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Abstract

Real life decision making takes into account multiple, often conflicting, criteria.
This gives rise to multi-objective optimisation. We discuss a range of differ-
ent bi-objective routing or transportation problems, in particular the shortest

path, integer minimum cost flow, and traffic assignment problems.

The first part of this thesis is dedicated to the bi-objective shortest path prob-
lem. The problem is presented together with several well-known solution al-
gorithms, namely bi-objective labelling, ranking, and the Two Phase method.
Computational experiments highlight the strengths and weaknesses of the al-
gorithms for different types of problem instances. We introduce new variations
of the algorithms above and propose an easily implemented improvement for
bi-objective labelling. Cyclist route choice in road networks is presented as a
new application of the bi-objective shortest path problem, where cyclists aim

to reach their destination in minimal travel time, but also along a safe route.

For the bi-objective integer minimum cost flow problem, we introduce one of
the first solution algorithms based on the Two Phase method and demonstrate
its performance based on different types of problem instances. An improve-
ment of the algorithm for the transportation problem, a special case, is also

discussed.

Finally, multi-objective traffic assignment is discussed. Traffic assignment is
the process of modelling route choice of users of a (road) network in order to
determine the total traffic on each road of the network. This is an equilib-
rium problem as the route choice of one traveller affects other travellers. We
show how, traditionally, multiple objectives are treated in traffic assignment,
often by combining them into a generalised cost function which may entail
strong assumptions on road user behaviour. Instead, we suggest to explicitly

distinguish the objectives in a multi-objective framework. We discuss existing



w Abstract

literature, which is of mainly theoretical nature, and comment on several ar-
ticles presenting erroneous results. We contribute to the understanding of the
theoretical concepts of vector equilibrium, vector variational inequalities, and
vector optimisation. For the solution of bi-objective traffic assignment, we pro-
pose novel heuristic algorithms based on bi-objective shortest path algorithms

as an important building block.
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Introduction

Most decisions made in real life are not of single-objective nature. Decisions
often involve different, mostly conflicting, objectives. This fact is portrayed
by the increasing popularity of bi-objective or multi-objective optimisation
reflected by the number of publications on the topic. There are different ap-
proaches to solve multi-objective problems. Our aim in this thesis, in particular
in Chapters 2 and 3, is to discuss algorithms capable of finding all efficient
solutions, which are those solutions whose objectives cannot all be improved
by another solution. The different approaches discussed are able to find all
efficient solutions. As the problems considered are integer optimisation prob-
lems, we may distinguish two different types of efficient solutions: supported
solutions that can be obtained as optimal solutions to weighted sum problems,
whereas non-supported solutions are more difficult to find as their image lies
in the interior of the convex hull of all feasible solutions of the problem (which

means they cannot be obtained by a weighted-sum scalarisation).

In Chapter 2 we discuss bi-objective shortest path problems. Single-objective
shortest path problems are very important as they have many applications.
Obvious applications are, of course, searching for the shortest path between
two points in a network as used in many route planning applications or when
routing information through a computer network. There are many other appli-
cations, often not easily identifiable as applications of shortest path problems,
such as approximating piecewise linear functions; knapsack problems (also a
dynamic programming problem — many of them can be formulated as short-
est path problems); basic scheduling problems; facility location; dynamic lot
sizing (all listed in Ahuja et al. 1993). Furthermore, the shortest path prob-
lem appears as a sub-problem in many important optimisation problems such

as the traffic assignment problem (see also Chapter 4) or scheduling problems
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solved with the aid of column generation algorithms. Often, column generation
approaches are based on solving resource constrained shortest path problems
which are closely related to multi-objective shortest path problems (by iden-
tifying each separate resource with an objective). There is an extensive range
of publications on the single-objective shortest path problem, where algorith-
mic performance is improved by sophisticated data structures and speed-up

techniques.

The literature on the bi-objective shortest path problem is not as exten-
sive (yet). A few applications of bi-objective or multi-objective nature have
been discussed such as Satellite scheduling (Gabrel and Vanderpooten 2002)
and computing shortest paths for passengers in railway networks (Miiller-
Hannemann and Weihe 2006). Different algorithms have been proposed, some
of which are extensions of the well-known single-objective label setting (e.g. Di-
jkstra’s algorithm) and label correcting algorithms (e.g. Bellman’s algorithm).
Other algorithms are based on shortest path ranking or follow the so-called
Two Phase Method where supported and non-supported solutions are obtained

separately, in Phase 1 and Phase 2, respectively.

Throughout the literature on bi-objective shortest path problems, it remains
unclear which algorithm performs best in practice, although there appears to
be a preference for bi-objective labelling algorithms, possibly due to their ease
of implementation. We fill this gap by creating efficient implementations of
all known solution strategies. We then compare these strategies for different
types of problem instances. This allows us to show that algorithms based on
the Two Phase Method are competitive with, if not better than, bi-objective
labelling algorithms. By using three different types of problem instances we
are able to show that the underlying structure of the instance determines
which algorithm performs best. This constitutes the most extensive run-time
study on bi-objective shortest path problems to date. We also propose an
easily implemented improvement of bi-objective labelling algorithms that is,

surprisingly, unreported in the literature so far.

We suggest a new application of bi-objective shortest paths in modelling the
route choice of cyclists in traffic networks. It is widely acknowledged that
motorists choose their travel route through a network with the main aim of

minimising their travel time (or a generalised cost function that combines
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travel time and other route choice factors). For cyclists, however, it is evident
that route choice is not only based on the travel time along the path. Cyclists
share road infrastructure with motorised vehicles, which can be a dangerous
undertaking at times. Next to the travel time objective, we also formulate an
attractiveness objective that combines path safety and other factors that make
a path attractive to cyclists. This enables us to obtain paths that represent
good trade-offs between travel time and path attractiveness. The attractive-
ness objective is not linear, therefore we need to adapt the solution approach

to this objective.

A generalisation of shortest path problems are minimum cost network flow
problems. In Chapter 3 we study the bi-objective integer minimum cost flow
problem. There are many practical applications of network flow problems and
therefore the study of the multi-objective problem becomes increasingly im-
portant. Typical applications studied for the single-objective problem involve
the distribution of products through a network from points where they are
in supply to other points where they are in demand. A cost-minimal way to
move them through the network is sought. Applications include the planning of
radiation therapy treatment to fight cancer (Ahuja and Hamacher 2005); mod-
els for building evacuation; distribution of empty rail cars; warehouse layout
problem; production and inventory planning; scheduling problems (all listed
in Ahuja et al. 1993).

In the literature, only few publications on bi- or multi-objective integer min-
imum cost network flow problems exist. There are articles on solution algo-
rithms, but none that discuss an application of the multi-objective problem.
We are among the first to publish a correct solution algorithm to compute all
efficient solutions of an integer minimum cost flow problem. While it is well-
known how to obtain all supported solutions of the problem, several algorithms
proposed to obtain all non-supported solutions have some flaws. We present a
correct solution algorithm based on the Two Phase Method. On the basis of
a large set of test instances, we demonstrate the speed of the algorithm and
what kinds of instances can be solved within reasonable time. We observe that
the effort of computing all efficient solutions is large, with the computation of
non-supported solutions being the most time-consuming part. We also com-
ment on a refinement of the developed algorithm for solving the bi-objective

transportation problem, which achieves good run-time improvements over our
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original algorithm.

Finally, in Chapter 4, we move away from linear network optimisation prob-
lems to the traffic assignment problem, which is a network equilibrium prob-
lem. The more general trip assignment problem determines the route choice of
network users within a network. We focus on traffic assignment, the problem
of determining motorists’ route choice within a road network. This underlying
network is a road network where travel time for each arc is flow dependent —
more traffic on a road means slower travel speed along the road. As the travel
time increases with more and more flow on an arc (a road), we speak of traffic

congestion.

Traffic assignment is the last component of the conventional four-stage strate-
gic transport planning model. The first three steps of this transport planning
model determine how much travel demand originates from different sections of
the network, where it goes, and the mode choice of network users. Those travel
options may include travelling by car, by bus, by train, by bike, and others.
The final trip assignment step models the actual route choice of each traveller,
one major component being traffic assignment for vehicular traffic. From this,
a prediction of the actual traffic on each road of the network is obtained. It
is generally assumed that network users aim to minimise their travel time or
a generalised cost function that includes travel time and other route choice
factors. There are several feasible approaches to solving the single-objective
traffic assignment problem. Almost all of them take advantage of an equivalent
re-formulation of the problem. For instance, the traffic assignment problem
has (under certain assumptions as discussed in Chapter 4) an equivalent for-

mulation as an optimisation problem or as a variational inequality problem.

It is acknowledged throughout the related literature that route choice is not
solely based on the criterion of choosing a route with minimal travel time. As
mentioned above, monetary costs and other objectives (scenery, safety) may
be included into a generalised cost function. The problem of traffic assign-
ment with two or more separate objectives has been studied with the aim of
proposing solution algorithms. Conventionally, these different objectives are
added together into a generalised cost function using a weighted sum, which
may be a very strong behavioural assumption. Some approaches assume there

is a single weighting factor, whereas others acknowledge that different network
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users have different weightings and split users into different user classes — each
with different weighting factors. Alternative approaches assume a distribution
of weighting factors across the users. Instead, we propose to consider the main
objectives in route choice, travel time and monetary cost, to be treated inde-
pendently, leading to a bi-objective traffic assignment problem. The arising
traffic assignment problem is a bi-objective network equilibrium problem. In
Chapter 4 we give a definition of bi-objective traffic assignment that is not

based on a weighted cost function assumption.

In the literature, the class of vector (or multi-objective) equilibrium problems,
of which bi-objective traffic assignment is a special case, is studied on a purely
theoretical level. Existence of solutions is discussed. Attempts are made to re-
late the vector equilibrium to other multi-objective problems, similar to what
has been done for single-objective equilibrium problems. Unfortunately, equiv-
alence of the vector equilibrium problem to another multi-objective problem,
the vector variational inequality problem, can only be established under very

strong assumptions.

We discuss some properties of the vector equilibrium problem and show that it
is not equivalent to other multi-objective problems. We highlight the properties
of solutions of the vector equilibrium problem that prevent this equivalence.
This greatly enhances understanding of vector equilibrium problems and helps
differentiate them from other multi-objective problems. It also enables us to
relax the conditions for the equivalence of vector equilibrium problems and vec-
tor variational inequalities slightly — they still remain too restrictive to enable
the use of this equivalence within a solution algorithm. We are furthermore

able to clarify some erroneous results from the literature.

We extend the existing algorithms known for the single-objective traffic assign-
ment problem to the bi-objective case. Thus, we present several heuristic so-
lution approaches to obtain bi-objective equilibrium solutions. Our heuristics
utilise a bi-objective shortest path algorithm as part of the solution approach,
namely to solve arising sub-problems in each iteration. We believe this is a first
step towards algorithms to solve the bi-objective traffic equilibrium problems,

and thus vector equilibrium problems.

As this thesis covers three main topics, bi-objective shortest path, bi-objective

integer minimum cost flow, and bi-objective traffic assignment, one chapter
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is dedicated to each of them. This thesis is organised as follows. In the first
chapter we give an overview of the relevant mathematical background. We
introduce the terms of bi- and multi-objective optimisation and some solution
algorithms and strategies as a basis for later chapters. Chapter 2 covers the
bi-objective shortest path problem. In Chapter 3 the more general bi-objective
integer minimum cost flow problem is discussed. Finally, Chapter 4 is dedi-

cated to the bi-objective traffic assignment problem.

Each chapter contains its own introduction and conclusion as the chapters
may be seen as individual entities. Nevertheless, the problems discussed in
Chapter 3 are strongly related to those from Chapter 2 and so are the solu-
tion approaches. Also, bi-objective shortest path algorithms are an essential
element of the heuristic solution algorithms presented for bi-objective traffic

assignment in Chapter 4.



Chapter 1

Preliminaries: Mathematical

Background

In this chapter the basics of bi- and multi-objective optimisation problems are
introduced to the extent needed within the scope of this thesis. A comprehen-

sive coverage of these topics can be found in Ehrgott (2005).

1.1 Multi-objective Optimisation Problems

A multi-objective optimisation problem has the form

21 ()
min  z(z) = 2(@)

zp(T)
st. e X,

with p 2 2 and X € R™,m = 1. Whenever the number of objectives is
p > 2, we talk about multi-objective or multi-criteria optimisation, whereas
reducing p to two leads to a bi-objective or bi-criteria problem. The set of
feasible solutions (feasible set) in decision space is denoted by X and its image

is Z :={z(x) : x € X}, which lies in objective space.
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The structure of the feasible set X’ entails a further classification of the multi-
objective optimisation problem. Multi-objective zero-one optimisation (MO-
Z0Q0) problems have binary variables, i.e. X € {0,1}". An example for a
MOZOO problem is the bi-objective shortest path problem, see Chapter 2. The
variables may be restricted to integers with X C Z™ leading to multi-objective
integer optimisation (MOIO) problems. The bi-objective integer minimum
cost flow problem discussed in Chapter 3 is a MOIO problem. We speak of
multi-objective continuous optimisation problems when the set X’ is a contin-
uous subset of R™. X may also be a combination of the above, for instance an
optimisation problem with some integer variables and some continuous vari-
ables, i.e. X € Z™ xR™2. Multi-objective combinatorial optimisation (MOCO)
problems have a special constraint structure, such as for example the shortest
path and the flow problems mentioned above. Large parts of this thesis deal
with MOCO problems, and the special structure of the problems is exploited,

whenever possible.

Let us define some order relations for ¢!, y? € RP,p = 2:

y' Sy & ySypfork=12,...p,
y' <y & ySypfork=12,...p andy' £y
y'<y? & yi<yifork=1,2,...,p.

The symbols =, >, > are defined analogously. Furthermore, for any of the
symbols =€ {2, >, >}, we define R as RY := {x ¢ R?: = > 0}.

In general the p objectives considered in multi-objective optimisation problems
are conflicting with each other, they do not obtain their individual minima for
the same value of x. Therefore, we seek those feasible solutions that do not
allow to improve one component of the objective vector z(x) without deterio-

rating another one.

Definition 1.1.1 A feasible solution # € X is called efficient if there does
not exist any ' € X with (21(2'), 22(2"), ..., zp(2")) < (21(2), 22(2), . . ., zp(2)).
The image z(&) of Z is called non-dominated. Let Xg denote the set of all
efficient solutions and let Zy denote the set of all non-dominated points. 1f
there exist 2/, z* € X with z(z') < z(x*), we say that x* is dominated and also

that 2’ dominates x*.
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We distinguish two different kinds of efficient solutions.

e Supported efficient solutions are those efficient solutions that can be ob-

tained as optimal solutions to a (single objective) weighted sum problem
Héi/{/l Mzi(z) + Aoze(z) + ..o 4+ Apzp(2) (1.1)

for some A € RE. The set of all supported efficient solutions is denoted by
Xsg, its non-dominated image by Zgy. The supported non-dominated
points lie on the boundary of the convex hull conv(Z) of the feasible set

in objective space.

e Supported efficient solutions which define an extreme point of conv(Z)

are called extreme supported efficient solutions.

e The remaining efficient solutions in Xyp = Xp\Xsg are called non-
supported efficient solutions. They cannot be obtained as solutions of
a weighted sum problem as their image lies in the interior of conv(Z +
Rg). The set of non-supported non-dominated points is denoted by Zyy.
There is no known characterisation of non-supported efficient solutions

that leads to a polynomial time algorithm for their computation.

All efficient solutions of a continuous linear multi-objective problem are sup-
ported (Isermann 1974, Theorem 1), whereas an integer linear multi-objective

optimisation problem may have non-supported solutions.

The objective functions 21, 2, ..., 2z, do generally not attain their individual
optima for the same value of . We assume in the following that there exists
no z such that & € argmin{z;} Nargmin{z;} N ... N argmin{z,} for a multi-
objective optimisation problem to ensure that we deal with multi-objective
problems that actually have conflicting objectives and therefore more than

one non-dominated point in objective space.

Definition 1.1.2 Two feasible solutions x and 2’ are called equivalent if z(z) =
z(x"). A complete set Xg is a set of efficient solutions such that all x € X\ Xg

are either dominated or equivalent to at least one x € Xg.
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In this thesis, we only consider solution approaches that compute (at least) a

complete set Xg.

Another notion of optimality that is used in the context of bi-objective op-
timisation is lexicographic minimisation. In the bi-objective case, among all
optimal feasible solutions for the preferred component k of the objective vector,

we choose one that is optimal for the other component [.

Definition 1.1.3 Let k£ € {1,2} and [ € {1,2}\{k}. Then 2(2) Zjepmy 2(2')
if either z(2) < z(2') or both z(%) = 2zx(2") and z(Z) = z/(2). We call 7 a

lex(k,1)-best solution if 2(%) Syeper) 2(x) for all v € X. Let @yepe1) denote a
lex(k,l)-best solution.

In the more general case with p > 2, assuming that objectives are numbered
according to their preference, lexicographic minimisation can be defined as

follows:

Definition 1.1.4 For y' # ¢, let k* := min {k : y}. # y2}. Then,

1 2 1 2 1 2
) §lexy <Y =y Oryk*éyk:*'

1.2 Multi-objective Linear Programmes

An important class of multi-objective optimisation problems are the linear
ones, where the objective functions as well as the feasible set are described by

linear functions. Such a multi-objective linear programme has the form

()
. )l
min Cx =
()T
st. Az =05b
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where C' is a p x m objective matriz that has rows (¢*)",k = 1,...,p, which
represent the k" cost function. Feasible solutions o € R™ are required to be
non-negative and satisfy constraints Az = b given by the n x m constraint
matrix A and the right-hand-side b € R™.

Multi-objective linear programmes can be solved using a multi-objective ver-
sion of the simplex algorithm, which is derived from the single-objective sim-
plex algorithm (Dantzig and Thapa 1997, for instance). A whole chapter of
Ehrgott (2005) is dedicated to multi-objective linear programming. In this
thesis, all linear programmes considered have a special structure: they are
network flow problems. For network flow problems a special version of the

simplex algorithm, the network simplex algorithm, exists.

We first introduce single-objective network flow problems together with the
network simplex algorithm to solve them. Subsequently, a bi-objective version
of this network simplex algorithm, a parametric network simplex algorithm, is

introduced.

1.2.1 Single-objective Network Flow Problems and the
Network Simplex Algorithm

First, we introduce the single-objective network flow problem. We define a
directed network by N = (G, ¢, [, u), where the graph G = (V, A) consists of a
set of vertices or nodes V = {1,2,...,n} and a set of m arcs A SV x V. For
a € A, denote by t(a) the tail node of arc a and by h(a) its head node. The
vectors ¢, [,u € R™ represent cost, lower bounds, and upper bounds and are

explained below. The single-objective network flow problem has the form

min Y cuZq

acA

s.t. > xe— Yo x,=0b forallieV (1.2)
{acA:t(a)=i} {a€A:h(a)=1}
Ug = Tg = g for all a € A.

In this model, the variable x € R™ represents flow in the network. The flow on
arc a is x, and its cost per unit of flow ¢,. The first set of constraints ensures
flow conservation at the different nodes, and we assume that ), b; = 0 since

otherwise the problem is infeasible. A balance of b; > 0 represents surplus
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Figure 1.1. Network of Example 1.2.1.

and a balance of b; < 0 represents demand of a commodity at node 7, whereas
b; = 0 indicates that ¢ is a trans-shipment node that has neither demand nor
supply. The second set of constraints ensures that flow on each arc a is between

its lower bound I, and upper bound u, with u, =1, = 0.

The objective leads to cost-minimal shipment of the commodity between sup-
ply and demand nodes with minimal cost, hence the problem is referred to as
minimum cost network flow (MCF) problem. In case of positive lower bound
capacities, the network can be transformed into a network with zero lower
bound capacities as explained in Ahuja et al. (1993). Therefore, we assume

[ = 0 in the following.

Example 1.2.1 Figure 1.1 shows the network of an MCF problem consisting
of 6 nodes and 9 arcs. All arcs have lower bound O and upper bound 2. Node
1 has balance 3 and node 6 has balance —3, all other nodes have balance 0.
This means that 3 units of a commodity are shipped through the network. The
numbers next to an arc represent the flow on the arc (zero flow if there is
no number). The indicated flow solution is a feasible solution. Arc costs are

omitted at the moment.

A n x m-dimensional node-arc incidence matriz A of graph G = (V, A) in
the MCF problem is constructed by

+1 if t(a) =1,
A =< 1 if h(a) =1,

0  otherwise,
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for 1 £i<nand 1 £ a < mwithn = |V|,m = |A|. The matrix A% is
an equivalent representation of the graph G above. With the vectors ¢’ =
(c1,¢2,. . yem), 1T = (I, 1o, ... 1) = (0,0,...,0), u" = (uy,us,...,Uy), and
b = (b1, by, ..., b,) the above MCF problem can be re-written as

min ¢'z
st. A%z =10 (1.3)
uzax 2 0.

This linear programme associated with the MCF problem (1.2) can be solved
using the standard simplex algorithm with upper and lower bound constraints
on the variable z. However, there exists a version of the simplex algorithm,
called network simplex algorithm, which is dedicated to solving network flow
problems. Special data structures allow a very efficient implementation of
the network simplex algorithm. Helgason and Kennington (1995) develop a
detailed derivation of the network simplex algorithm and how it relates to the
standard simplex algorithm. We outline a derivation of this network simplex

algorithm with upper and lower bound constraints in the following.

Network Simplex Algorithm

From now on, it is assumed that the graph G is connected, i.e. every pair of
nodes 4, j is connected by an un-directed path. A subset of columns of AY
is linearly dependent whenever the arcs represented by the columns contain
an un-directed cycle. As the network is connected, a maximal set of linearly
independent columns represents a set of arcs A* € A such that the undirected
graph (V, A*) is a spanning tree. A spanning tree is an un-directed subset
of arcs so that there is exactly one path between every pair of nodes. In
particular, a spanning tree does not contain a cycle. A spanning tree has n —1
arcs. Therefore, the matrix A% in (1.3) has rank n — 1. We add an additional
arc to A% represented by a column vector with only one non-zero entry in row
r. This makes node r a root node of G, which has an in-going arc that does

not have a tail node. The obtained matrix A® now has full rank n.

An n x n sub-matrix of A%, A is called basis matriz if AS is invertible. The

set of column indices 7 that identify the columns of AS in A% is called basis.
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The set of indices of all non-basic columns of A% is 7 = {1,2,... m}\7. A%,

¢, and x can be split into basic and non-basic components

c T
A% = (AZ, A9), c= 4 ,and x = ’
T TF
A%x = b can be re-written as
G 4G rT a1 G
T7

We distinguish those non-basic variables with flow at lower bound and at
upper bound, indexed by 7; and 7T, respectively, and 7 = 7,;UT,. The non-

basic variables have value z7 = 0 and x7 = uz , where uz is obtained by

splitting the vector u into basic and non-basic components u = (uf, u; ,u; )
l u

The matrix A9 and z are split up accordingly. Then, any basic solution x is

given by
T
_ : _ (AGY!L G . G ,._
z=| a7 with x7 = (A7) b— A7 a7, — A7 7,
TF, =0 =UT,

If 0 £ 2 < walso holds, x is called basic feasible solution (BFS). Now the cost

¢"x can be rewritten as

where the vector ¢ = (EZT,EI

) is called reduced cost vector. One way to reduce
the cost ¢’ is increasing one of the non-basic variables with flow at its lower
bound, i.e. z, with s € 7,, that has negative reduced cost ¢, < 0. Similarly,

c¢'x decreases as the flow of a non-basic variable with flow at its upper bound
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with positive reduced cost decreases. Therefore, a variable with index s €
{i €T,:¢ < O} U {Z €T, :¢> O} is chosen to enter the basis 7.

In exchange for the new variable with index s, another variable needs to leave
the basis. If s € 7,, assume that the value of z, increases to ¢ < w,. In
(1.4), rewrite A = (A%’-)_lA% It follows that the basic variable x; with i € T
changes to x; — 0 A;s. To ensure feasibility of the basic variable x; — 0 A;,, one
has to ensure that

L if Ay >0

Ao A (1.5)
Lot f Ay, < 0

— s

o
17AN
&
|

<)
-~
IA
£
¢
)
174N

Therefore, whenever s € 7, the variable x, increases to a value of o < u, for

which (1.5) is satisfied for all ¢ € 7. The largest possible value is

0 = min {us,min{ﬁ e T, Ay > O} ,min{ui — o ieT, A, < O}}
Ajs —Ais
A basis leaving variable ¢t € 7 is then chosen from the set of indices for which
the minimal ¢ is attained. In a similar fashion it can be determined what
the maximal decrease in variable z, is, if x, is a variable at its upper limit,
i.e. s € T,. Here, a decrease of variable 2, by 0 < ¢ < w, yields the new value
of the it basic variable z; + o A;s, i € T. To ensure feasibility of the new basic

variable z; + 0[1,-8, one has to ensure that

~ - if A5 <0
0SSz, +0AsSu &0 =S Ais h
b if Ay > 0

Therefore, o is chosen as

U—min{us,min{—%:ie'ﬂflis <O},min{uijxi e T, A >O}}.

1S 1S

Again, a variable t € 7 that leaves the basis is chosen from the set of indices

for which the minimal ¢ is attained.

One iteration of the simplex algorithm is complete once the entering variable
x, replaces the leaving variable z; in the basis, which is called a pivot. The
basis is now (7 \ {t}) U{s}. The BFS z7 is updated by adjusting it by o, the
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amount of change in x,.

Up to this point, this discussion is a derivation of the simplex algorithm with
upper and lower bounds. Next, the special features of the network simplex

algorithm are introduced.

For the network simplex algorithm any BFS can be interpreted as a spanning
tree as the matrix A has full rank and thus represents a spanning tree rooted
at node r (the column corresponding to the root node is always part of A%).
As the basis represents a tree we also refer to it as basic tree. Introducing
a new variable x, into the basis means that an additional arc s is added to
this spanning tree. This additional arc is part of an undirected cycle C' in the
tree. The flow conservation constraints imply that increasing the flow on arc
s entails increasing flow on each arc of cycle C' with the same orientation as
s, and decreasing flow on each arc of C' with the opposite orientation. On the
other hand, decreasing the flow on arc s means decreasing the flow on each arc
of C' with same orientation as s and increasing it on those arcs with opposite
orientation. In this manner, the flow around the cycle changes by o, which
is determined as biggest possible flow change respecting the lower and upper
bounds on flow for each arc. Thus, o increases until the flow on at least one
arc reaches its lower or upper limit. Any of those arcs in the cycle that reach
their upper or lower limit after changing the flow on the cycle by ¢ can be
selected as leaving arc. We later explain how the leaving arc is selected to

prevent the algorithm from cycling.

Example 1.2.1 continued: The process of adding a non-basic arc to the
network, updating the flow along the arising cycle and removing a basic arc
from it, is illustrated for Example 1.2.1. The network from Example 1.2.1 is
repeated in Figure 1.2. One BES of the solution in Figure 1.2 is represented
by the tree T in Figure 1.3. Node 3 was chosen as root node. In this figure, all
basic arcs have flow 1. The green dashed non-basic arcs have flow equal to their
upper bounds, namely 2, and the green dotted non-basic arcs have flow equal
to their lower bound 0. Introducing the non-basic arc s = 4 — 6 with flow 2
into the basic tree yields the cycle highlighted in Figure 1.4. When introducing
s into the tree and decreasing the flow on s by o =1, arcs 5 — 6 and 3 — 5
reach their upper bound 2, and arc 3 — 4 reaches its lower bound 0. Any of

the three arcs are candidates for leaving the basis. Selecting arc 5 — 6 to leave
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Figure 1.2. One feasible solution for = Figure 1.3. Corresponding basic tree

the network from Example 1.2.1. structure 7 representing a BFS. Non-
basic arcs at upper bound are dashed,
those at lower bound are dotted.

the basis, we obtain the new BFS displayed in Figure 1.6. The network with

new flow values is shown in Figure 1.5

Compared with the simplex algorithm, one advantage of the network simplex
algorithm is that only arcs in the cycle need to be considered when identifying
the basis leaving variable (or arc), rather than all variables (arcs) in the basis.
The same applies when the BFS is updated, the flow changes only on arcs
along cycle C'. The network simplex algorithm is summarised in Algorithm 1
assuming the MCF problem is bounded. If it is not known whether a MCF
problem is bounded, it is sufficient to check whether ¢ < oo in Step 8 or 12.

An initial solution as required by Algorithm 1, if it exists, can be obtained as
a solution of an auxiliary problem such as a Two-Phase approach (not to be
confused with the Two Phase Method to solve multi-objective integer problems

also discussed in this chapter) or a Big-M approach (e.g. Bazaraa et al. 2005).

Similar to the simplex algorithm, the network simplex algorithm may cycle,
i.e. move back and forth infinitely between BFSs with the same objective value.
When this happens, we talk about degeneracy in the network. In case of
the network simplex, strongly feasible trees (Cunningham 1976) are a tool to
prevent cycling. A basic tree is called strongly feasible if it is possible to send

one unit of flow from every node in the tree to the root node. If every arc with
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/?D\

Figure 1.4. Basic tree structure 7°
with non-basic arc s = 4 — 6 and
C=6—5<—3—-4—6.

Figure 1.5. Feasible solution for net- Figure 1.6. Basic tree structure 7
work from Example 1.2.1 after per- after simplex pivot with entering arc
forming a simplex pivot with s =4 — 4 — 6 and leaving arc 5 — 6.

6.
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Algorithm 1 Single-objective Network Simplex Algorithm
1: input: Initial BFS z7 and basic tree 7.
2: Compute reduced cost €.
3: while {icT,:¢;<0}u{ieT,:¢ >0}+#0do

4: Choose s€ {i €T,;:¢,<0}U{icT,:¢ >0}

5. Find C, the basic arcs in the cycle obtained by adding arc s to tree 7.
6: if s € 7; then

7 o1 = min{gjg i€ O, Ay > 0},02 :min{% 11 € C,fL-S < O}

8: o = min {us,ual,ag}

9 c:@eou@>aa:ﬁ}u@eou%<aa:%f}

10: else 3 )

11: = min{—g; e (A < 0} , 09 = min{“k;ifi e C A > O}
12: o = min {ug, 01,09}

13: £={ie():fli8<0,a:—x?}U{z‘eC:Ais>0,a:WA;f}

14:  end if

15: if s € 7; then

16: xs = o; increase flow x; on arc ¢ € C' by o if 7 has the same orientation
along the cycle as s, otherwise decrease flow on ¢ by o.

17:  else

18: rs = ug — o; decrease flow x; on arc ¢« € C' by o if ¢ has the same
orientation along the cycle as s, otherwise increase flow on 7 by o.

19: end if

20: if 0 # u, then

21: Insert s into basic tree 7.
22: Choose t € L; remove t from basic tree 7.
23: end if

24: end while
25: output: Optimal BFS z7.

flow at its lower bound points towards the root, and every arc with flow at its
upper bound points away from the root, the tree is strongly feasible. Trees
remain strongly feasible if the basis leaving arc is chosen as the last eligible
arc in the cycle starting from the node of the cycle that is closest to the root

and traversing the cycle in direction of increasing flow.

An excellent implementation of the network simplex algorithm by Lobel (2004)
is called MCF. This implementation constructs an initial feasible solution fol-
lowing the Big-M approach and also takes advantage of strongly feasible trees
to prevent cycling. Whenever the network simplex algorithm is used in com-

putational experiments in this thesis, it is derived from the MCF code for the
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primal network simplex and adapted to the particular problem.

1.2.2 Parametric Network Simplex Algorithm for Con-
tinuous Bi-objective MCF Problems

Multi-objective continuous linear programmes can be solved using the simplex
algorithm in an approach also known as parametric network simplex algorithm.
The parametric simplex for continuous linear multi-objective programmes is
discussed in Ehrgott (2005). Next, we will introduce the parametric network

simplex algorithm for bi-objective MCF problems.

Using the symbols from the single-objective MCF Model (1.3), the linear pro-
gramming formulation of MCF is extended to a bi-objective continuous mini-
mum cost flow (BCMCF) problem

. ()T
min z(z) =
()T L6
st. ASr =10 (16)
u=>x 20,

where ¢!, ¢> € R™ now represent two different cost components.

A single-objective problem is derived from BCMCF by replacing the objectives
by Aj(ch)Tx + Ay(c®) Tz, Solving this weighted sum problem for A\j, Ay > 0
yields an efficient solution of the bi-objective problem. In fact, all efficient
solutions can be obtained by varying Ay, Ao € R.. With the aim of describing
a complete set of efficient solutions, it is sufficient to just obtain all extreme
points so that the corresponding objective vectors (non-dominated points) are
extreme points of the set of feasible objective vectors Z = {z(z) € R? : z €
R™ A% = b,u = x =2 0}. A complete set of efficient solutions is then derived
by convex combinations of all extreme points that define non-dominated faces
of the polyhedron Z.

In order to obtain those extreme efficient solutions, the parametric network
simplex algorithm can be used. Such a network simplex algorithm is proposed
by Sedefio-Noda and Gonzalez-Martin (2000) and corrected in Sedeno-Noda
et al. (2005).
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The algorithm starts from the initial (efficient) solution 2° = ze,(19). As there

are two cost components (c!, 2

., C2) associated with each arc a, in the network sim-

plex algorithm the reduced cost of each arc also consists of two components
(¢l,2%). An arc to enter the basis is selected with the smallest ratio of deteri-
oration of ¢' and improvement of c2. Moving from solution Tie(1,2) 1O Tiex(2,1)
in this manner ensures that all extreme efficient solutions are passed on the
way. In iteration j of the network simplex algorithm, candidate entering arcs
(contained in the set S;) are selected with minimal ratio of their reduced costs
derived from the current supported efficient solution 2’ as indicated in Proce-
dure 1. Again, we refer to 7; and T, as the set of non-basic arcs at lower and

upper bound with respect to the current BFS.

Procedure 1 compute entering arcs|c, /]

1: input: Reduced costs ¢ = (¢*,¢?) derived from current efficient solution
7,
2y = min{

ol

ca€eT, with 2 < 0 and ¢! > 0,
ra €T, withe >0 and ¢, <0}
3: Let S; € 7, U T, be the set of non-basic arcs for which p; is attained.

4: output: Minimal ratio ;; and set of non-basic candidate basic-entering
arcs S;.

SLRLLRS

ol

One of the candidate arcs s € §; is removed from §; and enters the basis. By
performing a simplex-pivot with entering arc s, the reduced costs may change.
The reduced costs of all arcs remaining in S; are updated according to the
BFS obtained by pivoting s into 2. As long as there are arcs remaining in S;
with

¢ <0,ct>0andacT,ore:>0,¢ <0andac T, (1.7)

the process repeats as in Procedure 2. We show in the proof of Theorem 1.2.1

why those arcs in S; satisfying (1.7) remain candidate entering arcs.

The next BFS 277! might define an extreme point z(z/™') € Z. We denote the
last extreme efficient solution that was found by z*. If for the new minimal
ratio p;41 we have pji1 # i, then a7+t corresponds to an extreme efficient
solution. If, on the other hand, ;1 = py, then 2711 is not extreme, i.e. z(z71)

corresponds to a supported non-extreme non-dominated point.

The parametric network simplex approach is summarised in Algorithm 2. The

algorithm finishes when no candidate arcs to enter the basis can be found,
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Procedure 2 compute next BFS[S;,¢, 2]

1:

input: Set of candidate basic-entering arcs §; and reduced costs ¢ =
(¢, 2%) derived from current efficient solution 7.
while S; # (0 do
Let s be the first arc in S;, set S; = S; \ {s}.
if 2 <0,el >0and s € 7, OR & > 0,¢. <0 and s € T, then
Perform simplex-pivot with entering arc s.
Update ¢.
end if
end while
output: Next BFS z/+!,

i.e. when S; = (0 in Step 7 of Algorithm 2. This indicates that the lex(2,1)-

best solution is obtained.

Algorithm 2 Parametric Network Simplex Algorithm

el e e e
AN e

16:
17:
18:

© P>y

input: Network (G, ¢,l,u) with ¢ = (¢!, ¢?).
Compute ' = Zjez(1,2)-
Eew = {2}
Compute reduced costs ¢ for x!.
(p1,S1) = compute_entering arcs[c, r']
j=1k=1
while S; # () do
29t = compute next BFS[S;, ¢, 7]
Update ¢ for z/+!
(tj+1,Sj41) = compute_entering arcs[c, 2/
if pj1 # i then
fis1 = pjp1 and 2P = @7t
gex = gea: U {$k+1}
k=k+1
end if
Jj=7J+1
end while
output: Complete set of extreme efficient solutions &, =

{at 2%, 2=t 2t

The algorithm was originally proposed by Sedeno-Noda and Gonzalez-Martin

(2000). The authors do not include a check whether an efficient solution is

extreme in their algorithm, but claim that every solution with z/*1 # 27

obtained by one execution of Procedure 2 is an extreme efficient solution. It

can be easily seen that this is not true. A BFS with 277! # 27 is not necessarily

an extreme efficient solution, i.e. z(27!) is not necessarily an extreme point in



1.2.2 Parametric Network Simplex Algorithm for BCMCF Problems 23

Z. The BFS 2/*! might represent a supported non-extreme efficient solution
with z(2/*1) on the facet between two extreme points in Z. It is therefore
incorrect that the computation of one set S; per extreme efficient solution z7
is sufficient. In Sedenio-Noda et al. (2005) the algorithm is corrected as follows:
the computation of a new BFS (Procedure 2) is modified by updating S; when
updating the reduced costs ¢ as long as the ratio p; does not change. For

completeness, we include a proof of the correctness of Algorithm 2.

Theorem 1.2.1 The set £, generated by Algorithm 2 is a complete set of
extreme efficient solutions of BOMCF.

Proof  Correctness of the parametric (network) simplex: By definition, Xsg
is the set of optimal solutions to (1.1) for Ay, Ay > 0. Dividing (1.1) by Ay, we
obtain that (1.1) is equivalent to

min{(c' + 0c®)r : v € X} and § > 0, (1.8)

where X is the set of feasible solutions that satisfy the constraints of the
BCMCF Model (1.6). Therefore, it is sufficient to find one optimal solution
of (1.8) for each # > 0. This is a parametric linear programme which can be

solved by the parametric simplex algorithm (Dantzig and Thapa 1997).

As an initial solution, we use e, (1,2), an extreme efficient solution. Clearly,
Tiea(1,2) 18 efficient and an optimal solution to (1.1) with A\; = 1 and Ay = ¢ for
sufficiently small € > 0 (Isermann 1974), i.e. it is a supported efficient solution.

Thus, there exists ¢ > 0 such that x;.,(12) is an optimal solution to (1.8).

The entering variables in the parametric network simplex algorithm are chosen
from S;. At termination, the algorithm yields, for each 6 > 0 one optimal

solution (a BFS) to (1.8), the parametric linear programme.

We obtain a set of candidate arcs §; and introduce the arcs contained in S
into the basis one after the other (if they are still eligible to enter the basis).
Therefore, the correctness of the algorithm critically depends on the fact that
after pivoting s € S; into the BFS 27, the remaining arcs a € S; \ {s} that
are still eligible, i.e. satisfy €2 < 0,¢. > 0 for a € T;NS; or ¢ > 0,¢. < 0 for

a € T,NS; (according to updated reduced costs), still have the minimal ratio
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1. Note that when pivoting an arc s with minimal ratio into the BFS of 27, the
new minimal ratio of all eligible arcs is equal to or greater than the previous
one, i.e. p; < pjr1. Again, this follows from Dantzig and Thapa (1997) as
the optimal value of the parametric linear programme (1.8) is a continuous
piecewise linear concave function, f(#) = min{(c' + 0c*)x : x € X}, of the

parameter 6 (in our case with slopes given by the different values of ).

We need to show that a € S; \ {s} either remains eligible with minimal ratio
after the pivot, or is not eligible to enter the basis any more. Reduced costs

for arc a are computed as ¢ = & — ( )+ 7rh ,k = 1,2, where 7¥ is the

dual variable at node i for objective k. The duals are only updated for nodes
in one of the two sub-trees obtained by removing arc s from the basic tree.
The value of the dual at all nodes that are updated, changes by the same
amount, namely the reduced cost of the basis entering arc. If none or both
of the dual variables w4 and 7, change, the reduced costs computed by
o=k — Wf(a) + W’;(a), k = 1,2 do not change (as both Ti(a) and 7p,) change

a a

by the same amount), and therefore the ratio remains the same.

If only one of the dual variables ;) changes to ( H(a) +e t(a) +c ) updating

reduced costs yields
(@) = ek — (b + (25)°9) + iy = (@) — () for k= 1,2.

For both s,a € §;, with respect to the “old” reduced costs, we have:

;= (@) _ (@) - <C2)old = (@ )old and (62)°ld _ M'(El)old
RGO CAL / S el
We assume that the updated reduced costs of a still satisfy ¢ < 0,¢: > 0 for
aceT ;NS ore2>0,c <0foraeT,nS;. It follows for the new ratio of
and ¢\:

() (@) = @) p((E)™ = ()™)

N e G N CA T L

A complete set of extreme efficient solutions E., is obtained by Algorithm 2:
For every non-dominated extreme point y € Zy there exists + € X with
z(x) = y and z is an optimal solution to (1.1) for some Ay, Ay > 0. Hence, x is

an optimal solution to (1.8) with 6§ = i—f Hence, the algorithm does find x or
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a BFS 2/ € X with z(z) = z(2') = ».
U

A complete set of efficient solutions of the continuous bi-objective MCF prob-
lem is obtained as convex combinations of all pairs of consecutive extreme

efficient solutions z¢, z**',i =0,...,1 — 1.

Remark 1.2.1 For single-objective (network) simplex algorithms, different
speed-up techniques for the selection of basic entering variables (arcs) are
known such as partial pricing. In partial pricing only a subset of all non-
basic arcs is scanned and the basic entering arc is selected from this subset.
This may have the advantage of a much faster pricing step to select the enter-
ing variable but at the cost of possibly necessitating more simplex iterations.
Often, the advantage of a fast selection of the entering arcs outweighs the

disadvantages.

It should be noted that within the parametric network simplex, all non-basic
arcs have to be considered when choosing a basic entering arc, as an arc with
minimal ratio of reduced costs has to be chosen. Thus speed-up techniques
such as partial pricing cannot be used with the parametric simplex algorithm

as all non-basic arcs need to be considered in every iteration.

1.3 Solving Bi-objective Integer Optimisation

Problems

The two problems we study in Chapters 2 and 3 are both bi-objective in-
teger network flow problems. Such bi-objective integer problems may have
non-supported solutions. Non-supported solutions cannot be obtained by an
algorithm that identifies solutions to the weighted sum problem (1.1), such
as the parametric network simplex algorithm for continuous linear problems

discussed in the previous section.

There is no alternative characterisation that helps identify such non-supported
solutions. In this section two general strategies to find a complete set of efficient

solutions of bi-objective integer problems with non-supported solutions are
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discussed.

Some solution algorithms are problem-specific, in that they are dedicated to
a particular problem type such as bi-objective labelling algorithms for bi-
objective shortest path problems. Such problem specific algorithms will be
explained in the corresponding chapters, whereas general solution schemes
that are applicable to a wide range of bi- or multi-objective integer problems
and relevant within the scope of this thesis are introduced in the following.
One strategy for solving bi- or multi-objective integer problems is ranking,

and another one is given by the Two Phase Method.

We now consider a bi-objective integer optimisation (MOIO) problem

with feasible set X € Z".

1.3.1 Ranking

Among the first to present a ranking approach to solve a MOCO problem,
namely the bi-objective shortest path problem, were Martins and Climaco
(1981); Climaco and Martins (1982). The approach is easily explained for
the bi-objective case. We will introduce bi-objective ranking and comment on

multi-objective ranking at the end of this section.

Single-objective ranking or so-called k-best algorithms generate solutions for a
minimisation problem ordered by non-decreasing objective values. The algo-
rithm is initiated with an optimal solution x° with objective value f(z°). The
ranking algorithm then generates solutions with non-decreasing values of the

objective f:

2% 2t 2?0 with  f(2%) £ f(2') £ f(2?)

A

This process typically continues until the ™ solution is reached, hence the

name k-best algorithm.
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Figure 1.7.  Dlustration of rank- Figure 1.8.  Illustration of rank-

ing non-dominated solutions with
lex(1,2) objective: the ranking algo-
rithm finds solutions with objective
values ordered as numbered. Among
them, the non-dominated points are
highlighted.

ing non-dominated solutions with
weighted sum objective: the rank-
ing algorithm finds solutions with ob-
jective values ordered as numbered.
Among them, the non-dominated
points are highlighted.

In order to apply such a ranking algorithm to solve a MOIO problem, a few
adaptations need to be made, but the general ranking scheme remains. Firstly,
the MOIO problem is reduced to a single-objective problem. Two possibili-
ties are either using a lexicographic objective (Definition 1.1.3) or a weighted
sum (1.1) of the two objectives. Secondly, one needs to ensure that ranking
only stops when it can be guaranteed that all efficient solutions of the MOIO
problem have been found. It is not clear a priori what value of k£ needs to be

chosen to ensure all efficient solutions are generated.

Climaco and Martins (1982) choose a lexicographic objective, e.g. lex(1,2),

0 _
= Tlex(1,2)-

which gives a first (and optimal) solution x Solutions are then
ranked (with respect to the lexicographic objective lexz(1,2)) until a solution
with objective value equal to that of the other lexicographically optimal solu-
tion Tjey(2,1) is obtained. Figure 1.7 shows how points z(;ﬂ) are found by the
ranking algorithm. The numbers i = 0,...,9 next to the points indicate the
order in which the points are obtained. In the depicted example ranking stops
after point z(z”) = 2(Zjep(2,1)) is reached. During or after the ranking process,

efficient solutions can be selected among all solutions found.

On the other hand, solutions could also be ranked according to a weighted sum

objective. Weighting factors can be derived from the lex(1,2)- and lex(2, 1)-
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Figure 1.9. Bounds on z; and 2. Figure 1.10. Improved bounds on z;
and zs.

best solutions, Zje,(1,2) and Tjex(2,1), by

AL = 22(9Czex(1,2)) - 22($lem(2,1)) and Ay = 21 ($lex(2,1)) - Zl(xlex(1,2)>- (1-10)

Now the ranking algorithm is applied to the problem with weighted sum objec-
tive cMx) = A\i21(x) + Aa2a(2). The illustration of the ranking process yields

the same points, but obtained in a different order, see Figure 1.8.

Upper bounds derived from e,(1,2) and Zjeq(2,1) can be used to eliminate solu-

tions & that cannot be efficient. Every solution & must satisfy

Zl(i') < Zl(iﬁlem(zl)) and ZQ@) < Zz(iﬁzex(l,z)), (1-11)

otherwise it can be deleted. The point 2V = (2 (Trea(2,1)), 22(Tiex(1,2))) 1s called

the nadir point of the BSP problem, the situation is illustrated in Figure 1.9.

The bounds (1.11) can be further improved by the fact that we are dealing
with integer problems. The objective vector of efficient solutions, which are
not equivalent to solutions obtained previously, can only be situated one unit

below and one unit to the left of the nadir point 2V

as indicated in Figure
1.10. Assuming all objective values are integer, we get the following improved

bounds:

Zl(j:) é Zl<xlem(271)) —1 and ZQ(:%) § Z2(£lez(l,2)) — 1 (112)
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Figure 1.11. Initial weighted sum bound.

An upper bound 4 of the weighted sum value of any efficient solution of the
problem is the weighted sum value of (z1 (Trex2,1)) — 1, 22(Tpew(1,2)) — 1). It is
calculated as 0 = \; (Zl(xlex(g,lﬂ — 1) + Ao (zg(:vlem(m)) — 1). The resulting
bound is:

This weighted sum bound is indicated as the dotted line parallel to the straight
line connecting z(eqx(1,2)) and z(iez(2,1)) in Figure 1.11. Now the ranking
algorithm can be stopped as soon as the first solution with weighted sum

value exceeding 9 is found.

Whenever the ranking algorithm returns a new solution that is not dominated
by any of the solutions obtained prior to it, this solution is efficient. It can only
be guaranteed that all efficient solutions have been found once the algorithm
terminates. It is, however, possible to exploit the efficient solutions already
found in order to improve the upper bound . We take advantage of the
fact that every computed non-dominated point excludes a certain area of the

objective space by domination.

Firstly, the local nadir point of two points zF = (2F,25) and 2! = (2, 2))

with 2f < 2! and 2§ > 2z} is defined to be 2V = (2, 2%). We consider
straight lines parallel to the line connecting the points 2(Zeq(1,2)) and z(@ez(2,1)
through the local nadir point of any two consecutive currently available non-
dominated points and z(iex(1,2)) and z(Tez(21)) as indicated in Figure 1.12.

The upper bound corresponds to the line through the point that has maximal
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Figure 1.12. Weighted sum bounds Figure 1.13. Improved weighted sum
(two candidate points). bounds (two candidate points).

distance from the straight line connecting z(@ez(1,2)) and z(Zjez(2,1)). Let 27 =
(21(27), z2(27)) with j € {0,...,r} be the currently available non-dominated
points ordered by increasing z;, we also include the points z(Zjeq1,2)) and

2(Zieq(2,1)) separately. This yields the upper bound A’:

o= maX{)\lzl(ﬂvo) + A22(Tiez(1,2)), M1 (Trea(2,1)) + Aoza(z")},

vy = max{Aiz1(a/T) + Aaza(a?); 5 =0,...,r — 1},
A" = max{y},72}

Again, the upper bound can be improved by considering the point one unit
below and one unit to the left of the local nadir point between each pair of
consecutive points. Additionally, to ensure that all non-dominated solutions
are found, we also have to include the currently available non-dominated points
themselves as illustrated in Figure 1.13. This gives component 3 below. The

improved upper bound A is:

v = max{\(21(2") — 1) + Ma(22(Trexr,2)) — 1),
A (21 (Trea(2,1)) — 1) + Xa(z2(2”) — 1)},
7o = max{A;(z (7)) — 1) + Na(22(2?) = 1),5=0,...,7r — 1},
73 = max{\z(27) + Nazo(2?),5 =0,...,7},
A = max{vy,V2,73} (1.14)
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Algorithm 3 Solving Bi-objective Integer Problems by Ranking with ¢
. input: Solutions j.,(1,2) and Tyez(2,1)-
E ={} /* Initialise set of candidate solutions */
[ =1 /x Initialise counter for non-dominated solutions */
Compute A, Az and ¢ = A\jet + Aoc? /x See (1.10) for Aj, Ay */
= ¢ /* Initial value for A; see (1.13) for 0 */
k = 0 /x Initialise counter for k-best algorithm */
Compute optimal solution z° of problem mingcy c*.
while c*(2*) £ A do
if c(z*) in feasible region (1.12) and not dominated by the objective
vector of any element of £ and 2* not equivalent to any = € £ then
10: Insert z¥ into &.
11: Update A. /x See (1.15) for A x/
12:  end if
13 k=k+1
14:  Compute k™-best solution z¥ € X with c*(aF1) < M(ab).
15: end while
16: output: Complete set £ of efficient solutions.

Note that in order to obtain a complete set of efficient solutions, it is sufficient

to choose
A = max{y, Y2} (1.15)

We refer to Przybylski et al. (2008) for a more detailed presentation of the
upper bounds (1.12) and (1.14).

Combining the ideas above yields a general solution method for bi-objective
integer problems based on ranking with weighted sum objective ¢*, see Algo-
rithm 3. In order to compute all efficient solutions, the upper bound A should
be calculated as in (1.14) and all efficient solutions should be saved in the set
£ in Step 9 of Algorithm 3, rather than only those that are not equivalent to

any other efficient solution.

Theorem 1.3.1 The set £ generated by Algorithm 3 is a complete set of effi-

cient solutions of the bi-objective integer problem (1.9).

Proof  All solutions contained in £ obtained by Algorithm 8 are efficient:
whenever a solution z* is first inserted into £, its objective vector lies within the

region described by constraints (1.12) and is not dominated by the objective
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vector of any z € &, and z* is not equivalent to any z € £. Suppose there exists
r € X dominating z*, which implies z(z) < z(2¥) and therefore c*(z) < c*(x").

Thus = would have been found before ¥ by the ranking procedure.

When Algorithm 3 stops ranking solutions (i.e. when the upper bound A is
exceeded), the set € contains a complete set of efficient solutions: the ranking
procedure enumerates all solutions z with ¢*(z) £ A. Among all enumerated

solutions, a complete set of efficient solutions £ is identified.

Assume that, after the ranking procedure stops, there exists an efficient so-
lution z¢ ¢ & that is not equivalent to some = € £. Ranking stops as soon
as M(z¥) > A. As the solution z2¢ ¢ £ was not obtained during the ranking
process before it was stopped (otherwise ¢ or an equivalent solution would be
in £), it follows that c*(x¢) = *(z*) > A.

We always have |&;| = 2, as at least solutions @jep(12) and @jeg(2,1), Or so-
lutions equivalent to them, exist. Assume the set & = {z', 2% ..., 2"} is
sorted by increasing zj-values. Therefore z;(2%) < z(2°) < 2 (2™) and
29(2%) > 29(2%) > 29(x'™) for some i € {j : j =0,...,r — 1 and 2z (/1) —
z1(27) 2 2 and 29(27) — 29(27 ') = 2}. In particular, z;(2¢) < 2 (z"™!) —1 and

29(2%) £ 22(2') — 1. We can derive the following contradiction:

M2 (29) + Aozo(2%) S A (20 (™) — 1) + Ag(22(2") — 1) or ¢Mz®) £ A.

This contradicts the existence of an efficient solution z¢ ¢ & within bounds
(1.12) that is not equivalent to some solution in £ and that was not obtained

during the ranking procedure. U

The details of a ranking algorithm depend on the problem considered. For
example, a so-called k-best flow ranking algorithm was proposed by Hamacher
(1995) for integer minimum cost flow problems as explained in Chapter 3.
In the same chapter, the ranking algorithm is used to find all solutions of a
bi-objective integer minimum cost flow problem. In Chapter 2 on the other
hand, a so-called near shortest path algorithm (Carlyle and Wood 2005) is
used. It is related to a ranking algorithm, but does not obtain solutions with
increasing objective value. Instead, all solutions within a certain range around

the optimal solution are computed in no particular order.
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Remark 1.3.1 A ranking-based algorithm to solve the multi-objective short-
est path problem was proposed by Azevedo and Martins (1991). Here, shortest
paths are ranked according to a lexicographic objective. Ranking continues un-
til all s-t paths are ranked, and a set of efficient paths can be selected among
them. The bounds discussed in this section cannot be extended to the multi-
objective case as it is impossible to find the Nadir point a priori (without
actually knowing all efficient solutions) when p > 2. For p > 2 one cannot
simply identify the Nadir point by combining the p different lexicographic op-
tima. For example, Korhonen et al. (1997) present a linear programme with
three objectives for which the Nadir point cannot be derived from lexicographic

optima.

1.3.2 Two Phase Method

An alternative to the ranking approach for solving bi-objective integer prob-
lems is the Two Phase Method (Ulungu and Teghem 1995). The two phase
method is taking advantage of the problem structure by computing supported
and non-supported solutions separately. In Phase 1, only supported efficient
solutions are computed as indicated in Figure 1.14 for a bi-objective integer
problem. It may even be sufficient to compute extreme supported efficient
solutions, i.e. efficient solutions which define extreme points of the convex
hull of the set of feasible objective vectors. Supported solutions can for ex-
ample be computed as solutions to weighted sum problems (1.1). For many
bi-objective problems, Phase 1 can be solved by solving several instances of a
single-objective problem derived from the bi-objective problem. This has the
advantage that algorithms for solving those single-objective problems which
are often well-known, efficient, and fast, can be used. In Phase 2 the remain-
ing efficient solutions need to be computed. Here, enumerative methods may
have to be used. It is expected that methods to solve Phase 2 can be ac-
celerated significantly by restricting the search area to relevant regions of the
objective space by exploiting information gained in Phase 1. For a bi-objective
problem, the search space in Phase 2 can be restricted to triangles given by two
consecutive supported non-dominated points as indicated in Figure 1.15. The
advantage of the Two Phase Method is that this restriction of the search space

may lead to a much quicker execution of Phase 2 than a purely enumerative
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approach on the entire feasible set would yield.

Remark 1.3.2 Although, in the literature, the Two Phase Method is mostly
used to solve bi-objective problems, the general principle is not restricted to
problems with two objectives. For multi-objective problems with three or more
criteria, it is not trivial to keep track of the adjacency of supported solutions,
the faces of conv(Z) they define, and corresponding weights. Phase 1 algo-
rithms for the multi-objective problem are discussed in Przybylski et al. (2009).
Similarly, the derivation of correct bounds in Phase 2 is more involved than for
the bi-objective problem. In Przybylski et al. (2007), the Two Phase Method
is detailed for multi-objective problems and it is applied to the assignment

problem with three objectives.

We now outline two different approaches for the calculation of supported so-
lutions in Phase 1, a dichotomic approach for the general bi-objective integer
problem (1.9) and a parametric network simplex based approach for the in-
teger minimum cost flow problem. A similar simplex-based approach can be
formulated for any integer linear bi-objective programme that is not based on
a network structure by using the standard parametric simplex algorithm. The
dichotomic approach, on the other hand, iteratively solves a single-objective
(weighted sum) version of the bi-objective problem. Hence, standard solution
algorithms for the single-objective problem can be used, whenever such algo-

rithms exist. Subsequently, a Phase 2 approach based on ranking is presented.



1.3.2 Two Phase Method 35

Phase 1 — Dichotomic Approach

Phase 1 is dedicated to the computation of supported efficient solutions. This
is achieved by solving several single objective problems in weighted sum for-
mulation (1.1), within a dichotomic approach (first proposed by Cohon 1978;
Aneja and Nair 1979; Dial 1979).

In a dichotomic approach, weights are chosen to obtain a supported non-
dominated point that has the maximal distance to the straight line connecting
the two initial points z(%iez(1,2)) and z(Tez(2,1y) as illustrated in Figure 1.16 for
an example problem. The efficient solution z thus obtained leads to two new
weighted sum problems: one between z(&e,(1,2)) and 2(2) (yielding no new so-
lution in the example), and one between 2(2) and z(Zjeq(2,1)) (yielding one more
solution in the example), see Figure 1.17. If the image of the obtained efficient
solution of such a problem does not lie on the line connecting the images of
the two supported solutions, z(Z) and z(Z), defining it, two new sub-problems
can be formulated. Otherwise, there are no more extreme supported points
between z(Z) and z(Z), so the current sub-problem does not have to be split
up further. The dichotomic method iterates until all weighted sum problems
and arising sub-problems have been solved and a complete set of the extreme

supported efficient solutions is obtained.

The dichotomic method might not allow us to find all supported non-dominated
points on conv(Z) in case there are more than two solutions on the same face of
conv(Z). However, all extreme points will be computed. Missing non-extreme

supported solutions are computed in Phase 2.

Phase 1 — Parametric Approach

An alternative to the dichotomic approach is the parametric approach, which is
based on the (network) simplex method. Hence, this approach is only suitable

to solve bi-objective integer minimum cost network flow (BIMCF') problems.
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Using the symbols from Model (1.6), the BIMCF problem is defined as

. z1(x)
min  z(x) =
22(x)
st. A% =0 (1.16)
uzzx =0
T integer,

with objectives z;(x) = (¢})Tx and 23(x) = (¢*) 2. We assume that ¢!, c? €
R™, b € Z™ and u € N™. The matrix A® is totally unimodular, as every
square sub-matrix of A9 has determinant +1, —1, or 0. With the total uni-
modularity of the constraint matrix A% and integrality of b and u it follows
that every extreme efficient solution of BCMCF, the relaxation of BIMCF, is
an integer solution, see e.g. Wolsey (1998). Therefore, any method to obtain
all extreme points of BCMCF can be used to solve Phase 1 of BIMCF. We use

the parametric network simplex approach here.

Note that in general Phase 1 can be solved by an approach based on the
parametric simplex whenever a linear integer problem with totally unimodular
constraint matrix is considered. We explain only the network simplex version

here, as we are only dealing with network flow problems in subsequent chapters.

There exist several simplex-based approaches that obtain extreme efficient so-

lutions of BCMCF, and hence of BIMCF, e.g. Lee and Pulat (1991); Pulat
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et al. (1992); Sedeno-Noda and Gonzéalez-Martin (2000).

Phase 2 — Ranking

In Phase 2, all missing supported solutions as well as all non-supported solu-
tions must be found. We adapt the pure ranking approach from Section 1.3.1
to solve Phase 2 . The advantage is that knowledge about dominated areas of
the objective space can be exploited to obtain bounds that are more effective
in restricting the ranking process. The bounds are derived similar to those

obtained for the pure ranking approach.

Let z', ... 2% where 2 = (21(2%), 29(z")) and 2* are sorted by increasing 2,
be the non-dominated extreme points obtained in Phase 1. Now each pair of
consecutive extreme efficient solutions x* and ™! defines a triangle 7T} given by
the three points (z;(z%), zo(z?)), (21(z"), 2o(2"™)), and (21 (2™1), 29(x?)). The
triangles T; are the highlighted areas in Figure 1.15. For any solution z that lies
within the triangle T}, 21 (2") < 2z1(2) < z1(2™) and 25(2'™) < 29(2) < 29(29)

holds. Areas of the objective space that lie outside those triangles cannot
contain non-supported points. We derive different weighting factors similar to
those in (1.10) for each triangle T; separately, rather than for the whole area

contained between Tje(1,2) and Tyep(2,1)-

For each pair of neighbouring extreme points z* and 2!, we define weighting
factors

A= 21 (") — z(2") and A5 = zy(2") — 2 (2.

Using A\; and Ay in a weighted sum problem (1.1), we obtain a single-objective
MCF problem which has optimal solutions z?, z'*! (all convex combinations
of ' and z'™! are optimal as well, but they are not necessarily all integer
solutions, of course). We denote the weighted sum objective by N = Nz () +
Aoz ().

Applying a ranking algorithm to the single objective problem min,¢x N, we
can generate feasible solutions in order of their cost. The ranking algorithm
is used to generate all feasible integer solutions in the current triangle until it
can be guaranteed that all non-dominated points have been found. For this

purpose, lower and upper bounds are derived analogously to Section 1.3.1.
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Solutions are ranked as long as

N () £ 6; with 6 = N (21 (2™) = 1) + Ny(z0(2) — 1). (1.17)

Again, the upper bound ¢; can be improved with every efficient solution found
that lies within the current triangle T;. Let & = {20, 2! ... 2% 251} be
a set of feasible non-equivalent solutions whose objective vectors are not dom-
inating each other, and with image in the triangle T; defined by the supported
efficient solutions z*° = 2¢ and 2*"*! = 2'*!. Furthermore, let the elements
of & be ordered by increasing zj-value, so that z;(z%%) < z(z%') < ... <
2 (z7) < 2z (z"+1). This yields the upper bound A; such that ¢* (z) < A, for

all efficient solutions z with image in 7;:

= max{N (@) — 1)+ Az (@) — 1,5 = 0,..., 7},
% = max{\j(zi(a")) + Ay(22(2™)),j = 0,..., 1},
A; = max{yl, i} (1.18)

A; is derived similarly to A in (1.14) with 2* and 2'*" instead of 2e;(1,2) and
Tiex(2,1)- 1f it is sufficient to find a complete set of efficient solutions, A; is
chosen as

A; =L (1.19)

A Phase 2 ranking algorithm basically follows the bi-objective ranking algo-
rithm from Section 1.3.1. This algorithm must be run for every triangle 7;
with different ' separately. To adapt Algorithm 3, @jep1,2) and Tjeq2,1) are

replaced by 2 and 2.

Then, the algorithm can be used to obtain a com-
plete set of efficient solutions &; for each of the triangles T;. Correctness of the
Phase 2 ranking approach, i.e. that UZ.:LMS_1 &; is a complete set of efficient

solutions, follows similar to the proof of Theorem 1.3.1.

Apart from ranking algorithms, problem specific algorithms can be applied in
Phase 2. An example is the bi-objective shortest path problem (see Chapter
2) which can be solved with bi-objective labelling algorithms. Bounds can
again reduce computation time significantly when compared to running the
labelling algorithms without the preceding Phase 1. The bounds restricting

solutions to triangles 7T; can be incorporated into most Phase 2 algorithms,
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such as the bi-objective labelling algorithms, for example. Depending on the
specific solution algorithm at hand, it may also possible to take advantage of

the weighted sum bounds ¢ (z) < A;.






Chapter 2

Bi-objective Shortest Path

Problems

The single objective shortest path problem is extensively studied in the lit-
erature (e.g. Gallo and Pallotino 1988; Cherkassy et al. 1996). Examples of
applications of shortest path problems with more than one objective include
transportation problems (Pallottino and Scutella 1998), routing in railway net-
works (Miiller-Hannemann and Weihe 2006), and problems in satellite schedul-
ing (Gabrel and Vanderpooten 2002).

We consider the bi-objective shortest path (BSP) problem as the natural ex-
tension of the single objective case. BSP belongs to the class of MOCO prob-
lems. The BSP problem is an A'P-hard problem (Serafini 1986) and it also
is intractable, i.e. the number of efficient solutions may be exponential in the
number of nodes (Hansen 1980). Despite this fact, Miiller-Hannemann and
Weihe (2006) suggest that in practical applications with certain characteris-

tics we can expect to find a reasonably small number of efficient solutions.

There are two main approaches to solving BSP problems. The first type in-
cludes enumerative approaches such as label correcting (e.g. Skriver and An-
dersen 2000; Brumbaugh-Smith and Shier 1989), label setting (e.g. Martins
1984; Tung and Chew 1988, 1992), and ranking methods (e.g. Martins and
Climaco 1981; Climaco and Martins 1982). The second main approach is the
Two Phase Method (Mote et al. 1991; Ulungu and Teghem 1995), which ex-

ploits the problem structure.
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Labelling methods work similarly to their single objective (e.g. Bertsekas 1998)
counterparts. For single-objective shortest path problems, every node has a
single label that represents the distance from the start (source) node to this
node. While the algorithm runs, the distance labels may change. At termina-
tion of the algorithm, however, they represent correct shortest path distances
from the source node to every other node in the network. In BSP problems
a node can have several labels, where each label represents a (different) path
from the source node. The labels at the same node do not dominate one an-
other. The set of efficient solutions of the BSP problem corresponds to all
labels at the target node after a labelling algorithm finishes. In label correct-
ing and label setting methods, either one label at a certain node is extended by
all arcs out of that node (label-selection) or all labels at a node are extended

simultaneously (node-selection).

Ranking methods may utilise single objective k-shortest path methods. Ac-
cording to the literature (Huarng et al. 1996; Skriver 2000) k-shortest path
methods are not competitive with label correcting methods. Therefore, we in-
vestigate the application of a near-shortest path method by Carlyle and Wood
(2005), which the authors successfully apply to the k-shortest path problem.

Next to enumerative approaches, a second type of solution approach is the
Two Phase Method. In Phase 1, the extreme supported efficient solutions are
computed. In Phase 2, the remaining efficient solutions are computed with one
of the enumerative approaches mentioned before. The enumerative methods
can be employed in a very effective way as enumeration can be restricted to

small areas of the objective space, see also Chapter 1.

We present well-known strategies to solve the BSP problem and introduce the
two Phase Method with near-shortest path ranking by adapting a near-shortest
path approach in Phase 2. This is the first computational study in which all
known solution approaches for BSP are compared on a large set of different
test networks. In particular, the Two Phase Method is intensively studied
by comparing different computational methods for each of its components.
Our aim is to compare the performance of the different solution approaches.
We investigate performance on two different artificial network structures and
also on road networks, to include some real world network structures into our

considerations as is done by Zhan and Noon (1998) for single objective shortest
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path problems. This comparison is in contrast to some earlier studies, where
only a single network type has been used. We are able to show that contrary
to previous research results, the Two Phase Method is competitive with, if not

better than, the traditional bi-objective labelling approaches in many cases.

Furthermore, we propose a technique to improve the run-time of labelling al-
gorithms, called bounded labelling. Here, a standard labelling technique is
modified to discard labels corresponding to unfinished paths, once it is known
they can never lead to efficient paths anyway. We test the effects our modifi-
cation has on run-time, which shows that the modification achieves significant

improvements for many problem instances.

We also describe a novel application of BSP problems to modelling route
choices of commuter cyclists. It is assumed that cyclists aim to minimise the
distance travelled but also to maximise the attractiveness of a path. Attrac-
tiveness includes factors important to cyclist route choice, for example road

gradient and safety.

In this chapter, BSP problems are introduced in Section 2.1 followed by a
discussion of recent literature in Section 2.2. In Section 2.3 we present the
different algorithms currently used to solve the BSP problem, namely label
correcting, label setting, near-shortest path, and the Two Phase Method. Fi-
nally, numerical results are presented in Section 2.4. We introduce bounded
labelling algorithms in Section 2.5. Section 2.6 is dedicated to cyclist route
choice. All tables containing numerical results appear at the end of this chapter

in Section 2.8.

The content of this chapter is based on Raith and Ehrgott (2009a), Raith
(2008b), and Raith (2006).

2.1 Problem Formulation

In this section, terminology and basic theory of bi-objective shortest path

problems are introduced.

Let G = (V, A) be a directed graph with a set of nodes (vertices) V = {1,...,n}
and a set of arcs A C V x V. Two positive costs ¢, = (cl,c?) € N x N are

associated with each arc a € A. In a road network, for example, the costs c!
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and ¢ could represent time and distance for traversing arc a, respectively.

A path in G from node ¢ € V tonode j € V is a sequence {ay, ag, ..., a;} of arcs
in A with tail node t(ay) = i, head node h(a,) = j, and h(ax) = t(ags1),7 =
1,2,...,1 — 1. The bi-objective shortest path problem (BSP) with source node

s € V and target node t € V can be formulated as a network flow problem:

: z1(z)
min z(x) =
()
1 ifi=s
(2.1)
s.t. Yo Xa— Y, Ta=4 0 ifi#st forallicV
acAt(a)=i a€A,h(a)=1
—1 ifi=t
z, € {0,1} for all a € A,

with z(z) = 3,4 chte and 22(x) = -, 4 c2x,. Here x is a vector of flow on
the arcs and the first set of constraints represent flow balance at the different
nodes. A balance of 1, —1, and 0 indicates that there exists a surplus of one
unit of flow, a demand of one unit of flow, or neither of the two, respectively.
The first set of constraints are flow conservation constraints, which ensure that
one unit of flow is transported through the network from s to ¢. The second
set of constraints restricts flow on an arc to be either 0 or 1. The arcs with

flow value 1 form a path from s to ¢.

2.2 Literature on BSP Problems

Skriver (2000) contains a survey on BSP problems. The surveys on MOCO
problems by Ehrgott and Gandibleux (2000) and Ehrgott and Gandibleux
(2002) both include a section on shortest path problems. A brief survey on
MSP problems is also contained in Tarapata (2007), the part on solution meth-
ods to compute a (complete) efficient set for BSP and MSP is identical with

the two previous references.

In the following we discuss literature not yet covered in a survey. We focus
on exact methods here, that is methods to obtain a complete set of efficient

solutions. There are heuristic approaches to solve the BSP / MSP problem
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(Stewart and White 1989) and methods to find an approximation of the set of
efficient solutions (Warburton 1978; Hansen 1980; Tsaggouris and Zaroliagis
2006; Diakonikolas and Yannakakis 2007). Other methods take advantage of
a utility function according to which an “optimal” solution can be obtained
or help guide a decision maker to a particular solution (Henig 1985; Carraway
et al. 1990; Murthy and Olson 1994; Modesti and Sciomachen 1998; Tarapata
2007). We do not include literature on multi-objective shortest path problems
with other types of objectives than those of the BSP model (2.1). We comment
only on recent literature on identifying a complete set of efficient solutions of

BSP.

Martins and Santos (2000) discuss labelling algorithms for the multi-objective
shortest path (MSP) problem with arbitrary arc costs. They prove bounded-
ness and finiteness results for the MSP problem and also correctness of the
label setting and label correcting approach. They present a generic labelling
algorithm with label selection. They also propose a label setting algorithm
based on node selection for acyclic networks, taking advantage of the fact that

acyclic networks can be put in topological order.

Guerriero and Musmanno (2001) investigate label correcting and label setting
methods for the multi-objective shortest path tree problem. They propose
several strategies for label-selection and node-selection. Computational results
are presented for two different classes of test problems. There are problem
instances where label-selection is superior and others where node-selection is
superior. Furthermore, label setting is superior for some instances, and label

correcting is superior for others.

Sastry et al. (2003) propose several algorithms for multi-objective shortest path
problems with positive and negative arc costs. First, the networks are checked
for negative cycles which are detected by a repeated application (at most once
for every objective) of some single objective shortest path algorithm that can
detect negative cycles. If there is no negative cycle, Sastry et al. suggest
to use a label correcting multi-objective shortest path algorithm with node-
selection similar to the one presented by Brumbaugh-Smith and Shier (1989).
Sastry et al. also propose two other label correcting approaches. They are both
variations to the approach by Corley and Moon (1985). In each iteration of the

algorithm, the labels at each node are updated from all predecessor nodes. The
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algorithm stops when either none of the label sets is modified in an iteration
or when after n iterations the existence of a negative cycle is asserted. In
each iteration nodes are chosen randomly by Sastry et al. whereas Corley and
Moon choose nodes in order of their indices 1,2,...,n. The other variation
by Sastry et al. is to change the manner in which label sets are updated, the
approach is similar to Yen (1970). Now, each iteration is split into two phases.
In the first phase, nodes are updated by labels at nodes with smaller index
than the current node only, in the second phase nodes are updated by labels
at nodes with bigger index. Sastry et al. remark that the first algorithm,
label correcting similar to Brumbaugh-Smith and Shier (1989), performs best

in practical tests.

Miiller-Hannemann and Weihe (2006) investigate the cardinality of the set
of efficient solutions that arises in practical applications. They examine the
characteristics of shortest path problems in train networks with two and three
objectives. They relate network and problem characteristics to the actual
number of efficient solutions. They find that this number is very low despite

the fact that bi-objective shortest path problems are in general intractable.

Paixao and Santos (2007) compare different strategies for labelling algorithms
to solve multi-objective shortest path algorithms. Only labelling algorithms
with label selection are considered. Label setting and label correcting are im-
plemented with different data structures to investigate how labels are best
stored and selected. Label correcting is implemented with two different meth-
ods of selecting the next label: FIFO, where labels are inserted at the back of
a list and selected from its front, and what they call a DEQue, where labels are
inserted in front whenever they are considered better (according to some func-
tion) than the current first label and at the back otherwise. For label setting,
the next label is extracted from an ordered list, a so-called Dial data structure
and a binary heap. The different implementations of labelling algorithms are
compared for a large set of test instances with between two and 20 objectives.
The study shows that label correcting with FIFO list is the overall best ap-
proach for smaller data sets, for label setting the Dial data structure performs
best. For large data sets, again both label correcting approaches outperform

the label setting ones.

Martins et al. (2007) propose a special shortest path ranking algorithm based
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on what they call “shortest deviation paths”. This algorithm is then used
to solve the MSP problem by first ranking all paths and then choosing the
efficient paths among all ranked paths. Computational studies with between
two and ten objectives show that this improved ranking algorithm solves MSP
slower than label correcting with label selection and FIFO list (Paixao and
Santos 2007).

Paixao and Santos (2008) again solve the MSP problem with a ranking algo-
rithm. Here, they introduce bounds on the ranking procedure which should
drastically reduce computation time as not all paths need to be ranked any
more. For a problem with p objectives 21, 29, ..., 2,, they propose to run the
ranking algorithm p times. Each time, a different lexicographic objective is
considered, so that each objective © = 1,2,... k is the preferred component
once (it does not matter which order the remaining objectives appear in). Ini-
tially, a shortest path p* with respect to objective Y7, z; is computed. Clearly,
for every non-dominated solution ¢ of the problem, z;(¢) < z;(p*) holds for at
least one i € {1,2,...,p}. Therefore, ranking of paths with preferred objec-
tive i can be stopped as soon as the i'" objective value of the ranked path
exceeds z;(p*). Apart from initially computing p* as above, they also propose
to construct and update such an upper bound vector while the algorithm runs.
They find this approach inferior to initially computing p*. Using the ranking
algorithm by Martins et al. (2007), they show that MSP is solved quicker by
ranking with their new bounds than by label correcting and label setting algo-
rithms for two out of three network types. For grid networks, however, their
new ranking approach performs significantly worse than label correcting with
label selection and a FIFO list.

Table 2.1 gives a summary of the literature related to the BSP and MSP

problem.

2.3 Solution Methods for BSP Problems

Different methods to find a complete set of efficient solutions of BSP are in-
vestigated here. Three main approaches are identified and then compared in
Section 2.4. One is bi-objective labelling, where we distinguish two different

basic strategies. Label correcting with node-selection is identified as the most
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Table 2.1. Literature on the exact solution of BSP/MSP problems.

Reference Problem  Solution approach

Hansen (1980) BSP Label setting, label-selection

Martins and Climaco (1981) BSP Ranking

Climaco and Martins (1982) BSP Ranking

Martins (1984) MSP Label setting, label-selection

Corley and Moon (1985) MSP Label correcting node-selection

Hartley (1985) MSP Label correcting node-selection

Henig (1985) BSP Label correcting node-selection

Tung and Chew (1988) BSP Label setting, label-selection

Brumbaugh-Smith and Shier (1989) BSP Label correcting, node-selection

Azevedo and Martins (1991) MSP Ranking

Mote et al. (1991) BSP Two Phase Method

Tung and Chew (1992) MSP Label setting, label-selection

Huarng et al. (1996) BSP Computational comparison

Skriver and Andersen (2000) BSP Label correcting, node-selection

Martins and Santos (2000) MSP Label setting and correcting
node- and label-selection

Guerriero and Musmanno (2001) MSP Label setting and correcting
node- and label-selection

Sastry et al. (2003) MSP Label correcting, node-selection

Paixao and Santos (2007) MSP Label setting and correcting
label-selection

Martins et al. (2007) MSP Ranking

Paixao and Santos (2008) MSP Ranking
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successful approach to solve BSP problems by Skriver and Andersen (2000)
whereas label setting was found superior by Guerriero and Musmanno (2001),
for example. The second solution method is the adaptation of a near-shortest
path procedure by Carlyle and Wood (2005) to BSP in lieu of a shortest path
ranking algorithm. Finally, the Two Phase Method for BSP by Mote et al.
(1991) is investigated. We compare several solution strategies that can be used

to solve the different components of the Two Phase Method.

2.3.1 Bi-objective Label Correcting

A bi-objective label correcting method is a straightforward extension of the
single objective version. The main difference for two or more objectives is that
there may be several labels at a node, each corresponding to one path, which

do not dominate one another.

Approaches to label correcting differ in whether they employ label-selection
or node-selection. Label-selection means that all labels are treated separately.
A label [ at some node i is extended along all arcs a with tail node t(a) = i.
The extended label [ + ¢, is inserted into the label set at node j = h(a) if it is
not dominated. The new label may dominate other labels at node j which are
deleted. Node-selection means that a node 7 is selected and all its labels are
extended via all outgoing arcs. If the label set at node j changes, for example
due to the addition of a new label [ + ¢,, it has to be reconsidered in a later
iteration. This means that the node has to be scanned again and all its labels
have to be extended via all outgoing arcs to enable the change of the label set

at node j to propagate through the network.

Algorithm 4 summarises the bi-objective label correcting algorithm with node-
selection. Initially, the only labelled node is the source node s with label set
Labels(s) = {(0,0)}. All labels at a particular node ¢ are extended along all
outgoing arcs a with ¢(a) = 7. Dominated labels are eliminated from the labels
extended from node i and the labels already present at the end node j = h(a).
The remaining labels form the new label set at node j. Whenever the label
set of a node changes, the node has to be marked for reconsideration. At
reconsideration, the mark of the node is deleted. When no nodes are marked

for reconsideration any more, the algorithm terminates. When traversing an
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Algorithm 4 Bi-objective Label Correcting

1: input: Graph (V, A), cost function ¢ = (c!, ¢?), and source node s.

2: modNodes = {s}: list of nodes with modified labels that have not yet
been reconsidered, treated in FIFO order.

3: Labels(s) = {(0,0)} and Labels(i) = 0,i € V\{s}: Labels(i) is the list of

labels at a particular node 1.

4: while modN odes is nonempty do

5. Remove first node i from modNodes. [+ FIFO x/

6: for all a € A with ¢(a) =i do

7 j= h(a)

8: merge(Labels(i) + ¢4, Labels(j)) /x extend all labels at ¢ by ¢, and
merge with labels at j, eliminating all dominated labels */

9: if the label set of j has changed and j ¢ modNodes then

10: Append j to modNodes. [+ FIFO x/

11: end if

12:  end for

13: end while

14: output: Efficient path length from source node s to all other nodes, paths
can be backtracked using labels.

outgoing arc from a node with multiple labels, every label has to be extended
along this arc and tested for dominance with the labels of the end node of the
arc, this operation is called merging. Merging is the most expensive component
of a bi-objective label correcting algorithm. The label sets are ordered so that
the first component is increasing to reduce computational effort of the merge
operation, which in our case is O(|L| + |M|) when the sets £ and M are
merged (Brumbaugh-Smith and Shier 1989). We also implement the condition
to detect dominance of the whole label set by Skriver and Andersen (2000).

Once the label correcting algorithm terminates, the set Labels(t) contains all
non-dominated path costs at the target node ¢. The corresponding efficient
solutions (the paths) can be obtained by backtracking the appropriate labels.

To facilitate this, we store the in-going arc with every label.

Despite the results of Guerriero and Musmanno (2001), we opt for node-
selection, the approach also chosen by Skriver and Andersen (2000) (see also
Brumbaugh-Smith and Shier 1989), which is described in Algorithm 4 above.
We believe that it is more efficient from a computational point of view to
compare whole label sets rather than just individual labels within a label cor-

recting algorithm. We were able to confirm this presumption by implementing
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label correcting with node-selection and with label-selection. Our numerical
tests show that node-selection is the faster approach. The additional compu-
tational effort of maintaining individual labels, extending them via outgoing
arcs a and merging each individual extended label with the label set at node
h(a) outweighs the reduction in run-time achieved by not having to consider
all labels of a node even though only some of the labels in the set may have

changed.

Label correcting with node-selection is implemented as follows. Label lists
at each node are represented by linked lists. Linked lists have the advantage
that dominated labels can easily be removed from the list. Labels are ordered
according to §legj(1,2) which ensures that the label sets can be compared effi-
ciently. The list modNodes, which keeps track of which nodes to consider next
(in FIFO order), is implemented as a circular list similar to the FIFO list of

the single-objective label correcting algorithm in Pape (1974).

2.3.2 Bi-objective Label Setting

While one can choose between node-selection and label-selection when imple-
menting a label correcting algorithm, label setting schemes only work with
label-selection as it has to be guaranteed that the label of a non-dominated
path is selected. To explain the label setting algorithm, only the main dif-
ferences to the label correcting algorithm described in Section 2.3.1 are high-

lighted.

Out of all labels one that is guaranteed to remain non-dominated has to be
selected. There are different rules of selection to guarantee this, see Tung and
Chew (1988) and Paixao and Santos (2007). The selection of a lexicograph-
ically smallest label, for instance, complies with this requirement. All newly
generated labels are tentative. In our implementation, in each iteration a lex-
icographically smallest label is selected among all tentative labels. This label
is guaranteed to belong to an efficient path from source node s to the node ¢
the label [ belongs to. The label [ at node i is extended via all outgoing arcs a
with tail node t(a) = i similar to the procedure described in Section 2.3.1 for
label correcting. Only one label is extended at a time and compared with all
labels at the head node j = h(a). Dominated labels are deleted from the label
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Algorithm 5 Bi-objective Label Setting
1: input: Graph (V, A), cost function ¢ = (c!, ¢?), and source node s.
2: Labels(s) = {(0,0)} and Labels(i) = 0,7 € V\{s}: Labels(i) is the list of
labels at a particular node <.
3: TentativeLabels = {(0,0) > s}: contains all tentative labels and the node
¢ the label is associated with indicated by > i.

4: while TentativeLabels # () do

5. Remove a lex(1,2)-best label (11, [5) > from TentativeLabels.

6: for all a with ¢(a) =i do

7 j= h(a)

8: merge((ly,ls) + ¢4, Labels(j)) /* extend label (I1,l3) at i by ¢, and
merge with labels at j, eliminating all dominated labels */

9: if the label set of j has changed then

10: Insert new label (I1,15) + ¢, > j into Tentative Labels.

11: Remove all deleted labels at j from TentativeLabels.

12: end if

13:  end for

14: end while

15: output: Efficient path length from source node s to all other nodes, paths
can be backtracked using labels.

list at node j and also from the set of tentative labels.

A lex(1,2)-best element needs to be extracted from TentativeLabels in every
iteration. We initially implemented the set T'entativeLabels as an ordered
list, where the first element is always a lex(1,2)-best label. However, this list
implementation is inferior to a binary heap implementation. The bi-objective

label setting algorithm LSET is summarised in Algorithm 5

We implement T'entativeLabels as a binary heap to facilitate the extraction
of a lex(1,2)-best label from TentativeLabels. Among other data structures,
heaps are used to efficiently store labels in single-objective label setting algo-
rithms (Ahuja et al. 1993). Our binary heap is implemented based on a binary
heap by Weiss (last visited 02/2009). Removing an element from the heap is
a costly operation. We tried deleting labels from the heap in case they are
dominated, or leaving them in the heap and only marking them as dominated.
We found it more efficient to delete labels as the large number of labels can
lead to a memory shortage that eventually slows down the computer. Also, the
resulting heap structure becomes very large making insertion and extraction

operations all the more time consuming.
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2.3.3 Ranking — Near-Shortest Path

Methods such as the k-shortest path algorithm generate one path after the
other, with increasing objective function values. When used to solve a bi-
objective problem, among all generated paths the non-dominated ones are

selected as discussed in Section 1.3.1.

Computing paths ordered by their length comes with a large computational
effort, but for the solution of the BSP problem, the order in which solutions
are computed does not matter, as long as all efficient solutions are obtained.
According to the literature, k-shortest path approaches cannot be successfully
applied to BSP problems as the cost of finding paths in order of their lengths
is quite high (Huarng et al. 1996; Skriver 2000). Instead of a k-shortest path
procedure, we use the near-shortest path method by Carlyle and Wood (2005),
which aims at finding all paths the length of which is within a certain deviation
e from the optimal path length w, thus having a maximal path length of
0 = w + e. The near-shortest path algorithm does find all paths within a
certain deviation of the optimal path value, but they are not computed in
any particular order. On the basis of computational tests, Carlyle and Wood
conclude that their near-shortest path routine even solves the k-shortest path
problem faster than other algorithms dedicated to solving the k-shortest path
problem. We use the implementation of the method ANSPRO by Carlyle and
Wood, which the authors identify as best approach, and carry out some slight

modifications.

In order to use the near-shortest path (NSP) procedure, a weighted sum of the
two objectives in BSP, see (1.1), is considered. To this end weighting factors
A1 > 0 and Ay > 0 are defined as in (1.10) in Section 1.3.1. The required
lex(1,2)- and lex(2, 1)-best solutions are determined in an initialisation phase.
We investigate the usage of different algorithms in initialisation, see Section

2.3.4.

Upper bounds originating from the two lexicographically best solutions ;e 2)

and Tjep(2,1) can be used to restrict enumeration, refer to the bounds (1.12).

Algorithm 6 gives a description of the NSP algorithm for a directed graph
G = (V, A) with source node s and target node t. A cost ¢} > 0 is associated

with each arc a € A, where ¢ = Ajcl + Aac?. The worst possible weighted
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Algorithm 6 NSP
1: input: Graph (V, A), cost function ¢ = (c!, ¢?), source node s, and target
node t.

2: L(i): the weighted sum path length at i.

3: d'(i),d?(7): length of the path at i for the first and second objective.

4: for all 7 € N do

5. d(i) = weighted shortest path distance from i to ¢

6: end for

7. stack = s

8: L(s) =0 and d*(s) = 0;k = 1,2

9: while the stack is not empty do

10: @ = top node of stack

11:  if nextArcOutOf (i) # () then

12: a = next arc out of i; j = h(a)

13: if (L(i) + ¢y +d(j) £6) and (d* (i) + ¢} < 2" (Tyex2,y) — 1) and
(d(i) + 2 < 2*(Tiep(1,2)) — 1) then

14: L(j) = L(i) + ¢} and d*(j) = d*(i) + ¥ k = 1,2

15: if j is target node t then

16: Save current candidate solution. /% possibly eliminating previ-

ous candidate solutions that are now dominated */

17: Pop j from stack.

18: else

19: Put 7 on top of stack.

20: end if

21: end if

22:  else

23: Pop i from stack. /* no more outgoing arcs */

24:  end if

25: end while
26: output: Efficient paths from node s to node ¢ and their lengths.

sum value of a feasible efficient path is the weighted sum value of the improved
nadir point 6 = A (21(%ea1,2)) — 1) + A2(22(@ex(2,1)) — 1), see also Equation
(1.13). We modify NSP slightly to integrate the bounds given in (1.12) on the
respective objectives. We simply add two label sets d' and d? to keep track of
the current value of the two objectives and thus allow for comparison with the
respective upper bounds. See Algorithm 6 which includes our changes to the
original NSP.

The NSP algorithm repeatedly computes candidate solutions  satisfying the
bounds in (1.12) and ¢*(2) < 6. Only after the algorithm terminates, we know

that the remaining candidate solutions are indeed efficient. It is possible to
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exploit candidate solutions in order to improve the upper bound 0 by the upper
bound on the weighted sum value, refer to the computation of A in Equation
(1.14). We again take advantage of the fact that every computed candidate
excludes a certain area of the objective space by domination, even though it
may not represent a non-dominated point. In Algorithm 6, we can insert an
additional step where ¢ is updated by A whenever a new candidate solution is

computed. We insert the following step between steps 16 and 17:

Compute A and update § = A.

The shortest path distances from all nodes i to t in Steps 4-6 in Algorithm 6 are
computed with a single-objective label correcting algorithm in the implementa-
tion of NSP by Carlyle and Wood (2005). In addition to their implementation,
we replace their label correcting algorithm by Dijkstra’s algorithm and denote
this approach by NSPD. For details on the two single-objective shortest path

algorithms refer to the section on initialisation in Section 2.3.4.

2.3.4 Two Phase Method

The general idea of the Two Phase Method is discussed in Section 1.3.2. Here,
it is applied to solve BSP problems. In Phase 1 extreme supported efficient so-
lutions are computed. In Phase 2 the remaining supported and non-supported
efficient solutions are computed with an enumerative approach. An initiali-
sation phase to compute one or two initial solutions is necessary to start the
Two Phase Method off. Different solution methods for initialisation, Phase 1,

and Phase 2 are implemented and compared.

In Phase 1 two main approaches are pursued. On the one hand single objec-
tive label setting and label correcting shortest path methods are used to solve
the single-objective problems arising in the dichotomic approach from Section
1.3.2. On the other hand a network simplex algorithm solves BSP in a para-
metric approach. In Phase 2, the ranking and bi-objective labelling approaches
discussed in the previous sections are employed with the additional benefit of

bounds derived in Phase 1.

Mote et al. (1991) propose a Two Phase Approach to solve the BSP problem
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with a parametric network simplex approach in Phase 1 and a label correct-
ing algorithm in Phase 2. Here, we investigate the usage of several different
algorithms for initialisation, Phase 1, and Phase 2 in order to identify a good

combination.

Initialisation

In the initialisation phase a lexz(1,2)-best or lex(2,1)-best solution or both
need to be computed, depending on which approach is chosen in Phase 1. Here,
single objective shortest path problems are solved with appropriate objective
functions: the relations < and = in the standard single-objective shortest
path algorithms are replaced by <c;12) and 2jez(1,2) to compute yeq(1,2) (or
by Sie(2,1) and Ziep(2,1) to compute Tiem21)). The following shortest path

algorithms are investigated:

e The single objective label correcting algorithm is, for example, discussed
in Bertsekas (1998). In the context of their near-shortest path algorithm,
Carlyle and Wood (2005) implement such a label correcting algorithm
where nodes are treated in FIFO order and the list to determine which
node is considered next is circular (as proposed in Pape 1974). We modify
the original implementation to incorporate the lexicographic objective.
This approach will be denoted by “L”.

e The single objective label setting algorithm is also discussed in Bertsekas
(1998). A study by Cherkassy et al. (1996) compares several implemen-
tations of such label setting algorithms. Omne of the most successful
algorithms is DIKBD, a double bucket implementation of Dijkstra’s label
setting algorithm (as proposed in Denardo and Fox 1979). We select this
algorithm and modify the original implementation to adjust it to the
lexicographic objective. This approach will be denoted by “D” in the

following.

We also tried to solve the initialisation problem with a single-objective network
simplex algorithm. We observe that all but the smallest problem instances are
solved much faster with any of the two above single-objective labelling algo-
rithms. Therefore, the simplex method will be omitted from the computational

results section.
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Phase 1

Both Phase 1 approaches are discussed in Section 1.3.2. We employ a di-

chotomic approach as well as the parametric network simplex approach.

Two different solution strategies are distinguished for the dichotomic approach.

e The first dichotomic approach uses the label correcting method (L) dis-
cussed above among the initialisation approaches to solve the single ob-
jective weighted sum problems that arise from the dichotomic approach.

We denote the dichotomic label correcting approach by “LDIC”.

e The second dichotomic approach uses the label setting algorithm (D)
from the initialisation section above to solve the single objective weighted
sum problems that arise from the dichotomic approach. We denote the

dichotomic label setting approach by “DDIC”.

When solving the BSP problem with a parametric network simplex approach,
as described in Section 1.3.2, the BSP formulation (2.1) above has some disad-
vantages. Problems arise as the network simplex method performs many basis
exchanges without an actual flow change because the flow on all basic arcs that
are not part of the actual path from s to t is zero. If a basis exchange involves
only those arcs, there is no flow change at all. To avoid this situation we use
another formulation, the bi-objective shortest path tree (BSPT) problem. This
formulation is also used by Mote et al. (1991):

: 21 ()
min z(x) =
22 ()
n—1 ifi=s
s.t. Yoo xa— >, Xy = foralla € A
acAt(a)=i a€Ah(a)=i —1 ifi#s
T, 20 for all a € A
T integer for all a € A.

By modifying the constraint set of BSP, we now state the problem of finding
the shortest path from source node s to all other nodes, resulting in nonzero

flow on all basic arcs. Although not every basis exchange leads to a change
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of the shortest s-t path, it does lead to some change in the shortest path tree
rooted at s. This approach ensures a flow change whenever the basis changes

and degeneracy of the problem is avoided.

Whenever the shortest path from s to ¢ changes, another efficient solution is
found. This yields the third and final Phase 1 approach.

e The parametric network simplex approach is obtained by modifying
the existing implementation of a network simplex algorithm, called MCF
(Lobel 2004). The parametric network simplex algorithm is denoted by
“SPAR” in the following.

Phase 2

In Phase 2 it is possible to benefit from the work already done in Phase 1
to significantly reduce computation time of the enumerative methods used.
For each of the triangles defined for two consecutive adjacent extreme non-
dominated points, bounds are derived as described in Section 1.3.2. In each
triangle an enumerative shortest path method is used to obtain non-supported

solutions (if there are any).

We investigate a label correcting method (LCOR), a label setting method
(LSET) and a ranking method (NSP/NSPD). In Phase 2 the following different

approaches are studied.

e Bi-objective label correcting (LCOR) as described in Section 2.3.1. The
LCOR algorithm can be run for every pair of consecutive supported
non-dominated points. Labels are discarded as soon as they violate any
bounds. We find that a lot of effort is put into the enumeration of paths
that are discarded at a very late stage of the algorithm. In particular,
many paths are enumerated for every pair of consecutive solutions that

do not end up within the bounds for any of them.

Therefore, in Phase 2 we run LCOR just once (instead of once for every
triangle), and discard labels that are not in any of the areas defined
by two consecutive supported non-dominated points or that cannot be
extended to end up within any of them. In contrast to using LCOR
in Phase 2, the original LCOR algorithm can only delete labels that
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are dominated by other labels at some node, but there are no “global”

bounds on objective values.

e Bi-objective label setting (LSET) as described in Section 2.3.2 is em-
ployed in a similar fashion as LCOR above.

e Near-shortest path (NSP and NSPD) as described in Section 2.3.3, is
executed for every pair of consecutive supported non-dominated points
z(z") and z(z'™'). The upper bounds are calculated in terms of z* and
2" instead of ex(1,2) and Xep(2,1) as explained in Section 1.3.2 on solving
Phase 2 with a ranking algorithm. Paths are only expanded if they do not
violate any bounds. Due to the lower bounds considered in NSP/NSPD,

paths can often be discarded early during computations.

2.4 Numerical Results

We investigate the performance of the different solution methods on three dif-
ferent kinds of networks. Firstly, we introduce the types of networks considered

and then present computational results.

2.4.1 Test Instances

We investigate three different network types: grid networks, random NetMaker
networks and road networks. We also experiment with networks generated by
NETGEN (Klingman et al. 1974), which we modify to incorporate two costs
for each arc. The networks thus generated have very few efficient paths, often
only between one and three. Therefore NETGEN networks were not included

in our computational experiments.

Grid Networks

Nodes are arranged in a rectangular grid with given height h and width w.
Every node has at most four outgoing arcs (up, down, left and right), to
its immediate neighbours. Only nodes on the boundary of the grid have less

outgoing arcs. There are two distinct nodes beyond the grid structure: a source
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Figure 2.1. Structure of grid networks.

node s and a target node t. There is an arc from s to every node on the left
margin of the grid and an arc from every node of the right margin of the grid to
the target node t. Figure 2.1 shows the structure of grid networks. The costs
(carc

e {1,2,...,10},k = 1,2. Carlyle and Wood (2005) use grid networks for
numerical tests on NSP algorithms. Refer to Table 2.2 for a listing of problem

) for arc a are chosen randomly from a discrete uniform distribution with

instances. Instances G15-G33 are grid networks with approximately the same

number of nodes, but varying in width and height.

NetMaker

Skriver and Andersen (2000) propose an alternative, NetMaker, to using a
pure random network generator such as NETGEN. They state that NETGEN
generates networks containing very few efficient paths, an observation we agree
with. Here, nodes are numbered from 1 to n, where node 1 is the source
node, node n is the target node. We use a random number generator that
generates discrete uniformly distributed random numbers. NetMaker networks
are constructed by first generating a random Hamiltonian cycle to ensure that
the network is connected. Then a random number of arcs out of every node
is generated, in between a minimum and maximum number of outgoing arcs.
An arc out of node i can only reach nodes j with j € [i — [fede] j 4 [Inete]])
where I,,4. denotes the node interval, the maximum allowed range for an

arc. Arc costs are determined randomly. It is randomly chosen whether ¢! €
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Table 2.2. Grid network test problems.

Name h X w Nodes Arcs [ZN] Name h X w Nodes Arcs [ZN]
G1 30 x 40 1202 4720 37 G15 2450 x 2 4902 19596 6
G2 20 x 80 1602 6240 80 G16 1225 x 4 4902 19592 6
G3 50 x 90 4502 17820 124 G17 612 x 8 4898 19586 10
G4 90 x 50 4502 17900 46 G18 288 x 17 4898 19550 15
G5 50 x 200 10002 39600 290 G19 196 x 25 4902 19550 18
G6 200 x 50 10002 39900 12 G20 140 x 35 4902 19530 32
G7 100 x 150 15002 59700 149 G21 111 x 44 4886 19448 54
G8 150 x 100 15002 59800 122 G22 92 x 53 4878 19398 53
G9 100 x 200 20002 79600 247 G23 79 x 62 4900 19468 "
G10 200 x 100 20002 79800 132 G24 70 x 70 4902 19460 93
G11 200 x 150 30002 79800 204 G25 62 x 79 4900 19343 95
G12 50 x 50 10002 39600 52 G26 53 x 92 4878 19320 93
G13 100 x 100 10002 39800 113 G27 44 x 111 4886 19314 137
G14 200 x 200 40002 159600 309 G28 35 x 140 4902 19320 209

G29 25 x 196 4902 19208 244

G30 17 x 288 4898 19008 371

G31 8 X 612 4898 18360 819

G32 4 x 1225 4902 17150 1383

G33 2 x 2450 4902 19596 1594

{1,2,...,33} or ¢} € {67,68,...,100} and a number in the chosen interval
is randomly allocated as cost. The cost ¢2 is then randomly chosen from the

other interval. We include three modifications to the structure of NetMaker:

a) Penalise the cycle: arc weights ¢¥, k = 1,2 as above but for all arcs in

the Hamiltonian cycle, choose c&, k = 1,2 randomly in {1,2,...,10000}.

b) Balance outgoing arcs: to make NetMaker networks more comparable to
grid networks, we enforce that roughly half of the arcs out of a node go
to nodes with higher node numbers and half of them to nodes with lower
numbers. Arc weights are chosen like in a) for all arcs of the Hamiltonian
cycle, for all other arcs choose ¢* € {1,2,...,10},k =1,2.

¢) More penalty on cycle: for all arcs that are part of the Hamiltonian cycle
c® =10000, k = 1,2. Everything else is the same as in b).

The structure of NetMaker networks is illustrated in Figure 2.2 and problem
instances are described in Table 2.3. The instances were constructed to wrap
around, so that arcs from nodes with low numbers that reach backwards may

connect to a node with very high number, i.e. close to the target node. Note
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Figure 2.2. Structure of NetMaker networks.

that this may not be exactly the network structure the authors of Skriver and

Andersen (2000) had in mind originally.

Road Networks

The road networks of the states of the US were extracted by Schultes (2005)
from US Census (2000). We use road networks to test our methods on real
world data. In the original data, networks are undirected and we convert them
into directed networks by duplicating arcs. We also add a Hamiltonian cycle
with high arc costs to ensure connectedness of the networks. In the original
data, there is not always a path from a node to every other node. This happens
for example for the Rhode Island data, as there are a few islands that are not
connected to the mainland via roads. Each arc a is equipped with arc costs
where ¢! is the time needed to travel the arc and c¢? is the travel distance in
metres. Travel time is determined by multiplying the travel distance of an
arc by one of four different road quality factors. Source and target node are
chosen randomly from a discrete uniform distribution. Figure 2.3 shows the
road network of Washington DC, the smallest of the road network instances. In
the figure, roads of type “primary highway with limited access” and “primary

road without limited access” were combined into the group “primary road”.

We run tests with three different kinds of road networks. We use the networks
of the states Washington DC, Rhode Island, and New Jersey, of which the
network sizes are listed in Table 2.4. For each road network we test nine

instances with different (randomly chosen) source and target nodes.
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primary road
secondary and connecting road

e small road

Figure 2.3. Road network of Washington DC and close-up of the area around
the White House.
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Table 2.3. NetMaker network test problems.

Outgoing arcs Var a) Var b) Var ¢)
Name Nodes Inode min max Arcs | Zn| Arcs [ZN| Arcs |ZN|
NM1 3000 20 5 15 31559 6 31502 1 31646 3
NM2 3000 20 1 20 33224 8 33122 1 33229 4
NM3 3000 50 5 15 31345 9 31548 2 31775 2
NM4 3000 50 1 20 33536 15 32641 3 32963 4
NM5 3000 50 10 40 76095 6 76924 3 77388 3
NM6 7000 20 5 15 73524 6 73940 1 73575 2
NM7 7000 20 1 20 77024 5 76775 3 76547 3
NM8 7000 50 5 15 73676 3 73282 2 73369 3
NM9 7000 50 1 20 76821 7 77518 1 76658 3
NM10 7000 50 10 40 178476 6 178292 6 180611 4
NM11 14000 20 5 15 146598 6 147388 2 146979 2
NM12 14000 20 1 20 154159 6 154115 4 154252 1
NM13 14000 50 5 15 146919 2 146900 2 147187 1
NM14 14000 50 1 20 153742 17 154213 2 153068 4
NM15 14000 50 10 40 357866 7 358264 3 356367 3
NM16 21000 20 5 15 220313 5 220685 3 220794 3
NM17 21000 20 1 20 231402 4 230403 1 230432 1
NM18 21000 50 5 15 220687 7 219606 3 219931 1
NM19 21000 50 1 20 230497 4 231876 2 232465 1
NM20 21000 50 10 40 534288 5 536151 3 533980 3
Table 2.4. Road network test problems.
Name State Nodes Arcs |Zn|: average Min Max
DC1-DC9 Washington DC 9559 39377 3.33 1 7
RI1-RI9 Rhode Tsland 53658 192084 9.44 2 22
NJ1-NJ9 New Jersey 330386 1202458 10.44 2 21

2.4.2 Results

All numerical tests are performed on a Linux (Fedora Core 6, kernel 2.6.20)
computer with 2.40GHz Intel® Core™?2 Duo processor and 2GB RAM. We
use the gece compiler (version 4.1.1) with compile option -O3. The methods
are implemented in C. We adapt program code from Carlyle and Wood (2005)
for NSP, NSPD and L. For D we adapt program code for the DIKBD algorithm
presented in Cherkassy et al. (1996). The network simplex is a modification
of MCF (by Lé&bel 2004). When measuring run-time, we disregard the time it
takes to read the problem from a problem file. Run-time does include the
generation of all non-dominated path labels together with the actual paths.
The only exception are LCOR and LSET, where the paths can be obtained
by backtracking the labels at each node, here the time for the backtracking
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Figure 2.4. LCOR vs LSET - grid networks; logarithmic scale; 0.001 represents
run-time < 0.01.

process is not included in the run-time. Run-time is measured with a precision
of 0.01 seconds, any run-time less than 0.01 seconds will appear in the tables as
0.00. All figures are in logarithmic scale, in order to display all run-times in the
same figure. We also modify run-times that appear as 0.00 in tables to 0.001
in figures. Whenever the run-time exceeds 3600 seconds, the computation is

W

stopped, this is indicated in tables by “-”. We present run-times in figures in
this section. The corresponding tables can be found in Section 2.8 at the end

of this chapter.

We first compare the performance of LCOR and LSET. We then comment on
the performance of NSP and NSPD. We also identify the best approaches to use
in initialisation, Phase 1 and Phase 2 of the Two Phase Method. Finally, we
compare the Two Phase Method with the best bi-objective labelling approach
and the best near-shortest path approach.

Best Bi-objective Labelling Approach

A comparison of run-times of LCOR and LSET is shown in Figures 2.4 - 2.6 and
Table 2.10 in Section 2.8. LSET performs better than LCOR only for road
networks. LCOR performs better than LSET for grid and most NetMaker
networks. Despite the superior performance of single-objective label setting

(D) this is an expected result. In a BSP problem, there are significantly more
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Figure 2.7. NSP vs NSPD - grid networks; run-times of NSP and NSPD
are identical where only the red marker is visible; logarithmic scale; 0.001
represents run-time < 0.01.

labels than in a single-objective problem, as there may be several labels at every
node. A label setting algorithm entails the additional effort of extracting in
every iteration a lexicographically minimal label among all the tentative labels
that currently exist at all nodes. Another advantage of our implementation
of LCOR is that all labels at a node i are extended along arc a with t(a) =i
and compared to all labels at node h(a). A label setting algorithm only allows
to extend and compare one label at a time again presenting an advantage in
run-time for LCOR.

Guerriero and Musmanno (2001) report that bi-objective label setting outper-
forms label correcting for random network instances with between 500 and 1000
nodes and high density, i.e. big ratio m/n. In our results, however, problems
with high density such as NetMaker instances are solved particularly badly by
the label setting algorithm. In Guerriero and Musmanno (2001), LSET and
LCOR also perform similar for grid networks (which are different to ours as
they contain additional random arcs). Since the authors do not give details

about their implementation of LSET, we are unable to explain why our results

differ.
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Best Near-Shortest Path Approach

To run NSP/NSPD the lex(1, 2)-best and the lex(2, 1)-best solution are needed
to set up initial bounds and find a weighting factor. We use the best initiali-

sation approach as identified in the next section.

Results are presented in Figures 2.7 - 2.9 and Table 2.11 in Section 2.8. Clearly,
NSPD performs better than NSP for NetMaker and road networks. The reason
is that the near-shortest path algorithm computes single-objective shortest
path distances from every node i to ¢ before enumerating paths. As D is the
best approach to solve the single-objective problem for both network types

(refer to Section 2.4.2), we expect NSPD to perform best here.

The pure near-shortest path algorithm is badly suited to solve grid network
problems which is due to the structure of the solution space. In objective
space many feasible points are very close to the non-dominated points. There-
fore, it can only be determined that they are dominated at a late stage of the
algorithm. Their corresponding labels have to be considered throughout the
algorithm before they are deleted at the very end of it, which leads to large
computational effort and long run-times. The near-shortest path algorithm
benefits from an upper bound on the weighted sum objective value to re-
strict enumeration. For grid networks this bound is quite far from the optimal
weighted sum objective value, hence very many feasible paths are enumerated.
Most grid network instances were stopped after running NSP and NSPD for

an hour.

NSP was tested by Carlyle and Wood (2005) on grid networks of size 40 x 25
and 100 x 50 but with the deviation from the optimal path varying from ¢ = 1
to € = 6. These values of ¢ are significantly smaller than the values that arise
when solving our BSP problems instances. For grid networks, we get values of
e that mostly exceed 10000 initially (with an average initial value of 5351394).
The deviation € can never be improved to a value better than the weighted
sum value of Tjep(1,2) and Tyep(2,1). In our grid instances the smallest possible
deviation, the difference between the weighted sum value ¢*(Zjez(1,2)) and the
length of the optimal weighted path w, is at most 0.27 times the original value
of . We observe that problem instances with an initial value of ¢ < 10000 can
be solved within not even a second, whereas the algorithm does not terminate

within 3600 seconds for instances with larger initial e.
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Paixao and Santos (2008) also apply a ranking algorithm to different networks
and find it performs better than a labelling algorithm for two different network
types. However, for their third network type, namely grid networks, they
report that their ranking approach yields much longer run-times than labelling

algorithms.

Best Approaches for Two Phase Method

We present several different approaches for each phase of the Two Phase
Method. They are

e Initialisation with L /D,
e Phase 1 with LDIC/DDIC/SPAR, and

e Phase 2 with LCOR/LSET/NSP/NSPD.

Initialisation results are shown in Figures 2.10 - 2.12 and Table 2.12 in Sec-
tion 2.8. Our experiments show that Dijkstra’s algorithm is clearly the best
approach for NetMaker and road networks. For grid networks both Dijkstra’s
algorithm (D) and the label correcting algorithm (L) show similar performance.
There is no clear winner for grid networks, as the problems are fairly small
single-objective shortest path problems so that the running times never exceed
0.01 seconds. Results by Cherkassy et al. (1996) indicate that performance of
label setting and label correcting algorithms is fairly similar for simple grid
networks like we use them in our tests. We choose to use Dijkstra’s algorithm

for initialisation for all three network types.

Whenever there is only one efficient solution to a problem, this is detected after
initialisation for any dichotomic approach (LDIC or DDIC) as the lex(1,2)-
best and the lex(2, 1)-best solution are identical. In this case there is no need
to run Phases 1 and 2 which is indicated by “NA” in Tables 2.13 and 2.14 in
Section 2.8. In Figures 2.13 - 2.18 the corresponding results do not appear.

In Phase 1 we investigate the dichotomic approach where the arising single-
objective problems are solved by the label correcting algorithm (LDIC) or
Dijkstra’s algorithm (DDIC). Another approach is the parametric simplex ap-
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Figure 2.15. Phase 1 - road networks; logarithmic scale.
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Figure 2.16. Phase 2 - grid networks; run-times of NSP and NSPD are sim-
ilar or identical where only the red marker is visible; logarithmic scale; 0.001
represents run-time < 0.01.

proach (SPAR). For detailed results, refer to Figures 2.13 - 2.15 and Table 2.13

in Section 2.8.

Our experiments show that the parametric approach is not competitive with
the others. DDIC is clearly the best approach for NetMaker and road networks.
For grid networks LDIC performs slightly better than DDIC, the reason being
that for grid networks the single-objective approach L is slightly better than
D, and this slight advantage adds up when solving several single-objective
problems in the dichotomic approach. For grid networks Phase 1 is solved in
less than one second by LDIC and DDIC and their run-times are fairly similar.

We choose DDIC as best Phase 1 approach for all network types.

For Phase 2 we investigate bi-objective label correcting (LCOR) and label
setting (LSET) and also the usage of a near-shortest path algorithm, with one
version using single-objective label correcting to initialise shortest paths (NSP)
and the other using Dijkstra’s algorithm (NSPD). For results, refer to Figures
2.16 - 2.18 and Table 2.14 in Section 2.8.

The run-times in Phase 2 for grid networks show that LCOR performs better
than LSET. For road networks, however, LSET is better than LCOR. For
NetMaker instances, all run-times of both LCOR and LSET are less than 0.01
seconds. The advantage of the Two Phase Method becomes apparent here, as

LSET by itself performs very poorly for almost all NetMaker networks (see
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Figure 2.5). Utilised in Phase 2, however, LSET is a very successful approach.

Similar to Section 2.4.2, NSPD outperforms NSP. We can also see the benefit
of the Two Phase Method again — despite the bad performance of NSP and
NSPD for grid networks in Section 2.4.2, the Two Phase Method with NSP
and NSPD in Phase 2 finishes quickly for most grid instances, with only few
timeouts. Here, NSP is slightly better than NSPD.

We choose LCOR and LSET as best Phase 2 approaches. For road and grid
networks, LCOR and LSET are not always the best approaches but reasonably
fast and more reliable as there are no extreme run-times as happens for NSP

and NSPD for instances with a large number of efficient solutions such as G28,

G32, G33, NJ5, and NJ9.

Numerical Results — Comparing Best Approaches

We compare the best approaches as discussed in the previous sections. More

precisely, we compare the following:

LCOR: Bi-objective label correcting.
LSET: Bi-objective label setting.
NSPD: Near-shortest path.

2LCOR: The Two Phase Method with initialisation D, Phase 1 DDIC,
and Phase 2 LCOR.

2LSET: The Two Phase Method with initialisation D, Phase 1 DDIC,
and Phase 2 LSET.

We do not include NSPD results for grid networks as they performed badly as

shown in the previous Section.

Grid networks (Figure 2.19 and Table 2.15 in Section 2.8):

Both LCOR and 2LCOR perform quite well, and LCOR is the best solution
approach for grid networks. With increasing number of efficient solutions the
run-time of the different approaches increases in a similar way, this can be
observed for problems G15-G33. The network of instance G15 is very high
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Figure 2.19. Best

approach - grid networks; for run-times where markers are

invisible, see Table 2.15; logarithmic scale; 0.001 represents run-time < 0.01.
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Figure 2.21. Best approach - road networks; for run-times where markers are
invisible, see Table 2.17; logarithmic scale; 0.001 represents run-time < 0.01.

and thin, then the grid network instances decrease in height but increase in
width. As the instances grow in width, the problems contain more and more
efficient solutions. Other examples of instances with many efficient solutions
are large instances such as G9, G11, and G14. As mentioned above, the run-
time of NSPD for grid networks is not included in figures and tables as most

instances were stopped after 3600 seconds.

NetMaker networks (Figure 2.20 and Table 2.16 in Section 2.8):
NSPD and both Two Phase approaches (2LCOR and 2LSET) show similar
very good performance with run-times well under 1 second. LCOR and LSET
on the other hand are significantly worse with an average run-time of 368 and
1205 seconds and a minimum run-time of 0.55 and 1.44 seconds. It should
be noted that this is the only network type where the NSPD approach does
not have a high variance in run-time (on the instances we tested). We cannot
relate the number of solutions to the run-time of an approach, compared to
grid networks there are not many efficient solutions at all. It appears that
increasing problem size does not significantly increase the run-time of 2LCOR,
2LSET, or NSPD, run-times of NM16-NM20 are not much longer than of
NM11-NM15 for example.

Road networks (Figure 2.21 and Table 2.17 in Section 2.8): The Two
Phase Method (2LCOR and 2LSET) is clearly the best approach, with run-
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Table 2.5. Best approaches for different network types.

type best second best
grid LCOR 2LCOR
NetMaker 2LCOR, 2LSET, and NSPD -

road 2LSET 2LCOR

times less than LCOR and LSET. This shows again the strength of the Two
Phase Method as Phase 1 restricts the area to be enumerated by LCOR and
LSET in Phase 2. Among the Two Phase approaches, 2LSET performs best.
NSPD performs very well for some instances (in fact better than 2LCOR, and
2LSET), but its performance is very bad for others such as RI12, RI5, R19, NJ5,
NJ6, and NJ9. This illustrates that small variations in the problem such as the

selection of source and target node may significantly complicate a problem.

Again, there are not many efficient solutions compared to grid networks. The
number of efficient solutions and the problem size do not influence the run-time
in an obvious way — other factors, however, such as distance between source
and target node and how branched the roads between source and target are,
play an important role. For example, run-times for 2LSET and the biggest
road network, NJ, vary from 0.41 to 29.00 with an average of 6.83 for the nine

instances that only differ in their respective location of source and target node.

In Table 2.5 the best approaches for the different network types are sum-
marised. It appears that out of all approaches 2LCOR is the overall winner,

as it performs consistently well for all network types.

2.5 Bounded Labelling: Improving Labelling
Algorithms for BSP

The efficiency of bi-objective and multi-objective labelling algorithms can be
improved by exploiting the fact that the cost vector of every enumerated path
from source node s to target node ¢t dominates other paths in the network. It
may not always be necessary to extend a path to the target node to confirm

that it is dominated. All paths that connect s to ¢, obtained at any time
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while the algorithm runs, may dominate other paths at ¢ but also at any other
node of the network (Note that this works as long as arc costs are assumed to
be positive). Therefore, it may be possible to delete “incomplete” s-i-paths,
with ¢ # ¢, at an early stage of the algorithm rather than extending them to
the target node t and then deleting them. This is similar to the way bounds
derived from supported solutions found in Phase 1 of the Two Phase Method
can significantly speed up labelling algorithms in Phase 2 as demonstrated in
Section 2.4.2. No such bounded labelling approach is described in the relevant
literature. The A* algorithms in Stewart and White (1989) may describe a

similar approach.

2.5.1 Bounded Labelling Algorithm

A bi-objective label correcting algorithm stops when there are no marked nodes
any more, whereas a bi-objective label setting algorithm stops once there are
no more tentative labels. In both cases, all efficient paths from s to all other

nodes are obtained, including of course the ones to the target node t.

While a bi-objective labelling algorithm runs, every label at ¢ corresponds to
the cost vector of a path from s to ¢ that is currently not dominated. Therefore,
this label dominates parts of the objective space as no label that is dominated
by it can represent an efficient path. Labels at any node of the network that
are dominated by a label at ¢ can be deleted as path costs are non-negative
so that once a label anywhere in the network is dominated by a label at ¢ it
remains dominated. It is therefore not necessary to extend this label until its

path reaches t, it can be deleted as soon as dominance is detected.

The proposed bounded labelling algorithm is obtained by modifying any of
the labelling algorithms as follows: the algorithm runs as described in Sections
2.3.1 and 2.3.2 while there is no label at node ¢. Once there is at least one label
at t, one can start checking bounds. For each newly generated label, one checks
whether it is dominated by at least one label at target node t. The labels at
the target node, Labels(t) = {I' = (2],23),...,I™ = (2", 25")}, are sorted by
increasing first objective value, i.e. 2§ < 22 < ... <z and 24 > 22 > ... > 2",
Procedure 3 shows how to check whether the newly generated label | = (21, 22)

is dominated.
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Procedure 3 bounded_labelling dominance_check
1: input: Newly generated label [ = (21, 22) and sorted label set Labels(t) =
{ll ('21722) 7lm = (Z{nvzgl)}'
Set dommated FALSE and i = 1.
while (dominated == FALSE) and (i £ m) and (2} < z;) do
if 24 < 2z, then
Set dominated = TRUE.
else
t=1+1
end if
end while
output: dominated

,_.
@

Only labels that are not dominated by any of the labels at ¢ are retained,
all others are deleted. It is easy to implement this check into any labelling
algorithm. Step 8 in Algorithms 4 and 5 is modified by simply including the
dominance check from Procedure 3 when “eliminating all dominated labels”.
The resulting algorithms are called bounded labelling algorithms and denoted
by bLCOR and bLSET. Although the dominance check is formulated for the
bi-objective problem here, our idea is immediately applicable to multi-objective

problems.

Remark 2.5.1 It should be noted that bi-objective labelling algorithms ac-
tually yield the efficient paths from s to all other nodes, not just to the target
node t. With our improvement the algorithm is restricted to finding the short-
est paths from s to ¢t. If the aim was obtaining shortest paths from s to a
small number of target nodes tq, ..., %, the bound check could be modified to
only deleting a label if it is dominated by at least one label at each target
node tq,...,t;. Too many target nodes might diminish the effectiveness of the

bounds.

In some cases it can be determined that a label is not dominated by any of the
labels at ¢t without actively comparing all of them. Let the labels at the target
node, I!,...,I™, be sorted by increasing first objective value as above. A label
[ = (z1,29) at any node will clearly not be dominated by any of the labels
Y, . 1™ if 23 < z{ or 23 < 20" Note that checking z; < z{ is included as part

of the while loop of the dominance check. If zo < 2J*, it is not necessary to
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check a label [ against all labels I!,...,I™ as it is clear a priori that { cannot
be dominated. This additional condition was implemented, but achieved no
further run-time improvements, which is why the corresponding results are not

reproduced here.

2.5.2 Numerical Experiments

Table 2.6. Grid network test problems.

run-time (sec) ratio run-time (sec) ratio
name LCOR bLCOR bLCOR over LCOR LSET bLSET bLSET over LSET
GO01 0.01 0.01 - 0.01 0.01 -
GO02 0.05 0.05 - 0.05 0.05 -
GO03 0.21 0.21 1.00 0.53 0.53 1.00
G04 0.07 0.06 - 0.10 0.09 -
GO05 3.14 3.77 1.20 16.19 19.03 1.18
GO06 0.15 0.14 0.93 0.44 0.34 0.77
GO7 2.62 2.80 1.07 11.21 10.81 0.96
GO08 1.00 1.06 1.06 5.04 4.74 0.94
GO09 6.93 7.74 1.12 32.86 35.52 1.08
G10 1.54 1.51 0.98 6.99 6.20 0.89
Gl11 5.82 5.90 1.01 35.01 33.81 0.97
G12 0.03 0.04 - 0.05 0.05 -
G13 0.59 0.60 1.02 2.57 2.39 0.93
G14 15.14 17.39 1.15 114.56 121.10 1.06
G15 0.00 0.00 - 0.01 0.01 -
G16 0.01 0.01 - 0.01 0.01 -
G17 0.01 0.01 - 0.01 0.01 -
G18 0.01 0.01 - 0.02 0.02 -
G19 0.03 0.02 - 0.04 0.03 -
G20 0.04 0.04 - 0.07 0.06 -
G21 0.06 0.06 - 0.10 0.10 -
G22 0.08 0.08 - 0.15 0.13 0.87
G23 0.11 0.09 0.82 0.22 0.20 0.91
G24 0.18 0.18 1.00 0.53 0.50 0.94
G25 0.18 0.18 1.00 0.46 0.42 0.91
G26 0.22 0.23 1.05 0.62 0.62 1.00
G27 0.32 0.36 1.12 1.25 1.31 1.05
G28 0.62 0.70 1.13 2.41 2.59 1.07
G29 1.03 1.17 1.14 4.89 5.57 1.14
G30 2.54 2.80 1.10 10.98 13.11 1.19
G31 8.72 12.73 1.46 57.33 68.26 1.19
G32 18.10 32.27 1.78 153.97 179.14 1.16
G33 20.85 32.91 1.58 183.93 199.38 1.08
avg 1.13 1.01
min 0.82 0.77
max 1.78 1.19

The main aspect of the numerical experiments is comparing the run-time of the
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proposed bi-objective bounded labelling algorithms to that of the standard bi-
objective labelling algorithms. Furthermore, the bounded labelling algorithm
is briefly compared to the most successful algorithms for the BSP problem
as identified in Section 2.4.2. The test instances from Section 2.4.1 are used
again to evaluate the performance of the bounded labelling algorithms. For the

computational experiments, the setup is the same as for the BSP experiments

bLCOR bLSET
toor and TeEr

< 1 indicates that the bounded labelling algorithm performs better, whereas

in Section 2.4.2. We calculate the ratio respectively. A ratio

a ratio > 1 indicates the original labelling algorithm is preferable.

Table 2.7. NetMaker network test problems.

run-time (sec) ratio run-time (sec) ratio

name LCOR bLCOR bLCOR over LCOR LSET bLSET bLSET over LSET
NMoO1la 21.64 0.00 0.00 173.16 0.00 0.00
NMO1b 72.80 0.00 0.00 62.22 0.00 0.00
NMOlc 2.45 0.00 0.00 16.28 0.00 0.00
NMoO02a 16.76 0.00 0.00 160.79 0.00 0.00
NMO02b 46.61 0.00 0.00 45.24 0.00 0.00
NMO02c 2.55 0.01 0.00 15.71 0.00 0.00
NMO3a 4.33 0.00 0.00 28.00 0.00 0.00
NMO03b 7.10 0.00 0.00 3.65 0.00 0.00
NMO03c 0.55 0.00 0.00 1.44 0.00 0.00
NM17a 413.13 0.00 0.00 NA 0.00 0.00
NM17b 2080.91 0.00 0.00 NA 0.00 0.00
NM17c 1085.21 0.00 0.00 NA 0.00 0.00
NM18a 193.88 0.00 0.00 1697.10 0.00 0.00
NM18b 892.60 0.00 0.00 1374.62 0.00 0.00
NM18c 204.35 0.00 0.00 2005.44 0.00 0.00
NM19a 99.37 0.00 0.00 854.51 0.00 0.00
NM19b 1478.49 0.00 0.00 2278.00 0.00 0.00
NM19c 204.50 0.00 0.00 1958.59 0.00 0.00
NM20a 881.79 0.00 0.00 NA 0.00 0.00
NM20b 1842.54 0.00 0.00 1647.66 0.00 0.00
NM20c 341.01 0.00 0.00 2614.00 0.00 0.00
avg 0.00 0.00
min 0.00 0.00
max 0.00 0.00

Grid networks have a network structure that does not permit (average) im-
provement of run-time through bounded label correcting, exhibited by the
average ratio 1.13 > 1, see Table 2.6. Here, the additional effort of checking
for every newly created label whether it is dominated by any of the (often
many!) labels at ¢ seems larger than what is saved by discarding labels occa-

sionally. For the label setting algorithm, we observe similar run-times of the
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Table 2.8. Road network test problems.

run-time (sec) ratio run-time (sec) ratio
name LCOR bLCOR bLCOR over LCOR LSET bLSET bLSET over LSET
DC1 0.16 0.16 1.00 0.08 0.08 -
DC2 0.24 0.01 0.04 0.14 0.00 0.00
DC3 0.40 0.01 0.02 0.18 0.00 0.00
DC4 0.21 0.10 0.48 0.10 0.06 -
DC5 0.26 0.00 0.00 0.07 0.00 -
DC6 0.15 0.10 0.67 0.05 0.05 -
DCr7 0.31 0.02 0.06 0.13 0.01 0.08
DC8 0.13 0.08 0.62 0.04 0.03 -
DC9 0.45 0.04 0.09 0.26 0.04 0.15
RI1 1.54 0.06 0.04 0.34 0.04 0.12
RI2 7.74 2.75 0.36 1.97 0.68 0.35
RI3 0.77 0.31 0.40 0.24 0.11 0.46
RI4 2.68 0.66 0.25 0.99 0.27 0.27
RI5 5.48 1.06 0.19 3.22 0.41 0.13
RI6 11.03 9.63 0.87 2.44 2.33 0.95
RI7 4.27 2.38 0.56 1.89 1.17 0.62
RIS 5.83 1.85 0.32 0.97 0.53 0.55
RI9 9.43 0.28 0.03 4.10 0.15 0.04
NJ1 19.77 1.29 0.07 7.53 0.30 0.04
NJ2 32.47 0.58 0.02 20.61 0.14 0.01
NJ3 23.70 16.51 0.70 13.13 7.65 0.58
NJ4 29.48 1.40 0.05 19.20 0.47 0.02
NJ5 16.42 5.37 0.33 7.18 1.73 0.24
NJ6 62.41 16.32 0.26 66.33 13.33 0.20
NJ7 24.66 1.45 0.06 6.30 0.33 0.05
NJ8 11.76 7.72 0.66 5.07 2.76 0.54
NJ9 53.44 41.44 0.78 32.35 26.87 0.83
avg 0.33 0.28
min 0.00 0.00
max 1.00 0.95

bounded algorithm compared to the original one with an average ratio of 1.01.
The results for the other two network types are more promising;:

The most striking results appear for the NetMaker instances as displayed in
Table 2.7. Here, run-time is always reduced to < 0.01 although the run-time
of LCOR and LSET is very high in most cases leading to an average ratio of
0.00 in all four cases. We reduce the table by only showing complete entries for
NM1a-NM3c and NM17a-NM20c as all results look similar — instances grow
bigger and with them the run-time of the original labelling approaches, but
not that of the bounded approaches. This can be explained via the structure
of the networks. As the instances were constructed to “wrap around”, there

are often arcs from nodes with low numbers that reach backwards and connect
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to a node with very high number, i.e. close to the target node. In many
instances, only few efficient paths exist which are also very short as they reach
“backwards” from the nodes with low numbers to those with high numbers. For
any labelling algorithm to finish, however, it is necessary to generate the paths
from the source to all other nodes, whereby many long paths are enumerated
that can never be efficient once they reach t. The bounds are very effective
here, because efficient s-t paths are found quickly and have fairly low costs in

both components, so that many labels can be discarded.

Finally, the results for road networks are listed in Table 2.8. For this problem
type, the bounded algorithms bLCOR and bLSET both improve the run-time
significantly when compared with the original algorithms LCOR and LSET.
On average we observe a ratio of 0.33 for bounded label correcting and 0.28
for bounded label setting. These ratios indicate that the achieved run-time

improvements of the bounded labelling algorithms are very significant.

This shows that bounded labelling does significantly improve the run-time of
labelling algorithms. To complete the discussion of numerical results, the best
approaches identified in Section 2.4.2 are compared with the bounded labelling
algorithm. In Section 2.4.2 the labelling algorithms, LCOR and LSET, are
compared with the two other algorithm types, Two Phase Method (2LCOR
and 2LSET) and the near-shortest path algorithm (NSPD). Hence, the run-
times reported for 2LCOR, 2LSET and NSPD in Tables 2.16 and 2.17 are
compared to those of bLCOR and bLSET in Tables 2.7 and 2.8. We generate
new figures by including bLCOR and bLSET in Figures 2.20 and 2.21 depicting
final results. As bounded labelling does not have any positive effect for grid

networks, a further comparison for grid networks is omitted here.

In case of the NetMaker networks, the bounded labelling algorithms clearly
are competitive with the other solution algorithms (the Two Phase Method
and the near-shortest path algorithm) or even better, see Figure 2.22 for a
visual display of this result. The bounded labelling algorithms exceed the
performance of the other algorithms with all run-times being less than 0.01
seconds. Comparisons between the approaches are omitted here as neither the
Two Phase Method nor the near-shortest path algorithm take more than 0.06
seconds to solve any of the instances. The experiments show that the Two

Phase Method, near-shortest path, and the bounded labelling algorithms are



2.5 Bounded Labelling: Improving Labelling Algorithms for BSP

86
10000
m g ol = EpEEEE 5] -
A A g D By B
] B A - 4 A
1000 e o — A—A = x
A m
B = m By A A
m AEE A B A A A
B m m BA A A A A A
100 A
& = A A = o ~ A A A
a A aAp Em B
A u A A ALCOR
BA A
10 U mLSET
= ©bLCOR
A ‘m W - ®bLSET
m =, A2LCOR (2 phase D DDIC LCOR)
1 N B 2LSET (2 phase D DDIC LSET) [ |
A @ NSPD
01
]
. & "amo me 2 o 88
| | | 2A @ Bl me eomoee® Ee OEN Emo0, 00
001 B EEESE BE \REEESNEEEECONORE oN BE B/ NS NO —  EO EEEE
0.001 NBOOLEORLGVOOO0OROPVOOBROPCVPOVPO 0OV IT OO0 0000000000000 00
© © © © © © © © © © © o] © © © © © © 1] ©
- N (a2} < wn © ~ [ee] [} o — N ™ < ['e} © ~ [oe} o o
o o o o o o o o o - — - - - - - - - — N
= = = = = = = = = = = = = = = = = = = =
= =4 =z =z =4 =4 =4 =4 =z p=4 p=4 =4 =4 =4 p=4 =4 =4 =4 =4 =z
Figure 2.22. Comparing best BSP approaches and bounded labelling - Net-

Maker networks; for run-times where markers are invisible, see Tables 2.7 and
2.16; logarithmic scale; 0.001 represents run-time < 0.01.
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Figure 2.23. Comparing best BSP approaches and bounded labelling - road
networks; for run-times where markers are invisible, see Tables 2.8 and 2.17;
logarithmic scale; 0.001 represents run-time < 0.01.

equally well suited to solve NetMaker instances as all instances can be solved

in less than 0.1 seconds by any of the algorithms.

When solving road networks the Two Phase Method with label setting in
phase 2 (2LSET) was found to be the superior approach in Section 2.4.2. In
Figure 2.23, we can see that bLSET has shorter running time than LSET,
and bLCOR achieves a shorter running time than LCOR. Also, bLSET often
performs better than the Two Phase Approach 2LSET.

Additionally to the figure, we compare 2LSET and the new bounded la-
belling algorithms by calculating the ratios of run-time bLCOR/2LSET and
bLSET /2LSET. In case of label correcting, 2LSET remains the superior ap-
proach as the average ratio bLCOR/2LSET is 1.97 with a minimum value of
0.45 and a maximum of 4.61. The bounded label setting approach, bLSET,
outperforms 2LSET for many instances with an average ratio bLSET /2LSET

of 0.71, a minimum of 0.11 and a maximum of 1.22.
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2.6 Modelling Cyclist Route Choice — an Ap-
plication of BSP

Modelling traffic and route choice of motorised vehicles in particular is dis-
cussed in detail in Chapter 4. This modelling process, the so-called four-stage
model, is briefly summarised here. In the first two steps of the four-stage
model, it is determined how much travel demand originates from different
zones in the network and where it is heading. Then the total travel demand is
split between different possible transport modes, such as private car, tram, bus,
cycling, walking, to name a few. In the final stage of the four-stage model the
actual route choice is determined, often separately for each mode. It is usually
assumed that each trip maker aims at minimising their individual travel time
or some generalised cost function consisting of time and other route choice

factors.

Modelling route choice of drivers of motorised vehicles and cyclists are two
significantly different problems. Car travel is subject to network congestion
which implies that the travel time is not proportional to road length. Traffic
volumes influence travel time on a route for private motor vehicles such as
cars. The equilibrium problem solved to model route choice of motor vehicles

within a road network is discussed in Chapter 4.

While route choice of motorised vehicles is modelled, so-called active modes
such as walking and cycling are often disregarded as they are not subject
to congestion, and they also do not contribute to it. Active modes are ac-
knowledged to be effective options for commuting trips, as they do not create
emissions, they do not contribute to traffic congestion, and they hardly endan-
ger other traffic participants. Furthermore, active modes entail an additional
health benefit due to exercising. Unfortunately cycling can also be dangerous.
In Auckland, New Zealand, this is due to high traffic volumes, narrow lanes

on roads, a lack of cycle paths, but also careless car drivers.

In order to encourage more commuters to choose the bicycle for their trip to
work or other destinations, it is necessary to improve dedicated cycle path
infrastructure and thus safety. It is important to correctly assess the impact
of this new piece of infrastructure at a planning stage, to answer questions

such as: will cyclists use the cycle path? When a piece of road is added to a
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road network, the traffic assignment process for motorised vehicles described
above is used to determine the expected traffic volume on the road and also
the impact it has on the surrounding network, such as effects on congestion in

the area.

At present, actual cycle route choice is not modelled at all and it is therefore
impossible to evaluate the impact of an improvement of the cycle network.
No model exists to predict how many cyclists benefit from an improvement.
Especially when different alternatives for improvement of a cycle network are
proposed, knowing how each one affects cyclist route choice could help select

the best alternative.

The problem of modelling cyclist route choice poses a different challenge com-
pared to modelling route choice of motorised vehicles. The problem is a simpler
one in terms of travel time estimation as cyclists are generally not subject to
traffic congestion — due to their small size, they are able to pass queues. There-
fore, it can be assumed that their travel time is proportional to road length.
What complicates the cyclist route choice problem is that cyclists have more
than one objective influencing their route choice, a very important one being
safety. This appears to be particularly true in Auckland, where only little
infrastructure is dedicated solely to cyclists, instead cyclists share roads with

cars or they share bus lanes.

We identify the cyclist route choice problem to be at the core of every transport
planning tool that deals with cycling facilities. As a first step, cyclist route
choice is modelled here, which could later be incorporated into the four-stage
model of transport planning. We study cyclist route choice on the basis of the
Auckland road network, where trips between two particular zones of Auckland
are considered during the morning peak period. In particular trips from the
green zone to the red zone in Figure 2.24 are studied. The green zone is Point
Chevalier, a residential area in Auckland, whereas the red zone lies within
Auckland’s Central Business District. The selected origin and destination

represent a typical commute to work in Auckland.

We discuss the two objectives identified as main influencing factors of cyclist
route choice in the subsequent section. Then, a solution algorithm for the
cyclist route choice problem is proposed followed by a discussion of possible

areas of application. The results presented in this section are also contained
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Figure 2.24. Zones of the Auckland road network; the green zone represents
Point Chevalier and the red zone lies in the Central Business District; source:
Auckland Regional Council.

in Raith et al. (2009).

2.6.1 Objectives in Cyclist Route Choice

The identification of main factors that influence cyclist route choice is the
subject of numerous studies. Travel time is identified as the most important
objective according to which cyclists choose their route (e.g. Aultman-Hall
et al. 1997; Stinson and Bhat 2003). Aultman-Hall et al. (1997), for example,
compare the actual routes taken by commuter cyclists to their shortest-distance
paths. They find that 58% of all commuters actually follow their shortest-
distance path. This clearly indicates that travel distance (or travel time, which
should be highly correlated with distance) is one of the most important factors
of route choice. However, there are other influencing factors that lead cyclists

to divert from their shortest-distance route.

Other factors affecting cyclist route choice are studied in Dill and Carr (2003);
Stinson and Bhat (2003); Aultman-Hall et al. (1997). Dill and Carr (2003)
are concerned with the general willingness to cycle. Here the correlation of
percentage of cyclists in a city and factors such as rainy days per year, cycling

facilities, and household income is investigated. Aultman-Hall et al. (1997);
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Stinson and Bhat (2003) are more concerned with the actual route choice.
Factors that influence route choice are road traffic, road gradient, presence of

dedicated cycling facilities, to name just a few.

Therefore, it is reasonable to formulate cyclist route choice as a bi-objective
problem with travel time as one objective, whereas all other route choice factors

are combined into a second objective that we call attractiveness.

Travel Time Objective

We denote by r a path that connects a cyclist’s origin and destination. The
travel time along an arc a is t,, which we assume independent of any factors
other than length of the arc — in particular it does not depend on the amount
of traffic on the arc. For simplicity we assume that distance equals time, a

correct factor for the proportionality of the two can easily be introduced later.

The travel time ¢, on a path r is then obtained as the sum of travel times on

tr=> ta. (2.2)

acr

each of its arcs:

A significant portion of travel time along an inner-city route is spent wait-
ing at intersections with traffic lights (signalised intersections). The original
road network of Auckland, the Auckland Regional Transport Planning Model
(known as ART model) provided by the Auckland Regional Council, needs
to be adapted to explicitly account for delay at signalised intersections. The
original model consists of nodes that represent large intersections and arcs
that represent the roads connecting large intersections, see Figure 2.25 for an

intersection in the original network.

The network is modified by replacing every node in the study area that rep-
resents a major signalised intersection by dummy nodes and corresponding
dummy arcs as shown in Figure 2.26. The figure shows an intersection where
two roads intersect. This allows to add the average time spent waiting at an
intersection to the path travel time. We assume that cyclists do not have to
queue at the signal, as they are able to pass the queue and get to its front
relatively easily. Hence their average waiting time is influenced only by the

total time of one signal cycle Ts and the time the signal is red T}..;. Whether a
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Figure 2.25. Original representation Figure 2.26. New representation of a
of a signalised intersection. signalised intersection.

cyclist needs to stop at a red light is measured by the ratio T%,—;d If the cyclists

needs to wait, the average delay2 at the light is % Multiplying those two
ratios yields the average delay ZTT; The corresponding average delay values

represent the travel time associated with the dummy intersection arcs.

Apart from modifying the network at intersections, additional arcs are intro-
duced into the model corresponding to infrastructure that can be used only by
cyclists, but not four-wheeled motor vehicles. In particular, an off-road bicycle
way in the considered area (between the two highlighted zones in Figure 2.24)

was introduced into the model.

Attractiveness Objective

To model cyclist route choice, one needs to evaluate the attractiveness of a
route and each road. Several articles deal with the identification of factors
that influence the perception of road attractiveness and also propose how to
measure it. A report by the Land Transport Safety Authority (2004) proposes
to assess the so-called level of service (LOS) which, in the context of cycling,

can be interpreted as bicycle compatibility or cyclability.

Procedures have been proposed to allow the conversion of the qualitative mea-
sure attractiveness into a quantitative one. There are different studies that
link road characteristics to the attractiveness of the road for cyclists. Harkey
et al. (1998); Florida Department of Transportation (2002) present formulae
to obtain a quantitative measure of LOS based on factors such as lane width,
traffic volume, amount of heavy vehicles, pavement condition, and parking
(both suddenly opening car doors and vehicles reversing into parking spaces
pose great danger to cyclists). Both measures do not include factors such

as road gradient that seem important for Auckland. In Palmer et al. (1998)
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Table 2.9. Scoring system for attractiveness objective.

Attractiveness rating Score Integer value
A 81-100 6

61-80

41-60

21-40

1-20

<0

HH O QW
NN W o Ot

many more factors are included in the attractiveness rating such as motor
traffic speed, volume, lane width, presence of on-street parking, road gradient,
provided cycle facilities, and pavement condition. A scoring system is used to

convert these factors into a simple A-F score.

We collected road characteristics data for the study area, which is converted
into a score following the Palmer et al. (1998) model. The obtained score
between 0 and 100 corresponds to an A-F grade as shown in Table 2.9, with
A being the best possible rating and F the worst. We represent this grade by
an integer value with the highest grade A corresponding to a value of 6. We
denote by a, the integer value corresponding to the attractiveness rating of

arc a.

We also need an attractiveness rating for every dummy intersection arc. A
measure of intersection safety for through movements is presented in Landis
et al. (2003). Attractiveness is rated according to lane width, crossing distance,
traffic volume, and number of through lanes. Every intersection in the study
area of the Auckland network was analysed and an A-F rating was derived.
As the literature does not describe how to measure attractiveness in turning
movements, they were rated similar to through movements and according to

personal judgement.

Attractiveness of a path cannot be obtained as the sum of attractiveness values
on each arc of the path, unlike travel time which is obtained by summing

individual arc travel times (2.2). This can be seen based on a small example:
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Assume that the travel time and safety associated with arcs aq,a., a3 are
ta, = tay, = 1,14y = 2 and oy, = a4, = 4, ay, = 6. If both costs and times are
assumed additive, the path consisting of arcs a; and as has objective vector
(2,8), whereas the path consisting of arc as has objective vector (2,6). Both
paths connect node 1 to node 3. Path a;,ay; dominates path az as the cor-
responding attractiveness value of the first path is higher. Clearly, path as
should be the better path as both path travel times are identical, but path as
is much safer than the other path. A similar example can be constructed when
small attractiveness values represent the most attractive path and we aim at

minimising total attractiveness.

It appears that the attractiveness measure for a path should be calculated by
taking path safety into account, but also the time a cyclist travels on roads
with a certain safety factor. Thus, we measure the attractiveness along a path

r as a time-weighted average value of attractiveness along a route:

Zaer taOéa _ Zaer taOéa

Zaer tfl B tT

Qy =

2.6.2 Solving the Cyclist Route Choice Problem

Cyclists choose their route according to the two criteria travel time ¢ and path
attractiveness o, where the aim is to minimise time while maximising path at-
tractiveness. This is a bi-objective shortest path problem with a minimisation

and a maximisation objective:

min =~ Y ... ta

Z(LET taa
max  Begehee 23)
s.t. reR,

where R denotes the set of all paths cyclists can choose to follow from their

origin to their destination.
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Unfortunately, the problem with attractiveness objective a,. cannot be solved
with a BSP algorithm as adding new arcs to a path may decrease the value of
the attractiveness objective. On the basis of the following example we show
that any algorithm fails that is based on the assumption that only efficient
paths from origin to an intermediate node can lead to efficient paths to the

destination node.

Example 2.6.1 We consider the following network with travel time and at-

tractiveness (tq, aq) right next to each arc.

(6,2)

(176)@(171)@(171)@(1,1)@(1,1) @(1,1) @

We consider paths from node 1 to node 7. Both possible paths through nodes
1,2,3,4,5,6,7 and through nodes 1,6,7 are efficient. Their respective path
cost vectors are (7,1—73) and (6, %) However, out of the two possible paths
from node 1 to node 6, the path following the arc from 1 to 6 is dominated by
the path through nodes 1,2,3,4,5,6 as their respective path cost vectors are

and

Therefore, a shortest path labelling algorithm cannot find the path 1,6,7.

Remark 2.6.1 Apart from bi-objective labelling approaches, NSP and SPAR
are discussed as solution algorithms for BSP problems earlier in this chapter.
NSP is an enumerative algorithm that we apply to a weighted sum version of
the BSP problem. A single-objective weighted sum problem derived from (2.3)
would also not be guaranteed to converge and present a correct answer. The
simplex based approach is not applicable as arc costs cannot be considered
fixed as the value of the second objective component may change when the

same arc is added to two different paths.

We can show that efficient solutions of problem (2.3) are always efficient so-
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lutions of an auxiliary problem obtained by dropping the denominator of the

attractiveness objective

min =~ Y ... la
max  y_ ... taQq (2.4)
s.t. reR.

Problem (2.4) satisfies the assumption that the path cost vector increases as an
arc is added to the path. We modify a bi-objective label correcting algorithm
to maximise the second objective component, and also to ensure that no nodes
repeat within one path to avoid the generation of paths that contain cycles.
This algorithm can be used to find all efficient solutions of (2.4). Among those
solutions, all efficient paths for (2.3) are selected, which solves the cyclist route

choice problem (2.3). We must therefore verify the following Proposition.

Proposition 2.6.1 An efficient path of (2.3) is always an efficient path of
(2.4).

Proof  Assume the contrary, i.e. that there exists an efficient path r of (2.3)
that is not efficient for (2.4). Then there exists a path 7’ that dominates r for

(2.4), which means

D otaS) toand Y teag =Y teaa,

aer! aer aer! aer

with at least one strict inequality. This implies that

ZaEr’ taOéa > Za@" taO{a

ZaET’ ta ZaEr ta .

Hence, r’ dominates r for (2.3), a contradiction. O

The problem is solved using a bi-objective label correcting algorithm modified
as discussed above. Figure 2.27 shows the obtained paths and Figure 2.28 the
corresponding path cost vectors (note that the second objective is maximised).
Four out of the five obtained paths use an off-road cycle corridor called the
“Northwestern Cycleway”. However, this is not the most direct route, the

purple route is shorter.
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Figure 2.27. Efficient paths for cyclist trips from Point Chevalier to Auckland
CBD.
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Figure 2.28. Costs associated with efficient paths for cyclist trips from Point
Chevalier to Auckland CBD. Path length is displayed on the horizontal axis,
attractiveness on the vertical axis.
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2.6.3 Discussion

The method above allows to identify possible routes for cyclists without mak-
ing the behavioural assumption that all cyclists choose their route according
to a single objective, such as the shortest distance. The range of efficient paths
obtained in the above example shows how valuable the Northwestern Cycle-
way may be on a commuting trip to the city, as four out of five paths use
this cycleway. Also, the resulting paths indicate where the shortest path and
the more attractive paths deviate, which may give insight into where cyclist

infrastructure needs improvement.

A possible application of the cyclist route choice model (2.3) is the generation
of a cycle map. This map could promote cycling as a viable alternative to
commuting by car. The map should highlight the best compromise of travel
time and attractiveness for an average commuter cyclist. In order to do this,
the fastest path with a minimum level of attractiveness could be chosen. If, for
example, a minimal attractiveness of 4.5 is required, the blue path in Figure
(2.27) is selected. Of course the best routes for all major origin-destination
pairs within the Auckland region would have to be obtained for a complete

map.

Transport planning decisions require that different options for infrastructure
investment are evaluated and compared. With respect to infrastructure for mo-
tor vehicles, this can be achieved by a comprehensive traffic modelling process
whereby a “do-nothing” and a “do-something” approach are modelled. Com-
paring the two highlights the benefits for network users and possible shifts in
traffic flows, and also allows to compare the impact of different investment
strategies. With cycling, there exist no computerised models for route choice
and also no cyclist traffic assignment process to determine which of all possible
routes cyclists choose. The lack of such a cyclist assignment makes it difficult

to evaluate the impact of changes made to the cycle network.

Assuming a certain number of cyclist trips between an origin and destination
(the demand), such an assignment model needs to assign portions of trips to
different paths connecting origin and destination. It is widely accepted that
cyclists do not base this choice purely on travel time as discussed above. The
bi-objective problem with objectives travel time and attractiveness returns

efficient paths that are all reasonable route choices for a cyclist. It can be
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assumed that most cyclists choose one of those routes. Now, portions of the
total demand need to be assigned to each efficient path. Experienced commuter
cyclists might not worry about safety and gradient of a route and therefore
choose the shortest one. As mentioned earlier, Aultman-Hall et al. (1997)
find that 58% of the cyclists in their study of cyclist commuting choose this
shortest route. The portions of demand on the other paths could be determined
through cyclist surveys, depending on how cyclists value their safety compared
to travel time. More details on this follow in Chapter 4 on bi-objective traffic
assignment for motor vehicles. In particular, different methods to split travel
demand between several efficient paths are discussed in Section 4.5, which can

be adapted to cyclist route choice.

2.7 Concluding Remarks on Bi- and Multi-
objective Shortest Path Algorithms

We are able to show that the Two Phase Method is competitive with other
commonly applied approaches to solve the BSP problem. The Two Phase
Method works well with both a ranking, a label correcting, and a label setting
approach in Phase 2, but the label correcting and setting approaches appear to
be preferable as their run-times are more reliable, they do not differ between
different problem instances, as sometimes occurs for the near-shortest path
approach: the purely enumerative near-shortest path approach is a very suc-
cessful approach to solve some problem instances, but the run-time on others

is very long.

We illustrate all this on various test instances. It also becomes clear that
the best performing approach depends on the network type, and even small

variations on the network may have a high impact on performance.

An area of future research is the generation of test instances. It is difficult to
randomly generate networks with a high number of efficient solutions; we are
unable to obtain high numbers of efficient solutions in networks without a grid

structure.

Furthermore, a speed-up technique, called bounded labelling, is presented here.

For two of our three network types, namely NetMaker and road networks,
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bounded labelling performs better than its counterpart standard bi-objective
labelling. In comparison with the Two Phase Method, the proposed tech-
nique yields an algorithm that is better than the Two Phase Method for many

problem instances of the NetMaker and road network types.

The bounded labelling technique can easily be incorporated into multi-objective
shortest path labelling algorithms. It is a subject of future research to assess
whether bounded labelling also improves on run-times of multi-objective la-

belling algorithms.

Other speedups of bi- and multi-objective label correcting and label setting
algorithms should be investigated in the future. For single-objective shortest
path problems, the efficient utilisation of data structures does provide signifi-
cant speedups and similar improvements may be obtained for BSP and MSP

problems.

We also present a novel area of application for BSP problems, namely the
modelling of cyclist route choice. We were able to show how the cyclist problem
can be modelled by considering a time and attractiveness objective, and also
how it can be solved. We point out different areas where the ability to model
cyclist route choice is valuable. The integration of the cyclist route choice
model into a traffic assignment procedure for cyclists is an important area for

future research.

2.8 Tables from Section 2.4

For completeness, all tables to support statements on the outcome of compu-

tational experiments from Section 2.4 are given on the following pages.

Table 2.10: Bi-objective labelling with LCOR and LSET; run-time in seconds.

LCOR LSET LCOR LSET LCOR LSET
GO1 0.01 0.01 DC8 0.13 0.04 NMO7c 36.79 298.43
G02 0.05 0.05 DC9 0.45 0.26 NMO08a 37.39 294.95

Continued on Next Page. ..
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Table 2.10 — Continued

LCOR LSET LCOR LSET LCOR LSET
G03 0.21 0.53 RI1 1.54 0.34 NMO8b 107.48 80.70
G04 0.07 0.10 RI2 7.74 1.97 NMO08c 9.85 41.12
GO05 3.14 16.19 RI3 0.77 0.24 NMO09a 26.91 230.66
G06 0.15 0.44 RI4 2.68 0.99 NMO09b 196.27 148.19
GOo7 2.62 11.21 RI5 5.48 3.22 NMO09c 8.55 43.45
G08 1.00 5.04 RI6 11.03 2.44 NM10a 165.92 1262.47
G09 6.93 32.86 RI7 4.27 1.89 NM10b 213.73 120.94
G10 1.54 6.99 RIS 5.83 0.97 NM10c 11.01 51.73
G11 5.82 35.01 RI9 9.43 4.10 NMlla 240.73 3260.00
G12 0.03 0.05 NJ1 19.77 7.53 NM11b 1103.90 1486.70
G13 0.59 2.57 NJ2 32.47 20.61 NMllc 325.31 3090.00
G14 15.14 114.56 NJ3 23.70 13.13 NM12a 199.80 3519.00
G15 0.00 0.01 NJ4 29.48 19.20 NM12b 1424.13 2935.00
G16 0.01 0.01 NJ5 16.42 7.18 NM12c 330.86 3019.00
G17 0.01 0.01 NJ6 62.41 66.33 NM13a 86.36 907.54
G18 0.01 0.02 NJ7 24.66 6.30 NM13b 684.42 995.65
G19 0.03 0.04 NJ8 11.76 5.07 NM13c 63.74 477.96
G20 0.04 0.07 NJ9 53.44 32.35 NM14a 102.97 1137.95
G21 0.06 0.10 NMO1la 21.64 173.16 NM14b 517.02 541.96
G22 0.08 0.15 NMO1b 72.80 62.22 NM14c 74.44 444.82
G23 0.11 0.22 NMOlc 2.45 16.28 NM1b5a 312.65 2985.00
G24 0.18 0.53 NMO2a 16.76 160.79 NM15b 1467.20 1098.58
G25 0.18 0.46 NMO02b 46.61 45.24 NM15c 96.33 580.16
G26 0.22 0.62 NMO02c 2.55 15.71 NM16a 432.66 -
G27 0.32 1.25 NMO03a 4.33 28.00 NM16b 1857.96 3407.00
G28 0.62 2.41 NMO3b 7.10 3.65 NM16¢c 1091.88 -
G29 1.03 4.89 NMO03c 0.55 1.44 NM17a 413.13 -
G30 2.54 10.98 NMo04a 8.81 58.77 NM17b 2080.91 -
G31 8.72 57.33 NMO04b 7.18 4.19 NM17c 1085.21 -
G32 18.10 153.97 NMO04c 0.68 1.70 NM18a 193.88 1697.10
G33 20.85 183.93 NMO5a 27.93 174.34 NM18b 892.60 1374.62
DC1 0.16 0.08 NMO5b 14.68 4.80 NM18c 204.35 2005.44
DC2 0.24 0.14 NMO5¢ 1.34 2.34 NM19a 99.37 854.51
DC3 0.40 0.18 NMO6a 67.91 972.42 NM19b 1478.49 2278.00
DC4 0.21 0.10 NMO6b 475.19 519.49 NM19c 204.50 1958.59
DC5 0.26 0.07 NMO6¢ 40.83 278.42 NM20a 881.79 -
DC6 0.15 0.05 NMO7a 71.74 857.47 NM20b 1842.54 1647.66
DC7 0.31 0.13 NMO7b 257.42 439.81 NM20c 341.01 2614.00

dash (-): run-time exceeds 3600 seconds
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Table 2.11: Enumeration with NSP and NSPD; run-time in seconds.

NSP

NSPD

GO1
G02
GO03
G04
G05
G06
GOo7
GO8
G09
G10
G11
G12
G13
G14
G15
G16
G17
G18
G19
G20
G21
G22
G23
G24
G25
G26
G27
G28
G29
G30
G31
G32
G33
DC1
DC2
DC3
DC4
DC5
DC6
DC7

0.01
0.00
0.00
0.03
0.79

0.01
0.16
0.01
0.01
0.00
0.03
0.01

0.01
0.01
0.01
0.03
0.79

0.05
0.16
0.04
0.01
0.00
0.06
0.05

NSP NSPD

DC8 0.00 0.00
DC9 0.09 0.12
RI1 0.09 0.11
RI2 71.80 72.25
RI3 0.05 0.17
RI4 0.82 0.86
RI5 794.01 806.67
RI6 2.36 2.45
RI7 0.07 0.20
RIS 0.07 0.15
RI9 53.89 55.20
NJ1 0.26 0.82
NJ2 0.85 0.87
NJ3 1.10 1.39
NJ4 0.39 0.55
NJ5 - -
NJ6 - -
NJ7 3.02 2.84
NJ8 0.65 0.84
NJ9 - -
NMOla 0.01 0.02
NMO1b 0.00 0.00
NMo1lc 0.00 0.12
NMo02a 0.00 0.03
NMO02b 0.00 0.00
NMo02c 0.00 0.85
NMO3a 0.00 0.02
NMO03b 0.00 0.14
NMO03c 0.01 0.11
NMO04a 0.00 0.02
NMO04b 0.00 0.12
NMO04c 0.00 0.06
NMO5a 0.00 0.08
NMO5b 0.00 0.56
NMO5c 0.00 1.04
NMoO6a 0.01 0.07
NMO06b 0.00 0.00
NMO06¢ 0.00 3.19
NMO7a 0.01 0.06
NMO7b 0.00 0.40

NSP NSPD
NMO07c 0.01 3.82
NMO8a 0.01 0.08
NMO08b 0.01 0.80
NMO08c 0.00 2.34
NMO09a 0.01 0.04
NMO09b 0.01 0.00
NMO09c 0.01 1.59
NM10a 0.02 0.16
NM10b 0.01 2.24
NM10c 0.01 2.54
NMl1la 0.02 0.21
NM11b 0.01 1.84
NMllc 0.01 9.38
NM12a 0.02 0.18
NM12b 0.02 3.89
NM12c 0.01 0.01
NM13a 0.02 0.16
NM13b 0.02 1.74
NM13c 0.01 0.01
NM14a 0.02 0.10
NM14b 0.02 2.89
NM14c 0.01 26.61
NM15a 0.02 0.75
NM15b 0.02 6.85
NM15c 0.02 119.67
NM16a 0.03 0.49
NM16b 0.02 4.19
NM16c 0.02 86.09
NM17a 0.03 0.40
NM17b 0.02 0.02
NM17c 0.01 0.01
NM18a 0.03 0.27
NM18b 0.02 5.62
NM18c 0.02 0.01
NM19a 0.03 0.37
NM19b 0.02 2.23
NM19c 0.02 0.01
NM20a 0.06 0.96
NM20b 0.04 23.45
NM20c 0.04 255.35

dash (-): run-time exceeds 3600 seconds
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Table 2.12: Initialisation; run-time in seconds.

L D L D L D

G1 0 0 DC8 0.06 0 NMT7c 4.58 0.00
G2 0 0 DC9 0.04 0 NMS8a 0.08 0.00
G3 0 0 RI1 0.13 0.02 NMS8b 0.26 0.01
G4 0 0 RI2 0.2 0.03 NM8c 3.58 0.01
G5 0.01 0.01 RI3 0.11 0.03 NM9a 0.07 0.00
G6 0.01 0 RI4 0.23 0.02 NM9b 0.26 0.01
G7 0 0 RI5 0.21 0.02 NM9c 19.38 0.00
G8 0 0.01 RI6 0.14 0.02 NM10a 0.47 0.01
G9 0.01 0 RI7 0.16 0.03 NM10b 0.71 0.00
G10 0.01 0.01 RI8 0.15 0.03 NM10c 3.6 0.01
Gl11 0.01 0 RI9 0.17 0.02 NMlla 0.38 0.01
G12 0 0 NJ1 0.78 0.2 NM11b 3.77 0.01
G13 0.01 0.01 NJ2 0.92 0.2 NMllc 153.64 0.01
G14 0.01 0.01 NJ3 0.85 0.21 NM12a 0.49 0.01
G15 0 0.01 NJ4 0.9 0.19 NM12b 3.5 0.01
G16 0.01 0 NJ5 0.87 0.2 NM12c 799.07 0.00
G17 0 0 NJ6 0.95 0.21 NM13a 0.21 0.01
G18 0 0 NJ7 0.89 0.22 NM13b 0.88 0.01
G19 0 0 NJ8 0.85 0.21 NM13c 38.43 0.01
G20 0 0.01 NJ9 0.77 0.22 NM14a 0.29 0.01
G21 0 0 NMla 0.05 0.01 NM14b 0.97 0.01
G22 0.01 0.01 NM1b 0.21 0 NM14c 18.04 0.01
G23 0 0.01 NMlc 3.95 0 NM15a 0.81 0.01
G24 0 0 NM2a 0.04 0 NM15b 2.3 0.01
G25 0 0 NM2b 0.18 0 NM15c 91.25 0.01
G26 0 0 NM2c 1.02 0 NM16a 0.57 0.01
G27 0 0.01 NM3a 0.02 0 NM16b 2.89 0.02
G28 0 0 NM3b 0.07 0 NM16c 790.97 0.01
G29 0 0 NM3c 0.25 0 NM17a 0.75 0.02
G30 0 0 NM4a 0.03 0 NM17b 4.05 0.01
G31 0 0 NM4b 0.08 0.01 NM17c - 0.01
G32 0 0 NM4c 0.19 0 NM18a 0.41 0.02
G33 0 0 NMba 0.1 0 NM18b 2.33 0.02
DC1 0.06 0 NM5b 0.18 0 NM18c 69.75 0.01
DC2 0.09 0 NMbc 1.66 0 NM19a 0.48 0.01
DC3 0.03 0 NM6a 0.2 0.01 NM19b 1.83 0.01
DC4 0.02 0 NM6b 0.55 0 NM19c 407.42 0.01
DC5 0.05 0 NM6c 6.79 0.01 NM20a 1.79 0.02
DC6 0.06 0 NMT7a 0.15 0.01 NM20b 7.03 0.02
DC7 0.03 0 NM7b 1.3 0 NM20c 204.62 0.02

dash (-): run-time exceeds 3600 seconds
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Table 2.13: Phase 1; run-time in seconds.

SPAR LDIC DDIC SPAR LDIC DDIC

G1 0.1 0.01 0.01 NMla 5.18 0.15 0.00
G2 0.98 0.02 0.04 NM1b 2.72 NA NA
G3 0.92 0.01 0.02 NMic 1.61 1.42 0.01
G4 5.46 0.07 0.12 NM2a 5.56 0.11 0.01
G5 4.98 0.02 0.02 NM2b 3.08 NA NA
G6 13.37 0.07 0.11 NM2c 1.64 0.98 0.00
G7 15.26 0.08 0.12 NM3a 5.72 0.07 0.00
G8 32.35 0.13 0.18 NM3b 2.72 0.06 0.00
G9 32.64 0.09 0.13 NM3c 2.1 0.11 0.00
G10 82.93 0.19 0.29 NM4a 7.2 0.06 0.01
G11 0.28 0.01 0.01 NM4b 2.86 0.56 0.00
G12 5.05 0.03 0.06 NM4c 2.34 0.2 0.00
G13 164.62 0.39 0.6 NM5a 20.16 0.17 0.00
G14 0.49 0.01 0.01 NM5b 9.05 0.88 0.00
G15 0.65 0.01 0.01 NMs5¢ 7.4 1.4 0.00
G16 0.77 0.01 0.01 NM6a 32.84 0.38 0.01
G17 0.92 0.01 0.01 NM6b 20.28 NA NA
G18 1.05 0.01 0 NMé6c 8.95 0.98 0.00
G19 1.12 0 0.02 NM7a 34.3 0.44 0.01
G20 1.15 0 0.02 NM7b 20.9 1.44 0.00
G21 1.13 0.02 0.02 NM7c 9.34 2.01 0.01
G22 1.15 0.01 0.01 NM8a 39.22 0.04 0.00
G23 1.24 0.02 0.03 NM8b 21.54 0.34 0.00
G24 113 0.02 0.03 NMS8c 12.14 1.25 0.00
G25 1.19 0.02 0.03 NM9a 37.9 0.3 0.02
G26 1.18 0.03 0.04 NM9b 23.43 NA NA
G27 1.19 0.03 0.05 NM9c 13.05 8.03 0.00
G28 112 0.03 0.05 NM10a 139.21 0.46 0.01
G29 1.15 0.05 0.08 NM10b 73.85 5.24 0.02
G30 0.92 0.09 0.14 NM10c 45.56 2.8 0.01
a3l 0.67 0.1 0.19 NM1la 170.45 0.41 0.02
G32 0.31 0.09 0.19 NM11b 103.98 3.5 0.00
G33 0.31 0.09 0.19 NM11c 44.62 5.66 0.00
DC1 1.86 0.04 0.01 NM12a 174 0.47 0.02
DC2 1.52 0.1 0.02 NM12b 119.01 5.32 0.00
DC3 1.72 0.02 0 NM12¢ 45.7 NA NA
DC4 1.64 0.01 0.01 NM13a 193.63 0.08 0.00
DC5 1.33 NA NA NM13b 138.57 0.76 0.00
DC6 1.82 0.12 0.01 NM13c 62.62 NA NA
DC7 1.5 0.02 0 NM14a 202.46 0.75 0.03

Continued on Next Page. ..
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Table 2.13 — Continued

SPAR LDIC DDIC SPAR LDIC DDIC
DC8 1.76 NA NA NM14b 124.53 1.54 0.00
DC9 1.55 0.06 0.02 NM14c 62.5 11 0.01
RI1 48.88 0.1 0.06 NM15a 541.43 1.69 0.04
RI2 44.46 1.52 0.52 NM15b 328.52 13.8 0.02
RI3 48.03 0.07 0.02 NM15¢ 190.96 41.24 0.02
RI4 54.6 1.03 0.34 NM16a 398.4 1.26 0.04
RI5 53.34 0.89 0.42 NM16b 243.5 2.15 0.01
RI6 49.7 0.18 0.15 NM16¢ 107.48 192.37 0.02
RI7 51.27 0.28 0.11 NM17a 408.82 1.58 0.04
RI8 47.44 0.08 0.05 NM17b 264.65 NA NA
RI9 47.88 0.66 0.31 NM17c 108.63 NA NA
NJ1 2439 0.42 0.09 NM18a 490.24 0.68 0.02
NJ2 2443.5 2.66 1.08 NM18b 324.76 3.48 0.00
NJ3 2491 3 1.17 NM18c 151.72 NA NA
NJ4 2450.5 1.24 0.42 NM19a 484.05 0.22 0.00
NJ5 2583.5 3.16 2.13 NM19b 325.62 2.06 0.00
NJ6 2389 4.88 2.64 NM19c 157.09 NA NA
NJ7 2617 2.26 1.06 NM20a 1283.35 2.62 0.03
NJ8 2686 3.08 1.36 NM20b 778.32 5.58 0.01
NJ9 2602.5 3.28 2.3 NM20c 434.38 26.24 0.01

NA: no need to run Phase 1, as there is only one efficient solution, which is detected after initialisation.

Table 2.14: Phase 2; run-time in seconds.

LCOR LSET NSPD NSP
Go1 0.02 0.02 0.00 0.01
G02 0.05 0.04 0.01 0.01
GO03 0.23 0.45 0.07 0.07
G04 0.07 0.08 0.01 0.00
G05 3.67 15.37 15.52 15.57
G06 0.15 0.31 0.02 0.01
GO7 2.72 9.71 99.98 99.46
G08 1.11 4.42 0.17 0.15
G09 7.59 30.34 328.95 330.37
G10 1.52 5.73 0.20 0.18
Gl11 5.91 29.99 1.52 1.43
G12 0.04 0.04 0.01 0.01
G13 0.63 2.21 0.22 0.21
G14 16.85 104.03 163.46 164.91

LCOR LSET NSPD NSP
NMOla 0.00 0.00 0.01 0.09
NMO1b NA NA NA NA
NMo1lc 0.00 0.00 0.00 0.19
NMoO2a 0.00 0.00 0.00 0.10
NMO02b NA NA NA NA
NMO02c 0.00 0.00 0.00 0.26
NMO3a 0.00 0.00 0.00 0.06
NMO3b 0.00 0.00 0.00 0.00
NMO03c 0.00 0.00 0.00 0.00
NMo04a 0.00 0.00 0.01 0.09
NMO04b 0.00 0.00 0.00 0.23
NMO04c 0.00 0.00 0.00 0.07
NMO5a 0.00 0.00 0.01 0.21
NMO5b 0.00 0.00 0.00 0.00

Continued on Next Page. ..
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Table 2.14 — Continued

LCOR LSET NSPD NSP

G15 0.00 0.00 0.00 0.00
G16 0.00 0.00 0.00 0.00
G17 0.00 0.00 0.00 0.00
G18 0.01 0.01 0.01 0.00
G19 0.02 0.02 0.01 0.01
G20 0.03 0.05 0.00 0.01
G21 0.06 0.09 0.01 0.00
G22 0.08 0.10 0.02 0.02
G23 0.11 0.18 0.03 0.02
G24 0.18 0.41 0.08 0.08
G25 0.19 0.37 0.59 0.58
G26 0.24 0.54 0.16 0.15
G27 0.37 1.12 0.50 0.49
G28 0.71 2.18 - -
G29 1.19 4.66 3.06 3.04
G30 2.88 10.79 2.97 2.97
G31 11.53 57.39 185.81 186.44
G32 26.03 154.16 - -
G33 28.08 183.98 - -
DC1 0.08 0.06 0.00 0.04
DC2 0.01 0.00 0.07 0.09
DC3 0.01 0.00 0.01 0.04
DC4 0.04 0.03 0.01 0.01
DC5 NA NA NA NA
DC6 0.10 0.03 0.01 0.06
DC7 0.01 0.01 0.01 0.04
DC8 NA NA NA NA
DC9 0.03 0.04 0.09 0.13
RI1 0.02 0.02 0.06 0.09

RI2 1.67 0.53 0.43 1.13

RI3 0.10 0.05 0.01 0.12

RI4 0.38 0.23 0.16 0.56

RI5 0.37 0.36 0.32 0.60

RI6 8.12 1.93 1.21 1.32

RI7 1.86 1.02 0.07 0.29

RIS 1.53 0.47 0.05 0.12

RI9 0.22 0.15 74.38 87.16

NJ1 0.50 0.17 0.11 0.66
NJ2 0.14 0.08 0.67 1.59
NJ3 6.73 5.49 0.69 2.25
NJ4 0.52 0.32 0.33 0.82
NJ5 2.67 1.23 - -

LCOR LSET NSPD NSP
NMO05¢c 0.00 0.00 0.00 1.00
NMO6a 0.00 0.00 0.01 0.20
NMO6b NA NA NA NA
NMO06¢c 0.00 0.00 0.00 2.84
NMO7a 0.00 0.00 0.01 0.15
NMO7b 0.00 0.00 0.00 0.90
NMO7c 0.00 0.00 0.00 0.00
NMO8a 0.00 0.00 0.00 0.06
NMO8b 0.00 0.00 0.00 0.73
NMO08c 0.00 0.00 0.00 2.01
NMO09a 0.00 0.00 0.01 0.17
NMO09b NA NA NA NA
NMO09c 0.00 0.00 0.01 2.83
NM10a 0.00 0.00 0.01 0.26
NM10b 0.00 0.00 0.01 2.71
NM10c 0.00 0.00 0.00 1.25
NMlla 0.00 0.00 0.01 0.32
NM11b 0.00 0.00 0.01 1.64
NMllc 0.00 0.00 0.01 7.09
NM12a 0.00 0.00 0.02 0.42
NM12b 0.00 0.00 0.00 3.43
NM12c NA NA NA NA
NM13a 0.00 0.00 0.01 0.12
NM13b 0.00 0.00 0.00 1.46
NM13c NA NA NA NA
NM14a 0.00 0.00 0.02 0.38
NM14b 0.00 0.00 0.01 2.19
NM14c 0.00 0.00 0.01 63.27
NM15a 0.00 0.00 0.03 1.80
NM15b 0.00 0.00 0.00 0.00
NM15c 0.00 0.00 0.01 40.80
NM16a 0.00 0.00 0.03 1.29
NM16b 0.00 0.00 0.01 3.81
NM16¢ 0.00 0.00 0.00 0.00
NM17a 0.00 0.00 0.03 1.07
NM17b NA NA NA NA
NM17c NA NA NA NA
NM18a 0.00 0.00 0.03 0.43
NM18b 0.00 0.00 0.01 4.42
NM18c NA NA NA NA
NM19a 0.00 0.00 0.01 0.28
NM19b 0.00 0.00 0.00 0.00

Continued on Next Page. ..
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Table 2.14 — Continued

LCOR LSET NSPD NSP LCOR LSET NSPD NSP
NJ6 10.78 11.70 1.46 2.60 NM19c NA NA NA NA
NJ7 0.73 0.28 0.71 1.36 NM20a 0.00 0.00 0.03 2.19
NJ8 5.09 2.44 0.71 2.04 NM20b 0.00 0.00 0.01 18.71
NJ9 36.71 26.69 - - NM20c 0.00 0.00 0.01 166.87

dash (-): run-time exceeds 3600 seconds;

NA: no need to run Phase 2, as there is only one efficient solution, which is detected after initialisation.

Table 2.15: Final results for grid networks; run-time in seconds.

LCOR LSET 2LCOR 2LSET |Zy] LCOR LSET 2LCOR 2LSET |Zy]

GO1 0.01 0.01 0.02 0.02 37 G15 0.00 0.01 0.01 0.01 6
G02 0.05 0.05 0.06 0.05 80 G16 0.01 0.01 0.01 0.01 6
G03 0.21 0.53 0.27 0.49 124 G17 0.01 0.01 0.01 0.01 10
Go04 0.07 0.10 0.08 0.10 46 G18 0.01 0.02 0.02 0.02 15
G05 3.14 16.19 3.78 15.49 290 G19 0.03 0.04 0.03 0.03 18
G06 0.15 0.44 0.18 0.34 44 G20 0.04 0.07 0.05 0.07 32
GO7 2.62 11.21 2.83 9.83 149 G21 0.06 0.10 0.08 0.11 54
GO08 1.00 5.04 1.22 4.53 122 G22 0.08 0.15 0.10 0.12 53
G09 6.93 32.86 7.7 30.52 247 G23 0.11 0.22 0.13 0.20 7
G10 1.54 6.99 1.63 5.85 132 G24 0.18 0.53 0.20 0.44 93
G11 5.82 35.01 6.17 30.24 204 G25 0.18 0.46 0.21 0.39 95
G12 0.03 0.05 0.05 0.05 52 G26 0.22 0.62 0.27 0.57 93
G13 0.59 2.57 0.69 2.27 113 G27 0.32 1.25 0.41 1.16 137
G14 15.14 114.56 17.42  104.59 309 G28 0.62 2.41 0.76 2.23 209
G29 1.03 4.89 1.25 4.71 244

G30 2.54 10.98 2.97 10.87 371

G31 8.72 57.33 11.67 57.53 819

G32 18.10 153.97 26.22  154.35 1383

G33 20.85 183.93 28.27  184.17 1594

Table 2.16: Final results for NetMaker networks; run-time in seconds.

LCOR LSET NSPD 2LCOR 2LSET |Zy|

LCOR LSET NSPD 2LCOR 2LSET |Zy/]|

NMOla 21.64 173.16
NMO1b 72.80 62.22
NMOlc 245 16.28
NMO2a 16.76 160.79

0.01
0.00
0.00
0.00

0.00
0.00
0.01
0.01

0.01
0.00
0.01
0.01

6 NMlla 240.73 3260.00
1 NM11b 1103.90 1486.70
3 NMllc 325.31 3090.00
8 NM12a 199.80 3519.00

0.02
0.01
0.01
0.02

0.02
0.01
0.01
0.02

0.02
0.01
0.01
0.02

6

2
2
6
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Table 2.16 — Continued

LCOR LSET 2LCOR 2LSET |Zy]| LCOR LSET 2LCOR 2LSET  |Zy]
NMO2b 46.61 45.24 0.00 0.00 0.01 1 NM12b 1424.13 2935.00  0.02 0.01
NMO02c 2.55 15.71 0.00 0.01  0.00 4 NM12c¢ 330.86 3019.00 0.01 0.01
NMO03a 4.33 28.00 0.00 0.01  0.01 9 NMl13a 86.36 907.54  0.02 0.01
NMO3b  7.10 3.65 0.00 0.00  0.00 2 NM13b 684.42 995.65 0.02 0.01
NMO3c 0.55 1.44 0.01 0.00 0.01 2 NM13c 63.74 477.96 0.01 0.01
NMO04a 8.81 58.77 0.00 0.01 0.01 15 NMl4a 102.97 1137.95 0.02 0.04
NMO4b  7.18 4.19 0.00 0.01  0.00 3 NM14b 517.02 541.96  0.02 0.01
NMO4c 0.68 1.70 0.00 0.01  0.01 4 NMl4c 74.44 44482 0.01 0.02
NMO05a 27.93 174.34 0.00 0.01  0.01 6 NM15a 312.65 2985.00  0.02 0.04
NMO5b 14.68 4.80 0.00 0.01  0.01 3 NM15b 1467.20 1098.58  0.02 0.03
NMO05c 1.34 2.34 0.00 0.01  0.01 3 NMl5c 96.33 580.16  0.02 0.03
NMO6a 67.91 972.42 0.01 0.01  0.02 6 NMl6a 432.66 - 0.03 0.04
NMO6b 475.19 519.49 0.00 0.00 0.01 1 NM16b 1857.96 3407.00  0.02 0.02
NMO06c 40.83 278.42 0.00 0.01  0.01 2 NM16c 1091.88 - 0.02 0.02
NMO7a 71.74 857.47 0.01 0.01  0.01 5 NMl17a 413.13 - 0.03 0.04
NMO7b 257.42 439.81 0.00 0.01  0.01 3 NM17b 2080.91 - 0.02 0.01
NMO07c 36.79 298.43 0.01 0.01  0.01 3 NM17c 1085.21 - 0.01 0.01
NMO8a 37.39 294.95 0.01 0.01  0.00 3 NM18a 193.88 1697.10  0.03 0.03
NMO8b 107.48  80.70 0.01 0.01  0.00 2 NM18b 892.60 1374.62  0.02 0.02
NMO08c 9.85 41.12 0.00 0.01  0.01 3 NMI18c 204.35 2005.44  0.02 0.01
NMO09a 26.91 230.66 0.01 0.02  0.02 7 NM19a 99.37 854.51  0.03 0.02
NMO09b 196.27 148.19 0.01 0.01  0.01 1 NM19b 1478.49 2278.00  0.02 0.01
NMO09c 8.55 43.45 0.01 0.01  0.01 3 NM19c 204.50 1958.59  0.02 0.01
NM10a 165.92 1262.47 0.02 0.02  0.02 6 NM20a 881.79 - 0.06 0.05
NM10b 213.73 120.94 0.01 0.02  0.04 6 NM20b 1842.54 1647.66  0.04 0.03
NM10c 11.01 51.73 0.01 0.01  0.01 4 NM20c 341.01 2614.00 0.04 0.03

0.02
0.01
0.02
0.01
0.00
0.03
0.01
0.02
0.04
0.03
0.03
0.05
0.02
0.03
0.05
0.01
0.02
0.04
0.02
0.01
0.01
0.01
0.01
0.05
0.03
0.03

=N N =

—_
-~

W W Ut =N R W N = R W WOt W W N N

Table 2.17: Final results for road networks; run-time in seconds.

LCOR LSET NSPD 2LCOR 2LSET |Zy]|

LCOR LSET NSPD 2LCOR 2LSET |Zy]|

DC1 0.16 0.08
DC2 0.24 0.14
DC3 0.40 0.18
DC4 0.21  0.10
DC5 0.26  0.07
DC6 0.15 0.05
DC7 0.31 0.13
DC8 0.13 0.04
DC9 0.45 0.26

RI1 1.54 0.34

0.01
0.16
0.01
0.01
0.00
0.03
0.01
0.00
0.09
0.09

0.09
0.03
0.01
0.04
0.00
0.11
0.02
0.00
0.04
0.10

0.06
0.02
0.01
0.03
0.00
0.05
0.02
0.01
0.05
0.10

w o= NN HE N W SN

RI6 11.03 2.44 2.36
RI7 4.27 189 0.07
RIS 5.83 097 0.07
RI9 9.43 4.10 53.89
NJ1 19.77 753  0.26
NJ2 3247 20.61 0.85
NJ3 23.70 13.13 1.10
NJ4 29.48 19.20 0.39
NJ5 1642 7.18 -
NJ6 62.41 66.33 -

8.28
1.99
1.59
0.54
0.74
1.36
8.03
1.07
4.91

13.52

2.09
1.15
0.53
0.47
0.41
1.28
6.77
0.88
3.45
14.43

3
3
4
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Table 2.17 — Continued

LCOR LSET NSPD 2LCOR 2LSET |Zy]|

LCOR LSET NSPD 2LCOR 2LSET |Zy]|

RI2
RI3
RI4
RI5

7.74
0.77
2.68
5.48

1.97
0.24
0.99
3.22

71.80
0.05
0.82

794.01

2.21
0.13
0.73
0.80

1.06
0.09
0.58
0.77

15

2
17
16

NJ7
NJ8
NJ9

24.66
11.76
53.44

6.30
5.07
32.35

3.02
0.65

1.88
6.50
39.07

1.39
3.84
29.00

13
24

dash (-): run-time exceeds 3600 seconds






Chapter 3

Bi-objective Integer Minimum
Cost Flow Problems

Single-objective integer minimum cost flow problems have received a lot of
attention in the literature as they have various applications (see for example
Ahuja et al. 1993). As with most real-world optimisation problems, there is
usually more than one objective that has to be taken into account, thus leading
to multi-objective integer minimum cost network flow problems (MIMCF).
We restrict our considerations to the bi-objective case (BIMCF). The aim
in BIMCF is to find efficient solutions. The problem of finding all efficient
solutions of BIMCF is intractable, Ruhe (1988) presents an example problem
with exponentially many efficient solutions. BIMCF is an NP-hard problem,
as the bi-objective shortest path problem, a special case of BIMCF, was shown
to be N'P-hard by Serafini (1986).

We propose to solve the BIMCF problem using the Two Phase Approach. In
Phase 1, extreme efficient solutions are computed with a parametric network
simplex algorithm (Sedenio-Noda and Gonzalez-Martin 2000). Other efficient
solutions are computed in Phase 2 using a ranking algorithm (Hamacher 1995)
on restricted areas of the objective space. Our work constitutes one of the first
correct published algorithm to solve BIMCF, see Raith and Ehrgott (2009b),
and a preliminary version appeared in Raith and Ehrgott (2007).

We test our algorithm on different problem instances generated with the well

known network generator NETGEN and also on networks with a grid structure.



112 3.1 Problem Formulation

The chapter is organised as follows: in Section 3.1 basic concepts of BIMCF
problems are introduced. Recent literature is discussed in Section 3.2. In
Section 3.4 we present an algorithm to solve BIMCF'. Finally, numerical results

are shown in Section 3.5.

3.1 Problem Formulation

In this section terminology and basic theory of bi-objective integer minimum
cost flow (BIMCF) problems are introduced. The model is that of an MCF
problem with two objectives and integer variables. The BIMCF problem also
appears as Model (1.16) in Section 1.3.2. We repeat the formulation of BIMCF

here.

Let N = (G, ¢, l,u) be a directed network where the graph G = (V, A) consists
of a set of nodes or vertices V = {1,...,n} and a set of arcs A C V x V
with |A] = m. Two costs ¢, = (cl,c?) € Z x Z are associated with each arc
a € A. An integer numerical value b;, the balance, is associated with each
node i € V. A value b; > 0, b; < 0, or b; = 0 indicates that, at node 1,
there exists a supply of flow, a demand of flow, or neither of the two (i is then
called trans-shipment node). The BIMCF problem is defined by the following

mathematical programme:

. z1(z)
min z(z) =
29()
s.t. Yooz — > Tq=20b; forallieV (3.1)
{acA:t(a)=1} {a€A:h(a)=1}
Uy = Ty = g for all a € A
x, integer for all a € A,

with zy(x) = >, c 4 catq and z(x) = >, c2x,. Here x is the vector of flow
on the arcs, the first set of constraints represents flow conservation at the
different nodes, and we assume that ) ..,,b; = 0 since otherwise the problem
is infeasible. The second set of constraints ensures that for each arc a flow
remains between lower bound [, and upper bound u,. We assume [, = 0 and

Uy = l,. The third set of constraints ensures integer arc flow.
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3.2 Literature on BIMCF Problems

An excellent and very recent review on multi-objective minimum cost flow
problems is given by Hamacher et al. (2007). We will therefore only briefly
mention relevant literature. There is little published work on MIMCEF, so the
following is mainly dedicated to BIMCF. Most exact solution approaches to
find a (complete) set of efficient solutions for BIMCF, i.e. supported and non-
supported efficient solutions, consist of two phases, i.e. they are following the
Two Phase Method.

In case all capacities, supplies, and demands are integer, which we assume in
this chapter, any approach to solve the bi-objective continuous network flow
problem can be used in Phase 1 of BIMCF to find a complete set of (extreme)
supported efficient solutions, e.g. Lee and Pulat (1991); Pulat et al. (1992);
Sedeno-Noda and Gonzélez-Martin (2000, 2003). We discussed this property of
BIMCF problems when introducing the parametric network simplex approach
for Phase 1 in Section 1.3.2. The algorithms presented by Lee and Pulat
(1991); Pulat et al. (1992) may generate some non-extreme supported efficient
solutions, whereas the algorithms by Sedeno-Noda and Gonzalez-Martin (2000,

2003) generate extreme efficient solutions only.

Lee and Pulat (1991) claim that their procedure can be extended to gener-
ate all integer efficient solutions with image on the edges of conv(Z), i.e. all
supported efficient solutions. Their procedure works as follows: every efficient
solution found by their algorithm corresponds to a basic feasible solution of
(1.1), represented by a spanning tree in N. Two solutions z! and z? are called
adjacent if the two corresponding trees have n — 2 arcs in common. For adja-
cent solutions x! and 22, the arc that is in the basis of 22, but not in the basis
of 2!, can be introduced into the basic tree of 2! resulting in a cycle. As much
additional flow as possible is sent along that cycle until the flow on one of the
arcs in the cycle reaches its upper or lower bound, this determines the flow
change o along the cycle. The arc with flow at upper or lower bound leaves
the tree, resulting in the tree of z’s adjacent solution, 2. Whenever the flow
changes by o along the cycle, when moving from one efficient solution to an ad-
jacent one, the authors propose to increase the flow stepwise by 1,2,...,0 —1
to obtain intermediate solutions and claim to obtain all supported efficient

solutions this way. This claim is incorrect, as not all non-extreme supported
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efficient solutions can be obtained as intermediate solutions of two adjacent

basic efficient solutions, an example is given by Eusébio and Figueira (2006).

Several papers are dedicated to the computation of non-supported efficient
solutions of BIMCF, assuming all non-dominated extreme points are known.
Lee and Pulat (1993) perform an explicit search of the solution space, by
using intermediate solutions between adjacent basic solutions (which is not
sufficient, see remark above) and modifying upper and lower bounds of arcs.
They assume non-degeneracy of the problem. Huarng et al. (1992) extend this

algorithm to allow degeneracy in the problems.

Sedeno-Noda and Gonzélez-Martin (2001) argue that these two papers are
incorrect and present an approach that is based on the basic tree structure of
solutions. Having found a complete set of extreme efficient solutions in Phase
1, the algorithm by Sedeno-Noda and Gonzalez-Martin (2001) moves from
one efficient solution to adjacent solutions, in order to identify efficient ones
among them. Przybylski et al. (2006) give an example of a network where
one efficient solution is not adjacent to any of the other efficient solutions,
hence showing that the approach by Sedeno-Noda and Gonzélez-Martin (2001)
cannot generate a complete efficient set. We would like to point out that the
same example can also be used to show that the approach by Lee and Pulat

(1993) is incorrect, see Section 3.3.

Eusébio and Figueira (2009b) illustrate and give proof that supported efficient
solutions are indeed connected via chains of zero-cost cycles in the incremen-
tal graph constructed from basic feasible solutions corresponding to extreme
efficient solutions. They use this relationship to characterise all supported
efficient solutions to a MIMCF problem and present an algorithm for their
computation.

The same result can be obtained by considering a weighted sum formulation
(1.1) of MIMCEF for which two extreme efficient solutions corresponding to two
consecutive non-dominated extreme points are optimal. The non-dominated
points on the edge of conv(Z) connecting the two extreme non-dominated
points can be obtained by applying the k best flow algorithm by Hamacher
(1995) to the problem with weighted sum objective. The k best flow algorithm
is also based on cycles in the incremental graph. We explain how to apply the

k best flow algorithm to find all supported and non-supported solutions of
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BIMCF in Section 3.4.2.

Eusébio and Figueira (2009a) present an approach where e-constraint prob-
lems, min{z(z) : © € X, zo(z) < €}, are repeatedly solved to obtain all effi-
cient solutions (supported and non-supported). It is crucial that the arising
e-constraint problems are solved efficiently. The (possibly fractional) solution
of the e-constraint problem is obtained by sending a fractional amount of flow
along the cycle connecting two adjacent basic efficient solutions z' and z2, one
with 25(z') £ € and the other with 2zy(2?) > e. If the solution is fractional,
an integer solution can be obtained by branching on arcs with fractional flow.
This can be done efficiently as only arcs in the cycle can have non-integer flow

and it is therefore sufficient to branch on arcs in the cycle.

Eusébio and Figueira (2006) give examples of networks, where for a supported
extreme and supported non-extreme non-dominated point, both basic and non-
basic supported efficient solutions exist. It is known from linear programming
that there is always a basic feasible solution for every extreme non-dominated
point, but the authors show that there may be other non-basic efficient solu-
tions that lead to the same point. The network simplex method can be used
to identify all basic efficient solutions at that point. The non-basic solutions
can be obtained as convex combinations of the basic ones, but not by the
network simplex algorithm itself. Eusébio and Figueira (2006) also give a net-
work in which supported efficient solutions exist that cannot be obtained as

intermediate solutions between two extreme efficient solutions.

3.3 Incorrectness of the approach by Lee and
Pulat (1993)

Using the network by Przybylski et al. (2006), we can show that the approach
by Lee and Pulat (1993) will not find all efficient solutions. First, we repeat
the example from Przybylski et al. (2006).

Example 3.3.1 The network is given in Figure 3.1. The lower bound on each
arc 1s 0 and there is no upper bound restriction on flow, furthermore all flow

values are required to be integer. Node 1 has balance by = 1 and node 13 has
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Figure 3.1. Network of Example 3.3.1.

balance bys = —1, all other nodes have balance b; = 0,i = 2,...,12. Arc costs
are given above the arcs in the figure. This is a BSP problem, as one unit of
flow is sent from node 1 to node 13. Fvery feasible solution has a flow of 1 on

every arc that is part of the path, and zero flow on all other arcs.

Lee and Pulat (1993) first formulate what they call a “brute force” version of
their algorithm, which is then refined. We show here that the first version of
the algorithm, summarised in Algorithm 7, already fails to generate all efficient

solutions.

It should be noted that within this algorithm the lower bound on only one arc
increases at a time. It is not clear why this should yield all non-supported
efficient solutions or all non-dominated points. Sedeno-Noda and Gonzélez-
Martin (2001) also point this out but do not give an example for which the
algorithm actually fails to identify all solutions. In the following we show
that the non-supported efficient solution from Figure 3.2 with objective vector
(27,14) cannot be obtained by Algorithm 7.

To show this, we simply look at the set of feasible solutions of the network
when lower bounds on certain arcs of N are increased to 1. The highlighted
solution with objective vector (27, 14) will only be feasible when increasing the
lower bound on any of the horizontal (red) arcs. We plot all obtained feasible
solutions when increasing the lower bound on arcs 1 — 3 or 3 — 5 (Figure 3.3),

on arcs 5 — 7 or 7 — 9 (Figure 3.4), or on arcs 9 — 11 or 11 — 13 (Figure
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Algorithm 7 “Brute force” Algorithm by Lee and Pulat (1993)

1. input: Network (G,c,l,u), and E,ypyp, the set of all extreme supported
efficient solutions (BFSs), z!,2%..., 2" of BIMCF and all other supported
solutions.

2: forallt=1,...,r do

3: 7, is the basis associated with z;.

4:  for all non-basic arcs s € T, with s ¢ 7,41 do

Il=10,+1 ifa=s

Il =1, otherwise

5: Derive new lower bounds I’ as

@

while I < u, do

7: E = the set of all (integer) supported solutions of (G, c,!’,u).

8: s =& sUE [x & contains all feasible solutions computed for ¢
by increasing the lower bound on arc s. x/

9: lg = l; +1

10: end while

11:  end for

12: end for

13: £ = all efficient solutions among <Ut . &,s) U Esupp
14: output: Efficient non-supported solutions £.

C<@\/K/n\
N N

Figure 3.2. One feasible solution of network of Example 3.3.1 with a flow of
oneonarcs 1 - 3,3—55—=7,7—9 9— 11, 11 — 13, and zero flow on
all other arcs. The objective vector of the solution is (27, 14).
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Figure 3.3. All feasible solutions with ~ Figure 3.4. All feasible solutions with
increased lower bound on 1 — 3 or increased lower bound on 5 — 7 or
3 — 5. The solution from Figure 3.2 7 — 9. The solution from Figure 3.2
is red. is red.

3.5). In each of the figures, the solution from Figure 3.2 (the red triangle) is
non-supported, and can therefore not be identified by Algorithm 7.

Note that there is no degeneracy in the network from Example 3.3.1, which is
an assumption in Lee and Pulat (1993). This can be seen as arcs with positive
flow are always part of the basic tree and all other arcs in the basic tree have
flow at their lower bound. Whenever a non-basic arc is added to the tree, it is

always possible to send one unit of flow along the resulting cycle.

3.4 A Two Phase Algorithm to Solve BIMCF

We solve the BIMCF problem with the Two Phase Method as introduced in
Section 1.3.2

In Phase 1 extreme efficient solutions are computed. There are two main ap-
proaches in the context of BIMCF: Sedeno-Noda and Gonzéalez-Martin (2003)
follow a dichotomic approach in repeatedly computing solutions to a problem
in which a Tchebycheff norm is minimised using Lagrangian relaxation. When-
ever a new extreme point is obtained, the problem is split into two sub problems
each with their own Tchebycheff norm derived from the local nadir point. The

other main approach is based on the network simplex method where extreme
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0 5 10 15 20 25 30 35 40

Figure 3.5. All feasible solutions with
increased lower bound on 9 — 11 or
11 — 13. The solution from Figure
3.2 is red.

efficient solutions are generated in a right-to-left (or left-to-right) fashion, e.g.
Sedeno-Noda and Gonzélez-Martin (2000). We use the latter approach here.
In Phase 2 the remaining supported and non-supported non-dominated points

are computed with an enumerative approach.

3.4.1 Phase 1 — Parametric Simplex

Phase 1 is solved with the parametric network simplex algorithm as detailed
in Section 1.2.2 for continuous BCMCF problems. As stated in Section 1.3.2,
the parametric network simplex algorithm will find integer extreme efficient
solutions given all bounds, the costs, and the balances of the BIMCF problem
are integer. We can thus simply use Algorithm 2, the parametric network

simplex algorithm, to solve Phase 1.

3.4.2 Phase 2 — Ranking k Best Flows

In Phase 2, (at least) a complete set of the remaining supported non-extreme
efficient solutions and non-supported efficient solutions is computed. As dis-

cussed in Section 1.3.2, the objective vectors of those solutions can only be
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situated in the triangle defined by two consecutive extreme points as indicated
in Figure 1.15. We make the same assumption as for the Phase 2 ranking
approach from Section 1.3.2: let 2',... 2% where z' = (21(2"), 22(2")) and 2
are sorted by increasing z;, be the non-dominated extreme points obtained in
Phase 1. For each pair of neighbouring extreme points z* and 2!, weighting
factors are defined as in (1.17). Using A; and A, in (1.1), we obtain a single-
objective flow problem which has optimal solutions z?, *'. We denote the

weighted sum objective by ¢* = \121(x) + Ao2a(z).

Applying the k best flow algorithm by Hamacher (1995) to the single objective
problem min,cx ¢*, we can generate feasible network flows in order of their
cost. The k best flow algorithm is used to generate all feasible integer flows in
the current triangle until it can be guaranteed that all non-dominated points
have been found, see Section 1.3.1. Before we continue with the algorithm for

Phase 2, we explain the k best flow algorithm.

The k£ Best Flow Algorithm

We give a summary of the k best flow algorithm here, the reader is referred to
Hamacher (1995) for a more detailed description and proofs. First, we outline

the k best flow algorithm for the single-objective minimum cost flow problem.

Starting with an optimal solution z in the network N, a so-called incremental
graph G, is constructed in which every arc represents an arc in N on which
flow may be increased or decreased. Any cycle in GG, represents a change of
flow that leads from z to another feasible flow. Identifying a minimal cycle in
the incremental graph leads to a second best flow solution in N. Then, the
problem is partitioned by modifying one lower and upper bound on an arc of
N so that in one partition the original solution is optimal and the second best
solution is infeasible and vice versa. By iterating this process, a ranking of the

k best solutions can be obtained.

In Hamacher (1995) the algorithm is designed to solve problems in networks
with the property that there cannot be more than one arc connecting nodes
¢ and 7, no matter if they have the same or opposite directions. When solv-
ing BIMCF problems, randomly generated networks generally do not satisfy
this property. Also, real-world networks will most likely not satisfy this prop-
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erty (e.g. road networks). We outline a generalisation of the algorithm in the
following. The only difficulty with multiple arcs between a pair of nodes is
keeping track of the correspondence of arcs in the incremental graph and arcs

in the original network.

First, construct the incremental graph, a directed graph G, = (V,A,) with

arc costs ¢*, corresponding to an optimal flow x in N = (G, ¢,l,u) with

at e AF  forallae Aand x, < u,,

a- €A, forallaeAandx, > [,

and let A, = Af U A;. The arcs in A, have the following relationship to
arcs in A: we define each a™ € A, as arc with ¢(a™) = t(a), h(a™) = h(a),
and ¢?, = ¢,. For each a= € A, we define t(a”) = h(a), h(a™) = t(a), and
cf_ = —c,. Note that in the following G, is always constructed from the

network N in which z is a best solution.

If for an arc a € A both at € A, and a= € A, (which is the case only if
lo < Ty < ug), we call a™ and a™ a pair of symmetric arcs, otherwise we call
an arc non-symmetric. A proper minimum cost cycle is a minimum cost cycle
in GG, excluding all cycles that consist of one or multiple pairs of symmetric

arcs a™,a”. The set of all cycles to be considered is

C(G,) = {C : C cycle in G, with at least one arc ¢ € C and a~ ¢ C
or C' cycle in G, with at least one arc a~ € C' and a* ¢ C}. (3.2)

From C(G,) a proper minimum cost cycle C' € argmin{c*(C) : C € C(G,)} is
obtained. By increasing the flow by one unit along C, a second-best flow z is
obtained in the original network N: in N, increasing the flow on arc a® € A,
corresponds to increasing the flow on arc a € A, and increasing the flow on
a- € A, corresponds to decreasing the flow on arc a € A, see Procedure 4.
This yields a second best flow & with ¢(x) < ¢(z), where ¢(2) = ¢(x) + ¢*(C).

Now the network N is modified, by adjusting one lower and upper bound of
N, so that x remains optimal in the network (G, ¢, [, u’) with modified upper
bound u’ and z is infeasible in this network. Also, new lower bounds [” are
derived, so that Z becomes optimal and z infeasible in (G, ¢,l”,u). In order

to do this, the bounds of only one of the arcs a where flow was increased by
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Procedure 4 compute_second best_flow|[N,z, C]

1: input: Network N = (G, ¢,1,u), best solution x, and proper minimum
cost cycle C.
r,+1 ifat e CNAL
2 Ty = r,—1 ifa” e CNA;
Tq otherwise
3: output: Second best flow z.

one unit are modified as in Procedure 5. Note that this arc always exists as
®(C) =z 0 implies C' N AT # ().

Procedure 5 derive partition[N,z, (]|

1. input: Network N = (G, ¢, 1, u), best solution x, and proper minimum
cost cycle C.
2: Select one arc a with at € C'N A}
5 o — u%:xa ifa:E.L and 17 — Il'=2,+1 ifa:E.L
u, = u, otherwise Il =1, otherwise
4: output: Network N’ = (G, ¢, [, ') and network N” = (G, ¢,1" u).

In each of the two networks with modified bounds [” and u’, respectively, we
can again compute a second best flow. Out of the two second best solutions,
the flow with smaller cost is selected, this is the third best solution in the
original network N. The partition in which the third best flow was obtained
is again partitioned and both new partitions resolved. This process continues
iteratively. Pseudo-code for the k best flow algorithm is shown in Algorithm

8.

Adaptation of the £ Best Flow Algorithm in Phase 2

When solving Phase 2, we cannot specify a value of k£ a priori. Instead,
we continue until it is guaranteed that all non-dominated points in each tri-
angle T, given by the three points (z1(x%), z2(2%)), (21(z"™), 22(2'1)), and

(21(z"1), zo(z")), have been found as detailed in Section 1.3.2.

Whenever a solution with cost vector within the triangle is found that is not
dominated by a solution found previously (and also not equivalent to a solution
found previously), it is saved and the upper bound can be improved, as the

new point dominates parts of the triangle. Ranking flows continues until the
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Algorithm 8 £ best flows
1: input: Network N = (G, ¢, [, u), best solution x, and k.
/* For a network N with best solution x, we denote the incremental graph
by G, = (V, A,) and it has costs ¢* */
2. C € argmin{c*(C) : C € C(G,)} /* See (3.2) for C(G,) */
3: & = compute_second best_flow[N,z, (]
4: P ={(x,z,N,C)} /* Initialise set of partitions. */
5: 1 =2
6: while P # () and | < k do
Choose (2P, P, N, CP) with ¢(2F) = min{e(29) : (2,27, N1,C9) € P}.
P = P\(aP,zP, NP, CP)
{N’,N"} = derive_partition[N? aP CP| /% P, &P is best solution in
N’/ N" | respectively */
10:  if C(Gur) # 0 then
11: Identify C" € argmin{c”(C) : C € C(Guw)}. /* (3.2) for C(G,,) */

12: x’ = compute_second_best_flow[N’ 2P, (']
13: P=PU{(aP,2', N',C")}
14:  end if

15:  if C(Gsr) # () then
16: Identify C” € argmin{c™ (C) : C € C(Gs)}. /* (3.2) for C(Gs») */

17: 2" = compute_second _best_flow[N" 27 C"|
18: P=PU{(@r,z", N C"}

19:  end if

20:  Save ['® best flow 7.

21:  l=1+1

22: end while
23: output: 2", 3 . [™ best flow and | < k.

weighted sum value ¢ of the flow solutions exceeds upper bound A; from

(1.19). Thus we aim at computing a complete set of efficient solutions.

The Phase 2 algorithm incorporating the upper bound and parts of the k best
flow algorithm is described in Algorithm 9.

Let & = {z0, 2% ... 2" 2"T1} be a set of feasible non-equivalent solutions
whose objective vectors are not dominating each other, and with image in
00 i+l _

triangle T} defined by the supported efficient solutions z°° = ' and z

=1,..,

set of efficient solutions of BIMCF. This can be seen by applying the proof of
Theorem 1.3.1 to every triangle 7.

Remark 3.4.1 If there are multiple equivalent efficient solutions the rank-



124 3.4 A Two Phase Algorithm to Solve BIMCF

Algorithm 9 Phase 2 BIMCF
1: input: Network (G,c,l,u) with ¢ = (¢!, ?) and list of extreme efficient

solutions zt, ..., x°.
2: =1
3: while 7 < s do
4 &={a!, 2"} /x 200 =2 and 2+ = 271 x)
5. Compute A\i, \j and ¢ = Xt + Noc?. /% See (1.17) for X, \§ x/
6: A, =0; /* Initial value for A;; see (1.17) for §; */
7. C =argmin{c*(C) : C € C(G,)} /* See (3.2) for C(G,) */
8: % = compute_second best flow[N,z'! (]
9. P={("z,N,C)}
10:  while P # () and min{c* (2F) : (2P, 2P, NP,C?) € P} £ A; do
11: Steps 7-19 in Algorithm 8. /% Execute one iteration of k best flow */
12: if z(ZP) in current triangle and not dominated by the objective vector

of any element of & and 2P not equivalent to any = € &; then
13: Insert z? into &;.

14: Update A;. /* See (1.19) for A; x/
15: end if

16:  end while

17: 1=1+1

18: end while
19: output: Complete set &€ =J,_; . ;& of efficient solutions.

ing algorithm can generate them all. In the Phase 2 approach described in
Algorithm 9, however, only one of them is inserted into the set &. All effi-
cient solutions can be found by slightly altering the Phase 2 approach to keep
equivalent solutions. Also, another component needs to be considered when
calculating the upper bound to ensure that ranking is not terminated before
all equivalent solutions have been obtained. The upper bound A; can be cho-
sen as in Equation (1.18) in this case. In addition, Step 12 of Algorithm 9 is
modified to keep every efficient solution z? including those that are equivalent

to a previously obtained efficient solution.

As we aim at obtaining a complete set of efficient solutions, in our implemen-
tation we only keep one of the equivalent solutions for each non-dominated

point in objective space.

Remark 3.4.2 Unfortunately the k best flow algorithm generates solutions
with objective vector outside the current triangle 7; which cannot be removed

from P as those solutions might later lead to other solutions within the trian-
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gle. Whenever a solution z* with cost outside the current triangle lies within
another triangle 7}, we could save this solution and use it to compute a better
upper bound A* in 7). This will, however, not speed up the algorithm, as flows
in Tj still have to be ranked starting from the least cost flow. When ranking

flows in T}, one of the following two cases occurs:

e Ranking flows and updating the upper bound in 7} stops the algorithm

before the solution x* is enumerated, or

e Ranking flows in 7} generates the solution z* again, now the bound is
updated to A* (or a better upper bound A; < A*).

Thus, saving solutions in other triangles cannot improve the run-time of Phase

2.

Remark 3.4.3 We can use smaller triangles than those given by extreme
efficient solutions: We can consider intermediate solutions whenever the flow
between two adjacent solutions obtained in Phase 1 changes by ¢ > 1 along
the cycle connecting the two solutions. Intermediate solutions can be used to
construct ¢ — 1 smaller triangles. Due to the nature of the Phase 2 algorithm,
including those smaller triangles instead of the one defined by the two extreme
efficient solutions does not present an advantage. The ranking algorithm would
generate the same rankings ¢ — 1 times as we cannot restrict the ranking to
the current triangle. There is also no advantage in a better upper bound,
as the ranking algorithm will first generate all alternative optimal solutions
(i.e. the non-extreme supported efficient solutions including the intermediate
solutions), and after that the upper bound will be as good as it would be in

the smaller triangles.

Remark 3.4.4 We briefly comment on the implementation of this algorithm.
As mentioned before, the network simplex algorithm in Phase 1 is an adapta-
tion of the MCF algorithm by L&bel (2004). In Phase 2, we implemented the
k-best flow algorithm as outlined in Algorithm 9. The most time-consuming
part of this algorithm is finding a proper minimum cost cycle in Steps 2, 11,
and 16 of Algorithm 8 and Step 7 of Algorithm 9. This is implemented as
suggested in Hamacher (1995): the set C(G,) is obtained by combining each
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non-symmetric arc a € A with a shortest path from h(a) to t(a) in the network.
Symmetric arcs a™ or a~ are combined with the shortest path from their head
node to their tail node in the network with arc set A, \ {a~} or A, \ {a™},
respectively. Altogether the shortest paths between every pair of nodes con-
nected by an arc needs to be calculated in a network with negative arc costs
c”. To be able to use the efficient implementation of Dijkstra’s shortest path
algorithm despite the negative costs, initially the shortest paths from one node
to all other nodes are calculated using a shortest path algorithm suitable for
negative arc costs such as Floyd’s algorithm (e.g. Ahuja et al. 1993). Using
the obtained shortest path distances, the costs ¢” can be adjusted to positive
costs which enables us to use Dijkstra’s algorithm. Nevertheless, more than
99% of the runtime is spent in Phase 2, mostly calculating shortest paths for

the proper minimum cost cycle.

3.5 Numerical Results

We investigate the performance of the proposed Two Phase Method with
parametric network simplex in Phase 1 and flow ranking in Phase 2. In or-
der to do so, networks are generated by NETGEN (Klingman et al. 1974),
which is slightly modified to include a second objective function. We generate
two sets of test instances, with the following parameters fixed for all prob-
lems: mincost = 0, maxcost = 100, %highcost = 0, %capacitated = 100,
mincap = 0, and maxcap = 50. Furthermore, we vary parameters as in Table
3.1. The table shows in each column which values of n, m, number of sources
and sinks, etc. are selected. We generate 30 problems for each set of parame-
ters. We generate problems NO1-N12 with varying sum of supply (3 ;)50 bi)
and problems F01-F12 with fixed total sum of supply, as we observe that in-
creasing the sum of supply with the network size significantly complicates the

problem.

We also generate networks with a grid structure. Nodes are arranged in a
rectangular grid with given height and width. Every node has at most four
outgoing arcs (up, down, left, and right), to its immediate neighbours. Grid
networks have a structure identical to that of grid networks in the previous

chapter, see Figure 2.1 in Section 2.4.1. A grid is defined by the parameters
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Table 3.1. Test Instances: NETGEN.

transhipment trans-shipment

Name n m sources sinks Ziev:bi <o bi sources sinks

NO1 / FO1 20 60 9 7 90 / 100 4 3
NO02 / F02 20 80 9 7 90 / 100 4 3
NO03 / F03 20 100 9 7 90 / 100 4 3
NO04 / F04 40 120 18 14 180 / 100 9 7
NO05 / F05 40 160 18 14 180 / 100 9 7
NO06 / F06 40 200 18 14 180 / 100 9 7
NO7 / FO7 60 180 27 21 270 / 100 14 10
NO8 / F08 60 240 27 21 270 / 100 14 10
NO09 / F09 60 300 27 21 270 / 100 14 10
N10 / F10 80 240 35 38 350 / 100 17 14
N11 / F11 80 320 35 38 350 / 100 17 14
Ni12 / F12 80 400 35 38 350 / 100 17 14

Table 3.2. Test Instances: grid.

Name h w n m Cmaz Umaz ZieV:bi>0 b;
GO1 4 5 20 62 100 50 100
G02 5 8 40 134 100 50 100
GO03 6 10 60 208 100 50 100
G04 8 10 80 284 100 50 100
G05 6 10 60 208 100 75 100
GO06 6 10 60 208 100 100 100
GO7 6 10 60 208 25 50 100
GO08 6 10 60 208 50 50 100
G09 8 10 80 284 100 75 100
G10 8 10 80 284 100 100 100
G11 8 10 80 284 25 50 100
G12 8 10 80 284 50 50 100

height h, width w, maximum cost ¢4, Maximum capacity U, and sum of
supply Zie]}:bi>0 b;. Nodes are randomly chosen to be demand nodes, supply
nodes, or trans-shipment nodes with probabilities 0.4, 0.4, and 0.2, respectively.
It is, however, possible that some demand- or supply-nodes are assigned a
balance of 0. Instances G01-G04 are created with the same number of nodes
as instances NO1-N12 and the same ), .o b;. In instances G05/G06 and
G09/G10 we increase U,q, of G03 and G04, respectively. In instances G07/G08
and G11/G12 we decrease ¢pq, of GO3 and GO4, respectively. Again, we
generate 30 problems for each choice of parameters h,w,n, m, ¢z, and Upqz
as listed in Table 3.2. Integer costs and capacity of arcs are randomly selected

in the interval [0; ¢;nez| and [0; wya.], respectively.

All numerical tests are performed on a Linux (Ubuntu 7.04) computer with
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Table 3.3. Results for problems NO1 — N12.

[ZN] [Zsn|/|IZNN] time in seconds
Name average min max average average min max
NO1 168.13 15 392 0.28 0.40 0.01 1.45
N02 271.13 66 852 0.22 0.76 0.09 3.17
NO03 375.43 126 702 0.18 1.40 0.27 3.78
N04 455.10 137 879 0.15 7.09 1.67 26.36
NO05 660.63 252 1801 0.14 11.84 3.16 36.95
N06 948.30 266 2280 0.12 22.58 5.05 74.91
NO7 867.80 410 1399 0.11 42.21 11.48 94.32
NO8 1510.37 531 2834 0.09 90.88 27.11 245.20
N09 1553.47 808 2448 0.09 112.62 32.77 238.82
N10 1138.77 552 1901 0.10 125.42 46.44 372.95
N11 2036.20 989 4109 0.08 289.05 69.97 559.34
N12 2480.70 1287 3921 0.07 397.94 138.38 813.76

Table 3.4. Results for problems FO1 — F12.

[ZN] |Zsn|/|IZNN] time in seconds
Name average min max average average min max
Fo1 181.13 24 491 0.27 0.52 0.04 2.81
F02 260.53 15 685 0.24 0.99 0.02 4.58
F03 353.77 158 788 0.20 1.54 0.28 6.41
Fo04 213.87 65 380 0.20 2.44 0.58 5.58
F05 354.10 144 701 0.15 5.19 1.86 11.77
F06 478.87 176 714 0.13 9.20 2.53 33.65
Fo7 203.97 48 410 0.16 7.17 0.87 22.40
F08 343.23 165 860 0.14 13.48 5.31 41.27
F09 454.17 230 950 0.12 21.35 8.18 47.9
F10 146.43 72 277 0.18 8.80 2.75 17.27
F11 277.90 131 680 0.15 19.64 8.38 54.04
F12 414.50 234 693 0.12 34.03 12.57 66.47

2.80GHz Intel Pentium D processor and 1GB RAM. We use the gce compiler
(version 4.1) with compile option -O3. The methods are implemented in C.
When measuring run-time, we disregard the time it takes to read the problem
from a problem file. Run-time does include the generation of all non-dominated

points together with the efficient flows and it is measured with a precision of
0.01 seconds.

In Table 3.3 - Table 3.5 we show the average, minimum, and maximum |Zy],
average |Zsn|/|Znn|, and average, minimum, and maximum CPU time for
the two different NETGEN instances (N and F), and the grid instances (G),
respectively. We make the following observations (see Tables 3.3 to 3.5):
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Table 3.5. Results for problems G01 — G12.

IZN| [Zsn|/|IZNN] time in seconds
Name average min max average average min max
GO1 74.13 5 276 0.52 0.11 0.00 0.79
G02 211.23 37 817 0.27 1.99 0.09 10.54
GO03 256.07 86 592 0.22 8.72 2.22 33.23
G04 354.20 58 1092 0.20 21.20 2.40 99.01
GO05 319.67 64 1034 0.21 8.90 1.45 23.48
GO06 420.60 106 955 0.19 12.17 2.66 37.72
GO7 194.63 39 433 0.30 6.78 0.44 25.18
GO08 235.33 25 477 0.27 8.00 0.61 40.42
G09 477.33 176 1094 0.17 34.38 6.00 293.53
G10 397.77 113 1069 0.19 21.54 2.04 65.64
G11 265.93 35 541 0.27 23.61 1.33 55.53
G12 326.80 109 645 0.20 21.27 5.62 70.89

When fixing the number of nodes n in a network but increasing the
number of arcs m the number of non-dominated points |Zx| increases.
This is illustrated by instances NO1-N12 and F01-F12 when comparing
three consecutive rows with the same number of nodes, i.e. rows NO1-
N03, N04-N06, and so on.

For all presented instances, we observe that the more non-dominated
points there are in a problem, the longer the run-time of the algorithm.
Despite the instances being fairly small, they have a lot of non-dominated

points.

The sum of supply (3 ;cy.,~00i) significantly increases the number of
non-dominated points, which can be seen by comparing the results for
problems FO1-F12 with the corresponding results of problems NO1-N12.

It is, however, more realistic to increase ) b; while increasing the

i€V:b; >0
network size.

We generate grid network instances G01-G04 with similar numbers of
nodes and arcs as instances FO1-F12 and NO1-N12 generated by NET-
GEN. Comparing the number of non-dominated points of G01-G04 to
those of (corresponding similar sized networks) N01-N12 we observe
that there are (on average) fewer non-dominated points in the grid net-
works. This is not the case when comparing the average number of
non-dominated points of G03 and G04 to those of FO7 and F10/F11,

respectively.
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e When decreasing ¢, in grid instances GO7/G08 and G11/G12, we ob-
serve that smaller c¢,,,, leads to fewer non-dominated points, but not
necessarily to a faster run-time. When increasing t,,q, in G05/G06, the
number of solutions increases and so does the run-time. But increasing
Umaz 10 100 in G10 leads to less solutions than increasing ,,q, to 75
in G09, so we are unable to draw conclusions about the relation of the

number of non-dominated points and 4.

e | Zsn|/|Znn|, the ratio of supported and non-supported non-dominated
points, is decreasing when the total number of solutions is increasing for
NETGEN instances, on average, an observation also made by Sedeno-
Noda and Gonzalez-Martin (2001). For grid instances there seems to be
the same trend, but the total number of solutions does not increase as
much. In most NETGEN and grid instances, less than 20% and 30%
of all solutions are supported, respectively. Thus, the majority of non-

dominated points are non-supported.

e In Figures 3.6 - 3.8, the non-dominated points of one instance of each of
the classes FO1, NO1, and GO1 are shown. This illustrates that most non-
supported points are in fact very close to the boundary of conv(Z —l—Ré).
The given figures are just three examples, but we observe a similar be-
haviour in most of the problem instances. By obtaining only the sup-
ported non-dominated points of a problem, a fairly good approximation
of the set of non-dominated points can be obtained. There are, however,
exceptions such as the example in Figure 3.9 showing an instance of G02,
where there are a lot of non-supported points far from the boundary of
conv(Z +R2).

3.6 Adaptation of the Two Phase Method for

the Bi-objective Transportation Problem

The transportation problem is a special case of the MCF problem. The set of
nodes is split into a set of ny supply nodes Vg and n, demand nodes Vp. All arcs
are directed from supply nodes to demand nodes, so t(a) € Vg and h(a) € Vp

for all @ € A. A non-negative cost vector ¢, = (¢}, ?) € N x N is associated

a’ ~a
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with each arc a. Furthermore every demand node i € Vp has demand b° = 0
and every supply node i € Vg has supply b7 = 0. A feasible solution only
exists when Y., b = .., b7, The bi-objective integer transportation
(BIT) problem can be stated as

: 71 (z)
min z(x) =
2()
s.t. S oz, =0b7 forallie Vg

{acA:t(a)=i}

ST z,=0bP forallieVp
{a€A:h(a)=i}

Tq 20 foralla € A

T, integer for all a € A,

with zy(z) = > cacate and zo(x) = >, 4 c2x,. BIT is a special case of
BIMCEF. As such, it can of course be solved with the same methods as BIMCF.
As explained in Remark 3.4.4 the implementation of the £ best flow algorithm
in Phase 2 involves many shortest path calculations that take up a large portion
of the algorithm’s run-time. Therefore, this is where most potential for run-

time improvement exists.

A more efficient solution method can be obtained, however, by adapting the &
best flow algorithm to the transportation problem. Philip (2008) shows that
for BIT, any proper minimum cost cycle C(G,) in G, for a BFS x contains
an arc with zero flow. This observation can be used to efficiently identify this
proper minimum cost cycle: as a proper minimum cost cycle must contain an
arc with zero flow, only those arcs a € A, with z, = 0 have to be considered

when calculating shortest paths.

The numerical results in Philip (2008) indicate that this simple modification
of the Phase 2 algorithm yields an average run-time improvement of 73% over

the original BIMCF implementation for a set of 12 BIT test instances.
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3.7 Concluding Remarks on Bi-objective Inte-

ger Minimum Cost Flow Problems

The presented Two Phase Algorithm solves the BIMCF problem, but the prob-
lems solved within reasonable run-time are fairly small. It is therefore worth
investigating how to increase the performance of the presented algorithm to
make it possible to solve bigger problems. Future research could address the
extension of the Two Phase Algorithm for BIMCF to the MIMCF problem
with more than two objectives. This can be done along the lines of Przybylski
et al. (2009, 2007), where a Two Phase Method for multi-objective integer
programming is presented together with an example of the application to the

assignment problem with three objectives.






Chapter 4
Bi-objective Traffic Assignment

The traffic assignment problem models route choice of users of a road network
assuming known and fixed travel demand between all origin and destination
points within the network. The aim of traffic assignment (TA) is to determine
how many users choose certain routes and/or how much traffic runs on each
section of the roads in the network. TA can give valuable insights into the
current usage of a road network, for instance highlight congestion-prone areas
and which parts of the network are under-used. TA is often used as a planning
tool as it helps predicting the impact of a change to the road network, such as

building or widening a road.

A topic that is getting more important in today’s world with ever increas-
ing numbers of cars on the road and thus increasing traffic congestion is road
tolling as a tool for controlling congestion. Many cities (Singapore, London,
Melbourne, etc.) have introduced road tolling to cope with congested city cen-
tres or to finance construction of new roads or public transport infrastructure.
Again, TA can be used to predict usage of roads and therefore toll revenues
collected. Of course, charging a toll may alter the users’ travel behaviour —
some users might not want to pay the toll at all and therefore take a detour
on the way to their destination whereas others might happily pay to arrive at
their destination quickly (others may choose another mode of transport or not
to travel at all). Our aim is to model travel behaviour taking the effect of tolls
(or other monetary costs) into account. It has been observed that from a car
driver’s point of view, the monetary costs associated with running a vehicle

(petrol, insurance, repairs) do not influence route choice very much. Toll costs,
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however, are perceived very differently. Even low tolls provoke opposition from

drivers that otherwise happily pay for the petrol to fill up their cars.

TA models the route choice of travellers within a road network. A frequent
basic assumption is that travellers choose their route to minimise travel time or
to minimise a linear combination of time and other objectives such as monetary
cost. We highlight why we believe our bi-objective approach of considering the
time and toll objectives independently is a more realistic approach to modelling
traffic.

We first explain the key role single-objective TA plays in transportation plan-
ning in Section 4.1. We then formally introduce the single-objective TA prob-
lem in Section 4.2 and discuss under which assumptions it is equivalent to
an optimisation problem and variational inequalities. We show how this rela-
tionship is exploited when solving TA. In Section 4.3 we discuss approaches
to TA from the literature that deal with two or more objectives, which are
usually combined into a single generalised cost objective. Then, in Section
4.4, we introduce the bi-objective and multi-objective TA problem where two
(or more) objectives are not combined via a generalised cost function, but
treated as individual objectives. We discuss why bi-objective TA and related
optimisation and variational inequality problems are not equivalent, which is
in contrast to single-objective TA. In Section 4.5 we propose new heuristic

solution approaches dedicated to the bi-objective problem.

Preliminary results on bi-objective traffic assignment appeared in Wang et al.
(2008) and Raith (2008a).

4.1 'Traffic Assignment within the Transporta-

tion Planning Process

Traffic assignment is one of the key components of transportation planning.
One major component of the transportation planning process is the modelling
step, which is generally split into four different components, also known as
four-stage strategic transport planning model (FSM). TA is part of the final
stage in the FSM. A comprehensive book on transport modelling by Orttzar
and Willumsen (2002) details the FSM and how the separate steps are solved.
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Figure 4.1. Simplified road network of the Auckland region. The data for
generating this figure is kindly provided by the Auckland Regional Council.

McNally (2000) skeptically recapitulates the FSM and presents a typical ex-
ample application in the US.

The FSM is based on an available network representation of the transportation
infrastructure. All roads, or at least all major roads, are included in the
road network as arcs, and nodes represent intersections. The public transport
network also contains other transportation links such as railroad tracks or
ferry connections. The network basis for TA and FSM is formally introduced
in Section 4.2.1. There is a function associated with every transportation
link in the network that represents the travel time on the link, which, in case
of roads, is often dependent on the amount of traffic using the link or even
the amount of traffic throughout the network. Instead of considering traffic
originating from every node, the network may be split into zones. Each zone
is associated with a so-called centroid, an artificial node at which all traffic
into the zone ends or traffic out of the zone originates. Centroids are typically
connected to the network via artificial arcs that may only be used as first or

last arcs of a trip.
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— Trip Generation ~~ total trips entering/leaving each zone
|

> Trip Distribution ~ origin-destination matrix
}

> Modal Split ~» modal origin-destination matrix
|

— Trip Assignment ~» amount of trips on each arc

Figure 4.2. Illustration of the four-stage strategic transport planning model.

Figure 4.1 depicts the network of the Auckland Regional Transport (ART)
Planning Model. It shows a simplified road network of the Auckland region,
which contains only those arcs corresponding to major roads. Centroids are

the red circles in the figure.

Figure 4.2 shows the four different stages of FSM, which are usually executed
in sequence from top to bottom. Initially, it is determined how many trips start
and end in every zone of the network, this is the trip generation step. Next,
trip distribution splits the total trips originating at a zone into different target
zones, and also splits the total trips arriving in a zone between different origin
zones. At the end of trip distribution, an origin-destination matrix is obtained,
which details the travel demand from each zone in the network to each other
zone. Once it is determined how many travellers there are between the zones
the next question is how they choose to travel. They might for example choose
a mode of transport such as walking, cycling, using public transport, or driving
a car. It is determined which portion of travellers chooses each mode in the
modal split step. Finally, trip assignment determines the actual route choice
of travellers for their mode of transport. This may be done separately for the
different modes. The component of trip assignment that is studied in this thesis
is traffic assignment (TA) where the routes of vehicular traffic are determined.

It is normally assumed that travellers aim to minimise their own generalised
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cost when making route choice decisions. Trip assignment yields important
information on the traffic load on individual roads, or the occupancy level of

public transport.

Even though the FSM is solved sequentially, the different stages have been
linked together in the literature to enable feedback to earlier stages. For ex-
ample, given the volume of traffic on each transportation link as output of trip
assignment, trip generation, trip distribution, or modal split might produce
different results. This reflects that, for example, people choose their workplace
also with respect to its accessibility. Also, the mode choice obviously depends
on the amount of traffic on roads as public transport may be more attractive
when alternative routes for vehicular traffic are congested. This feedback is

indicated in Figure 4.2

After running the FSM the resulting load on each link can be used to evaluate
the performance of the network and identify its weaknesses. TA determines
the load on different links which can indicate sections of the network where
congestion is high and single out bottlenecks in the network. For public trans-
port it is important to be able to derive expected revenue or determine how
much capacity is needed. TA can also be used for predictions such as how the

addition of new roads affects traffic throughout the system.

Prior to running the FSM and TA, the network needs to be calibrated. It
is crucial that the functions of travel time on each link portray the actual
situation correctly. It must be correctly modelled how the amount of traffic
(also known as traffic volume) on a road influences travel time. The arising
functions for car travel will be non-linear in general as travel speed decreases
with traffic volume and traffic flow may even come to a stand-still if there
are too many vehicles on a road. The same is true for modes that share
infrastructure with other users, for example buses mostly share roads with
cars, and are therefore susceptible to the same congestion effects. Subways,
on the other hand, do not share their tracks and therefore their travel time
may be assumed constant for links. The same is true for pedestrians, they are
not affected by congestion as pedestrian walkways and sidewalks rarely reach
maximum capacity. In the following we make the general assumption that arc
cost functions are non-linear functions as the focus here is on car travel. In

practice the travel time cost function is a function of passenger car units. Light
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goods vehicles and heavy goods vehicles are accounted for by converting them

to equivalent passenger car units.

We assume that the first three transportation modelling steps are completed,
i.e. an origin-destination matrix is given and we also perform TA for only one
transportation mode, namely car travel. In the following, we discuss how TA

is modelled, and how it can be solved.

4.2 Single-objective Traffic Assignment

An extensive discussion of TA can be found in Ortizar and Willumsen (2002),
a summary of the main points is contained in Willumsen (2000). The book by
Patriksson (1994) is dedicated to the many different algorithms available for
solving TA.

We facilitate notation by restricting our considerations to car traffic. Car travel
is most relevant for us as our aim is to model road tolls as opposed to other
monetary transportation costs which mostly affect private motor vehicles. We

first introduce the basis for traffic assignment, the traffic network.

4.2.1 Model

We continue to refer to network components as nodes and arcs, although in
the traffic literature it is more common to refer to arcs as links. We denote by
V the set of nodes, which can be understood as intersections, or points where
one can change between different arcs. The set of arcs is A € V x V, where
an arc represents a directed road section. There are | A| = m arcs and |V| =n
nodes in the network. The road network N = (G,¢) consists of a directed
graph G = (V, A) and a travel time function ¢ that assigns to every arc a the
time ¢, it takes to traverse the arc. We assume that the finite demand of travel
between pairs of nodes w = (ny,n2) € WSV x Visd, = 0, where W is the
set of all origin-destination (OD) pairs.

For every OD pair w there is a set of paths R,, connecting the two nodes. The
set of paths for all OD pairs is R = (J, ¢y Rw- The flow on each path r € R
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is denoted by f.. Arc flow f, is related to path flow by

Fa=> fida forallac A, (4.1)

reER

where ¢, has value 1 if path r contains arc a, and 0 otherwise. The vector of
path flow is f € R?, p = |R|, and the vector of arc flow is f € R™. We denote
by ® € R™*? the arc-path incidence matriz with elements ¢,,. Then (4.1) can

be re-written as f = ®f. Travel demand is satisfied if

dy = Z fr for all w e W. (4.2)

’I"ER'LU

The set K of feasible path flow vectors is given by
K={feR: f=0satisfies (4.2)}.
The set K 4 of feasible arc flow vectors is given by
Ka= {TERm:EIfGICsuchthatfquf}.

The sets K and K 4 are both convex, closed and bounded subsets of R” and

R™, respectively. This can be easily seen:

e convez: For f,g € K it follows that Af + (1 — \)g € KL with A € [0;1] as
Af+ (1 =X)g 20 and demand is still satisfied:

Z)‘fr+(1_/\)grz)‘2fr+(l_)‘) Zgr:dw'

TERw r€ERw r€Rw

e closed: We have to show that the limit of every converging sequence with
limit f = limy_o f* and f* € K lies in K. For all w € W and for all f*,

we have
> =

T’eRw

With f, = limg_. ff we conclude

S = Zkli_{gofleim > fF=d,,

TGRU) TGRw TERw
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which shows that f satisfies (4.2). Also, assume that f does not satisfy
f 20, ie. there exists r € R with f, < 0. Choosing € = |f.| > 0, there
exists K € N such that for all k =2 K

|f7]:C - frl = | ff +(_f7“)‘ < ’fr’a
~N~ =

>0 >0
N——
=g

a contradiction. Therefore f € K.

e bounded: The set K is bounded as every component f. of f € K is
bounded by 0 £ f, < d,, for r € R,,.

The same results hold for K 4, where proofs are obtained similar to those above

by replacing f = ®f.

Most importantly it is assumed that there is a single objective function which
all users aim to minimise: the travel time associated with an arc a is denoted
by .(f), which may be a non-linear function depending on the flow of the
whole network. It is a reasonable assumption that travel time on an arc is

positive and continuous. The travel time along a path r is denoted by ¢, (f).

Definition 4.2.1 We call the path travel time function ¢,.(f),r € R additive

if it can be obtained by summing up the appropriate arc time functions ¢,(f):

e(f) = 3 e(F)dr

acA

The arc time vector is denoted by ¢(f) € R™ and the path time vector is
c(f) € Rr. Although we refer to € as travel time here, other objectives can be
included into ¢: the function ¢ often is a combination of time, cost and other
factors relevant for route choice. Again, ® can be used to derive path cost
from arc cost by c¢(f) = @ ¢(®f). The following are important properties of
the functions ¢,.

Definition 4.2.2 If ¢,(f) = ¢,(f,) for all arcs a € A, i.e. arc travel time is
only a function of f,, the flow on a, the cost function is called separable. If

for any a,b € A, 0¢,/0f, = 06,/0f, the cost function is called symmetric. A



4.2.1 Model 143

separable cost function is always symmetric as for separable ¢,(f,) and ¢ (f;)
we get 9¢,/0f, = 0 = 9¢,/0f, whenever a # b.

It is commonly assumed that travellers all have the same objective to min-
imise travel time, that they have perfect knowledge of the travel time on each
alternative path, and that they behave according to Wardrop’s first principle
(Wardrop 1952, p.345):

The journey times on all the routes actually used are equal, and
less than those which would be experienced by a single vehicle on

any unused route.

This means that no individual driver can decrease their travel time by unilat-
erally choosing a different path, therefore all travellers between the same OD
pair experience the same travel time, even when they travel on different paths.
If there were two paths r, s € R, with ¢,(f) < ¢s(f) and fs > 0, at least some
of the travellers on s would switch from s to r. The stable solution described
by Wardrop is obtained when all travellers for an OD pair experience the same
minimal travel time (and the unused paths have travel time greater or equal
to that of used paths), as no one has an incentive to change to another route
— we call this stable solution a solution of the TA problem. This problem is an
equilibrium problem, and we refer to it as SEQ from now on. We denote this
formulation by SEQ, as it is a scalar equilibrium problem, not to be confused
with the vector equilibria that will be discussed later. The problem is also
known as User Equilibrium (UE). Wardrop’s description of SEQ is cast into

mathematical terms as follows.

Definition 4.2.3 The feasible vector f* € K is called equilibrium flow if and
only if

(SEQ) Yw e W,Vr,s € R, ¢ (f") <cs(f*)= fr=0. (4.3)

s

It is typically assumed that car drivers in a road network can be modelled
by taking Wardrop’s first principle as behavioural basis. Drivers behave in a

selfish way in finding a route that is fastest among all their alternative choices.
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The solution of the TA equilibrium problem is obtained as a feasible solution
satisfying SEQ. Finding such a solution is not trivial, as a solution of SEQ can
only be derived analytically for very simple problems. It can be shown that
SEQ is equivalent to other problems, for which solution algorithms are known,
see Sections 4.2.2 and 4.2.3.

When a solution satisfies SEQ), it follows that on all used paths for an OD
pair w, drivers experience the same minimal travel time 7,,, whereas the travel
time on all unused paths is at least as high. When f* satisfies SEQ), there exist
minimal driving times 7, for each w € W such that the following holds for all

OD pairs w € W and any path r € R,:

Cr(f*>:77w lff:>07 (44)

e (f*) Zmy it £ =0.
For completeness, we mention the capacitated version of SEQ (some remarks
on capacitated SEQ can be found in Patriksson 1994). It is assumed that arc
flow must lie between some lower and upper limit I,% € R™. The new set of
feasible arc flow vectors becomes K4 = {feR™:3f € K4 suchthat [ < f <
u}, and the set of feasible path flow vectors becomes K = {f e Rr:3f €
K 4 such that f = ®f}.

Definition 4.2.4 The feasible vector f* € K is called capacitated equilibrium
flow if and only if

(SEQC) Yw e W.Vr.s € Ry (f*) <ei(f) = [ =1Loor [} = uy.

4.2.2 Optimisation Problem Formulation

It was first published by Beckmann et al. (1956) that the SEQ problem (4.3)
can, under certain assumptions, be equivalently solved via the optimisation
problem
fa
min Y, [ ¢.(v)dv
acA LO[ (45)
s.t. 7 € K,
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given additive path cost functions. This equivalence as well as existence of
a solution of (4.5) is guaranteed by making the assumptions that for all OD
pairs w € W it holds that |R,| = 1, d,, = 0, and that the arc travel time
function ¢, is positive, continuous, and separable (Patriksson 1994). Instead
of assuming separable functions, it suffices to assume that the functions ¢, are
symmetric, i.e. that the Jacobian matrix V¢ is symmetric, see Nagurney (1993).
Uniqueness of the (arc flow) solution follows from the additional assumptions
that Vw € W d,, > 0 and that ¢,(f,) are strictly increasing (for example
Patriksson 1994). It is a reasonable assumption that travel time increases
with increasing flow on an arc, as more travellers mean more congestion and

thus a longer time to traverse the arc.

Remark 4.2.1 Only uniqueness of arc flows can be guaranteed, but not unique-
ness of path flows (Patriksson 1994).

4.2.3 Variational Inequality Formulation

Other equivalent formulations of (4.3) are based on variational inequality (VI)
formulations. Nagurney (1993) shows the applicability of variational inequali-
ties within many different subject areas, and there is a chapter on TA and its
equilibrium formulation SEQ. A VI that represents SEQ can be formulated in

terms of path flow and in terms of arc flow.

Definition 4.2.5 The path-based variational inequality problem is the prob-
lem of finding flow f* € IC that satisfies

(VIp) o(f)"(h—f*)20 Vhek.

There is also an arc-based VI formulation. The flow f € K4 is a solution to

the arc-based variational inequality problem if and only if

(VIa) e(f)"(h—F)=0 VheKa.

Smith (1979) shows that VIp and Vla are equivalent if the path costs are

additive (then the total cost ¢(f*) = &(f ) remains unchanged as it does not
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matter whether it is calculated via path flows or via arc flows). The arc-based
formulation VIa, however, may be advantageous as it only requires one variable
per arc, rather than one variable per path — and there can be many more paths
than arcs in a network. SEQ and VIp / VIa are equivalent as stated in the

following theorem:

Theorem 4.2.1 (Smith 1979) A vector f € K satisfies SEQ if and only if
it satisfies VIp. When cost functions are additive, a vector f € K4 satisfies
SEQ if and only if it satisfies VIa. Fxistence of a solution is guaranteed by the

additional assumption that the respective cost function ¢ or ¢ is continuous.

In Patriksson (1994) stronger assumptions for the equivalence of SEQ and
VIp (and VIa) are made, namely the assumption that Yw € W it holds that
|Rw| = 1, dy = 0, and that ¢,(f) is a positive, continuous function. The
stronger assumptions are necessary as the relation is proved via the corre-

sponding optimisation formulation, which requires stronger assumptions.

Both VI formulations are more general than the optimisation formulation (4.5)
as there are less underlying assumptions on arc cost functions: for VI the
functions &(f), c(f) may depend on the flow in the entire network. As such
a VI formulation is very general (and equivalent to SEQ), it is often given
as definition of the traffic assignment equilibrium problem (e.g. Oettli 2001)

instead of the definition of SEQ (Definition (4.3)).

4.2.4 Solving Single-Objective Traffic Assignment

There is a multitude of algorithms dedicated to solving TA, by solving one of
its re-formulations SEQ, VIp/Vla, or the optimisation problem (4.5). We give
a quick introduction to some of the most common basic algorithms here. Pa-
triksson (1994) introduces many algorithms to solve TA and gives the historic

context of their development.
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Algorithm 10 All-or-Nothing Assignment
1: input: Graph (V,.A), constant arc cost vector ¢, set of OD pairs W, and

demand d.
Set f=0.
for all w € W do

Identify shortest path r € R,,.

fr = dy /* Assign all flow d,, to this path */
end for
f=2f

output: Arc flow vector f and path flow vector f.

All-or-Nothing Assignment

The most basic TA problem arises when all travel time functions ¢, have
constant values, which corresponds to a road network in which there is no
congestion. In this case, all travellers for an OD pair w simply travel along
the shortest path(s) connecting their origin to their destination. To solve this
simple TA problem, one assigns the whole demand d,, for each w € W to
the shortest path(s) in R,. This process is known as All-or-nothing (AON)
Assignment, summarised in Algorithm 10. AON assignment is a common

building block for many TA algorithms, as explained below.

General Iterative Solution Approach

When travel times ¢, are not constant, however, every additional traveller on
a path (or arc) may affect the travel time on this path (or arc) and also on
other paths. Generally solution algorithms for TA are of iterative nature. An
initial AON assignment of arc flows 70 is created by assigning all demand for
OD pair w to the shortest path(s) r € R,, based on fixed travel time derived
from zero flow on all arcs. Travel times are updated using the new arc flows
and another AON assignment is performed giving arc flow h. Next, the new
solution ?Hl is obtained as a convex combination of the current solution, A,
and the previous one, 71 This process continues iteratively until a convergence
criterion is satisfied. The general iterative approach is described in Algorithm
11.

The general iterative scheme in Algorithm 11 is based on arc flow. Although

shortest paths are calculated for every AON assignment, it is not necessary to
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Algorithm 11 General Iterative Approach for Solving SEQ

1: input: Graph (V, A), arc cost functions ¢, set of OD pairs W, and demand
d.

2: Calculate fixed arc travel times ¢(0).
3: Perform AON assignment yielding arc flow vector 70.
4: 1 =0
5: while Convergence criterion not satisfied do
6:  Calculate fixed times (f).
7. Perform AON assignment yielding arc flow vector h.
8:  Find convex combination ?H = (1= A\)f 4 M with A € [0;1].
9: 1=1+1
10: end while

—
—_

. output: Arc flow vector f.

store path flow, it is sufficient to keep track of the cumulative arc flow. This
has the advantage that only m variables, one for each arc, are involved in the

solution algorithm, rather than one for every path.

There are different strategies to obtain a convex combination in Step 8 of
Algorithm 11. Two of them are mentioned here and they give rise to different

well-known solution methods for TA.

Method of Successive Averages

A basic scheme for solving TA, called method of successive averages (MSA),
1
H_l.
all travellers for w to one path and then allowing some of them to switch

is obtained by choosing A = MSA can be visualised as initially assigning
to another path according to the new path costs. With each iteration less
travellers have an incentive to switch paths and the solution slowly approaches
equilibrium. Powell and Sheffi (1982) give proof of the convergence of the MSA
approach.

Frank-Wolfe Algorithm

Throughout the literature the most popular approach to solving the optimisa-
tion formulation (4.5) of the TA problem seems to be the Frank-Wolfe (FW)
algorithm. Patriksson (1994) gives a description of the algorithm and its his-

tory. It is assumed that the cost function ¢,(f) is additive. In the FW al-
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gorithm, the convex combination in Step 8 is determined by choosing A so
that > 4 fo(lf)‘)f““‘h“ ¢q,(v)dv, i.e. the objective of (4.5), attains its mini-
mum. This means the convex combination of f and & is chosen to optimise

the objective of the optimisation problem.

Path Equilibration Algorithm

Path equilibration is a different algorithmic approach tackling path flow rather
than arc flow. The idea is that, in every iteration, the two paths that are the
least (as discussed below) in equilibrium are selected and flow is shifted between
them.

An initial AON assignment is performed based on arc travel times ¢(0), after
which times are updated according to the new path flow values. Iteratively,
the shortest path as well as the longest path with positive flow are determined
for every OD pair and equilibrated by shifting parts (or all) of the flow from
the longest path to the shortest one with the aim of making their travel times
equal. Then times are updated and the process repeats until a convergence
criterion is satisfied. Although this is a path-based approach to solving SEQ),
it is not necessary to enumerate all paths: it is sufficient to keep track of all
paths with positive flow from which the longest path is selected, whereas a
shortest path algorithm can be used to identify the current shortest path in
the network. We outline this equilibration algorithm in Algorithm 12. The
algorithm is first described by Dafermos and Sparrow (1969). The idea of
generating new paths (and path variables) as they are needed in a column

generation scheme can be found in Leventhal et al. (1973).

The path equilibration approach allows to monitor convergence by simply com-
paring the highest and lowest cost on paths connecting each OD pair. Once

this difference is sufficiently small, the iterative procedure can be stopped.
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Algorithm 12 Iterative Equilibration Approach for Solving SEQ

1: input: Graph (V, A), arc cost functions ¢, set of OD pairs W, and demand
d.

2: Calculate fixed times ¢(0).
3: Perform AON assignment to obtain path flow vector f.
4: for all w € W do
5 Ro={re€Ry:fr>0} [/« Initialise set of paths with positive flow */
6: end for
7. while Convergence criterion not satisfied do
8 for all w e W do
9: Calculate constant path costs c(f).
10: Find longest path r € R;,. /* Longest path with positive flow. %/
11: Find shortest path s € R,,.
12: Determine o such that (with h, = f,,u #r,s)
¢y (h) = cs(h) with hy = fs+ 0, h, = f, — o, and h, 2 0, or
¢, (h) 2 ¢cs(h), with hy = fs+ 0, h, = f, —0 = 0.
13: fr=fr—o0, fs=fs+o0,and f;,t € Ry \ {r, s} remain unchanged.
14: R, =R, U{s}.
15: if f. =0 then
16: Ro =R, \{r}
17: end if
18: Update path flow vector f.

19:  end for
20: end while _
21: output: Path flow vector f and arc flow vector f = ®f.

4.3 TA with Explicit Distinction of Two or
More Objectives

In the following, literature on TA where two or more objectives are explic-
itly distinguished is discussed. A straight-forward approach is forming the
weighted sum of the two (or more) objectives. More sophisticated models dis-
tinguish user classes with different weighting factors in each class, or assume
a distribution of weighting factors. There also exist approaches where vari-
able weighting factors are obtained by a non-linear function. We introduce
the different approaches and discuss their properties. In the literature, travel
time and other components of the objectives involved in route choice are often
distinguished. Most frequently, the two objectives travel time and monetary

travel cost are studied, and we denote those particular objectives by #,(f) and

ma(f), respectively.
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4.3.1 Conventional TA with Two or More Objectives

Our aim is modelling the behaviour of network users when faced with route
choice taking into account time as well as a possible (toll) cost on some arcs.
Traditionally, this is modelled by assuming users aim to minimise a linear
combination of time and cost (and often other route choice criteria as well),

e.g. Sheffi (1985). The resulting objective function has the form g5(f) =
oto(f) + ma(f), where 7, represents the arc travel time component and 7,
represents the monetary component associated with each arc. The function
gS(f) is called the generalised cost function and o > 0 value of time (VOT). Of
course it is also possible to convert the cost component into time, which leads

to a generalised time function g (f) = t.(f) + maT(f)’ again with VOT a > 0.

Similarly, weighting factors for both objectives, G,(f) = wito(f) + womma(f)

with wy,ws > 0, are sometimes used.

It should be noted that, even though the objectives are referred to as time
and toll here, other interpretations are possible. Nagurney et al. (2002b) for
instance include an environmental objective representing emissions. We use
time and cost as representative objectives as they are the main objectives
distinguished throughout the literature. When an article assumes more than

two objectives, they may also be denoted by ¢.(f),...,2(f).

Clearly, assuming every traveller has the same VOT value, and thus the same
valuation of travel time, is not very realistic. Different studies such as Elias-
son (2000); Leurent (2001) confirm this. More advanced models allow several
classes of users with different VOT values or even assume a VOT distribu-
tion. The resulting models are similar to the single-objective TA discussed
above and are solved with similar algorithms. When considering different user
classes, travel demand d’, is given for each user class 7 and the whole demand
is assigned to all paths that are shortest with respect to the generalised cost
function with VOT class value «; (Nagurney 2000, for example). When a
distribution of « is given, all paths that are optimal for some range of « are
determined. Each of those paths is assigned a share of the total demand d,,
according to the distribution of o (Dial 1999a,b; Leurent 1998, for example).



152 4.8 TA with Explicit Distinction of Two or More Objectives

4.3.2 Literature

Literature on the TA problem with two or more objectives is presented here.
We first discuss literature in which a finite number of user classes is assumed,
then literature that assumes a distribution of weighting factors (or VOT val-
ues). Finally, approaches that assume a non-linear valuation of time or cost are
discussed. The section concludes with a table that summarises the presented

literature.

In the following, if the functions are denoted by #,(f), it is assumed that arc

travel time depends on flow of the whole network, whereas t,(f,) indicates

that the arc travel time functions are separable. If not stated otherwise, path

cost functions are assumed to be additive.

Finite Number of User Classes

We denote by ¢ € 7 a particular user class. The travel demand for class ¢
is di. Class arc flow ?Z and class path flow f! are distinguished. In case
of multiple user classes, arc flow f, is obtained as ZZEITZ, and path cost is

derived accordingly.

The approach to bi-objective traffic assignment problems taken in Nagurney
(2000) is assuming a finite number of user classes each with their own weight-
ing factor wi, wj for the travel time and cost objectives Z,(f), Ma(f). A known
demand for each OD pair and each user class is assumed. The arising traffic
assignment problem can be cast into a VI. Existence of a solution is shown,
whereas uniqueness of the arising arc flow pattern can be guaranteed under
certain assumptions. The proposed solution algorithm is the modified projec-
tion method (e.g. Nagurney 1993), which can be used to solve any VI with
certain assumptions on the governing functions. The approach is illustrated

using some small numerical examples.

Even though the application studied in Nagurney et al. (2001) is an equilib-
rium problem concerned with (tele-)shopping by considering a finite number of
users making the decision whether to shop at different physical locations or on-
line, the basic network formulation and behavioural principle is that of traffic

assignment. It is assumed that users repeatedly purchase products and want
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to minimise their generalised cost for doing so taking into account several ob-
jectives such as time, cost, security, convenience, denoted by ¢:(f),...,2(f).
Users are divided into classes with known demand and weighting factors for
each objective, the weightings may differ between user classes and also for

every arc in the network.

In Nagurney and Dong (2002) the traffic equilibrium problem with two flow
dependent objectives, t,(f) and 7,(f), is considered. The model from Nagur-
ney (2000) is extended to allow each user class to have different weighting
factors on each arc as well as incorporating elastic travel demands. A formu-
lation of equilibrium conditions as well as a VI formulation is given followed
by conditions for existence of a solution and its uniqueness. The problem is
solved with the modified projection method and illustrated by means of small

examples. The paper also contains a table of related literature.

Nagurney et al. (2002a) model decision making between commuting and tele-
commuting, possible applications are working from home compared to com-
muting to work or shopping on-line compared to driving to a shop. To do this,

they consider p different objectives ¢ (f),...,e(f) which may include cost
and time, but also safety and opportunity cost. Demand may be elastic or fix.
Their former models (Nagurney and Dong 2002; Nagurney et al. 2002a) are
extended to allow weights for each class not only to differ for each arc, but also
to depend on the objective values of this arc. Therefore, the weighting factors
are o', (¢.). VI formulations are given, existence and conditions for uniqueness
of solutions are discussed. The proposed solution approach is the modified

projection method to solve the given VlIs.

Nagurney et al. (2002b) study a traffic equilibrium problem with three objec-
tives t4(f), Ma(f), €a(f), interpreted as time, cost, and environmental (emis-
sion) cost combined into a generalised cost function via class and arc-dependent
weighting factors. Demand is fixed. Equilibrium conditions and a VI formu-
lation are given, a proof of existence is given, as well as one of uniqueness in a
special case. Furthermore, the problem with only two objectives, cost 4 (f)
and the environmental component e, given by a fixed emission factor, is stud-
ied. The resulting model is related to an emission pricing scheme and it is
shown how the weighting factor associated with the environmental component

is a measure of how environmentally conscious a user is. A solution algorithm



154 4.8 TA with Explicit Distinction of Two or More Objectives

(modified projection method) is given.

Huang and Li (2007) study the TA with g.(f) = t.(f) + m“T(?), where some
vehicles are equipped with an “advanced traveller information system” (ATIS).
The VOT factor « is given through a distribution from which a finite number
of user classes, each with fixed value «;, is derived. A logit-based model is
proposed, where route choice depends stochastically on generalised cost with
an additional error term. They distinguish cars with ATIS, that provide their
user with a more accurate idea of the true value of g’ represented by an error
term with smaller variance. The authors propose to solve the problem with
MSA. A small numerical example is used to show the results of this model
compared to three other ones (multiple user classes with g*; multiple user

classes with g¢; single user class with g').

User Classes — Criticism

We present an example to illustrate that the assumption that network users
can be divided into different user classes, each with identical weighting factors,

may be a strong behavioural assumption that implicitly excludes viable choices.

Example 4.3.1 Assuming there is only one OD pair we plot the two com-
ponents t,. and m, separately for all paths r € R, see Figure 4.3. In the
figure we can distinguish dominated and non-dominated objective vectors. In

particular, the non-dominated point 2* is non-supported.

Let path r; € R, correspond to point z° in the figure. A single VOT value of
Bo for instance would result in all demand for OD pair w being assigned to
path r3 because r3 is the single minimal path for VOT By as indicated in the
figure. When several user classes with different VOT wvalues are considered,
flow can only be assigned to paths ri,r3,714,75,7¢, but no flow will be assigned
to path ro as it is never an optimal solution for any generalised cost function.
Clearly, the path associated with point 2% should attract some flow as it is
not dominated by any other path, i.e. there is no other point in the figure
that is better in both components than z?. There is no reason why network
users should not choose this path. The assumption that route choice behaviour
can be based on generalised cost, generalised time, or weighted sum is a very

strong behavioural assumption that prohibits the choice of paths that are clearly
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m o dominated
¢ non-dominated

Figure 4.3. All points (t.(f), m.(f)),r € Ry, for some f € K and one OD pair
w.

reasonable alternatives.

Distribution of VOT or Weighting Factors

Another common approach is to assume a distribution of the VOT value « in
7' or g¢, or the weighting factors in g. Now, paths optimal for different ranges
of values of a or of the weighting factors need to be identified. An appropriate

portion of the total demand is assigned to the identified paths.

Quandt (1967) aims at modelling mode choice. He assumes that the (fixed)
time and cost is known for every transportation mode, and that the mode
choice is based on a probabilistic utility function. The probability that each
mode is chosen is then determined. Quandt explicitly studies the problem with
two modes and two objectives yielding at most two non-dominated points. Fur-
thermore problems with three and four modes and two objectives are studied,

as well as two modes with three objectives.

Schneider (1968) is one of the first to explicitly distinguish (fixed) time ¢ and
cost T as two main components of route choice. The two objectives t and m
are combined into a weighted sum g = w;t + wym. Assuming a distribution
of the two weighting factors, he characterises all relevant paths, namely those
with optimal generalised cost function for a range of wy, wy. He further suggests

to derive the portion of all trips using those paths from a distribution of the
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weighting factors.

Dial (1979) also considers the two objectives independently and proposes an
algorithm. Fixed travel time ¢ and cost m are assumed. Firstly, a dichotomic
algorithm (see also Section 1.3.2) to obtain extreme supported solutions of this
BSP problem is introduced. Secondly, Dial proposes how to assign a share of
all trip makers for each OD pair to efficient paths connecting this OD pair,
now assuming a weighted sum g = wit + wym. For a given value of wy,ws,
g becomes optimal for at least one of the extreme efficient paths. In fact,
there is a range of values of wy,ws for which an efficient path is the optimal
choice. Now a probability density function of the ratio wy /ws is used to assign

a portion of demand to each path.

Dafermos (1983) is the first to consider the problem with flow dependent objec-
tives t,(f,) and m4(f,), thus taking congestion effects into account. The gen-
eralised cost function is assumed to be of the form g¢ = at,(fa)+ (1 —a)mq(fa)
with a € [0;1]. The problem can be interpreted as traffic assignment with in-
finitely many user classes. From a corresponding equilibrium formulation, an
equivalent infinite-dimensional VI formulation is derived along with a proof of
the existence of a solution. Uniqueness is established for certain functions ¢

and m. The approach is demonstrated for a small example.

Leurent (1993) investigates the traffic assignment problem with travel time
to(fa), fixed travel cost m,, and elastic demand. A generalised time function
g’ = t.(f,)+ ™= is used as behavioural basis together with a VOT distribution
according to which demand is split between different efficient paths for each OD
pair. Then, a definition of the equilibrium problem with varying travel time
is given, shown to be equivalent to a convex optimisation problem. Existence
of a solution is shown, whereas some assumptions on travel time and demand
functions guarantee uniqueness. Finally, an adaptation of the MSA algorithm
for the solution of this traffic assignment problem is presented together with a

proof of convergence. The paper concludes with a small example.

Marcotte (1995) discusses the usefulness of VIs in four different equilibrium

problems including single-objective TA and TA with two objectives. For the

latter, fixed demand is assumed as well as variable time #,(f), fixed cost m,,

and a generalised time formulation g*(f) with VOT distribution. Previous

formulations (Dafermos 1983; Leurent 1993) are repeated. Marcotte shows how
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the optimisation formulation can be solved with the Frank-Wolfe algorithm,
where the efficient shortest paths are obtained with a parametric shortest path
algorithm (see also Section 2.3.4). Another possible reduction to a convex
optimisation problem is given, which does not require a separable function ¢,
it suffices that the Jacobian of ¢ is symmetric. It is also shown that, if two
paths between the same OD pair never have the same cost m,, the VI can still
be solved with a slightly modified Frank-Wolfe algorithm.

Leurent (1995) presents another possible solution algorithm for the problem
from Leurent (1993). The procedure is called “Equalisation-by-Transfer” in
one of his later articles. Similar to the path equilibration algorithm (Section
4.2.4) the longest paths with positive flow and shortest paths are identified
for each OD pair, then flow is re-allocated from the longest to the shortest
path with the aim of making their generalised cost equal. An equalisation
algorithm for models with elastic demand appeared in Schittenhelm (1990).
Leurent adapts this algorithm to account for the VOT distribution. Sensitivity

analysis is discussed and a small example is presented.

Leurent (1996) generalises his previous work. Again, time ¢,(f,) is flow depen-
dent, while cost m, is not. Demand is elastic and upper bound constraints on
arc flows are included in the model. For each OD pair paths with equal cost are
collected in the same class. An equilibrium principle is derived: only classes
with some minimal “impedance”-value can receive a share of flow (which is of
course assigned to the minimum time path within each class). An equivalent
VIis introduced. In the case of symmetric t,, previously introduced algorithms
(MSA, MSA with path enumeration, and path equilibration) are compared ac-
cording to different convergence measures. Path equilibration converges the
fastest. A new algorithm is proposed for TA with capacity constraints. Fur-
thermore, it is investigated how errors in input data are propagated through
the model.

Extending his work from 1979, Dial (1996) presents an algorithm for bi-

objective traffic assignment where both objectives, #,(f,) and T (f,), may
vary with arc flow. Again, users are assumed to choose their route accord-
ing to the best generalised cost function value g¢(f) = ata(f,) + Ma(f,),
where VOT values « follow some known distribution. The solution algorithm

is similar to the Franke-Wolfe approach. Iteratively, the bi-objective traffic



158 4.8 TA with Explicit Distinction of Two or More Objectives

assignment problem for fixed objective values is solved in a sub problem as
described in Dial (1979). A convex combination of the previous solution and
the one obtained by the sub problem forms the new solution. There is no
proof of convergence of this algorithm, but a proof for a simpler version of the
algorithm with flow independent monetary component m is given. The au-
thor illustrates his algorithm with a small 2-arc example and also shows some

computational results for a network with 9 nodes.

Dial (1997) improves his previous algorithms. The sub problem is now solved
by finding efficient shortest path trees for each origin node and loading trips
according to the distribution of a in a more efficient manner. Where the
master problem from Dial (1996) constructs a combination of the current and
previous solution, the new solution is now obtained as convex combination of
all previously obtained solutions. The author finds his improved algorithms
to be more efficient. To show different possible applications of bi-objective
traffic assignment, the author also discusses different pairs of objectives that
model for instance time versus toll cost, expected time versus awareness of
delay, travel time versus risk of being delayed, and time spent on preferred

roads versus time spent on non-preferred roads.

Marcotte and Zhu (1997) consider equilibrium problems with multiple (but
finitely many) user classes as well as a VOT distribution yielding an infinite
dimensional VI formulation. The latter is the main concern of the paper.
Existence of a solution and uniqueness of arc and class arc flow is proved under
certain conditions. A variation of the Frank-Wolfe algorithm is proposed: the
so-called linearisation algorithm to minimise a gap function derived from the
equilibrium problem is given together with different step size rules. Finally, an
application to the traffic assignment problem is given together with two small

test instances.

Leurent (1998) studies the multi-objective traffic assignment problem with ob-
jectives ¢! (f),...,e(f) and fixed or variable demand. It is assumed that the
first objective is cost, while the p — 1 remaining ones represent other non-
monetary objectives. The objectives are combined in a generalised cost func-
tion using weights wy, ..., w,_1 to transform the p — 1 non-cost objectives into
their cost equivalent. The weights are given by a distribution. Uniqueness

and existence of solutions are discussed and a VI formulation is given. A
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bi-objective example with a two-arc network is used to illustrate the theory.

Existing literature and solution algorithms are also discussed.

VOT Distribution — Criticism

Again, we consider Example 4.3.1. In the following we will discuss the gener-
alised cost function g¢ only, as g¢ = ag' implies that g¢ and g' have the same
solutions. Furthermore, the weighted sum function § = wif + womm is equiv-
alent to the two previous functions which can be seen by dividing by w; and
choosing v = 22. If a VOT distribution is given, every non-dominated point
in Figure 4.3 except for 22 is optimal for at least one value of o. There exist

values 3; > (35 > (33 such that in Figure 4.3 point 2!

2% is optimal for 31 < a < By, 2* is optimal for 3, only, 2° is optimal for

B £ o < B3, and 2% is optimal for @ < f3s.

is optimal for a = f3,

Again, point 2>

is not optimal for any value of «, and path ry will therefore
not be assigned any flow. Furthermore, most solution algorithms will also not
assign any flow to path r4, as its objective vector z* is only optimal for exactly
one value of . Again there is no reason why no network user should choose

the paths corresponding to points 7 and r4 as they are not dominated.

Non-linear VOT

The following papers assume a non-linear VOT function. It is assumed that
the valuation of time is not actually linear. In practice this means that a small
delay, for example, may not be conceived as grave whereas a long delay may
be very severe — even for someone with a normally low VOT. Non-linear VOT
functions are not additive in general, and the valuation function can only be
applied to the final path travel time. This entails the necessity for models that
differ from those discussed earlier in this section and, accordingly, different

solution approaches.

Gabriel and Bernstein (1997) argue that the assumption of a linear VOT is
not realistic when computing the monetary equivalent of time. The authors
point out that while a travel time of a few minutes more or less does not make
a big difference, a travel time of, for example, 30 minutes can be perceived

as very troublesome (e.g. when commuting to work). Hence, Gabriel and



160 4.8 TA with Explicit Distinction of Two or More Objectives

Bernstein (1997) assume that the value of time is a non-linear function of path
travel time t,(f). Even though path travel time is assumed to be additive, the
corresponding valuation of time v(¢,.(f)) is not. It is also assumed that there
is a path-dependent fixed monetary component to take into account costs such
as tolls, which is also not additive (as often the toll from A to C is not equal to
the toll from A to B plus that from B to C). Thus, the studied problems have
a generalised path cost function ¢<(f) = v(t,(f)) + At.(f) + m, with nonlinear
VOT function v, costs At,.(f) proportional to travel time, and path-dependent
monetary costs m, such as tolls. This TA problem must have a formulation
based on path flow as two main components of the cost function, v(¢.(f)) and
m,., can only be evaluated on a path-level. It is shown under which conditions
existence and uniqueness of the arising elastic TA problem follow. A solution
algorithm using simplicial decomposition is described in which only a subset
of all paths is generated (using column generation). A solution is obtained
as convex combination of previously generated path flow solutions (master
problem) until it can be guaranteed that the equilibrium solution is obtained.
This is checked within the column generation sub problem: do better solutions
exist in the sub problem, i.e. can paths r with better g¢(f) be found? It is
not necessary to keep track of all path variables within the solution algorithm,
only those with positive flow need to be stored. Only one path is generated at

a time, before the master problem is solved again.

Bernstein and Gabriel (1997) extend their previous simplicial decomposition
approach to allow a column generation scheme that may introduce more than
a single path into the problem. By doing so, the master problem is solved less
frequently. They also allow the nonlinear VOT function to vary for each path.

Numerical tests are presented for a sample network.

Larsson et al. (2002) study a problem similar to the one studied by the previ-
ous authors. Instead of applying a nonlinear VOT function to express time in
terms of cost, however, they transform cost into time, again using a nonlinear
valuation function o(m,.). They study the problem with generalised time func-
tion gL (f) = t.(f)+0y(m,), where the valuation function o,, may vary between
OD pairs. Time t, is assumed additive as well as separable, and path costs
m, are fixed. An equivalent optimisation model can be formulated by combin-
ing the objective (4.5) with the fixed cost component > > x  fr0u(m,).

Thus, applying a generalised time function here, the problem is greatly simpli-
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fied compared to previous approaches (Gabriel and Bernstein 1997; Bernstein
and Gabriel 1997) as the fixed toll cost component in the objective function
does not influence the solution of the minimisation problem. The proposed
algorithms are both simplicial decomposition algorithms. In the master prob-
lem an optimal solution based on a restricted set of shortest paths, R C R,
is obtained. In one approach the master selects an optimal flow solution for
the current set of routes R, whereas in the other one the master selects a new
arc-flow solution as convex combination of previous arc-flow solutions. Due to
the non-additive objective ©(m,.), the column generation sub problem is solved
by a bi-objective label setting algorithm. Among all generated efficient paths
only a single path is selected and added to the set R, namely the one with
minimal cost gt(f) = t.(f) + Tw(m,).

It should be noted that the problems with generalised cost function ¢¢ =
v(t,(f)) + m, (similar to Gabriel and Bernstein 1997) and ¢'(f) = t.(f) +
Uw(m,) (Larsson et al. 2002) with © = v~! are not equivalent. Other than in
the case of VOT factors «, it is not possible to simply calculate the “inverse”

valuation as 0 = v~1.

Literature Table

We summarise the literature discussed in this section in Table 4.1. The main
features of every article are condensed here. The ‘objectives’ studied in the
TA problem follow the same notation as in this whole section. Column ‘how’
stands for the type of generalised cost function, such as VOT (VOT value), W
(weighting factors) combined with distr. (distribution), nonl. (non-linear), and
uc (user classes). Column ‘dem.” states whether demand is elastic (el.), fix, or
both. Column ‘cap.” indicates whether a capacitated TA is studied (yes) or
not (no). Column ‘aim’ briefly summarises the main purpose of the paper and
‘algorithm’ describes the solution algorithm used, if applicable. Finally column
‘numerical test’ describes problem instances used when numerical tests were
made (a|b|c stands for the number of centroids a, the number of nodes b, and

the number of arcs ¢), the number of user classes is also given, if applicable.
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4.4 Bi-objective Traffic Assignment

Before introducing the concept of bi-objective traffic assignment, we briefly

summarise our criticism of the conventional approach.

As mentioned earlier, the conventional approaches may not consider paths “at-
tractive” that have non-supported or non-extreme objective vectors. All prac-
tical papers that present actual solution algorithms are of the generalised cost
type, some considering several user classes, VOT distributions or non-linear
VOT functions. More flexible approaches have been presented that allow a
different weighting for each user class on each arc, or even varying weighting
factors according to the actual arc costs. It may be difficult to correctly esti-
mate the different weighting factors for all user classes on the different arcs,

so practical tests will have to show the viability of these approaches.

In this thesis, we propose another approach that enables modelling of TA
with two (or more) objectives, namely bi-objective (or multi-objective) TA
which allows to consider the objectives separately. With the application to a
TA problem with travel time and toll cost objective in mind, it appears that
those two objectives are perceived very differently and should not simply be
combined by using weighting factors. People often see travel time spent on
the road as well as monetary costs such as petrol and car maintenance costs
as a necessity. Tolls on the other hand are perceived as a nuisance as they
are imposed by an authority. Especially in TA with toll costs it seems that
assuming there exists a generalised cost function is a very strong assumption.
Therefore, we propose to replace the generalised cost function assumption with

a bi-objective approach.

We are able to show that the approach by Larsson et al. (2002), with non-linear
valuation function in the generalised cost function, can be used to solve BEQ
in Section 4.5.1.

Apart from TA with toll costs, we also see other possible areas of application
of bi-objective TA. In the literature, it has been observed that conventional
TA often does not represent traveller behaviour very well, for example during
off-peak time. During off-peak time there is little congestion in a network
and therefore TA assigns the network users for each OD pair to very similar

paths. Observations of the actual traffic during off-peak times show that the
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modelled path choice does not agree with that observed in practice. McNally
(2000, p.49f) states that at off-peak times stochastic TA produces more realistic

results as traffic demand (volume) is spread out across more paths:

[...] for off peak assignments, stochastic assignment is often used,
which tends to assign trips across more paths and thus better re-

flects the observed traffic volumes in un-congested periods |. .. ]

Stochastic assignment models that a user’s perception of the same path can
differ, which is achieved by adding a stochastic error term to the actual path
cost. Therefore, each user may choose a different path that they perceive as
the shortest one, which achieves that the trips associated with each OD pair
w spread out over more of the available paths R, even though the actual path

cost (without perception error) of some of the paths is non-optimal.

Spreading out trips across paths could also be achieved by a bi-objective (or
multi-objective) TA as this recognises that there is more than one objective
in route choice and that drivers spread out on all available efficient (trade-
off) solutions. While one objective remains travel time, the other objective(s)
would have to be determined to model those other factors that determine route

choice.

In contrast to most literature discussed in the previous section, we give a gen-
eral characterisation of bi-objective traffic assignment that is based on weaker
behavioural assumptions than assuming a linear choice function as discussed
in Section 4.3.2. This definition generalises to the multi-objective case. We
believe that our definitions of bi-objective TA directly extends the idea of
Wardrop’s equilibrium principle to two (or multiple) objectives. According to
Wardrop’s first principle, traffic arranges itself so that all drivers between one
OD pair experience the same minimal travel time. We believe that a natural
extension of this principle means that every driver for an OD pair travels on

minimal paths according to the two (or more) objectives, i.e. on efficient paths:

Definition 4.4.1 Under bi-objective user equilibrium (BUE) conditions traf-
fic arranges itself in such a way that no individual trip maker can improve
either their toll or travel time or both without worsening the other component

by unilaterally switching to another route.
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Similarly, under multi-objective user equilibrium (MUE) conditions traffic ar-
ranges itself in such a way that no individual trip maker can improve at least
one of their p objectives without worsening any of the others by unilaterally

switching to another route.

Note that, similar to Wardrop’s principle (see quote on p. 143), it is again
assumed that travellers all have the same objectives, which are minimised,
and that they have perfect knowledge of the objective vector associated with

each alternative route.

The first introduction of this definition of BUE or MUE is attributed to Chen
and Yen (1993).

In order to formalise the BUE/MUE concept, we need some more notation.
We combine the two objective vectors £, : R™ — R into the objective matrix
C : R™ — R?*™ where the first row of C' is C'y. = t and the second row of C is

L ..., they are combined

Cy. = . Similarly, if there are p objective vectors ¢
into the objective matrix C' : R™ +— RP*™ with rows C;. = . The matrix
C : R? — RP*? represents the corresponding matrix of path cost functions. As

we have ¢ = ®T¢(f),i =1,...,p, the path and arc cost matrices are related

by C =®TC.

4.4.1 Vector Equilibrium, Vector Optimisation, and Vec-

tor Variational Inequality

In this section, we define three different multi-objective problems that are
multi-objective extensions of the corresponding problems in the scalar case
discussed in Section 4.2 (SEQ, the optimisation formulation (4.5), and VI).

Vector Equilibrium Problem

A solution vector h € K satisfies MUE, if all dominated paths have zero flow
and only non-dominated paths may have positive flow. The wvector equilib-
rium principle that formalises MUE is given by the following definition. The

function C.,. : R — RP? is the p-dimensional path cost function for path r.
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Definition 4.4.2 A flow vector f* € K is said to be in vector equilibrium if
and only if

(VEQ) YweW,Vr,seR, Cs(f*)>C.(f")= fi=0.

s

We also denote the corresponding bi-objective problem with p = 2 as BEQ.
The corresponding vector of arc flow is 7* = & f*. The weak vector equilibrium
(WVEQ) problem is closely related to VEQ. WVEQ is obtained by replacing
> in VEQ by >, i.e. a strict dominance relation between path cost vectors is

considered.

The vector equilibrium problem VEQ), i.e. an equilibrium problem in which
two or more objectives are distinguished, made its first appearance in Chen
and Yen (1993) and is later reconsidered in many other contributions (Yang
and Goh 1997; Goh and Yang 1999; Chen et al. 1999; Yang and Goh 2000;
Khan and Raciti 2005; Yang and Yu 2005; Li et al. 2007, 2008).

Vector Optimisation Problem

A first approach to solving VEQ is to investigate whether VEQ relates to
a multi-objective optimisation problem similar to the single-objective opti-
misation formulation (4.5). We call this multi-objective optimisation problem
vector optimisation problem (VOP) here, as this is the term used in the related

literature. It is assumed that path cost functions are additive.

Definition 4.4.3 By solutions of VOP we mean the set of efficient solutions

of the following multi-objective problem with objective vector z.

A() = 5 [
_ aE./‘4 0
min z(f) = . (46)
5(f) =2 [(v)dv
a€A 0
s.t. 7 € k4.

The bi-objective version of VOP is denoted BOP.
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In the literature, the weak version of VOP, denoted by WVOP, has also re-
ceived considerable attention. Here, efficient solutions are replaced by weakly

efficient solutions of the optimisation problem.

Vector Variational Inequality Problem

The multi-objective extension of a VI is known as vector variational inequality
(VVI), first introduced by Gianessi (1980). In the single-objective case, SEQ
can be expressed through a VI, and attempts are made in the related literature
to establish a similar connection between the two problems VEQ and VVI (with

less success).

Definition 4.4.4 Assume K C R” closed and convex, C' : K +— RP*? is a
matrix-valued function. The vector variational inequality problem is the prob-
lem of finding flow f € K that satisfies

(VvI) C(f)(h—f) £0,Vh e K.
Or equivalently,
C(f)(h—f) ¢ —RE,Vh e K.

A weak vector variational inequality (WVVI) is obtained by replacing £ in the
definition of VVI with #£, which gives the condition C'(f)(h— f) ¢ —RZ. This
definition of VVI and WVVI appears for example in Yang and Goh (1997).
The existence of solutions of VVI is, for example, discussed in Yang and Goh

(1997); Chen et al. (2005).

In the context of TA, the set K is interpreted as the set of feasible path flow
vectors, p is the number of paths in R, and the path cost functions C.,.(f) have

p different components for each path r.

Similar to the scalar TA problem, we can define a VVI based on arc flow,
which is the problem of finding f € K 4 that satisfies

(VVIa) C(f)(h— f) £0,Vh € K4.

VVI and VVIa are equivalent problems provided that the path cost function
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is additive. This can be shown similar to Smith (1979). We have

C(f)h - Zcr(f)hr = Z (Zaa<¢f>¢ar) hy

reR reR \acA

- Zaa(?) (Z hr¢ar> = Zaa(f)ﬁa
acA reR acA

_ (P

It follows that C(f)(h — f) = C(f)(h — f) and therefore VVI and VVIa are

equivalent for additive path cost functions.

Lee et al. (1998) introduce a scalarised variational inequality problem. For
£ € RY, the flow f € K is a solution to the scalarised variational inequality

problem if and only if:

(VI) (Z &Czr(f)) (h—f)=0,Vh e K. (4.7)

4.4.2 Literature

The literature on VEQ and related problems is of mainly theoretical nature.
Many articles discuss existence of solutions and attempt to relate VEQ and
WVEQ to other problems such as (W)VVI and (W)VOP. Some articles men-
tion that a possible application of VEQ is in TA, but no actual TA problems

have been solved and no solution algorithms have been proposed.

In the literature, some incorrect results can be found. Some of them have
been reported before, whereas we discuss some new ones. We provide counter

examples to false claims and report on known incorrect results.

Before we discuss the literature on VEQ, VVI, and VOP, we need to introduce
more notation. Given a feasible flow solution f € K, the following denote the

set of (non-dominated) path cost vectors and the set of efficient paths.

Definition 4.4.5 For a feasible f € IC, the set of all path cost vectors for OD
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pair w is given by
Z(f)={z€RP:3r e R, with 2 =C.,.(f)}.
We define the set of non-dominated points for an OD pair w € W by
ZN(f)={z€ Z“(f) : zis non-dominated in Z*(f)},
while the corresponding set of efficient paths is

XE(f)={r € Ry:3z € ZY(f) such that z = C..(f)}.

Chen and Yen (1993)

The concept of VEQ was first introduced in a report by Chen and Yen (1993).
This report is described in several other articles, but we were unfortunately
unable to obtain a copy of it. After generalising Wardrop’s first principle to
VEQ, existence of solutions and a sufficient condition for VEQ solutions are
established. Furthermore, Theorem 4.4.5 (see also Section 4.4.4) is presented,
where a special VVI and VEQ are shown to be equivalent problems given that

there is only a single efficient solution for each OD pair.

Yang and Goh (1997)

Yang and Goh (1997) apply the VEQ principle to the TA problem with multiple
objectives. They also introduce WVEQ, VVI, WVVI, VOP, and WVOP based
on a closed and convex subset K of R". It is assumed that F': K — RP*" is
a continuously differentiable function. It is shown that a solution of VVI is a
solution of VEQ (as in Theorem 4.4.4), and also that a solution of WVVI is a
solution of WVEQ. They repeat Theorem 4.4.5 (Chen and Yen 1993). In the
remainder of the paper, VVI, WVVI, VOP, and WVOP are related to each
other. A VOP with objective f is derived from the VVI

find z € K, s.t. F(z)(y—x) £0,Yy € K,
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given that each component F;,i = 1,...,p of F' is separable, by integrating
each of the component functions f; = [* F.(v)dv. It is shown that a solution
of VVI is an efficient solution of the related VOP if the objective function f of
VOP is R%-convex, and an example showing that the reverse does not hold is
given. Thgy repeat a theorem from Chen and Yen (1993) which states that a
weakly efficient solution of WVOP is a solution of WVVI, and the converse is
true if the objective function f of WVOP is R%-convex. Strict R%-convexity
is necessary to conclude that a solution of WVOP also solves VOP. Strict
R%-concavity, on the other hand implies that a solution of WVOP also solves
VVI Therefore, under the same assumption, a solution of VOP is a solution
of VVI (as every solution of VOP is a solution of WVOP). This also seems to
indicate that there can be no equivalence relationship between VOP and VVI,

as convexity and strict concavity cannot be satisfied simultaneously.

Goh and Yang (1999)

Goh and Yang (1999) study VEQ and aim at establishing a link with VOP.
Given a scalarised VI with £ € R, they show that the obtained solution of
VI satisfies VEQ. They also propose the re-formulation of VI¢ as a paramet-
ric complementarity problem. They show under which conditions a properly
efficient solution of VOP solves VEQ), see also Remark 4.4.1. Furthermore, the
same problems are studied in the case of separable, affine, and monotone arc
cost functions. As shown by Li et al. (2006), only parts of the results in Goh

and Yang (1999) are correct, which we demonstrate in the following.

Goh and Yang (1999) introduce a parametric equilibrium principle:

Definition 4.4.6 (Goh and Yang 1999)
A={AeRP: )\ 20,3" X\ =1} Let a X € A be given. A path flow vector
f is in A-equilibrium if for all w € VW and for all s € R,,

fs = 0 whenever 3z € Z}(f) such that AT C.,(f) > A"z
Goh and Yang propose that if f is a solution of VEQ and if all non-dominated

points lie on the boundary of their convex hull, Z¥(f) C bd(conv(Z¥(f))),
then there exists A € A such that f is in A-equilibrium. Note that this does
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not require that all non-dominated points are supported, as a non-supported
point may also lie on the boundary. A restriction to supported points only can

be achieved by considering conv(Zy(f) +R%).

The proposed theorem by Goh and Yang (1999) is incorrect, as shown by Li

et al. (2006). This counterexample contains a non-supported point.

Example 4.4.1 Example by Li et al. (2006) A network with the following

structure is used.

The cost matrixz is given as

6fi S5fa Tfs
C(f) =
3fi 4fs f3
With the choice of
12 10 14

f*=1(2,2,2)" and C(f*) = ,
6 8 2

solutions Co(f*) and C.3(f*) are supported, whereas C'1(f*) is non-supported.
Li et al. (2006) show that that f* is not in A-equilibrium, a contradiction to
Theorem 2.1.(i) by Goh and Yang (1999).

We show that the proposed theorem by Goh and Yang (1999) is still incorrect
when assuming that all points are supported, i.e.ZN(f) C bd(conv(Z¥(f) +

RL)).

Example 4.4.2 A network with the same structure as Example 4.4.1 is used.
The total demand from o to d is 1000 vehicles, so that the set of feasible path



4.4.2 Literature 175

flows is given by K = {f eERL: fit+ fot fy= 1000}. Are cost functions are:

10 [1+0.15 ()" 20 [1+015 (£5)"] 2514015 ()]
20 15 0

Cf) =

The first cost component Cy. represents travel time, whereas the second one,
Cs., represents a toll. Thus, Route 1 is the fastest route with the highest toll

while Route 3 s toll free and the slowest.

The vector f*, defined as follows, is a feasible path flow solution that satisfies
VEQ:

17.59 20.95 36.85
20 15 0

f* = (300,300,400)" with C(f*) =

The three objective vectors C;(f*),i = 1,2,3 are non-dominated and sup-
ported as they satisfy Zy(f*) C bd(conv(Zy(f*) + RL)). As all three ob-
jective vectors are supported, we can choose \; € A such that each one of
N Ci(f*),i=1,2,3 solves the problem Min, ez (f+) A/ z. For any fixed choice
of A € A, at most two of the three objective vectors become optimal. Therefore,
for fixed A\ € A, the above solution f* is never in A-equilibrium, a contradiction
to Theorem 2.1.(i) by Goh and Yang (1999).

Li et al. (2006) also provide a correction of Theorem 2.1.(i) by Goh and Yang
(1999) described in the previous section. In order to do so, they give a different

definition of weakened parametric equilibrium:

Definition 4.4.7 A path flow vector f is in weakened parametric equilibrium

if for all w € W and for all s € R,

hy = 0 whenever VA € A, 3z € Z4(f) such that AT C.,(f) > A"z

Now, Theorem 2.4 in Li et al. (2006) states that whenever f solves VEQ, f
is in weakened parametric equilibrium. Note that they omit the assumption
ZR(f) C bd(conv(ZR(f) +RE)). In this case their own Example 4.4.1 serves
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as a counterexample as the non-supported solution C';(f*) does never solve
a problem of the form min,ezw () A/ z, therefore a solution with f; > 0 is
never in weakened parametric equilibrium. The theorem can be corrected by
including the assumption Zy(f) C bd(conv(Z3(f) +RL)).

Theorem 4.4.1 If a flow f € K solves VEQ and ZY(f) C bd(conv(Z¥(f) +

RY)), then f is in weakened parametric equilibrium.

It should be noted that incorrectness of Theorem 2.1.(i) in Goh and Yang
(1999) entails incorrectness of Theorems 3.2.(i) and 3.3 (Goh and Yang 1999).
The corresponding Theorems in Yang and Goh (2000, Theorems 4(i),7,9), Chen
et al. (2005, Chapter 6), and Yang and Yu (2005, Proposition 5.2) are also

incorrect.

Chen et al. (1999)

Chen et al. (1999) apply a non-linear scalarisation function, &, to a VVI and to
the VEQ principle. They relate the scalarised VEQ to a scalarised VVI. They
also show that solutions satisfying this (non-linear) scalarised VEQ principle
also satisfy VEQ, but unfortunately the converse claim is not true as shown
by Li et al. (2006). We repeat the main points here:

Let K € R? a closed, convex, and pointed cone, such as K = Rg. Chen et al.
(1999) propose to link VEQ and VVI via the non-linear scalarisation function
¢ea : K — R, which for given e € int(K) and a € R? is defined as

(oly) =min{t eR:y€a+te— K}.

When K = RY with e = (e1,e2,...,¢€,), &a can be re-written as

Guly) = { S 12055}

€;
The notion of &..-equilibrium is introduced as follows:

Definition 4.4.8 The path flow vector f € K is said to be in &, -equilibrium
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if there exist e € int(R%) and a € RP such that

Vw € W,Vs,t € Ry €0 Cs(f) > €oa 0 Culf) = f, = 0.

Chen et al. (1999) propose that a path flow f satisfies (WVEQ) if and only if
f is in &q-equilibrium for some e € int(R2) and a € RP. This is incorrect, as
explained in Li et al. (2006) on the basis of Example 4.4.1. Li et al. also give

an alternative formulation for weak &.,-equilibrium:

Definition 4.4.9 The path flow vector f € K is said to be in weak &.,-

equilibrium if for any w € VW we have

Vs, t € Ry Eecuny 0 Cs(f) <0= fi =0.

With this definition of weak &.,-equilibrium, they obtain the following:

Theorem 4.4.2 A flow f € K satisfies WVEQ if and only if f is in weak

Eea-equilibrium.

Unfortunately, Theorem 4.4.1 as well as 4.4.2 do not seem to give rise to a
solution algorithm, whereas the incorrect versions of the theorems by Goh and
Yang (1999) and Chen et al. (1999) reduced the problem to easily-solvable
scalar equilibrium problems, which can be solved via their related variational

inequality problems.

Yang and Goh (2000)

Yang and Goh (2000) develop the relationship between VVI, VOP, VEQ), their
weak versions, and the scalarised versions based on orderings defined by a
closed convex cone (rather than simply RY as in previous papers). Some
results from their previous paper (Goh and ngg 1999) are extended, which are

incorrect as demonstrated earlier. This affects Yang and Goh (2000, Theorems

4(1),7,9).
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Oettli (2001)

Oettli (2001) studies TA in a very general setting that allows for interpretation
as capacitated equilibrium with user classes. He aims to derive a vector equilib-
rium principle from a vector variational inequality and to establish equivalence.
The author takes a different approach to establishing an equivalence relation
between vector variational inequalities and vector equilibria by simply modi-
fying the equilibrium conditions to yield the desired equivalence. Oettli (2001,
p.224) states

But rather the variational equilibrium, which remains invariant if
one passes to the vectorial setting, should be the basic notion, and
the definition of a Wardrop equilibrium must be adapted in each

case.

Unfortunately, it remains unclear to what extent the variational inequalities

(which variational equilibria are defined on) are invariant.

Oettli (2001) introduces an equilibrium problem with multiple classes and

objectives as f* € K satisfying

> Cf) (he = [7) €Rs, VhEK, (4.8)

reR

where the vectors h, and f, are column vectors in R? and C,(f*) is a p X ¢
matrix. For ¢ = 1 this is VI¢ (4.7) with weighting factors & = 1. Oettli (2001)

attempts to derive equilibrium conditions that are equivalent to (4.8).

The obtained equilibrium conditions model the problem with capacitated path
flow. The aim is to find f € K that, for any fixed cost vector C' = C (f), satisfies

Yw € W, Vr, s € Ry,

. (4.9)
C,—Cse—Rs= fo—I1;,¢Roor fp —u, ¢ —R..
Oettli (2001) derives necessary and sufficient conditions for a solution f € K
of equilibrium conditions (4.9) also satisfying (4.8) with fixed cost vector C.
While the necessary condition is straight forward, the sufficient condition has
strong assumptions. In Oettli (2001, Proposition 4.3) both necessary and

sufficient conditions are given. Unfortunately, they appear to be contradicting
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when p > 1. In the setting of the paper ) is the space of linear mappings
between X (space of path flow) and Z (objective space). Each cost vector
C,(f) is such a linear mapping. The convex ordering cone Py of ) is assumed
to be pointed so that Py N (—Py) = {0}. On the other hand, the proposition
assumes that Py U (—Py) = ). The two assumptions are trivially true for the
single-objective problem with Z = R which makes the space of linear mappings

the set of scalars ) = R, and the ordering cone Py = R>.

If Z=RP,p>1and ) = RP it is not clear how to find such an ordering cone
with Py N (—=Py) = {0} and Py U (—Py) =Y. A cone Py C R? is called acute
if and only if its closure is contained by an open half-space H and the origin,
i.e. cl(Py) C HU{0}. The cone Py is acute if and only if ¢/(Py) is pointed, see
Yu (1985). For an acute cone Py we have Py U (—Py) C HU(—H)U{0} # ).
If the cone Py is closed and pointed, then c¢l(Py) = Py and therefore it is
also acute. Hence, Py U (—Py) = ) cannot hold. A pointed open cone must
be an open half-space together with the origin or an open subset thereof:
Py € HU{0}. Again Py U (—Py) # Y follows. If the cone P is open, it

represents only weak dominance.

Yang and Yu (2005)

Yang and Yu (2005) show existence of a solution of VVI, relate the problem to
VOP, and present some so-called gap functions. A dynamic traffic equilibrium
is introduced where flow and demand are time dependent. This is extended to
a dynamic vector equilibrium for which sufficient conditions (in terms of VVI
and WV VI) are given. Note that a proposition Yang and Yu (2005, Proposition
5.2) appears to be incorrect, see also the discussion of Goh and Yang (1999).

Konnov (2005)

Konnov (2005) studies VVIs with set-valued functions F. The paper contains
a section on the application of vector equilibrium principles and traffic assign-
ment, where F(z) always takes a single value. After introducing a WVEQ
problem, the corresponding WV VI is presented, a solution of which is always
a solution of WVEQ), and its scalar reformulation is given, formulated as single
WVVI with set-valued function.
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Khan and Raciti (2005)

Khan and Raciti (2005) study a time-dependent vector equilibrium problem,
where flow, capacity constraints, and demand may depend on time. The con-
cept of (weak) vector equilibrium is formulated similar to (W)VEQ in this
thesis. Corresponding vector variational inequalities are also given, solutions

of which are shown to be (weak) vector equilibrium solutions.

Chen et al. (2005)

Chapter 6 of Chen et al. (2005) is on vector network equilibrium problems.
Findings from previous papers are collected in a section on WVEQ), one on
VEQ, and one on dynamic VEQ. It should be noted that some incorrect re-
sults as discussed for Goh and Yang (1999) are included in Chen et al. (2005,
Chapter 6).

Cheng and Wu (2006)

Even though the problem studied in Cheng and Wu (2006) is not exactly what
we are interested in, it is mentioned here as there seem to be several flaws in

the presentation.

Cheng and Wu (2006) formulate a problem where multiple products traverse a
network and each product incurs different multi-objective costs. The products
can also be interpreted as user classes. Initially, the multi-product problem
is considered with a single objective, i.e. p = 1. This means, they consider
a network in which certain goods are produced by suppliers and need to be
shipped to certain destination points. There also are warehouses, i.e. nodes
through which products can be shipped, without staying there. There is a
certain demand for every product. The cost of transporting different products
along an arc may differ. We first need some additional notation. Let ¢ be the
number of different products, then the amount of product j = 1,...,q to be
shipped between OD pair w is &, and the flow of product j on arc a is ffl
Similarly, the cost of product j on arc a is ¢, and the corresponding cost on
path ris ¢l =Y

e
acr Ca :
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Cheng and Wu (2006) define f7, the flow of product j on path r € R,,, by
= min{fi ca €rl. (4.10)
Then, they state a flow satisfies the demand if

Y fi=d, VvweWw,j=1..q (4.11)

reRw

Considering the following example, this definition does not seems intuitive:

Example 4.4.3 Consider the following network with the amount of flow of
a single product, so q = 1, indicated next to each arc. The demand for this
product between OD pair 1 = (1,5) is di = 8, so intuitively satisfied by the arc
flow indicated in the figure.

For the OD pair (1,5), there are the following paths: r1 = (1,2),(2,3),(3,5),
r2 = (17 2>’ (27 3)7 (37 4)7 (4’ 5)7 s = (17 3)) (37 5)7 and ry = (17 3)7 (
FEvaluating (4.10) for the four paths yields

o

B
N~—
—~
N

i
S~—

frll =3, f7~12 =3, f7~13 =3, frll =5,

and therefore (4.11) yields 7 .o f} = 14, which does not satisfy dj = 8.
Instead of trying to derive path flow from arc flow as in (4.10), one should
simply introduce a variable for the flow of every product j on every path r. It
is well known that arc flow can be uniquely defined in terms of path flow, but

not vice versa.

The set IC now denotes all demand feasible solutions. Cheng and Wu (2006) de-
fine m? (f) as minimum path cost of product j between OD pair w, i.e. m’ =

min,cr, c/(f). Both c¢i(f) and m/ (f) are grouped into vectors by c,(f) =
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(ch(f)s (f)s- v ct(f) " and my(f) = (mb(f),m2(f),...,m&(f) . Subse-

quently, an equilibrium flow pattern is introduced.

A vector v € D is called equilibrium flow pattern if and only if

=0 if f, e RY,

Vw € W, Vr € Ry e (f) — mu(f) o o
20 it f, =0.

(4.12)

According to Cheng and Wu (2006, Prop. 2.1), (4.12) is equivalent to the

following;:
e (f) —c(f) €RL = f, =0 for each w € W and any 7,5 € R,,.  (4.13)

Note that f. = (f},..., f9)" here is the vector of path flow of products 1, ..., ¢

on path r. We present a simple example to show that that (4.13) and (4.12)

are not equivalent.

Example 4.4.4 In this example we assume ¢ =2, W = {1 = (1,2)} and that
there are exactly two paths connecting the OD pair w = 1, namely r1 = a; and

Ty = ay. Furthermore we assume di =1 and d? = 1.

\/

a2

For the two paths r1 = ay,79 = ay and the two products j = 1,2 we have the

following costs:

(9}

o, (f) = 10(fa, + f2) e, (f)

T(fa + 12,)
G (f)=3(fa, +12) S, (f)=T(fs, +

(far + 12)

Choosing hil =0,h2 =1,hl =1, th = 0, which is a demand feasible solution,

» 1oy ) Horg

we obtain

e (h) = (10,3)", ¢, (h)=(7,7)", m(h)=(7,3)".
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Clearly, the above solution A is not an equilibrium flow pattern according to
(4.12) as

¢ () —my(h) = (3,0)" 20 and ¢,,(h) —my(h) = (0,4)" >0,

but both h,, € RY and h,, € RL. The vector h does, however, satisfy (4.13)
as both ¢,, — ¢, ¢ RY and ¢, —¢,, ¢ RL. In fact, an equilibrium flow pattern
satisfying (4.12) can only exist if the cost for each product is minimal along the
same path, so if there exists a unique optimal path. In Example 4.4.4 there

exists no feasible solution satisfying the equilibrium flow pattern by Cheng and
Wu.

Cheng and Wu (2006, Theorem 2.1.) state the following: A vector flow f* € K
is an equilibrium pattern flow as in (4.12) if and only if f* is a solution to the

following vector variational inequality:

find f* € K, s.t. o(f*)(h—f*)" e RYY Vhe K. (4.14)

For p = |R/|, the cost matrix is defined as c(f) := (c1(f),...,c,(f)) € R¥*?,
and the flow matrix by f = (f1,...,f,) € R??, where every ¢,(f) and f,
is a column vector of class cost and class flow, respectively. Throughout the
proof the term equilibrium pattern flow as defined in (4.13) is used, so we
will show that with this definition, their claim is incorrect. Again, we use the
feasible solution from Example 4.4.4, which satisfies (4.13), and show that the

variational inequality (4.14) is not satisfied:

- 10 7 ur, ul —1
ch)(u—nh)" =
3 7 ul — 1 u?
10uy, + 7ul, —7 10uZ — 10 + Tu?,

Suy, +Tuy, — 7 3ul — 3+ Tul,

= 1, we obtain:
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More importantly in the context of this thesis, Cheng and Wu (2006) con-
sider the multi-product, multi-objective equilibrium problem defined similar
to (4.13) by extending scalar-valued cost functions to p-dimensional cost vec-
tors for every product j (Cheng and Wu 2006, Def 3.1): A vector f* € K is said
to be an equilibrium pattern flow in the generalised context of the multi-product
supply-demand network equilibrium problem with vector-valued cost function if

and only if

Co(f*) = Co(f*) ERVP = f2 =0 Vw € W,Vr,s € R, (4.15)

They claim that an equilibrium according to this is equivalent to a £.-equilibrium
pattern. The function &, is just &.,, see (4.8), without the a component: Given
a fixed e € RZ, & : R? — R is defined here by

ge(y):min{AeR:yeAe—Rg} Vy € RP.

The usage of &, gives rise to the definition of &.-equilibrium. This was at-
tempted similarly by Chen et al. (1999), and shown to be incorrect by Li et al.
(2006). A vector f* € K is said to be an &.-equilibrium pattern flow in the
vector valued network equilibrium problem for multiple products if there exists
an e € int(RY) such that (Cheng and Wu 2006, Def 3.3):

£ 0 Cr(f") =0 Cu(ff) €RL = =0 YweW,Vr,s € Ry, (4.16)

Despite their attempts to prove the contrary (Cheng and Wu 2006, Theorem
3.1), the two concepts (4.15) and £ .-equilibrium (4.16) are not equivalent. This

can be shown by the same counterexample used by Li et al. (2006).

Li et al. (2006)

Li et al. (2006) show incorrectness of a weighted sum scalarisation by Goh and
Yang (1999) and a scalarisation based on the function &., by Chen et al. (1999).
Li et al. (2006) give correct re-formulations of those scalarisations, which give
rise to the concept of weakened parametric (weighted sum) equilibrium and

weak &.,-equilibrium.
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Li et al. (2007)

Li et al. (2007) extend the concept of &.-equilibrium to vector equilibrium
problems with path capacity constraints, elastic demand, and different user
classes. First, a system of VVIs is introduced, a solution of which always
satisfies (W)VEQ. It is shown that a feasible solution is in weak &.,-equilibrium
if and only if it satisfies WVEQ. They also show that a solution satisfying the
original concept of (non-weak) &.-equilibrium (Chen et al. 1999) does also
satisfy VEQ, but not vice versa. It is furthermore shown that from the above
weak &.q-equilibrium principle a VVI formulations can be derived, which is
equivalent to WVEQ. For the (non-weak) &.-equilibrium a VVI is derived
that implies WVEQ, but not vice versa.

Li et al. (2008)

Li et al. (2008) aim at relating a capacitated version of VEQ to a special multi-
objective minimum cost flow problem defined in the following. It is assumed
that there are lower and upper bounds [, @ on arc flow. From those they derive

limits for path flow on path r by
l, = max{l,par : a € A} and u, = max{Uada, : a € A}. (4.17)

Clearly, this does not guarantee that the resulting arc flow is within the bounds

1, 7. The following simple example demonstrates this.

Example 4.4.5 Let the demand for the single OD pair (1,3) be 2 and the
upper bound for flow on each arc 1, i.e. w = (1,1,1,1). There are three paths,
= a1,0G4, Ty = ag,ay4, and r3 = az. According to (4.17), the upper bound for

flow on each path is also 1, i.e. w = (1,1,1).
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Clearly, the path flow solution f., =1, fr, =1, f,, =0 satisfies f < u, but the

resulting arc flow has 7a4 = 2, which violates the upper bound on arc flow.

Li et al. (2008) formulate the following optimisation problem

min Y, cr Crl(fy)
st. 1< f<u (4.18)

Zrenw fr=d, forallweW,

where path cost is assumed to be additive, i.e. C..(f) = 3,4 Ca(f,)- Also,
arc costs are assumed to be given by linear functions depending on arc flow.

A feasible f* is in capacitated vector equilibrium if and only if:

Vw e WVr,s € Ry, Cs(f*) > Cu(f*) = fr=1s0r fj =u. (4.19)

Li et al. (2008, Theorem 2.1) claim that an efficient solution of (4.18) always
satisfies (4.19). Within the proof, the assumption that path cost functions are
linear is made (without explicitly stating it), which generally does not follow
from the fact that arc cost functions are linear. In Example 4.4.6 linear arc
costs C4(f) do not lead to linear path costs C..(f,.). The next example presents

a network with cost functions where a solution of (4.18) does not satisfy (4.19).

Example 4.4.6 We consider two OD pairs, (1,3) and (1,4) each with demand
1. The paths r1 = ay1,a3 and ro = ao, az connect the first OD pair and paths
r3 = ay,a4 and r4 = ao, a4 connect the second one. We assume the lower

bounds are zero and upper bounds are w,, > 1.

}\ as @

Q@
~_ o o

a2

We consider cost functions C.q, = (f,.,1)7;i=1,3,4 and C.qy = (2f,,.1)7.
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Now the objective in (4.18) is >, cp Cor(fi) = (2f 0, + 40, +2f0, +2f 0, 8) "
Clearly, an efficient solution with minimal first component is f., = 1, f,, =
0, frs = 1, fr, = 0, as this solution avoids the most expensive arc as. The

corresponding path costs are

Con(fr) = (3,2)7 Coy(frs) = (3,2)" (4.20)
C C.

' and :
Tz(fT‘2> = (172)T r4<fr4) = (172)T-

For both OD pairs, the equilibrium conditions are violated as there is positive
flow on non-efficient paths ry,r3. FEven in the special case of constant path
costs C..(f,) = C.., a solution of the optimisation problem does not have to
satisfy the equilibrium conditions: constant path costs mean that the objective
of (4.18) is constant and therefore any feasible solution is optimal, whereas
a solution that satisfies the equilibrium conditions should only use paths with

non-dominated costs.

Li et al. (2008, Theorem 2.1) claim that an efficient solution of (4.19) satisfies
(4.18) when |R,,| < 2 holds for all w € W. The network given in Example
4.4.6 satisfies those assumptions. The feasible path flow solution h,, = %, hy, =

%, hyy = %, h., = % has path cost

and (4.21)

C. C.
C-rg(hrg) = ( ;2)T C'M (hT4) = (

and therefore satisfies the equilibrium conditions (4.19). The objective function
value of (4.18) for this solution is (2, 8) ", whereas the objective function value
of feasible solution f in Example 4.4.6 is (8,8)" < (%,8)". Therefore, h is
not an efficient solution of the optimisation problem. It also follows that
Li et al. (2008, Theorem 2.3 and 2.4) are incorrect as they are similar to
the above theorems addressing weak efficiency and weak vector equilibrium.
Also, Li et al. (2008, Proposition 2.1) state that the scalar version of problems
(4.18) and (4.19) are equivalent is incorrect, which can be seen by considering

Example 4.4.6 without the second objective.

Li et al. (2008) generalise (4.19): a feasible f* is in generalised capacitated

vector equilibrium if and only if for all OD pairs w € W and for any positive
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integers ny, ny with ny +ny < Ry |:

Dot MG (f2) = 2252 i Ca, ()
= El’lo € {1, Ce ,nl} f;o = lSz’O or 3]0 € {1, C. ,TLQ} ftt'o = Ut

Jo?

for all rj,s; € Ry and A, p; > 0,i =1,...,n1,5 =1,...,n0 and Y 1| \; =
1,372, iy = 1. In Li et al. (2008, Theorem 3.1), it is claimed that with this
definition the optimisation problem and the generalised vector equilibrium
problem are equivalent. However, the counter example presented in Example

4.4.6 still applies with ny = ny = 1.

Raciti (2008)

Raciti (2008) studies traffic assignment with different user classes as well as
multi-objective cost functions for each of the user classes on each path. The
models initially include capacity constraints, which are later omitted. The
aim is establishing a vector equilibrium principle that is equivalent to a VVI
formulation, similar to the previous work of Oettli (2001). In the following we
present some of the mentioned variational equilibrium concepts and attempt

an economic interpretation similar to Wardrop’s.

Raciti (2008) defines a vector variational equilibrium according to (4.8). Note
that in his paper, Raciti (2008) actually presents problem (4.8) in a more
general framework assuming the space of flows (here R”?), and the space of
costs (here RP) are topological vector spaces and also that order relations are
given by ordering cones. In (4.8) and everything that follows, we replace those
general vector spaces by the set of ¢ class flows, R?, and the cost space by R?

so that p objectives are considered.

Two other equilibrium concepts are also introduced by Raciti (2008), which
are basically VEQ and WVEQ with additional user classes and the WVEQ

concept is also formulated with capacity constraints on path flow.

Raciti (2008) shows that (4.8) is equivalent to the following equilibrium con-
ditions:
Vie{l,...,p},Yw e W,Vr,s € R,

| | | (4.22)
Cg(f>z >C£(f)7,:>fg =0, Vj=1,...,¢q
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Entry i of the p-dimensional path cost vector C( f) for user class j is denoted
by CZ(f),. Therefore, the aim of identifying equilibrium conditions that are
equivalent to a variational inequality formulation is achieved. However, a closer
look at (4.22) reveals that those equilibrium conditions can only be satisfied if
there is exactly one efficient path for every OD pair, i.e. there exists a unique
minimal solution. In this case, however, it is not necessary to consider a vector

equilibrium.

Fixing a product j, (4.22) is a set of scalar VIs for every component i of
the objective vector. For each j, (4.22) represents p scalar VlIs, each of which
implies that path flow can only be positive if the i cost component is minimal
on the corresponding path. So a solution exists only if all components attain

their minimal cost for the same path(s).

Let us show that (4.22) does not have a solution if any OD pair w with positive
demand for a user class j, d/, > 0, has more than one non-dominated path cost
vector CY(f) for all f € K. Now, for user class j and for every pair of efficient
paths r, s with CJ(f) # CI(f), there exist two indices i1,75 € {1,...,p} such
that

Cﬂ(f)zl < Cz(f)zl and CY (f)i, > i (f)iy- (4.23)

From (4.23) and (4.22) we can conclude that

Repeating this process for every pair of efficient paths r, s with CY(f) # CI(f),
the flow on all those paths must become zero to satisfy (4.22). But then,
demand &/, > 0 is not satisfied. Therefore, there exists no feasible solution
satisfying (4.22) whenever there is more than one efficient path per OD pair

w and class j.

This completes our discussion of literature on VEQ and related problems.
In Sections 4.4.3 and 4.4.4 we will collect some known facts on the relation-
ship between VEQ and VOP as well as VEQ and VVI and present some new
insights that help understand what sets VEQ apart from VOP and VVI. Al-
though solution algorithms of the single-objective TA problem take advantage

of equivalent optimisation and VI formulation, this equivalence does not hold
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in the multi-objective case, which will be demonstrated in the two subsequent

sections.

4.4.3 Relationships between VOP and VEQ

Before the relation of VOP and VEQ is discussed, we need to introduce the

term properly efficient solutions for a VOP problem with objective vector

2(f) = (2a(f). - z())-

Definition 4.4.10 (Geoffrion 1968). A feasible solution 7* is called properly
efficient, if it is efficient and if there is a real number M > 0 such that for all
i and f € K4 for which z(f) < z(f"), there exists an index j such that
Al )=zl <y (4.24)
zi(f) = z(f*)
Properly efficient solutions are efficient solutions with bounded trade-offs be-
tween the objectives. Properly efficient solutions can be obtained as optimal
solutions of minimisation problems with weighted sum objective, given that all

weights are positive and the functions and underlying feasible set are convex
(Geoffrion 1968, Theorem 2).

Theorem 4.4.3 Every properly efficient solution of the multi-objective op-
timisation problem VOP with convex objectives z; = ) 4 fOf“Eﬁl(v)dv,i =

1,...,p based on positive and continuous functions ¢, is a VEQ solution.

Proof For every properly efficient solution 7* there exist positive weights

Wi, .. .,wp such that 7* is optimal for the single-objective optimisation problem

fa fa
min w; y, [C(v)dv+ ... +w, Yy, [ (v)dv
a€A 0 a€A 0 (4.25)

s.t. 7 e Ka.
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Problem (4.25) can be re-written as

?a
min Y [ (wiTp(v) + ... + w,ch(v)) dv.
acA 0

s.t. 7 e Ka.

This is the equivalent optimisation formulation corresponding to a standard
SEQ problem with arc cost function wiel(f)+...+w,e(f). This cost function
is positive and continuous as all its components ¢? are positive and continuous,
and the weights are positive. At equilibrium all used paths for any OD pair w

have the same minimal generalised cost value, 7,,, see also (4.4):

wie, (f*) + ..+ wpcl(f) = o i f7 >0,

(4.26)
wict(f*) + .o+ wpt(f*) =y if fF=0.

If we now assume that there exists a path s € R,, with positive flow f; > 0
that is dominated by another path t € R,,, then

(1) Se(5), @) =T, - G = ()

holds with at least one strict inequality. From this and w; > 0 it follows that
e (F) 4.+ wd () <wit(F) +. + e (F),

which contradicts (4.26), and therefore f satisfies VEQ. O

Remark 4.4.1 Let () be an open subset of R™ and h a function differentiable
on (). Furthermore, K is a convex subset of 2. Then, h is convex on K if and

only if its gradient VA is monotone, i.e. satisfies
(Vh(z) = Vh(y))' (z —y) 20, (4.27)

for all z,y € K (Hiriart-Urruty and Lemaréchal 2001, Theorem 4.1.4). There-
fore, Theorem 4.4.3 is valid assuming that each cost function ¢ is positive,
continuous, monotone, and separable as this implies that the objectives z; are

convex functions. A similar theorem appears in Goh and Yang (1999).
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Remark 4.4.2 A solution with one or more of the weights equal to zero does
not necessarily satisfy VEQ. If, for example, the only two objectives are time
t and cost T, then the solution of SEQ with cost function wit 4+ 0 - m is not
a solution that satisfies BEQ. At equilibrium, all used paths for an OD pair
will have the same travel time, but if the costs for those paths differ from each
other, then BEQ is not satisfied. In BEQ), there should only be flow on the
path with cheapest cost as this path dominates the other paths with same

travel time.

Next, we show that the reverse of Theorem 4.4.3 is not true, even for convex
functions z;. We give an example in which there exists a solution of BEQ), that
cannot be obtained as solutions of a BOP problem even though the objectives

of BOP are convex. We again consider Example 4.4.2. Here solution

19 359 36
20 15 0

f*=1(0,607,393)" with C(f*) =

satisfies BEQ. But there exists a solution A that dominates solution f* in BOP:

19.3 24.8 41.2
20 15 0

h = (117.5,450,432.5)" with C(h) =

The BEQ solution f* is not an efficient solution of BOP (4.6), as the objective
vector z(f*) of BOP is dominated by z(h):

298254 . 24764.4
9100 B 9105

In the next section, we explore why the problems VVI and VEQ are signifi-
cantly different by characterising solutions of VVI and showing which solutions

of VEQ cannot be obtained by a VVI.
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4.4.4 Relationships between VVI and VEQ

It is well-known that a solution of VVI also satisfies VEQ, which we repeat here.
Equivalence of VVI and VEQ is established under very strong assumptions,
namely that for each OD pair all efficient paths have the same path cost vector.
We then characterise which properties of VEQ solutions prohibit them from
satisfying VVI. This answers the question whether solving VVI can help us
understand and solve VEQ. Then, we give assumptions which are weaker than
those previously made (in the literature), that guarantee that a solution of
VEQ also solves VVI.

It is well-known that every solution of VVI is a solution of VEQ, as the fol-

lowing theorem confirms. However, the reverse is not true in general.

Theorem 4.4.4 (Yang and Goh 1997) If f* € K is a solution of VVI, then
f* is also a solution of VEQ.

Proof (similar to Yang and Goh 1997) Assume f* satisfies VVI but not
VEQ. Then there exists some w € W with r € R, f > 0 so that the path
cost vector C.,.(f*) is dominated by the path cost vector of some path s € R,
ie.

Cs(f7) < Co(f7) or Cs(f7) = Cop(f7) < 0. (4.28)

Choose solution h as

A ift#nrs
hy=4 0 ift=r
fr+fr ift=s

It follows that h € IC as demand for OD pair w is still satisfied. As f* satisfies
VVI:

- = 35 G- )

wEW tERw

= Co(f )b = £7) + Cs(f)(hs — )
= fI(C.(f") = C.(f) <0.
~ 2

-~

>0 <0 by (4.28)
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The latter implies that f* does not satisfy VVI, a contradiction.

O

Every solution of VVI is a solution of VEQ. Chen and Yen (1993) show the
following equivalence provided that the set Z¥(f) is singleton, i.e. |Z¥(f)| = 1,
for all w € W.

Theorem 4.4.5 (attributed to Chen and Yen 1993) Let Z¥(f) be singleton
forallw e W. If f € K satisfies VEQ, then f satisfies the following modified
VVI:

C(f)(h—f) £0,Yh € K. (4.29)

Therefore, equivalence of the modified VVI in (4.29) and VEQ is established.
Unfortunately, the singleton assumption renders this equivalence worthless. If
for each OD pair there is always a single path that is optimal for each of the
two or more objectives, we do not have to consider a multi-objective problem
at all. At the end of this section we give a variation of Theorem 4.4.5 that has

weaker assumptions for a solution of VEQ also being a solution of VVI.

Lee et al. (1998) show how the sets of solutions of VVI, WV VI, and VI, are
related. They give a proof of the following theorem, where the set of solutions
of VVI (WVVI, VI;) is denoted by sol(VVI) (sol(WVVI), sol(VI)):

Theorem 4.4.6 The following properties hold:

U sol(VIg) C sol(VVI) C sol( WVVI) = U sol( Vi)

£€RY §ERY

Theorem 4.4.6 shows that all solutions of VVI can be obtained by applying
a weighted sum scalarisation of the objectives > 7 &C;.(f). It appears that
this gives a first indication that VVI is not suitable to solve VEQ. We em-
phasised previously that the definition of VEQ does not make any behavioural
assumptions such as combining the different objectives into a weighted sum
generalised cost function. This indicates that path cost vectors C.,. that are
not optimal for a generalised cost function with some weighting factors can-

not be included (i.e. have positive f,.) into a solution of VVI. We confirm this
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Co.

Figure 4.4. Points z° and 2! are supported, 2" is one of the non-supported
points “between” them.

conjecture in the following.

Theorem 4.4.6 shows that sol(VVI) is a subset of the solutions of WVVI,
which in turn can be obtained via sol(VI), when ¢ varies over £ € RY \ {0}.
This indicates that VVI and WVVI do not permit solutions in which for some
w € W one of the efficient paths is non-supported. We first give a proof of this
result for p = 2 and then extend it to p = 2.

Theorem 4.4.7 Assume p = 2, f is a solution of VEQ) and there exists w €
W such that the set of non-dominated points for w, ZN(f), contains at least
one non-supported point 2" with corresponding path r € RY such that 2" =
C..(f) and f, >0 (C..(f) denotes column r of the path cost matriz). Then f
does not solve VVI.

Proof  Asindicated in Figure 4.4, we choose path indices s and t to define
the neighbouring supported points of 2" = (C,.(f), C2-(f)). Index s is chosen
so that 2° = (C15(f), Cas(f)) is a supported point in ZY( f) with maximal value
C1s(f) < C.(f). Similarly, index ¢ is chosen so that z' = (C1,(f), Co(f)) is a
supported point in Z}(f) with minimal value Cy.(f) > Cy,.(f).

As 2" is a non-supported non-dominated point and 2%, 2! are neighbouring
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supported non-dominated points, we have

Cis(f) < Cur(f) < Cue(f) and Cos(f) > Cop(f) > Cou(f) (4.30)

and for slopes m* and m™ we have m"™ < m?®:

st — Cos(f) — Cor(f) S Cor(f) = Cu(f) —m't. (4.31)

— Cu(f) = Culf) ~ Cu(f) = Culf)

We proceed by constructing h € K such that C(f)(h — f) € —RZ. Let path-

flow vector h be given as

hy = fu foru #1r;s,t
hs = fs +ap

hy = fr—p

he = fi+ (1 —a)u,

(4.32)

withO<a<land0O<pu = f,. As h, — f, =0 for u # r, s, t the LHS of VVI

reduces to

Ols(f)( _fs)+Olr(f)(hr_fr)+clt(f>(ht_ft)
Cos(f)(hs = fs) + Cor(f) (B — f2) + Cot(f) (he — f1)
_ Cl,UOls(f) - :uolr(f) + (1 - a’):uclt(f) .

apCas(f) — nCor(f) + (1 — a)uCaox(f)

hfs
CNHh=1) = ( .

To show that f does not satisfy VVI, i.e. C(f)(h — f) € —RZ, it suffices to
show that a and p exist so that

(4.33)
(4.34)

apCrs(f) — nCir(f)
and a/,I/CQS(f) - ,U/CQr(f)

-
_ =
| |
KNGS
S
==
Al
o O

From (4.33) a = % follows and (4.30) implies that 0 < a < 1. With

this choice of a, it remains to verify that (4.34) holds. For the LHS of (4.34),
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we have

= a(C25(f - CZt(f)) + (C2t(f) - C2r(f))

() - Culf) ) )
= o= Colh) = Calf) + (Cal ) = Carl£)
_ C2s(f) - C2t(f) _ B

- pls(f> - Cue(f) (Crr(f) > C1t(f)2+(02t(f) Cor(f))

‘C2s(f) — Cou(f |C1-(f) — Cu(f)| + (Cor(f) = Con(f))

(f)
Cls(f) - Clt(f)
OQt(
Cu(

027’( ) B

f )
Clr(f) -

f
f)
Cos(f

()‘

(Clr<f) - Clt(f)) + (CZt(f) - CQ?“(f)) = 07

as (4.31) implies | F=H=5"0F Car (f)=C2t(f)

)—C
)—Ci Cr(h—Culh |

choosing a = M d 0 bt feasible h € K

8 Q= G p=cu(p and any < p £ f,, we obtain a feasible h € K as

defined in (4.32) such that (4.33) and (4.34) hold, therefore f does not satisfy
VVL 5

Therefore (4.34) is true when

Even when there are only supported objective vectors in a solution of VEQ,

this solution might not be a solution of VVI as we show next.

Theorem 4.4.8 Assume p =2, f is a solution of VEQ and there exists w €
W such that the set of non-dominated points for w, ZN(f), contains at least
three supported points 2", z°, z* that are not optimal for a weighted sum problem
with the same weighting factor. Furthermore, we assume for the paths r,s,t €
RY that 2 = C.(f) and f, > 0,u = r,s,t (C.(f) denotes column wu of the
path cost matriz). Then [ does not solve VVI.

Proof  The proof is similar to that of Theorem 4.4.7 above. The situation
is illustrated in Figure 4.5.

Again, we have relationship (4.30), i.e. supported non-dominated solutions are
in some order. For the slopes we have m** < m" and therefore

st — Cou(f) = Cas(f) < Cou(f) — Cor(f) — 't (4.35)

B Clt(f) _Cls(f) Clt(f) _Clr(f)
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Ch.

Figure 4.5. Points 2°, 2!, and 2" are supported, but do not lie on the same face
of bd(conv(Z¥(f))).

We proceed by constructing h € K such that C(f)(h — f) € —RZ. Let path-

flow vector h be given as

hy = fu for u #1r,s,t
hs = fs —ap

he = fr + 1

he = fe — (1= a)p,

(4.36)

with appropriate choice of 0 < a < 1 and g > 0, which we will comment on

later. As h, — f, =0 for u # r, s,t the LHS of VVI reduces to

—apCis(f) + pCr(f) — (1 — a)puCri(f)

C(f)h—[)=
—apCoy(f) + pCao(f) — (1 — a)uCoy(f)

To show that f does not satisfy VVI, i.e. C(f)(h — f) € —RZ, it suffices to
show that a and p exist so that

_&:ucls(f) + Mclr(f> - (1 - a):uclt(f) =
and  — apCy(f) + pCo(f) — (1 = a)uCyu(f) <

(4.37)

0
0. (4.38)
C1e(f)=Cirr(

From (4.37) we conclude a = N dﬁg and 0 < a < 1 by (4.30). It remains
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to verify that (4.38) holds for this choice of a:

- ZE}”; — Ejﬁ; (Corlf) = Coal ) + (Con(F) — Ca()
— SRR U - Cuth) + (Culh) -~ Cul )
- ggg - gg; (Cu(f) = Curlf)) + (Car(f) = Cat(f)) = 0

Cu(f)=Cir(f)
C1e(f)—Crs(f) "

i so that h is feasible. As fs, f; > 0, by choosing x < min {f;, 1f—ta}, we obtain
a feasible h € KC as defined in (4.36) such that (4.37) and (4.38) hold, therefore
f does not satisty VVI. U

Therefore (4.38) is true when choosing a = It remains to choose

Solutions of VEQ that satisfy the assumptions of Theorems 4.4.7 and 4.4.8 do
exist. For instance, in Example 4.4.2 we consider a network in which the first
cost function is the travel time, which increases with traffic flow. The second
cost function, however, is given by toll cost, which we assume to be independent
of traffic flow, so it remains constant. Here, non-supported solutions may occur
as well as more than two supported solutions, which are not optimal for the

same weighting factors.

In Example 4.4.2 the solution f has three supported points, whereas solution
f* has a non-supported point. Clearly both solutions satisfy VEQ as there is
only flow on efficient paths. This is illustrated in Figure 4.6.

17.59 20.95 36.85
20 15 0

f = (300, 300,400)" with C(f) =

17.59 23.00 28.75
20 15 0

f* = (300,400, 300)" with C(f*) =

In the following Theorems 4.4.7 and 4.4.8 are extended for p > 2.

Theorem 4.4.9 Assume p = 2, f is a solution of VEQ and there exists w €

W such that the set of non-dominated points for w, ZY(f), contains at least
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Co.
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Figure 4.6. Example for solutions of VEQ: objective vectors of all three differ-
ent paths of solution f and f*.

one non-supported point 2" with corresponding path r € R™ such that 2" =
C.(f) and f, >0 (C.,.(f) denotes column r of the path cost matriz). Then f
does not solve VVI.

Proof  We know that conv(Z¥(f)) is a polyhedron. All supported solutions
lie on the boundary of conv(Z(f)+R%), whereas the non-supported solutions
lie in the interior of conv(ZW(f) + Rg). We need to establish that the non-
supported solution 2" is dominated b} (at least) one point on a face of the
polyhedron. This point on the face is, however, infeasible for the problem of

finding shortest paths with given costs C(f).

The set Z¥(f) is discrete and finite, therefore conv(Z¥(f)) is a compact set.
A set Z is called R%-compact if for all z € Z the section (z —R%) N 2 is
compact (Ehrgott 2005, Definition 2.13). The set Zy of all non-dominated
points of Z is called externally stable if for each z € Z \ Zy there is 2 € Zy
such that z € £+ RY, i.e. for every non-dominated point z there is always a
point Z that dominates 2 (Ehrgott 2005, Definition 2.20).

Clearly, conv(Z3(f)) is a R%-compact set. As conv(Zy(f)) C RY is nonempty
and R%-compact, Theorem 2.21 in Ehrgott (2005) implies that conv(Zy(f))

is exte;nally stable.
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S

Figure 4.7. Hlustration of the situation described in Theorem 4.4.9 for p = 3.

Therefore, the point 2" is dominated by some point on one of the faces of
conv(ZY(f)), we call this face the face associated with 2" and we denote by
d(z") the point that dominates z". The distance between d(z") and z" is
|d(z") — 2"|| > 0 as z" is non-supported. Every face is defined by a set of
supported extreme points 2% = C.;, (f),..., 2% = C,, (f) € Z¥(f) with ¢ 2 2.
The point d(z") can be obtained as a convex combination of 2%, ..., 2%. For

an illustration in case p = 3, refer to Figure 4.7.

Along the lines of the proof of Theorem 4.4.7, we construct a feasible solution
h # f so that the VVI condition is violated. Choose

hy = fuforu##sy,...,87 (4.39)
h81 = fsl + a b

hsq = fsq + gt

h, = fr — M,

for some 0 < a4,...,a, with Zi:l,...,q a; =1 and 0 < p < f,. Solution h is
feasible as for OD pair w a flow of i is removed from path r and re-distributed
to paths sq,...,8,. As hy,— f, = 0for u # s1,...,s,,7 the LHS of VVI reduces
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to

a1iChs, (f) + - + aguCis, (f) — pCir(f)

alMC2s (f) +...ta /JJC2sq<f) - :U’C2T<f)

C)h=f) = 1 !
al,ucp&(f) +...+ aqucpsq(f) - :“Cpr(f)
= plaz™ 4+ ... +az% —2")

As the point d(z") can be expressed as a convex combination of 2%, ... 2%
factors 0 < ay,...,a, = 1 can be chosen so that d(z") = a12°" + ... 4 q,2%

C(f)h=f) =pd") = 2"). (4.40)

The vector d = 2" — d(2") is in RY as 2" is dominated by d(2"). Replacing 2"
by d(2") + d in (4.40) yields

O

Theorem 4.4.10 Assume p = 2, f is a solution of VEQ and there exists
w € W such that the set of non-dominated points for w, ZY(f), contains at
least p + 1 extreme supported points 2°', ..., 2%, 2" with corresponding paths
S1y..., 85,7 € RY such that z* = C.,(f) and f, > 0,u = s1,...,5p,17 (by
C.u(f) we mean column w of the path cost matriz). Furthermore, assume the
objective vectors z°', ... z° lie on the same facet of conv(ZY) and all points
are optimal for exactly one common weighting factor & € A (there may exist
weighting factors for which some of the vectors are optimal, but only a unique

common one). If the solution z" is not optimal for this weighting factor &, then
f does not solve VVI.

Proof  The objective vectors z°!,. .., z° lie on the same facet F of conv(Z})

and all are optimal for exactly one common weighting factor & € A. Therefore,
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- 25

Figure 4.8. Illustration of the situation described in Theorem 4.4.10 for p = 3.

we have £T2%0 = ... =¢Tz% and €727 > €% i =1,...,p.
The points z°!, ..., z° generate a hyperplane H of dimension p — 1 in R? (as
€€ A with €725 = ... = £72% is unique). The point 2" is dominated by a

point d(2") in H, but not in F (as z" is supported). As the point z" does not lie
in the hyperplane, It follows that there exists d € RY such that 2" = d(z") +d.

A p — 1 dimensional simplex is obtained by conv({z%,...,2%}). The point
d(z") does not lie within this simplex (as £72" > £72% i = 1,...,p), i.e. it
cannot be obtained as a convex combination of 2% ... z**. We choose one
of the vertices z* of the simplex and then obtain a cone C; = {z € R? : z =
25 4ay (20 —2%) 4. A (25— 2% ) i (25 —2%) L ap (2P —2%),a; 2
0} with apex z%. The corresponding opposite cone —C; is obtained by only
allowing coefficients a; < 0. Now d(z") lies within at least one of the cones
Ci,—Ci,i=1,...,p. Without loss of generality we now assume that d(z") € C;.
For an illustration of C; and —C; in case p = 3, refer to Figure 4.7. We can

write

dz") = 2 +ag(2 —2°) + ...+ a,(2F — %)
= (1—ay—...—ap)2" +az™ + ...+ a,z™. (4.41)

Along the lines of the proof of Theorem 4.4.8, we construct a feasible solution
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h # f so that the VVI condition is violated. Choose

hy = fuforu#sy,... 8,7
hr = fr_ﬂa
hg = fo+1—as—...—ay)n

hSQ - f52—|—a2,u

hsp = f5p+ap#

fs

2—...—ap|

}. Note that ay +

...+ a, > 1as d(2") does not lie within the simplex, so it cannot be obtained

for some 0 < ag,...,a, and 0 < p < min{fr, T

as a convex combination. Solution A is feasible as for OD pair w a flow of

it is removed from paths 7 and s; and re-distributed to paths sg,...,s,. As
hy — fu =0 for u # sq, ..., sy, the LHS of VVI reduces to

C(f)(h—f)=uw(l—ag— ... —ay)z™ + a2+ ...+ apz’ — 2"),

where the details of this step are analogous to the corresponding step in the
proof of Theorem 4.4.9. Using (4.41) and 2" = d(z") + d, we obtain

CHh=f) = pld=") ==
T LT
>0 €RY

which confirms that f is not a solution of VVI. O

Remark 4.4.3 We suspect that it is possible to drop the assumption that
points 2°1, ...,z must lie on the same facet in Theorem 4.4.10. We believe
that it may be possible to show a version of this theorem based on the assump-
tion that there exist p+1 points that are not all optimal for the same weighting

factor £ € A. However, we are not able to give a proof of this situation.

To summarise, we established that VVI does not yield any solutions with
positive flow on non-supported efficient paths in Theorem 4.4.9. Furthermore,

solutions with positive flow on at least p efficient paths that are not optimal
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for the same weighting factor (so they do not lie on the same face in objective
space) cannot be obtained, see Theorem 4.4.10. VVI only provides solutions
that can be obtained by using a single weighting factor (for every OD pair)
and therefore has no advantage over solving the problem with a generalised

cost function with single VOT, as discussed in Section 4.3.2.

We can now state under which conditions we can obtain equivalence of VEQ

and VVL

Theorem 4.4.11 Assume that f € K is a solution of VEQ. Also assume
there exists £ € ANR< so that for each w € W among all the efficient paths
r € XE(f) there is only positive flow on those paths r with weighted cost value
ETC(f) equal to Cpyn = min{€"C.(f) : v € X2(f)}, i.e. those paths with

minimal weighted cost. Then f is a solution of VVI.

Proof  We have to show that f is a solution of VVI. First observe that the
assumptions imply the following

Yw € W,Vr,s € Ry €' C.(f) <ECy(f) = f,=0.

Therefore, SEQ is satisfied for the single-objective cost function £TC. Equiv-
alence of SEQ and VIp (Theorem 4.2.1) implies that f also satisfies

&) - (h—f)=20 Vhek.

The latter can be re-written as VI:

(Zp:fici-(f)> (h—f)=0 Vhek.

As f satisfies VI with { € R it follows by Theorem 4.4.6 that f is a solution
of VVL O

Remark 4.4.4 Note that £ needs to be identical for all w € W. Also, the
assumptions of Theorem 4.4.11 do not require that all non-dominated points
Z3(f) lie on the boundary of the convex hull bd(conv(Z§(f) + RY)) — it is

sufficient that no efficient path with objective vector lying in the interior of
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conv(Zx(f) +RY) has positive flow.

Remark 4.4.5 Clearly, the assumptions of Theorem 4.4.11 are weaker than
those of Theorem 4.4.5, and no modification of the VVT is required. With VEQ
and VVI defined as in this thesis (and throughout the related literature), it
appears that Theorem 4.4.11 is the strongest link between VEQ and VVI that
can be established. This is because we know from Theorem 4.4.6 that all f that
satisfy VVI can be obtained by solving VI with varying parameter { € Rg.

In particular, the value of £ must be equal for all w.

In conclusion, we have seen that, although a VVI solution is always a VEQ
solution, solutions of VVI have very limited structural properties. They can-
not have non-supported efficient paths and also no efficient paths that solve
different weighted sum problems. One motivation for studying VEQ is that
no assumptions on a linear choice function are made. Solving VEQ by obtain-
ing solutions of VVI only, however, implicitly makes these assumptions which

renders the approach through VVI unsuitable for our purposes.

4.5 Solving Bi-objective Traffic Assignment

In this section we extend some solution algorithms that are well-known for the
standard (single-objective) TA to the bi-objective case. We do not present a
proof of the convergence of the given algorithms but show how to observe that
an equilibrium solution has been found for the bi-objective path equilibration
algorithm in Section 4.5.3. It is, in general, easy to confirm convergence of a
TA equilibrium algorithm when path flow variables are used throughout the
algorithm. Convergence can be checked by simply confirming that positive
flow exists only on efficient paths. When only aggregate arc flow variables are
used, the determination of convergence criteria is not straight-forward in the
bi-objective case. For single-objective TA, the objective of the optimisation
formulation (4.5) can be used to measure convergence. Unfortunately there is
no obvious extension of this approach to the bi- or multi-objective case. In this
section, we discuss only the case of BEQ, and comment on a possible extension
to VEQ at the end of the section.
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E=E=()=)

Figure 4.9. The 5 x 5 grid network.

The proposed heuristic algorithms are implemented in the C programming
language. We use a small network to illustrate the results obtained by the
different algorithms. Unless noted otherwise, results are based on performing
1000 iterations.

The network used to illustrate the output of the heuristics has a grid structure
similar to the ones in Dial (1999a,b). Tests are performed on a 25-node network
with grid structure as shown in Figure 4.9. The arcs are un-tolled except for
the central ones highlighted green in the figure. Each tolled arc has the same
toll of $5. We consider a single OD pair w = (1,25) with a travel demand
of 4000. All arcs have similar length, a value that varies around 5 km with a
minimum of 4.6 km, a maximum of 5.3 km, and an average of 4.98 km. The
speed limit on un-tolled roads is 30 km/h, whereas it is 55 km/h on tolled
roads. Every arc a has a travel time ¢, given by the so-called BPR function
(Bureau of Public Roads 1964) of the form

Ty =1 (1 +a (Z—) ﬁ) : (4.42)

where ZS is the free-flow travel time when there is no traffic on the road, and
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Figure 4.10. Single-objective TA: user equilibrium solution with time objective.

k, is the practical capacity of the road. In our grid instance it is assumed that
the practical capacity is 2000 on un-tolled roads and 1300 on tolled roads.
The free flow travel time for each arc in the network is derived by dividing the

arc’s length by its free-flow speed. The function parameters «, 3 are chosen as
a=0.15,3 = 4.

We explain the output format based on the user equilibrium solution obtained
for the TA problem with a single objective, namely travel time. The solution
is obtained using the path equilibration algorithm (Algorithm 12 on page 150).
Arc flow results are shown in Figure 4.10. Above each arc, in brackets, is the
travel time of each arc (in hours), the toll is omitted from this figure. In the
following, there will be two values in the brackets as we consider bi-objective
TA problems. The first number is travel time (hours) and the second one is
toll cost. Below the arc is the amount of traffic flow traversing the arc. The
amount of flow is also visualised by the thickness of the arcs. All arcs missing

from the figure have zero traffic flow. In transportation planning an important
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measure of congestion is the ratio of arc flow and practical capacity % When
this ratio exceeds 1, the arc is clearly congested, which is indicated in the figure
by red arcs — the darker the red, the higher the ratio.

Figure 4.10 shows that the fastest arcs are congested as the toll is not taken
into account by the solution algorithm. This leads to highly congested arcs
in the centre of the network, whereas most other arcs are not used at all or

receive only a small amount of flow.

4.5.1 Bi-objective Traffic Assignment and Non-linear
vVOT

BEQ can be solved by applying one of the solution approaches proposed for the
TA problem with generalised cost function with non-linear weighting function
as discussed in Section 4.3.2. We assume the first objective is a travel time
objective and the second one is a fixed cost objective. We are able to establish
the equivalence of BEQ and a scalar equilibrium problem SEQ with generalised
cost function that has a non-linear weighting function as proposed in Larsson
et al. (2002). They consider the two objectives travel time and travel cost.
Path travel cost is assumed fix and converted into an equivalent time value via
a non-linear weighting function v,, for each OD pair w. The arising generalised

time objective has the form

gf"(f) = Clr(f) + UW(CQT)a

for r € R,. They then formulate the non-linear scalar equilibrium according

to Wardrop’s principle as

(nISEQ)  Vw e W, Vs € Ry, fo > 0= gi(f) = min {g!(f)},

T‘GRw

which is equivalent to the formulation SEQ presented earlier. This non-linear

scalar equilibrium can equivalently be written as

Yw € W,Vr,s € Ry g.(f) < g8(f) = fs = 0.

Under the assumptions that v, is increasing and non-negative, and Cy. = 0
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and fix, as well as the assumptions that the flow-dependent component Cy.(f)
is positive, continuous, and separable, they establish equivalence of nISEQ and

the following optimisation problem, similar to (4.5).

fa
min Y. [ Ci(z)de+ Y Y v,(Co)f

acA 0 weW reRy

st. feK
f=0f.

(4.43)

Next, we establish equivalence between BEQ and nlSEQ. We show that for
every solution (7*, f*) of BEQ, we can derive a function v,, such that (7*, )
also solves nISEQ. On the other hand, we show that a solution (7*, f*) of
nlSEQ with given v, is also a solution of BEQ. Note that in order to establish
equivalence, we need to assume that the functions v,, are strictly increasing.
This is necessary to guarantee that there are no weakly efficient paths in the
BEQ solution.

Theorem 4.5.1 If (7*, %) is a solution of BEQ with fized second objective
Cy. = 0, then there exists a strictly increasing, non-negative function v such
that the vector (7*, f*) is a solution of nlSEQ.

Proof  Assume (f*, f*) solves BEQ. Without loss of generality, choose one
OD pair w € W. Xp(f*) is the set of efficient paths. There may be equivalent
efficient paths with identical path cost vectors. All distinct path cost vectors

can be sorted by increasing first component and they are indexed accordingly:

* —k —k

Cio,(f)=...=Cro, () < ... < Cio(f)=...=Cu,,..(F)

02311 == Cleml > e 2 CQSnl == CQSnMn'
(4.44)
BEQ implies that there can only be positive flow on efficient paths. For (T*, )
to be a solution of nlSEQ, we need to construct v, such that g’ (f*) =

gglg(f*) = ... = gznmn (f*> = mlnTeRw{g’lt“(f*>} Wlth T > Olsn1<f*)7 we
can choose v,, as piecewise linear function through the following points

(07 0)7 <C2Sn17T - Clsnl (f*>>7 R <C28217 T— C’1821 (f*))v (028117T - Clsll (f*>>7
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Figure 4.11. Constructing v,, from efficient solutions.

the last segment of the function goes through points (Cas,,, T — Cis,, (f*)) and
(Cosyy +1, T — Chs,, (f*) + 1) to infinity. We define the function only for values
= 0 as it is assumed that Cs. = 0. Note that if Cy,,, = 0, point (0,0) can
be omitted. This function v, is strictly increasing and non-negative. The
construction of v,, is illustrated in Figure 4.11. With the above choice of v,,,
we obtain g (f*) = gL, (f*) = ... =g, (f*) =T, so all efficient paths have
identical generalised costs. It remains to verify that their generalised cost is

also minimal.

Choose a non-efficient path s € R,, \ X¥(f*). The path cost vector of s is

dominated by that of an efficient path s;;. There are two cases:

o O, (f*) £ Cs(f*) and Cyy,, < Cys. It follows that T = gf (f*) =
Clsi (f*) 4+ 00(Casy ) < Crs(f*) 4+ v0(Cas) = gL(f*) as v, strictly increas-
ing.

o O, (") < Cis(f*) and Cys, = Cos. It clearly follows that T =
9our (f7) < g2(f7)-

The generalised path cost vector of any non-efficient path s € R, \ XZ(f*)
always has a higher value than 7', and therefore (T*, f*) also solves nISEQ.

O

Theorem 4.5.2 If the vector (7*, f*) is a solution of nlSEQ with fized second

objective Cy. > 0 and strictly increasing, non-negative function vy, then (f , f*)
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1$ a solution of BEQ.

Proof Assume (7*, f*) solves nISEQ. Without loss of generality, choose
one OD pair w € W. Let R™"(f*) be the set of paths for which g' attains its
minimum:

Ru™(f7) = argmin, e, {g:(f7)} -

For all paths in R™"(f*), ¢ has the same minimal value. Paths in R™»(f*)
are also the only paths that may have positive flow. Whenever Ci,,(f*) =
Cis,(f*),i # j it follows that v, (Cas,) = v,(Cas,) and therefore Cyy, = Ca,; as
Uy 18 strictly increasing. We assume the paths are indexed as in (4.44) with
increasing first component, therefore their second component is decreasing.
For BEQ to be satisfied we need to show that the paths si1,S12, ..., Snm,
are efficient. Assume there exists a path s € Ry, \ {s11, $12, -, Snm, } that
dominates path(s) s;1, ..., Sim, (they all have the same objective vector). We

distinguish the following two cases

o C15(f*) = Cus,, (f*) and Cys < Csg,, . Tt follows that gt(f*) = Chs(f*) +
Vo (Cas) < Cusyy (f*) + vu(Cas,) = gL (f*) as vy, is strictly increasing.

o C1(f*) < Cus () and Cyy = Chy,, . Again, gl (f*) < gi, (f*) follows.

gL(f*) < gt (f*) is a contradiction to all g;j( f*) having minimal value. So a

path s that dominates any of the paths si1,512,..., Sum, does not exist. Fur-
thermore, the paths si1, $12, ..., Spm, do not dominate one another by (4.44).
Therefore, (?*, f*) solves BEQ as there is only flow on efficient paths. O

Given such a function v,,, we can solve our bi-objective TA problem with the
solution approach proposed in Larsson et al. (2002). The only difficulty is
determining a good function v,,. When a BEQ solution is given, v, can be
easily derived. It is, however, unclear how to derive v,, without any a priori
knowledge of the structure of the non-dominated path cost vectors one may

obtain at certain levels of flow.

In the following, we propose several heuristic approaches to solve BEQ. We
assume that the bi-objective cost function consists of a travel time component
t and a monetary cost component m which may be fixed or flow dependent.

It is also assumed that path flow is additive.
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Algorithm 13 MSA method for solving BEQ
1: input: Graph (V,.A), arc cost functions C' = (£,m), set of OD pairs W,
and demand d.

2: Calculate fixed arc costs C(0).

3: Identify efficient paths.

4: Assign flow to efficient paths yielding path flow vector 70
5. 1=0

6: while Convergence criterion not satisfied do

7. Calculate fixed arc costs C(f?).

8:  Identify efficient paths.

9:  Assign flow to efficient paths yielding path flow vector h.
10:  Compute new arc flow ?H = ( — Z%l) 7+ H_%E.

11: 1=1+1

12: end while

13: output: Arc flow vector f.

4.5.2 Method of Successive Averages (MSA)

MSA is a basic algorithm to solve TA, and its formulation does not require

any equivalence relationship with an optimisation problem or a VI.

In order to extend the MSA method to a solution algorithm for BEQ as in
Algorithm 13, we need to replace the single-objective AON assignment (where
for each OD pair all flow is assigned to the minimal path) by some bi-objective
counterpart. Assuming fixed arc costs (initially based on zero traffic flow), the
set of efficient paths is determined using any known bi-objective shortest path

algorithm as discussed in Chapter 2.

Now the question is which portion of the total demand for each OD pair to
assign to each of the efficient paths. A great degree of liberty lies in this step
as there are many different ways to split the total flow for an OD pair between
the efficient paths. To obtain a good solution, we believe that a realistic
assignment method applied in each iteration of MSA will yield an overall good
solution of the TA problem. With a correctly calibrated assignment setup, it
should be possible to closely model the true situation. We propose different
assignment strategies in the following, but it is of course possible to develop
many more reasonable strategies. This solution approach for bi-objective TA

is heuristic.
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Equal Share Assignment

A first assignment strategy that comes to mind is equal share (EQS) assign-
ment. Here, the total demand for each OD pair is split up evenly between
all efficient paths. The path flow vector h is constructed as follows in every
iteration: let r{’,..., 7 be the efficient paths for OD pair w at the current
cost level C'(f%). We also assume that the objective vectors associated with

the paths are distinct. Then, for every OD pair w, h is obtained as

3 w w

h 0 ifs#ry,...,r
S
dw w w

e ifse{ry, ..t

Finally the arc flow vector is obtained as h = ®h.

When there are equivalent paths among r{,... 7 ; they can be separated

into groups of paths with same objective vector

triul (fz) =...= trﬁl (fz) <. .. < tr}vul (fz) =...= tr}svlk (fz)
Now each group with equal objective vector is assigned a fraction of the total

demand d,,, namely Z—:. The path flow vector h is obtained by splitting this

between the number of equivalent paths:

- w w
B 0 ifs# i, .,r,
s =
1. duw jfg=pw
Ly its=rp.

EQS has some obvious disadvantages. A main one is that the actual values of
the objective vectors do not influence the assignment at all. For example, the
cheapest cost path is always efficient, even though it may have excessively long
travel time. In reality, this path may not be chosen but it is treated just like all
other paths in the case of EQS assignment. Therefore, EQS assignment may
not be realistic, particularly when efficient solutions with very large values in
one objective are present (the problematic ones are often the lex(1,2) and the
lex(2,1)-best solutions).

The heuristic approach MSA with EQS assignment is applied to the grid net-
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Figure 4.12. Non-dominated path cost vectors in first four iterations of MSA
with EQS assignment.
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work instance. Figure 4.12 shows the non-dominated path cost vectors ob-
tained in the first four iterations of MSA. A fifth of the total travel demand
is assigned to the paths corresponding to one of the non-dominated points in
each iteration. The resulting arc flows, after 1000 iterations, are shown in
Figure 4.13. It appears that it is not necessary to perform 1000 iterations.
In fact, after 50 iterations, the resulting flow pattern is very similar to that
observed after 1000 iterations. Although it does not seem necessary to perform
1000 iterations, we do so anyway as even 1000 iterations run quickly, in less
than one second, for this small instance. As mentioned earlier, the travel time
(hours) and toll ($) can be found in brackets above each arc, whereas the arc

flow is below the arc.

Cost per Unit Time Saving

Another assignment method is called cost per unit time saving (CTS). Here,
all efficient paths are compared to the cheapest one. In decision space, the
slope of the lines obtained by connecting the objective vector of the cheapest
path to all others indicates the cost per unit time saving — a steep slope means
that the price paid for saving a unit of time is higher than when the slope is
less steep. Given a distribution of CTS values, flow can be assigned to efficient
paths. We explain this by means of the setup from Example 4.3.1, see Figure
4.14. The non-dominated path costs vectors z* in the figure are associated

with paths r;.

We denote by m?® the slope between points 2% and 2%, by m*® the slope between
points 2% and 2%, etc. Given a CTS distribution the number of users on each
efficient path can be determined. Users who are willing to pay more than m!©
to save one time unit, all choose path r;. Users willing to pay between m!% and
m?%, choose path 75, and so forth for paths r3, r4,r5. Finally, the remaining
users, who are not willing to pay at least m?%, choose path rg. Similarly to
EQS assignment, this approach can be extended to the case when there are

equivalent efficient paths that have the same path cost vector.

The slopes are not necessarily increasing as in Figure 4.14. Figure 4.15 shows
an example where m?0 is larger than m3® and m?®. Also, the efficient paths
with distinct objective vectors z? and z* have the same slope, therefore they

are each assigned half of the portion of network users with CTS between m?
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Figure 4.14. Example 4.3.1 for CTS Figure 4.15. Another example for
assignment. CTS assignment.

and m?*.

Procedure 6 outlines this assignment procedure for a given probability density
function g when all efficient paths have distinct path cost vectors and also all
resulting slopes are distinct. This procedure is easily adapted to deal with

equivalent efficient paths and non-distinct slopes. Note that S is defined as
S(z) = [y g(v)dv.

An advantage of CTS assignment over EQS assignment is that it does matter
what the actual non-dominated path values are. If, for example, the cost of
path rq is large, only few users choose this path. Compared to conventional
weighted-sum approaches, CTS assignment enables the assignment of flow to
non-supported paths (the one with cost vector 2% in Figure 4.14) as well as

non-extreme supported paths (the one with cost vector z? in Figure 4.14).

On the other hand, CTS does not take into account the total path cost values.
It is not necessarily true that a user who is willing to pay $0.8 to save 2 minutes

of travel time, would pay $8 to save 20 minutes and vice versa.

To demonstrate the solution algorithm we choose the share of flow to assign
to each path based on a uniform distribution of CTS values according to the

probability density function

A
A

alx=<b

1
g(iL’) _ b—a
0

otherwise.
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Figure 4.18. Non-dominated path cost vectors in first four iterations of MSA
with CTS assignment as in Figure 4.17.
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Procedure 6 CTS Assignment
L: input: Efficient paths r{,... r for each OD pair w € W, feasible solu-
tion f € K, demand d,,, and probability density function g of CTS-value
T.

2: The path with maximum travel time for OD pair w path is r
3: for all w € W do

w
max*

4:  for all r}" # rp,. do
5: v = | oL ) ) /* Calculate CTS value 7% */
T trw (f)=try, (f) 71
6: Rank values of 7%: denote by 1) the lowest and by Tlhw—1) the highest
value.

7. end for

8 foralll=1,....k,—2do

9: hay = [S (7'(%_1)) ) (7'(%):| - dy /* Assign share of flow to each
efficient path */

10: end for

1 hy . = [S (7‘6%)] - dy, /% Assign share of flow to cheapest path x/

120 Ng,—1) = [1 - S 7'(1;;_1) -d,, /* Assign share of flow to most expensive
path */

13: h,=0,7 € Ry \ {r{,..., 7} /* No flow on non-efficient paths */

14: end for

15: output: Components of path flow vector corresponding to OD pair w.

Again, 1000 iterations of the CTS assignment algorithm were performed. In
Figure 4.16 a uniform distribution with a = 60,b = 70 is assumed, whereas in
Figure 4.17 we assume a = 60,b = 90. In the first case, the CTS values that
receive a positive share of flow are fairly low with b = 70, this is reflected in
Figure 4.16 by less usage of tolled arcs when compared to Figure 4.17 with
b = 90. For the solution from Figure 4.17, we show efficient path cost vectors
for the first four iterations in Figure 4.18 and corresponding slopes between the
non-dominated point corresponding to the fastest path and the other ones. In

this example, the obtained CTS values initially range between 63.1 and 84.2.

Reference Point Assignment

Reference point (RPT) assignment works by defining a reference point in de-
cision space for each OD pair w that acts as an attractor, a point to which
the network users are attracted. The attractiveness of each non-dominated

path cost vector is determined by its distance to the reference point while also
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taking into account the distance of all other points to the reference point. The
smaller this attractiveness measure, the higher the share of users on the corre-
sponding path and vice versa. The reference point also serves as an indicator of
a reasonable solution, which allows to identify paths whose travel time or cost
is too far from what is reasonable and that should therefore not be assigned

any flow or at least not much flow.

Different attractiveness measures are possible, each more or less sensitive to
the difference in path cost vectors and their distance to the reference point.
We present three possible ways of calculating the share of demand d,, that
is assigned to each efficient path r{,... 7 . Again, we initially assume that
there are no equivalent paths and that all path cost vectors are distinct. Denote
the reference point for OD pair w by 2* and the Euclidean distance between
point 27 and the reference point z* by d¥ = d(27,2"). The share of flow
on efficient path 7" is s”. The first method to compute s}’ is a sum-based

approach

k
v Ay — dy
s = 24— (4.45)

(k= 1) 35, dy

Alternatively, we may compute s;” by following a sum of squares approach

- Tl — @ )

(ku — 1) 325 (dy)?

Finally, we suggest computing s;” by a product approach

. d¥
S = L d; . (4.47)

Kuw w
Zh:l (ijfjl dj2>

We compare the different methods of calculating the share of flow for an ex-
ample with just five non-dominated path cost vectors. The reference point is
located in different positions in objective space, as indicated in the three parts
of Figure 4.19. Each non-dominated path cost vector in the figure is numbered
and point number j represents path r;, whereas the reference point is labelled

by P. The resulting shares are calculated in Table 4.2.

It becomes apparent how the location of P changes the shares for each path. It

appears that when calculating shares with the sum method (4.45), the shares
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Figure 4.19. Different positions of reference point P for RPT assignment.

Table 4.2. Share calculated by different methods in RPT assignment.

Reference point as in| path shares calculated according to
Figure 4.19 sum (4.45) sum of squares (4.46) product (4.47)

ry 0.16 0.11 0.1

ry  0.21 0.23 0.24

(a) rs  0.21 0.22 0.22

rg  0.21 0.22 0.23

rs  0.21 0.22 0.22

ry 0.19 0.19 0.13

ro  0.23 0.24 0.43

(b) rs  0.21 0.23 0.21

ry  0.19 0.19 0.13

rs  0.17 0.15 0.10

ry 0.13 0.06 0.06

ro  0.20 0.22 0.14

(c) rs  0.21 0.23 0.17

ry  0.23 0.24 0.29

rs  0.23 0.25 0.35
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of all paths are of similar magnitude. This is less true for the sum of squares
method (4.46) and the product method (4.47) appears to assign much higher
shares to paths with cost vector close to P. The appropriate method to calcu-
late shares within the RPT approach needs to be determined depending on the
TA problem to be solved and the characteristics of network users. The RPT
approach can be extended to the case of equivalent paths by just splitting the
demand to be assigned between all paths with the same path cost vector. An
extension of the RPT approach to include several reference points to allow
for different locations that attract network users is also imaginable. Further-
more, weighting factors for the two objectives can be included to ensure the
objectives are balanced. For example when time is measured in seconds and
monetary cost is measured in dollars then the distance measure should not be
biased by the fact that points are hundreds of seconds apart, whereas the costs

differ only by a few dollars.

The choice of a different reference point influences the amount of flow on the
paths. For the grid instance we illustrate how the choice of the reference point’s
location influences the resulting arc flow. We choose two different reference
points and obtain a solution using MSA with RPT assignment where (4.47) is

used to calculate the share of flow that is assigned to every path.

Choosing the point (1.2,3) with long travel time and small toll costs should
cause preference of longer and cheaper paths. Consequently, there should be
relatively little flow on tolled arcs. We observe this behaviour in Figure 4.20.
Placing the reference point at (1.0,13), on the other hand, favours faster and
more expensive paths. The resulting arc flow solution is illustrated in Figure
4.22.

In Figures 4.21 and 4.23 the behaviour of path cost vectors during the first four
iterations of MSA with RPT assignment is illustrated. The reference point is

included in both figures.
Area of Domination
Every non-dominated path cost vector dominates part of the objective space.

This gives rise to another potential assignment approach denoted by area of

domination (ADO). A survey of road users can be conducted asking every user



224 4.5 Solving Bi-objective Traffic Assignment

(0.202,0) (0.180,0)

(0.154,0)
3
: : 735.7

®

2181.8
— G G S
: ~ o b ~ :
*® [ N © ] w =
[y 2
A RE 5 AN oz
(0.171,0) (0.170,0) /\ (0.168,0) /-\ (0.153,0)
772.1 309.5 \\J 1005.0 495.2 \\
o 3 . = NE
N = %) o N = © =
S 2 518 & N T
-~ o o o o =
(0.099,5) (0.088,5) \ (0.095,5) (0.093,5) /
Cj 288.7 \\/ 521.5 \>
5 )
P P ) S at
= Pt
I & ® > a
@ B B B o

(0.164,0)

(0.173,0) /-\ (0.174,0)
18

160.7 650.3

847.4

9°LL0T
(0'691°0)

(0.155,0) (0.178,0) (0.195,0)

M
1077.6 1320.2

(¢'€60°0)
L7618 rg\\
(o‘Le1°0) \ J (0°G91°0)
17981 .
(&) €=()
(@)
(0°68T°0) e

2135.9

Figure 4.20. MSA with RPT assignment where the reference point is (1.2, 3)
and shares are calculated according to (4.47).
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Figure 4.21. Non-dominated path cost vectors in first four iterations of MSA
with RPT assignment and reference point (1.2, 3).
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Figure 4.22. MSA with RPT assignment where the reference point is (1,13)
and shares are calculated according to (4.47).
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Figure 4.23. Non-dominated path cost vectors in first four iterations of MSA
with RPT assignment and reference point (1, 13).
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Figure 4.24. Different user ideal points and non-dominated path cost vectors.

the question “How much travel time do you spend at the moment, how much
would you (realistically) want to save and how much money are you prepared
to pay for it?”. Then every road user can be represented by their own ideal
point in objective space. Such a road user would select any of the paths with

cost vector dominating their ideal point.

Figure 4.24 shows five different non-dominated path cost vectors 2z’ for one OD
pair, each associated with an efficient path r; together with the ideal points
of three different road users. Clearly, user 1 will choose path ry as this path is
both faster and cheaper than the user’s ideal. User 2 has the choice between
two paths as both paths r3 and r, are faster and cheaper than his ideal. User
3 has an ideal that cannot be achieved by any of the options available — this
user could either choose the fastest path with cost less than that of their ideal

or choose the closest path to the ideal.

From this observation we can devise an ADO assignment method. Given
a two-dimensional density function in decision space derived from the user
survey, portions of the demand can be assigned to the different efficient paths
as indicated in Figure 4.25. The yellow rectangles are each dominated by
exactly one non-dominated point, therefore the share corresponding to the
demand arising in this area is assigned to the corresponding efficient path(s).
The red rectangles are dominated by two different non-dominated points and
the arising demand should be split between the two. The blue rectangles are
dominated by three points, and therefore upcoming demand from this area

should be split between the corresponding three efficient paths. This process
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Figure 4.25. Dominated area. Figure 4.26. Area that is not domi-
nated by points 2!, ..., 2°.

continues until, in the figure, the orange area is reached that is dominated by

all non-dominated points.

It can be expected that most demand occurs in the yellow areas of Figure 4.25,
as network users would not want to pay large amounts of money to save just
a little time. Therefore, the orange area should have hardly any users’ ideal
points. It remains to decide how to assign users with ideal points that are not
dominated by any non-dominated path cost vector such as the one represented
by a green plus in Figures 4.24 and 4.26. One can assign a portion of those
users to the fastest path with cost less than that of their ideal, as mentioned
above. This is illustrated in Figure 4.26: users with ideal point in the light-
gray area at the top of the graph would choose path 7, users with ideal point
in the darker gray area just below the previous one would choose path 7y,
etc. Finally, users with ideal point in the dark gray area at the bottom of
the graph would choose path r5. Alternatively, users can be assigned to their

closest non-dominated path cost vector.

Let g(z,y) be the probability density function that represents network users’
ideal points such that [;° [ g(u,v)dudv = 1. Then the share of users in a

. o . . . (T2 Y2
certain rectangle B = [1; 2] X [y1;92] is S(B) = [ "
upper limits may be co. We want to calculate the portion of demand d,, that

g(u, v)dudv, where the

is assigned to each efficient path rY’,... )’ with non-dominated path cost

vectors zb%, ..., 2Fe Again, we initially assume that there are no equivalent
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Figure 4.27. Rectangles B; in domi- Figure 4.28. Rectangles Bj in area
nated area. that is not dominated by points

paths and that all path cost vectors are distinct. We also assume that the

paths are numbered so that

kw,

1w 2w K, w
zl < zl < ... < Zl .

w 1w 2w
and zy > 250 > ... > 2z

From the non-dominated points 2%, ... zk=w k. rectangles B, ..., B} are
w

derived that are dominated by only one non-dominated point:

Bl = [2™;5™] x [5™;00)
B = ] xS
By = [ x ) (1.18)
Bl, = [""500) x [ 2" )]
Similarly, k,,—1 rectangles B, . . ., B,%w that are dominated by two neighbouring

non-dominated points can be formulated. This process continues until the final
rectangle B = [2F": 00) x [20"; 00) is defined that is dominated by all points

2w Zkew  The rectangles are also marked in Figure 4.27.
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The share of demand on each path arising from dominated user ideal points is

min{k,—1,5} min{kw—2,5} 1
- 1 } : 2 } : 3 K
i=max{1,j—1} i=max{1,j—2}

(4.49)
We need to add the share for paths with non-dominated user ideal points. For

simplicity, we assume that all network users choose the fastest path with lower

cost than their user ideal among paths r{’,... ) , if their ideal point is not
dominated by a point z%%, ..., z¥*  Then, the rectangle Z’S’j is the rectangular

area that represents users choosing path 77"

B = [0:4"] x [5":00)
B = [00") x [ 55"]
By = [0:4"] x [543
Bk}w_l — [O; Zf“’_l,w] X [Zéfw—l,w; Z]2i‘w—27w}’

and finally By, = [0; 27™] x [25; 2811 U[0; 00) x [0; 25*™], see also Figure

4.28. This leads to shares
S = S(B;). (4.50)

By combining (4.49) and (4.50) the path flow for efficient paths r{’,... 7}

h‘?" — Srw §Tw d .

For all other paths r € Ry, \ {r{,..., 7}, } hr = 0.

In order to run MSA with ADO assignment for the grid network, we need a
probability density function or a distribution of users. Instead, we divide the
area of the objective space that contains the non-dominated path cost vectors
into a grid. For every cell of the grid, we assume there is a certain number of
network users whose ideal points lie within this cell. Figure 4.29 shows how
many users choose each ideal point, indicated by the height of the bar in the
cell. This data can be obtained as a the result of a survey of network users
who are asked to state their ideal point for a trip in the grid network instance.

The resulting arc flow solution is shown in Figure 4.30.
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Figure 4.30. MSA with ADO assignment based on distribution from Figure

4.29. Solving 5 x 5 grid network.

Assignment Based on Non-linear Valuation Function

When a non-linear valuation function v,, is given as in Section 4.5.1, the single-

objective MSA approach can be used as introduced above.

One can again

perform AON assignment, by identifying the shortest path for each w with
respect to ¢'(f) and assigning all demand d,, to it.

Due to the non-linear component of ¢' that evaluates path cost, it is necessary

to use a bi-objective shortest path algorithm to obtain all efficient paths with

non-dominated path cost vectors (t.,m,). Then, the generalised time is com-
puted as gt = t,+v,(m,) and the minimal path is identified. As an alternative
to assigning all flow to the cheapest path, one might consider assigning flow to

the first few cheapest paths to potentially obtain faster convergence of MSA.
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Comparison of Different Assignment Methods

Clearly, EQS is a very simple assignment method that is not expected to be
very useful in practice. Assigning equal portions of travel demand to each
efficient path in the network no matter what the actual path costs are, cannot

be a very realistic approach.

CTS overcomes this disadvantage by introducing the ratio between additional
travel cost (compared to the cheapest solution) and saved travel time into the
assignment process. Only the ratio but not the absolute costs and times are
included, which may overestimate the number of users on very expensive paths.

A difficulty here is finding an appropriate distribution of the CTS values.

ADO is similar to CTS in requiring the distribution of user ideal points that
indicate how much time a user would like to spend when travelling to their
destination and how much they are prepared to pay for it. Compared to
CTS, this may present an advantage as absolute values are included in the
assignment process and network users can give upper bounds on how much

money they are prepared to spend.

From a practical point of view, a distribution of CTS values and a distribution
of user ideal points needed for ADO assignment similar to the one shown in
Figure 4.29 can be obtained through a network user survey. Similar surveys

are common practice in transportation planning.

RPT allows to select a single reference point as an attractor. However, this can
be modified to use more than one reference point. Paths close to this point are
more attractive than those far away and should therefore obtain more flow. We
presented three different measures of distance to this point that allow stronger
and weaker influence of the location of the point and all non-dominated path
cost vectors on the portion of total travel demand that is assigned to each
path. An advantage of RPT over CTS and ADO is that a reference point is
easily selected, but it is not clear how to select a point to model certain user
behaviour. If network user surveys show certain trends in preference, such as
clusters of similar user preference, a reference point could be selected for each

of those clusters.

Only practical tests can show how realistic the above assignment methods are,

and how practical they are to use.
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Other Assignment Methods

There are numerous other assignment methods one can think of. Each of them
potentially leads to a different BEQ solution. This makes the BEQ approach
highly adaptable to any kind of real-world situation - a correctly calibrated
model can lead to any kind of equilibrium solution that satisfies BEQ, and can

therefore model the behaviour of road users in different situations accurately.

Whichever assignment method is used, its calibration to ensure that reality is

modelled as accurately as possible, remains difficult.

4.5.3 Bi-objective Path Equilibration

The idea of path equilibration (Section 4.2.4) can also be extended to BEQ.
As this is a path flow based method, the obtained path flow variables can be
used to check that an obtained solution is actually an equilibrium solution
as explained above. We assume that we have two objectives, namely flow

dependent time t and a fixed cost function m.

In the single-objective case, the essence of path equilibration is to find the
current shortest path for each OD pair and the longest with positive flow.
Then flow is re-distributed between them until they have identical costs or the
longer path has zero flow. Translating this to a bi-objective setting means that
efficient paths are identified and one of the non-efficient paths with positive
flow. Among all paths with positive flow, the one with largest distance from
the efficient paths can be selected, but other selection criteria are possible as
well. Having selected such a non-efficient path, the task is to re-distribute flow
from the non-efficient path to the efficient ones (or at least to one of them)
until the longest path is efficient or has flow zero. Unlike the single-objective
case, there are multiple ways of re-distributing flow, which we discuss in the

following.

We base this discussion on several examples. Consider the situation in Figure
4.31. There are four non-dominated points z', ..., 2% corresponding to efficient
paths 71, ..., 74 for some OD pair w. Point Z is dominated with corresponding
non-efficient path 7. Assume that f; > 0. This is a situation one may face in

bi-objective path equilibration: there is positive flow on a non-efficient path
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Figure 4.31. Non-dominated path Figure 4.32. New path cost vec-
cost vectors for OD pair w and domi- tors resulting from feasible flow re-
nated path cost vector zZ with positive  distribution.

flow on corresponding path.

that should be re-distributed to efficient paths. As we assume the path costs
m,,r € R, are fixed, only path travel time ¢ changes as path flow changes.
In particular, path flow ¢, (f) increases when increasing f,,, whereas path flow
t7(f) decreases as f; decreases. A possible resulting change is depicted in
Figure 4.32. Due to the fixed monetary costs, path objective vectors move

horizontally.

Given the flow change indicated in Figure 4.32 is feasible, it achieves the goal of
making the formerly non-efficient path 7 efficient. Unlike the single-objective
case, it is not clear how much of the flow on path 7 should be re-distributed.
The re-distribution indicated in Figure 4.33 is also feasible and it is unclear
which one is preferable. A reasonable re-distribution should ensure that the
point Z becomes non-dominated, therefore the point needs to move into the
red rectangle indicated in Figure 4.34. Of course, the rectangle may change as

flow is assigned to paths r3 and r4, which is disregarded in the figure.

A different situation arises if point Z has the same monetary cost as one of the
non-dominated points 2%, see Figure 4.35. A sensible re-distribution of flow
seems to be one that makes the travel time on paths r3 and Z equal, for the

results of a possible flow re-distribution see Figure 4.36.

It is apparent that there is a lot of flexibility in the flow re-distribution step.
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Figure 4.33. New path cost vec- Figure 4.34. Area into which point
tors resulting from feasible flow re- Z needs to move to become non-
distribution. dominated.

Assume there is a feasible path flow vector f that does not satisfy VEQ mean-
ing that there exists w € W and a non-efficient path 7 € R,, with positive flow
fi7 > 0. One has to decide on a feasible flow re-distribution onto the efficient

paths r1,..., 7 of flow 0 < o < f; of the form

fr ifr ¢ {r r,. ..,r}
hy =9 fr—0c ifr=r
frtwo ifr=r,i=1...k,

with w; = 0, Zle w; = 1. The re-distribution of flow should make point Z non-
dominated, but otherwise it is very flexible. Possible re-distribution strategies,

which means determining values for all w;, include

e Re-distribute flow equally to all efficient paths, i.e. choose w; = %

e Add flow only to paths with objective vector close to point Z. In Figure
4.36 those would be paths ry, r3, 74, whereas in Figure 4.34 flow would

be re-distributed to paths r3, ry.

e In a situation where the monetary cost of Z is equal to that of some other
non-dominated point z* only move flow to path r;. Using this rule, it

cannot be guaranteed that flow can be re-distributed to make point Z
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Figure 4.35. Non-dominated path Figure 4.36. New path cost vec-
cost vectors for OD pair w and domi- tors resulting from feasible flow re-
nated path cost vector with monetary  distribution.

cost equal to that of another point, 23.

non-dominated as the re-distribution may equate the costs of Z and 2

and at the same time render the two points dominated.

There are also different strategies to determine how much flow to re-distribute,

including

e Re-distribute all flow, o0 = f;.

e In a situation where the monetary cost of Z is equal to that of some other
non-dominated point z* move as much flow as necessary to make points

2" and Z coincide or flow on 7 is zero.

e If the monetary cost of Z is not equal to that of any other non-dominated
point 2%, the goal is to make 7 efficient. One could move Z to be just
non-dominated, so that Z + € is dominated when a small value of € € R?
is added to Z. Conversely, one could move the point as far as possible
while ensuring that it does not dominate its neighbouring non-dominated

points.

e If the monetary cost of Z is not equal to that of any other non-dominated
point 2%, one could aim at moving point Z depending on the position of

its neighbouring non-dominated points z* and z'*!. Then, Z could move
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as far as possible while it does not dominated its neighbours, but z + €
does dominated at least one of the neighbours. Alternatively, the aim
could be to move 2 to obtain a travel time of t; = % (t,i — t,i+1), assuming

t,i > t,i+1. Any other fraction is also possible.

When a non-linear valuation function v, is given as in Section 4.5.1, the single-
objective approach for path equilibration can be used as it is. Firstly, the
shortest path r with respect to generalised time ¢* and the longest one s with
positive flow are identified. Then flow is moved from path s to path r until
their generalised time ¢ becomes equal or until there is no more flow on path

s, whichever comes first.

As discussed earlier, it is necessary to find all efficient paths first and then to
compute their generalised time value g% = ¢, + v, (m,.). Instead of re-assigning
flow only between the shortest and the longest path, one can re-assign flow
from the longest to several shortest paths in order to obtain faster convergence
of the method.

We make a basic implementation of bi-objective path equilibration. In each
iteration, the efficient paths are identified. Then the non-efficient path 7 (with
positive flow), whose path travel time has largest distance d from that of any
non-dominated point, is selected. Flow is re-distributed from path 7 to the
current efficient paths with the aim of reducing the travel time on path 7 by
d (or reducing flow on 7 to zero). The flow that is removed from path 7 is re-
distributed in equal shares between the efficient paths. This path equilibration
runs until it can be guaranteed that a BUE solution is obtained. We stop
the algorithm when the maximal distance d between the cost vector of a non-

efficient path with positive low and a non-dominated point is less than 0.00005.

The BUE solution obtained depends on the initial assignment of flow. We
implement two different initial assignment procedures. The solution shown in
Figure 4.37 is based on an initial EQS assignment, i.e. flow is split equally
between the efficient paths. The solution in Figure 4.38 is based on initially
assigning all the flow to the fastest path, this yields a solution with higher

usage of tolled arcs.
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Figure 4.37. Path Equilibration, initially assigning equal portions of flow to
all efficient paths.

4.6 Conclusions on Bi-objective Traffic Assign-

ment

The study of the traffic assignment (TA) problem that explicitly deals with at
least two objective functions has taken two general lines of approach. On the
one hand, there is the practical approach where the problem is reduced to the
single-objective TA by combining the two (or more) objectives into a gener-
alised cost function. We are able to highlight some shortcomings of approaches
that assume such a generalised cost function. On the other hand, vector equi-
librium (VEQ) problems have been studied from a theoretical point of view.
The traffic assignment problem with multiple criteria has been identified as

an application of VEQ, but no attempt has been made to actually solve the
problem using VEQ.
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Figure 4.38. Path Equilibration, initially assigning all flow to the fastest effi-
cient path.

In this chapter, we first present theoretical aspects of VEQ. It is well-known
that the single-objective equilibrium problem is equivalent to a variational in-
equality problem and an optimisation problem (with the assumptions outlined
in Section 4.2.2). Throughout the literature attempts are made to show a
similar equivalence between VEQ and the corresponding vector variational in-
equality (VVI) and vector optimisation problems (VOP) but it has been found
that there exists no equivalence relation between the respective problems. Our
efforts to build on previous research on VEQ, VVI, VOP, and related prob-
lems were complicated by many erroneous statements in published articles as

discussed in Section 4.4.2.

In the literature, attempts have been made to exploit the fact that a solution
of VVI is a solution of VEQ. In this thesis we are able to characterise the
structural properties of VVI solutions. Compared to a VEQ solution, the

solution of a VVI has a very restricted structure. This fact indicates that
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the whole diversity of VEQ solutions cannot be obtained via VVI. In fact, it
appears that although a VVI can have many solutions, each one of them could
also be characterised by a single-objective VI with generalised cost function

(or weighted sum cost function).

To summarise, the single-objective TA problem with generalised cost function
will yield a single solution. As an alternative solution approach for TA, VVI
has many solutions, but they are still based on generalised cost functions and
could also be obtained by solving TA with different weighting factors. VEQ on
the other hand has many solutions that are not restricted to being obtainable
via a generalised cost formulation as solutions may contain non-supported
paths and multiple paths that are not optimal for the same weighting factor.
Therefore, multi-objective TA has solutions that cannot be found by repeatedly
solving the conventional single-objective TA, thus considering multi-objective

TA enriches the scope of attainable solutions greatly.

We also present several heuristic solution algorithms for the bi-objective TA
problem, which can easily be extended to the multi-objective problem. Our
algorithms are extensions of algorithms for the single-objective TA problem,
for which convergence can be shown. We hope to be able to show convergence
of our algorithms in the future. At the moment, we see the proposed heuristics
as a first step towards more general and more realistic solution approaches for
bi-objective TA. We propose different algorithms, but without classifying them
for their applicability and usefulness in solving a real-life problem. This is an
important aspect of further studies. The quality of the approaches will be
assessed by applying the proposed models for user behaviour in road networks

and comparing the resulting traffic flows with behaviour observed in real life.

From a practical point of view, it may not be necessary to restrict consider-
ations to a single final solution. The fact that VEQ permits many solutions
can be beneficial in the analysis of a road network. The bi- or multi-objective
nature of the problem reflects the diversity of route choice decisions made in
real life, and it is widely acknowledged that there is not one best route to
choose. As a result, there exist different plausible traffic volumes. By consid-
ering VEQ, we permit many final solutions to the bi- or multi-objective TA
problem, each representing different possible traffic volumes on roads. Instead

of generating only a single solution of multi-objective TA, many solutions can
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be generated, which represent a range of different possible outcomes. With
respect to tolling, for example, the model may yield a range of feasible tolling
revenues — giving decision makers a much broader picture of what may hap-
pen than just presenting a single scenario. Especially when large scale tolling
schemes are introduced in a region for the first time, as would be the case in
New Zealand, this may prove valuable as network user behaviour cannot be

observed to calibrate a model.
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