
 

 

http://researchspace.auckland.ac.nz 
 

ResearchSpace@Auckland 
 

Copyright Statement 
 
The digital copy of this thesis is protected by the Copyright Act 1994 (New 
Zealand).  
 
This thesis may be consulted by you, provided you comply with the 
provisions of the Act and the following conditions of use: 
 

• Any use you make of these documents or images must be for 
research or private study purposes only, and you may not make 
them available to any other person. 

• Authors control the copyright of their thesis. You will recognise the 
author's right to be identified as the author of this thesis, and due 
acknowledgement will be made to the author where appropriate. 

• You will obtain the author's permission before publishing any 
material from their thesis. 

 
To request permissions please use the Feedback form on our webpage. 
http://researchspace.auckland.ac.nz/feedback 
 

General copyright and disclaimer 
 
In addition to the above conditions, authors give their consent for the 
digital copy of their work to be used subject to the conditions specified on 
the Library Thesis Consent Form and Deposit Licence. 
 

Note : Masters Theses  
 
The digital copy of a masters thesis is as submitted for examination and 
contains no corrections. The print copy, usually available in the University 
Library, may contain alterations requested by the supervisor. 

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm


Methods for Incorporating Biological

Information into the Statistical

Analysis of Gene Expression

Microarray Data

Debbie Leader

A thesis submitted in partial fulfillment of the

requirements for the degree of Doctor of

Philosophy in Statistics.

The University of Auckland New Zealand.

December 2009





Abstract

Microarray technology has made it possible for researchers to simultaneously measure

the expression levels of tens of thousands of genes. It is believed that most human

diseases and biological phenomena occur through the interaction of groups of genes

that are functionally related. To investigate the feasibility of incorporating functional

information and/or constraints (based on biological and technical needs) into the clas-

sification process two approaches were examined in this thesis.

The first of these approaches investigated the effect of incorporating a pre-filter into

the gene selection step of the classifier construction process. Both simulated and real

microarray datasets were used to assess the utility of this approach. The pre-filter was

based on an early method for determining if a gene had undergone a biologically relevant

level of differential expression between two classes. The genes retained by the pre-filter

were ranked using one of five standard statistical ranking methods and the most highly

ranked were used to construct a predictive classifier. To generate the simulated data

a selection of different parametric and non-parametric techniques were employed. The

results from these analyses showed that when the constraints that the pre-filter contains

were placed on the classification analysis, the predictive performance of the classifiers

were similar to when the pre-filter was not used.

The second approach explored the feasibility of incorporating sets of functionally

related genes into the classification process. Three publicly available datasets obtained

from studies into breast cancer were used to assess the utility of this approach. A

summary of each gene-set was derived by reducing the dimensionality of each gene-set

via the use of Principal Co-ordinates Analysis. The reduced gene-sets were then ranked

based on their ability to distinguish between the two classes (via Hotelling’s T2) and

those most highly ranked were used to construct a classifier via logistic regression. The

results from the analyses undertaken for this approach showed that it was possible

to incorporate function information into the classification process whilst maintaining

an equivalent (if not higher) level of predictive performance, as well as improving the

biological interpretability of the classifier.
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