangers, 

pumps and membrane leakages. For example, the seminal Hodgkin–Huxley model [52] 

describes the action potential in squid giant axons. The model includes a description of a 

sodium current through a gated sodium channel, a potassium current through a potassium 

channel, and a small leakage current across the cell surface membrane [52]. Most of these 

channels are reused in other electrophysiological models, many of which are contained in the 

CellML repository. The identification of each of these as functional units that make up a 

complete electrophysiological model would make it easier to understand these models and 

also increase the reusability of these channels. 

Figure 2.6, demonstrates the components that contain a set of commonly used equations 

when modeling voltage-gated channel activity. These include the following: 

 the Nernst_Potential model, which contains one component with the mathematics for 

calculating the reversal potential (EA); 

 the Current model, which contains one component for calculating the current flowing 

through a channel (I A); 

 the Gate model, which contains one component with the mathematics describing the gate 

opening and closing kinetics; 

 the Membrane_Potential model, which contains one component with the mathematics for 

describing the membrane potential;  

 the Sum model, which contains one component for summing ionic currents. 
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Figure 2.6: A set of models describing several electrophysiological concepts 

Note that all the models contain reusable generic components. For this reason „A‟ 

is used to denote the ion (which could be sodium, potassium, calcium or chloride) 

and „x‟ is used to denote the gate (which could be m, h, or j in the case of the 

sodium channel). The colors in these models are used to identify the imported 

components in Figure 2.7 and Figure 2.8. 

The generic components consist of a set of simplified equations commonly used in the 

literature when modeling voltage-gated channel activity. These can be reused to calculate 

model-specific values. For example, the Nernst Potential component can be used to calculate 

the Nernst potential of any ion. 

Figure 2.7a illustrates the way in which the Hodgkin–Huxley model is built using these 

generic components, multiple levels of imports and encapsulation. One of each of the 

Ionic_Current and M_Potential generic components is imported to model the leakage current 

and membrane potential, respectively. The Sum_of_2_Ionic component is imported twice and 

connected together to add the sodium, potassium, and leakage ionic currents. 

Figure 2.7b shows a model created to describe the sodium channel. This model contains 

the Na_Conductance and generic Ionic_Current components to calculate the sodium 

conductance and ionic current, respectively. The generic Gate component is imported twice 

to model the m and h gates. Each gate component is connected to an imported Integrator 
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component to calculate the rate of change of the gate activity over time. The Fast_m_Gate 

and Fast_h_Gate components provide parameters for calculating the rates of opening and 

closing of the m and h gates, respectively. Together, these components model the sodium 

channel. Since this formulation is frequently used in the literature, the encapsulation feature 

is used to group these components together to enable reuse of this entire sodium channel. The 

Na_Channel component makes the encapsulated components visible to the external models. 

The Hodgkin_Huxley model imports the Na_Channel component from the Na_Ionic_Current 

model. Similarly, Figure 2.7c illustrates how the K_Channel component is modeled.  

The sodium, potassium and leakage current reversal potentials (ENa, EK, and EL, 

respectively) are not calculated using the Nernst potential equation. Instead, they are 

calculated in terms of the membrane equilibrium potential (ER). Three components, called 

Na_Nernst_Potential, K_Nernst_Potential, and L_Nernst_Potential, are introduced to 

calculate these reversal potentials because they define approximated constants. 

The Na_Ionic_Current and K_Ionic_Current models can also be simplified further by 

abstracting the sodium and potassium gates into two separate models. 
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Figure 2.7: Description of the Hodgkin–Huxley model in CellML 

(a) A representation of the Hodgkin–Huxley model using the reusable generic 

components illustrated in Figure 2.6 and encapsulation to hide the calculations for 
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the sodium channel activity. (b) The structure of the CellML model which 

encapsulates the sodium ionic current with two gates. (c) The structure of the 

CellML model which encapsulates the potassium ionic current with one gate. The 

lines between components are directionless intentionally, since they represent the 

quantities that are shared between components.  

2.3.3 MODULARIZATION OF THE NOBLE MODEL 

The Noble model describes the long-lasting action and pacemaker potentials of the Purkinje 

fibers of the heart [53]. It is developed from the equations of the Hodgkin–Huxley model. 

The potassium current equations defined in the Noble model identify potassium ion flow 

through two types of channels in the membrane. The sodium current equations are very 

similar to those of Hodgkin–Huxley model but use different parameters. Here we describe the 

construction of the Nobel model from generic components, as well as by reuse of components 

from the Na_Ionic_Current and K_Ionic_Current models developed for the Hodgkin–Huxley 

model. 

Figure 2.8a illustrates the top-level Noble model. Similar to the Hodgkin–Huxley model, 

Ionic_Current, M_Potential, and Sum_of_2 Ionic components are imported to model the 

leakage current, membrane potential, and total ionic currents, respectively. 

Na_Nernst_Potential, K_Nernst_Potential, L_Nernst_Potential, Constants, and Initial_Values 

components defined in the Noble model describe the model-specific values. 

Figure 2.8 shows the extended Na_Ionic_Current model that is developed to support the 

sodium ionic current defined in the Noble model. The Fast_m_Gate_Noble and 

Fast_h_Gate_Noble components are introduced to provide the gate parameters defined in the 

Noble model. The GNa_Noble component calculates the sodium conductance. The 

Na_Channel_Noble component defines an encapsulated group, which includes the 

components needed for modeling the sodium current defined in the Noble model. A set of 

new connections is introduced to connect the new components with the existing components. 

The Na_Channel_Noble component is imported into the Noble model. Similarly, Figure 2.8c 

illustrates the extended K_Ionic_Current model developed to model the flow of potassium 

ions as described in the Noble model. 
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Figure 2.8: Describing the Noble model in CellML 
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(a) A representation of the Noble model using the reusable generic components 

illustrated in Figure 2.6. (b) Extended Na_Ionic_Current model to describe the 

sodium current with new parameters defined in the Noble model. A new 

encapsulation group is introduced to group the components related to the Noble 

model. The Na_Channel, Fast_m_Gate, and Fast_j_Gate components are shaded in 

dark grey because they are not used to model the Noble model. (c) Extended 

K_Ionic_Current model to describe the potassium current defined in the Noble 

model. The K_Channel and Fast_n_Gate components shaded in dark grey are not 

used to model the Noble model. The lines between components are directionless, 

since they represent the quantities that are shared between components.  

2.4 DISCUSSION 

The process described here isolates the biophysical concepts represented in a CellML model 

into logical abstractions, which helps modelers to avoid creating complex representations of 

biophysical concepts in CellML and provides a better correlation between the CellML model 

and the underlying biological process it describes. 

The development of models with different levels of abstraction is dependent on the 

personal preferences of the modeler. It is not always useful to force specific levels of 

abstraction onto the modeler. However, careful attention needs to be given to cases where 

various components would be well suited to being modular, so that the outcome is a model 

that is amenable to reuse. The building of reusable generic components is a necessary process 

to improve the interpretation and reuse of CellML models. 

Use of generic components also reduces the complexity of the modeling process. When a 

model is constructed without imports, the mathematics and variables of each component 

often need to be repeated. Every component needs to be read in order to understand a model 

in its entirety. Use of common components simplifies the process of understanding complex 

models by preventing modelers from having to read the mathematics of every component.   

Models can also be abstracted to capture sets of biological concepts and can be 

encapsulated and reused in more complex models. The GPCR cycle model can be 

encapsulated and reused to model the Inositol 1,4,5-trisphosphate (IP3) signaling cascade 

[50]. The conceptual modularization of the IP3 signaling cascade has been previously 

described by Cooling et al. (2008) [51]. While that study isolated the GPCR cycle, we are 
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further componentizing modules to identify the reusable components within the GPCR cycle 

to make it easier to interpret the model and identify the individual processes and entities. 

Generic components should be used where possible when building a model, and the 

approximated constants should only be used when there is insufficient information to use the 

generic component. Since most of the models are not complete, models will generally have 

some approximated constants. The advantage of modularization is that the modeler can 

replace these approximated constant components with the generic components at a later stage 

when key unknown values become available. For example, the Na_Nernst_Potential 

component in the Hodgkin–Huxley model can be replaced by the Nernst_Potential 

component when the internal and external sodium concentrations are known. This illustrates 

how the isolation of biophysical concepts allows modelers to build reusable and extensible 

models that are easier to interpret and extend with new information.  

The Hodgkin–Huxley example demonstrates how encapsulation may be used to reduce 

the complexity of a model. The Hodgkin_Huxley model imports the Na_Channel component 

from the Na_Ionic_Current model, thereby reducing the complexity of the top-level model by 

hiding calculations of the sodium gate activities and current flow from the Hodgkin_Huxley 

model. It also shows how the encapsulated groups may be reused across other 

electrophysiological models by importing the Na_Channel, which would enable visibility to 

the encapsulated components.  

As research continues, models are improved and new parameters are defined. 

Development of models by isolation of the biophysical concepts also supports better 

extension and reusability of parts of models. The Noble example illustrates how components 

of existing models, that were developed to build the Hodgkin–Huxley model, can be reused. 

This method of reuse is not possible with the existing Hodgkin–Huxley model in the CellML 

repository, owing to the way it has been structured with tight coupling between components 

that model different biophysical concepts and model-specific values. In summary, the import 

and encapsulation features can be used to modularize models, build models from 

biophysically based components and promote the reuse of CellML models. 

While the most commonly used biophysical concepts will be relatively straightforward to 

define and introduce into a library of models of generic components, we acknowledge that 

the development of such a library covering all the biophysical concepts in CellML models 

will be a comparatively lengthy process. Currently, these generic components are identified 
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by the modeler. A next step is to introduce a method to generate the biophysical concepts 

modeled in generic components through mathematical normalization. For example: aA+bB-

>cC+dD can be used to generate every kinetic reaction. The aim would be to introduce a 

meta-model, which captures the normalized mathematical equation, and combine it with a 

rule set that could be used to manipulate the meta-model in order to generate the generic 

CellML components that capture elementary biophysical concepts.  

The modularity principle of the network theory introduced by Gilles identifies two types 

of elementary units called components and coupling elements [46, 54]. Components define 

physical quantities like energy, mass, or momentum and coupling elements describe the 

fluxes between components. Components and coupling elements can be defined on different 

hierarchical modeling levels. Components and coupling elements can be aggregated to a 

single component on a higher level or elementary units on one level may be decomposed into 

components and coupling units on a lower level [46, 54]. This modularity work described by 

Gilles was explored later in the project. Extending the modularization guidelines for CellML 

described here would benefit from further exploration of the interesting modularity concepts 

described by Gilles. 

Reduction of the complexity at the top level increases the consistency and ease of reuse 

of CellML models. However, this results in a complex organization of components, abstract 

variables and connections. The editing and creation of such a CellML model at the XML 

level is difficult. Therefore, it would be useful to provide tools to permit visual creation and 

viewing of CellML models to support the effective use of generic components and 

encapsulation. 

This study also brought to light a number of opportunities for improving the CellML 

language. The formation of mathematical operations over arbitrary numbers of inputs is not 

possible in CellML. It requires modelers to import the same components multiple times, for 

example, importation of the Sum_of_2_Ionic component twice to add sodium, potassium, and 

leakage currents in the Hodgkin–Huxley example. This increases the number of components 

and connections, consequently increasing the complexity of the model. Such mathematical 

operations are common in modeling biophysical models. Introduction of multiplexers and 

variables that can carry matrices will help to reduce the number of imported components and 

connections further. This feature will not enable the reuse of more models but it will reduce 

the complexity of models. 
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Systems Biology Modeling Language (SBML) [13] is another mathematical modeling 

language developed specifically for describing biochemical networks. The structure of SBML 

itself captures some of the biophysical concepts described in the model. For example, it 

defines reactions where the kinetic laws are described. In contrast, CellML is abstract, and 

components do not define what can be included. By modularizing CellML models, we are 

able to identify and isolate these reactions. The SBML specification does not currently 

support features to enable reuse of existing models [29]. This forces modelers to construct 

models from scratch and acts as a barrier to share the models. The advantages of using 

CellML are that it provides the flexibility required to model different types of biological 

concepts and it also contains the features necessary to construct reusable models. 

The existing CellML Model Repository [17] is composed mostly of CellML 1.0 models. 

Many of the models form reasonable abstractions of biophysical processes. However, they 

would benefit from further attention to encapsulation. The CellML 1.0 specification does not 

support imports, and these models are unable to benefit from the movement of common 

structures into shared resources. It is the intention of the CellML community to translate the 

existing CellML 1.0 models into a CellML 1.1 format using the import and encapsulation 

features to build a library of common and reusable components and models. The aim is to 

provide a library of generic component models that can be used to build specific biological 

concepts. 

The biophysical concepts isolated in the CellML models are not conveyed in a machine-

interpretable manner. This requires the annotation of CellML elements to an ontology 

defining biophysical concepts. For example, the generic components describing mass action 

kinetics in the GPCR cycle can have one-to-one mappings to Systems Biology Ontology 

(SBO) [26] rate law terms. This is discussed in the next chapter. 

The building of models by following the modularity principles should enable modelers to 

develop models that are easier to interpret and reuse. Integration of these with an ontological 

framework will enable modelers to overcome some of the difficulties associated with 

building complex biological cell models.  
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3 BIOPHYSICAL ANNOTATION AND REPRESENTATION 

OF CELLML MODELS 

The focus of CellML is the representation of mathematical formulations of biological 

processes. The language captures the mathematical and model building constructs well but 

does not lend itself to capturing the biology these models represent. Such information needs 

to be represented as metadata. The previous chapter demonstrated how to structure models in 

a way that it best describes the biophysical concepts and abstractions that the modeler wishes 

to demonstrate. This chapter describes the development of an ontological framework for 

annotating CellML models with biophysical concepts. We demonstrate that, by using these 

ontological mappings, in combination with a set of graph reduction rules, it is possible to 

represent the underlying biological process described in a CellML model. 

3.1 INTRODUCTION  

CellML models do not capture biological information explicitly in their model properties. 

This feature of the CellML language enhances its flexibility, enabling it to describe a wide 

range of biological processes without the need to include a large number of domain-specific 

language constructs. The result of this, though, is that biological information, such as the 
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entities and processes described by the model, are not represented or only weakly implied in 

the variable and component names. Physical data, such as units of measurement and type of 

mathematical formulation, are captured in the units of the variables and the structure of the 

mathematical equations. Complicated relationships often exist between the biological process 

and the mathematical model describing the biological process. A biological concept may be 

represented using several mathematical equations and variables, spread across multiple 

components, to form a complex CellML structure. It is a difficult task to pull together the 

relevant information to discover the underlying biology. 

A parallel specification to the CellML/XML language specification, the CellML 

Metadata specification [41], provides a method for attributing extra information to CellML 

elements. The CellML metadata specification uses the Resource Description Framework 

(RDF)[11] and RDF Schema (RDFS) [55], which are standard formats based on XML, for 

describing metadata. A CellML-specific element, <cmeta:bio_entity>, is used to define 

biological entity metadata. A biological entity can refer to a human readable name, database 

identifier, or both. This provides a simple method for annotating CellML elements with 

biological data.  

This kind of annotation only provides a simple labeling mechanism and fails to capture 

the relationships between biological processes and entities. One could argue that information 

about these relationships is captured implicitly in the „connection‟ structures of CellML that 

represent the transfer of quantities between mathematical operations. But transforming such 

information into meaningful biological descriptions is very complex; it also misses the 

intention here which is to help the author to accurately describe the biological knowledge or 

intention of the mathematical model they are presenting.  

An ontology is a formal representation of a set of concepts, and the relations between 

those concepts, within a specific domain of knowledge. It defines a common vocabulary and 

set of rules to unambiguously represent information [34]. Formalizing data in an ontological 

format involves clearly identifying concepts, defining the characteristics of these concepts, 

providing specific instances of the concepts, and describing ways in which concepts and 

instances can be related. 

Biological ontologies are being used to define a standard representation of biological 

models [56]. There exist many biological ontologies which capture different domains of 



Chapter 3 – Biophysical annotation and representation of CellML models  

 42 

biology. Ontologies that are particularly relevant to the annotation of physical and biological 

concepts modeled in CellML include: 

1. BioPAX ontology – which describes metabolic pathway data, molecular binding 

interactions, hierarchical pathways, and some signal transduction pathway and gene 

regulatory network concepts [57]; 

2. Foundational model of anatomy ontology (FMA) – which captures the structural 

relationships between the organs and tissues of the human body [58]; 

3. Gene ontology (GO) – which represents genes, gene products, and gene sequences of a 

variety of plant, animal and microbial genomes [59]; 

4. NCI thesaurus – which provides a reference terminology for describing cancers, drugs, 

therapies, anatomy, genes, pathways, cellular and subcellular processes, proteins, and 

experimental organisms [60];  

5. Systems biology ontology (SBO) – which addresses biological concepts related to 

computational modeling [30]. 

A controlled vocabulary is an organized list of terms that are used to annotate data so that 

they can be easily retrieved. The ontologies listed from 2 to 5 provide controlled vocabularies 

which could be used for annotating CellML structures representing biological entities and 

processes or, as in the case of SBO, can also be used to annotate the physical concepts such 

as quantitative parameters and mathematical expressions modeled in CellML. Such an 

annotated CellML model can often result in an overcomplicated representation of the 

underlying biophysical concepts. The notion of „views‟ can be useful here to refer to 

simplified representations of the complex annotated CellML models. One such view would 

be a „biological view‟ that explicitly shows the biological processes and entities, and the 

relationships between them. However, these ontologies alone do not provide the means for 

creating a biological view which can be used to show the underlying biological concepts and 

relationships captured in a CellML model. Whereas BioPAX describes biological concepts in 

such a way that a biological view can be built. BioPAX provides a set of classes that can be 

used to model a large number of the biological process and entity types described in CellML 

models. The process types include transport, covalent, non-covalent, and modulation 

interactions. The entity types include protein, complex, small molecule, RNA, and DNA. 

Supplementary Material A describes the initial research carried out to compare the ontologies 

BioPAX, SBO, and GO.  
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Figure 3.1 shows the way in which BioPAX can be used to build an abstract model of the 

formation of cyclic adenosine monophosphate (cAMP) [38]. 
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Figure 3.1: Modeling the formation of cyclic adenosine monophosphate 

(cAMP) in BioPAX 

In BioPAX concepts such as proteins or reaction types are defined using Classes, 

objects such as specific proteins are expressed as instances, and the relationship 

between the objects are defined using properties. Adenylyl cyclase (AC) catalyses 

this reaction, stimulatory G protein (Gs) positively modulates the catalysis process, 

and inhibitory G protein (Gi) negatively modulates the catalysis process. The 

process of the formation of cAMP is modeled using the BiochemicalReaction 

class. AC, stimulatory G protein (Gs) and inhibitory G protein (Gi) entities are 

represented using the Protein class. Adenosine triphosphate (ATP) and cAMP are 

represented using the SmallMolecule class. The interaction between AC and the 

biochemical process is identified as a Catalysis process.  The interactions between 

the G proteins and the Catalysis process are identified as Modulation processes. 

A limitation of BioPAX at present is that, while it captures the concepts and relations 

surrounding biochemical pathways, it does not provide an equally rich set for 

electrophysiological concepts. For example, BioPAX cannot be used to represent a transport 

process via a voltage activated gated channel. Even though BioPAX can be extended to 

support the modeling of electrophysiological processes, the difficulty is that these concepts 

have to be recast in the form of biochemical mechanisms, which is often not the relevant 

interpretation required by the modeler at the point of annotation.  

Although it is possible to add biological meaning to CellML elements by mapping each 

component to a BioPAX process instance and each variable to a BioPAX entity instance, the 

semantic differences between BioPAX and CellML models make it harder to establish a one-
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to-one relationship with BioPAX instances and CellML elements. For example, the 

components in a CellML model that do not have any biological meaning (i.e. components 

calculating rate constants) cannot be mapped to a BioPAX instance. Furthermore, without an 

explicit mapping between CellML and BioPAX, it makes it harder to understand the 

relationship between the CellML elements and BioPAX instances. These limitations make it  

difficult to adopt BioPAX as a standard to annotate the biological and physical concepts 

modeled in CellML. Initial efforts to use BioPAX to annotate CellML models are further 

described in Supplementary Material B section 2. 

Hence, in the absence of an existing ontology which is capable of fully annotating a 

CellML model with physical and biological information, we were compelled to develop our 

own ontological framework. Here we describe the process of developing such a framework 

which is designed to structure the biophysical concepts captured in CellML models and allow 

modelers to explicitly annotate a CellML model with physical and biological information. 

The annotated information is used to help users to clearly indentify the underlying physical 

concepts captured in the CellML model, without the need to go through all the individual 

CellML elements. Similarly, the same information can also be used to construct a biological 

view of the CellML model. 

3.2 METHODS 

Our ontological framework is modeled using the Web Ontology Language (OWL) [35]. 

OWL is a knowledge representation language which is based on RDF/RDFS. It provides 

additional modeling concepts along with formal semantics when compared with XML and 

RDF. OWL can be used to represent concepts, relations between them, and identify members 

of these concepts. The OWL properties describe the relationships between instances or 

constraints defining necessary and sufficient conditions for being classified as a member of a 

class. This class-based knowledge representation enables automated reasoning to check the 

consistency of models. OWL also provides the basis for efficient querying mechanisms and, 

furthermore, it can easily be integrated with other ontologies. 

OWL has three sublanguages OWL-Lite, OWL-DL, and OWL-Full. OWL-Lite can be 

used to construct a classification hierarchy and simple constraints with limited 

expressiveness. OWL-DL is conceptually based on descriptive logic and supports maximum 

expressiveness while maintaining computational completeness and decidability. OWL-Full 

supports maximum expressiveness with no computational guarantees. We use OWL-DL to 
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construct our ontologies to take advantage of its ability to model incomplete and irregular 

knowledge, which is well suited for modeling biological facts [61].  

The process we describe here for the construction of a biological view of a CellML 

model involves three steps: 

1. transformation of the CellML/XML model into an OWL format (CellML/OWL). This 

uses an ontology for representing CellML models and a method for binding elements of 

these back to the CellML/XML model; 

2. annotation of the CellML/OWL model to an OWL model of biophysical concepts. This 

involves developing an ontology that represents the physical and biological concepts that 

are described in CellML models (CellMLBiophysical/OWL); 

3. simplification of the CellMLBiophysical/OWL model using the ontological mappings, in 

combination with a set of graph reducing rules, to represent the underlying biological 

view of the CellML model. 

3.2.1 TRANSFORMATION OF A CELLML/XML MODEL INTO A CELLML/OWL 

MODEL 

The CellML/OWL ontology represents a CellML/XML model in OWL (Figure 3.2). 

CellML/OWL models are created by a programmed transform that for each element in the 

CellML/XML model, creates the analogous representation in the CellML/OWL model. 
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Figure 3.2: CellML structures 

(a) The CellML/OWL ontology class structure. The CellML/OWL classes capture 

the CellML/XML elements while the CellML/OWL properties capture the CellML 

attributes and their relationships. (b) The CellML/XML hierarchical structure. 

CellML/XML imports declare relations to other models and references components 

intended to be imported when the model is instantiated in a simulation/processing software 

[62]. If these declarations are mirrored in the CellML/OWL model, we would have a list of 

imported models and components. The imported components can be annotated using the 

Import elements, but it is impossible to annotate separate instances of variables defined 

within the imported components. As a result the CellML/OWL model represents the full 

instantiation such that all import references are resolved into explicit instances of components 

within the model. Using this approach it is possible to annotate the same component with 

different biophysical annotations at the top level. For example: GPCR model imports the 

integrator component multiple times, each of which is annotated with different biological 
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concepts. It is important to note that the implicit imports supported via encapsulated groups 

are not expressed as explicit instances in the CellML/OWL model.  

The Import class in the CellML/OWL ontology should not be confused with owl:import 

statements in the OWL language. OWL refers to imports as importing concepts and relations 

from other resources. In CellML/OWL the import class represents the result of importing 

components in models referenced in the CellML/XML import declarations. The 

CellML/OWL model stores instances of imported components inside the current model 

allowing users to annotate variable metadata and imported components with respect to the 

importing model. 

In order to express biophysical concepts that the CellML Component, Connection, and 

Variable elements represent, we define the property hasPhysicalProcess, 

hasMathematicalEquality, and hasPhysicalEntity, respectively in these classes. The process 

of defining values for these is explained in step 2.  

The transformation of CellML/XML into CellML/OWL does not currently include 

metadata elements. Including these could provide some value and would make the 

transformation more complete 

Instances of every OWL class require a unique identifier which is declared as an rdf:ID 

in the OWL/XML syntax. The CellML metadata specification defines a cmeta:id attribute to 

uniquely identify CellML elements [41]. The values of cmeta:id can thus be used as the 

rdf:ID in the CellML/OWL model instances. It is important to note that the imported 

components have cmeta:ids associated to them within the imported statement which is 

different to any existing cmeta:id that may exist on the component in the original model. As 

imported variable and math elements are not uniquely identified within a particular CellML 

model description, additional processing is required to create rdf:ID values for these 

elements. The formula for creating the rdf:ID values for imported variable and math elements 

is: rdf:ID of imported variable/math = {cmeta:id of imported component}+ “_”+{cmeta:id of 

variable/math defined in the imported model}. 

CellML/OWL models are generated from CellML/XML models by traversing through 

the XML Document Object Model (DOM) and creating CellML/OWL instances. The 

generated CellML/OWL model instances are mapped to the original CellML model using the 

RDF. The RDF statement explicitly maps a CellML cmeta:id to a CellML/OWL rdf:ID. The 

RDF statement has: 
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 a subject: http://www.sarala.bioeng.auckland.ac.nz/example.cellml#A_A; 

 a predicate:http://www.sarala.bioeng.auckland.ac.nz/cellmlowlbinding.rdf #cbinding; 

 an object: http://www.sarala.bioeng.auckland.ac.nz/example.owl#A_A. 

This maps CellML variable with cmeta:id A_A to CellML/OWL instance with rdf:ID A_A 

(Figure 3.3). The CellML/OWL model is stored in a separate OWL file and the RDF 

references are written back to the CellML/XML file. 

<model…>

<component…>

<variable cmeta:id="A_A" name="A" private_interface="none" public_interface="out" units="micromolar" initial_value="1"/>

…

</component>

</model>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:cob ="http://www.sarala.bioeng.auckland.ac.nz/cellmlowlbinding/">

<rdf:Description rdf:about="#A_A">

<cob:cbinding rdf:resource="http://www.sarala.bioeng.auckland.ac.nz/example.owl#A_A"/>

</rdf:Description>

…

</rdf:RDF>

…

<co:Variable rdf:ID="A_A">

<co:hasPhysicalEntity rdf:resource="exampleBio.owl#A_A"/>

<co:units>micromolar</co:units>

<co:private_interface>none</co:private_interface>

<co:public_interface>out</co:public_interface>

<co:initial_value>1</co:initial_value>

<co:name>A</co:name>

</co:Variable>

…

a

b

 

Figure 3.3: Example of a metadata definition 

(a) Fragment of a CellML/XML model highlighting the RDF mapping for variable 

A. (b) Fragment of the CellML/OWL model capturing the CellML/XML variable 

A description in OWL. 

3.2.2 ANNOTATION OF A CELLML/OWL MODEL TO A 

CELLMLBIOPHYSICAL/OWL MODEL 

Now that we have the model represented in CellML/OWL, the next step is to define the 

physical and biological information the elements of the model represent. To support this, 

CellMLBiophysical/OWL ontology was developed. It includes two ontologies, Physical and 

Biological. The Physical ontology captures the physical quantitative information and 

concepts captured in mathematical expressions. The Biological ontology captures the 

biological entities and processes. The CellMLBiophysical/OWL model defines the concepts 

and relations both within and between these ontologies (Figure 3.4). 
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* name (single string), * xref (multiple string)
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GenericNode

* name (single string), * ruleSet (multiple string), 
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[]properties applied via the parent classes
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[*] name (single string), [*]xref (multiple string)

 

Figure 3.4: CellMLBiophysical/OWL ontology top-level class structure 

The CellMLBiophysical/OWL ontology consists of the Physical, Biological, and 

GenericNode class structures and defines properties which link the instances of 

these classes. 

The process of attributing physical and biological concepts to the CellML elements in 

CellML/OWL is a two step process of: 

1. attributing physical meaning to the variables and components in the CellML/OWL model 

2. attributing biological meaning (where relevant) to the physical attributes defined in 1. 

3.2.2.1 Annotating physical information 

Physical concepts are mapped in a one-to-one relationship between the CellML elements 

(components, variables, and connections) in the CellML/OWL model and the physical 

concepts defined in the Physical subclass tree. Here we describe the physical concepts 

modeled in CellML models explicitly by treating:  

 every variable as a physical entity to capture the quantitative data defined in units of the 

variables; 

 every component as a physical process to capture the type of mathematical formulations 

defined within components.  

These concepts are represented by the PhysicalEntity and PhysicalProcess classes. Instances 

of these classes form the values of the hasPhysicalEntity and hasPhysicalProcess properties 
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within CellML/OWL models. In order to support the complete transformation of all the 

information in a CellML model, the connections are also treated as a process of equivalence 

(MathematicalEquality).  

The Physical subclass tree also captures the relationships between variables, components, 

and connections. Every component defines a set of variables and every connection contains 

mappings between variables in two components. These are captured by the physicalEntity 

property defined in the PhysicalProcess class. This effectively creates a process-entity graph 

(Figure 3.5). 

physicalEntity

physicalEntity

physicalEntity

Variable

(PhysicalEntity)

Variable

(PhysicalEntity)

physicalEntity
Variable

(PhysicalEntity)

Component

(PhysicalProcess)

Connection

(PhysicalProcess)

physicalEntity

Component

(PhysicalProcess)
physicalEntity

Variable

(PhysicalEntity)

physicalEntity

Variable

(PhysicalEntity)
 

Figure 3.5: A physical-entity graph generated for a CellML model 

A schematic diagram showing the relationship between CellML elements 

(components, variables and connections) and the underlying physical instances and 

relationships. 

The subclasses of the PhysicalProcess class are intended to define physical processes 

commonly modeled in CellML. These include:  

 MassActionKinetics - components describing mass action kinetics;  

 EnzymeKinetics - components describing enzyme kinetics;  

 Pooling - components with integrators;  

 IonicCurrent - components calculating ionic currents;  

 NernstPotential - components calculating Nernst potentials;  

 PotentialDifference - components calculating potential differences;  

 RateConstant: components calculating rate constants;  

 ConversionFactor - components calculating conversion factors;  

 Parameter - components providing parameters;  

 MathematicalEquality - CellML connections.  

The subclasses of the PhysicalEntity class define terms representing the physical 

dimensions of the variables in the CellML model. These include: Area, Capacitance, 
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Concentration, Conductance, Constant, Current, Dimensionless, Flux, Stoichiometry, Time, 

Voltage, and Volume. 

A CellMLBiophysical/OWL model is programmatically generated, which consists of 

instances of PhysicalProcess and PhysicalEntity classes, and the relationship between them. 

These instances need to be specialized to the relevant subclasses manually using the classes 

supported by the Physical subclass tree. Model developers can use external tools, such as 

Protégé [63] or SWOOP [64], to complete this task. 

3.2.2.2 Annotating biological information 

The result of the previous step is a physical process entity graph that needs to be annotated 

with biological information. Biological concepts are mapped in a one-to-many relationship to 

instances of PhysicalEntity and PhysicalProcess, i.e. multiple physical entities can point to 

the same biological concept. The biological subclass tree of the CellMLBiophysical/OWL 

ontology has been developed to capture the biological concepts covered in the example 

models used in this work. This includes biological processes (BiologicalProcess) that occur 

between entities (BiologicalEntity), function of participation (BiologicalRole) of a biological 

entity in relation to a particular process, and a specific location (BiologicalCompartment) of 

the entity in a biological system. 

The PhysicalProcess instances that have biological significance are annotated with 

BiologicalProcess instances via the refBioProcess property (Figure 3.6). The 

BiologicalProcess class is subdivided into:  

 BiochemicalReaction - to capture reactions where one or more biological entities undergo 

covalent changes to form one or more different biological entities;  

 Transport - to describe the transport of biological entities from one compartment to 

another compartment;  

 ComplexAssembly - to capture the reactions where complexes are formed via non-

covalent interactions. 

If a particular PhysicalProcess instance is mapped to a biological process instance, then 

this instance must have at least one PhysicalEntity instance which, in turn, has mappings to 

both BiologicalEntity and BiologicalRole instances (Figure 3.6). This is important as the aim 

is to develop a biological view that represents the underlying relationships between biological 

processes and entities. It is also important to note that the biological view is “connected” by 

way of the connectivity of the physical model. 
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The PhysicalEntity instances that have biological significance are annotated with 

BiologicalEntity instances via the refBioEntity property. The BiologicalEntity class is 

subdivided into:  

 Complex - to capture the biological entities bound together by non-covalent links;  

 Protein - to describe the biological entities with a sequence of amino acids;  

 SmallMolecule - to capture bioactive molecules that are not peptides;  

 PhysicalFactor - which captures physical factors such as voltage. 

In cases where these PhysicalEntity instances are mapped to PhysicalProcesses with a 

biological significance, they may also be annotated with a BiologicalRole instance (Figure 

3.6). The BiologicalRole class is subdivided into:  

 Modifier - which captures the modification types such as activator, catalyst and inhibitor;  

 Reactant - which describes reactants;  

 Product - which captures the reaction products. 

These PhysicalEntity instances may also be annotated with a BiologicalComparment 

instance via the refBioComparment property to capture the location of the biological entity.  

CellMLBiophysical/OWL model

Biological instances

Physical instances and the relationships

physicalEntity

refBioProcess

Variable1

(PhysicalEntity)
physicalEntity

Variable2

(PhysicalEntity)

Component1

(PhysicalProcess)

formationOfB

(BiochemicalProcess)

refBioEntity

A

(SmallMolecule)

B

(SmallMolecule)

reactant

(Reactant)

product

(Product)

refBioEntityrefBioRole refBioRole

 

Figure 3.6: The mapping between Physical instances and Biological instances 

The PhysicalEntity instance Variable1 is mapped to the BiologicalEntity instance 

A and the Role instance reactant.  The PhysicalEntity instance Variable2 is 

mapped to the BiologicalEntity instance B and the Role instance product.  

PhysicalProcess instance component1 is mapped to the BiochecmicalProcess 

instance formationOfB. 

The choice of physical and biological subclasses here serve only to reflect those 

necessary for the examples in this work and additional examples such as G protein-coupled 

receptor (GPCR) cycle described by Cooling et al. [50]. These examples can be downloaded 

at http://www.cellml.org/tools/downloads/cellml-viewer. In practice these classes would be 
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expanded, where the goal is to reflect all those concepts relevant to all models in the 

repository. 

3.2.3 SIMPLIFICATION OF A CELLMLBIOPHYSICAL/OWL MODEL 

The result of the previous step provides a complete representation of all physical entities, 

processes, and interpretations of these into biological entities, processes, and roles. For even 

simple CellML models the result can be a very large and complex looking biophysical 

representation. Here we describe a method to reduce this complexity to produce simplified 

views by implementing a graph reduction algorithm.  

The aim is to collapse the process-entity graph by: 

 simplifying the graph consolidating sub graphs or groups of nodes; 

 ensuring there is no loss of information in this process.  

We have identified four collapsing rules which depend on the relationships between 

entities and processes. The meaningfulness and validity of applying these to a particular 

instance is based on the ontological information.  

The four collapsing rules and the cardinality constraints are: 

1. entity(1*)-process(=1)-entity(1*) can be collapsed into an entity; 

2. process(1*)-entity(=1)-process(1*) can be collapsed into a process; 

3. terminal_entity(1*)-process(=1) can be collapsed into a process; 

4. terminal_process(1*)-entity(=1) can be collapsed into an entity. 

[(1*) - one-to-many, (1=) - exactly one, terminal entities refer to entities that are connected to 

only one process, and terminal processes refer to processes that are connected to only one 

entity] 

These rules are then applied to a selected set of nodes in the process-entity graph on the 

basis of their ontological properties. We have identified a set of specific cases that are used in 

the example models: 

1. a MathematicalEquality process (rule 1);  

2. a processes which has entities mapped to the same biological term such as Pooling 

processes which capture integration of N fluxes of a particular biological entity to 

produce its concentration. (rule 1); 

3. entities connected to processes which map to the same biological process (rule 2) because 

these processes together describe a particular biological term;  
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4. entities and processes which are not associated with biological meaning such as time (rule 

3 & rule 4). 

The application of the rules is selective and manual, allowing a user to highlight 

particular details and hide others. Applying these rules in the same order provides a 

consistent output. However, applying these rules in a different sequence can result in 

different outputs, implying that a particular CellMLBiophysical model can have multiple 

biological views.  

Applying the reduction process to the annotated CellMLBiophysical/OWL model 

involves three steps: 

1. creating a generic node graph with a reference to the original physical instances. This is 

illustrated by the dotted lines between the CellMLBiophysical/OWL model and generic 

model in Figure 3.7;  

2. applying the rules recursively to collapse the generic node graph. The starting node of the 

graph is arbitrary but the node type depends on the rule. For example when applying rule 

1, the starting node can be any generic node that references the MathematicalEquality 

(case 1); 

3. each iteration creates a new generic node graph to store the output from each step.  

When the generic nodes are collapsed, the references to the physical entity and process 

instances are accumulated in the new generic node. The generic node thus retains enough 

information to build a conceptual representation of what entities and processes (physical or 

biological) make up a node. 
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Figure 3.7: Application of the reducing rules 
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Applying rule 1 to collapse physical entity instances that are mapped to a common 

biological instance (case 2). 

A GenericNode class has been introduced to the CellMLBiophysical/OWL ontology to 

store the generic node graph (Figure 3.4). It has the following set of properties: name: which 

refers to the name of the generic node; connects: which references connected generic nodes; 

and refPhysical: which refers to the accumulated physical nodes. Each of these physical 

nodes points to a particular biological concept. Each generic node graph is saved in a separate 

OWL file which imports the CellML/OWL model. 

3.3 RESULTS 

Here we illustrate the process for annotating CellML models and applying the reducing rules 

to generate the underlying biological views using a simple example. Below we focus on 

annotating and representing the flow of potassium ions (K_Ionic_Flow) modeled in the 

Hodgkin–Huxley model [52]. Then the annotated Hodgkin–Huxley model is illustrated. 

3.3.1 REPRESENTING THE K_IONIC_FLOW MODEL IN CELLML 

The model is first represented in CellML by structuring it in such a way that best describes 

the biophysical concepts and abstractions (Figure 3.8) [65] (Chapter 2). It is built using 

generic components, multiple levels of imports, and encapsulation. The top level 

K_Ionic_Flow model defines a set of components which describe:  

 potassium Nernst potentials (K_Nernst_Potential); 

 potassium currents through a potassium channel (K_Channel);  

 membrane potential and the rate of change of voltage (Mem_Potential and V); 

 constant values, initial values, and time (Constants, Initial_Values, and Time).  
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Figure 3.8: Modeling the potassium ionic current described in Hodgkin-

Huxley model 

The model reuses some of the generic components described in Figure 2.6 to 

calculate model specific values. The M_Potential generic component is imported 

to model the membrane potential. Mem_Potential component is connected to an 

imported Integrator component to calculate the rate of change of the voltage over 

time.  The K_Ionic_Flow model imports the K_Channel component from the 

K_Ionic_Current model (Figure 2.7c). K_Nernst_Potential component calculate 

the reversal potential in terms of the membrane equilibrium potential (ER). The 

arcs are directionless intentionally, as they represent the quantities that are shared 

between components. 

3.3.2 TRANSLATING THE K_IONIC_FLOW CELLML MODEL INTO A 

CELLML/OWL MODEL 

The resulting CellML/OWL model defines an OWL instance for each CellML element 

described in the top level K_Ionic_Flow model. It also defines instances for the explicitly 

imported components, variables, and mathematics such as the K_Channel. It does not define 

instances for implicitly imported components, variables, mathematics, and connections such 

as the components grouped using encapsulation.  

3.3.3 ANNOTATING THE K_IONIC_FLOW CELLML/OWL INSTANCES TO 

CELLMLBIOPHYSICAL/OWL INSTANCES  

The annotated CellMLBiophysical/OWL model created for the K_Ionic_Flow model is 

shown in Figure 3.9a. Every CellML variable is represented as a specific PhysicalEntity 

instance. For example, variables associated with currents (i_K[I] and A[I]) are identified as a 



Chapter 3 – Biophysical annotation and representation of CellML models  

 57 

Current instance. Similarly, every CellML component is represented as a specific 

PhysicalProcess instance. For example, the components describing the currents such as 

K_Current are identified as IonicCurrent instances. All the connections are represented as 

MathematicalEquality (Con[EP]) instances.  

Figure 3.9a also shows the biological annotations for the K_Ionic_Flow model. The gate 

n is identified as a protein state. The potassium current is identified as a transport process. 

The Ek instance mapped to the K ionic current is also mapped to the K (BiologicalEntity), 

reactant (BiologicalRole), and IC (compartment) instances. 
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Figure 3.9: The K_Ionic_Flow model 

(a) The CellMLBiophysical/OWL model generated for the K_Ionic_Flow model. 

(b) The biological view showing the biological mappings that can be retrieved via 

the annotations. 

3.3.4 SIMPLIFYING THE K_IONIC_FLOW CELLMLBIOPHYSICAL/OWL 

MODEL TO SHOW THE BIOLOGICAL VIEW 

The CellMLBiophysical/OWL model is collapsed by applying the reducing rules. Figure 1b 

shows the resulting biological view that is generated for the K_Ionic_Flow example. Each 

node points to a biological annotation via the biophysical relationships. For example node 3 
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in the diagram references physical instances that are mapped to the K_Transport biological 

instance. This biological view essentially captures the underlying biological concepts 

described in the K_Ionic_Flow model. The order of specific cases that are used to collapse 

this model includes: 

 collapsing all the MathematicalEquality processes (Con[EP]) (case 1);  

 collapsing the Pooling process V[PL] which have entities mapped to the same biological 

term V (case 1); 

 collapsing the entities T[T] and processes K_Nernst_Potential[NP] Constants[P], 

Mem_Potential[PD], Initial_Values[P], and Time[T] which have no biological meaning 

(case 4). 

To clarify the annotation process further, a more detailed diagram which focuses on 

annotation of the K_Channel component is shown in Figure 3.10. 
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Figure 3.10: Annotating the imported K_Channel shown in Figure 3.9 

(a) CellML code of the K_Channel component that is imported from the 

K_Ionic_Current model. The K_Channel component contains five variables Gk, 

Ek, I_k, h, V, and T to define potassium conductance, equilibrium potential of the 

potassium ion, potassium current, gate activity, membrane potential, and time, 

respectively. (b) A part of the CellML/OWL model generated for the imported 

component K_Channel. The ImportedComponent class is used to represent the 

K_Channel component.  The Variable class is used to capture the variables Gk, 

Ek, I_k, h, V, and T. The CellML/OWL instances are annotated to 

CellMLBiophysical/OWL Physical instances. (c) Annotated 

CellMLBiophysical/OWL instances. The K_Channel is identified as a 

IonicCurrent. The Gk, Ek, I_k, h, V, and T physical instances are typed according 

to their  units as Conductance, Voltage, Current, Dimensionless, Voltage, and 

time, respectively. The physical entities that can be related to biological concepts 
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are mapped to biological instances. For example Gk represents potassium 

conductance therefore it is mapped to the Potassium biological instance. (d) The 

starting set of GenericNode instances generated from the 

CellMLBiophysical/OWL instances. This is used to apply the reducing rules. 

The process of annotating and representing the complete Hodgkin-Huxley model is 

illustrated in Figure 3.11. Every CellML variable is represented as a specific PhysicalEntity 

instance (Figure 3.11a). For example, variables associated with a current such as i_Na, i_K, 

and i_L are identified as Current instances. Similarly, every CellML component is 

represented as a specific PhysicalProcess instance. For example, the components describing 

the currents such as Leakage_Current are identified as IonicCurrent instances. All the 

connections are represented as MathematicalEquality instances. The gates m, h, and n are 

identified as protein states. The potassium current, sodium current, and the leakage current 

are identified as transport processes. The Ek instance mapped to the K ionic current is also 

mapped to the K (BiologicalEntity), reactant (BiologicalRole), and IC (compartment) 

instances (Figure 3.11a).  

A biological view showing the biological mappings that can be retrieved via the 

annotations (Figure 3.11b). Node 1, 2, and 3 reference physical instances that are mapped to 

the Na_Transport, L_Transport, and K_Transport biological process instances, respectively. 

The rest of the nodes reference physical instances that are mapped to biological entity, role, 

and compartment instances. This biological view essentially captures the underlying 

biological concepts described in the Hodgkin–Huxley model. The order of specific cases that 

are used to collapse this model includes: collapsing all the MathematicalEquality processes 

(Con[EP]) (case 1);  collapsing the Pooling process V[PL] which have entities mapped to the 

same biological term V (case 1); collapsing the entities T[T] and processes 

K_Nernst_Potential[NP], L_Nernst_Potential[NP], Na_Nernst_Potential[NP], Constants[P], 

Sum_of_2[PL], Sum_of_3[PL], Mem_Potential[PD], Initial_Values[P], and Time[T] which 

has no biological meaning (case 4). 

 



Chapter 3 – Biophysical annotation and representation of CellML models  

 61 

Hodgkin_Huxley

Hodgkin_Huxley

Constants[PR]

V[PL]

M[CP]

Sum_of_2[PL]

sum[I]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP]

Con[EP] Con[EP]

A[I ]
Con[EP]

Con[EP]

Con[EP]

M[CP]

Con[EP]

Con[EP]

K_Nernst_Potential[NP]

Ek[V]

Con[EP]

ER[V]

L_Nernst_Potential[NP]

Na_Nernst_Potential[NP]

Con[EP]

ER[V]

Con[EP]

ER[V]

Mem_Potential[PD]

Con[EP]

Init ial_Values[PR]

a

b

Ek[V] K[S]

El[V] ion[S]

h[G] h[P] R4[A]

n[P]

R4[A]
12

K[S]

R2[PO]

ion[S]

R1[R]

K[S]

R1[R]

Na[S]

R1[R]

h[P]

R4[A]
10

m[P]

R4[A]
11

Na[S]

R2[PO]

ion[S]

R2[P]

V[PF]

R4[A]
13

L_Transport[TP]

2

K_Transport[TP]

3

Na_Transport[TP]

1

Ena[V] Na[S]

Key

Physical Entity Types
[T]-Time
[V]-Voltage
[IV]-Init ialVoltage
[I]-Current
[L]-Dimensionless
[G]-Conductance
[CP]-Capacitance

X

X

Physical entity instance

Physical process instance

physicalEntity property which 

connects the entit ies to 

processes

Biological entity instance

Biological process instance

Biological role instance

Physical entity instance 

annotated to a biological 

entity instance

Physical Process Types
[PR]-Parameter
[PL]-Pooling
[ICU]-IonicCurrent 
[NP]-NernstPotential 
[PD]-PotentialDifference 
[EP]-MathematicalEquality

Biological Entity Types
[P]-Protein
[C]-Complex
[S]-SmallMolecule
[PF]-PhysicalFactor

Biological Process Types
[TP]-Transport

Instance Name[Type]

X X

iNa[I ] Na[S] R1[R] EC[CM]

Ek[V] K[S] R1[R] IC[CM]

El[V] ion[S] R1[R] EC[CM]

Biological compartment instance

IC[CM]

IC[CM]

EC[CM]

EC[CM]

EC[CM]

IC[CM]

Na – sodium

K – potassium

m, h, and n – gate

V – voltage

T – time

IC – intracellular

EC – extracellular 

val – value

Biological Role
[R]-Reactant
[PO]-Product
[A]-Activator

Biological Compartment
Types
[CM]-Compartment

6

8

4

9

5

7

n[L] n[P] R4[A]

Sum_of_3[PL]

sum[I]

val[I ]

Con[EP]

Na[S]val[I ]val[I ] ion[S]

val[I ] K[S]

J[F] V[PF]
A[G] ion[S]

Gk[G] K[S] Gl[G] ion[S]

GNa[G] Na[S]

V[V] V[PF] R4[A]

V[V] V[PF] R4[A]

V[IV] V[PF]

V [V] V[PF] R4[A]

Na[G] Na[S]

Na[G] K[S]

J[F] V[PF]

E[V] V[PF]

E[IV] V[PF]

Time[PR]

T[T]

T[T]Con[EP]

Con[EP]

T[T]

T[T]

Con[EP]

EC[CM]i_K[I] K[S] R2[PO]

IC[CM]A[I ] ion[S] R2[PO]

Ena[V] Na[S] R2[PO] IC[CM]

Na_Transport[TP]Na_Ionic_Current[ ICU]

L_Transport[TP]Leakage_Current[ICU]

K_Transport[TP]K_Channel[ICU]

m[L] m[P] R4[A]

 

Figure 3.11: Annotated Hodgkin-Huxley model 

(a) The CellMLBiophysical/OWL model generated for the Hodgkin–Huxley 

model. (b) The biological view showing the biological mappings that can be 

retrieved via the annotations.  
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3.4 DISCUSSION 

Here we have presented a method for the incorporation of ontologies with CellML that can be 

used to annotate the biophysics of a model, and generate ontological representations, to 

highlight the underlying biological view.  

Our ontological framework provides a fully integrated system, allowing modelers to 

traverse between models. A CellML/OWL model provides the necessary layer for integrating 

a CellML model with a CellMLBiophysical/OWL model which explicitly captures the 

physical and biological concepts. The CellMLBiophysical/OWL model is then collapsed to 

generate a biological view which is much easier to interpret. The biological view contains 

links to the collapsed biophysical instances which have one-to-one relationships with the 

CellML/OWL component, variable, and connection instances. This allows modelers to trace 

back to the original CellML elements from a particular biological view. 

The CellMLBiophysical/OWL model explicitly identifies the physical concepts in the 

CellML model. This makes it easier for readers to identify the computational modeling 

constructs used in the model. For example, the K_channel component is typed as an 

IonicCurrent identifying that the component is responsible for calculating a current generated 

by an ion flow. The K_channel component does not contain any mathematics itself, but 

instead it encapsulates a set of components that are involved in calculating the current flow 

through the potassium channel.  

Even though the K_Ionic_Flow CellMLBiophysical/OWL model (Figure 3.9a) captures 

the biological concepts it is difficult for readers to interpret the underlying processes. The 

graph reduction rules reduce the complexity of the annotated K_Ionic_Flow model by 

collapsing together the physical instances that point to identical biological concepts. The 

resulting biological view (Figure 3.9b) shows a simplified representation of the underlying 

biological concepts by highlighting the transport processes, gated channels, and the 

relationships between them. 

The ontology based rules for applying the generic rules that we have identified can be 

used to apply the reduction rules to collapse most of the signal transduction pathway and 

electrophysiological models. These can fail when applied to other types of models described 

in the CellML model repository. However, more specific cases can be identified by applying 

it to different types of models. Due to the wide range of models in the CellML model 
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repository, it may not be possible to come up with a generic set of cases to collapse all 

models but a set of specific cases depending on the model category. 

Note that the rules we have identified are used to simplify the process-entity graph using 

the biological annotations in this work. The advantage of this rule set is that these can be 

applied to simplify the process-entity graph using a different context by identifying specific 

cases. As research continues, it is one our goals to annotate the CellMLBiophysical/OWL 

models with mathematical constructs which can be used to reduce the complexity of a 

CellML model. 

The biological and physical annotations depend on the modeler‟s interpretation of the 

model. The reducing rules depend on the biophysical annotations. Having different 

annotations may result in different biological views. This allows modelers to change the 

annotations to emphasize or hide details. Modelers can also choose the order of graph 

reduction rules applied. By changing the order of rules, it is possible to generate different 

biological views for some models. A particular CellML model may thus have multiple 

biological views.  

The topology of the biological view also depends on the topology of the CellML model. 

The CellML model structure has a direct effect on the topology and complexity of the 

CellMLBiophysical/OWL model. If a CellML model is incomplete or invalid, the generated 

CellMLBiophysical/OWL model might be difficult to annotate with biological concepts, 

resulting in an uninteresting collapsed model. When building the topology of the CellML 

model, the modeler thus needs to reflect the biophysical abstractions that she is trying to 

communicate [65]. Note that this process also helps modelers to construct modular CellML 

models by clearly separating out the underlying biophysical concepts. 

The K_Ionic_Flow model example shown here demonstrates the way in which the 

CellML models can be collapsed to represent the underlying biological concepts without any 

loss of information. The CellML models are structured to clearly separate the biophysical 

concepts. This is reflected in the resulting CellMLBiophysical/OWL model, as highlighted in 

the dotted areas (Figure 3.9a). Note that the CellMLBiophysical/OWL model does not 

capture implicitly imported encapsulated concepts such as the details of calculations of the 

gated channel. However, it does identify the explicitly imported variables such as n-gate, 

which is typed as a Dimensionless instance in the physical domain and Protein in the 

biological domain. 
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The CellMLBiophysical/OWL and BioPAX both can be used to develop biological views 

but the way in which the views are represented is different. BioPAX represents a biological 

process as having properties directly specifying participants. In contrast, in 

CellMLBiophysical/OWL the biological participants of a process are reached indirectly 

through the physical entity instances. Even though this makes querying of biological data 

more complex, it supports querying of physical concepts captured in CellML models. 

The CellMLBiophysical/OWL ontology does not provide a complete ontology for 

annotating all the CellML models in the repository. It supports most of the biophysical 

concepts covered in signal transduction pathway and electrophysiological models. However, 

it can also be extended to support additional biophysical concepts and relationships by 

introducing new classes, properties, and restrictions. The CellMLBiophysical/OWL models 

can also be annotated against external ontologies and vocabularies to take advantage of 

existing knowledge definitions. Every class within the CellMLBiophysical/OWL ontology 

has an xref property to enable the model developer to map the class to an external resource 

such as terms in GO or SBO. For example annotating a BiologicalEntity instance against the 

voltage-gated sodium channel complex in the cellular component ontology in GO provides 

information about the BiologicalEntity instance, such as it is a protein complex and part of 

the plasma membrane. SBO can be used to annotate the physical entity and process instances 

with quantitative parameter concepts and mathematical expression concepts, respectively, to 

provide physical significance. The biological entity and process instances can be annotated 

with SBO participant concepts and event concepts, respectively, to provide additional 

biological meaning. 

One of the advantages of the CellML import element is the ability to reuse previously 

defined models in new model descriptions. As mentioned in the section 3.2.1 OWL:Import 

cannot be used to achieve the same semantic results. It is feasible to achieve the same 

modular approach in OWL without using a domain specific CellML import concept by 

introducing meta-classes/meta-models which could then be used to build OWL models. 

However, this was not addressed in this work as the intension of our work was to reflect the 

CellML/XML in OWL to provide a method to attribute properties to the CellML elements. 

The workflow discussed in this chapter involves programmatic and manual manipulation 

of the models. A software package has been developed to programmatically generate the 

ontological representations of a CellML model. The package is developed in Java to run on 

any platform. Currently it has only been tested on Widows but as research continues this tool 
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will be tested in other environments. This tool is freely available at 

http://www.cellml.org/tools/downloads/cellml-viewer. The manual process includes the 

construction of the CellML model and its subsequent annotation. The generated 

CellMLBiophysical/OWL model needs to be manually annotated with specific physical and 

biological concepts using external OWL editors such as Protégé [63].  

The error-prone and time-consuming manual annotation process can be effectively 

simplified by reusing annotated CellML models. It is our intension to replace these manual 

processes with formal or automated methods in order to support the effective programmatic 

construction of biological views. Errors that may occur during the processes of annotation of 

biological concepts can be reduced by introducing a rigor peer-reviewed workflow similar to 

that of publication in journals. The annotation of physical concepts can be improved by 

implementing a method for variable typing, and unit and process translation by using an 

ontological representation of mathematical equations. The construction of CellML models 

can be further improved by introducing a library of annotated reusable components and 

models [65]. Such a library could then be used to automatically link components and 

integrate models to create more complex annotated models. The generic node model which 

holds bindings through to all relevant components could be used to generate or formulate a 

function of all relevant pieces of specific annotation. 

The outcome of this research offers an extensible ontological framework which allows 

modelers to: 

 build CellML models by abstracting biophysical concepts; 

 annotate the CellML models with physical and biological concepts; 

 reduce the complexity of the underlying biophysical model by generating a simplified 

biological view; 

 integrate CellML models with external controlled vocabularies and other modeling 

standards.  
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4 A METHOD FOR VISUALIZING CELLML MODELS 

CellML models can be very complicated, making it difficult to interpret the underlying 

physical and biological concepts and relationships captured/described in the mathematical 

model. The previous chapter described a set of ontologies that were developed to explicitly 

annotate the biophysical concepts represented in the CellML models. This chapter presents a 

framework that combines a visual language, together with CellML ontologies, to support the 

visualization of the underlying physical and biological concepts described by the 

mathematical model and also their relationships with the CellML model. Automated CellML 

model visualization assists in the interpretation of model concepts and facilitates model 

communication and exchange between different communities. 

4.1 INTRODUCTION  

The creation and simulation of CellML models are supported by a set of software tools, 

including OpenCell and Cellular Open Resource (COR) [62]. The main features supported by 

these tools include text-based editing, tree views, graphical views, running simulations, and 

graphing of simulation results of CellML models [62, 66, 67]. Modelers are encouraged to 

share their models with the community by adding them to the CellML Model Repository 

[17]. The Physiome Model Repository (PMR) [22] is a software product designed to facilitate 
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the upload, storage, curation, download, and viewing of the models in the CellML model 

repository.  

CellML models comprise networks of interconnected components. The language 

supports a mechanism for importing components from one model into another. This feature 

facilitates the building of complex, composite models of function, it encapsulates hierarchies 

of detailed mechanisms (therefore hiding much of the model complexity). Imports can be 

used to easily build upon existing models (without the need to start from scratch), or they can 

be utilized in libraries of pre-defined functional components. 

However, the result of such language features and flexibility is that the specific details of 

biological and physical concepts can end up distributed over a complex interconnected 

network. This makes it difficult to identify what elements of a model contribute to a concept. 

It also makes it harder for a modeler to maintain a clear conceptual picture of the underlying 

biological mechanisms described by the model, especially when that model is large, complex 

and/or composite. 

Existing software tools have attempted to address some of these issues. Each model entry 

in the PMR has an option to view a rendered list of the mathematical equations described in 

that particular model. OpenCell, a tool for editing and simulating CellML models, provides a 

tree view of the CellML model, allowing the user to more easily view the units, components, 

variables, connections and mathematical equations in a particular model. Further, physical 

quantitative information about the model can be derived via the defined units of the variables. 

To highlight the biological concepts described in CellML models, almost all the model 

entries in the PMR include a schematic diagram of the underlying biological concepts being 

described by that particular CellML model.  These same schematic diagrams can be included 

in OpenCell session files as Scalable Vector Graphics (SVG) [39] with annotations to the 

CellML variables and components.  These clickable diagrams allow the user to trace the 

different behaviors of each variable in the model over the time course of the simulation. 

Currently these schematic diagrams are created manually, to reflect the diagrams often 

found in the published papers from which the CellML model has been derived. However, 

diagram creation is time-consuming and can be an error-prone process. Further, the ad hoc 

nature of these diagrams often requires textual support, usually in the form of a figure legend 

that describes the underlying biological concepts being illustrated. We suggest that such 

diagram generation would benefit from a visual language that could be used to provide 
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consistent graphical notations. A visual language is a way of expressing the semantics of a 

specific domain in a multi-dimensional space using visual symbolic notations [68]. A good 

visual language should be easily recognizable and simple to learn. 

The embedded SVG diagrams in OpenCell are manually annotated to their corresponding 

variables in the CellML model. This is achieved by mapping each SVG glyph to a single 

CellML variable via the scripting language Javascript. Javascript enables programmatic 

access to objects in OpenCell and allows modelers to interact with these SVG diagrams 

within the OpenCell graphical user interface. Modelers can then select glyphs in the diagram 

to watch the simulation graph of the mapped variable.  

There are several problems associated with this method of building schematic diagrams 

and the binding of variables from models to diagrams: 

 the schematic diagrams do not capture the composite nature that can exist in the 

underlying CellML models.  

 there is no existing method to build new visual representations of models that are 

composites of existing models. The glyphs in the diagram can be annotated to variables in 

the composite model as well as imported components; 

 the manual creation of diagrams can be an error-prone process, especially for the larger, 

more complex models. In particular, there are no methods in place to ensure that all the 

biological elements described in the CellML models are represented in the diagram; 

 this manual process is labor-intensive and time consuming.   

The aim of the work described here is to find a visual language suitable for representing 

the underlying biophysical concepts captured in a CellML model. We also define a formal 

method to consistently apply this visual language to diagram generation. 

Many alternative visual languages have been developed to visualize biological models. 

These include, BioD [69], Molecular Interaction Maps (MIM) [70], the state transition 

diagram notation supported in CellDesigner [71], BioUML [72], Pathway Analysis Tool for 

Integration and Knowledge Acquisition (PATIKA) [73, 74], Cell Illustrator [75], PathSys 

[76], BioPath [77], Edinburgh Pathway Notation (EPN) [78], and insilicoIDE [79]. A matrix 

developed to compare the notations supported in CellDesigner, PATIKA, MIM, and EPN is 

illustrated in Supplementary Material C. Despite their considerable number, identifying a 

suitable visual language for a particular type of model can present a challenge, as they are 

often domain specific and can have different underlying schemas of how biological meaning 
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should be modeled and displayed. To address these issues, there has been a consortium 

approach to developing a common visual notation: the Systems Biology Graphical Notation 

(SBGN) [80]. This aims to draw on the experiences of existing visual languages to formulate 

a single, standard graphical notation of biology that is vital for the interpretation and sharing 

of biological knowledge between different research communities.  

The SBGN community has identified three main types of visual representations: 

1. process diagrams which represent a sequence of interactions between biochemical 

entities; 

2. entity-relationship diagrams which depict interactions which occur if the relevant entities 

are present;  

3. activity flow diagrams which represent the influences between entities.  

The models in the PMR encompass a wide range of molecular processes. The SBGN 

process diagram can represent all the molecular processes and interactions that occur between 

biological entities, and their outcomes. This particular type of visual representation provides a 

promising option for visualizing CellML models. However, since SBGN is currently in a 

state of rapid evolution, we have also been developing our own visual language in parallel to 

this effort. That said, we are contributing to the discussions and development of SBGN and 

we have found guidance for the development of our own visual language through this 

collaboration.  

The generation of diagrams for CellML models using a visual language requires the 

language to be mapped to the CellML elements. In turn, this mapping process requires the 

CellML language to explicitly identify the underlying biophysical concepts being modeled. 

To achieve this, a biophysical ontology was developed to explicitly capture the physical and 

biological concepts in a CellML model [81]. The goal here is to develop a method to 

construct and map a visual language to the biophysical ontology which in turn can be used to 

visualize the physical and biological concepts described in CellML models.  

In this chapter we address these issues by describing:  

 a visual language for representing the physical and biological concepts modeled in 

CellML; 

 a method to map the visual language to the concepts defined in the biophysical ontology; 

 an algorithm that combines the visual language with the ontologies in order to facilitate 

the automated generation of visual representations of the CellML models.  
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In the following section we describe the ontologies and strategy developed to map 

physical and biological concepts in a CellML model to a visual representation of the model, 

and illustrate the approach with a simple example. 

4.2 METHODS 

The previous chapter described an ontology to annotate and represent CellML models, which 

we will use as the basis for developing our approach. The biophysical ontology, which is 

referred to as CellMLBiophysical/OWL [81], is based on the Web Ontology Language 

(OWL) [35]. It captures the underlying physical and biological concepts and relationships 

described in a CellML model. The CellMLBiophysical/OWL ontology is made up of two 

distinct ontologies; the Physical and the Biological. The Physical ontology captures the 

physical quantitative information and mathematical expressions in a CellML model. It creates 

a process-entity graph where the process represents a CellML component or a connection 

while the entity represents a variable (Figure 4.1). The Biological ontology captures the 

biological processes and entities described in a CellML model. The 

CellMLBiophysical/OWL ontology defines the concepts and relationships both within and 

between these ontologies.  

CellMLBiophysical/OWL model
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Figure 4.1: Schematic diagram illustrating a CellMLBiophysical/OWL model 

The figure illustrates an annotated CellMLBiophysical/OWL model generated for 

a CellML model with one component and two variables. In the physical domain, 

components (Component1) is typed as a Process and variables (Variable1 and 

Variable2) are typed as PhysicalEntities. These physical entities are annotated to 

Biological instances via properties (Variable1 PhysicalEntity instance is mapped 

to Protein A biological instance via the refBioEntity property). GenericNode 
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instances are generated by reducing the physical-entity graph according to the 

biological annotations. These GenericNode instances maps to the Physical 

instances which, in turn, have mappings to Biological instances. 

An instantiation of this ontology, which we refer to as a CellMLBiophysical/OWL model 

capturing the biophysical concepts modeled in a particular CellML model, results in a 

relatively complicated representation. A simplified view of these representations is generated 

by applying a graph reducing algorithm to the CellMLBiophysical/OWL model. This 

simplified view is a node-edge graph with mappings to physical instances which, in turn, 

have mappings to biological instances (Figure 4.1). This simplified view, together with 

biological mappings, can be used to highlight the underlying biological concepts and 

relationships described by the CellML model [81] (Chapter 2).   

The framework for generating visual representations for CellML models involves four 

steps: 

1. the development of a standardized visual language for representing the physical and 

biological processes captured in CellML models. This involves designing a set of visual 

glyphs which have one-to-one mappings with the physical and biological concepts 

represented in the CellMLBiophysical/OWL models; 

2. the representation of the visual language in a computer readable form; 

3. the mapping of the visual notation to the CellMLBiophysical/OWL ontology. This 

involves developing an ontology (VisualTemplate/OWL) that maps to the visual language 

which, in turn, is mapped to concepts in the CellMLBiophysical/OWL ontology; 

4. the development of an algorithm for generating visualizations of CellML models based on 

these ontological mappings. 

4.2.1 THE DEVELOPMENT OF A STANDARDIZED VISUAL LANGUAGE FOR 

REPRESENTING THE PHYSICAL AND BIOLOGICAL PROCESSES CAPTURED 

IN THE CELLML MODELS  

The goal here is to develop visual elements to represent the physical and biological concepts 

captured in the CellMLBiophysical/OWL ontology.  

4.2.1.1   A visual language for representing physical concepts 

A visualization should ensure that the detail of the underlying physical information described 

by the model is correctly and fully represented. A CellMLBiophysical/OWL model instance 
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captures the relationships between all the CellML elements (components, variables, and 

connections) as a process-entity graph. A detailed visualization can be constructed by 

identifying each of these processes and entities with a one-to-one mapping, i.e. every process, 

entity, and connection can be identified by a unique glyph.  

There are often many physical process and entity concepts associated with a 

CellMLBiophysical/OWL model that need to be visualized [81] (Chapter 2). The 

visualization should also uniquely identify these physical processes and entities. One solution 

would be to provide a separate glyph for each type of process and entity. However, this 

would not necessarily be very helpful to the modeler as it requires them to remember the 

meaning of many different symbols. We have thus chosen to use text labels, in addition to a 

reasonably small, distinct set of glyphs, to support the visualization of 

CellMLBiophysical/OWL models (Figure 4.2). The type of the entity or process, which is 

captured in CellMLBiophysical Class name, is written in italics, whilst the name of the entity 

or process is written in standard text.  

 

Figure 4.2: A notation for visualizing physical concepts 

 (a) A glyph for visualizing physical entities. (b) Glyph set for visualizing physical 

processes. A separate (EqualityProcess) is used to represent the 

MathematicalEquality class instances in the CellMLBiophysical/OWL ontology 

which intern represents the CellML connections. (c) A glyph for visualizing the 

relationship between the physical entities and processes. 

The rules for constructing a visual representation of a CellML model are based on the 

underlying process-entity graph. There is a unique glyph for each PhysicalEntity, 

PhysicalProcess, and the relationship between the entities (physicalEntity).  

4.2.1.2   A visual language for representing the biological concepts 

Here we aim to develop the visual language elements required for representing the biological 

processes (BiologicalProcess), entities (BiologicalEntity), and the function of participation 

(BiologicalRole) of a biological entity in relation to a particular process. 
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A set of glyphs has been developed to uniquely identify: 

 biological entities such as small molecules, proteins, complexes, physical factors, and null 

elements (Figure 4.3a); 

 biological processes such non-enzyme catalyzed covalent reaction (BiochemicalProcess), 

non-covalent reaction (ComplexProcess), enzyme catalyzed reaction (EnzymeProcess), 

movement of biological entities from one location to another (TransportProcess), and the 

process of degrading a physical entity (DegratationProcess) (Figure 4.3b); 

 biological roles such as catalysis, activation, inhibition, reactant, and product (Figure 

4.3c). 

 

Figure 4.3: A notation for representing biological concepts 

(a) Glyph set for visualizing biological entities. (b) Glyph set for visualizing 

biological processes. (c) Glyph set for visualizing biological roles. 

The rules for constructing a biological visual representation are based on the simplified 

view which captures the underlying biological concepts in a CellML model. A biological 

visual representation is generated by forming a one-to-one mapping between the biological 

concepts and the visual elements, or glyphs. i.e. each GenericNode is mapped to either a 

BiologicalProcess glyph or a BiologicalEntity glyph; whilst the Role glyph is used to 

represent the relationship between a biological entity and a biological process. 
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4.2.2 THE REPRESENTATION OF THE VISUAL LANGUAGE IN COMPUTER 

READABLE FORM 

To support the computer based manipulation of a visual language, it is important to find a 

standard format for representing the visual language in a computer readable form. To be 

suited for the visualization of CellML models, such a representation would have to support 

two dimensional graphics for representing the visual language, dynamic image updates to 

automatically construct visual representations from the CellML models, in addition to an 

interactive environment to track the user‟s mouse activity on the graphics. 

 SVG is an XML-based graphics standard for representing two-dimensional graphics. 

SVG supports vector graphics shapes, images, and text. Graphical objects can be grouped, 

styled, transformed, and composited into previously rendered objects. The feature set 

includes nested transformations, clipping paths, alpha masks, filter effects, and template 

objects. Use of XML enhances the searchability and the accessibility of the SVG graphics, 

and also allows the use of Java to generate SVG code to render graphics from database 

content to enable dynamic image updates. Interactive SVG content can also be executed 

using mouse events, and it allows users to initiate hyperlinks to traverse to new web pages 

and layout the objects. These features make SVG a well suited visual representation format 

for our particular needs. 

SVG consists of large number of elements. The svg element is the root of a SVG 

document. For the work described here we use the basic types of drawing elements such as 

text (text), shapes (rect, line, and cir), and paths (path). Each of these elements can be 

associated with attributes to define properties such as dimensions (width and height), unique 

identifier (id), coordinates (x and y), transformation (transform), and style (style). The g 

element is used to group the drawing elements together. It can also be associated with 

attributes such as id (id), coordinates (x and y), and transformation (transform). 

Each visual element shown in Figure 4.2 and Figure 4.3 has been coded up in SVG, 

allowing these glyphs to be reused when generating the visual representation of a particular 

CellML model. The remainder of this chapter refers to these glyphs as templates. Three SVG 

files are used to store the entity, process, and role visual elements.  

The template for representing a generic entity is illustrated in Figure 4.4a. The rect 

element is used to draw the base rectangle of a glyph. It specifies the size of the area covered 

by the graphic object. The handler element specifies the points that are used to connect a 
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glyph to other glyphs such as role glyphs. Note that in Figure 4.3a each visual element has a 

specific shape to identify whether it represents a small molecule, protein, complex, or a 

physical factor. These shapes inside the base rectangle are represented using the cir element 

for drawing circles and the path element for drawing different shapes. The g element is used 

to group these elements together to form a specific template. A text element is added to 

display the type and name of a particular entity. The id attribute of the g element contains a 

unique identifier to recognize each glyph in a model and the transformation attribute specifies 

the position of the glyph in a particular coordinate system. 

The template for representing a generic process is illustrated in Figure 4.4b. Similar to 

the entity template, the process template also defines a base and a handler. The base for the 

process template is a circle which is described using cir element. The shapes inside the base 

circle which identify each of the different processes are represented by path elements. 

The template for representing a generic role is illustrated in Figure 4.4c. Every role type 

(Figure 4.3c) consists of a line and another shape drawn at one end of each line. The line 

element is used to draw the line of each glyph. The additional shapes associated with each of 

the visual elements can be drawn using the line, cir, or path SVG elements. 

 

Figure 4.4: Template codes describing the visual language 

<g id="genericEntity" name=" genericEntity " transform="translate(0.0,100.0) scale(1.0,1.0)"> 

    <rect id="base" x="0" y="0"  rx="5" ry="5" width="50" height="34" style="fill:#183d9a;stroke:none;stroke-width:1.0000000" /> 
    (SVG elements describing the shapes inside the base) 
    <path id="handler" d="M 25,0 L 50,17 L 25,34 L 0,17 Z " style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none"/> 

</g> 

View of the code below 

 

All elements specified in the be code below 

 

Handler 

 

Base 

 

<g id="genericProcess" transform="translate(30.0,0.0)" > 

        <circle id = "base" r="10" cx="10" cy="10" style="fill:#459a18;stroke-width:1;stroke:none"/> 
    (SVG elements describing the shapes inside the base) 
    <path id="handler" d="M 10,0 L 20,10 L 10,20 L 0,10 Z " style="fill:white;fill-opacity:0;stroke-width:1;stroke:black" display="none" /> 
</g> 

 

All elements specified in the code below 

 

Handler 

 

a 

 

b 

 

<g id="genericRole" name=" genericRole"> 
    <line id="line" x1="100px" y1="100px" x2="150px" y2="150px" stroke="#8B0A50" stroke-width="1"/> 
        (SVG elements describing the additional shapes attached to the line) 
</g> 

 

Base 

 

c 

 

View of the code below 
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(a) SVG graphic and the template code for representing the generic entity template 

(b) SVG graphic and the template code for defining the generic process (c) SVG 

graphic and the template code to define the generic role 

4.2.3 THE MAPPING OF THE VISUAL LANGUAGE TO THE 

CELLMLBIOPHYSICAL/OWL ONTOLOGY 

The visual language represents the concepts captured in CellMLBiophysical/OWL ontology 

which, in turn, captures the biophysical concepts modeled in CellML. The goal here is to map 

the visual elements to the biophysical concepts described in the CellMLBiophysical/OWL 

ontology. This can be achieved by developing an intermediate OWL ontology 

(VisualTemplate/OWL) with mappings to the SVG visual elements. This provides two 

loosely coupled ontologies which are then free to evolve independently. Currently the 

VisualTemplate/OWL class structure mirrors the top level CellMLBiophysical/OWL class 

structure, thus making mapping between the two ontologies a relatively straightforward 

process. 

The VisualTemplate/OWL ontology class structure is illustrated in Figure 4.5. The top 

level VisualTemplate class has two properties: a url to store the URLs of the SVG files that 

contain the glyphs; and an svgId to store the value of the id attribute of the g element. It has 

two subclasses; a Biological class and a Physical class. These two classes are used to 

represent the biological glyphs and the physical glyphs, respectively. The Biological class has 

three subclasses:  

1. a BiologicalEntity class to reference to biological entity glyphs (Figure 4.3a); 

2. a BiologicalProcess class to reference to biological processes glyphs (Figure 4.3b); 

3. a BiologicalRole class to reference to biological role glyphs (Figure 4.3c).  

Similarly the Physical class can also be further divided into three subclasses: 

1. a PhysicalEntity class to reference to physical entity glyphs (Figure 4.2a); 

2. a PhysicalProcess class to reference to physical process glyphs (Figure 4.2b); 

3. a PhysicalRole class to reference to physical role glyphs (Figure 4.2c). 
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VisualTemplate

* url (single string), * svgid (single string)

Physical

[*] url (single string), [*]svgid  (single string)

Biological

[*] url (single string), [*]svgid  (single string)

Class name

* datatype property (cardinality datatype)

[]properties applied via the parent classes

Parent class Sub class

Key

PhysicalEntity

[*] url (single string), [*]svgid  (single string)

PhysicalProcess

[*] url (single string), [*]svgid  (single string)

BiologicaEntity

[*] url (single string), [*]svgid  (single string)) 

BiologicalProcess

[*] url (single string), [*]svgid  (single string)

BiologicalRole

[*] url (single string), [*]svgid  (single string)

PhysicalRole

[*] url (single string), [*]svgid  (single string)

 

Figure 4.5: Class structure of the VisualTemplate/OWL ontology 

An instance in a CellMLBiophysical/OWL model needs to reference an instance of a 

VisualTemplate/OWL model. This mapping is achieved by introducing a property called 

visualTemplate to the top class of the CellMLBiophysical/OWL ontology, 

CellMLBiophysical. The set of rules for model annotation includes mapping each 

CellMLBiophysical/OWL: 

 BiologicalEntity instance to a VisualTemplate/OWL BiologicalEntity instance; 

 BiologicalProcess instance to a VisualTemplate/OWL BiologicalProcess instance; 

 BiologicalRole instance to a VisualTemplate/OWL BiologicalRole instance; 

 PhysicalEntity instance to a VisualTemplate/OWL PhysicalEntity instance and a 

PhysicalRole instance; 

 PhysicalProcess instance to a VisualTemplate/OWL PhysicalProcess instance. 

Note that the CellMLBiophysical/OWL PhysicalEntity instance is mapped to both a 

VisualTemplate/OWL PhysicalEntity instance and a PhysicalRole instance. The relationship 

between a CellMLBiophysi-cal/OWL PhysicalEntity and a PhysicalProcess is captured via 

the physicalEntity property. OWL properties describe relationships between OWL class 

instances. Here we want to express the relationship between the physicalEntity property and 

the PhysicalRole class instance which cannot be expressed in OWL.  

In summary, there is a many-to-one relationship between CellMLBio-physical/OWL and 

VisualTemplate/OWL instances.  i.e. many instances of a CellMLBiophysical/OWL 

(Physical/Biological) can be mapped to a single VisualTemplate/OWL (Physical/Biological) 

instance. These mappings between each CellMLBiophysical/OWL class instance and each 
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VisualTemplate/OWL class instance allow us to obtain defined references to the SVG visual 

element templates shown in Figure 4.2 and Figure 4.3. 

4.2.4 THE DEVELOPMENT OF AN ALGORITHM FOR GENERATING 

VISUALIZATIONS OF CELLML MODELS 

Here we describe the process of generating a visualization once a CellMLBiophysical/OWL 

model has been mapped to the VisualTemplate/OWL instances. The following section 

describes the algorithm for generating the physical and biological visual representations of a 

CellML model. 

4.2.4.1   Generating visualizations of the physical concepts in a CellML model 

There is a one-to-one mapping between a CellMLBiophysical/OWL model, representing the 

physical concepts in a CellML model, and the visual elements in a schematic diagram. Every 

PhysicalProcess and PhysicalEntity is represented using the PhysicalProcess and 

PhysicalEntity glyph, respectively. The relationship between the PhysicalProcess and 

PhysicalEntity captured via the physicalEntity property is captured using the PhysicalRole 

glyph. This one-to-one association should not be confused with the explicit many-to-one 

mapping that exists in the CellMLBiophysical/OWL and the VisualTemplate/OWL discussed 

in the previous section. 

The algorithm for visualizing physical concepts is thus relatively simple: 

1. create a SVG document to describe the visualization; 

2. for each CellMLBiophysical/OWL (PhysicalEntity and PhysicalProcess) instance retrieve 

the mapped VisualTemplate/OWL (PhysicalEntity and PhysicalProcess) instance (Figure 

4.6). Then retrieve the mapped SVG template, copy it to the created SVG document and 

set the label (type and name); 

3. for each CellMLBiophysical/OWL PhysicalEntity instance retrieve a 

VisualTemplate/OWL PhysicalRole instance (Figure 4.6). Then retrieve the mapped SVG 

template, copy it to the created SVG file and set the coordinates of the lines so that they 

form the connections between the underlying CellMLBiophysical/OWL PhysicalEntity 

and PhysicalProcess; 

4. generate the coordinates for the PhysicalEntity and PhysicalProcess glyphs. A simple 

algorithm has been written to control the layout of the process and entity glyphs, and this 

ensures they do not overlap. 
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Visualising physical concepts

CellMLBiophysical/OWL model

Variable1

(PhysicalEntity)

Variable2

(PhysicalEntity)

Component1

(PhysicalProcess)

Physical instances with 

mappings to 

VisualTemplate instances

VisualTemplate instances

Key

OWL Property Physical entity instance

Physical process instance

physicalEntity physicalEntity

visualTemplate visualTemplate visualTemplate

 

 

PhysicalEntity

PhysicalRole

PhysicalProcess

VisualTemplate instance

SVG templates  
  

Entity glyph

Process glyph

Role glyph

 

Figure 4.6: Mappings for generating the physical view 

Component1 PhysicalProcess instance is mapped to PhysicalProcess 

VisualTemplate/OWL instance which in turn references the PhysicalProcess 

glyph. Variable1 and Variable2 PhysicalEntity instances are mapped to 

PhysicalEntity VisualTemplate/OWL instance which in turn references the 

PhysicalEntity glyph. These also map to PhysicalRole VisualTemplate/OWL 

instance which in turn maps to the Role glyph. These mappings are then used to 

generate a physical view. 

4.2.4.2   Generating visualizations of the biological concepts in a CellML model 

There is a one-to-one mapping between a collapsed, simplified view of a CellML model and 

its biological visualization. Retrieving biological visual elements for the simplified view of 

the model requires traversing from physical mappings to biological mappings to visual 

template mappings. Figure 4.7 illustrates these mappings. The algorithm for visualizing the 

biological concepts in a CellML model has five steps: 

1. create a SVG file to describe the visualization; 

2. for each GenericNode retrieve the common biological concept mapping via the 

CellMLBiophysical/OWL (PhysicalEntity and PhysicalProcess) instances; 
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3. if the mapped biological concept is a  CellMLBiophysical/OWL (BiologicalProcess or 

BiologicalEntity) instance, then retrieve the mapped SVG template via the 

VisualTemplate/OWL (BiologicalProcess or BiologicalEntity) instance, copy it to the 

created SVG file and set the label; 

4. for each mapped CellMLBiophysical/OWL BiologicalRole instance, retrieve the mapped 

SVG template, copy it to the created SVG file and define the coordinates of the lines such 

that they form the connections between the underlying GenericNodes; 

5. generate the coordinates for the BiologicalEntity and BiologicalProcess glyphs such that 

they do not overlap. 

SVG templates

CellMLBiophysical/OWL model

physicalEntity

refBioProcess

Variable1

(PhysicalEntity)
physicalEntity

Variable2

(PhysicalEntity)

Component1

(PhysicalProcess)

formationOfB

(BiochemicalProcess)

refBioEntity

A

(Protein)

B

(Protein)

reactant

(Reactant)

product

(Product)

refBioEntityrefBioRole refBioRole

connects connects

refbiophysical refbiophysical refbiophysical

Biological view with 

mappings to physical 

instances

Physical instances with 

mappings to biological 

instances

Biological instances

Node0 Node1 Node2

VisualTemplate instances

Protein

Reactant

BiochemicalProcess

visualTemplate visualTemplatevisualTemplatevisualTemplate visualTemplate

 
  

Product

Visualising biological concepts

Key

OWL Property Biological entity instance

Biological process instanceVisualTemplate instance
 
   

Figure 4.7: Mappings for generating the biological view 

The GenericNode edge graph is generated by reducing the physical-entity graph 

according to the Biological annotations to generate the biological view. These 

GenericNode instances map to the Physical instances which in turn maps to 

Biological instances. These Biological instances are mapped to 

VisualTemplate/OWL instances which in turn references SVG glyphs. For 

example: Variable1 PhysicalEntity instance is mapped to Protein A Bio-logical 

entity which maps to Protein VisualTemplate/OWL instance.  The Protein 
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VisualTemplate/OWL instance is mapped to the Protein SVG glyph. These 

mappings are then used to generate a visualization of the biological model 

4.3 RESULTS 

Here we use a simple example to illustrate the application of this methodology to create a 

visual representation. Below we focus on representing a part of the Hodgkin–Huxley model; 

the flow of potassium ions (K_Ionic_Flow). Then the complete visualization of the Hodgkin–

Huxley model is illustrated. 

First, the CellMLBiophysical/OWL model is annotated with physical and biological 

concepts [81]. Figure 3.9a shows the K_Ionic_Flow CellMLBiophysical/OWL model which 

identifies each physical entity and process type and the relationships described in the model. 

This diagram essentially shows the CellML model structure with annotated physical 

information. The PhysicalEntity instances depict CellML variables. For example, the Current 

instance potassium (i_K) is represented as a variable in the CellML. Similarly, the 

PhysicalProcess instances depict CellML components. For example, the Pooling instance V is 

represented as a component in CellML. MathematicalEquality instances show the CellML 

connections. Figure 3.8 illustrates the K_Ionic_Flow CellML model. 

The model‟s biological annotations are also illustrated in Figure 3.9a. The potassium 

channel gate n is identified as a protein state. The K_Channel instance is identified as 

transport process. The Ek instance mapped to the K ionic current is also mapped to the K 

(BiologicalEntity), reactant (BiologicalRole), and IC (compartment) instances. 

The annotated CellMLBiophysical/OWL model is then used to generate the visual 

representation of the physical concepts by applying the algorithm described in the above 

method section. Figure 4.8a shows the diagram which is generated when the visual language 

is used to represent the physical concepts captured in the K_Ionic_Flow model shown in 

Figure 3.9a. The PhysicalProcess instances K_Nernst_Potential, K_Channel, Mem_Potential, 

V, Constants, Initial_Values, and Time in the model are represented using the 

PhysicalProcess glyph. The CellMLBiophysical/OWL MathematicalEquality instances (Con) 

are represented using the EqualityProcess glyph, while all the PhysicalEntity instances are 

represented using the PhysicalEntity glyph. 

The generic node-edge graph with the biological annotations that can be retrieved from 

the ontological mappings is shown in Figure 3.9b. Node 3 references physical instances that 
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are mapped to the K_Transport biological process instance. The rest of the nodes reference 

physical instances that are mapped to biological entity, role, and compartment instances. This 

biological view captures the underlying biological concepts described in the K_Ionic_Flow 

model. 

Figure 4.8b shows the diagram which is generated when the visual language is used to 

represent the biological concepts captured in the K_Ionic_Flow model. Each GenericNode 

node instance is represented using a glyph.  

The relationships between the nodes in Figure 3.9b and Figure 4.8b are listed in Table 

4.1. 

GenericNode instances Glyph type 

3 TransportProcess glyph 

1 and 2 SmallMolecule glyph 

4 Protein glyph 

5 PhysicalFactor glyph 

Table 4.1: Relationship between the GenericNode instances and the glyph 

types used in the K_Ionic_Flow model 

The relationships between the GenericNode nodes are represented using Role glyphs 

(namely; reactant, product or activator). The relationships between the connections presented 

in Figure 3.9b and Figure 4.8b are listed in Table 4.2. 

Connections Glyph type 

3 – 4 and 3 – 5 Activator glyph 

3 – 1 Reactant glyph 

3 – 2 Product glyph 

Table 4.2: Relationship between the connections and the glyph types used in 

the K_Ionic_Flow model 
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Figure 4.8: Visualizing the K_Ionic_Flow model 

(a) Physical view generated for the K_Ionic_Flow model. (b) Visual representation 

depicting the biological view. 

The visualizations generated for the complete Hodgkin–Huxley model is illustrated in 

Figure 4.9 and Figure 4.10. The annotated Hodgkin–Huxley CellMLBiophysical/OWL model 

(Figure 3.11a) is used to generate the visual representation of the physical concepts. The 

PhysicalProcess instances Na_Nernst_Potential, K_Nernst_Potential, L_Nernst_Potential, 

Na_Channel, K_Channel, Leakage_Current, Sum_of_3, Mem_Potential, V, Constants, 

Initial_Values, and Time in the Hodgkin–Huxley CellMLBiophysical/OWL model are 

represented using the PhysicalProcess glyph. The CellMLBiophysical/OWL 

MathematicalEquality instances (Con) are represented using the EqualityProcess glyph, while 

all the PhysicalEntity instances are represented using the PhysicalEntity glyph. 
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Figure 4.9: Physical view generated for the Hodgkin–Huxley model 

Figure 4.10 shows the diagram which is generated when the visual language is used to 

represent the biological concepts captured in the Hodgkin-Huxley model.  
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Figure 4.10: Biological view generated for the Hodgkin-Huxley model 

The relationships between the nodes in Figure 3.11b and Figure 4.10 are listed in Table 

4.3. 

GenericNode instances Glyph type 

1, 2, and 3 TransportProcess glyph 

4, 5, 6, 7, 8, and 9 SmallMolecule glyph 

10, 11, and 12 Protein glyph 

13 PhysicalFactor glyph 

Table 4.3: Relationship between the GenericNode instances and the glyph 

types used in the Hodgkin-Huxley model 

The relationships between the connections presented in Figure 3.11b and Figure 4.10 are 

listed in Table 4.4. 

Connections Glyph type 

10 – 1, 11 – 1, 12– 3, 13 – 1, 13 – 2, and 13 – 3 Activator glyph 

4 – 1, 6 – 2, and 8 – 3 Reactant glyph 

5 – 1, 7 – 2, and 9 – 3 Product glyph 

Table 4.4: Relationship between the connections and the glyph types used in 

the Hodgkin-Huxley model 
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4.4 DISCUSSION 

The method described above facilitates the process of automatically generating visual 

representations of CellML models, allowing modelers to more easily see all the underlying 

physical and biological concepts captured in the mathematical description. 

Two different notation sets were developed to visualize the underlying physical and 

biological concepts modeled in the CellML models. The visual representation of the physical 

concepts has a one-to-one mapping with the underlying CellML model. This visualization is 

very detailed and has a limited set of nodes with textual descriptions, making it easier to see 

the physical concepts captured by the model. In contrast, the visualization of the biological 

concepts has a many-to-one mapping with the underlying CellML model.  This visualization 

is relatively simple, using a small set of unique glyphs which results in the creation of 

schematic diagrams in which the underlying biology can easily be interpreted. 

The final appearances of both the physical and biological visualizations depend heavily 

on how the CellML model has been annotated. Different coding styles also generate different 

visualizations. Any mistakes created at the annotation level will flow through to the final 

visual representations. Only a properly annotated CellML model will accurately generate the 

correct physical and biological visualizations. 

The flexible structure of CellML allows modelers to construct mathematical models of 

the same biological system in many different ways. The different CellML model structures 

also generate different visualizations since the annotations, and the application of the 

reduction rules to generate biological views of models, depend on the structure of the model. 

When structuring the CellML model, the modeler thus needs to reflect the biophysical 

abstractions that he or she is trying to communicate [65]. Unforeseen outcome is an 

indication of an unstructured model thus this process also helps modelers to construct 

modular CellML models. 

Interpreting the underlying physical relationships and the biological views of a CellML 

model from a CellMLBiophysical/OWL representation can be a challenging task. The 

diagrammatic representations generated using the method described in this chapter clearly 

show the underlying physical and biological concepts captured in the CellML model. For the 

Hodgkin-Huxley model example, Figure 4.9 identifies and labels the physical processes and 

entities. Similarly, Figure 4.10 identifies the sodium, potassium, and leakage ion transport 
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reactions and the gated channels. These diagrams are much easier to interpret than having to 

read through either the raw XML of the CellML model or its ontological representation. 

InsilicoIDE is a tool which is capable of visualizing, editing, and creating CellML 

models [79]. The visualizations generated by insilicoIDE focus on representing the 

components, variables, and connections in a model. InsilioIDE supports a collapsing feature 

which can be used to simplify visualizations of complex CellML models. The models are 

simplified according to their encapsulation hierarchy in contrast to using higher level 

biological information. InsilicoIDE currently does not focus on visually representing the 

biophysical concepts modeled in CellML models.   

The development of modularized CellML models allows modelers to construct larger 

models using smaller models, resulting in compact top-level models. Even for a small 

modularized CellML model such as the Hodgkin-Huxley model, the physical view can be 

relatively complex. It is our aim to allow modelers to drill down or expand the imported 

models. This will result in rather complex diagrams. As research continues we will be 

looking at improving the editor, or using external editors such as Donnart [82], to support the 

visualization of such complex models.  

Such improved tool support could also be used to enhance the visualization of large 

biological models. The biological visualization generated for the reasonably complex IP3 

model [50] can be downloaded at http://www.cellml.org/tools/downloads/cellml-

viewer/releases/1.0rc2. This model can be separated into three simpler functional modules 

GPCR, PLC-beta, and IP3 in CellML [51]. Such a modularized model can be used to 

generate a simpler top-level biological view. 

In the biological visualization of the K_Ionic_Flow model (Figure 4.8b), it should be 

noted that the glyph used to represent ion channel is different to the conventional ion channel 

representation supported in text books and publications, which tend to focus on the 

movement of ions through the channel. In contrast, our representation of a channel and a 

voltage as an activator in a biochemical reaction is unusual, and this may be the basis for 

another operation of visual notation. SBGN supports a similar notation for visualizing ion 

transport. One potential solution would be to collapse the detailed process of ion transport 

through a membrane via a channel protein into a more conventional style diagram which is 

well known in the electrophysiological modeling community. 
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Currently the glyph set for visualizing the biological representation (Figure 4.3) of a 

CellML model only contains the visual symbols that are needed to visualize signal 

transduction pathways and electrophysiological models. To support the wide range of model 

types which are currently in the CellML Model Repository, this glyph set will have to be 

extended. It is also our intention to adopt SBGN in future for visualizing the underlying 

biological concepts in CellML models. One possible solution we are currently exploring is 

using the VisualTemplate/OWL ontology to map to a SBGN process diagram representation 

[80]. The entity glyphs we describe here are similar to SBGN entity pool nodes, while the 

process glyphs are similar to SBGN process nodes, and the role glyphs are similar to SBGN 

connecting arcs. By representing SBGN notation in SVG, and subsequently linking the 

VisualTemplate/OWL ontology to these SVG elements, users will be able to visualize 

biological views of the CellML model using SBGN.  

The development of the VisualTemplate/OWL ontology, as a separate ontology to store 

references to the visual templates, also provides a flexible ontological framework that could 

be used to visualize other biological models, particularly if the CellML-specific biological 

ontology is replaced by an external ontology such as BioPAX. For example, the BioPAX 

ontology can be extended to annotate to the instances the VisualTemplate/OWL ontology, 

and these mappings can be used to generate visual representations. The generation of such 

visual diagrams depends on the underlying ontological representation of the model. For 

example BioPAX identifies catalysis as a separate process and defines a concept of 

modulators which act on the catalysis process. This scenario cannot currently be visualized 

using our visual language or SBGN, as it does not support the concept of processes acting on 

processes. The generation of such a diagram would thus require a different visual language 

(Supplementary Material B Section 3). 

Further, there may be problems in visualizing CellML models which have a large number 

of nodes. We acknowledge that the work described here does not address diagram layout 

issues. However, for large models it is time consuming to manually control the layout the 

diagrams. As research continues it is vital for us to develop an algorithm which automatically 

controls the layout of the diagrams in order to allow modelers to easily see the sequence of 

events described by a model.  

Finally, we are aware that the biological visualization of the K_Ionic_Flow model shown 

in Figure 4.8b does not show the compartment information captured in the ontological 

representation of the model. It is possible to define compartments in the 
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VisualTemplate/OWL ontology by introducing a Compartment class. We are proposing that 

the visual language can be extended to support compartments as rectangular boxes. To 

interpret such a diagram correctly, we would need to illustrate the relationship between the 

entities and a compartment. One possible way to achieve this would be to arrange the entities 

inside the compartment. This would involve the development of an algorithm to control the 

layout of the entities and processes inside the compartment. 

In conclusion, the main outcomes of this research include: 

 a visual language that is simple to interpret but is sufficiently expressive to represent the 

underlying physical and biological concepts captured in CellML models; 

 a specification for building visual templates that support this visual language; 

 a set of rules for binding the visual templates to biological concepts within the 

CellMLBiophysical/OWL ontology via the VisualTemplate/OWL ontology; and 

 an algorithm that combines the visual language and the ontologies to automatically 

generate the schematic diagrammatic representations of the CellML models. 
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5 A SOFTWARE TOOL FOR VISUALIZING CELLML 

MODELS 

A number of tools have been developed to create and simulate CellML models but there is 

limited support for visualizing the underlying biophysical concepts captured in the 

mathematical models. This chapter describes the implementation and application of a 

software tool called CellMLViewer that integrates CellML models with the CellML 

ontological framework and the visual language in order to automatically generate visual 

representations of CellML models. CellMLViewer provides a user interface for visualizing 

the biophysical concepts modeled in CellML. Users can manipulate the layout of these 

dynamic representations to create diagrams highlighting the sequence of events. These 

diagrams can also be exchanged over the web without the use of the tool.  

5.1 INTRODUCTION 

A range of tools has been developed to support working with CellML models [83]. These 

include OpenCell [24], COR [66], JSim [9], Virtual Cell [6], and insilicoIDE [84]. These 

existing tools have contributed greatly to the creation, validation, and simulation of CellML 

models. In addition, they also support the graphical analysis of the simulated results.  
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The CellML Model Repository contains over 380 models representing a wide range of 

biological processes [17]. In order to understand the physical and biological concepts 

captured in these CellML models, modelers need to read the XML-based CellML code, refer 

back to the relevant peer-reviewed publication from which the model was derived, and often 

contact the original authors of the mathematical model for clarification. Combined, these 

steps frequently constitute a time consuming process for a modeler who is looking to 

implement, or further develop, existing models. Facilitating the automated visualization of 

the physical and biological concepts captured in a CellML model would enable modelers to 

easily identify the models of interest and allow them to quickly understand the processes 

being described. 

There exist many tools which have been developed to visualize molecular interaction 

networks, including CellDesigner [85], Cytoscape [86], Virtual Cell [6] and PATIKA [73]. 

These tools provide interfaces to visually create, edit, and manipulate the layout of large 

biological models. Cell Illustrator and Virtual Cell can be used to import CellML models. 

Visualizations are generated by translating the CellML representation into their internal 

representation. As the CellML models do not explicitly capture the biophysical data, the 

diagrams are not focused on representing the physical and biological concepts modeled in 

CellML. Instead, the models are often visualized as networks of interconnected components. 

Another limitation is that these tools only support the import of CellML 1.0 models. 

The CellML editing and simulation tool OpenCell has started to address the issue of 

model visualization by displaying schematic diagrams summarizing the mathematical model.  

These diagrams are often based on figures from the original publication, and currently they 

are created by hand. There are no methods in place to validate the diagrams to ensure that all 

the biological concepts captured in a model are displayed. The ad hoc nature of these 

diagrams often requires readers to refer to the original publication in order to correctly 

interpret the biological concepts being displayed. 

To resolve the issue of automated model visualization, we have developed  

 an ontological framework which can be used to represent the underlying biophysical 

concepts captured in the CellML models [81] (Chapter 3); 

 a visual language that consistently describes the underlying biophysical concepts in the 

CellML models [87] (Chapter 4); 

 a method to integrate the visual language to the ontological framework [87] (Chapter 4).  
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Here we describe a stand-alone software tool (CellMLViewer) which uses this ontological 

framework to visualize CellML models.  

This chapter addresses the specific steps that a modeler has to follow to create 

visualizations for CellML models. These include: 

1. visualizing CellML models without annotated biophysical data; 

2. annotating CellML models with biophysical concepts and visual language data which can 

be used to generate more informative visualizations; 

3. visualizing the annotated CellML models capturing the underlying physical and 

biological concepts; 

4. layout the diagrams to highlight relevant biological concepts; 

5. storing visual representations for reuse or publish them online.  

5.2 IMPLEMENTATION 

Chapters 3 and 4 described an ontological framework for visualizing CellML models, which 

we will use as the basis for developing our approach. Our ontological framework is 

constructed using the Web Ontology Language (OWL) [35]. It consists of multiple 

ontologies: 

 CellML/OWL: which captures CellML/XML model in OWL format [81]. It provides an 

intermediate layer that allows us to map a CellML/XML model to other OWL based 

ontologies (Chapter 3);  

 CellMLBiophysical/OWL: which is constructed using Physical and Biological ontologies 

for capturing the physical and biological concepts modeled in CellML models [81]. The 

CellMLBiophysical/OWL model defines the concepts and relations both within and 

between Physical and Biological ontologies (Chapter 3); 

 VisualTemplate/OWL: which stores references to the visual language that has been 

developed to represent CellML models. Each CellMLBiophysical/OWL instance is 

mapped to a VisualTemplate/OWL instance [87] (Chapter 4). 

A set of algorithms are also defined to generate these intermediate ontological 

representations and mapping between them. These include: 

 an algorithm for transforming an CellML/XML model into an CellML/OWL model. This 

involves generating a CellML/OWL instance for each CellML/XML element including 

the explicitly imported components and the variables and math elements within them. 
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Each CellML/XML element is mapped to a CellML/OWL instance using the CellML 

metadata specification [41, 81] (Chapter 3); 

 an algorithm for creating the initial CellMLBiophysical/OWL model and annotation to 

the CellML/OWL model [81]. This involves generating a CellMLBiophysical/OWL 

PhysicalEntity, PhysicalProcess, and MathematicalEquality class instance for each 

CellML/OWL Variable, Component, and Connection class instance, respectively. 

(Chapter 3); 

 an algorithm for simplifying the CellMLBiophysical/OWL model using the biological 

ontological mappings, in combination with a set of graph reducing rules, to represent the 

underlying biological view of the CellML model [81] (Chapter 3); 

 an algorithm for generating physical and biological visualizations of CellML models 

using the ontological mappings. The physical view is created using the 

CellMLBiophysical/OWL physical instances and retrieving the relevant SVG glyphs via 

the VisualTemplate/OWL mappings. Similarly, the biological view is created using 

simplified CellMLBiophysical/OWL model and retrieving the relevant SVG glyphs via 

the VisualTemplate/OWL mappings [87] (Chapter 4). 

The next section discusses the application of the CellMLViewer to generate a 

visualization for a CellML model. We then outline the architecture of the tool, which has 

been developed to facilitate the generation of the intermediate models and mappings during 

the process of visualizing the biophysical concepts captured in the CellML models. 

5.2.1 APPLICATION OF THE CELLMLVIEWER 

The CellMLViewer provides a simple interactive interface to represent and layout the 

visualizations but does not provide support for manual annotation of the 

CellMLBiophysical/OWL models. OWL editors such as Protégé can be used to annotate 

these models. Here we describe each of the steps to illustrate how a CellML model can be 

annotated and visualized. We also briefly describe the behavior of the tools following the 

actions of the modeler (Figure 5.1). 
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(29) Save visualisat ion

(27) Display the biological view

(31) Open Complete Model
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Figure 5.1: Sequence diagram for user activity flow for visualizing and 

annotating CellML models 
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5.2.1.1 Visualizing CellML models without annotated biophysical data 

The CellML models without biophysical annotations can be loaded onto the CellMLViewer 

by selecting „Open CellML Model‟ option. In order to generate a visualization, the 

CellMLViewer executes a series of steps. The OWL ontology is used to generate a 

CellML/OWL representation of the CellML/XML model. The CellML/OWL model is used 

to generate a CellMLBiophysical/OWL model with mappings to the VisualTemplate/OWL 

ontology (Figure 5.1 steps 1-12). The CellMLBiophysical/OWL model is then used to 

generate a diagram which identifies CellML components as physical processes, variables as 

physical entities, and connections as mathematical equality processes (Figure 5.2). The 

intermediate model representations are saved in the local file system.  

 

Figure 5.2: A visualization generated for a CellML model without annotations 
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5.2.1.2 Annotating CellML models with biophysical concepts and visual 

language data 

The CellMLBiophysical/OWL model generated from the previous action consists of 

instances of PhysicalProcess and PhysicalEntity classes, and the relationship between them. 

These instances can be specialized to the relevant subclasses using the classes supported by 

the Physical ontology. The Physical instances can be further annotated with biological 

concepts using the classes supported by the Biological ontology. This manual annotation 

process is carried out using Protégé. 

Protégé provides a graphical user interface for working with OWL models. Figure 5.3 

shows a CellMLBiophysical/OWL model loaded on to Protégé (Figure 5.1 steps 13-19). The 

INDIVIDUALS tab is used to annotate the instances. The CLASS BROWSER panel list the 

classes captured in the CellMLBiophysical/OWL ontology. Individuals of a particular class 

are listed in the INSTANCE BROWSER panel. The CellMLBiophysical/OWL Physical 

instances can be specialized by dragging the instances into the related classes. Properties of 

the instances such as biological and visual template data can be set using the INDIVIDUAL 

EDITOR panel.  

 

Figure 5.3: A CellMLBiophysical/OWL model loaded in Protégé 
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Protégé can also be used to extend the CellMLBiophysical/OWL and 

VisualTemplate/OWL class structure to add new concepts. New Classes can be added by 

navigating to the OWL Classes tab. 

5.2.1.3 Visualizing the annotated CellML models capturing the underlying 

physical and biological concepts 

The annotated CellMLBiophysical/OWL model can be loaded to the CellMLViewer by 

selecting „Open Biophysical Model‟ option. This action will execute the algorithm for 

generating visualizations using the ontological mappings. The output diagram of the 

annotated CellMLBiophysical/OWL model identifies the physical processes and entities 

according to their specialized types (Figure 5.1 steps 20-25).  

The „Open Biophysical Model‟ action also executes the reducing algorithm to generate 

the condensed, simplified view (Figure 5.1 step 24). The „View‟ menu allows users to swap 

between the physical and biological views (Figure 5.4).  
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Figure 5.4: Biological view generated from an annotated 

CellMLBiophysical/OWL model 

5.2.1.4 Layout the diagrams to illustrate the sequence of biological interactions 

The CellMLViewer provides an interactive graphical user interface. Modelers can move the 

visual objects around the canvas to highlight relevant biological concepts (Figure 5.1 step 

30). Moving over objects will prompt the user with a tooltip which contains more information 

about the object (Figure 5.4). 

5.2.1.5 Storing visual representations  

The visualizations can be saved into locations specified by the user (Figure 5.1 steps 31-32). 

It is also possible to re-open a saved SVG representation in the CellMLViewer. These 
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diagrams retain the layout information that has previously been defined (Figure 5.1 steps 33-

36). This action also loads the OWL models associated with it. 

5.2.2 SYSTEM ARCHITECTURE 

The CellMLViewer is developed in Java to allow the application to run on multiple different 

platforms. It also allowed us to use existing Java APIs to work with CellML models, SVG 

representations, and OWL models. 

The overall architecture of the system consists of three tiers: a graphical user interface 

(GUI) tier which provides the interface for users to carryout tasks; a logic tier which 

implements the algorithms that were listed above; and a repository where CellML, OWL, and 

SVG documents are stored (Figure 5.5). 

Generating visualizations 

of CellML models

GUI

UI layer Logic layer

CellML models

OWL models

SVG 

representations

Repository

Ontologies

Batik API to work 

with SVG

Jena OWL API to 

work with OWL

CellML API to 

work with CellML
Transforming the CellML/XML 

model into an CellML/OWL 

Creating CellMLBiophysical/

OWL model and mapping it to 

the CellML/OWL model

Simplifying the 

CellMLBiophysical/OWL model

CellMLBiophysical/OWL 

(CBO) package

GenericNode 

(GN) package

draw

GraphNode 

(GN) package

Batik 

GUI API

 

Figure 5.5: Schematic diagram of the system architecture underlying the 

model visualization tool CellMLViewer 

The CellMLViewer GUI is integrated with the Batik API [88]to display the visual 

representations. Batik is an open source Java-based toolkit for working with Scalable Vector 

Graphics (SVG) format. It can be used to display, generate or manipulate SVG diagrams. A 

UI component, Batik JSVGCanvas is used to display SVG graphics and also support the 

interactive use of the visual content such as graphic selection and the movement of objects to 

generate a biologically realistic model network diagram. 

The logic layer separates the algorithms used for generating model visualizations from 

the UI layer and the repository layer. The external java packages: Jena API [89], CellML 

API, and Batik API are used to create, read, write, and modify the OWL, CellML, and SVG 

resources, respectively. In addition to these external resources we have developed our own 
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set of packages to instantiate the intermediate models and to draw the application specific 

graphics. These include: 

 cbo – to instantiate the CellMLBiophysical/OWL model; 

 gn – to instantiate the simplified view generated (GenericNode/OWL model) by reducing 

the CellMLBiophysical/OWL model; 

 gm – creates a graph model which separates the ontological models from the 

visualization. It is used as the underlying model for visualizing both the physical and the 

biological views; 

 draw – to draw application specific shapes by changing SVG Document Object Model 

(SVG DOM). 

The process of generating visualizations for CellML models creates several intermediate 

models. These models explicitly reference each other. CellML/XML models have references 

to CellML/OWL models. These CellML/OWL models have references to 

CellMLBiophysical/OWL models. It is possible to have many GenericNode/OWL models to 

a particular CellMLBiophysical/OWL model depending on the order of rules applied to 

reduce the model. Therefore a separate OWL file is created to save the GenericNode/OWL 

models. These models reference back to the original CellMLBiophysical/OWL models. Each 

visual representation has a reference to the simplified view and the CellMLBiophysical/OWL 

model. The associations between these models are summarized in Figure 5.6.  

CellML/XML CellML/OWL CellMLBiophysical/OWL GenericNode/OWL

Visual Representation

1 1 1 1 1 *

1

1

1

1

 

Figure 5.6: Model associations 

The lines describe the cardinality relationship between the instances. 1 denotes to 

one and * denotes to many. 

5.3 DISCUSSION 

Here we have presented a tool that can be used to: 

 generate CellML/OWL models; 

 generate initial CellMLBiophysical/OWL models which are ready for further 

specialization; 
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 provide an interface to visualize the biological and physical concepts captured in CellML 

models; 

 provide an interface to layout the diagrams to represent the sequence of interactions 

between the biological entities. 

The SVG graphics generated by CellMLViewer can be exchanged via the web and can be 

viewed with any web browsers with SVG support. Even though viewing the diagrams 

through web browsers does not allow modelers to interact with the model, it is a simple way 

of communicating the underlying biological concepts. With such a goal in mind, we intend to 

upload these schematic diagrams on the CellML Model Repository website together with the 

model descriptions. 

Although the CellMLViewer is a vast improvement on the current system of hand-

generating the schematic diagrams of the CellML models, we acknowledge that the tool does 

have its limitations. For example, it can become slow when handling large models containing 

more than 200 nodes. When the number of elements on the canvas increases, the support 

operations become slow. As research continues this feature needs to be enhanced by 

improving the algorithm implementations as well as the batik SVG renderer. Faster rendering 

of SVG has been the subject of several recent discussions on the Batik mailing list [88]. 

A further limitation of CellMLViewer is lack of a built-in model annotation interface. 

Currently users have to look to external software tools, such as Protégé, to annotate the 

CellMLBiophysical/OWL models. Protégé is a fairly advanced and complex tool, and it 

would be advantageous to have an interface which would facilitate the annotation of the 

CellMLBiophysical/OWL models within the CellMLViewer itself.  

Currently the CellMLViewer does not support the automated layout of diagrams. Users 

are required to manipulate the layout of the diagrams manually by moving the objects around. 

This feature allows modelers to arrange the diagram to highlight the biological concepts of 

interest. However, when working with large models this can be a time consuming task. In 

these situations it would be useful to provide a basic automated layout, which can be 

subsequently rearranged by the user if required.  

Currently the SVG diagrams, CellML/OWL and CellMLBiophysical/OWL models are 

saved as individual files in the local file system. These need to be moved to PMR to allow 

public access to the CellML users. The CellMLViewer tool needs to be able to connect to 

such a repository to retrieve and store models and visual representations. 
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The CellMLViewer tool is developed following best practice methods to allow 

developers to easily extend the system. The three tier architecture is used to logically separate 

the processes. A set of loosely coupled packages are developed to work with intermediate 

model representations. Each algorithm is tested by writing unit tests. As the tool evolves, it is 

our intention to carry out unit testing, integration testing, and user evolutions.   

It is also our intention to enhance the tool to visualize the composite nature of the 

CellML models. The CellML encapsulation feature allows modelers to hide information 

about a set of components from rest of the model. The user interface will be extended to 

provide controls to hide and expose details of models captured via the CellML encapsulation 

hierarchy. 

Finally, we intend to integrate the CellMLViewer with the editing and simulation 

environment OpenCell, in order to provide a complete CellML modeling framework. 

5.4 AVAILABILITY AND REQUIREMENTS 

Project name: CellMLViewer 

Project home page: http://www.cellml.org/tools/downloads/cellml-viewer  

Operating system(s): Platform independent 

Programming language: Java 

Other requirements: Java 1.5 or higher 

License: GNU GPL 
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6 CONCLUSIONS 

The aim of this work was to provide a software framework to visualize the underlying 

biology of the CellML models. While focusing on visualization of CellML models, this thesis 

presents solutions for a number of challenges to the CellML modeling community. These 

include: 

 constructing models that clearly identifies the biophysical processes; 

 a method to capture the biophysical concepts modeled in CellML models and explicitly 

annotating CellML elements with the biophysical concepts; 

 a visual language for representing the biophysical concepts and a method to bind them to 

the CellML elements; 

 a software tool that combines the visual language and the biophysical concept to generate 

visualizations for CellML models. 

Chapter 2 discusses a set of guidelines for modularizing a CellML model in a way that 

best describes the biophysical concepts and abstractions the modeler wish to demonstrate. 

This method helps modelers to construct models that can easily be reused and extended to 

build more complex models. Developing modularized models also increases the consistency 

across models and improves interpretation of the complex CellML models. 
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The modularization process identifies a structured way to build new CellML models but 

modularizing the 360 models that currently exist in the CellML repository remain as a 

challenge. This problem can be partially resolved by starting with modeling commonly used 

biophysical concepts (such as reaction kinetics) and basic models (such as Hodgkin-Huxley 

model) that have been extensively extended over time. Modelers can then reuse and extend 

these smaller models to build more complex models. 

A formal justification for the guidelines was not carried out during this work as it was not 

our intension. The guidelines were developed following a set of examples which provided the 

best arrangement for generating diagrams. As research continues, it is our intension to 

explore the theories behind modularization and reuse of models, such as network theory [46], 

to validate the modularized concepts captured in CellML models. 

Chapter 3 discusses annotating CellML models with physical and biological meaning. 

The physical annotations enable modelers to interpret the CellML model in terms of the 

mathematical functions and physical qualitative data, without the need to go through all the 

individual CellML elements. The annotated biophysical model is used to construct a 

simplified view that highlights the underlying biological concepts which is easier to interpret.  

The biophysical ontology developed during this work only reflects the concepts found in 

the example models. As new models are annotated, the ontology needs to be extended to 

support the additional concepts. The intension is to also map instances of biological and 

physical terms to existing external ontologies and controlled vocabularies such as SBO [30], 

OPB [90], GO [59], ChEBI [91], and BioPAX [92]. This allows modelers to take advantage 

of existing knowledge definitions. 

The construction of simplified views uses a reducing algorithm which consists of a 

generic and specific set of rules. The generic rule set does not require further improvements 

as it can be applied on any instance of a biophysical model. The specific rule set is dependent 

on the interpretation of the biophysical annotations. It can be improved to support collapsing 

of different types of CellML models in the repository as needed.  

The CellML repository needs to be improved to facilitate storage and querying of 

ontological models. Use of ontologies enhances the querying of CellML models. Biophysical 

annotations can be used to query physical and biological details of a CellML model. A goal 

would be to populate the Biological ontology with entities and processes used in CellML 

models and annotate the physical instances against the common biological concepts. This will 
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enable modelers to query the CellML repository to find models that interest them according 

to the underlying biological annotations. For example it would possible find all the models 

which uses a particular ion channel. It is also our intension to extend this framework to 

generate composite models using OWL reasoner. 

Chapter 4 describes a visual language developed to represent the biophysical concepts 

modeled in CellML and a method to map it to the ontological framework. These annotations 

are then used to generate visualizations for CellML models to help modelers to easily 

recognize the biophysical concepts modeled in CellML without having to go through the 

complex ontological representation.  

Two separate visual representations are generated that represent the physical and 

biological concepts. The physical view represents the structure of a CellML model in terms 

of Components, Variables, and Connections with the physical annotations. The biological 

view uniquely identifies biological entities, processes, and roles. Together these views can be 

used to not only to interpret the biophysical concepts but also understand the structure of a 

CellML model.  

Extending the biophysical ontology to support additional physical concepts does not 

require extending the glyph set as the different physical types are represented using text. In 

contrast, additional biological concepts supported by extending the biophysical ontology or 

integrated with external ontologies or controlled vocabularies will require additional glyphs if 

the new concepts need to be uniquely identified in a diagram. 

The development of the ontological framework focuses on generating the underlying 

biological view of the CellML model. Therefore, the biophysical annotations, application of 

the reducing rules, and visual language are all developed focusing on generating biological 

visualizations. However, it provides an extensible ontological framework for annotating the 

CellML elements against other ontologies, use the reducing rules to collapse the CellML 

model focusing on different ontological properties, and a visual language to visualize these 

new concepts. For example the CellMLBiophysical/OWL model can be annotated with an 

ontology defining mathematical constructs; a set of specific rules can be developed to reduce 

the complexity of a CellML by simplifying the mathematical constructs, and the simplified 

CellML model can be visualized by creating a set of new glyphs.   

The biological visualizations are generated from the reduced model which in turn 

depends on the annotations and the structure of the CellML model. Therefore a particular 
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CellML model can have multiple visualizations. The visualizations can be used as an aid to 

dictate the structure of CellML model and its annotations. This helps modelers to build 

modularized CellML models grouping the underlying biological concepts. 

Chapter 5 describes the CellMLViewer tool that combines CellML, the ontological 

framework, and the visual language to generate visualizations. It provides a simple graphical 

user interface for modelers to interact with the visualizations. The tool can be used to 

generate a visual representation and layout the visualization to highlight sequence of 

biological interactions. This image can be saved as a SVG file which can then be published 

on the Physiome Model Repository. 

While this work has provided significant contribution towards building and visualizing 

modularized annotated CellML models, it provides limited tool support for efficient 

construction of these models. The tasks of constructing modularized models, annotating 

biophysical information, and laying out visualizations are all manual steps which can be time 

consuming and error prone. As research continues, the tool support needs to be improved to 

provide interfaces to visually construct modularized CellML models and laying out visual 

elements, programmatically annotating physical concepts by interpreting the units and 

mathematics, and providing intelligent suggestions for biological annotations. It is also the 

intention to enhance the tool support to allow modelers to visually traverse between the 

models and complement annotations to generate different visualizations.  

We also acknowledge that it is important to visualize the dynamics of the modeled 

processes as they are dynamic by nature. This work focuses on the initial attempt to visualize 

CellML models by only looking at visualizing the static biological concepts modeled in 

CellML. The final diagrams have references to CellML variables or processes and the values 

of those variables can be reflected in the final diagram. The workflow for generating 

visualizations does not lose information during the process. As research continues, we will be 

looking at ways to represent this dynamic information. Use of SVG will also help to extend 

this work to support dynamic changing of visualizations. 

While this work focuses on CellML, it is a generic solution which can be extended to 

visualize other model representations, including SBML models. The CellML/OWL ontology 

is specific to CellML as it captures the structure of a CellML model. The 

CellMLBiophysical/OWL ontology captures biophysical concepts and can be used to 

annotate SBML models. The annotated models can then be visualized discussed this thesis. 



Chapter 6 – Conclusions 

 107 

The method of using OWL to integrate information can also be used to visualize ontology 

based models such as BioPAX. As research continues, we will be looking at using this 

workflow for visualizing SBML and BioPAX models. 

Biologists make extensive use of diagrams, a form of pictures, when communicating 

information. The diagrammatic representations created by this framework explicitly preserve 

the information about the topological and geometric relations among the biological entities 

and processes. The diagrams are unambiguously defined, contain sufficient information and 

are based on well-defined notation which allows domain experts to interpret complex 

biological diagrams in the same way. Such diagrams can not only be used for communicating 

information, but also further enhance understanding of the complex nature of biological 

systems and discovery of new knowledge. 

The outcome of this research offers an extensible and constructive software framework 

for working with CellML models. It helps modelers by promoting construction of: 

 CellML models that are easier to interpret and reuse; 

 annotated CellML models that clearly identify the biophysical concepts;  

 visualizations that help to understand the biophysical concepts captured in their complex 

structures. 
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