
 

 

http://researchspace.auckland.ac.nz 
 

ResearchSpace@Auckland 
 

Copyright Statement 
 
The digital copy of this thesis is protected by the Copyright Act 1994 (New 
Zealand).  
 
This thesis may be consulted by you, provided you comply with the 
provisions of the Act and the following conditions of use: 
 

• Any use you make of these documents or images must be for 
research or private study purposes only, and you may not make 
them available to any other person. 

• Authors control the copyright of their thesis. You will recognise the 
author's right to be identified as the author of this thesis, and due 
acknowledgement will be made to the author where appropriate. 

• You will obtain the author's permission before publishing any 
material from their thesis. 

 
To request permissions please use the Feedback form on our webpage. 
http://researchspace.auckland.ac.nz/feedback 
 

General copyright and disclaimer 
 
In addition to the above conditions, authors give their consent for the 
digital copy of their work to be used subject to the conditions specified on 
the Library Thesis Consent Form and Deposit Licence. 

http://researchspace.auckland.ac.nz/
http://researchspace.auckland.ac.nz/feedback
http://researchspace.auckland.ac.nz/docs/uoa-docs/thesisconsent.pdf
http://researchspace.auckland.ac.nz/docs/uoa-docs/depositlicence.htm


.

Multiobjective

Routing and Transportation Problems

A thesis submitted in partial fulfilment of the requirements

for the Degree of Doctor of Philosophy

Andrea Raith

Supervised by

Associate Professor Matthias Ehrgott,

Dr. Stuart Mitchell,

and Dr. Judith Y.T. Wang

Department of Engineering Science

School of Engineering

The University of Auckland

New Zealand

2009





Abstract

Real life decision making takes into account multiple, often conflicting, criteria.

This gives rise to multi-objective optimisation. We discuss a range of differ-

ent bi-objective routing or transportation problems, in particular the shortest

path, integer minimum cost flow, and traffic assignment problems.

The first part of this thesis is dedicated to the bi-objective shortest path prob-

lem. The problem is presented together with several well-known solution al-

gorithms, namely bi-objective labelling, ranking, and the Two Phase method.

Computational experiments highlight the strengths and weaknesses of the al-

gorithms for different types of problem instances. We introduce new variations

of the algorithms above and propose an easily implemented improvement for

bi-objective labelling. Cyclist route choice in road networks is presented as a

new application of the bi-objective shortest path problem, where cyclists aim

to reach their destination in minimal travel time, but also along a safe route.

For the bi-objective integer minimum cost flow problem, we introduce one of

the first solution algorithms based on the Two Phase method and demonstrate

its performance based on different types of problem instances. An improve-

ment of the algorithm for the transportation problem, a special case, is also

discussed.

Finally, multi-objective traffic assignment is discussed. Traffic assignment is

the process of modelling route choice of users of a (road) network in order to

determine the total traffic on each road of the network. This is an equilib-

rium problem as the route choice of one traveller affects other travellers. We

show how, traditionally, multiple objectives are treated in traffic assignment,

often by combining them into a generalised cost function which may entail

strong assumptions on road user behaviour. Instead, we suggest to explicitly

distinguish the objectives in a multi-objective framework. We discuss existing
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literature, which is of mainly theoretical nature, and comment on several ar-

ticles presenting erroneous results. We contribute to the understanding of the

theoretical concepts of vector equilibrium, vector variational inequalities, and

vector optimisation. For the solution of bi-objective traffic assignment, we pro-

pose novel heuristic algorithms based on bi-objective shortest path algorithms

as an important building block.
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Introduction

Most decisions made in real life are not of single-objective nature. Decisions

often involve different, mostly conflicting, objectives. This fact is portrayed

by the increasing popularity of bi-objective or multi-objective optimisation

reflected by the number of publications on the topic. There are different ap-

proaches to solve multi-objective problems. Our aim in this thesis, in particular

in Chapters 2 and 3, is to discuss algorithms capable of finding all efficient

solutions, which are those solutions whose objectives cannot all be improved

by another solution. The different approaches discussed are able to find all

efficient solutions. As the problems considered are integer optimisation prob-

lems, we may distinguish two different types of efficient solutions: supported

solutions that can be obtained as optimal solutions to weighted sum problems,

whereas non-supported solutions are more difficult to find as their image lies

in the interior of the convex hull of all feasible solutions of the problem (which

means they cannot be obtained by a weighted-sum scalarisation).

In Chapter 2 we discuss bi-objective shortest path problems. Single-objective

shortest path problems are very important as they have many applications.

Obvious applications are, of course, searching for the shortest path between

two points in a network as used in many route planning applications or when

routing information through a computer network. There are many other appli-

cations, often not easily identifiable as applications of shortest path problems,

such as approximating piecewise linear functions; knapsack problems (also a

dynamic programming problem – many of them can be formulated as short-

est path problems); basic scheduling problems; facility location; dynamic lot

sizing (all listed in Ahuja et al. 1993). Furthermore, the shortest path prob-

lem appears as a sub-problem in many important optimisation problems such

as the traffic assignment problem (see also Chapter 4) or scheduling problems
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solved with the aid of column generation algorithms. Often, column generation

approaches are based on solving resource constrained shortest path problems

which are closely related to multi-objective shortest path problems (by iden-

tifying each separate resource with an objective). There is an extensive range

of publications on the single-objective shortest path problem, where algorith-

mic performance is improved by sophisticated data structures and speed-up

techniques.

The literature on the bi-objective shortest path problem is not as exten-

sive (yet). A few applications of bi-objective or multi-objective nature have

been discussed such as Satellite scheduling (Gabrel and Vanderpooten 2002)

and computing shortest paths for passengers in railway networks (Müller-

Hannemann and Weihe 2006). Different algorithms have been proposed, some

of which are extensions of the well-known single-objective label setting (e.g. Di-

jkstra’s algorithm) and label correcting algorithms (e.g. Bellman’s algorithm).

Other algorithms are based on shortest path ranking or follow the so-called

Two Phase Method where supported and non-supported solutions are obtained

separately, in Phase 1 and Phase 2, respectively.

Throughout the literature on bi-objective shortest path problems, it remains

unclear which algorithm performs best in practice, although there appears to

be a preference for bi-objective labelling algorithms, possibly due to their ease

of implementation. We fill this gap by creating efficient implementations of

all known solution strategies. We then compare these strategies for different

types of problem instances. This allows us to show that algorithms based on

the Two Phase Method are competitive with, if not better than, bi-objective

labelling algorithms. By using three different types of problem instances we

are able to show that the underlying structure of the instance determines

which algorithm performs best. This constitutes the most extensive run-time

study on bi-objective shortest path problems to date. We also propose an

easily implemented improvement of bi-objective labelling algorithms that is,

surprisingly, unreported in the literature so far.

We suggest a new application of bi-objective shortest paths in modelling the

route choice of cyclists in traffic networks. It is widely acknowledged that

motorists choose their travel route through a network with the main aim of

minimising their travel time (or a generalised cost function that combines
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travel time and other route choice factors). For cyclists, however, it is evident

that route choice is not only based on the travel time along the path. Cyclists

share road infrastructure with motorised vehicles, which can be a dangerous

undertaking at times. Next to the travel time objective, we also formulate an

attractiveness objective that combines path safety and other factors that make

a path attractive to cyclists. This enables us to obtain paths that represent

good trade-offs between travel time and path attractiveness. The attractive-

ness objective is not linear, therefore we need to adapt the solution approach

to this objective.

A generalisation of shortest path problems are minimum cost network flow

problems. In Chapter 3 we study the bi-objective integer minimum cost flow

problem. There are many practical applications of network flow problems and

therefore the study of the multi-objective problem becomes increasingly im-

portant. Typical applications studied for the single-objective problem involve

the distribution of products through a network from points where they are

in supply to other points where they are in demand. A cost-minimal way to

move them through the network is sought. Applications include the planning of

radiation therapy treatment to fight cancer (Ahuja and Hamacher 2005); mod-

els for building evacuation; distribution of empty rail cars; warehouse layout

problem; production and inventory planning; scheduling problems (all listed

in Ahuja et al. 1993).

In the literature, only few publications on bi- or multi-objective integer min-

imum cost network flow problems exist. There are articles on solution algo-

rithms, but none that discuss an application of the multi-objective problem.

We are among the first to publish a correct solution algorithm to compute all

efficient solutions of an integer minimum cost flow problem. While it is well-

known how to obtain all supported solutions of the problem, several algorithms

proposed to obtain all non-supported solutions have some flaws. We present a

correct solution algorithm based on the Two Phase Method. On the basis of

a large set of test instances, we demonstrate the speed of the algorithm and

what kinds of instances can be solved within reasonable time. We observe that

the effort of computing all efficient solutions is large, with the computation of

non-supported solutions being the most time-consuming part. We also com-

ment on a refinement of the developed algorithm for solving the bi-objective

transportation problem, which achieves good run-time improvements over our
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original algorithm.

Finally, in Chapter 4, we move away from linear network optimisation prob-

lems to the traffic assignment problem, which is a network equilibrium prob-

lem. The more general trip assignment problem determines the route choice of

network users within a network. We focus on traffic assignment, the problem

of determining motorists’ route choice within a road network. This underlying

network is a road network where travel time for each arc is flow dependent –

more traffic on a road means slower travel speed along the road. As the travel

time increases with more and more flow on an arc (a road), we speak of traffic

congestion.

Traffic assignment is the last component of the conventional four-stage strate-

gic transport planning model. The first three steps of this transport planning

model determine how much travel demand originates from different sections of

the network, where it goes, and the mode choice of network users. Those travel

options may include travelling by car, by bus, by train, by bike, and others.

The final trip assignment step models the actual route choice of each traveller,

one major component being traffic assignment for vehicular traffic. From this,

a prediction of the actual traffic on each road of the network is obtained. It

is generally assumed that network users aim to minimise their travel time or

a generalised cost function that includes travel time and other route choice

factors. There are several feasible approaches to solving the single-objective

traffic assignment problem. Almost all of them take advantage of an equivalent

re-formulation of the problem. For instance, the traffic assignment problem

has (under certain assumptions as discussed in Chapter 4) an equivalent for-

mulation as an optimisation problem or as a variational inequality problem.

It is acknowledged throughout the related literature that route choice is not

solely based on the criterion of choosing a route with minimal travel time. As

mentioned above, monetary costs and other objectives (scenery, safety) may

be included into a generalised cost function. The problem of traffic assign-

ment with two or more separate objectives has been studied with the aim of

proposing solution algorithms. Conventionally, these different objectives are

added together into a generalised cost function using a weighted sum, which

may be a very strong behavioural assumption. Some approaches assume there

is a single weighting factor, whereas others acknowledge that different network
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users have different weightings and split users into different user classes – each

with different weighting factors. Alternative approaches assume a distribution

of weighting factors across the users. Instead, we propose to consider the main

objectives in route choice, travel time and monetary cost, to be treated inde-

pendently, leading to a bi-objective traffic assignment problem. The arising

traffic assignment problem is a bi-objective network equilibrium problem. In

Chapter 4 we give a definition of bi-objective traffic assignment that is not

based on a weighted cost function assumption.

In the literature, the class of vector (or multi-objective) equilibrium problems,

of which bi-objective traffic assignment is a special case, is studied on a purely

theoretical level. Existence of solutions is discussed. Attempts are made to re-

late the vector equilibrium to other multi-objective problems, similar to what

has been done for single-objective equilibrium problems. Unfortunately, equiv-

alence of the vector equilibrium problem to another multi-objective problem,

the vector variational inequality problem, can only be established under very

strong assumptions.

We discuss some properties of the vector equilibrium problem and show that it

is not equivalent to other multi-objective problems. We highlight the properties

of solutions of the vector equilibrium problem that prevent this equivalence.

This greatly enhances understanding of vector equilibrium problems and helps

differentiate them from other multi-objective problems. It also enables us to

relax the conditions for the equivalence of vector equilibrium problems and vec-

tor variational inequalities slightly – they still remain too restrictive to enable

the use of this equivalence within a solution algorithm. We are furthermore

able to clarify some erroneous results from the literature.

We extend the existing algorithms known for the single-objective traffic assign-

ment problem to the bi-objective case. Thus, we present several heuristic so-

lution approaches to obtain bi-objective equilibrium solutions. Our heuristics

utilise a bi-objective shortest path algorithm as part of the solution approach,

namely to solve arising sub-problems in each iteration. We believe this is a first

step towards algorithms to solve the bi-objective traffic equilibrium problems,

and thus vector equilibrium problems.

As this thesis covers three main topics, bi-objective shortest path, bi-objective

integer minimum cost flow, and bi-objective traffic assignment, one chapter
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is dedicated to each of them. This thesis is organised as follows. In the first

chapter we give an overview of the relevant mathematical background. We

introduce the terms of bi- and multi-objective optimisation and some solution

algorithms and strategies as a basis for later chapters. Chapter 2 covers the

bi-objective shortest path problem. In Chapter 3 the more general bi-objective

integer minimum cost flow problem is discussed. Finally, Chapter 4 is dedi-

cated to the bi-objective traffic assignment problem.

Each chapter contains its own introduction and conclusion as the chapters

may be seen as individual entities. Nevertheless, the problems discussed in

Chapter 3 are strongly related to those from Chapter 2 and so are the solu-

tion approaches. Also, bi-objective shortest path algorithms are an essential

element of the heuristic solution algorithms presented for bi-objective traffic

assignment in Chapter 4.



Chapter 1

Preliminaries: Mathematical

Background

In this chapter the basics of bi- and multi-objective optimisation problems are

introduced to the extent needed within the scope of this thesis. A comprehen-

sive coverage of these topics can be found in Ehrgott (2005).

1.1 Multi-objective Optimisation Problems

A multi-objective optimisation problem has the form

min z(x) =


z1(x)

z2(x)
...

zp(x)


s.t. x ∈ X ,

with p = 2 and X ⊂ Rm,m = 1. Whenever the number of objectives is

p > 2, we talk about multi-objective or multi-criteria optimisation, whereas

reducing p to two leads to a bi-objective or bi-criteria problem. The set of

feasible solutions (feasible set) in decision space is denoted by X and its image

is Z := {z(x) : x ∈ X}, which lies in objective space.
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The structure of the feasible set X entails a further classification of the multi-

objective optimisation problem. Multi-objective zero-one optimisation (MO-

ZOO) problems have binary variables, i.e. X j {0, 1}m. An example for a

MOZOO problem is the bi-objective shortest path problem, see Chapter 2. The

variables may be restricted to integers with X ⊂ Zm leading to multi-objective

integer optimisation (MOIO) problems. The bi-objective integer minimum

cost flow problem discussed in Chapter 3 is a MOIO problem. We speak of

multi-objective continuous optimisation problems when the set X is a contin-

uous subset of Rm. X may also be a combination of the above, for instance an

optimisation problem with some integer variables and some continuous vari-

ables, i.e. X j Zm1×Rm2 . Multi-objective combinatorial optimisation (MOCO)

problems have a special constraint structure, such as for example the shortest

path and the flow problems mentioned above. Large parts of this thesis deal

with MOCO problems, and the special structure of the problems is exploited,

whenever possible.

Let us define some order relations for y1, y2 ∈ Rp, p = 2:

y1 5 y2 ⇔ y1
k 5 y2

k for k = 1, 2, . . . , p,

y1 ≤ y2 ⇔ y1
k 5 y2

k for k = 1, 2, . . . , p; and y1 6= y2,

y1 < y2 ⇔ y1
k < y2

k for k = 1, 2, . . . , p.

The symbols =,≥, > are defined analogously. Furthermore, for any of the

symbols �∈ {=,≥, >}, we define Rp� as Rp� := {x ∈ Rp : x � 0}.
In general the p objectives considered in multi-objective optimisation problems

are conflicting with each other, they do not obtain their individual minima for

the same value of x. Therefore, we seek those feasible solutions that do not

allow to improve one component of the objective vector z(x) without deterio-

rating another one.

Definition 1.1.1 A feasible solution x̂ ∈ X is called efficient if there does

not exist any x′ ∈ X with (z1(x′), z2(x′), . . . , zp(x
′)) ≤ (z1(x̂), z2(x̂), . . . , zp(x)).

The image z(x̂) of x̂ is called non-dominated. Let XE denote the set of all

efficient solutions and let ZN denote the set of all non-dominated points. If

there exist x′, x∗ ∈ X with z(x′) ≤ z(x∗), we say that x∗ is dominated and also

that x′ dominates x∗.
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We distinguish two different kinds of efficient solutions.

• Supported efficient solutions are those efficient solutions that can be ob-

tained as optimal solutions to a (single objective) weighted sum problem

min
x∈X

λ1z1(x) + λ2z2(x) + . . .+ λpzp(x) (1.1)

for some λ ∈ Rp>. The set of all supported efficient solutions is denoted by

XSE, its non-dominated image by ZSN . The supported non-dominated

points lie on the boundary of the convex hull conv(Z) of the feasible set

in objective space.

• Supported efficient solutions which define an extreme point of conv(Z)

are called extreme supported efficient solutions.

• The remaining efficient solutions in XNE := XE\XSE are called non-

supported efficient solutions. They cannot be obtained as solutions of

a weighted sum problem as their image lies in the interior of conv(Z +

Rp=). The set of non-supported non-dominated points is denoted by ZNN .

There is no known characterisation of non-supported efficient solutions

that leads to a polynomial time algorithm for their computation.

All efficient solutions of a continuous linear multi-objective problem are sup-

ported (Isermann 1974, Theorem 1), whereas an integer linear multi-objective

optimisation problem may have non-supported solutions.

The objective functions z1, z2, . . . , zp do generally not attain their individual

optima for the same value of x̂. We assume in the following that there exists

no x̂ such that x̂ ∈ argmin{z1} ∩ argmin{z2} ∩ . . . ∩ argmin{zp} for a multi-

objective optimisation problem to ensure that we deal with multi-objective

problems that actually have conflicting objectives and therefore more than

one non-dominated point in objective space.

Definition 1.1.2 Two feasible solutions x and x′ are called equivalent if z(x) =

z(x′). A complete set XE is a set of efficient solutions such that all x ∈ X\XE
are either dominated or equivalent to at least one x ∈ XE.
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In this thesis, we only consider solution approaches that compute (at least) a

complete set XE.

Another notion of optimality that is used in the context of bi-objective op-

timisation is lexicographic minimisation. In the bi-objective case, among all

optimal feasible solutions for the preferred component k of the objective vector,

we choose one that is optimal for the other component l.

Definition 1.1.3 Let k ∈ {1, 2} and l ∈ {1, 2}\{k}. Then z(x̂) 5lex(k,l) z(x′)

if either zk(x̂) < zk(x
′) or both zk(x̂) = zk(x

′) and zl(x̂) 5 zl(x
′). We call x̂ a

lex(k, l)-best solution if z(x̂) 5lex(k,l) z(x) for all x ∈ X . Let xlex(k,l) denote a

lex(k, l)-best solution.

In the more general case with p > 2, assuming that objectives are numbered

according to their preference, lexicographic minimisation can be defined as

follows:

Definition 1.1.4 For y1 6= y2, let k∗ := min {k : y1
k 6= y2

k}. Then,

y1 5lex y2 ⇔ y1 = y2 or y1
k∗ 5 y2

k∗ .

1.2 Multi-objective Linear Programmes

An important class of multi-objective optimisation problems are the linear

ones, where the objective functions as well as the feasible set are described by

linear functions. Such a multi-objective linear programme has the form

min Cx =


(c1)>x

(c2)>x
...

(cp)>x


s.t. Ax = b

x = 0,
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where C is a p ×m objective matrix that has rows (ck)>, k = 1, . . . , p, which

represent the kth cost function. Feasible solutions x ∈ Rm are required to be

non-negative and satisfy constraints Ax = b given by the n × m constraint

matrix A and the right-hand-side b ∈ Rm.

Multi-objective linear programmes can be solved using a multi-objective ver-

sion of the simplex algorithm, which is derived from the single-objective sim-

plex algorithm (Dantzig and Thapa 1997, for instance). A whole chapter of

Ehrgott (2005) is dedicated to multi-objective linear programming. In this

thesis, all linear programmes considered have a special structure: they are

network flow problems. For network flow problems a special version of the

simplex algorithm, the network simplex algorithm, exists.

We first introduce single-objective network flow problems together with the

network simplex algorithm to solve them. Subsequently, a bi-objective version

of this network simplex algorithm, a parametric network simplex algorithm, is

introduced.

1.2.1 Single-objective Network Flow Problems and the

Network Simplex Algorithm

First, we introduce the single-objective network flow problem. We define a

directed network by N = (G, c, l, u), where the graph G = (V ,A) consists of a

set of vertices or nodes V = {1, 2, . . . , n} and a set of m arcs A j V × V . For

a ∈ A, denote by t(a) the tail node of arc a and by h(a) its head node. The

vectors c, l, u ∈ Rm represent cost, lower bounds, and upper bounds and are

explained below. The single-objective network flow problem has the form

min
∑
a∈A

caxa

s.t.
∑

{a∈A:t(a)=i}
xa −

∑
{a∈A:h(a)=i}

xa = bi for all i ∈ V

ua = xa = la for all a ∈ A.

(1.2)

In this model, the variable x ∈ Rm represents flow in the network. The flow on

arc a is xa and its cost per unit of flow ca. The first set of constraints ensures

flow conservation at the different nodes, and we assume that
∑

i∈V bi = 0 since

otherwise the problem is infeasible. A balance of bi > 0 represents surplus
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Figure 1.1. Network of Example 1.2.1.

and a balance of bi < 0 represents demand of a commodity at node i, whereas

bi = 0 indicates that i is a trans-shipment node that has neither demand nor

supply. The second set of constraints ensures that flow on each arc a is between

its lower bound la and upper bound ua with ua = la = 0.

The objective leads to cost-minimal shipment of the commodity between sup-

ply and demand nodes with minimal cost, hence the problem is referred to as

minimum cost network flow (MCF) problem. In case of positive lower bound

capacities, the network can be transformed into a network with zero lower

bound capacities as explained in Ahuja et al. (1993). Therefore, we assume

l = 0 in the following.

Example 1.2.1 Figure 1.1 shows the network of an MCF problem consisting

of 6 nodes and 9 arcs. All arcs have lower bound 0 and upper bound 2. Node

1 has balance 3 and node 6 has balance −3, all other nodes have balance 0.

This means that 3 units of a commodity are shipped through the network. The

numbers next to an arc represent the flow on the arc (zero flow if there is

no number). The indicated flow solution is a feasible solution. Arc costs are

omitted at the moment.

A n × m-dimensional node-arc incidence matrix AG of graph G = (V ,A) in

the MCF problem is constructed by

AGia =


+1 if t(a) = i,

−1 if h(a) = i,

0 otherwise,
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for 1 5 i 5 n and 1 5 a 5 m with n = |V|,m = |A|. The matrix AG is

an equivalent representation of the graph G above. With the vectors c> =

(c1, c2, . . . , cm), l> = (l1, l2, . . . , lm) = (0, 0, . . . , 0), u> = (u1, u2, . . . , um), and

b> = (b1, b2, . . . , bn) the above MCF problem can be re-written as

min c>x

s.t. AGx = b

u = x = 0.

(1.3)

This linear programme associated with the MCF problem (1.2) can be solved

using the standard simplex algorithm with upper and lower bound constraints

on the variable x. However, there exists a version of the simplex algorithm,

called network simplex algorithm, which is dedicated to solving network flow

problems. Special data structures allow a very efficient implementation of

the network simplex algorithm. Helgason and Kennington (1995) develop a

detailed derivation of the network simplex algorithm and how it relates to the

standard simplex algorithm. We outline a derivation of this network simplex

algorithm with upper and lower bound constraints in the following.

Network Simplex Algorithm

From now on, it is assumed that the graph G is connected, i.e. every pair of

nodes i, j is connected by an un-directed path. A subset of columns of AG

is linearly dependent whenever the arcs represented by the columns contain

an un-directed cycle. As the network is connected, a maximal set of linearly

independent columns represents a set of arcs A∗ j A such that the undirected

graph (V ,A∗) is a spanning tree. A spanning tree is an un-directed subset

of arcs so that there is exactly one path between every pair of nodes. In

particular, a spanning tree does not contain a cycle. A spanning tree has n−1

arcs. Therefore, the matrix AG in (1.3) has rank n− 1. We add an additional

arc to AG represented by a column vector with only one non-zero entry in row

r. This makes node r a root node of G, which has an in-going arc that does

not have a tail node. The obtained matrix AG now has full rank n.

An n× n sub-matrix of AG, AGT , is called basis matrix if AGT is invertible. The

set of column indices T that identify the columns of AGT in AG is called basis.
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The set of indices of all non-basic columns of AG is T = {1, 2, . . . ,m}\T . AG,

c, and x can be split into basic and non-basic components

AG = (AGT , A
G
T ), c =

 cT

cT

 , and x =

 xT

xT

 .

AGx = b can be re-written as

(AGT , A
G
T )

 xT

xT

 = b ⇐⇒ xT = (AGT )
−1 (

b− AGT xT
)
. (1.4)

We distinguish those non-basic variables with flow at lower bound and at

upper bound, indexed by T l and T u, respectively, and T = T l∪T u. The non-

basic variables have value xT l = 0 and xT u = uT u , where uT u is obtained by

splitting the vector u into basic and non-basic components u = (u>T , u
>
T l
, u>T u).

The matrix AG and x are split up accordingly. Then, any basic solution x is

given by

x =


xT

xT l

xT u

 with xT = (AGT )
−1

b− AGT lxT l︸ ︷︷ ︸
=0

−AGT uxT u︸ ︷︷ ︸
=uT u

 .

If 0 5 x 5 u also holds, x is called basic feasible solution (BFS). Now the cost

c>x can be rewritten as

(
c>T , c

>
T l
, c>T u

)
xT

xT l

xT u


= c>T (AGT )

−1
b

+
(
c>T l − c

>
T (AGT )

−1
AGT l

)
︸ ︷︷ ︸

cl

xT l +
(
c>T U − c

>
T (AGT )

−1
AGT u

)
︸ ︷︷ ︸

cu

xT u ,

where the vector c = (c>l , c
>
u ) is called reduced cost vector. One way to reduce

the cost c>x is increasing one of the non-basic variables with flow at its lower

bound, i.e. xs with s ∈ T l, that has negative reduced cost cs < 0. Similarly,

c>x decreases as the flow of a non-basic variable with flow at its upper bound
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with positive reduced cost decreases. Therefore, a variable with index s ∈{
i ∈ T l : ci < 0

} ∪ {i ∈ T u : ci > 0
}

is chosen to enter the basis T .

In exchange for the new variable with index s, another variable needs to leave

the basis. If s ∈ T l, assume that the value of xs increases to σ 5 us. In

(1.4), rewrite Ã = (AGT )
−1
AGT . It follows that the basic variable xi with i ∈ T

changes to xi − σÃis. To ensure feasibility of the basic variable xi − σÃis, one

has to ensure that

0 5 xi − σÃis 5 ui ⇔ σ 5

 xi
Ãis

if Ãis > 0

ui−xi
−Ãis

if Ãis < 0
(1.5)

Therefore, whenever s ∈ T l, the variable xs increases to a value of σ 5 us for

which (1.5) is satisfied for all i ∈ T . The largest possible value is

σ = min

{
us,min

{
xi

Ãis
: i ∈ T , Ãis > 0

}
,min

{
ui − xi
−Ãis

: i ∈ T , Ãis < 0

}}
.

A basis leaving variable t ∈ T is then chosen from the set of indices for which

the minimal σ is attained. In a similar fashion it can be determined what

the maximal decrease in variable xs is, if xs is a variable at its upper limit,

i.e. s ∈ T u. Here, a decrease of variable xs by 0 5 σ 5 us yields the new value

of the ith basic variable xi +σÃis, i ∈ T . To ensure feasibility of the new basic

variable xi + σÃis, one has to ensure that

0 5 xi + σÃis 5 ui ⇔ σ 5

 − xi
Ãis

if Ãis < 0

ui−xi
Ãis

if Ãis > 0

Therefore, σ is chosen as

σ = min

{
us,min

{
− xi

Ãis
: i ∈ T , Ãis < 0

}
,min

{
ui − xi
Ãis

: i ∈ T , Ãis > 0

}}
.

Again, a variable t ∈ T that leaves the basis is chosen from the set of indices

for which the minimal σ is attained.

One iteration of the simplex algorithm is complete once the entering variable

xs replaces the leaving variable xt in the basis, which is called a pivot. The

basis is now (T \ {t})∪{s}. The BFS xT is updated by adjusting it by σ, the
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amount of change in xs.

Up to this point, this discussion is a derivation of the simplex algorithm with

upper and lower bounds. Next, the special features of the network simplex

algorithm are introduced.

For the network simplex algorithm any BFS can be interpreted as a spanning

tree as the matrix AGT has full rank and thus represents a spanning tree rooted

at node r (the column corresponding to the root node is always part of AGT ).

As the basis represents a tree we also refer to it as basic tree. Introducing

a new variable xs into the basis means that an additional arc s is added to

this spanning tree. This additional arc is part of an undirected cycle C in the

tree. The flow conservation constraints imply that increasing the flow on arc

s entails increasing flow on each arc of cycle C with the same orientation as

s, and decreasing flow on each arc of C with the opposite orientation. On the

other hand, decreasing the flow on arc s means decreasing the flow on each arc

of C with same orientation as s and increasing it on those arcs with opposite

orientation. In this manner, the flow around the cycle changes by σ, which

is determined as biggest possible flow change respecting the lower and upper

bounds on flow for each arc. Thus, σ increases until the flow on at least one

arc reaches its lower or upper limit. Any of those arcs in the cycle that reach

their upper or lower limit after changing the flow on the cycle by σ can be

selected as leaving arc. We later explain how the leaving arc is selected to

prevent the algorithm from cycling.

Example 1.2.1 continued: The process of adding a non-basic arc to the

network, updating the flow along the arising cycle and removing a basic arc

from it, is illustrated for Example 1.2.1. The network from Example 1.2.1 is

repeated in Figure 1.2. One BFS of the solution in Figure 1.2 is represented

by the tree T in Figure 1.3. Node 3 was chosen as root node. In this figure, all

basic arcs have flow 1. The green dashed non-basic arcs have flow equal to their

upper bounds, namely 2, and the green dotted non-basic arcs have flow equal

to their lower bound 0. Introducing the non-basic arc s = 4 → 6 with flow 2

into the basic tree yields the cycle highlighted in Figure 1.4. When introducing

s into the tree and decreasing the flow on s by σ = 1, arcs 5 → 6 and 3 → 5

reach their upper bound 2, and arc 3 → 4 reaches its lower bound 0. Any of

the three arcs are candidates for leaving the basis. Selecting arc 5→ 6 to leave
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2

1 4 6

3 5

1 1
2

12 1
1

Figure 1.2. One feasible solution for
the network from Example 1.2.1.

3

4 5

2 6

1

Figure 1.3. Corresponding basic tree
structure T representing a BFS. Non-
basic arcs at upper bound are dashed,
those at lower bound are dotted.

the basis, we obtain the new BFS displayed in Figure 1.6. The network with

new flow values is shown in Figure 1.5

Compared with the simplex algorithm, one advantage of the network simplex

algorithm is that only arcs in the cycle need to be considered when identifying

the basis leaving variable (or arc), rather than all variables (arcs) in the basis.

The same applies when the BFS is updated, the flow changes only on arcs

along cycle C. The network simplex algorithm is summarised in Algorithm 1

assuming the MCF problem is bounded. If it is not known whether a MCF

problem is bounded, it is sufficient to check whether σ <∞ in Step 8 or 12.

An initial solution as required by Algorithm 1, if it exists, can be obtained as

a solution of an auxiliary problem such as a Two-Phase approach (not to be

confused with the Two Phase Method to solve multi-objective integer problems

also discussed in this chapter) or a Big-M approach (e.g. Bazaraa et al. 2005).

Similar to the simplex algorithm, the network simplex algorithm may cycle,

i.e. move back and forth infinitely between BFSs with the same objective value.

When this happens, we talk about degeneracy in the network. In case of

the network simplex, strongly feasible trees (Cunningham 1976) are a tool to

prevent cycling. A basic tree is called strongly feasible if it is possible to send

one unit of flow from every node in the tree to the root node. If every arc with



18 1.2 Multi-objective Linear Programmes
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4 5

2 6

1

Figure 1.4. Basic tree structure T
with non-basic arc s = 4 → 6 and
C = 6← 5← 3→ 4→ 6.

2

1 4 6

3 5

1 1
1

22
2

Figure 1.5. Feasible solution for net-
work from Example 1.2.1 after per-
forming a simplex pivot with s = 4→
6.

3

4 5

2 6

1

Figure 1.6. Basic tree structure T
after simplex pivot with entering arc
4→ 6 and leaving arc 5→ 6.
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Algorithm 1 Single-objective Network Simplex Algorithm

1: input: Initial BFS xT and basic tree T .
2: Compute reduced cost c.
3: while {i ∈ T l : ci < 0} ∪ {i ∈ T u : ci > 0} 6= ∅ do
4: Choose s ∈ {i ∈ T l : ci < 0} ∪ {i ∈ T u : ci > 0}.
5: Find C, the basic arcs in the cycle obtained by adding arc s to tree T .
6: if s ∈ Tl then

7: σ1 = min
{

xi
Ãis

: i ∈ C, Ãis > 0
}
, σ2 = min

{
ui−xi
−Ãis

: i ∈ C, Ãis < 0
}

8: σ = min {us, σ1, σ2}
9: L =

{
i ∈ C : Ãis > 0, σ = xi

Ãis

}
∪
{
i ∈ C : Ãis < 0, σ = ui−xi

−Ãis

}
10: else
11: σ1 = min

{
− xi
Ãis

: i ∈ C, Ãis < 0
}
, σ2 = min

{
ui−xi
Ãis

: i ∈ C, Ãis > 0
}

12: σ = min {us, σ1, σ2}
13: L =

{
i ∈ C : Ãis < 0, σ = − xi

Ãis

}
∪
{
i ∈ C : Ãis > 0, σ = ui−xi

Ãis

}
14: end if
15: if s ∈ Tl then
16: xs = σ; increase flow xi on arc i ∈ C by σ if i has the same orientation

along the cycle as s, otherwise decrease flow on i by σ.
17: else
18: xs = us − σ; decrease flow xi on arc i ∈ C by σ if i has the same

orientation along the cycle as s, otherwise increase flow on i by σ.
19: end if
20: if σ 6= us then
21: Insert s into basic tree T .
22: Choose t ∈ L; remove t from basic tree T .
23: end if
24: end while
25: output: Optimal BFS xT .

flow at its lower bound points towards the root, and every arc with flow at its

upper bound points away from the root, the tree is strongly feasible. Trees

remain strongly feasible if the basis leaving arc is chosen as the last eligible

arc in the cycle starting from the node of the cycle that is closest to the root

and traversing the cycle in direction of increasing flow.

An excellent implementation of the network simplex algorithm by Löbel (2004)

is called MCF. This implementation constructs an initial feasible solution fol-

lowing the Big-M approach and also takes advantage of strongly feasible trees

to prevent cycling. Whenever the network simplex algorithm is used in com-

putational experiments in this thesis, it is derived from the MCF code for the
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primal network simplex and adapted to the particular problem.

1.2.2 Parametric Network Simplex Algorithm for Con-

tinuous Bi-objective MCF Problems

Multi-objective continuous linear programmes can be solved using the simplex

algorithm in an approach also known as parametric network simplex algorithm.

The parametric simplex for continuous linear multi-objective programmes is

discussed in Ehrgott (2005). Next, we will introduce the parametric network

simplex algorithm for bi-objective MCF problems.

Using the symbols from the single-objective MCF Model (1.3), the linear pro-

gramming formulation of MCF is extended to a bi-objective continuous mini-

mum cost flow (BCMCF) problem

min z(x) =

 (c1)>x

(c2)>x


s.t. AGx = b

u = x = 0,

(1.6)

where c1, c2 ∈ Rm now represent two different cost components.

A single-objective problem is derived from BCMCF by replacing the objectives

by λ1(c1)>x + λ2(c2)>x. Solving this weighted sum problem for λ1, λ2 > 0

yields an efficient solution of the bi-objective problem. In fact, all efficient

solutions can be obtained by varying λ1, λ2 ∈ R>. With the aim of describing

a complete set of efficient solutions, it is sufficient to just obtain all extreme

points so that the corresponding objective vectors (non-dominated points) are

extreme points of the set of feasible objective vectors Z = {z(x) ∈ R2 : x ∈
Rm, AGx = b, u = x = 0}. A complete set of efficient solutions is then derived

by convex combinations of all extreme points that define non-dominated faces

of the polyhedron Z.

In order to obtain those extreme efficient solutions, the parametric network

simplex algorithm can be used. Such a network simplex algorithm is proposed

by Sedeño-Noda and González-Mart́ın (2000) and corrected in Sedeño-Noda

et al. (2005).
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The algorithm starts from the initial (efficient) solution x0 = xlex(1,2). As there

are two cost components (c1
a, c

2
a) associated with each arc a, in the network sim-

plex algorithm the reduced cost of each arc also consists of two components

(c1
a, c

2
a). An arc to enter the basis is selected with the smallest ratio of deteri-

oration of c1 and improvement of c2. Moving from solution xlex(1,2) to xlex(2,1)

in this manner ensures that all extreme efficient solutions are passed on the

way. In iteration j of the network simplex algorithm, candidate entering arcs

(contained in the set Sj) are selected with minimal ratio of their reduced costs

derived from the current supported efficient solution xj as indicated in Proce-

dure 1. Again, we refer to T l and T u as the set of non-basic arcs at lower and

upper bound with respect to the current BFS.

Procedure 1 compute entering arcs[c, xj]

1: input: Reduced costs c = (c1, c2) derived from current efficient solution
xj.

2: µj = min
{ c2a
c1a

: a ∈ T l with c2
a < 0 and c1

a > 0,
c2a
c1a

: a ∈ T u with c2
a > 0 and c1

a < 0
}

3: Let Sj j T l ∪ T u be the set of non-basic arcs for which µj is attained.
4: output: Minimal ratio µj and set of non-basic candidate basic-entering

arcs Sj.

One of the candidate arcs s ∈ Sj is removed from Sj and enters the basis. By

performing a simplex-pivot with entering arc s, the reduced costs may change.

The reduced costs of all arcs remaining in Sj are updated according to the

BFS obtained by pivoting s into xj. As long as there are arcs remaining in Sj
with

c2
a < 0, c1

a > 0 and a ∈ T l or c2
a > 0, c1

a < 0 and a ∈ T u, (1.7)

the process repeats as in Procedure 2. We show in the proof of Theorem 1.2.1

why those arcs in Sj satisfying (1.7) remain candidate entering arcs.

The next BFS xj+1 might define an extreme point z(xj+1) ∈ Z. We denote the

last extreme efficient solution that was found by xk. If for the new minimal

ratio µj+1 we have µj+1 6= µk, then xj+1 corresponds to an extreme efficient

solution. If, on the other hand, µj+1 = µk, then xj+1 is not extreme, i.e. z(xj+1)

corresponds to a supported non-extreme non-dominated point.

The parametric network simplex approach is summarised in Algorithm 2. The

algorithm finishes when no candidate arcs to enter the basis can be found,
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Procedure 2 compute next BFS[Sj, c, xj]
1: input: Set of candidate basic-entering arcs Sj and reduced costs c =

(c1
a, c

2
a) derived from current efficient solution xj.

2: while Sj 6= ∅ do
3: Let s be the first arc in Sj, set Sj = Sj \ {s}.
4: if c2

s < 0, c1
s > 0 and s ∈ T l OR c2

s > 0, c1
s < 0 and s ∈ T u then

5: Perform simplex-pivot with entering arc s.
6: Update c.
7: end if
8: end while
9: output: Next BFS xj+1.

i.e. when Sj = ∅ in Step 7 of Algorithm 2. This indicates that the lex(2, 1)-

best solution is obtained.

Algorithm 2 Parametric Network Simplex Algorithm

1: input: Network (G, c, l, u) with c = (c1, c2).
2: Compute x1 = xlex(1,2).
3: Eex = {x1}
4: Compute reduced costs c for x1.
5: (µ1,S1) = compute entering arcs[c, x1]
6: j = 1, k = 1
7: while Sj 6= ∅ do
8: xj+1 = compute next BFS[Sj, c, xj]
9: Update c for xj+1

10: (µj+1,Sj+1) = compute entering arcs[c, xj+1]
11: if µj+1 6= µk then
12: µk+1 = µj+1 and xk+1 = xj+1

13: Eex = Eex ∪ {xk+1}
14: k = k + 1
15: end if
16: j = j + 1
17: end while
18: output: Complete set of extreme efficient solutions Eex =
{x1, x2, . . . , xl−1, xl}.

The algorithm was originally proposed by Sedeño-Noda and González-Mart́ın

(2000). The authors do not include a check whether an efficient solution is

extreme in their algorithm, but claim that every solution with xj+1 6= xj

obtained by one execution of Procedure 2 is an extreme efficient solution. It

can be easily seen that this is not true. A BFS with xj+1 6= xj is not necessarily

an extreme efficient solution, i.e. z(xj+1) is not necessarily an extreme point in
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Z. The BFS xj+1 might represent a supported non-extreme efficient solution

with z(xj+1) on the facet between two extreme points in Z. It is therefore

incorrect that the computation of one set Sj per extreme efficient solution xj

is sufficient. In Sedeño-Noda et al. (2005) the algorithm is corrected as follows:

the computation of a new BFS (Procedure 2) is modified by updating Sj when

updating the reduced costs c as long as the ratio µj does not change. For

completeness, we include a proof of the correctness of Algorithm 2.

Theorem 1.2.1 The set Eex generated by Algorithm 2 is a complete set of

extreme efficient solutions of BCMCF.

Proof Correctness of the parametric (network) simplex: By definition, XSE
is the set of optimal solutions to (1.1) for λ1, λ2 > 0. Dividing (1.1) by λ1, we

obtain that (1.1) is equivalent to

min{(c1 + θc2)x : x ∈ X} and θ > 0, (1.8)

where X is the set of feasible solutions that satisfy the constraints of the

BCMCF Model (1.6). Therefore, it is sufficient to find one optimal solution

of (1.8) for each θ > 0. This is a parametric linear programme which can be

solved by the parametric simplex algorithm (Dantzig and Thapa 1997).

As an initial solution, we use xlex(1,2), an extreme efficient solution. Clearly,

xlex(1,2) is efficient and an optimal solution to (1.1) with λ1 = 1 and λ2 = ε for

sufficiently small ε > 0 (Isermann 1974), i.e. it is a supported efficient solution.

Thus, there exists θ > 0 such that xlex(1,2) is an optimal solution to (1.8).

The entering variables in the parametric network simplex algorithm are chosen

from Sj. At termination, the algorithm yields, for each θ > 0 one optimal

solution (a BFS) to (1.8), the parametric linear programme.

We obtain a set of candidate arcs Sj and introduce the arcs contained in Sj
into the basis one after the other (if they are still eligible to enter the basis).

Therefore, the correctness of the algorithm critically depends on the fact that

after pivoting s ∈ Sj into the BFS xj, the remaining arcs a ∈ Sj \ {s} that

are still eligible, i.e. satisfy c2
a < 0, c1

a > 0 for a ∈ T l ∩ Sj or c2
a > 0, c1

a < 0 for

a ∈ T u ∩Sj (according to updated reduced costs), still have the minimal ratio
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µj. Note that when pivoting an arc s with minimal ratio into the BFS of xj, the

new minimal ratio of all eligible arcs is equal to or greater than the previous

one, i.e. µj 5 µj+1. Again, this follows from Dantzig and Thapa (1997) as

the optimal value of the parametric linear programme (1.8) is a continuous

piecewise linear concave function, f(θ) = min{(c1 + θc2)x : x ∈ X}, of the

parameter θ (in our case with slopes given by the different values of µ).

We need to show that a ∈ Sj \ {s} either remains eligible with minimal ratio

after the pivot, or is not eligible to enter the basis any more. Reduced costs

for arc a are computed as cka = cka − πkt(a) + πkh(a), k = 1, 2, where πki is the

dual variable at node i for objective k. The duals are only updated for nodes

in one of the two sub-trees obtained by removing arc s from the basic tree.

The value of the dual at all nodes that are updated, changes by the same

amount, namely the reduced cost of the basis entering arc. If none or both

of the dual variables πt(a) and πh(a) change, the reduced costs computed by

cka = cka − πkt(a) + πkh(a), k = 1, 2 do not change (as both πt(a) and πh(a) change

by the same amount), and therefore the ratio remains the same.

If only one of the dual variables πt(a) changes to
(
π1
t(a) +c1

s, π
2
t(a) +c2

s

)
, updating

reduced costs yields

(cka)
new = cka −

(
πkt(a) + (cks)

old
)

+ πkh(a) = (cka)
old − (cks)

old for k = 1, 2.

For both s, a ∈ Sj, with respect to the “old” reduced costs, we have:

µj =
(c2
s)
old

(c1
s)
old

=
(c2
a)
old

(c1
a)
old
⇒ (c2

a)
old = µj(c

1
a)
old and (c2

s)
old = µj(c

1
s)
old.

We assume that the updated reduced costs of a still satisfy c2
a < 0, c1

a > 0 for

a ∈ T l ∩ Sj or c2
a > 0, c1

a < 0 for a ∈ T u ∩ Sj. It follows for the new ratio of c2
a

and c1
a:

(c2
a)
new

(c1
a)
new

=
(c2
a)
old − (c2

s)
old

(c1
a)
old − (c1

s)
old

=
µj
(
(c1
a)
old − (c1

s)
old
)

(c1
a)
old − (c1

s)
old

= µj.

A complete set of extreme efficient solutions Eex is obtained by Algorithm 2:

For every non-dominated extreme point y ∈ ZN there exists x ∈ X with

z(x) = y and x is an optimal solution to (1.1) for some λ1, λ2 > 0. Hence, x is

an optimal solution to (1.8) with θ = λ2

λ1
. Hence, the algorithm does find x or
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a BFS x′ ∈ X with z(x) = z(x′) = y.

�

A complete set of efficient solutions of the continuous bi-objective MCF prob-

lem is obtained as convex combinations of all pairs of consecutive extreme

efficient solutions xi, xi+1, i = 0, . . . , l − 1.

Remark 1.2.1 For single-objective (network) simplex algorithms, different

speed-up techniques for the selection of basic entering variables (arcs) are

known such as partial pricing. In partial pricing only a subset of all non-

basic arcs is scanned and the basic entering arc is selected from this subset.

This may have the advantage of a much faster pricing step to select the enter-

ing variable but at the cost of possibly necessitating more simplex iterations.

Often, the advantage of a fast selection of the entering arcs outweighs the

disadvantages.

It should be noted that within the parametric network simplex, all non-basic

arcs have to be considered when choosing a basic entering arc, as an arc with

minimal ratio of reduced costs has to be chosen. Thus speed-up techniques

such as partial pricing cannot be used with the parametric simplex algorithm

as all non-basic arcs need to be considered in every iteration.

1.3 Solving Bi-objective Integer Optimisation

Problems

The two problems we study in Chapters 2 and 3 are both bi-objective in-

teger network flow problems. Such bi-objective integer problems may have

non-supported solutions. Non-supported solutions cannot be obtained by an

algorithm that identifies solutions to the weighted sum problem (1.1), such

as the parametric network simplex algorithm for continuous linear problems

discussed in the previous section.

There is no alternative characterisation that helps identify such non-supported

solutions. In this section two general strategies to find a complete set of efficient

solutions of bi-objective integer problems with non-supported solutions are
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discussed.

Some solution algorithms are problem-specific, in that they are dedicated to

a particular problem type such as bi-objective labelling algorithms for bi-

objective shortest path problems. Such problem specific algorithms will be

explained in the corresponding chapters, whereas general solution schemes

that are applicable to a wide range of bi- or multi-objective integer problems

and relevant within the scope of this thesis are introduced in the following.

One strategy for solving bi- or multi-objective integer problems is ranking,

and another one is given by the Two Phase Method.

We now consider a bi-objective integer optimisation (MOIO) problem

min z(x) =

 z1(x)

z2(x)


s.t. x ∈ X ,

(1.9)

with feasible set X j Zn.

1.3.1 Ranking

Among the first to present a ranking approach to solve a MOCO problem,

namely the bi-objective shortest path problem, were Martins and Cĺımaco

(1981); Cĺımaco and Martins (1982). The approach is easily explained for

the bi-objective case. We will introduce bi-objective ranking and comment on

multi-objective ranking at the end of this section.

Single-objective ranking or so-called k-best algorithms generate solutions for a

minimisation problem ordered by non-decreasing objective values. The algo-

rithm is initiated with an optimal solution x0 with objective value f(x0). The

ranking algorithm then generates solutions with non-decreasing values of the

objective f :

x0, x1, x2, . . . with f(x0) 5 f(x1) 5 f(x2) 5 . . . .

This process typically continues until the kth solution is reached, hence the

name k-best algorithm.
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Figure 1.7. Illustration of rank-
ing non-dominated solutions with
lex(1, 2) objective: the ranking algo-
rithm finds solutions with objective
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Figure 1.8. Illustration of rank-
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ing algorithm finds solutions with ob-
jective values ordered as numbered.
Among them, the non-dominated
points are highlighted.

In order to apply such a ranking algorithm to solve a MOIO problem, a few

adaptations need to be made, but the general ranking scheme remains. Firstly,

the MOIO problem is reduced to a single-objective problem. Two possibili-

ties are either using a lexicographic objective (Definition 1.1.3) or a weighted

sum (1.1) of the two objectives. Secondly, one needs to ensure that ranking

only stops when it can be guaranteed that all efficient solutions of the MOIO

problem have been found. It is not clear a priori what value of k needs to be

chosen to ensure all efficient solutions are generated.

Cĺımaco and Martins (1982) choose a lexicographic objective, e.g. lex(1, 2),

which gives a first (and optimal) solution x0 = xlex(1,2). Solutions are then

ranked (with respect to the lexicographic objective lex(1, 2)) until a solution

with objective value equal to that of the other lexicographically optimal solu-

tion xlex(2,1) is obtained. Figure 1.7 shows how points z(xi) are found by the

ranking algorithm. The numbers i = 0, . . . , 9 next to the points indicate the

order in which the points are obtained. In the depicted example ranking stops

after point z(x9) = z(xlex(2,1)) is reached. During or after the ranking process,

efficient solutions can be selected among all solutions found.

On the other hand, solutions could also be ranked according to a weighted sum

objective. Weighting factors can be derived from the lex(1, 2)- and lex(2, 1)-
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best solutions, xlex(1,2) and xlex(2,1), by

λ1 = z2(xlex(1,2))− z2(xlex(2,1)) and λ2 = z1(xlex(2,1))− z1(xlex(1,2)). (1.10)

Now the ranking algorithm is applied to the problem with weighted sum objec-

tive cλ(x) = λ1z1(x) + λ2z2(x). The illustration of the ranking process yields

the same points, but obtained in a different order, see Figure 1.8.

Upper bounds derived from xlex(1,2) and xlex(2,1) can be used to eliminate solu-

tions x̂ that cannot be efficient. Every solution x̂ must satisfy

z1(x̂) 5 z1(xlex(2,1)) and z2(x̂) 5 z2(xlex(1,2)), (1.11)

otherwise it can be deleted. The point zN = (z1(xlex(2,1)), z2(xlex(1,2))) is called

the nadir point of the BSP problem, the situation is illustrated in Figure 1.9.

The bounds (1.11) can be further improved by the fact that we are dealing

with integer problems. The objective vector of efficient solutions, which are

not equivalent to solutions obtained previously, can only be situated one unit

below and one unit to the left of the nadir point zN as indicated in Figure

1.10. Assuming all objective values are integer, we get the following improved

bounds:

z1(x̂) 5 z1(xlex(2,1))− 1 and z2(x̂) 5 z2(xlex(1,2))− 1. (1.12)
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Figure 1.11. Initial weighted sum bound.

An upper bound δ of the weighted sum value of any efficient solution of the

problem is the weighted sum value of
(
z1(xlex(2,1))− 1, z2(xlex(1,2))− 1

)
. It is

calculated as δ = λ1

(
z1(xlex(2,1))− 1

)
+ λ2

(
z2(xlex(1,2))− 1

)
. The resulting

bound is:

λ1z1(x̂) + λ2z2(x̂) 5 δ. (1.13)

This weighted sum bound is indicated as the dotted line parallel to the straight

line connecting z(xlex(1,2)) and z(xlex(2,1)) in Figure 1.11. Now the ranking

algorithm can be stopped as soon as the first solution with weighted sum

value exceeding δ is found.

Whenever the ranking algorithm returns a new solution that is not dominated

by any of the solutions obtained prior to it, this solution is efficient. It can only

be guaranteed that all efficient solutions have been found once the algorithm

terminates. It is, however, possible to exploit the efficient solutions already

found in order to improve the upper bound δ. We take advantage of the

fact that every computed non-dominated point excludes a certain area of the

objective space by domination.

Firstly, the local nadir point of two points zk = (zk1 , z
k
2 ) and zl = (zl1, z

l
2)

with zk1 < zl1 and zk2 > zl2 is defined to be zLN = (zl1, z
k
2 ). We consider

straight lines parallel to the line connecting the points z(xlex(1,2)) and z(xlex(2,1))

through the local nadir point of any two consecutive currently available non-

dominated points and z(xlex(1,2)) and z(xlex(2,1)) as indicated in Figure 1.12.

The upper bound corresponds to the line through the point that has maximal
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distance from the straight line connecting z(xlex(1,2)) and z(xlex(2,1)). Let zj =

(z1(xj), z2(xj)) with j ∈ {0, . . . , r} be the currently available non-dominated

points ordered by increasing z1, we also include the points z(xlex(1,2)) and

z(xlex(2,1)) separately. This yields the upper bound ∆′:

γ′1 = max{λ1z1(x0) + λ2z2(xlex(1,2)), λ1z1(xlex(2,1)) + λ2z2(xr)},
γ′2 = max{λ1z1(xj+1) + λ2z2(xj); j = 0, . . . , r − 1},
∆′ = max{γ′1, γ′2}.

Again, the upper bound can be improved by considering the point one unit

below and one unit to the left of the local nadir point between each pair of

consecutive points. Additionally, to ensure that all non-dominated solutions

are found, we also have to include the currently available non-dominated points

themselves as illustrated in Figure 1.13. This gives component γ3 below. The

improved upper bound ∆ is:

γ1 = max{λ1(z1(x0)− 1) + λ2(z2(xlex(1,2))− 1),

λ1(z1(xlex(2,1))− 1) + λ2(z2(xr)− 1)},
γ2 = max{λ1(z1(xj+1)− 1) + λ2(z2(xj)− 1), j = 0, . . . , r − 1},
γ3 = max{λ1z1(xj) + λ2z2(xj), j = 0, . . . , r},
∆ = max{γ1, γ2, γ3}. (1.14)
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Algorithm 3 Solving Bi-objective Integer Problems by Ranking with cλ

1: input: Solutions xlex(1,2) and xlex(2,1).
2: E = {} /∗ Initialise set of candidate solutions ∗/
3: l = 1 /∗ Initialise counter for non-dominated solutions ∗/
4: Compute λ1, λ2 and cλ = λ1c

1 + λ2c
2. /∗ See (1.10) for λ1, λ2 ∗/

5: ∆ = δ /∗ Initial value for ∆; see (1.13) for δ ∗/
6: k = 0 /∗ Initialise counter for k-best algorithm ∗/
7: Compute optimal solution x0 of problem minx∈X c

λ.
8: while cλ(xk) 5 ∆ do
9: if c(xk) in feasible region (1.12) and not dominated by the objective

vector of any element of E and xk not equivalent to any x ∈ E then
10: Insert xk into E .
11: Update ∆. /∗ See (1.15) for ∆ ∗/
12: end if
13: k = k + 1
14: Compute kth-best solution xk ∈ X with cλ(xk−1) 5 cλ(xk).
15: end while
16: output: Complete set E of efficient solutions.

Note that in order to obtain a complete set of efficient solutions, it is sufficient

to choose

∆ = max{γ1, γ2}. (1.15)

We refer to Przybylski et al. (2008) for a more detailed presentation of the

upper bounds (1.12) and (1.14).

Combining the ideas above yields a general solution method for bi-objective

integer problems based on ranking with weighted sum objective cλ, see Algo-

rithm 3. In order to compute all efficient solutions, the upper bound ∆ should

be calculated as in (1.14) and all efficient solutions should be saved in the set

E in Step 9 of Algorithm 3, rather than only those that are not equivalent to

any other efficient solution.

Theorem 1.3.1 The set E generated by Algorithm 3 is a complete set of effi-

cient solutions of the bi-objective integer problem (1.9).

Proof All solutions contained in E obtained by Algorithm 3 are efficient :

whenever a solution xk is first inserted into E , its objective vector lies within the

region described by constraints (1.12) and is not dominated by the objective
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vector of any x ∈ E , and xk is not equivalent to any x ∈ E . Suppose there exists

x ∈ X dominating xk, which implies z(x) ≤ z(xk) and therefore cλ(x) < cλ(xk).

Thus x would have been found before xk by the ranking procedure.

When Algorithm 3 stops ranking solutions (i.e. when the upper bound ∆ is

exceeded), the set E contains a complete set of efficient solutions : the ranking

procedure enumerates all solutions x with cλ(x) 5 ∆. Among all enumerated

solutions, a complete set of efficient solutions E is identified.

Assume that, after the ranking procedure stops, there exists an efficient so-

lution xe /∈ E that is not equivalent to some x ∈ E . Ranking stops as soon

as cλ(xk) > ∆. As the solution xe /∈ E was not obtained during the ranking

process before it was stopped (otherwise xe or an equivalent solution would be

in E), it follows that cλ(xe) = cλ(xk) > ∆.

We always have |Ei| = 2, as at least solutions xlex(1,2) and xlex(2,1), or so-

lutions equivalent to them, exist. Assume the set E = {x1, x2, . . . , xr} is

sorted by increasing z1-values. Therefore z1(xi) < z1(xe) < z1(xi+1) and

z2(xi) > z2(xe) > z2(xi+1) for some i ∈ {j : j = 0, . . . , r − 1 and z1(xj+1) −
z1(xj) = 2 and z2(xj)−z2(xj+1) = 2}. In particular, z1(xe) 5 z1(xi+1)−1 and

z2(xe) 5 z2(xi)− 1. We can derive the following contradiction:

λ1z1(xe) + λ2z2(xe) 5 λ1(z1(xi+1)− 1) + λ2(z2(xi)− 1) or cλ(xe) 5 ∆.

This contradicts the existence of an efficient solution xe /∈ E within bounds

(1.12) that is not equivalent to some solution in E and that was not obtained

during the ranking procedure. �

The details of a ranking algorithm depend on the problem considered. For

example, a so-called k-best flow ranking algorithm was proposed by Hamacher

(1995) for integer minimum cost flow problems as explained in Chapter 3.

In the same chapter, the ranking algorithm is used to find all solutions of a

bi-objective integer minimum cost flow problem. In Chapter 2 on the other

hand, a so-called near shortest path algorithm (Carlyle and Wood 2005) is

used. It is related to a ranking algorithm, but does not obtain solutions with

increasing objective value. Instead, all solutions within a certain range around

the optimal solution are computed in no particular order.
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Remark 1.3.1 A ranking-based algorithm to solve the multi-objective short-

est path problem was proposed by Azevedo and Martins (1991). Here, shortest

paths are ranked according to a lexicographic objective. Ranking continues un-

til all s-t paths are ranked, and a set of efficient paths can be selected among

them. The bounds discussed in this section cannot be extended to the multi-

objective case as it is impossible to find the Nadir point a priori (without

actually knowing all efficient solutions) when p > 2. For p > 2 one cannot

simply identify the Nadir point by combining the p different lexicographic op-

tima. For example, Korhonen et al. (1997) present a linear programme with

three objectives for which the Nadir point cannot be derived from lexicographic

optima.

1.3.2 Two Phase Method

An alternative to the ranking approach for solving bi-objective integer prob-

lems is the Two Phase Method (Ulungu and Teghem 1995). The two phase

method is taking advantage of the problem structure by computing supported

and non-supported solutions separately. In Phase 1, only supported efficient

solutions are computed as indicated in Figure 1.14 for a bi-objective integer

problem. It may even be sufficient to compute extreme supported efficient

solutions, i.e. efficient solutions which define extreme points of the convex

hull of the set of feasible objective vectors. Supported solutions can for ex-

ample be computed as solutions to weighted sum problems (1.1). For many

bi-objective problems, Phase 1 can be solved by solving several instances of a

single-objective problem derived from the bi-objective problem. This has the

advantage that algorithms for solving those single-objective problems which

are often well-known, efficient, and fast, can be used. In Phase 2 the remain-

ing efficient solutions need to be computed. Here, enumerative methods may

have to be used. It is expected that methods to solve Phase 2 can be ac-

celerated significantly by restricting the search area to relevant regions of the

objective space by exploiting information gained in Phase 1. For a bi-objective

problem, the search space in Phase 2 can be restricted to triangles given by two

consecutive supported non-dominated points as indicated in Figure 1.15. The

advantage of the Two Phase Method is that this restriction of the search space

may lead to a much quicker execution of Phase 2 than a purely enumerative
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approach on the entire feasible set would yield.

Remark 1.3.2 Although, in the literature, the Two Phase Method is mostly

used to solve bi-objective problems, the general principle is not restricted to

problems with two objectives. For multi-objective problems with three or more

criteria, it is not trivial to keep track of the adjacency of supported solutions,

the faces of conv(Z) they define, and corresponding weights. Phase 1 algo-

rithms for the multi-objective problem are discussed in Przybylski et al. (2009).

Similarly, the derivation of correct bounds in Phase 2 is more involved than for

the bi-objective problem. In Przybylski et al. (2007), the Two Phase Method

is detailed for multi-objective problems and it is applied to the assignment

problem with three objectives.

We now outline two different approaches for the calculation of supported so-

lutions in Phase 1, a dichotomic approach for the general bi-objective integer

problem (1.9) and a parametric network simplex based approach for the in-

teger minimum cost flow problem. A similar simplex-based approach can be

formulated for any integer linear bi-objective programme that is not based on

a network structure by using the standard parametric simplex algorithm. The

dichotomic approach, on the other hand, iteratively solves a single-objective

(weighted sum) version of the bi-objective problem. Hence, standard solution

algorithms for the single-objective problem can be used, whenever such algo-

rithms exist. Subsequently, a Phase 2 approach based on ranking is presented.
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Phase 1 – Dichotomic Approach

Phase 1 is dedicated to the computation of supported efficient solutions. This

is achieved by solving several single objective problems in weighted sum for-

mulation (1.1), within a dichotomic approach (first proposed by Cohon 1978;

Aneja and Nair 1979; Dial 1979).

In a dichotomic approach, weights are chosen to obtain a supported non-

dominated point that has the maximal distance to the straight line connecting

the two initial points z(xlex(1,2)) and z(xlex(2,1)) as illustrated in Figure 1.16 for

an example problem. The efficient solution x̂ thus obtained leads to two new

weighted sum problems: one between z(xlex(1,2)) and z(x̂) (yielding no new so-

lution in the example), and one between z(x̂) and z(xlex(2,1)) (yielding one more

solution in the example), see Figure 1.17. If the image of the obtained efficient

solution of such a problem does not lie on the line connecting the images of

the two supported solutions, z(x) and z(x̃), defining it, two new sub-problems

can be formulated. Otherwise, there are no more extreme supported points

between z(x) and z(x̃), so the current sub-problem does not have to be split

up further. The dichotomic method iterates until all weighted sum problems

and arising sub-problems have been solved and a complete set of the extreme

supported efficient solutions is obtained.

The dichotomic method might not allow us to find all supported non-dominated

points on conv(Z) in case there are more than two solutions on the same face of

conv(Z). However, all extreme points will be computed. Missing non-extreme

supported solutions are computed in Phase 2.

Phase 1 – Parametric Approach

An alternative to the dichotomic approach is the parametric approach, which is

based on the (network) simplex method. Hence, this approach is only suitable

to solve bi-objective integer minimum cost network flow (BIMCF) problems .
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Using the symbols from Model (1.6), the BIMCF problem is defined as

min z(x) =

 z1(x)

z2(x)


s.t. AGx = b

u = x = 0

x integer,

(1.16)

with objectives z1(x) = (c1)>x and z2(x) = (c2)>x. We assume that c1, c2 ∈
Rm, b ∈ Zm and u ∈ Nm. The matrix AG is totally unimodular, as every

square sub-matrix of AG has determinant +1,−1, or 0. With the total uni-

modularity of the constraint matrix AG and integrality of b and u it follows

that every extreme efficient solution of BCMCF, the relaxation of BIMCF, is

an integer solution, see e.g. Wolsey (1998). Therefore, any method to obtain

all extreme points of BCMCF can be used to solve Phase 1 of BIMCF. We use

the parametric network simplex approach here.

Note that in general Phase 1 can be solved by an approach based on the

parametric simplex whenever a linear integer problem with totally unimodular

constraint matrix is considered. We explain only the network simplex version

here, as we are only dealing with network flow problems in subsequent chapters.

There exist several simplex-based approaches that obtain extreme efficient so-

lutions of BCMCF, and hence of BIMCF, e.g. Lee and Pulat (1991); Pulat
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et al. (1992); Sedeño-Noda and González-Mart́ın (2000).

Phase 2 – Ranking

In Phase 2, all missing supported solutions as well as all non-supported solu-

tions must be found. We adapt the pure ranking approach from Section 1.3.1

to solve Phase 2 . The advantage is that knowledge about dominated areas of

the objective space can be exploited to obtain bounds that are more effective

in restricting the ranking process. The bounds are derived similar to those

obtained for the pure ranking approach.

Let z1, . . . , zs, where zi = (z1(xi), z2(xi)) and zi are sorted by increasing z1,

be the non-dominated extreme points obtained in Phase 1. Now each pair of

consecutive extreme efficient solutions xi and xi+1 defines a triangle Ti given by

the three points (z1(xi), z2(xi)), (z1(xi+1), z2(xi+1)), and (z1(xi+1), z2(xi)). The

triangles Ti are the highlighted areas in Figure 1.15. For any solution x that lies

within the triangle Ti, z1(xi) 5 z1(x) 5 z1(xi+1) and z2(xi+1) 5 z2(x) 5 z2(xi)

holds. Areas of the objective space that lie outside those triangles cannot

contain non-supported points. We derive different weighting factors similar to

those in (1.10) for each triangle Ti separately, rather than for the whole area

contained between xlex(1,2) and xlex(2,1).

For each pair of neighbouring extreme points zi and zi+1, we define weighting

factors

λi1 = z1(xi+1)− z1(xi) and λi2 = z2(xi)− z2(xi+1).

Using λ1 and λ2 in a weighted sum problem (1.1), we obtain a single-objective

MCF problem which has optimal solutions xi, xi+1 (all convex combinations

of xi and xi+1 are optimal as well, but they are not necessarily all integer

solutions, of course). We denote the weighted sum objective by cλ
i

= λi1z1(x)+

λi2z2(x).

Applying a ranking algorithm to the single objective problem minx∈X c
λi , we

can generate feasible solutions in order of their cost. The ranking algorithm

is used to generate all feasible integer solutions in the current triangle until it

can be guaranteed that all non-dominated points have been found. For this

purpose, lower and upper bounds are derived analogously to Section 1.3.1.
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Solutions are ranked as long as

cλ
i

(x) 5 δi with δi = λi1(z1(xi+1)− 1) + λi2(z2(xi)− 1). (1.17)

Again, the upper bound δi can be improved with every efficient solution found

that lies within the current triangle Ti. Let Ei = {xi,0, xi,1, . . . , xi,r, xi,r+1} be

a set of feasible non-equivalent solutions whose objective vectors are not dom-

inating each other, and with image in the triangle Ti defined by the supported

efficient solutions xi,0 = xi and xi,r+1 = xi+1. Furthermore, let the elements

of Ei be ordered by increasing z1-value, so that z1(xi,0) < z1(xi,1) < . . . <

z1(xi,r) < z1(xi,r+1). This yields the upper bound ∆i such that cλ
i
(x) 5 ∆i for

all efficient solutions x with image in Ti:

γi1 = max{λi1(z1(xi,j+1)− 1) + λi2(z2(xi,j)− 1), j = 0, . . . , r},
γi2 = max{λi1(z1(xi,j)) + λi2(z2(xi,j)), j = 0, . . . , r},
∆i = max{γi1, γi2}. (1.18)

∆i is derived similarly to ∆ in (1.14) with xi and xi+1 instead of xlex(1,2) and

xlex(2,1). If it is sufficient to find a complete set of efficient solutions, ∆i is

chosen as

∆i = γi1. (1.19)

A Phase 2 ranking algorithm basically follows the bi-objective ranking algo-

rithm from Section 1.3.1. This algorithm must be run for every triangle Ti

with different cλ
i

separately. To adapt Algorithm 3, xlex(1,2) and xlex(2,1) are

replaced by xi and xi+1. Then, the algorithm can be used to obtain a com-

plete set of efficient solutions Ei for each of the triangles Ti. Correctness of the

Phase 2 ranking approach, i.e. that
⋃
i=1,...,s−1 Ei is a complete set of efficient

solutions, follows similar to the proof of Theorem 1.3.1.

Apart from ranking algorithms, problem specific algorithms can be applied in

Phase 2. An example is the bi-objective shortest path problem (see Chapter

2) which can be solved with bi-objective labelling algorithms. Bounds can

again reduce computation time significantly when compared to running the

labelling algorithms without the preceding Phase 1. The bounds restricting

solutions to triangles Ti can be incorporated into most Phase 2 algorithms,
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such as the bi-objective labelling algorithms, for example. Depending on the

specific solution algorithm at hand, it may also possible to take advantage of

the weighted sum bounds cλ
i
(x) 5 ∆i.





Chapter 2

Bi-objective Shortest Path

Problems

The single objective shortest path problem is extensively studied in the lit-

erature (e.g. Gallo and Pallotino 1988; Cherkassy et al. 1996). Examples of

applications of shortest path problems with more than one objective include

transportation problems (Pallottino and Scutellà 1998), routing in railway net-

works (Müller-Hannemann and Weihe 2006), and problems in satellite schedul-

ing (Gabrel and Vanderpooten 2002).

We consider the bi-objective shortest path (BSP) problem as the natural ex-

tension of the single objective case. BSP belongs to the class of MOCO prob-

lems. The BSP problem is an NP-hard problem (Serafini 1986) and it also

is intractable, i.e. the number of efficient solutions may be exponential in the

number of nodes (Hansen 1980). Despite this fact, Müller-Hannemann and

Weihe (2006) suggest that in practical applications with certain characteris-

tics we can expect to find a reasonably small number of efficient solutions.

There are two main approaches to solving BSP problems. The first type in-

cludes enumerative approaches such as label correcting (e.g. Skriver and An-

dersen 2000; Brumbaugh-Smith and Shier 1989), label setting (e.g. Martins

1984; Tung and Chew 1988, 1992), and ranking methods (e.g. Martins and

Cĺımaco 1981; Cĺımaco and Martins 1982). The second main approach is the

Two Phase Method (Mote et al. 1991; Ulungu and Teghem 1995), which ex-

ploits the problem structure.
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Labelling methods work similarly to their single objective (e.g. Bertsekas 1998)

counterparts. For single-objective shortest path problems, every node has a

single label that represents the distance from the start (source) node to this

node. While the algorithm runs, the distance labels may change. At termina-

tion of the algorithm, however, they represent correct shortest path distances

from the source node to every other node in the network. In BSP problems

a node can have several labels, where each label represents a (different) path

from the source node. The labels at the same node do not dominate one an-

other. The set of efficient solutions of the BSP problem corresponds to all

labels at the target node after a labelling algorithm finishes. In label correct-

ing and label setting methods, either one label at a certain node is extended by

all arcs out of that node (label-selection) or all labels at a node are extended

simultaneously (node-selection).

Ranking methods may utilise single objective k-shortest path methods. Ac-

cording to the literature (Huarng et al. 1996; Skriver 2000) k-shortest path

methods are not competitive with label correcting methods. Therefore, we in-

vestigate the application of a near-shortest path method by Carlyle and Wood

(2005), which the authors successfully apply to the k-shortest path problem.

Next to enumerative approaches, a second type of solution approach is the

Two Phase Method. In Phase 1, the extreme supported efficient solutions are

computed. In Phase 2, the remaining efficient solutions are computed with one

of the enumerative approaches mentioned before. The enumerative methods

can be employed in a very effective way as enumeration can be restricted to

small areas of the objective space, see also Chapter 1.

We present well-known strategies to solve the BSP problem and introduce the

two Phase Method with near-shortest path ranking by adapting a near-shortest

path approach in Phase 2. This is the first computational study in which all

known solution approaches for BSP are compared on a large set of different

test networks. In particular, the Two Phase Method is intensively studied

by comparing different computational methods for each of its components.

Our aim is to compare the performance of the different solution approaches.

We investigate performance on two different artificial network structures and

also on road networks, to include some real world network structures into our

considerations as is done by Zhan and Noon (1998) for single objective shortest



2.1 Problem Formulation 43

path problems. This comparison is in contrast to some earlier studies, where

only a single network type has been used. We are able to show that contrary

to previous research results, the Two Phase Method is competitive with, if not

better than, the traditional bi-objective labelling approaches in many cases.

Furthermore, we propose a technique to improve the run-time of labelling al-

gorithms, called bounded labelling. Here, a standard labelling technique is

modified to discard labels corresponding to unfinished paths, once it is known

they can never lead to efficient paths anyway. We test the effects our modifi-

cation has on run-time, which shows that the modification achieves significant

improvements for many problem instances.

We also describe a novel application of BSP problems to modelling route

choices of commuter cyclists. It is assumed that cyclists aim to minimise the

distance travelled but also to maximise the attractiveness of a path. Attrac-

tiveness includes factors important to cyclist route choice, for example road

gradient and safety.

In this chapter, BSP problems are introduced in Section 2.1 followed by a

discussion of recent literature in Section 2.2. In Section 2.3 we present the

different algorithms currently used to solve the BSP problem, namely label

correcting, label setting, near-shortest path, and the Two Phase Method. Fi-

nally, numerical results are presented in Section 2.4. We introduce bounded

labelling algorithms in Section 2.5. Section 2.6 is dedicated to cyclist route

choice. All tables containing numerical results appear at the end of this chapter

in Section 2.8.

The content of this chapter is based on Raith and Ehrgott (2009a), Raith

(2008b), and Raith (2006).

2.1 Problem Formulation

In this section, terminology and basic theory of bi-objective shortest path

problems are introduced.

Let G = (V ,A) be a directed graph with a set of nodes (vertices) V = {1, . . . , n}
and a set of arcs A ⊆ V × V . Two positive costs ca = (c1

a, c
2
a) ∈ N × N are

associated with each arc a ∈ A. In a road network, for example, the costs c1
a
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and c2
a could represent time and distance for traversing arc a, respectively.

A path in G from node i ∈ V to node j ∈ V is a sequence {a1, a2, . . . , al} of arcs

in A with tail node t(a1) = i, head node h(an) = j, and h(ak) = t(ak+1), i =

1, 2, . . . , l − 1. The bi-objective shortest path problem (BSP) with source node

s ∈ V and target node t ∈ V can be formulated as a network flow problem:

min z(x) =

 z1(x)

z2(x)



s.t.
∑

a∈A,t(a)=i

xa −
∑

a∈A,h(a)=i

xa =


1 if i = s

0 if i 6= s, t

−1 if i = t

for all i ∈ V

xa ∈ {0, 1} for all a ∈ A,

(2.1)

with z1(x) =
∑

a∈A c
1
axa and z2(x) =

∑
a∈A c

2
axa. Here x is a vector of flow on

the arcs and the first set of constraints represent flow balance at the different

nodes. A balance of 1, −1, and 0 indicates that there exists a surplus of one

unit of flow, a demand of one unit of flow, or neither of the two, respectively.

The first set of constraints are flow conservation constraints, which ensure that

one unit of flow is transported through the network from s to t. The second

set of constraints restricts flow on an arc to be either 0 or 1. The arcs with

flow value 1 form a path from s to t.

2.2 Literature on BSP Problems

Skriver (2000) contains a survey on BSP problems. The surveys on MOCO

problems by Ehrgott and Gandibleux (2000) and Ehrgott and Gandibleux

(2002) both include a section on shortest path problems. A brief survey on

MSP problems is also contained in Tarapata (2007), the part on solution meth-

ods to compute a (complete) efficient set for BSP and MSP is identical with

the two previous references.

In the following we discuss literature not yet covered in a survey. We focus

on exact methods here, that is methods to obtain a complete set of efficient

solutions. There are heuristic approaches to solve the BSP / MSP problem
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(Stewart and White 1989) and methods to find an approximation of the set of

efficient solutions (Warburton 1978; Hansen 1980; Tsaggouris and Zaroliagis

2006; Diakonikolas and Yannakakis 2007). Other methods take advantage of

a utility function according to which an “optimal” solution can be obtained

or help guide a decision maker to a particular solution (Henig 1985; Carraway

et al. 1990; Murthy and Olson 1994; Modesti and Sciomachen 1998; Tarapata

2007). We do not include literature on multi-objective shortest path problems

with other types of objectives than those of the BSP model (2.1). We comment

only on recent literature on identifying a complete set of efficient solutions of

BSP.

Martins and Santos (2000) discuss labelling algorithms for the multi-objective

shortest path (MSP) problem with arbitrary arc costs. They prove bounded-

ness and finiteness results for the MSP problem and also correctness of the

label setting and label correcting approach. They present a generic labelling

algorithm with label selection. They also propose a label setting algorithm

based on node selection for acyclic networks, taking advantage of the fact that

acyclic networks can be put in topological order.

Guerriero and Musmanno (2001) investigate label correcting and label setting

methods for the multi-objective shortest path tree problem. They propose

several strategies for label-selection and node-selection. Computational results

are presented for two different classes of test problems. There are problem

instances where label-selection is superior and others where node-selection is

superior. Furthermore, label setting is superior for some instances, and label

correcting is superior for others.

Sastry et al. (2003) propose several algorithms for multi-objective shortest path

problems with positive and negative arc costs. First, the networks are checked

for negative cycles which are detected by a repeated application (at most once

for every objective) of some single objective shortest path algorithm that can

detect negative cycles. If there is no negative cycle, Sastry et al. suggest

to use a label correcting multi-objective shortest path algorithm with node-

selection similar to the one presented by Brumbaugh-Smith and Shier (1989).

Sastry et al. also propose two other label correcting approaches. They are both

variations to the approach by Corley and Moon (1985). In each iteration of the

algorithm, the labels at each node are updated from all predecessor nodes. The
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algorithm stops when either none of the label sets is modified in an iteration

or when after n iterations the existence of a negative cycle is asserted. In

each iteration nodes are chosen randomly by Sastry et al. whereas Corley and

Moon choose nodes in order of their indices 1, 2, . . . , n. The other variation

by Sastry et al. is to change the manner in which label sets are updated, the

approach is similar to Yen (1970). Now, each iteration is split into two phases.

In the first phase, nodes are updated by labels at nodes with smaller index

than the current node only, in the second phase nodes are updated by labels

at nodes with bigger index. Sastry et al. remark that the first algorithm,

label correcting similar to Brumbaugh-Smith and Shier (1989), performs best

in practical tests.

Müller-Hannemann and Weihe (2006) investigate the cardinality of the set

of efficient solutions that arises in practical applications. They examine the

characteristics of shortest path problems in train networks with two and three

objectives. They relate network and problem characteristics to the actual

number of efficient solutions. They find that this number is very low despite

the fact that bi-objective shortest path problems are in general intractable.

Paixão and Santos (2007) compare different strategies for labelling algorithms

to solve multi-objective shortest path algorithms. Only labelling algorithms

with label selection are considered. Label setting and label correcting are im-

plemented with different data structures to investigate how labels are best

stored and selected. Label correcting is implemented with two different meth-

ods of selecting the next label: FIFO, where labels are inserted at the back of

a list and selected from its front, and what they call a DEQue, where labels are

inserted in front whenever they are considered better (according to some func-

tion) than the current first label and at the back otherwise. For label setting,

the next label is extracted from an ordered list, a so-called Dial data structure

and a binary heap. The different implementations of labelling algorithms are

compared for a large set of test instances with between two and 20 objectives.

The study shows that label correcting with FIFO list is the overall best ap-

proach for smaller data sets, for label setting the Dial data structure performs

best. For large data sets, again both label correcting approaches outperform

the label setting ones.

Martins et al. (2007) propose a special shortest path ranking algorithm based
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on what they call “shortest deviation paths”. This algorithm is then used

to solve the MSP problem by first ranking all paths and then choosing the

efficient paths among all ranked paths. Computational studies with between

two and ten objectives show that this improved ranking algorithm solves MSP

slower than label correcting with label selection and FIFO list (Paixão and

Santos 2007).

Paixão and Santos (2008) again solve the MSP problem with a ranking algo-

rithm. Here, they introduce bounds on the ranking procedure which should

drastically reduce computation time as not all paths need to be ranked any

more. For a problem with p objectives z1, z2, . . . , zp, they propose to run the

ranking algorithm p times. Each time, a different lexicographic objective is

considered, so that each objective i = 1, 2, . . . , k is the preferred component

once (it does not matter which order the remaining objectives appear in). Ini-

tially, a shortest path p∗ with respect to objective
∑p

i=1 zi is computed. Clearly,

for every non-dominated solution q of the problem, zi(q) 5 zi(p
∗) holds for at

least one i ∈ {1, 2, . . . , p}. Therefore, ranking of paths with preferred objec-

tive i can be stopped as soon as the ith objective value of the ranked path

exceeds zi(p
∗). Apart from initially computing p∗ as above, they also propose

to construct and update such an upper bound vector while the algorithm runs.

They find this approach inferior to initially computing p∗. Using the ranking

algorithm by Martins et al. (2007), they show that MSP is solved quicker by

ranking with their new bounds than by label correcting and label setting algo-

rithms for two out of three network types. For grid networks, however, their

new ranking approach performs significantly worse than label correcting with

label selection and a FIFO list.

Table 2.1 gives a summary of the literature related to the BSP and MSP

problem.

2.3 Solution Methods for BSP Problems

Different methods to find a complete set of efficient solutions of BSP are in-

vestigated here. Three main approaches are identified and then compared in

Section 2.4. One is bi-objective labelling, where we distinguish two different

basic strategies. Label correcting with node-selection is identified as the most
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Table 2.1. Literature on the exact solution of BSP/MSP problems.

Reference Problem Solution approach

Hansen (1980) BSP Label setting, label-selection
Martins and Cĺımaco (1981) BSP Ranking
Cĺımaco and Martins (1982) BSP Ranking
Martins (1984) MSP Label setting, label-selection
Corley and Moon (1985) MSP Label correcting node-selection
Hartley (1985) MSP Label correcting node-selection
Henig (1985) BSP Label correcting node-selection
Tung and Chew (1988) BSP Label setting, label-selection
Brumbaugh-Smith and Shier (1989) BSP Label correcting, node-selection
Azevedo and Martins (1991) MSP Ranking
Mote et al. (1991) BSP Two Phase Method
Tung and Chew (1992) MSP Label setting, label-selection
Huarng et al. (1996) BSP Computational comparison
Skriver and Andersen (2000) BSP Label correcting, node-selection
Martins and Santos (2000) MSP Label setting and correcting

node- and label-selection
Guerriero and Musmanno (2001) MSP Label setting and correcting

node- and label-selection
Sastry et al. (2003) MSP Label correcting, node-selection
Paixão and Santos (2007) MSP Label setting and correcting

label-selection
Martins et al. (2007) MSP Ranking
Paixão and Santos (2008) MSP Ranking
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successful approach to solve BSP problems by Skriver and Andersen (2000)

whereas label setting was found superior by Guerriero and Musmanno (2001),

for example. The second solution method is the adaptation of a near-shortest

path procedure by Carlyle and Wood (2005) to BSP in lieu of a shortest path

ranking algorithm. Finally, the Two Phase Method for BSP by Mote et al.

(1991) is investigated. We compare several solution strategies that can be used

to solve the different components of the Two Phase Method.

2.3.1 Bi-objective Label Correcting

A bi-objective label correcting method is a straightforward extension of the

single objective version. The main difference for two or more objectives is that

there may be several labels at a node, each corresponding to one path, which

do not dominate one another.

Approaches to label correcting differ in whether they employ label-selection

or node-selection. Label-selection means that all labels are treated separately.

A label l at some node i is extended along all arcs a with tail node t(a) = i.

The extended label l+ ca is inserted into the label set at node j = h(a) if it is

not dominated. The new label may dominate other labels at node j which are

deleted. Node-selection means that a node i is selected and all its labels are

extended via all outgoing arcs. If the label set at node j changes, for example

due to the addition of a new label l + ca, it has to be reconsidered in a later

iteration. This means that the node has to be scanned again and all its labels

have to be extended via all outgoing arcs to enable the change of the label set

at node j to propagate through the network.

Algorithm 4 summarises the bi-objective label correcting algorithm with node-

selection. Initially, the only labelled node is the source node s with label set

Labels(s) = {(0, 0)}. All labels at a particular node i are extended along all

outgoing arcs a with t(a) = i. Dominated labels are eliminated from the labels

extended from node i and the labels already present at the end node j = h(a).

The remaining labels form the new label set at node j. Whenever the label

set of a node changes, the node has to be marked for reconsideration. At

reconsideration, the mark of the node is deleted. When no nodes are marked

for reconsideration any more, the algorithm terminates. When traversing an
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Algorithm 4 Bi-objective Label Correcting

1: input: Graph (V ,A), cost function c = (c1, c2), and source node s.
2: modNodes = {s}: list of nodes with modified labels that have not yet

been reconsidered, treated in FIFO order.
3: Labels(s) = {(0, 0)} and Labels(i) = ∅, i ∈ V\{s}: Labels(i) is the list of

labels at a particular node i.
4: while modNodes is nonempty do
5: Remove first node i from modNodes. /∗ FIFO ∗/
6: for all a ∈ A with t(a) = i do
7: j = h(a)
8: merge(Labels(i) + ca, Labels(j)) /∗ extend all labels at i by ca and

merge with labels at j, eliminating all dominated labels ∗/
9: if the label set of j has changed and j /∈ modNodes then

10: Append j to modNodes. /∗ FIFO ∗/
11: end if
12: end for
13: end while
14: output: Efficient path length from source node s to all other nodes, paths

can be backtracked using labels.

outgoing arc from a node with multiple labels, every label has to be extended

along this arc and tested for dominance with the labels of the end node of the

arc, this operation is called merging. Merging is the most expensive component

of a bi-objective label correcting algorithm. The label sets are ordered so that

the first component is increasing to reduce computational effort of the merge

operation, which in our case is O(|L| + |M|) when the sets L and M are

merged (Brumbaugh-Smith and Shier 1989). We also implement the condition

to detect dominance of the whole label set by Skriver and Andersen (2000).

Once the label correcting algorithm terminates, the set Labels(t) contains all

non-dominated path costs at the target node t. The corresponding efficient

solutions (the paths) can be obtained by backtracking the appropriate labels.

To facilitate this, we store the in-going arc with every label.

Despite the results of Guerriero and Musmanno (2001), we opt for node-

selection, the approach also chosen by Skriver and Andersen (2000) (see also

Brumbaugh-Smith and Shier 1989), which is described in Algorithm 4 above.

We believe that it is more efficient from a computational point of view to

compare whole label sets rather than just individual labels within a label cor-

recting algorithm. We were able to confirm this presumption by implementing
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label correcting with node-selection and with label-selection. Our numerical

tests show that node-selection is the faster approach. The additional compu-

tational effort of maintaining individual labels, extending them via outgoing

arcs a and merging each individual extended label with the label set at node

h(a) outweighs the reduction in run-time achieved by not having to consider

all labels of a node even though only some of the labels in the set may have

changed.

Label correcting with node-selection is implemented as follows. Label lists

at each node are represented by linked lists. Linked lists have the advantage

that dominated labels can easily be removed from the list. Labels are ordered

according to 5lex(1,2) which ensures that the label sets can be compared effi-

ciently. The list modNodes, which keeps track of which nodes to consider next

(in FIFO order), is implemented as a circular list similar to the FIFO list of

the single-objective label correcting algorithm in Pape (1974).

2.3.2 Bi-objective Label Setting

While one can choose between node-selection and label-selection when imple-

menting a label correcting algorithm, label setting schemes only work with

label-selection as it has to be guaranteed that the label of a non-dominated

path is selected. To explain the label setting algorithm, only the main dif-

ferences to the label correcting algorithm described in Section 2.3.1 are high-

lighted.

Out of all labels one that is guaranteed to remain non-dominated has to be

selected. There are different rules of selection to guarantee this, see Tung and

Chew (1988) and Paixão and Santos (2007). The selection of a lexicograph-

ically smallest label, for instance, complies with this requirement. All newly

generated labels are tentative. In our implementation, in each iteration a lex-

icographically smallest label is selected among all tentative labels. This label

is guaranteed to belong to an efficient path from source node s to the node i

the label l belongs to. The label l at node i is extended via all outgoing arcs a

with tail node t(a) = i similar to the procedure described in Section 2.3.1 for

label correcting. Only one label is extended at a time and compared with all

labels at the head node j = h(a). Dominated labels are deleted from the label
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Algorithm 5 Bi-objective Label Setting

1: input: Graph (V ,A), cost function c = (c1, c2), and source node s.
2: Labels(s) = {(0, 0)} and Labels(i) = ∅, i ∈ V\{s}: Labels(i) is the list of

labels at a particular node i.
3: TentativeLabels = {(0, 0) . s}: contains all tentative labels and the node
i the label is associated with indicated by . i.

4: while TentativeLabels 6= ∅ do
5: Remove a lex(1,2)-best label (l1, l2) . i from TentativeLabels.
6: for all a with t(a) = i do
7: j = h(a)
8: merge((l1, l2) + ca, Labels(j)) /∗ extend label (l1, l2) at i by ca and

merge with labels at j, eliminating all dominated labels ∗/
9: if the label set of j has changed then

10: Insert new label (l1, l2) + ca . j into TentativeLabels.
11: Remove all deleted labels at j from TentativeLabels.
12: end if
13: end for
14: end while
15: output: Efficient path length from source node s to all other nodes, paths

can be backtracked using labels.

list at node j and also from the set of tentative labels.

A lex(1, 2)-best element needs to be extracted from TentativeLabels in every

iteration. We initially implemented the set TentativeLabels as an ordered

list, where the first element is always a lex(1, 2)-best label. However, this list

implementation is inferior to a binary heap implementation. The bi-objective

label setting algorithm LSET is summarised in Algorithm 5

We implement TentativeLabels as a binary heap to facilitate the extraction

of a lex(1, 2)-best label from TentativeLabels. Among other data structures,

heaps are used to efficiently store labels in single-objective label setting algo-

rithms (Ahuja et al. 1993). Our binary heap is implemented based on a binary

heap by Weiss (last visited 02/2009). Removing an element from the heap is

a costly operation. We tried deleting labels from the heap in case they are

dominated, or leaving them in the heap and only marking them as dominated.

We found it more efficient to delete labels as the large number of labels can

lead to a memory shortage that eventually slows down the computer. Also, the

resulting heap structure becomes very large making insertion and extraction

operations all the more time consuming.
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2.3.3 Ranking – Near-Shortest Path

Methods such as the k-shortest path algorithm generate one path after the

other, with increasing objective function values. When used to solve a bi-

objective problem, among all generated paths the non-dominated ones are

selected as discussed in Section 1.3.1.

Computing paths ordered by their length comes with a large computational

effort, but for the solution of the BSP problem, the order in which solutions

are computed does not matter, as long as all efficient solutions are obtained.

According to the literature, k-shortest path approaches cannot be successfully

applied to BSP problems as the cost of finding paths in order of their lengths

is quite high (Huarng et al. 1996; Skriver 2000). Instead of a k-shortest path

procedure, we use the near-shortest path method by Carlyle and Wood (2005),

which aims at finding all paths the length of which is within a certain deviation

ε from the optimal path length ω, thus having a maximal path length of

δ = ω + ε. The near-shortest path algorithm does find all paths within a

certain deviation of the optimal path value, but they are not computed in

any particular order. On the basis of computational tests, Carlyle and Wood

conclude that their near-shortest path routine even solves the k-shortest path

problem faster than other algorithms dedicated to solving the k-shortest path

problem. We use the implementation of the method ANSPR0 by Carlyle and

Wood, which the authors identify as best approach, and carry out some slight

modifications.

In order to use the near-shortest path (NSP) procedure, a weighted sum of the

two objectives in BSP, see (1.1), is considered. To this end weighting factors

λ1 > 0 and λ2 > 0 are defined as in (1.10) in Section 1.3.1. The required

lex(1, 2)- and lex(2, 1)-best solutions are determined in an initialisation phase.

We investigate the usage of different algorithms in initialisation, see Section

2.3.4.

Upper bounds originating from the two lexicographically best solutions xlex(1,2)

and xlex(2,1) can be used to restrict enumeration, refer to the bounds (1.12).

Algorithm 6 gives a description of the NSP algorithm for a directed graph

G = (V ,A) with source node s and target node t. A cost cλa > 0 is associated

with each arc a ∈ A, where cλa = λ1c
1
a + λ2c

2
a. The worst possible weighted
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Algorithm 6 NSP

1: input: Graph (V ,A), cost function c = (c1, c2), source node s, and target
node t.

2: L(i): the weighted sum path length at i.
3: d1(i), d2(i): length of the path at i for the first and second objective.
4: for all i ∈ N do
5: d(i) = weighted shortest path distance from i to t
6: end for
7: stack = s
8: L(s) = 0 and dk(s) = 0; k = 1, 2
9: while the stack is not empty do

10: i = top node of stack
11: if nextArcOutOf (i) 6= ∅ then
12: a = next arc out of i; j = h(a)
13: if (L(i) + cλa + d(j) 5 δ) and (d1(i) + c1

a 5 z1(xlex(2,1))− 1) and
(d2(i) + c2

a 5 z2(xlex(1,2))− 1) then
14: L(j) = L(i) + cλa and dk(j) = dk(i) + cka; k = 1, 2
15: if j is target node t then
16: Save current candidate solution. /∗ possibly eliminating previ-

ous candidate solutions that are now dominated ∗/
17: Pop j from stack.
18: else
19: Put j on top of stack.
20: end if
21: end if
22: else
23: Pop i from stack. /∗ no more outgoing arcs ∗/
24: end if
25: end while
26: output: Efficient paths from node s to node t and their lengths.

sum value of a feasible efficient path is the weighted sum value of the improved

nadir point δ = λ1(z1(xlex(1,2)) − 1) + λ2(z2(xlex(2,1)) − 1), see also Equation

(1.13). We modify NSP slightly to integrate the bounds given in (1.12) on the

respective objectives. We simply add two label sets d1 and d2 to keep track of

the current value of the two objectives and thus allow for comparison with the

respective upper bounds. See Algorithm 6 which includes our changes to the

original NSP.

The NSP algorithm repeatedly computes candidate solutions x̂ satisfying the

bounds in (1.12) and cλ(x̂) 5 δ. Only after the algorithm terminates, we know

that the remaining candidate solutions are indeed efficient. It is possible to
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exploit candidate solutions in order to improve the upper bound δ by the upper

bound on the weighted sum value, refer to the computation of ∆ in Equation

(1.14). We again take advantage of the fact that every computed candidate

excludes a certain area of the objective space by domination, even though it

may not represent a non-dominated point. In Algorithm 6, we can insert an

additional step where δ is updated by ∆ whenever a new candidate solution is

computed. We insert the following step between steps 16 and 17:

Compute ∆ and update δ = ∆.

The shortest path distances from all nodes i to t in Steps 4-6 in Algorithm 6 are

computed with a single-objective label correcting algorithm in the implementa-

tion of NSP by Carlyle and Wood (2005). In addition to their implementation,

we replace their label correcting algorithm by Dijkstra’s algorithm and denote

this approach by NSPD. For details on the two single-objective shortest path

algorithms refer to the section on initialisation in Section 2.3.4.

2.3.4 Two Phase Method

The general idea of the Two Phase Method is discussed in Section 1.3.2. Here,

it is applied to solve BSP problems. In Phase 1 extreme supported efficient so-

lutions are computed. In Phase 2 the remaining supported and non-supported

efficient solutions are computed with an enumerative approach. An initiali-

sation phase to compute one or two initial solutions is necessary to start the

Two Phase Method off. Different solution methods for initialisation, Phase 1,

and Phase 2 are implemented and compared.

In Phase 1 two main approaches are pursued. On the one hand single objec-

tive label setting and label correcting shortest path methods are used to solve

the single-objective problems arising in the dichotomic approach from Section

1.3.2. On the other hand a network simplex algorithm solves BSP in a para-

metric approach. In Phase 2, the ranking and bi-objective labelling approaches

discussed in the previous sections are employed with the additional benefit of

bounds derived in Phase 1.

Mote et al. (1991) propose a Two Phase Approach to solve the BSP problem
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with a parametric network simplex approach in Phase 1 and a label correct-

ing algorithm in Phase 2. Here, we investigate the usage of several different

algorithms for initialisation, Phase 1, and Phase 2 in order to identify a good

combination.

Initialisation

In the initialisation phase a lex(1, 2)-best or lex(2, 1)-best solution or both

need to be computed, depending on which approach is chosen in Phase 1. Here,

single objective shortest path problems are solved with appropriate objective

functions: the relations 5 and = in the standard single-objective shortest

path algorithms are replaced by 5lex(1,2) and =lex(1,2) to compute xlex(1,2) (or

by 5lex(2,1) and =lex(2,1) to compute xlex(2,1)). The following shortest path

algorithms are investigated:

• The single objective label correcting algorithm is, for example, discussed

in Bertsekas (1998). In the context of their near-shortest path algorithm,

Carlyle and Wood (2005) implement such a label correcting algorithm

where nodes are treated in FIFO order and the list to determine which

node is considered next is circular (as proposed in Pape 1974). We modify

the original implementation to incorporate the lexicographic objective.

This approach will be denoted by “L”.

• The single objective label setting algorithm is also discussed in Bertsekas

(1998). A study by Cherkassy et al. (1996) compares several implemen-

tations of such label setting algorithms. One of the most successful

algorithms is DIKBD, a double bucket implementation of Dijkstra’s label

setting algorithm (as proposed in Denardo and Fox 1979). We select this

algorithm and modify the original implementation to adjust it to the

lexicographic objective. This approach will be denoted by “D” in the

following.

We also tried to solve the initialisation problem with a single-objective network

simplex algorithm. We observe that all but the smallest problem instances are

solved much faster with any of the two above single-objective labelling algo-

rithms. Therefore, the simplex method will be omitted from the computational

results section.
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Phase 1

Both Phase 1 approaches are discussed in Section 1.3.2. We employ a di-

chotomic approach as well as the parametric network simplex approach.

Two different solution strategies are distinguished for the dichotomic approach.

• The first dichotomic approach uses the label correcting method (L) dis-

cussed above among the initialisation approaches to solve the single ob-

jective weighted sum problems that arise from the dichotomic approach.

We denote the dichotomic label correcting approach by “LDIC”.

• The second dichotomic approach uses the label setting algorithm (D)

from the initialisation section above to solve the single objective weighted

sum problems that arise from the dichotomic approach. We denote the

dichotomic label setting approach by “DDIC”.

When solving the BSP problem with a parametric network simplex approach,

as described in Section 1.3.2, the BSP formulation (2.1) above has some disad-

vantages. Problems arise as the network simplex method performs many basis

exchanges without an actual flow change because the flow on all basic arcs that

are not part of the actual path from s to t is zero. If a basis exchange involves

only those arcs, there is no flow change at all. To avoid this situation we use

another formulation, the bi-objective shortest path tree (BSPT) problem. This

formulation is also used by Mote et al. (1991):

min z(x) =

 z1(x)

z2(x)


s.t.

∑
a∈A,t(a)=i

xa −
∑

a∈A,h(a)=i

xa =

 n− 1 if i = s

−1 if i 6= s
for all a ∈ A

xa = 0 for all a ∈ A
x integer for all a ∈ A.

By modifying the constraint set of BSP, we now state the problem of finding

the shortest path from source node s to all other nodes, resulting in nonzero

flow on all basic arcs. Although not every basis exchange leads to a change
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of the shortest s-t path, it does lead to some change in the shortest path tree

rooted at s. This approach ensures a flow change whenever the basis changes

and degeneracy of the problem is avoided.

Whenever the shortest path from s to t changes, another efficient solution is

found. This yields the third and final Phase 1 approach.

• The parametric network simplex approach is obtained by modifying

the existing implementation of a network simplex algorithm, called MCF

(Löbel 2004). The parametric network simplex algorithm is denoted by

“SPAR” in the following.

Phase 2

In Phase 2 it is possible to benefit from the work already done in Phase 1

to significantly reduce computation time of the enumerative methods used.

For each of the triangles defined for two consecutive adjacent extreme non-

dominated points, bounds are derived as described in Section 1.3.2. In each

triangle an enumerative shortest path method is used to obtain non-supported

solutions (if there are any).

We investigate a label correcting method (LCOR), a label setting method

(LSET) and a ranking method (NSP/NSPD). In Phase 2 the following different

approaches are studied.

• Bi-objective label correcting (LCOR) as described in Section 2.3.1. The

LCOR algorithm can be run for every pair of consecutive supported

non-dominated points. Labels are discarded as soon as they violate any

bounds. We find that a lot of effort is put into the enumeration of paths

that are discarded at a very late stage of the algorithm. In particular,

many paths are enumerated for every pair of consecutive solutions that

do not end up within the bounds for any of them.

Therefore, in Phase 2 we run LCOR just once (instead of once for every

triangle), and discard labels that are not in any of the areas defined

by two consecutive supported non-dominated points or that cannot be

extended to end up within any of them. In contrast to using LCOR

in Phase 2, the original LCOR algorithm can only delete labels that
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are dominated by other labels at some node, but there are no “global”

bounds on objective values.

• Bi-objective label setting (LSET) as described in Section 2.3.2 is em-

ployed in a similar fashion as LCOR above.

• Near-shortest path (NSP and NSPD) as described in Section 2.3.3, is

executed for every pair of consecutive supported non-dominated points

z(xi) and z(xi+1). The upper bounds are calculated in terms of xi and

xi+1 instead of xlex(1,2) and xlex(2,1) as explained in Section 1.3.2 on solving

Phase 2 with a ranking algorithm. Paths are only expanded if they do not

violate any bounds. Due to the lower bounds considered in NSP/NSPD,

paths can often be discarded early during computations.

2.4 Numerical Results

We investigate the performance of the different solution methods on three dif-

ferent kinds of networks. Firstly, we introduce the types of networks considered

and then present computational results.

2.4.1 Test Instances

We investigate three different network types: grid networks, random NetMaker

networks and road networks. We also experiment with networks generated by

NETGEN (Klingman et al. 1974), which we modify to incorporate two costs

for each arc. The networks thus generated have very few efficient paths, often

only between one and three. Therefore NETGEN networks were not included

in our computational experiments.

Grid Networks

Nodes are arranged in a rectangular grid with given height h and width w.

Every node has at most four outgoing arcs (up, down, left and right), to

its immediate neighbours. Only nodes on the boundary of the grid have less

outgoing arcs. There are two distinct nodes beyond the grid structure: a source
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s t

Figure 2.1. Structure of grid networks.

node s and a target node t. There is an arc from s to every node on the left

margin of the grid and an arc from every node of the right margin of the grid to

the target node t. Figure 2.1 shows the structure of grid networks. The costs

(c1
a, c

2
a) for arc a are chosen randomly from a discrete uniform distribution with

cka ∈ {1, 2, . . . , 10}, k = 1, 2. Carlyle and Wood (2005) use grid networks for

numerical tests on NSP algorithms. Refer to Table 2.2 for a listing of problem

instances. Instances G15-G33 are grid networks with approximately the same

number of nodes, but varying in width and height.

NetMaker

Skriver and Andersen (2000) propose an alternative, NetMaker, to using a

pure random network generator such as NETGEN. They state that NETGEN

generates networks containing very few efficient paths, an observation we agree

with. Here, nodes are numbered from 1 to n, where node 1 is the source

node, node n is the target node. We use a random number generator that

generates discrete uniformly distributed random numbers. NetMaker networks

are constructed by first generating a random Hamiltonian cycle to ensure that

the network is connected. Then a random number of arcs out of every node

is generated, in between a minimum and maximum number of outgoing arcs.

An arc out of node i can only reach nodes j with j ∈ [i− d Inode
2
e, i + d Inode

2
e],

where Inode denotes the node interval, the maximum allowed range for an

arc. Arc costs are determined randomly. It is randomly chosen whether c1
a ∈
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Table 2.2. Grid network test problems.

Name h× w Nodes Arcs |ZN | Name h× w Nodes Arcs |ZN |
G1 30× 40 1202 4720 37 G15 2450× 2 4902 19596 6

G2 20× 80 1602 6240 80 G16 1225× 4 4902 19592 6

G3 50× 90 4502 17820 124 G17 612× 8 4898 19586 10

G4 90× 50 4502 17900 46 G18 288× 17 4898 19550 15

G5 50× 200 10002 39600 290 G19 196× 25 4902 19550 18

G6 200× 50 10002 39900 12 G20 140× 35 4902 19530 32

G7 100× 150 15002 59700 149 G21 111× 44 4886 19448 54

G8 150× 100 15002 59800 122 G22 92× 53 4878 19398 53

G9 100× 200 20002 79600 247 G23 79× 62 4900 19468 77

G10 200× 100 20002 79800 132 G24 70× 70 4902 19460 93

G11 200× 150 30002 79800 204 G25 62× 79 4900 19343 95

G12 50× 50 10002 39600 52 G26 53× 92 4878 19320 93

G13 100× 100 10002 39800 113 G27 44× 111 4886 19314 137

G14 200× 200 40002 159600 309 G28 35× 140 4902 19320 209

G29 25× 196 4902 19208 244

G30 17× 288 4898 19008 371

G31 8× 612 4898 18360 819

G32 4× 1225 4902 17150 1383

G33 2× 2450 4902 19596 1594

{1, 2, . . . , 33} or c1
a ∈ {67, 68, . . . , 100} and a number in the chosen interval

is randomly allocated as cost. The cost c2
a is then randomly chosen from the

other interval. We include three modifications to the structure of NetMaker:

a) Penalise the cycle: arc weights cka, k = 1, 2 as above but for all arcs in

the Hamiltonian cycle, choose cka, k = 1, 2 randomly in {1, 2, . . . , 10000}.

b) Balance outgoing arcs: to make NetMaker networks more comparable to

grid networks, we enforce that roughly half of the arcs out of a node go

to nodes with higher node numbers and half of them to nodes with lower

numbers. Arc weights are chosen like in a) for all arcs of the Hamiltonian

cycle, for all other arcs choose cka ∈ {1, 2, . . . , 10}, k = 1, 2.

c) More penalty on cycle: for all arcs that are part of the Hamiltonian cycle

cka = 10000, k = 1, 2. Everything else is the same as in b).

The structure of NetMaker networks is illustrated in Figure 2.2 and problem

instances are described in Table 2.3. The instances were constructed to wrap

around, so that arcs from nodes with low numbers that reach backwards may

connect to a node with very high number, i.e. close to the target node. Note
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1 2 3 4 5 n

Inode

Hamiltonian cycle

Figure 2.2. Structure of NetMaker networks.

that this may not be exactly the network structure the authors of Skriver and

Andersen (2000) had in mind originally.

Road Networks

The road networks of the states of the US were extracted by Schultes (2005)

from US Census (2000). We use road networks to test our methods on real

world data. In the original data, networks are undirected and we convert them

into directed networks by duplicating arcs. We also add a Hamiltonian cycle

with high arc costs to ensure connectedness of the networks. In the original

data, there is not always a path from a node to every other node. This happens

for example for the Rhode Island data, as there are a few islands that are not

connected to the mainland via roads. Each arc a is equipped with arc costs

where c1
a is the time needed to travel the arc and c2

a is the travel distance in

metres. Travel time is determined by multiplying the travel distance of an

arc by one of four different road quality factors. Source and target node are

chosen randomly from a discrete uniform distribution. Figure 2.3 shows the

road network of Washington DC, the smallest of the road network instances. In

the figure, roads of type “primary highway with limited access” and “primary

road without limited access” were combined into the group “primary road”.

We run tests with three different kinds of road networks. We use the networks

of the states Washington DC, Rhode Island, and New Jersey, of which the

network sizes are listed in Table 2.4. For each road network we test nine

instances with different (randomly chosen) source and target nodes.
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primary road

secondary and connecting road

small road

Figure 2.3. Road network of Washington DC and close-up of the area around
the White House.
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Table 2.3. NetMaker network test problems.

Outgoing arcs Var a) Var b) Var c)

Name Nodes Inode min max Arcs |ZN | Arcs |ZN | Arcs |ZN |
NM1 3000 20 5 15 31559 6 31502 1 31646 3

NM2 3000 20 1 20 33224 8 33122 1 33229 4

NM3 3000 50 5 15 31345 9 31548 2 31775 2

NM4 3000 50 1 20 33536 15 32641 3 32963 4

NM5 3000 50 10 40 76095 6 76924 3 77388 3

NM6 7000 20 5 15 73524 6 73940 1 73575 2

NM7 7000 20 1 20 77024 5 76775 3 76547 3

NM8 7000 50 5 15 73676 3 73282 2 73369 3

NM9 7000 50 1 20 76821 7 77518 1 76658 3

NM10 7000 50 10 40 178476 6 178292 6 180611 4

NM11 14000 20 5 15 146598 6 147388 2 146979 2

NM12 14000 20 1 20 154159 6 154115 4 154252 1

NM13 14000 50 5 15 146919 2 146900 2 147187 1

NM14 14000 50 1 20 153742 17 154213 2 153068 4

NM15 14000 50 10 40 357866 7 358264 3 356367 3

NM16 21000 20 5 15 220313 5 220685 3 220794 3

NM17 21000 20 1 20 231402 4 230403 1 230432 1

NM18 21000 50 5 15 220687 7 219606 3 219931 1

NM19 21000 50 1 20 230497 4 231876 2 232465 1

NM20 21000 50 10 40 534288 5 536151 3 533980 3

Table 2.4. Road network test problems.

Name State Nodes Arcs |ZN |: average Min Max

DC1-DC9 Washington DC 9559 39377 3.33 1 7

RI1-RI9 Rhode Island 53658 192084 9.44 2 22

NJ1-NJ9 New Jersey 330386 1202458 10.44 2 21

2.4.2 Results

All numerical tests are performed on a Linux (Fedora Core 6, kernel 2.6.20)

computer with 2.40GHz Intel R© CoreTM2 Duo processor and 2GB RAM. We

use the gcc compiler (version 4.1.1) with compile option -O3. The methods

are implemented in C. We adapt program code from Carlyle and Wood (2005)

for NSP, NSPD and L. For D we adapt program code for the DIKBD algorithm

presented in Cherkassy et al. (1996). The network simplex is a modification

of MCF (by Löbel 2004). When measuring run-time, we disregard the time it

takes to read the problem from a problem file. Run-time does include the

generation of all non-dominated path labels together with the actual paths.

The only exception are LCOR and LSET, where the paths can be obtained

by backtracking the labels at each node, here the time for the backtracking
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Figure 2.4. LCOR vs LSET - grid networks; logarithmic scale; 0.001 represents
run-time < 0.01.

process is not included in the run-time. Run-time is measured with a precision

of 0.01 seconds, any run-time less than 0.01 seconds will appear in the tables as

0.00. All figures are in logarithmic scale, in order to display all run-times in the

same figure. We also modify run-times that appear as 0.00 in tables to 0.001

in figures. Whenever the run-time exceeds 3600 seconds, the computation is

stopped, this is indicated in tables by “-”. We present run-times in figures in

this section. The corresponding tables can be found in Section 2.8 at the end

of this chapter.

We first compare the performance of LCOR and LSET. We then comment on

the performance of NSP and NSPD. We also identify the best approaches to use

in initialisation, Phase 1 and Phase 2 of the Two Phase Method. Finally, we

compare the Two Phase Method with the best bi-objective labelling approach

and the best near-shortest path approach.

Best Bi-objective Labelling Approach

A comparison of run-times of LCOR and LSET is shown in Figures 2.4 - 2.6 and

Table 2.10 in Section 2.8. LSET performs better than LCOR only for road

networks. LCOR performs better than LSET for grid and most NetMaker

networks. Despite the superior performance of single-objective label setting

(D) this is an expected result. In a BSP problem, there are significantly more
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Figure 2.5. LCOR vs LSET - NetMaker networks.
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Figure 2.6. LCOR vs LSET - road networks.



2.4.2 Results 67

0.001

0.01

0.1

1

10

100

1000

10000

G
01

G
02

G
03

G
04

G
05

G
06

G
07

G
08

G
09

G
10

G
11

G
12

G
13

G
14

G
15

G
16

G
17

G
18

G
19

G
20

G
21

G
22

G
23

G
24

G
25

G
26

G
27

G
28

G
29

G
30

G
31

G
32

G
33

NSP

NSPD

Figure 2.7. NSP vs NSPD - grid networks; run-times of NSP and NSPD
are identical where only the red marker is visible; logarithmic scale; 0.001
represents run-time < 0.01.

labels than in a single-objective problem, as there may be several labels at every

node. A label setting algorithm entails the additional effort of extracting in

every iteration a lexicographically minimal label among all the tentative labels

that currently exist at all nodes. Another advantage of our implementation

of LCOR is that all labels at a node i are extended along arc a with t(a) = i

and compared to all labels at node h(a). A label setting algorithm only allows

to extend and compare one label at a time again presenting an advantage in

run-time for LCOR.

Guerriero and Musmanno (2001) report that bi-objective label setting outper-

forms label correcting for random network instances with between 500 and 1000

nodes and high density, i.e. big ratio m/n. In our results, however, problems

with high density such as NetMaker instances are solved particularly badly by

the label setting algorithm. In Guerriero and Musmanno (2001), LSET and

LCOR also perform similar for grid networks (which are different to ours as

they contain additional random arcs). Since the authors do not give details

about their implementation of LSET, we are unable to explain why our results

differ.
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Figure 2.8. NSP vs NSPD - NetMaker networks; logarithmic scale; 0.001
represents run-time < 0.01.
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Best Near-Shortest Path Approach

To run NSP/NSPD the lex(1, 2)-best and the lex(2, 1)-best solution are needed

to set up initial bounds and find a weighting factor. We use the best initiali-

sation approach as identified in the next section.

Results are presented in Figures 2.7 - 2.9 and Table 2.11 in Section 2.8. Clearly,

NSPD performs better than NSP for NetMaker and road networks. The reason

is that the near-shortest path algorithm computes single-objective shortest

path distances from every node i to t before enumerating paths. As D is the

best approach to solve the single-objective problem for both network types

(refer to Section 2.4.2), we expect NSPD to perform best here.

The pure near-shortest path algorithm is badly suited to solve grid network

problems which is due to the structure of the solution space. In objective

space many feasible points are very close to the non-dominated points. There-

fore, it can only be determined that they are dominated at a late stage of the

algorithm. Their corresponding labels have to be considered throughout the

algorithm before they are deleted at the very end of it, which leads to large

computational effort and long run-times. The near-shortest path algorithm

benefits from an upper bound on the weighted sum objective value to re-

strict enumeration. For grid networks this bound is quite far from the optimal

weighted sum objective value, hence very many feasible paths are enumerated.

Most grid network instances were stopped after running NSP and NSPD for

an hour.

NSP was tested by Carlyle and Wood (2005) on grid networks of size 40× 25

and 100×50 but with the deviation from the optimal path varying from ε = 1

to ε = 6. These values of ε are significantly smaller than the values that arise

when solving our BSP problems instances. For grid networks, we get values of

ε that mostly exceed 10000 initially (with an average initial value of 5351394).

The deviation ε can never be improved to a value better than the weighted

sum value of xlex(1,2) and xlex(2,1). In our grid instances the smallest possible

deviation, the difference between the weighted sum value cλ(xlex(1,2)) and the

length of the optimal weighted path ω, is at most 0.27 times the original value

of ε. We observe that problem instances with an initial value of ε ≤ 10000 can

be solved within not even a second, whereas the algorithm does not terminate

within 3600 seconds for instances with larger initial ε.
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Paixão and Santos (2008) also apply a ranking algorithm to different networks

and find it performs better than a labelling algorithm for two different network

types. However, for their third network type, namely grid networks, they

report that their ranking approach yields much longer run-times than labelling

algorithms.

Best Approaches for Two Phase Method

We present several different approaches for each phase of the Two Phase

Method. They are

• Initialisation with L/D,

• Phase 1 with LDIC/DDIC/SPAR, and

• Phase 2 with LCOR/LSET/NSP/NSPD.

Initialisation results are shown in Figures 2.10 - 2.12 and Table 2.12 in Sec-

tion 2.8. Our experiments show that Dijkstra’s algorithm is clearly the best

approach for NetMaker and road networks. For grid networks both Dijkstra’s

algorithm (D) and the label correcting algorithm (L) show similar performance.

There is no clear winner for grid networks, as the problems are fairly small

single-objective shortest path problems so that the running times never exceed

0.01 seconds. Results by Cherkassy et al. (1996) indicate that performance of

label setting and label correcting algorithms is fairly similar for simple grid

networks like we use them in our tests. We choose to use Dijkstra’s algorithm

for initialisation for all three network types.

Whenever there is only one efficient solution to a problem, this is detected after

initialisation for any dichotomic approach (LDIC or DDIC) as the lex(1, 2)-

best and the lex(2, 1)-best solution are identical. In this case there is no need

to run Phases 1 and 2 which is indicated by “NA” in Tables 2.13 and 2.14 in

Section 2.8. In Figures 2.13 - 2.18 the corresponding results do not appear.

In Phase 1 we investigate the dichotomic approach where the arising single-

objective problems are solved by the label correcting algorithm (LDIC) or

Dijkstra’s algorithm (DDIC). Another approach is the parametric simplex ap-
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Figure 2.10. Initialisation - grid networks; run-times of L and D are identical
where only the square marker is visible; logarithmic scale; 0.001 represents
run-time < 0.01.
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Figure 2.11. Initialisation - NetMaker networks; logarithmic scale; 0.001 rep-
resents run-time < 0.01.
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Figure 2.12. Initialisation - road networks; logarithmic scale; 0.001 represents
run-time < 0.01.
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tical where only the square marker is visible; logarithmic scale.
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Figure 2.14. Phase 1 - NetMaker networks; logarithmic scale.
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Figure 2.16. Phase 2 - grid networks; run-times of NSP and NSPD are sim-
ilar or identical where only the red marker is visible; logarithmic scale; 0.001
represents run-time < 0.01.

proach (SPAR). For detailed results, refer to Figures 2.13 - 2.15 and Table 2.13

in Section 2.8.

Our experiments show that the parametric approach is not competitive with

the others. DDIC is clearly the best approach for NetMaker and road networks.

For grid networks LDIC performs slightly better than DDIC, the reason being

that for grid networks the single-objective approach L is slightly better than

D, and this slight advantage adds up when solving several single-objective

problems in the dichotomic approach. For grid networks Phase 1 is solved in

less than one second by LDIC and DDIC and their run-times are fairly similar.

We choose DDIC as best Phase 1 approach for all network types.

For Phase 2 we investigate bi-objective label correcting (LCOR) and label

setting (LSET) and also the usage of a near-shortest path algorithm, with one

version using single-objective label correcting to initialise shortest paths (NSP)

and the other using Dijkstra’s algorithm (NSPD). For results, refer to Figures

2.16 - 2.18 and Table 2.14 in Section 2.8.

The run-times in Phase 2 for grid networks show that LCOR performs better

than LSET. For road networks, however, LSET is better than LCOR. For

NetMaker instances, all run-times of both LCOR and LSET are less than 0.01

seconds. The advantage of the Two Phase Method becomes apparent here, as

LSET by itself performs very poorly for almost all NetMaker networks (see
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Figure 2.5). Utilised in Phase 2, however, LSET is a very successful approach.

Similar to Section 2.4.2, NSPD outperforms NSP. We can also see the benefit

of the Two Phase Method again – despite the bad performance of NSP and

NSPD for grid networks in Section 2.4.2, the Two Phase Method with NSP

and NSPD in Phase 2 finishes quickly for most grid instances, with only few

timeouts. Here, NSP is slightly better than NSPD.

We choose LCOR and LSET as best Phase 2 approaches. For road and grid

networks, LCOR and LSET are not always the best approaches but reasonably

fast and more reliable as there are no extreme run-times as happens for NSP

and NSPD for instances with a large number of efficient solutions such as G28,

G32, G33, NJ5, and NJ9.

Numerical Results – Comparing Best Approaches

We compare the best approaches as discussed in the previous sections. More

precisely, we compare the following:

LCOR: Bi-objective label correcting.

LSET: Bi-objective label setting.

NSPD: Near-shortest path.

2LCOR: The Two Phase Method with initialisation D, Phase 1 DDIC,

and Phase 2 LCOR.

2LSET: The Two Phase Method with initialisation D, Phase 1 DDIC,

and Phase 2 LSET.

We do not include NSPD results for grid networks as they performed badly as

shown in the previous Section.

Grid networks (Figure 2.19 and Table 2.15 in Section 2.8):

Both LCOR and 2LCOR perform quite well, and LCOR is the best solution

approach for grid networks. With increasing number of efficient solutions the

run-time of the different approaches increases in a similar way, this can be

observed for problems G15-G33. The network of instance G15 is very high
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Figure 2.19. Best approach - grid networks; for run-times where markers are
invisible, see Table 2.15; logarithmic scale; 0.001 represents run-time < 0.01.
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Figure 2.21. Best approach - road networks; for run-times where markers are
invisible, see Table 2.17; logarithmic scale; 0.001 represents run-time < 0.01.

and thin, then the grid network instances decrease in height but increase in

width. As the instances grow in width, the problems contain more and more

efficient solutions. Other examples of instances with many efficient solutions

are large instances such as G9, G11, and G14. As mentioned above, the run-

time of NSPD for grid networks is not included in figures and tables as most

instances were stopped after 3600 seconds.

NetMaker networks (Figure 2.20 and Table 2.16 in Section 2.8):

NSPD and both Two Phase approaches (2LCOR and 2LSET) show similar

very good performance with run-times well under 1 second. LCOR and LSET

on the other hand are significantly worse with an average run-time of 368 and

1205 seconds and a minimum run-time of 0.55 and 1.44 seconds. It should

be noted that this is the only network type where the NSPD approach does

not have a high variance in run-time (on the instances we tested). We cannot

relate the number of solutions to the run-time of an approach, compared to

grid networks there are not many efficient solutions at all. It appears that

increasing problem size does not significantly increase the run-time of 2LCOR,

2LSET, or NSPD, run-times of NM16-NM20 are not much longer than of

NM11-NM15 for example.

Road networks (Figure 2.21 and Table 2.17 in Section 2.8): The Two

Phase Method (2LCOR and 2LSET) is clearly the best approach, with run-
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Table 2.5. Best approaches for different network types.

type best second best

grid LCOR 2LCOR

NetMaker 2LCOR, 2LSET, and NSPD -

road 2LSET 2LCOR

times less than LCOR and LSET. This shows again the strength of the Two

Phase Method as Phase 1 restricts the area to be enumerated by LCOR and

LSET in Phase 2. Among the Two Phase approaches, 2LSET performs best.

NSPD performs very well for some instances (in fact better than 2LCOR and

2LSET), but its performance is very bad for others such as RI2, RI5, RI9, NJ5,

NJ6, and NJ9. This illustrates that small variations in the problem such as the

selection of source and target node may significantly complicate a problem.

Again, there are not many efficient solutions compared to grid networks. The

number of efficient solutions and the problem size do not influence the run-time

in an obvious way – other factors, however, such as distance between source

and target node and how branched the roads between source and target are,

play an important role. For example, run-times for 2LSET and the biggest

road network, NJ, vary from 0.41 to 29.00 with an average of 6.83 for the nine

instances that only differ in their respective location of source and target node.

In Table 2.5 the best approaches for the different network types are sum-

marised. It appears that out of all approaches 2LCOR is the overall winner,

as it performs consistently well for all network types.

2.5 Bounded Labelling: Improving Labelling

Algorithms for BSP

The efficiency of bi-objective and multi-objective labelling algorithms can be

improved by exploiting the fact that the cost vector of every enumerated path

from source node s to target node t dominates other paths in the network. It

may not always be necessary to extend a path to the target node to confirm

that it is dominated. All paths that connect s to t, obtained at any time
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while the algorithm runs, may dominate other paths at t but also at any other

node of the network (Note that this works as long as arc costs are assumed to

be positive). Therefore, it may be possible to delete “incomplete” s-i-paths,

with i 6= t, at an early stage of the algorithm rather than extending them to

the target node t and then deleting them. This is similar to the way bounds

derived from supported solutions found in Phase 1 of the Two Phase Method

can significantly speed up labelling algorithms in Phase 2 as demonstrated in

Section 2.4.2. No such bounded labelling approach is described in the relevant

literature. The A* algorithms in Stewart and White (1989) may describe a

similar approach.

2.5.1 Bounded Labelling Algorithm

A bi-objective label correcting algorithm stops when there are no marked nodes

any more, whereas a bi-objective label setting algorithm stops once there are

no more tentative labels. In both cases, all efficient paths from s to all other

nodes are obtained, including of course the ones to the target node t.

While a bi-objective labelling algorithm runs, every label at t corresponds to

the cost vector of a path from s to t that is currently not dominated. Therefore,

this label dominates parts of the objective space as no label that is dominated

by it can represent an efficient path. Labels at any node of the network that

are dominated by a label at t can be deleted as path costs are non-negative

so that once a label anywhere in the network is dominated by a label at t it

remains dominated. It is therefore not necessary to extend this label until its

path reaches t, it can be deleted as soon as dominance is detected.

The proposed bounded labelling algorithm is obtained by modifying any of

the labelling algorithms as follows: the algorithm runs as described in Sections

2.3.1 and 2.3.2 while there is no label at node t. Once there is at least one label

at t, one can start checking bounds. For each newly generated label, one checks

whether it is dominated by at least one label at target node t. The labels at

the target node, Labels(t) = {l1 = (z1
1 , z

1
2), . . . , lm = (zm1 , z

m
2 )}, are sorted by

increasing first objective value, i.e. z1
1 < z2

1 < . . . < zm1 and z1
2 > z2

2 > . . . > zm2 .

Procedure 3 shows how to check whether the newly generated label l = (z1, z2)

is dominated.
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Procedure 3 bounded labelling dominance check

1: input: Newly generated label l = (z1, z2) and sorted label set Labels(t) =
{l1 = (z1

1 , z
1
2), . . . , lm = (zm1 , z

m
2 )}.

2: Set dominated = FALSE and i = 1.
3: while (dominated == FALSE) and (i 5 m) and (zi1 5 z1) do
4: if zi2 5 z2 then
5: Set dominated = TRUE.
6: else
7: i = i+ 1
8: end if
9: end while

10: output: dominated

Only labels that are not dominated by any of the labels at t are retained,

all others are deleted. It is easy to implement this check into any labelling

algorithm. Step 8 in Algorithms 4 and 5 is modified by simply including the

dominance check from Procedure 3 when “eliminating all dominated labels”.

The resulting algorithms are called bounded labelling algorithms and denoted

by bLCOR and bLSET. Although the dominance check is formulated for the

bi-objective problem here, our idea is immediately applicable to multi-objective

problems.

Remark 2.5.1 It should be noted that bi-objective labelling algorithms ac-

tually yield the efficient paths from s to all other nodes, not just to the target

node t. With our improvement the algorithm is restricted to finding the short-

est paths from s to t. If the aim was obtaining shortest paths from s to a

small number of target nodes t1, . . . , tl, the bound check could be modified to

only deleting a label if it is dominated by at least one label at each target

node t1, . . . , tl. Too many target nodes might diminish the effectiveness of the

bounds.

In some cases it can be determined that a label is not dominated by any of the

labels at t without actively comparing all of them. Let the labels at the target

node, l1, . . . , lm, be sorted by increasing first objective value as above. A label

l = (z1, z2) at any node will clearly not be dominated by any of the labels

l1, . . . , lm if z1 < z1
1 or z2 < zm2 . Note that checking z1 < z1

1 is included as part

of the while loop of the dominance check. If z2 < zm2 , it is not necessary to
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check a label l against all labels l1, . . . , lm as it is clear a priori that l cannot

be dominated. This additional condition was implemented, but achieved no

further run-time improvements, which is why the corresponding results are not

reproduced here.

2.5.2 Numerical Experiments

Table 2.6. Grid network test problems.

run-time (sec) ratio run-time (sec) ratio

name LCOR bLCOR bLCOR over LCOR LSET bLSET bLSET over LSET

G01 0.01 0.01 - 0.01 0.01 -

G02 0.05 0.05 - 0.05 0.05 -

G03 0.21 0.21 1.00 0.53 0.53 1.00

G04 0.07 0.06 - 0.10 0.09 -

G05 3.14 3.77 1.20 16.19 19.03 1.18

G06 0.15 0.14 0.93 0.44 0.34 0.77

G07 2.62 2.80 1.07 11.21 10.81 0.96

G08 1.00 1.06 1.06 5.04 4.74 0.94

G09 6.93 7.74 1.12 32.86 35.52 1.08

G10 1.54 1.51 0.98 6.99 6.20 0.89

G11 5.82 5.90 1.01 35.01 33.81 0.97

G12 0.03 0.04 - 0.05 0.05 -

G13 0.59 0.60 1.02 2.57 2.39 0.93

G14 15.14 17.39 1.15 114.56 121.10 1.06

G15 0.00 0.00 - 0.01 0.01 -

G16 0.01 0.01 - 0.01 0.01 -

G17 0.01 0.01 - 0.01 0.01 -

G18 0.01 0.01 - 0.02 0.02 -

G19 0.03 0.02 - 0.04 0.03 -

G20 0.04 0.04 - 0.07 0.06 -

G21 0.06 0.06 - 0.10 0.10 -

G22 0.08 0.08 - 0.15 0.13 0.87

G23 0.11 0.09 0.82 0.22 0.20 0.91

G24 0.18 0.18 1.00 0.53 0.50 0.94

G25 0.18 0.18 1.00 0.46 0.42 0.91

G26 0.22 0.23 1.05 0.62 0.62 1.00

G27 0.32 0.36 1.12 1.25 1.31 1.05

G28 0.62 0.70 1.13 2.41 2.59 1.07

G29 1.03 1.17 1.14 4.89 5.57 1.14

G30 2.54 2.80 1.10 10.98 13.11 1.19

G31 8.72 12.73 1.46 57.33 68.26 1.19

G32 18.10 32.27 1.78 153.97 179.14 1.16

G33 20.85 32.91 1.58 183.93 199.38 1.08

avg 1.13 1.01

min 0.82 0.77

max 1.78 1.19

The main aspect of the numerical experiments is comparing the run-time of the
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proposed bi-objective bounded labelling algorithms to that of the standard bi-

objective labelling algorithms. Furthermore, the bounded labelling algorithm

is briefly compared to the most successful algorithms for the BSP problem

as identified in Section 2.4.2. The test instances from Section 2.4.1 are used

again to evaluate the performance of the bounded labelling algorithms. For the

computational experiments, the setup is the same as for the BSP experiments

in Section 2.4.2. We calculate the ratio bLCOR
LCOR

and bLSET
LSET

, respectively. A ratio

< 1 indicates that the bounded labelling algorithm performs better, whereas

a ratio > 1 indicates the original labelling algorithm is preferable.

Table 2.7. NetMaker network test problems.

run-time (sec) ratio run-time (sec) ratio

name LCOR bLCOR bLCOR over LCOR LSET bLSET bLSET over LSET

NM01a 21.64 0.00 0.00 173.16 0.00 0.00

NM01b 72.80 0.00 0.00 62.22 0.00 0.00

NM01c 2.45 0.00 0.00 16.28 0.00 0.00

NM02a 16.76 0.00 0.00 160.79 0.00 0.00

NM02b 46.61 0.00 0.00 45.24 0.00 0.00

NM02c 2.55 0.01 0.00 15.71 0.00 0.00

NM03a 4.33 0.00 0.00 28.00 0.00 0.00

NM03b 7.10 0.00 0.00 3.65 0.00 0.00

NM03c 0.55 0.00 0.00 1.44 0.00 0.00

...
...

...
...

...
...

...

NM17a 413.13 0.00 0.00 NA 0.00 0.00

NM17b 2080.91 0.00 0.00 NA 0.00 0.00

NM17c 1085.21 0.00 0.00 NA 0.00 0.00

NM18a 193.88 0.00 0.00 1697.10 0.00 0.00

NM18b 892.60 0.00 0.00 1374.62 0.00 0.00

NM18c 204.35 0.00 0.00 2005.44 0.00 0.00

NM19a 99.37 0.00 0.00 854.51 0.00 0.00

NM19b 1478.49 0.00 0.00 2278.00 0.00 0.00

NM19c 204.50 0.00 0.00 1958.59 0.00 0.00

NM20a 881.79 0.00 0.00 NA 0.00 0.00

NM20b 1842.54 0.00 0.00 1647.66 0.00 0.00

NM20c 341.01 0.00 0.00 2614.00 0.00 0.00

avg 0.00 0.00

min 0.00 0.00

max 0.00 0.00

Grid networks have a network structure that does not permit (average) im-

provement of run-time through bounded label correcting, exhibited by the

average ratio 1.13 > 1, see Table 2.6. Here, the additional effort of checking

for every newly created label whether it is dominated by any of the (often

many!) labels at t seems larger than what is saved by discarding labels occa-

sionally. For the label setting algorithm, we observe similar run-times of the
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Table 2.8. Road network test problems.

run-time (sec) ratio run-time (sec) ratio

name LCOR bLCOR bLCOR over LCOR LSET bLSET bLSET over LSET

DC1 0.16 0.16 1.00 0.08 0.08 -

DC2 0.24 0.01 0.04 0.14 0.00 0.00

DC3 0.40 0.01 0.02 0.18 0.00 0.00

DC4 0.21 0.10 0.48 0.10 0.06 -

DC5 0.26 0.00 0.00 0.07 0.00 -

DC6 0.15 0.10 0.67 0.05 0.05 -

DC7 0.31 0.02 0.06 0.13 0.01 0.08

DC8 0.13 0.08 0.62 0.04 0.03 -

DC9 0.45 0.04 0.09 0.26 0.04 0.15

RI1 1.54 0.06 0.04 0.34 0.04 0.12

RI2 7.74 2.75 0.36 1.97 0.68 0.35

RI3 0.77 0.31 0.40 0.24 0.11 0.46

RI4 2.68 0.66 0.25 0.99 0.27 0.27

RI5 5.48 1.06 0.19 3.22 0.41 0.13

RI6 11.03 9.63 0.87 2.44 2.33 0.95

RI7 4.27 2.38 0.56 1.89 1.17 0.62

RI8 5.83 1.85 0.32 0.97 0.53 0.55

RI9 9.43 0.28 0.03 4.10 0.15 0.04

NJ1 19.77 1.29 0.07 7.53 0.30 0.04

NJ2 32.47 0.58 0.02 20.61 0.14 0.01

NJ3 23.70 16.51 0.70 13.13 7.65 0.58

NJ4 29.48 1.40 0.05 19.20 0.47 0.02

NJ5 16.42 5.37 0.33 7.18 1.73 0.24

NJ6 62.41 16.32 0.26 66.33 13.33 0.20

NJ7 24.66 1.45 0.06 6.30 0.33 0.05

NJ8 11.76 7.72 0.66 5.07 2.76 0.54

NJ9 53.44 41.44 0.78 32.35 26.87 0.83

avg 0.33 0.28

min 0.00 0.00

max 1.00 0.95

bounded algorithm compared to the original one with an average ratio of 1.01.

The results for the other two network types are more promising:

The most striking results appear for the NetMaker instances as displayed in

Table 2.7. Here, run-time is always reduced to 5 0.01 although the run-time

of LCOR and LSET is very high in most cases leading to an average ratio of

0.00 in all four cases. We reduce the table by only showing complete entries for

NM1a-NM3c and NM17a-NM20c as all results look similar – instances grow

bigger and with them the run-time of the original labelling approaches, but

not that of the bounded approaches. This can be explained via the structure

of the networks. As the instances were constructed to “wrap around”, there

are often arcs from nodes with low numbers that reach backwards and connect
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to a node with very high number, i.e. close to the target node. In many

instances, only few efficient paths exist which are also very short as they reach

“backwards” from the nodes with low numbers to those with high numbers. For

any labelling algorithm to finish, however, it is necessary to generate the paths

from the source to all other nodes, whereby many long paths are enumerated

that can never be efficient once they reach t. The bounds are very effective

here, because efficient s-t paths are found quickly and have fairly low costs in

both components, so that many labels can be discarded.

Finally, the results for road networks are listed in Table 2.8. For this problem

type, the bounded algorithms bLCOR and bLSET both improve the run-time

significantly when compared with the original algorithms LCOR and LSET.

On average we observe a ratio of 0.33 for bounded label correcting and 0.28

for bounded label setting. These ratios indicate that the achieved run-time

improvements of the bounded labelling algorithms are very significant.

This shows that bounded labelling does significantly improve the run-time of

labelling algorithms. To complete the discussion of numerical results, the best

approaches identified in Section 2.4.2 are compared with the bounded labelling

algorithm. In Section 2.4.2 the labelling algorithms, LCOR and LSET, are

compared with the two other algorithm types, Two Phase Method (2LCOR

and 2LSET) and the near-shortest path algorithm (NSPD). Hence, the run-

times reported for 2LCOR, 2LSET and NSPD in Tables 2.16 and 2.17 are

compared to those of bLCOR and bLSET in Tables 2.7 and 2.8. We generate

new figures by including bLCOR and bLSET in Figures 2.20 and 2.21 depicting

final results. As bounded labelling does not have any positive effect for grid

networks, a further comparison for grid networks is omitted here.

In case of the NetMaker networks, the bounded labelling algorithms clearly

are competitive with the other solution algorithms (the Two Phase Method

and the near-shortest path algorithm) or even better, see Figure 2.22 for a

visual display of this result. The bounded labelling algorithms exceed the

performance of the other algorithms with all run-times being less than 0.01

seconds. Comparisons between the approaches are omitted here as neither the

Two Phase Method nor the near-shortest path algorithm take more than 0.06

seconds to solve any of the instances. The experiments show that the Two

Phase Method, near-shortest path, and the bounded labelling algorithms are
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Figure 2.22. Comparing best BSP approaches and bounded labelling - Net-
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equally well suited to solve NetMaker instances as all instances can be solved

in less than 0.1 seconds by any of the algorithms.

When solving road networks the Two Phase Method with label setting in

phase 2 (2LSET) was found to be the superior approach in Section 2.4.2. In

Figure 2.23, we can see that bLSET has shorter running time than LSET,

and bLCOR achieves a shorter running time than LCOR. Also, bLSET often

performs better than the Two Phase Approach 2LSET.

Additionally to the figure, we compare 2LSET and the new bounded la-

belling algorithms by calculating the ratios of run-time bLCOR/2LSET and

bLSET/2LSET. In case of label correcting, 2LSET remains the superior ap-

proach as the average ratio bLCOR/2LSET is 1.97 with a minimum value of

0.45 and a maximum of 4.61. The bounded label setting approach, bLSET,

outperforms 2LSET for many instances with an average ratio bLSET/2LSET

of 0.71, a minimum of 0.11 and a maximum of 1.22.
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2.6 Modelling Cyclist Route Choice – an Ap-

plication of BSP

Modelling traffic and route choice of motorised vehicles in particular is dis-

cussed in detail in Chapter 4. This modelling process, the so-called four-stage

model, is briefly summarised here. In the first two steps of the four-stage

model, it is determined how much travel demand originates from different

zones in the network and where it is heading. Then the total travel demand is

split between different possible transport modes, such as private car, tram, bus,

cycling, walking, to name a few. In the final stage of the four-stage model the

actual route choice is determined, often separately for each mode. It is usually

assumed that each trip maker aims at minimising their individual travel time

or some generalised cost function consisting of time and other route choice

factors.

Modelling route choice of drivers of motorised vehicles and cyclists are two

significantly different problems. Car travel is subject to network congestion

which implies that the travel time is not proportional to road length. Traffic

volumes influence travel time on a route for private motor vehicles such as

cars. The equilibrium problem solved to model route choice of motor vehicles

within a road network is discussed in Chapter 4.

While route choice of motorised vehicles is modelled, so-called active modes

such as walking and cycling are often disregarded as they are not subject

to congestion, and they also do not contribute to it. Active modes are ac-

knowledged to be effective options for commuting trips, as they do not create

emissions, they do not contribute to traffic congestion, and they hardly endan-

ger other traffic participants. Furthermore, active modes entail an additional

health benefit due to exercising. Unfortunately cycling can also be dangerous.

In Auckland, New Zealand, this is due to high traffic volumes, narrow lanes

on roads, a lack of cycle paths, but also careless car drivers.

In order to encourage more commuters to choose the bicycle for their trip to

work or other destinations, it is necessary to improve dedicated cycle path

infrastructure and thus safety. It is important to correctly assess the impact

of this new piece of infrastructure at a planning stage, to answer questions

such as: will cyclists use the cycle path? When a piece of road is added to a
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road network, the traffic assignment process for motorised vehicles described

above is used to determine the expected traffic volume on the road and also

the impact it has on the surrounding network, such as effects on congestion in

the area.

At present, actual cycle route choice is not modelled at all and it is therefore

impossible to evaluate the impact of an improvement of the cycle network.

No model exists to predict how many cyclists benefit from an improvement.

Especially when different alternatives for improvement of a cycle network are

proposed, knowing how each one affects cyclist route choice could help select

the best alternative.

The problem of modelling cyclist route choice poses a different challenge com-

pared to modelling route choice of motorised vehicles. The problem is a simpler

one in terms of travel time estimation as cyclists are generally not subject to

traffic congestion – due to their small size, they are able to pass queues. There-

fore, it can be assumed that their travel time is proportional to road length.

What complicates the cyclist route choice problem is that cyclists have more

than one objective influencing their route choice, a very important one being

safety. This appears to be particularly true in Auckland, where only little

infrastructure is dedicated solely to cyclists, instead cyclists share roads with

cars or they share bus lanes.

We identify the cyclist route choice problem to be at the core of every transport

planning tool that deals with cycling facilities. As a first step, cyclist route

choice is modelled here, which could later be incorporated into the four-stage

model of transport planning. We study cyclist route choice on the basis of the

Auckland road network, where trips between two particular zones of Auckland

are considered during the morning peak period. In particular trips from the

green zone to the red zone in Figure 2.24 are studied. The green zone is Point

Chevalier, a residential area in Auckland, whereas the red zone lies within

Auckland’s Central Business District. The selected origin and destination

represent a typical commute to work in Auckland.

We discuss the two objectives identified as main influencing factors of cyclist

route choice in the subsequent section. Then, a solution algorithm for the

cyclist route choice problem is proposed followed by a discussion of possible

areas of application. The results presented in this section are also contained
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Figure 2.24. Zones of the Auckland road network; the green zone represents
Point Chevalier and the red zone lies in the Central Business District; source:
Auckland Regional Council.

in Raith et al. (2009).

2.6.1 Objectives in Cyclist Route Choice

The identification of main factors that influence cyclist route choice is the

subject of numerous studies. Travel time is identified as the most important

objective according to which cyclists choose their route (e.g. Aultman-Hall

et al. 1997; Stinson and Bhat 2003). Aultman-Hall et al. (1997), for example,

compare the actual routes taken by commuter cyclists to their shortest-distance

paths. They find that 58% of all commuters actually follow their shortest-

distance path. This clearly indicates that travel distance (or travel time, which

should be highly correlated with distance) is one of the most important factors

of route choice. However, there are other influencing factors that lead cyclists

to divert from their shortest-distance route.

Other factors affecting cyclist route choice are studied in Dill and Carr (2003);

Stinson and Bhat (2003); Aultman-Hall et al. (1997). Dill and Carr (2003)

are concerned with the general willingness to cycle. Here the correlation of

percentage of cyclists in a city and factors such as rainy days per year, cycling

facilities, and household income is investigated. Aultman-Hall et al. (1997);
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Stinson and Bhat (2003) are more concerned with the actual route choice.

Factors that influence route choice are road traffic, road gradient, presence of

dedicated cycling facilities, to name just a few.

Therefore, it is reasonable to formulate cyclist route choice as a bi-objective

problem with travel time as one objective, whereas all other route choice factors

are combined into a second objective that we call attractiveness.

Travel Time Objective

We denote by r a path that connects a cyclist’s origin and destination. The

travel time along an arc a is ta, which we assume independent of any factors

other than length of the arc – in particular it does not depend on the amount

of traffic on the arc. For simplicity we assume that distance equals time, a

correct factor for the proportionality of the two can easily be introduced later.

The travel time tr on a path r is then obtained as the sum of travel times on

each of its arcs:

tr =
∑
a∈r

ta. (2.2)

A significant portion of travel time along an inner-city route is spent wait-

ing at intersections with traffic lights (signalised intersections). The original

road network of Auckland, the Auckland Regional Transport Planning Model

(known as ART model) provided by the Auckland Regional Council, needs

to be adapted to explicitly account for delay at signalised intersections. The

original model consists of nodes that represent large intersections and arcs

that represent the roads connecting large intersections, see Figure 2.25 for an

intersection in the original network.

The network is modified by replacing every node in the study area that rep-

resents a major signalised intersection by dummy nodes and corresponding

dummy arcs as shown in Figure 2.26. The figure shows an intersection where

two roads intersect. This allows to add the average time spent waiting at an

intersection to the path travel time. We assume that cyclists do not have to

queue at the signal, as they are able to pass the queue and get to its front

relatively easily. Hence their average waiting time is influenced only by the

total time of one signal cycle TS and the time the signal is red Tred. Whether a
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bc

Figure 2.25. Original representation
of a signalised intersection.

bc bc
bc

bc

Figure 2.26. New representation of a
signalised intersection.

cyclist needs to stop at a red light is measured by the ratio Tred
TS

. If the cyclists

needs to wait, the average delay at the light is Tred
2

. Multiplying those two

ratios yields the average delay
T 2
red

2TS
. The corresponding average delay values

represent the travel time associated with the dummy intersection arcs.

Apart from modifying the network at intersections, additional arcs are intro-

duced into the model corresponding to infrastructure that can be used only by

cyclists, but not four-wheeled motor vehicles. In particular, an off-road bicycle

way in the considered area (between the two highlighted zones in Figure 2.24)

was introduced into the model.

Attractiveness Objective

To model cyclist route choice, one needs to evaluate the attractiveness of a

route and each road. Several articles deal with the identification of factors

that influence the perception of road attractiveness and also propose how to

measure it. A report by the Land Transport Safety Authority (2004) proposes

to assess the so-called level of service (LOS) which, in the context of cycling,

can be interpreted as bicycle compatibility or cyclability.

Procedures have been proposed to allow the conversion of the qualitative mea-

sure attractiveness into a quantitative one. There are different studies that

link road characteristics to the attractiveness of the road for cyclists. Harkey

et al. (1998); Florida Department of Transportation (2002) present formulae

to obtain a quantitative measure of LOS based on factors such as lane width,

traffic volume, amount of heavy vehicles, pavement condition, and parking

(both suddenly opening car doors and vehicles reversing into parking spaces

pose great danger to cyclists). Both measures do not include factors such

as road gradient that seem important for Auckland. In Palmer et al. (1998)
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Table 2.9. Scoring system for attractiveness objective.

Attractiveness rating Score Integer value

A 81-100 6

B 61-80 5

C 41-60 4

D 21-40 3

E 1-20 2

F 5 0 1

many more factors are included in the attractiveness rating such as motor

traffic speed, volume, lane width, presence of on-street parking, road gradient,

provided cycle facilities, and pavement condition. A scoring system is used to

convert these factors into a simple A-F score.

We collected road characteristics data for the study area, which is converted

into a score following the Palmer et al. (1998) model. The obtained score

between 0 and 100 corresponds to an A-F grade as shown in Table 2.9, with

A being the best possible rating and F the worst. We represent this grade by

an integer value with the highest grade A corresponding to a value of 6. We

denote by αa the integer value corresponding to the attractiveness rating of

arc a.

We also need an attractiveness rating for every dummy intersection arc. A

measure of intersection safety for through movements is presented in Landis

et al. (2003). Attractiveness is rated according to lane width, crossing distance,

traffic volume, and number of through lanes. Every intersection in the study

area of the Auckland network was analysed and an A-F rating was derived.

As the literature does not describe how to measure attractiveness in turning

movements, they were rated similar to through movements and according to

personal judgement.

Attractiveness of a path cannot be obtained as the sum of attractiveness values

on each arc of the path, unlike travel time which is obtained by summing

individual arc travel times (2.2). This can be seen based on a small example:
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1

3

2
a1

a3

a2

Assume that the travel time and safety associated with arcs a1, a2, a3 are

ta1 = ta2 = 1, ta3 = 2 and αa1 = αa2 = 4, αa3 = 6. If both costs and times are

assumed additive, the path consisting of arcs a1 and a2 has objective vector

(2, 8), whereas the path consisting of arc a3 has objective vector (2, 6). Both

paths connect node 1 to node 3. Path a1, a2 dominates path a3 as the cor-

responding attractiveness value of the first path is higher. Clearly, path a3

should be the better path as both path travel times are identical, but path a3

is much safer than the other path. A similar example can be constructed when

small attractiveness values represent the most attractive path and we aim at

minimising total attractiveness.

It appears that the attractiveness measure for a path should be calculated by

taking path safety into account, but also the time a cyclist travels on roads

with a certain safety factor. Thus, we measure the attractiveness along a path

r as a time-weighted average value of attractiveness along a route:

αr =

∑
a∈r taαa∑
a∈r ta

=

∑
a∈r taαa

tr
.

2.6.2 Solving the Cyclist Route Choice Problem

Cyclists choose their route according to the two criteria travel time t and path

attractiveness α, where the aim is to minimise time while maximising path at-

tractiveness. This is a bi-objective shortest path problem with a minimisation

and a maximisation objective:

min

max

∑
a∈r taP
a∈r taαaP
a∈r ta

s.t. r ∈ R,
(2.3)

where R denotes the set of all paths cyclists can choose to follow from their

origin to their destination.
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Unfortunately, the problem with attractiveness objective αr cannot be solved

with a BSP algorithm as adding new arcs to a path may decrease the value of

the attractiveness objective. On the basis of the following example we show

that any algorithm fails that is based on the assumption that only efficient

paths from origin to an intermediate node can lead to efficient paths to the

destination node.

Example 2.6.1 We consider the following network with travel time and at-

tractiveness (ta, αa) right next to each arc.

1 2 3 4 5 6 7
(1, 6) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

(6, 2)

We consider paths from node 1 to node 7. Both possible paths through nodes

1, 2, 3, 4, 5, 6, 7 and through nodes 1, 6, 7 are efficient. Their respective path

cost vectors are
(
7, 13

7

)
and

(
6, 11

6

)
. However, out of the two possible paths

from node 1 to node 6, the path following the arc from 1 to 6 is dominated by

the path through nodes 1, 2, 3, 4, 5, 6 as their respective path cost vectors are 6

2

 and

 5

2

 .

Therefore, a shortest path labelling algorithm cannot find the path 1, 6, 7.

Remark 2.6.1 Apart from bi-objective labelling approaches, NSP and SPAR

are discussed as solution algorithms for BSP problems earlier in this chapter.

NSP is an enumerative algorithm that we apply to a weighted sum version of

the BSP problem. A single-objective weighted sum problem derived from (2.3)

would also not be guaranteed to converge and present a correct answer. The

simplex based approach is not applicable as arc costs cannot be considered

fixed as the value of the second objective component may change when the

same arc is added to two different paths.

We can show that efficient solutions of problem (2.3) are always efficient so-
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lutions of an auxiliary problem obtained by dropping the denominator of the

attractiveness objective

min

max

∑
a∈r ta∑
a∈r taαa

s.t. r ∈ R.
(2.4)

Problem (2.4) satisfies the assumption that the path cost vector increases as an

arc is added to the path. We modify a bi-objective label correcting algorithm

to maximise the second objective component, and also to ensure that no nodes

repeat within one path to avoid the generation of paths that contain cycles.

This algorithm can be used to find all efficient solutions of (2.4). Among those

solutions, all efficient paths for (2.3) are selected, which solves the cyclist route

choice problem (2.3). We must therefore verify the following Proposition.

Proposition 2.6.1 An efficient path of (2.3) is always an efficient path of

(2.4).

Proof Assume the contrary, i.e. that there exists an efficient path r of (2.3)

that is not efficient for (2.4). Then there exists a path r′ that dominates r for

(2.4), which means∑
a∈r′

ta 5
∑
a∈r

ta and
∑
a∈r′

taαa =
∑
a∈r

taαa,

with at least one strict inequality. This implies that∑
a∈r′ taαa∑
a∈r′ ta

>

∑
a∈r taαa∑
a∈r ta

.

Hence, r′ dominates r for (2.3), a contradiction. �

The problem is solved using a bi-objective label correcting algorithm modified

as discussed above. Figure 2.27 shows the obtained paths and Figure 2.28 the

corresponding path cost vectors (note that the second objective is maximised).

Four out of the five obtained paths use an off-road cycle corridor called the

“Northwestern Cycleway”. However, this is not the most direct route, the

purple route is shorter.
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Figure 2.27. Efficient paths for cyclist trips from Point Chevalier to Auckland
CBD.
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Figure 2.28. Costs associated with efficient paths for cyclist trips from Point
Chevalier to Auckland CBD. Path length is displayed on the horizontal axis,
attractiveness on the vertical axis.
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2.6.3 Discussion

The method above allows to identify possible routes for cyclists without mak-

ing the behavioural assumption that all cyclists choose their route according

to a single objective, such as the shortest distance. The range of efficient paths

obtained in the above example shows how valuable the Northwestern Cycle-

way may be on a commuting trip to the city, as four out of five paths use

this cycleway. Also, the resulting paths indicate where the shortest path and

the more attractive paths deviate, which may give insight into where cyclist

infrastructure needs improvement.

A possible application of the cyclist route choice model (2.3) is the generation

of a cycle map. This map could promote cycling as a viable alternative to

commuting by car. The map should highlight the best compromise of travel

time and attractiveness for an average commuter cyclist. In order to do this,

the fastest path with a minimum level of attractiveness could be chosen. If, for

example, a minimal attractiveness of 4.5 is required, the blue path in Figure

(2.27) is selected. Of course the best routes for all major origin-destination

pairs within the Auckland region would have to be obtained for a complete

map.

Transport planning decisions require that different options for infrastructure

investment are evaluated and compared. With respect to infrastructure for mo-

tor vehicles, this can be achieved by a comprehensive traffic modelling process

whereby a “do-nothing” and a “do-something” approach are modelled. Com-

paring the two highlights the benefits for network users and possible shifts in

traffic flows, and also allows to compare the impact of different investment

strategies. With cycling, there exist no computerised models for route choice

and also no cyclist traffic assignment process to determine which of all possible

routes cyclists choose. The lack of such a cyclist assignment makes it difficult

to evaluate the impact of changes made to the cycle network.

Assuming a certain number of cyclist trips between an origin and destination

(the demand), such an assignment model needs to assign portions of trips to

different paths connecting origin and destination. It is widely accepted that

cyclists do not base this choice purely on travel time as discussed above. The

bi-objective problem with objectives travel time and attractiveness returns

efficient paths that are all reasonable route choices for a cyclist. It can be
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assumed that most cyclists choose one of those routes. Now, portions of the

total demand need to be assigned to each efficient path. Experienced commuter

cyclists might not worry about safety and gradient of a route and therefore

choose the shortest one. As mentioned earlier, Aultman-Hall et al. (1997)

find that 58% of the cyclists in their study of cyclist commuting choose this

shortest route. The portions of demand on the other paths could be determined

through cyclist surveys, depending on how cyclists value their safety compared

to travel time. More details on this follow in Chapter 4 on bi-objective traffic

assignment for motor vehicles. In particular, different methods to split travel

demand between several efficient paths are discussed in Section 4.5, which can

be adapted to cyclist route choice.

2.7 Concluding Remarks on Bi- and Multi-

objective Shortest Path Algorithms

We are able to show that the Two Phase Method is competitive with other

commonly applied approaches to solve the BSP problem. The Two Phase

Method works well with both a ranking, a label correcting, and a label setting

approach in Phase 2, but the label correcting and setting approaches appear to

be preferable as their run-times are more reliable, they do not differ between

different problem instances, as sometimes occurs for the near-shortest path

approach: the purely enumerative near-shortest path approach is a very suc-

cessful approach to solve some problem instances, but the run-time on others

is very long.

We illustrate all this on various test instances. It also becomes clear that

the best performing approach depends on the network type, and even small

variations on the network may have a high impact on performance.

An area of future research is the generation of test instances. It is difficult to

randomly generate networks with a high number of efficient solutions; we are

unable to obtain high numbers of efficient solutions in networks without a grid

structure.

Furthermore, a speed-up technique, called bounded labelling, is presented here.

For two of our three network types, namely NetMaker and road networks,
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bounded labelling performs better than its counterpart standard bi-objective

labelling. In comparison with the Two Phase Method, the proposed tech-

nique yields an algorithm that is better than the Two Phase Method for many

problem instances of the NetMaker and road network types.

The bounded labelling technique can easily be incorporated into multi-objective

shortest path labelling algorithms. It is a subject of future research to assess

whether bounded labelling also improves on run-times of multi-objective la-

belling algorithms.

Other speedups of bi- and multi-objective label correcting and label setting

algorithms should be investigated in the future. For single-objective shortest

path problems, the efficient utilisation of data structures does provide signifi-

cant speedups and similar improvements may be obtained for BSP and MSP

problems.

We also present a novel area of application for BSP problems, namely the

modelling of cyclist route choice. We were able to show how the cyclist problem

can be modelled by considering a time and attractiveness objective, and also

how it can be solved. We point out different areas where the ability to model

cyclist route choice is valuable. The integration of the cyclist route choice

model into a traffic assignment procedure for cyclists is an important area for

future research.

2.8 Tables from Section 2.4

For completeness, all tables to support statements on the outcome of compu-

tational experiments from Section 2.4 are given on the following pages.

Table 2.10: Bi-objective labelling with LCOR and LSET; run-time in seconds.

LCOR LSET LCOR LSET LCOR LSET

G01 0.01 0.01 DC8 0.13 0.04 NM07c 36.79 298.43

G02 0.05 0.05 DC9 0.45 0.26 NM08a 37.39 294.95

Continued on Next Page. . .
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Table 2.10 – Continued

LCOR LSET LCOR LSET LCOR LSET

G03 0.21 0.53 RI1 1.54 0.34 NM08b 107.48 80.70

G04 0.07 0.10 RI2 7.74 1.97 NM08c 9.85 41.12

G05 3.14 16.19 RI3 0.77 0.24 NM09a 26.91 230.66

G06 0.15 0.44 RI4 2.68 0.99 NM09b 196.27 148.19

G07 2.62 11.21 RI5 5.48 3.22 NM09c 8.55 43.45

G08 1.00 5.04 RI6 11.03 2.44 NM10a 165.92 1262.47

G09 6.93 32.86 RI7 4.27 1.89 NM10b 213.73 120.94

G10 1.54 6.99 RI8 5.83 0.97 NM10c 11.01 51.73

G11 5.82 35.01 RI9 9.43 4.10 NM11a 240.73 3260.00

G12 0.03 0.05 NJ1 19.77 7.53 NM11b 1103.90 1486.70

G13 0.59 2.57 NJ2 32.47 20.61 NM11c 325.31 3090.00

G14 15.14 114.56 NJ3 23.70 13.13 NM12a 199.80 3519.00

G15 0.00 0.01 NJ4 29.48 19.20 NM12b 1424.13 2935.00

G16 0.01 0.01 NJ5 16.42 7.18 NM12c 330.86 3019.00

G17 0.01 0.01 NJ6 62.41 66.33 NM13a 86.36 907.54

G18 0.01 0.02 NJ7 24.66 6.30 NM13b 684.42 995.65

G19 0.03 0.04 NJ8 11.76 5.07 NM13c 63.74 477.96

G20 0.04 0.07 NJ9 53.44 32.35 NM14a 102.97 1137.95

G21 0.06 0.10 NM01a 21.64 173.16 NM14b 517.02 541.96

G22 0.08 0.15 NM01b 72.80 62.22 NM14c 74.44 444.82

G23 0.11 0.22 NM01c 2.45 16.28 NM15a 312.65 2985.00

G24 0.18 0.53 NM02a 16.76 160.79 NM15b 1467.20 1098.58

G25 0.18 0.46 NM02b 46.61 45.24 NM15c 96.33 580.16

G26 0.22 0.62 NM02c 2.55 15.71 NM16a 432.66 -

G27 0.32 1.25 NM03a 4.33 28.00 NM16b 1857.96 3407.00

G28 0.62 2.41 NM03b 7.10 3.65 NM16c 1091.88 -

G29 1.03 4.89 NM03c 0.55 1.44 NM17a 413.13 -

G30 2.54 10.98 NM04a 8.81 58.77 NM17b 2080.91 -

G31 8.72 57.33 NM04b 7.18 4.19 NM17c 1085.21 -

G32 18.10 153.97 NM04c 0.68 1.70 NM18a 193.88 1697.10

G33 20.85 183.93 NM05a 27.93 174.34 NM18b 892.60 1374.62

DC1 0.16 0.08 NM05b 14.68 4.80 NM18c 204.35 2005.44

DC2 0.24 0.14 NM05c 1.34 2.34 NM19a 99.37 854.51

DC3 0.40 0.18 NM06a 67.91 972.42 NM19b 1478.49 2278.00

DC4 0.21 0.10 NM06b 475.19 519.49 NM19c 204.50 1958.59

DC5 0.26 0.07 NM06c 40.83 278.42 NM20a 881.79 -

DC6 0.15 0.05 NM07a 71.74 857.47 NM20b 1842.54 1647.66

DC7 0.31 0.13 NM07b 257.42 439.81 NM20c 341.01 2614.00

dash (-): run-time exceeds 3600 seconds
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Table 2.11: Enumeration with NSP and NSPD; run-time in seconds.

NSP NSPD NSP NSPD NSP NSPD

G01 - - DC8 0.00 0.00 NM07c 0.01 3.82

G02 - - DC9 0.09 0.12 NM08a 0.01 0.08

G03 - - RI1 0.09 0.11 NM08b 0.01 0.80

G04 - - RI2 71.80 72.25 NM08c 0.00 2.34

G05 - - RI3 0.05 0.17 NM09a 0.01 0.04

G06 - - RI4 0.82 0.86 NM09b 0.01 0.00

G07 - - RI5 794.01 806.67 NM09c 0.01 1.59

G08 - - RI6 2.36 2.45 NM10a 0.02 0.16

G09 - - RI7 0.07 0.20 NM10b 0.01 2.24

G10 - - RI8 0.07 0.15 NM10c 0.01 2.54

G11 - - RI9 53.89 55.20 NM11a 0.02 0.21

G12 - - NJ1 0.26 0.82 NM11b 0.01 1.84

G13 - - NJ2 0.85 0.87 NM11c 0.01 9.38

G14 - - NJ3 1.10 1.39 NM12a 0.02 0.18

G15 0.01 0.01 NJ4 0.39 0.55 NM12b 0.02 3.89

G16 0.00 0.01 NJ5 - - NM12c 0.01 0.01

G17 0.00 0.01 NJ6 - - NM13a 0.02 0.16

G18 0.03 0.03 NJ7 3.02 2.84 NM13b 0.02 1.74

G19 0.79 0.79 NJ8 0.65 0.84 NM13c 0.01 0.01

G20 - - NJ9 - - NM14a 0.02 0.10

G21 - - NM01a 0.01 0.02 NM14b 0.02 2.89

G22 - - NM01b 0.00 0.00 NM14c 0.01 26.61

G23 - - NM01c 0.00 0.12 NM15a 0.02 0.75

G24 - - NM02a 0.00 0.03 NM15b 0.02 6.85

G25 - - NM02b 0.00 0.00 NM15c 0.02 119.67

G26 - - NM02c 0.00 0.85 NM16a 0.03 0.49

G27 - - NM03a 0.00 0.02 NM16b 0.02 4.19

G28 - - NM03b 0.00 0.14 NM16c 0.02 86.09

G29 - - NM03c 0.01 0.11 NM17a 0.03 0.40

G30 - - NM04a 0.00 0.02 NM17b 0.02 0.02

G31 - - NM04b 0.00 0.12 NM17c 0.01 0.01

G32 - - NM04c 0.00 0.06 NM18a 0.03 0.27

G33 - - NM05a 0.00 0.08 NM18b 0.02 5.62

DC1 0.01 0.05 NM05b 0.00 0.56 NM18c 0.02 0.01

DC2 0.16 0.16 NM05c 0.00 1.04 NM19a 0.03 0.37

DC3 0.01 0.04 NM06a 0.01 0.07 NM19b 0.02 2.23

DC4 0.01 0.01 NM06b 0.00 0.00 NM19c 0.02 0.01

DC5 0.00 0.00 NM06c 0.00 3.19 NM20a 0.06 0.96

DC6 0.03 0.06 NM07a 0.01 0.06 NM20b 0.04 23.45

DC7 0.01 0.05 NM07b 0.00 0.40 NM20c 0.04 255.35

dash (-): run-time exceeds 3600 seconds
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Table 2.12: Initialisation; run-time in seconds.

L D L D L D

G1 0 0 DC8 0.06 0 NM7c 4.58 0.00

G2 0 0 DC9 0.04 0 NM8a 0.08 0.00

G3 0 0 RI1 0.13 0.02 NM8b 0.26 0.01

G4 0 0 RI2 0.2 0.03 NM8c 3.58 0.01

G5 0.01 0.01 RI3 0.11 0.03 NM9a 0.07 0.00

G6 0.01 0 RI4 0.23 0.02 NM9b 0.26 0.01

G7 0 0 RI5 0.21 0.02 NM9c 19.38 0.00

G8 0 0.01 RI6 0.14 0.02 NM10a 0.47 0.01

G9 0.01 0 RI7 0.16 0.03 NM10b 0.71 0.00

G10 0.01 0.01 RI8 0.15 0.03 NM10c 3.6 0.01

G11 0.01 0 RI9 0.17 0.02 NM11a 0.38 0.01

G12 0 0 NJ1 0.78 0.2 NM11b 3.77 0.01

G13 0.01 0.01 NJ2 0.92 0.2 NM11c 153.64 0.01

G14 0.01 0.01 NJ3 0.85 0.21 NM12a 0.49 0.01

G15 0 0.01 NJ4 0.9 0.19 NM12b 3.5 0.01

G16 0.01 0 NJ5 0.87 0.2 NM12c 799.07 0.00

G17 0 0 NJ6 0.95 0.21 NM13a 0.21 0.01

G18 0 0 NJ7 0.89 0.22 NM13b 0.88 0.01

G19 0 0 NJ8 0.85 0.21 NM13c 38.43 0.01

G20 0 0.01 NJ9 0.77 0.22 NM14a 0.29 0.01

G21 0 0 NM1a 0.05 0.01 NM14b 0.97 0.01

G22 0.01 0.01 NM1b 0.21 0 NM14c 18.04 0.01

G23 0 0.01 NM1c 3.95 0 NM15a 0.81 0.01

G24 0 0 NM2a 0.04 0 NM15b 2.3 0.01

G25 0 0 NM2b 0.18 0 NM15c 91.25 0.01

G26 0 0 NM2c 1.02 0 NM16a 0.57 0.01

G27 0 0.01 NM3a 0.02 0 NM16b 2.89 0.02

G28 0 0 NM3b 0.07 0 NM16c 790.97 0.01

G29 0 0 NM3c 0.25 0 NM17a 0.75 0.02

G30 0 0 NM4a 0.03 0 NM17b 4.05 0.01

G31 0 0 NM4b 0.08 0.01 NM17c - 0.01

G32 0 0 NM4c 0.19 0 NM18a 0.41 0.02

G33 0 0 NM5a 0.1 0 NM18b 2.33 0.02

DC1 0.06 0 NM5b 0.18 0 NM18c 69.75 0.01

DC2 0.09 0 NM5c 1.66 0 NM19a 0.48 0.01

DC3 0.03 0 NM6a 0.2 0.01 NM19b 1.83 0.01

DC4 0.02 0 NM6b 0.55 0 NM19c 407.42 0.01

DC5 0.05 0 NM6c 6.79 0.01 NM20a 1.79 0.02

DC6 0.06 0 NM7a 0.15 0.01 NM20b 7.03 0.02

DC7 0.03 0 NM7b 1.3 0 NM20c 204.62 0.02

dash (-): run-time exceeds 3600 seconds
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Table 2.13: Phase 1; run-time in seconds.

SPAR LDIC DDIC SPAR LDIC DDIC

G1 0.1 0.01 0.01 NM1a 5.18 0.15 0.00

G2 0.98 0.02 0.04 NM1b 2.72 NA NA

G3 0.92 0.01 0.02 NM1c 1.61 1.42 0.01

G4 5.46 0.07 0.12 NM2a 5.56 0.11 0.01

G5 4.98 0.02 0.02 NM2b 3.08 NA NA

G6 13.37 0.07 0.11 NM2c 1.64 0.98 0.00

G7 15.26 0.08 0.12 NM3a 5.72 0.07 0.00

G8 32.35 0.13 0.18 NM3b 2.72 0.06 0.00

G9 32.64 0.09 0.13 NM3c 2.1 0.11 0.00

G10 82.93 0.19 0.29 NM4a 7.2 0.06 0.01

G11 0.28 0.01 0.01 NM4b 2.86 0.56 0.00

G12 5.05 0.03 0.06 NM4c 2.34 0.2 0.00

G13 164.62 0.39 0.6 NM5a 20.16 0.17 0.00

G14 0.49 0.01 0.01 NM5b 9.05 0.88 0.00

G15 0.65 0.01 0.01 NM5c 7.4 1.4 0.00

G16 0.77 0.01 0.01 NM6a 32.84 0.38 0.01

G17 0.92 0.01 0.01 NM6b 20.28 NA NA

G18 1.05 0.01 0 NM6c 8.95 0.98 0.00

G19 1.12 0 0.02 NM7a 34.3 0.44 0.01

G20 1.15 0 0.02 NM7b 20.9 1.44 0.00

G21 1.13 0.02 0.02 NM7c 9.34 2.01 0.01

G22 1.15 0.01 0.01 NM8a 39.22 0.04 0.00

G23 1.24 0.02 0.03 NM8b 21.54 0.34 0.00

G24 1.13 0.02 0.03 NM8c 12.14 1.25 0.00

G25 1.19 0.02 0.03 NM9a 37.9 0.3 0.02

G26 1.18 0.03 0.04 NM9b 23.43 NA NA

G27 1.19 0.03 0.05 NM9c 13.05 8.03 0.00

G28 1.12 0.03 0.05 NM10a 139.21 0.46 0.01

G29 1.15 0.05 0.08 NM10b 73.85 5.24 0.02

G30 0.92 0.09 0.14 NM10c 45.56 2.8 0.01

G31 0.67 0.1 0.19 NM11a 170.45 0.41 0.02

G32 0.31 0.09 0.19 NM11b 103.98 3.5 0.00

G33 0.31 0.09 0.19 NM11c 44.62 5.66 0.00

DC1 1.86 0.04 0.01 NM12a 174 0.47 0.02

DC2 1.52 0.1 0.02 NM12b 119.01 5.32 0.00

DC3 1.72 0.02 0 NM12c 45.7 NA NA

DC4 1.64 0.01 0.01 NM13a 193.63 0.08 0.00

DC5 1.33 NA NA NM13b 138.57 0.76 0.00

DC6 1.82 0.12 0.01 NM13c 62.62 NA NA

DC7 1.5 0.02 0 NM14a 202.46 0.75 0.03

Continued on Next Page. . .



2.8 Tables from Section 2.4 105

Table 2.13 – Continued

SPAR LDIC DDIC SPAR LDIC DDIC

DC8 1.76 NA NA NM14b 124.53 1.54 0.00

DC9 1.55 0.06 0.02 NM14c 62.5 11 0.01

RI1 48.88 0.1 0.06 NM15a 541.43 1.69 0.04

RI2 44.46 1.52 0.52 NM15b 328.52 13.8 0.02

RI3 48.03 0.07 0.02 NM15c 190.96 41.24 0.02

RI4 54.6 1.03 0.34 NM16a 398.4 1.26 0.04

RI5 53.34 0.89 0.42 NM16b 243.5 2.15 0.01

RI6 49.7 0.18 0.15 NM16c 107.48 192.37 0.02

RI7 51.27 0.28 0.11 NM17a 408.82 1.58 0.04

RI8 47.44 0.08 0.05 NM17b 264.65 NA NA

RI9 47.88 0.66 0.31 NM17c 108.63 NA NA

NJ1 2439 0.42 0.09 NM18a 490.24 0.68 0.02

NJ2 2443.5 2.66 1.08 NM18b 324.76 3.48 0.00

NJ3 2491 3 1.17 NM18c 151.72 NA NA

NJ4 2450.5 1.24 0.42 NM19a 484.05 0.22 0.00

NJ5 2583.5 3.16 2.13 NM19b 325.62 2.06 0.00

NJ6 2389 4.88 2.64 NM19c 157.09 NA NA

NJ7 2617 2.26 1.06 NM20a 1283.35 2.62 0.03

NJ8 2686 3.08 1.36 NM20b 778.32 5.58 0.01

NJ9 2602.5 3.28 2.3 NM20c 434.38 26.24 0.01

NA: no need to run Phase 1, as there is only one efficient solution, which is detected after initialisation.

Table 2.14: Phase 2; run-time in seconds.

LCOR LSET NSPD NSP LCOR LSET NSPD NSP

G01 0.02 0.02 0.00 0.01 NM01a 0.00 0.00 0.01 0.09

G02 0.05 0.04 0.01 0.01 NM01b NA NA NA NA

G03 0.23 0.45 0.07 0.07 NM01c 0.00 0.00 0.00 0.19

G04 0.07 0.08 0.01 0.00 NM02a 0.00 0.00 0.00 0.10

G05 3.67 15.37 15.52 15.57 NM02b NA NA NA NA

G06 0.15 0.31 0.02 0.01 NM02c 0.00 0.00 0.00 0.26

G07 2.72 9.71 99.98 99.46 NM03a 0.00 0.00 0.00 0.06

G08 1.11 4.42 0.17 0.15 NM03b 0.00 0.00 0.00 0.00

G09 7.59 30.34 328.95 330.37 NM03c 0.00 0.00 0.00 0.00

G10 1.52 5.73 0.20 0.18 NM04a 0.00 0.00 0.01 0.09

G11 5.91 29.99 1.52 1.43 NM04b 0.00 0.00 0.00 0.23

G12 0.04 0.04 0.01 0.01 NM04c 0.00 0.00 0.00 0.07

G13 0.63 2.21 0.22 0.21 NM05a 0.00 0.00 0.01 0.21

G14 16.85 104.03 163.46 164.91 NM05b 0.00 0.00 0.00 0.00

Continued on Next Page. . .
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Table 2.14 – Continued

LCOR LSET NSPD NSP LCOR LSET NSPD NSP

G15 0.00 0.00 0.00 0.00 NM05c 0.00 0.00 0.00 1.00

G16 0.00 0.00 0.00 0.00 NM06a 0.00 0.00 0.01 0.20

G17 0.00 0.00 0.00 0.00 NM06b NA NA NA NA

G18 0.01 0.01 0.01 0.00 NM06c 0.00 0.00 0.00 2.84

G19 0.02 0.02 0.01 0.01 NM07a 0.00 0.00 0.01 0.15

G20 0.03 0.05 0.00 0.01 NM07b 0.00 0.00 0.00 0.90

G21 0.06 0.09 0.01 0.00 NM07c 0.00 0.00 0.00 0.00

G22 0.08 0.10 0.02 0.02 NM08a 0.00 0.00 0.00 0.06

G23 0.11 0.18 0.03 0.02 NM08b 0.00 0.00 0.00 0.73

G24 0.18 0.41 0.08 0.08 NM08c 0.00 0.00 0.00 2.01

G25 0.19 0.37 0.59 0.58 NM09a 0.00 0.00 0.01 0.17

G26 0.24 0.54 0.16 0.15 NM09b NA NA NA NA

G27 0.37 1.12 0.50 0.49 NM09c 0.00 0.00 0.01 2.83

G28 0.71 2.18 - - NM10a 0.00 0.00 0.01 0.26

G29 1.19 4.66 3.06 3.04 NM10b 0.00 0.00 0.01 2.71

G30 2.88 10.79 2.97 2.97 NM10c 0.00 0.00 0.00 1.25

G31 11.53 57.39 185.81 186.44 NM11a 0.00 0.00 0.01 0.32

G32 26.03 154.16 - - NM11b 0.00 0.00 0.01 1.64

G33 28.08 183.98 - - NM11c 0.00 0.00 0.01 7.09

DC1 0.08 0.06 0.00 0.04 NM12a 0.00 0.00 0.02 0.42

DC2 0.01 0.00 0.07 0.09 NM12b 0.00 0.00 0.00 3.43

DC3 0.01 0.00 0.01 0.04 NM12c NA NA NA NA

DC4 0.04 0.03 0.01 0.01 NM13a 0.00 0.00 0.01 0.12

DC5 NA NA NA NA NM13b 0.00 0.00 0.00 1.46

DC6 0.10 0.03 0.01 0.06 NM13c NA NA NA NA

DC7 0.01 0.01 0.01 0.04 NM14a 0.00 0.00 0.02 0.38

DC8 NA NA NA NA NM14b 0.00 0.00 0.01 2.19

DC9 0.03 0.04 0.09 0.13 NM14c 0.00 0.00 0.01 63.27

RI1 0.02 0.02 0.06 0.09 NM15a 0.00 0.00 0.03 1.80

RI2 1.67 0.53 0.43 1.13 NM15b 0.00 0.00 0.00 0.00

RI3 0.10 0.05 0.01 0.12 NM15c 0.00 0.00 0.01 40.80

RI4 0.38 0.23 0.16 0.56 NM16a 0.00 0.00 0.03 1.29

RI5 0.37 0.36 0.32 0.60 NM16b 0.00 0.00 0.01 3.81

RI6 8.12 1.93 1.21 1.32 NM16c 0.00 0.00 0.00 0.00

RI7 1.86 1.02 0.07 0.29 NM17a 0.00 0.00 0.03 1.07

RI8 1.53 0.47 0.05 0.12 NM17b NA NA NA NA

RI9 0.22 0.15 74.38 87.16 NM17c NA NA NA NA

NJ1 0.50 0.17 0.11 0.66 NM18a 0.00 0.00 0.03 0.43

NJ2 0.14 0.08 0.67 1.59 NM18b 0.00 0.00 0.01 4.42

NJ3 6.73 5.49 0.69 2.25 NM18c NA NA NA NA

NJ4 0.52 0.32 0.33 0.82 NM19a 0.00 0.00 0.01 0.28

NJ5 2.67 1.23 - - NM19b 0.00 0.00 0.00 0.00

Continued on Next Page. . .
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Table 2.14 – Continued

LCOR LSET NSPD NSP LCOR LSET NSPD NSP

NJ6 10.78 11.70 1.46 2.60 NM19c NA NA NA NA

NJ7 0.73 0.28 0.71 1.36 NM20a 0.00 0.00 0.03 2.19

NJ8 5.09 2.44 0.71 2.04 NM20b 0.00 0.00 0.01 18.71

NJ9 36.71 26.69 - - NM20c 0.00 0.00 0.01 166.87

dash (-): run-time exceeds 3600 seconds;

NA: no need to run Phase 2, as there is only one efficient solution, which is detected after initialisation.

Table 2.15: Final results for grid networks; run-time in seconds.

LCOR LSET 2LCOR 2LSET |ZN | LCOR LSET 2LCOR 2LSET |ZN |

G01 0.01 0.01 0.02 0.02 37 G15 0.00 0.01 0.01 0.01 6

G02 0.05 0.05 0.06 0.05 80 G16 0.01 0.01 0.01 0.01 6

G03 0.21 0.53 0.27 0.49 124 G17 0.01 0.01 0.01 0.01 10

G04 0.07 0.10 0.08 0.10 46 G18 0.01 0.02 0.02 0.02 15

G05 3.14 16.19 3.78 15.49 290 G19 0.03 0.04 0.03 0.03 18

G06 0.15 0.44 0.18 0.34 44 G20 0.04 0.07 0.05 0.07 32

G07 2.62 11.21 2.83 9.83 149 G21 0.06 0.10 0.08 0.11 54

G08 1.00 5.04 1.22 4.53 122 G22 0.08 0.15 0.10 0.12 53

G09 6.93 32.86 7.77 30.52 247 G23 0.11 0.22 0.13 0.20 77

G10 1.54 6.99 1.63 5.85 132 G24 0.18 0.53 0.20 0.44 93

G11 5.82 35.01 6.17 30.24 204 G25 0.18 0.46 0.21 0.39 95

G12 0.03 0.05 0.05 0.05 52 G26 0.22 0.62 0.27 0.57 93

G13 0.59 2.57 0.69 2.27 113 G27 0.32 1.25 0.41 1.16 137

G14 15.14 114.56 17.42 104.59 309 G28 0.62 2.41 0.76 2.23 209

G29 1.03 4.89 1.25 4.71 244

G30 2.54 10.98 2.97 10.87 371

G31 8.72 57.33 11.67 57.53 819

G32 18.10 153.97 26.22 154.35 1383

G33 20.85 183.93 28.27 184.17 1594

Table 2.16: Final results for NetMaker networks; run-time in seconds.

LCOR LSET NSPD 2LCOR 2LSET |ZN | LCOR LSET NSPD 2LCOR 2LSET |ZN |

NM01a 21.64 173.16 0.01 0.00 0.01 6 NM11a 240.73 3260.00 0.02 0.02 0.02 6

NM01b 72.80 62.22 0.00 0.00 0.00 1 NM11b 1103.90 1486.70 0.01 0.01 0.01 2

NM01c 2.45 16.28 0.00 0.01 0.01 3 NM11c 325.31 3090.00 0.01 0.01 0.01 2

NM02a 16.76 160.79 0.00 0.01 0.01 8 NM12a 199.80 3519.00 0.02 0.02 0.02 6

Continued on Next Page. . .
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Table 2.16 – Continued

LCOR LSET 2LCOR 2LSET |ZN | LCOR LSET 2LCOR 2LSET |ZN |

NM02b 46.61 45.24 0.00 0.00 0.01 1 NM12b 1424.13 2935.00 0.02 0.01 0.02 4

NM02c 2.55 15.71 0.00 0.01 0.00 4 NM12c 330.86 3019.00 0.01 0.01 0.01 1

NM03a 4.33 28.00 0.00 0.01 0.01 9 NM13a 86.36 907.54 0.02 0.01 0.02 2

NM03b 7.10 3.65 0.00 0.00 0.00 2 NM13b 684.42 995.65 0.02 0.01 0.01 2

NM03c 0.55 1.44 0.01 0.00 0.01 2 NM13c 63.74 477.96 0.01 0.01 0.00 1

NM04a 8.81 58.77 0.00 0.01 0.01 15 NM14a 102.97 1137.95 0.02 0.04 0.03 17

NM04b 7.18 4.19 0.00 0.01 0.00 3 NM14b 517.02 541.96 0.02 0.01 0.01 2

NM04c 0.68 1.70 0.00 0.01 0.01 4 NM14c 74.44 444.82 0.01 0.02 0.02 4

NM05a 27.93 174.34 0.00 0.01 0.01 6 NM15a 312.65 2985.00 0.02 0.04 0.04 7

NM05b 14.68 4.80 0.00 0.01 0.01 3 NM15b 1467.20 1098.58 0.02 0.03 0.03 3

NM05c 1.34 2.34 0.00 0.01 0.01 3 NM15c 96.33 580.16 0.02 0.03 0.03 3

NM06a 67.91 972.42 0.01 0.01 0.02 6 NM16a 432.66 - 0.03 0.04 0.05 5

NM06b 475.19 519.49 0.00 0.00 0.01 1 NM16b 1857.96 3407.00 0.02 0.02 0.02 3

NM06c 40.83 278.42 0.00 0.01 0.01 2 NM16c 1091.88 - 0.02 0.02 0.03 3

NM07a 71.74 857.47 0.01 0.01 0.01 5 NM17a 413.13 - 0.03 0.04 0.05 4

NM07b 257.42 439.81 0.00 0.01 0.01 3 NM17b 2080.91 - 0.02 0.01 0.01 1

NM07c 36.79 298.43 0.01 0.01 0.01 3 NM17c 1085.21 - 0.01 0.01 0.02 1

NM08a 37.39 294.95 0.01 0.01 0.00 3 NM18a 193.88 1697.10 0.03 0.03 0.04 7

NM08b 107.48 80.70 0.01 0.01 0.00 2 NM18b 892.60 1374.62 0.02 0.02 0.02 3

NM08c 9.85 41.12 0.00 0.01 0.01 3 NM18c 204.35 2005.44 0.02 0.01 0.01 1

NM09a 26.91 230.66 0.01 0.02 0.02 7 NM19a 99.37 854.51 0.03 0.02 0.01 4

NM09b 196.27 148.19 0.01 0.01 0.01 1 NM19b 1478.49 2278.00 0.02 0.01 0.01 2

NM09c 8.55 43.45 0.01 0.01 0.01 3 NM19c 204.50 1958.59 0.02 0.01 0.01 1

NM10a 165.92 1262.47 0.02 0.02 0.02 6 NM20a 881.79 - 0.06 0.05 0.05 5

NM10b 213.73 120.94 0.01 0.02 0.04 6 NM20b 1842.54 1647.66 0.04 0.03 0.03 3

NM10c 11.01 51.73 0.01 0.01 0.01 4 NM20c 341.01 2614.00 0.04 0.03 0.03 3

Table 2.17: Final results for road networks; run-time in seconds.

LCOR LSET NSPD 2LCOR 2LSET |ZN | LCOR LSET NSPD 2LCOR 2LSET |ZN |

DC1 0.16 0.08 0.01 0.09 0.06 2 RI6 11.03 2.44 2.36 8.28 2.09 3

DC2 0.24 0.14 0.16 0.03 0.02 6 RI7 4.27 1.89 0.07 1.99 1.15 3

DC3 0.40 0.18 0.01 0.01 0.01 3 RI8 5.83 0.97 0.07 1.59 0.53 4

DC4 0.21 0.10 0.01 0.04 0.03 2 RI9 9.43 4.10 53.89 0.54 0.47 22

DC5 0.26 0.07 0.00 0.00 0.00 1 NJ1 19.77 7.53 0.26 0.74 0.41 2

DC6 0.15 0.05 0.03 0.11 0.05 7 NJ2 32.47 20.61 0.85 1.36 1.28 6

DC7 0.31 0.13 0.01 0.02 0.02 2 NJ3 23.70 13.13 1.10 8.03 6.77 21

DC8 0.13 0.04 0.00 0.00 0.01 1 NJ4 29.48 19.20 0.39 1.07 0.88 5

DC9 0.45 0.26 0.09 0.04 0.05 6 NJ5 16.42 7.18 - 4.91 3.45 7

RI1 1.54 0.34 0.09 0.10 0.10 3 NJ6 62.41 66.33 - 13.52 14.43 12

Continued on Next Page. . .
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Table 2.17 – Continued

LCOR LSET NSPD 2LCOR 2LSET |ZN | LCOR LSET NSPD 2LCOR 2LSET |ZN |

RI2 7.74 1.97 71.80 2.21 1.06 15 NJ7 24.66 6.30 3.02 1.88 1.39 6

RI3 0.77 0.24 0.05 0.13 0.09 2 NJ8 11.76 5.07 0.65 6.50 3.84 13

RI4 2.68 0.99 0.82 0.73 0.58 17 NJ9 53.44 32.35 - 39.07 29.00 24

RI5 5.48 3.22 794.01 0.80 0.77 16

dash (-): run-time exceeds 3600 seconds





Chapter 3

Bi-objective Integer Minimum

Cost Flow Problems

Single-objective integer minimum cost flow problems have received a lot of

attention in the literature as they have various applications (see for example

Ahuja et al. 1993). As with most real-world optimisation problems, there is

usually more than one objective that has to be taken into account, thus leading

to multi-objective integer minimum cost network flow problems (MIMCF).

We restrict our considerations to the bi-objective case (BIMCF). The aim

in BIMCF is to find efficient solutions. The problem of finding all efficient

solutions of BIMCF is intractable, Ruhe (1988) presents an example problem

with exponentially many efficient solutions. BIMCF is an NP-hard problem,

as the bi-objective shortest path problem, a special case of BIMCF, was shown

to be NP-hard by Serafini (1986).

We propose to solve the BIMCF problem using the Two Phase Approach. In

Phase 1, extreme efficient solutions are computed with a parametric network

simplex algorithm (Sedeño-Noda and González-Mart́ın 2000). Other efficient

solutions are computed in Phase 2 using a ranking algorithm (Hamacher 1995)

on restricted areas of the objective space. Our work constitutes one of the first

correct published algorithm to solve BIMCF, see Raith and Ehrgott (2009b),

and a preliminary version appeared in Raith and Ehrgott (2007).

We test our algorithm on different problem instances generated with the well

known network generator NETGEN and also on networks with a grid structure.
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The chapter is organised as follows: in Section 3.1 basic concepts of BIMCF

problems are introduced. Recent literature is discussed in Section 3.2. In

Section 3.4 we present an algorithm to solve BIMCF. Finally, numerical results

are shown in Section 3.5.

3.1 Problem Formulation

In this section terminology and basic theory of bi-objective integer minimum

cost flow (BIMCF) problems are introduced. The model is that of an MCF

problem with two objectives and integer variables. The BIMCF problem also

appears as Model (1.16) in Section 1.3.2. We repeat the formulation of BIMCF

here.

Let N = (G, c, l, u) be a directed network where the graph G = (V ,A) consists

of a set of nodes or vertices V = {1, . . . , n} and a set of arcs A ⊆ V × V
with |A| = m. Two costs ca = (c1

a, c
2
a) ∈ Z × Z are associated with each arc

a ∈ A. An integer numerical value bi, the balance, is associated with each

node i ∈ V . A value bi > 0, bi < 0, or bi = 0 indicates that, at node i,

there exists a supply of flow, a demand of flow, or neither of the two (i is then

called trans-shipment node). The BIMCF problem is defined by the following

mathematical programme:

min z(x) =

 z1(x)

z2(x)


s.t.

∑
{a∈A:t(a)=i}

xa −
∑

{a∈A:h(a)=i}
xa = bi for all i ∈ V

ua = xa = la for all a ∈ A
xa integer for all a ∈ A,

(3.1)

with z1(x) =
∑

a∈A c
1
axa and z2(x) =

∑
a∈A c

2
axa. Here x is the vector of flow

on the arcs, the first set of constraints represents flow conservation at the

different nodes, and we assume that
∑

i∈V bi = 0 since otherwise the problem

is infeasible. The second set of constraints ensures that for each arc a flow

remains between lower bound la and upper bound ua. We assume la = 0 and

ua = la. The third set of constraints ensures integer arc flow.
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3.2 Literature on BIMCF Problems

An excellent and very recent review on multi-objective minimum cost flow

problems is given by Hamacher et al. (2007). We will therefore only briefly

mention relevant literature. There is little published work on MIMCF, so the

following is mainly dedicated to BIMCF. Most exact solution approaches to

find a (complete) set of efficient solutions for BIMCF, i.e. supported and non-

supported efficient solutions, consist of two phases, i.e. they are following the

Two Phase Method.

In case all capacities, supplies, and demands are integer, which we assume in

this chapter, any approach to solve the bi-objective continuous network flow

problem can be used in Phase 1 of BIMCF to find a complete set of (extreme)

supported efficient solutions, e.g. Lee and Pulat (1991); Pulat et al. (1992);

Sedeño-Noda and González-Mart́ın (2000, 2003). We discussed this property of

BIMCF problems when introducing the parametric network simplex approach

for Phase 1 in Section 1.3.2. The algorithms presented by Lee and Pulat

(1991); Pulat et al. (1992) may generate some non-extreme supported efficient

solutions, whereas the algorithms by Sedeño-Noda and González-Mart́ın (2000,

2003) generate extreme efficient solutions only.

Lee and Pulat (1991) claim that their procedure can be extended to gener-

ate all integer efficient solutions with image on the edges of conv(Z), i.e. all

supported efficient solutions. Their procedure works as follows: every efficient

solution found by their algorithm corresponds to a basic feasible solution of

(1.1), represented by a spanning tree in N . Two solutions x1 and x2 are called

adjacent if the two corresponding trees have n− 2 arcs in common. For adja-

cent solutions x1 and x2, the arc that is in the basis of x2, but not in the basis

of x1, can be introduced into the basic tree of x1 resulting in a cycle. As much

additional flow as possible is sent along that cycle until the flow on one of the

arcs in the cycle reaches its upper or lower bound, this determines the flow

change σ along the cycle. The arc with flow at upper or lower bound leaves

the tree, resulting in the tree of x1’s adjacent solution, x2. Whenever the flow

changes by σ along the cycle, when moving from one efficient solution to an ad-

jacent one, the authors propose to increase the flow stepwise by 1, 2, . . . , σ− 1

to obtain intermediate solutions and claim to obtain all supported efficient

solutions this way. This claim is incorrect, as not all non-extreme supported
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efficient solutions can be obtained as intermediate solutions of two adjacent

basic efficient solutions, an example is given by Eusébio and Figueira (2006).

Several papers are dedicated to the computation of non-supported efficient

solutions of BIMCF, assuming all non-dominated extreme points are known.

Lee and Pulat (1993) perform an explicit search of the solution space, by

using intermediate solutions between adjacent basic solutions (which is not

sufficient, see remark above) and modifying upper and lower bounds of arcs.

They assume non-degeneracy of the problem. Huarng et al. (1992) extend this

algorithm to allow degeneracy in the problems.

Sedeño-Noda and González-Mart́ın (2001) argue that these two papers are

incorrect and present an approach that is based on the basic tree structure of

solutions. Having found a complete set of extreme efficient solutions in Phase

1, the algorithm by Sedeño-Noda and González-Mart́ın (2001) moves from

one efficient solution to adjacent solutions, in order to identify efficient ones

among them. Przybylski et al. (2006) give an example of a network where

one efficient solution is not adjacent to any of the other efficient solutions,

hence showing that the approach by Sedeño-Noda and González-Mart́ın (2001)

cannot generate a complete efficient set. We would like to point out that the

same example can also be used to show that the approach by Lee and Pulat

(1993) is incorrect, see Section 3.3.

Eusébio and Figueira (2009b) illustrate and give proof that supported efficient

solutions are indeed connected via chains of zero-cost cycles in the incremen-

tal graph constructed from basic feasible solutions corresponding to extreme

efficient solutions. They use this relationship to characterise all supported

efficient solutions to a MIMCF problem and present an algorithm for their

computation.

The same result can be obtained by considering a weighted sum formulation

(1.1) of MIMCF for which two extreme efficient solutions corresponding to two

consecutive non-dominated extreme points are optimal. The non-dominated

points on the edge of conv(Z) connecting the two extreme non-dominated

points can be obtained by applying the k best flow algorithm by Hamacher

(1995) to the problem with weighted sum objective. The k best flow algorithm

is also based on cycles in the incremental graph. We explain how to apply the

k best flow algorithm to find all supported and non-supported solutions of
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BIMCF in Section 3.4.2.

Eusébio and Figueira (2009a) present an approach where ε-constraint prob-

lems, min{z1(x) : x ∈ X, z2(x) 5 ε}, are repeatedly solved to obtain all effi-

cient solutions (supported and non-supported). It is crucial that the arising

ε-constraint problems are solved efficiently. The (possibly fractional) solution

of the ε-constraint problem is obtained by sending a fractional amount of flow

along the cycle connecting two adjacent basic efficient solutions x1 and x2, one

with z2(x1) 5 ε and the other with z2(x2) > ε. If the solution is fractional,

an integer solution can be obtained by branching on arcs with fractional flow.

This can be done efficiently as only arcs in the cycle can have non-integer flow

and it is therefore sufficient to branch on arcs in the cycle.

Eusébio and Figueira (2006) give examples of networks, where for a supported

extreme and supported non-extreme non-dominated point, both basic and non-

basic supported efficient solutions exist. It is known from linear programming

that there is always a basic feasible solution for every extreme non-dominated

point, but the authors show that there may be other non-basic efficient solu-

tions that lead to the same point. The network simplex method can be used

to identify all basic efficient solutions at that point. The non-basic solutions

can be obtained as convex combinations of the basic ones, but not by the

network simplex algorithm itself. Eusébio and Figueira (2006) also give a net-

work in which supported efficient solutions exist that cannot be obtained as

intermediate solutions between two extreme efficient solutions.

3.3 Incorrectness of the approach by Lee and

Pulat (1993)

Using the network by Przybylski et al. (2006), we can show that the approach

by Lee and Pulat (1993) will not find all efficient solutions. First, we repeat

the example from Przybylski et al. (2006).

Example 3.3.1 The network is given in Figure 3.1. The lower bound on each

arc is 0 and there is no upper bound restriction on flow, furthermore all flow

values are required to be integer. Node 1 has balance b1 = 1 and node 13 has
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Figure 3.1. Network of Example 3.3.1.

balance b13 = −1, all other nodes have balance bi = 0, i = 2, . . . , 12. Arc costs

are given above the arcs in the figure. This is a BSP problem, as one unit of

flow is sent from node 1 to node 13. Every feasible solution has a flow of 1 on

every arc that is part of the path, and zero flow on all other arcs.

Lee and Pulat (1993) first formulate what they call a “brute force” version of

their algorithm, which is then refined. We show here that the first version of

the algorithm, summarised in Algorithm 7, already fails to generate all efficient

solutions.

It should be noted that within this algorithm the lower bound on only one arc

increases at a time. It is not clear why this should yield all non-supported

efficient solutions or all non-dominated points. Sedeño-Noda and González-

Mart́ın (2001) also point this out but do not give an example for which the

algorithm actually fails to identify all solutions. In the following we show

that the non-supported efficient solution from Figure 3.2 with objective vector

(27, 14) cannot be obtained by Algorithm 7.

To show this, we simply look at the set of feasible solutions of the network

when lower bounds on certain arcs of N are increased to 1. The highlighted

solution with objective vector (27, 14) will only be feasible when increasing the

lower bound on any of the horizontal (red) arcs. We plot all obtained feasible

solutions when increasing the lower bound on arcs 1→ 3 or 3→ 5 (Figure 3.3),

on arcs 5 → 7 or 7 → 9 (Figure 3.4), or on arcs 9 → 11 or 11 → 13 (Figure
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Algorithm 7 “Brute force” Algorithm by Lee and Pulat (1993)

1: input: Network (G, c, l, u), and Esupp, the set of all extreme supported
efficient solutions (BFSs), x1, x2 . . . , xr of BIMCF and all other supported
solutions.

2: for all t = 1, . . . , r do
3: Tt is the basis associated with xt.
4: for all non-basic arcs s ∈ T t, with s /∈ Tt+1 do

5: Derive new lower bounds l′ as

{
l′a = la + 1 if a = s

l′a = la otherwise

6: while l′s 5 us do
7: E = the set of all (integer) supported solutions of (G, c, l′, u).
8: Et,s = Et,s ∪ E /∗ Et,s contains all feasible solutions computed for t

by increasing the lower bound on arc s. ∗/
9: l′s = l′s + 1

10: end while
11: end for
12: end for
13: E = all efficient solutions among

(⋃
t,s Et,s

)
∪ Esupp

14: output: Efficient non-supported solutions E .

2 6 10

1 3 5 7 9 11 13

4 8 12

Figure 3.2. One feasible solution of network of Example 3.3.1 with a flow of
one on arcs 1 → 3, 3 → 5, 5 → 7, 7 → 9, 9 → 11, 11 → 13, and zero flow on
all other arcs. The objective vector of the solution is (27, 14).
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Figure 3.3. All feasible solutions with
increased lower bound on 1 → 3 or
3 → 5. The solution from Figure 3.2
is red.
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Figure 3.4. All feasible solutions with
increased lower bound on 5 → 7 or
7 → 9. The solution from Figure 3.2
is red.

3.5). In each of the figures, the solution from Figure 3.2 (the red triangle) is

non-supported, and can therefore not be identified by Algorithm 7.

Note that there is no degeneracy in the network from Example 3.3.1, which is

an assumption in Lee and Pulat (1993). This can be seen as arcs with positive

flow are always part of the basic tree and all other arcs in the basic tree have

flow at their lower bound. Whenever a non-basic arc is added to the tree, it is

always possible to send one unit of flow along the resulting cycle.

3.4 A Two Phase Algorithm to Solve BIMCF

We solve the BIMCF problem with the Two Phase Method as introduced in

Section 1.3.2

In Phase 1 extreme efficient solutions are computed. There are two main ap-

proaches in the context of BIMCF: Sedeño-Noda and González-Mart́ın (2003)

follow a dichotomic approach in repeatedly computing solutions to a problem

in which a Tchebycheff norm is minimised using Lagrangian relaxation. When-

ever a new extreme point is obtained, the problem is split into two sub problems

each with their own Tchebycheff norm derived from the local nadir point. The

other main approach is based on the network simplex method where extreme
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Figure 3.5. All feasible solutions with
increased lower bound on 9 → 11 or
11 → 13. The solution from Figure
3.2 is red.

efficient solutions are generated in a right-to-left (or left-to-right) fashion, e.g.

Sedeño-Noda and González-Mart́ın (2000). We use the latter approach here.

In Phase 2 the remaining supported and non-supported non-dominated points

are computed with an enumerative approach.

3.4.1 Phase 1 – Parametric Simplex

Phase 1 is solved with the parametric network simplex algorithm as detailed

in Section 1.2.2 for continuous BCMCF problems. As stated in Section 1.3.2,

the parametric network simplex algorithm will find integer extreme efficient

solutions given all bounds, the costs, and the balances of the BIMCF problem

are integer. We can thus simply use Algorithm 2, the parametric network

simplex algorithm, to solve Phase 1.

3.4.2 Phase 2 – Ranking k Best Flows

In Phase 2, (at least) a complete set of the remaining supported non-extreme

efficient solutions and non-supported efficient solutions is computed. As dis-

cussed in Section 1.3.2, the objective vectors of those solutions can only be
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situated in the triangle defined by two consecutive extreme points as indicated

in Figure 1.15. We make the same assumption as for the Phase 2 ranking

approach from Section 1.3.2: let z1, . . . , zs, where zi = (z1(xi), z2(xi)) and zi

are sorted by increasing z1, be the non-dominated extreme points obtained in

Phase 1. For each pair of neighbouring extreme points zi and zi+1, weighting

factors are defined as in (1.17). Using λ1 and λ2 in (1.1), we obtain a single-

objective flow problem which has optimal solutions xi, xi+1. We denote the

weighted sum objective by cλ = λ1z1(x) + λ2z2(x).

Applying the k best flow algorithm by Hamacher (1995) to the single objective

problem minx∈X c
λ, we can generate feasible network flows in order of their

cost. The k best flow algorithm is used to generate all feasible integer flows in

the current triangle until it can be guaranteed that all non-dominated points

have been found, see Section 1.3.1. Before we continue with the algorithm for

Phase 2, we explain the k best flow algorithm.

The k Best Flow Algorithm

We give a summary of the k best flow algorithm here, the reader is referred to

Hamacher (1995) for a more detailed description and proofs. First, we outline

the k best flow algorithm for the single-objective minimum cost flow problem.

Starting with an optimal solution x in the network N , a so-called incremental

graph Gx is constructed in which every arc represents an arc in N on which

flow may be increased or decreased. Any cycle in Gx represents a change of

flow that leads from x to another feasible flow. Identifying a minimal cycle in

the incremental graph leads to a second best flow solution in N . Then, the

problem is partitioned by modifying one lower and upper bound on an arc of

N so that in one partition the original solution is optimal and the second best

solution is infeasible and vice versa. By iterating this process, a ranking of the

k best solutions can be obtained.

In Hamacher (1995) the algorithm is designed to solve problems in networks

with the property that there cannot be more than one arc connecting nodes

i and j, no matter if they have the same or opposite directions. When solv-

ing BIMCF problems, randomly generated networks generally do not satisfy

this property. Also, real-world networks will most likely not satisfy this prop-
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erty (e.g. road networks). We outline a generalisation of the algorithm in the

following. The only difficulty with multiple arcs between a pair of nodes is

keeping track of the correspondence of arcs in the incremental graph and arcs

in the original network.

First, construct the incremental graph, a directed graph Gx = (V ,Ax) with

arc costs cx, corresponding to an optimal flow x in N = (G, c, l, u) with

a+ ∈ A+
x for all a ∈ A and xa < ua,

a− ∈ A−x for all a ∈ A and xa > la,

and let Ax = A+
x ∪ A−x . The arcs in Ax have the following relationship to

arcs in A: we define each a+ ∈ Ax as arc with t(a+) = t(a), h(a+) = h(a),

and cxa+ = ca. For each a− ∈ Ax we define t(a−) = h(a), h(a−) = t(a), and

cxa− = −ca. Note that in the following Gx is always constructed from the

network N in which x is a best solution.

If for an arc a ∈ A both a+ ∈ Ax and a− ∈ Ax (which is the case only if

la < xa < ua), we call a+ and a− a pair of symmetric arcs, otherwise we call

an arc non-symmetric. A proper minimum cost cycle is a minimum cost cycle

in Gx, excluding all cycles that consist of one or multiple pairs of symmetric

arcs a+, a−. The set of all cycles to be considered is

C(Gx) = {C : C cycle in Gx with at least one arc a+ ∈ C and a− /∈ C
or C cycle in Gx with at least one arc a− ∈ C and a+ /∈ C}. (3.2)

From C(Gx) a proper minimum cost cycle C ∈ argmin{cx(C) : C ∈ C(Gx)} is

obtained. By increasing the flow by one unit along C, a second-best flow x̂ is

obtained in the original network N : in N , increasing the flow on arc a+ ∈ Ax
corresponds to increasing the flow on arc a ∈ A, and increasing the flow on

a− ∈ Ax corresponds to decreasing the flow on arc a ∈ A, see Procedure 4.

This yields a second best flow x̂ with c(x) 5 c(x̂), where c(x̂) = c(x) + cx(C).

Now the network N is modified, by adjusting one lower and upper bound of

N , so that x remains optimal in the network (G, c, l, u′) with modified upper

bound u′ and x̂ is infeasible in this network. Also, new lower bounds l′′ are

derived, so that x̂ becomes optimal and x infeasible in (G, c, l′′, u). In order

to do this, the bounds of only one of the arcs a where flow was increased by
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Procedure 4 compute second best flow[N, x,C]

1: input: Network N = (G, c, l, u), best solution x, and proper minimum
cost cycle C.

2: x̂a =


xa + 1 if a+ ∈ C ∩ A+

x

xa − 1 if a− ∈ C ∩ A−x
xa otherwise

3: output: Second best flow x̂.

one unit are modified as in Procedure 5. Note that this arc always exists as

cx(C) = 0 implies C ∩ A+ 6= ∅.

Procedure 5 derive partition[N, x,C]

1: input: Network N = (G, c, l, u), best solution x, and proper minimum
cost cycle C.

2: Select one arc ã with ã+ ∈ C ∩ A+
x

3: u′ =

{
u′a = xa if a = ã

u′a = ua otherwise
and l′′ =

{
l′′a = xa + 1 if a = ã

l′a = la otherwise

4: output: Network N ′ = (G, c, l, u′) and network N ′′ = (G, c, l′′, u).

In each of the two networks with modified bounds l′′ and u′, respectively, we

can again compute a second best flow. Out of the two second best solutions,

the flow with smaller cost is selected, this is the third best solution in the

original network N . The partition in which the third best flow was obtained

is again partitioned and both new partitions resolved. This process continues

iteratively. Pseudo-code for the k best flow algorithm is shown in Algorithm

8.

Adaptation of the k Best Flow Algorithm in Phase 2

When solving Phase 2, we cannot specify a value of k a priori. Instead,

we continue until it is guaranteed that all non-dominated points in each tri-

angle T i, given by the three points (z1(xi), z2(xi)), (z1(xi+1), z2(xi+1)), and

(z1(xi+1), z2(xi)), have been found as detailed in Section 1.3.2.

Whenever a solution with cost vector within the triangle is found that is not

dominated by a solution found previously (and also not equivalent to a solution

found previously), it is saved and the upper bound can be improved, as the

new point dominates parts of the triangle. Ranking flows continues until the
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Algorithm 8 k best flows

1: input: Network N = (G, c, l, u), best solution x, and k.
/∗ For a network N with best solution x, we denote the incremental graph
by Gx = (V ,Ax) and it has costs cx ∗/

2: C ∈ argmin{cx(C) : C ∈ C(Gx)} /∗ See (3.2) for C(Gx) ∗/
3: x̂ = compute second best flow[N, x,C]
4: P = {(x, x̂, N,C)} /∗ Initialise set of partitions. ∗/
5: l = 2
6: while P 6= ∅ and l < k do
7: Choose (xp, x̂p, Np, Cp) with c(x̂p) = min{c(x̂q) : (xq, x̂q, N q, Cq) ∈ P}.
8: P = P\(xp, x̂p, Np, Cp)
9: {N ′, N ′′} = derive partition[Np, xp, Cp] /∗ xp, x̂p is best solution in

N ′, N ′′, respectively ∗/
10: if C(Gxp) 6= ∅ then
11: Identify C ′ ∈ argmin{cxp(C) : C ∈ C(Gxp)}. /∗ (3.2) for C(Gxp) ∗/
12: x′ = compute second best flow[N ′, xp, C ′]
13: P = P ∪ {(xp, x′, N ′, C ′)}
14: end if
15: if C(Gx̂p) 6= ∅ then
16: Identify C ′′ ∈ argmin{cx̂p(C) : C ∈ C(Gx̂p)}. /∗ (3.2) for C(Gx̂p) ∗/
17: x′′ = compute second best flow[N ′′, x̂p, C ′′]
18: P = P ∪ {(x̂p, x′′, N ′′, C ′′)}
19: end if
20: Save lth best flow x̂p.
21: l = l + 1
22: end while
23: output: 2nd, 3rd, . . . , lth best flow and l 5 k.

weighted sum value cλ
i

of the flow solutions exceeds upper bound ∆i from

(1.19). Thus we aim at computing a complete set of efficient solutions.

The Phase 2 algorithm incorporating the upper bound and parts of the k best

flow algorithm is described in Algorithm 9.

Let Ei = {xi,0, xi,1, . . . , xi,r, xi,r+1} be a set of feasible non-equivalent solutions

whose objective vectors are not dominating each other, and with image in

triangle Ti defined by the supported efficient solutions xi,0 = xi and xi,r+1 =

xi+1. Then, the set E =
⋃
i=1,...,s−1 Ei generated by Algorithm 9 is a complete

set of efficient solutions of BIMCF. This can be seen by applying the proof of

Theorem 1.3.1 to every triangle Ti.

Remark 3.4.1 If there are multiple equivalent efficient solutions the rank-
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Algorithm 9 Phase 2 BIMCF

1: input: Network (G, c, l, u) with c = (c1, c2) and list of extreme efficient
solutions x1, . . . , xs.

2: i = 1
3: while i < s do
4: Ei = {xi, xi+1} /∗ xi,0 = xi and xi,r+1 = xi+1 ∗/
5: Compute λi1, λi2 and cλ

i
= λi1c

1 + λi2c
2. /∗ See (1.17) for λi1, λi2 ∗/

6: ∆i = δi /∗ Initial value for ∆i; see (1.17) for δi ∗/
7: C = argmin{cx(C) : C ∈ C(Gx)} /∗ See (3.2) for C(Gx) ∗/
8: x̂ = compute second best flow[N, xi+1, C]
9: P = {(xi+1, x̂, N, C)}

10: while P 6= ∅ and min{cλi(x̂p) : (xp, x̂p, Np, Cp) ∈ P} 5 ∆i do
11: Steps 7-19 in Algorithm 8. /∗ Execute one iteration of k best flow ∗/
12: if z(x̂p) in current triangle and not dominated by the objective vector

of any element of Ei and x̂p not equivalent to any x ∈ Ei then
13: Insert x̂p into Ei.
14: Update ∆i. /∗ See (1.19) for ∆i ∗/
15: end if
16: end while
17: i = i+ 1
18: end while
19: output: Complete set E =

⋃
i=1,...,s−1 Ei of efficient solutions.

ing algorithm can generate them all. In the Phase 2 approach described in

Algorithm 9, however, only one of them is inserted into the set Ei. All effi-

cient solutions can be found by slightly altering the Phase 2 approach to keep

equivalent solutions. Also, another component needs to be considered when

calculating the upper bound to ensure that ranking is not terminated before

all equivalent solutions have been obtained. The upper bound ∆i can be cho-

sen as in Equation (1.18) in this case. In addition, Step 12 of Algorithm 9 is

modified to keep every efficient solution x̂p including those that are equivalent

to a previously obtained efficient solution.

As we aim at obtaining a complete set of efficient solutions, in our implemen-

tation we only keep one of the equivalent solutions for each non-dominated

point in objective space.

Remark 3.4.2 Unfortunately the k best flow algorithm generates solutions

with objective vector outside the current triangle Ti which cannot be removed

from P as those solutions might later lead to other solutions within the trian-
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gle. Whenever a solution x∗ with cost outside the current triangle lies within

another triangle Tj, we could save this solution and use it to compute a better

upper bound ∆∗ in Tj. This will, however, not speed up the algorithm, as flows

in Tj still have to be ranked starting from the least cost flow. When ranking

flows in Tj, one of the following two cases occurs:

• Ranking flows and updating the upper bound in Tj stops the algorithm

before the solution x∗ is enumerated, or

• Ranking flows in Tj generates the solution x∗ again, now the bound is

updated to ∆∗ (or a better upper bound ∆j < ∆∗).

Thus, saving solutions in other triangles cannot improve the run-time of Phase

2.

Remark 3.4.3 We can use smaller triangles than those given by extreme

efficient solutions: We can consider intermediate solutions whenever the flow

between two adjacent solutions obtained in Phase 1 changes by σ > 1 along

the cycle connecting the two solutions. Intermediate solutions can be used to

construct σ− 1 smaller triangles. Due to the nature of the Phase 2 algorithm,

including those smaller triangles instead of the one defined by the two extreme

efficient solutions does not present an advantage. The ranking algorithm would

generate the same rankings σ − 1 times as we cannot restrict the ranking to

the current triangle. There is also no advantage in a better upper bound,

as the ranking algorithm will first generate all alternative optimal solutions

(i.e. the non-extreme supported efficient solutions including the intermediate

solutions), and after that the upper bound will be as good as it would be in

the smaller triangles.

Remark 3.4.4 We briefly comment on the implementation of this algorithm.

As mentioned before, the network simplex algorithm in Phase 1 is an adapta-

tion of the MCF algorithm by Löbel (2004). In Phase 2, we implemented the

k-best flow algorithm as outlined in Algorithm 9. The most time-consuming

part of this algorithm is finding a proper minimum cost cycle in Steps 2, 11,

and 16 of Algorithm 8 and Step 7 of Algorithm 9. This is implemented as

suggested in Hamacher (1995): the set C(Gx) is obtained by combining each
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non-symmetric arc a ∈ A with a shortest path from h(a) to t(a) in the network.

Symmetric arcs a+ or a− are combined with the shortest path from their head

node to their tail node in the network with arc set Ax \ {a−} or Ax \ {a+},
respectively. Altogether the shortest paths between every pair of nodes con-

nected by an arc needs to be calculated in a network with negative arc costs

cx. To be able to use the efficient implementation of Dijkstra’s shortest path

algorithm despite the negative costs, initially the shortest paths from one node

to all other nodes are calculated using a shortest path algorithm suitable for

negative arc costs such as Floyd’s algorithm (e.g. Ahuja et al. 1993). Using

the obtained shortest path distances, the costs cx can be adjusted to positive

costs which enables us to use Dijkstra’s algorithm. Nevertheless, more than

99% of the runtime is spent in Phase 2, mostly calculating shortest paths for

the proper minimum cost cycle.

3.5 Numerical Results

We investigate the performance of the proposed Two Phase Method with

parametric network simplex in Phase 1 and flow ranking in Phase 2. In or-

der to do so, networks are generated by NETGEN (Klingman et al. 1974),

which is slightly modified to include a second objective function. We generate

two sets of test instances, with the following parameters fixed for all prob-

lems: mincost = 0, maxcost = 100, %highcost = 0, %capacitated = 100,

mincap = 0, and maxcap = 50. Furthermore, we vary parameters as in Table

3.1. The table shows in each column which values of n, m, number of sources

and sinks, etc. are selected. We generate 30 problems for each set of parame-

ters. We generate problems N01-N12 with varying sum of supply (
∑

i∈V:bi>0 bi)

and problems F01-F12 with fixed total sum of supply, as we observe that in-

creasing the sum of supply with the network size significantly complicates the

problem.

We also generate networks with a grid structure. Nodes are arranged in a

rectangular grid with given height and width. Every node has at most four

outgoing arcs (up, down, left, and right), to its immediate neighbours. Grid

networks have a structure identical to that of grid networks in the previous

chapter, see Figure 2.1 in Section 2.4.1. A grid is defined by the parameters
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Table 3.1. Test Instances: NETGEN.

transhipment trans-shipment

Name n m sources sinks
P
i∈V:bi>0 bi sources sinks

N01 / F01 20 60 9 7 90 / 100 4 3

N02 / F02 20 80 9 7 90 / 100 4 3

N03 / F03 20 100 9 7 90 / 100 4 3

N04 / F04 40 120 18 14 180 / 100 9 7

N05 / F05 40 160 18 14 180 / 100 9 7

N06 / F06 40 200 18 14 180 / 100 9 7

N07 / F07 60 180 27 21 270 / 100 14 10

N08 / F08 60 240 27 21 270 / 100 14 10

N09 / F09 60 300 27 21 270 / 100 14 10

N10 / F10 80 240 35 38 350 / 100 17 14

N11 / F11 80 320 35 38 350 / 100 17 14

N12 / F12 80 400 35 38 350 / 100 17 14

Table 3.2. Test Instances: grid.

Name h w n m cmax umax
P
i∈V:bi>0 bi

G01 4 5 20 62 100 50 100

G02 5 8 40 134 100 50 100

G03 6 10 60 208 100 50 100

G04 8 10 80 284 100 50 100

G05 6 10 60 208 100 75 100

G06 6 10 60 208 100 100 100

G07 6 10 60 208 25 50 100

G08 6 10 60 208 50 50 100

G09 8 10 80 284 100 75 100

G10 8 10 80 284 100 100 100

G11 8 10 80 284 25 50 100

G12 8 10 80 284 50 50 100

height h, width w, maximum cost cmax, maximum capacity umax, and sum of

supply
∑

i∈V:bi>0 bi. Nodes are randomly chosen to be demand nodes, supply

nodes, or trans-shipment nodes with probabilities 0.4, 0.4, and 0.2, respectively.

It is, however, possible that some demand- or supply-nodes are assigned a

balance of 0. Instances G01-G04 are created with the same number of nodes

as instances N01-N12 and the same
∑

i∈V:bi>0 bi. In instances G05/G06 and

G09/G10 we increase umax of G03 and G04, respectively. In instances G07/G08

and G11/G12 we decrease cmax of G03 and G04, respectively. Again, we

generate 30 problems for each choice of parameters h,w, n,m, cmax, and umax

as listed in Table 3.2. Integer costs and capacity of arcs are randomly selected

in the interval [0; cmax] and [0;umax], respectively.

All numerical tests are performed on a Linux (Ubuntu 7.04) computer with
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Table 3.3. Results for problems N01 – N12.

|ZN | |ZSN |/|ZNN | time in seconds

Name average min max average average min max

N01 168.13 15 392 0.28 0.40 0.01 1.45

N02 271.13 66 852 0.22 0.76 0.09 3.17

N03 375.43 126 702 0.18 1.40 0.27 3.78

N04 455.10 137 879 0.15 7.09 1.67 26.36

N05 660.63 252 1801 0.14 11.84 3.16 36.95

N06 948.30 266 2280 0.12 22.58 5.05 74.91

N07 867.80 410 1399 0.11 42.21 11.48 94.32

N08 1510.37 531 2834 0.09 90.88 27.11 245.20

N09 1553.47 808 2448 0.09 112.62 32.77 238.82

N10 1138.77 552 1901 0.10 125.42 46.44 372.95

N11 2036.20 989 4109 0.08 289.05 69.97 559.34

N12 2480.70 1287 3921 0.07 397.94 138.38 813.76

Table 3.4. Results for problems F01 – F12.

|ZN | |ZSN |/|ZNN | time in seconds

Name average min max average average min max

F01 181.13 24 491 0.27 0.52 0.04 2.81

F02 260.53 15 685 0.24 0.99 0.02 4.58

F03 353.77 158 788 0.20 1.54 0.28 6.41

F04 213.87 65 380 0.20 2.44 0.58 5.58

F05 354.10 144 701 0.15 5.19 1.86 11.77

F06 478.87 176 714 0.13 9.20 2.53 33.65

F07 203.97 48 410 0.16 7.17 0.87 22.40

F08 343.23 165 860 0.14 13.48 5.31 41.27

F09 454.17 230 950 0.12 21.35 8.18 47.9

F10 146.43 72 277 0.18 8.80 2.75 17.27

F11 277.90 131 680 0.15 19.64 8.38 54.04

F12 414.50 234 693 0.12 34.03 12.57 66.47

2.80GHz Intel Pentium D processor and 1GB RAM. We use the gcc compiler

(version 4.1) with compile option -O3. The methods are implemented in C.

When measuring run-time, we disregard the time it takes to read the problem

from a problem file. Run-time does include the generation of all non-dominated

points together with the efficient flows and it is measured with a precision of

0.01 seconds.

In Table 3.3 - Table 3.5 we show the average, minimum, and maximum |ZN |,
average |ZSN |/|ZNN |, and average, minimum, and maximum CPU time for

the two different NETGEN instances (N and F), and the grid instances (G),

respectively. We make the following observations (see Tables 3.3 to 3.5):
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Table 3.5. Results for problems G01 – G12.

|ZN | |ZSN |/|ZNN | time in seconds

Name average min max average average min max

G01 74.13 5 276 0.52 0.11 0.00 0.79

G02 211.23 37 817 0.27 1.99 0.09 10.54

G03 256.07 86 592 0.22 8.72 2.22 33.23

G04 354.20 58 1092 0.20 21.20 2.40 99.01

G05 319.67 64 1034 0.21 8.90 1.45 23.48

G06 420.60 106 955 0.19 12.17 2.66 37.72

G07 194.63 39 433 0.30 6.78 0.44 25.18

G08 235.33 25 477 0.27 8.00 0.61 40.42

G09 477.33 176 1094 0.17 34.38 6.00 293.53

G10 397.77 113 1069 0.19 21.54 2.04 65.64

G11 265.93 35 541 0.27 23.61 1.33 55.53

G12 326.80 109 645 0.20 21.27 5.62 70.89

• When fixing the number of nodes n in a network but increasing the

number of arcs m the number of non-dominated points |ZN | increases.

This is illustrated by instances N01-N12 and F01-F12 when comparing

three consecutive rows with the same number of nodes, i.e. rows N01-

N03, N04-N06, and so on.

• For all presented instances, we observe that the more non-dominated

points there are in a problem, the longer the run-time of the algorithm.

Despite the instances being fairly small, they have a lot of non-dominated

points.

• The sum of supply (
∑

i∈V:bi>0 bi) significantly increases the number of

non-dominated points, which can be seen by comparing the results for

problems F01-F12 with the corresponding results of problems N01-N12.

It is, however, more realistic to increase
∑

i∈V:bi>0 bi while increasing the

network size.

• We generate grid network instances G01-G04 with similar numbers of

nodes and arcs as instances F01-F12 and N01-N12 generated by NET-

GEN. Comparing the number of non-dominated points of G01-G04 to

those of (corresponding similar sized networks) N01-N12 we observe

that there are (on average) fewer non-dominated points in the grid net-

works. This is not the case when comparing the average number of

non-dominated points of G03 and G04 to those of F07 and F10/F11,

respectively.
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• When decreasing cmax in grid instances G07/G08 and G11/G12, we ob-

serve that smaller cmax leads to fewer non-dominated points, but not

necessarily to a faster run-time. When increasing umax in G05/G06, the

number of solutions increases and so does the run-time. But increasing

umax to 100 in G10 leads to less solutions than increasing umax to 75

in G09, so we are unable to draw conclusions about the relation of the

number of non-dominated points and umax.

• |ZSN |/|ZNN |, the ratio of supported and non-supported non-dominated

points, is decreasing when the total number of solutions is increasing for

NETGEN instances, on average, an observation also made by Sedeño-

Noda and González-Mart́ın (2001). For grid instances there seems to be

the same trend, but the total number of solutions does not increase as

much. In most NETGEN and grid instances, less than 20% and 30%

of all solutions are supported, respectively. Thus, the majority of non-

dominated points are non-supported.

• In Figures 3.6 - 3.8, the non-dominated points of one instance of each of

the classes F01, N01, and G01 are shown. This illustrates that most non-

supported points are in fact very close to the boundary of conv(Z+R2
=).

The given figures are just three examples, but we observe a similar be-

haviour in most of the problem instances. By obtaining only the sup-

ported non-dominated points of a problem, a fairly good approximation

of the set of non-dominated points can be obtained. There are, however,

exceptions such as the example in Figure 3.9 showing an instance of G02,

where there are a lot of non-supported points far from the boundary of

conv(Z + R2
=).

3.6 Adaptation of the Two Phase Method for

the Bi-objective Transportation Problem

The transportation problem is a special case of the MCF problem. The set of

nodes is split into a set of n1 supply nodes VS and n2 demand nodes VD. All arcs

are directed from supply nodes to demand nodes, so t(a) ∈ VS and h(a) ∈ VD
for all a ∈ A. A non-negative cost vector ca = (c1

a, c
2
a) ∈ N × N is associated
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with each arc a. Furthermore every demand node i ∈ VD has demand bDi = 0

and every supply node i ∈ VS has supply bSi = 0. A feasible solution only

exists when
∑

i∈VD b
D
i =

∑
i∈VS b

S
i . The bi-objective integer transportation

(BIT) problem can be stated as

min z(x) =

 z1(x)

z2(x)


s.t.

∑
{a∈A:t(a)=i}

xa = bSi for all i ∈ VS∑
{a∈A:h(a)=i}

xa = bDi for all i ∈ VD

xa = 0 for all a ∈ A
xa integer for all a ∈ A,

with z1(x) =
∑

a∈A c
1
axa and z2(x) =

∑
a∈A c

2
axa. BIT is a special case of

BIMCF. As such, it can of course be solved with the same methods as BIMCF.

As explained in Remark 3.4.4 the implementation of the k best flow algorithm

in Phase 2 involves many shortest path calculations that take up a large portion

of the algorithm’s run-time. Therefore, this is where most potential for run-

time improvement exists.

A more efficient solution method can be obtained, however, by adapting the k

best flow algorithm to the transportation problem. Philip (2008) shows that

for BIT, any proper minimum cost cycle C(Gx) in Gx for a BFS x contains

an arc with zero flow. This observation can be used to efficiently identify this

proper minimum cost cycle: as a proper minimum cost cycle must contain an

arc with zero flow, only those arcs a ∈ Ax with xa = 0 have to be considered

when calculating shortest paths.

The numerical results in Philip (2008) indicate that this simple modification

of the Phase 2 algorithm yields an average run-time improvement of 73% over

the original BIMCF implementation for a set of 12 BIT test instances.
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3.7 Concluding Remarks on Bi-objective Inte-

ger Minimum Cost Flow Problems

The presented Two Phase Algorithm solves the BIMCF problem, but the prob-

lems solved within reasonable run-time are fairly small. It is therefore worth

investigating how to increase the performance of the presented algorithm to

make it possible to solve bigger problems. Future research could address the

extension of the Two Phase Algorithm for BIMCF to the MIMCF problem

with more than two objectives. This can be done along the lines of Przybylski

et al. (2009, 2007), where a Two Phase Method for multi-objective integer

programming is presented together with an example of the application to the

assignment problem with three objectives.





Chapter 4

Bi-objective Traffic Assignment

The traffic assignment problem models route choice of users of a road network

assuming known and fixed travel demand between all origin and destination

points within the network. The aim of traffic assignment (TA) is to determine

how many users choose certain routes and/or how much traffic runs on each

section of the roads in the network. TA can give valuable insights into the

current usage of a road network, for instance highlight congestion-prone areas

and which parts of the network are under-used. TA is often used as a planning

tool as it helps predicting the impact of a change to the road network, such as

building or widening a road.

A topic that is getting more important in today’s world with ever increas-

ing numbers of cars on the road and thus increasing traffic congestion is road

tolling as a tool for controlling congestion. Many cities (Singapore, London,

Melbourne, etc.) have introduced road tolling to cope with congested city cen-

tres or to finance construction of new roads or public transport infrastructure.

Again, TA can be used to predict usage of roads and therefore toll revenues

collected. Of course, charging a toll may alter the users’ travel behaviour –

some users might not want to pay the toll at all and therefore take a detour

on the way to their destination whereas others might happily pay to arrive at

their destination quickly (others may choose another mode of transport or not

to travel at all). Our aim is to model travel behaviour taking the effect of tolls

(or other monetary costs) into account. It has been observed that from a car

driver’s point of view, the monetary costs associated with running a vehicle

(petrol, insurance, repairs) do not influence route choice very much. Toll costs,
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however, are perceived very differently. Even low tolls provoke opposition from

drivers that otherwise happily pay for the petrol to fill up their cars.

TA models the route choice of travellers within a road network. A frequent

basic assumption is that travellers choose their route to minimise travel time or

to minimise a linear combination of time and other objectives such as monetary

cost. We highlight why we believe our bi-objective approach of considering the

time and toll objectives independently is a more realistic approach to modelling

traffic.

We first explain the key role single-objective TA plays in transportation plan-

ning in Section 4.1. We then formally introduce the single-objective TA prob-

lem in Section 4.2 and discuss under which assumptions it is equivalent to

an optimisation problem and variational inequalities. We show how this rela-

tionship is exploited when solving TA. In Section 4.3 we discuss approaches

to TA from the literature that deal with two or more objectives, which are

usually combined into a single generalised cost objective. Then, in Section

4.4, we introduce the bi-objective and multi-objective TA problem where two

(or more) objectives are not combined via a generalised cost function, but

treated as individual objectives. We discuss why bi-objective TA and related

optimisation and variational inequality problems are not equivalent, which is

in contrast to single-objective TA. In Section 4.5 we propose new heuristic

solution approaches dedicated to the bi-objective problem.

Preliminary results on bi-objective traffic assignment appeared in Wang et al.

(2008) and Raith (2008a).

4.1 Traffic Assignment within the Transporta-

tion Planning Process

Traffic assignment is one of the key components of transportation planning.

One major component of the transportation planning process is the modelling

step, which is generally split into four different components, also known as

four-stage strategic transport planning model (FSM). TA is part of the final

stage in the FSM. A comprehensive book on transport modelling by Ortúzar

and Willumsen (2002) details the FSM and how the separate steps are solved.
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Figure 4.1. Simplified road network of the Auckland region. The data for
generating this figure is kindly provided by the Auckland Regional Council.

McNally (2000) skeptically recapitulates the FSM and presents a typical ex-

ample application in the US.

The FSM is based on an available network representation of the transportation

infrastructure. All roads, or at least all major roads, are included in the

road network as arcs, and nodes represent intersections. The public transport

network also contains other transportation links such as railroad tracks or

ferry connections. The network basis for TA and FSM is formally introduced

in Section 4.2.1. There is a function associated with every transportation

link in the network that represents the travel time on the link, which, in case

of roads, is often dependent on the amount of traffic using the link or even

the amount of traffic throughout the network. Instead of considering traffic

originating from every node, the network may be split into zones. Each zone

is associated with a so-called centroid, an artificial node at which all traffic

into the zone ends or traffic out of the zone originates. Centroids are typically

connected to the network via artificial arcs that may only be used as first or

last arcs of a trip.
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Trip Generation

Trip Distribution

Modal Split

Trip Assignment

 total trips entering/leaving each zone

 origin-destination matrix

 modal origin-destination matrix

 amount of trips on each arc

Figure 4.2. Illustration of the four-stage strategic transport planning model.

Figure 4.1 depicts the network of the Auckland Regional Transport (ART)

Planning Model. It shows a simplified road network of the Auckland region,

which contains only those arcs corresponding to major roads. Centroids are

the red circles in the figure.

Figure 4.2 shows the four different stages of FSM, which are usually executed

in sequence from top to bottom. Initially, it is determined how many trips start

and end in every zone of the network, this is the trip generation step. Next,

trip distribution splits the total trips originating at a zone into different target

zones, and also splits the total trips arriving in a zone between different origin

zones. At the end of trip distribution, an origin-destination matrix is obtained,

which details the travel demand from each zone in the network to each other

zone. Once it is determined how many travellers there are between the zones

the next question is how they choose to travel. They might for example choose

a mode of transport such as walking, cycling, using public transport, or driving

a car. It is determined which portion of travellers chooses each mode in the

modal split step. Finally, trip assignment determines the actual route choice

of travellers for their mode of transport. This may be done separately for the

different modes. The component of trip assignment that is studied in this thesis

is traffic assignment (TA) where the routes of vehicular traffic are determined.

It is normally assumed that travellers aim to minimise their own generalised
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cost when making route choice decisions. Trip assignment yields important

information on the traffic load on individual roads, or the occupancy level of

public transport.

Even though the FSM is solved sequentially, the different stages have been

linked together in the literature to enable feedback to earlier stages. For ex-

ample, given the volume of traffic on each transportation link as output of trip

assignment, trip generation, trip distribution, or modal split might produce

different results. This reflects that, for example, people choose their workplace

also with respect to its accessibility. Also, the mode choice obviously depends

on the amount of traffic on roads as public transport may be more attractive

when alternative routes for vehicular traffic are congested. This feedback is

indicated in Figure 4.2

After running the FSM the resulting load on each link can be used to evaluate

the performance of the network and identify its weaknesses. TA determines

the load on different links which can indicate sections of the network where

congestion is high and single out bottlenecks in the network. For public trans-

port it is important to be able to derive expected revenue or determine how

much capacity is needed. TA can also be used for predictions such as how the

addition of new roads affects traffic throughout the system.

Prior to running the FSM and TA, the network needs to be calibrated. It

is crucial that the functions of travel time on each link portray the actual

situation correctly. It must be correctly modelled how the amount of traffic

(also known as traffic volume) on a road influences travel time. The arising

functions for car travel will be non-linear in general as travel speed decreases

with traffic volume and traffic flow may even come to a stand-still if there

are too many vehicles on a road. The same is true for modes that share

infrastructure with other users, for example buses mostly share roads with

cars, and are therefore susceptible to the same congestion effects. Subways,

on the other hand, do not share their tracks and therefore their travel time

may be assumed constant for links. The same is true for pedestrians, they are

not affected by congestion as pedestrian walkways and sidewalks rarely reach

maximum capacity. In the following we make the general assumption that arc

cost functions are non-linear functions as the focus here is on car travel. In

practice the travel time cost function is a function of passenger car units. Light
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goods vehicles and heavy goods vehicles are accounted for by converting them

to equivalent passenger car units.

We assume that the first three transportation modelling steps are completed,

i.e. an origin-destination matrix is given and we also perform TA for only one

transportation mode, namely car travel. In the following, we discuss how TA

is modelled, and how it can be solved.

4.2 Single-objective Traffic Assignment

An extensive discussion of TA can be found in Ortúzar and Willumsen (2002),

a summary of the main points is contained in Willumsen (2000). The book by

Patriksson (1994) is dedicated to the many different algorithms available for

solving TA.

We facilitate notation by restricting our considerations to car traffic. Car travel

is most relevant for us as our aim is to model road tolls as opposed to other

monetary transportation costs which mostly affect private motor vehicles. We

first introduce the basis for traffic assignment, the traffic network.

4.2.1 Model

We continue to refer to network components as nodes and arcs, although in

the traffic literature it is more common to refer to arcs as links. We denote by

V the set of nodes, which can be understood as intersections, or points where

one can change between different arcs. The set of arcs is A j V × V , where

an arc represents a directed road section. There are |A| = m arcs and |V| = n

nodes in the network. The road network N = (G, c) consists of a directed

graph G = (V ,A) and a travel time function c that assigns to every arc a the

time ca it takes to traverse the arc. We assume that the finite demand of travel

between pairs of nodes w = (n1, n2) ∈ W j V × V is dw = 0, where W is the

set of all origin-destination (OD) pairs .

For every OD pair w there is a set of paths Rw connecting the two nodes. The

set of paths for all OD pairs is R =
⋃
w∈W Rw. The flow on each path r ∈ R
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is denoted by fr. Arc flow fa is related to path flow by

fa =
∑
r∈R

frφar for all a ∈ A, (4.1)

where φar has value 1 if path r contains arc a, and 0 otherwise. The vector of

path flow is f ∈ Rρ, ρ = |R|, and the vector of arc flow is f ∈ Rm. We denote

by Φ ∈ Rm×ρ the arc-path incidence matrix with elements φar. Then (4.1) can

be re-written as f = Φf . Travel demand is satisfied if

dw =
∑
r∈Rw

fr for all w ∈ W . (4.2)

The set K of feasible path flow vectors is given by

K = {f ∈ Rρ : f = 0 satisfies (4.2)} .

The set KA of feasible arc flow vectors is given by

KA =
{
f ∈ Rm : ∃f ∈ K such that f = Φf

}
.

The sets K and KA are both convex, closed and bounded subsets of Rρ and

Rm, respectively. This can be easily seen:

• convex: For f, g ∈ K it follows that λf + (1− λ)g ∈ K with λ ∈ [0; 1] as

λf + (1− λ)g = 0 and demand is still satisfied:∑
r∈Rw

λfr + (1− λ)gr = λ
∑
r∈Rw

fr + (1− λ)
∑
r∈Rw

gr = dw.

• closed: We have to show that the limit of every converging sequence with

limit f = limk→∞ f
k and fk ∈ K lies in K. For all w ∈ W and for all fk,

we have ∑
r∈Rw

fkr = dw.

With fr = limk→∞ f
k
r we conclude∑

r∈Rw

fr =
∑
r∈Rw

lim
k→∞

fkr = lim
k→∞

∑
r∈Rw

fkr = dw,
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which shows that f satisfies (4.2). Also, assume that f does not satisfy

f = 0, i.e. there exists r ∈ R with fr < 0. Choosing ε = |fr| > 0, there

exists K ∈ N such that for all k = K

|fkr − fr| = | fkr︸︷︷︸
=0

+ (−fr)︸ ︷︷ ︸
>0

|

︸ ︷︷ ︸
=|fr|

< |fr|,

a contradiction. Therefore f ∈ K.

• bounded: The set K is bounded as every component fr of f ∈ K is

bounded by 0 5 fr 5 dw for r ∈ Rw.

The same results hold for KA, where proofs are obtained similar to those above

by replacing f = Φf .

Most importantly it is assumed that there is a single objective function which

all users aim to minimise: the travel time associated with an arc a is denoted

by ca(f), which may be a non-linear function depending on the flow of the

whole network. It is a reasonable assumption that travel time on an arc is

positive and continuous. The travel time along a path r is denoted by cr(f).

Definition 4.2.1 We call the path travel time function cr(f), r ∈ R additive

if it can be obtained by summing up the appropriate arc time functions ca(f):

cr(f) =
∑
a∈A

ca(f)φar.

The arc time vector is denoted by c(f) ∈ Rm and the path time vector is

c(f) ∈ Rρ. Although we refer to c as travel time here, other objectives can be

included into c: the function c often is a combination of time, cost and other

factors relevant for route choice. Again, Φ can be used to derive path cost

from arc cost by c(f) = Φ>c(Φf). The following are important properties of

the functions ca.

Definition 4.2.2 If ca(f) = ca(fa) for all arcs a ∈ A, i.e. arc travel time is

only a function of fa, the flow on a, the cost function is called separable. If

for any a, b ∈ A, ∂ca/∂f b = ∂cb/∂fa the cost function is called symmetric. A
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separable cost function is always symmetric as for separable ca(fa) and cb(f b)

we get ∂ca/∂f b = 0 = ∂cb/∂fa whenever a 6= b.

It is commonly assumed that travellers all have the same objective to min-

imise travel time, that they have perfect knowledge of the travel time on each

alternative path, and that they behave according to Wardrop’s first principle

(Wardrop 1952, p.345):

The journey times on all the routes actually used are equal, and

less than those which would be experienced by a single vehicle on

any unused route.

This means that no individual driver can decrease their travel time by unilat-

erally choosing a different path, therefore all travellers between the same OD

pair experience the same travel time, even when they travel on different paths.

If there were two paths r, s ∈ Rw with cr(f) < cs(f) and fs > 0, at least some

of the travellers on s would switch from s to r. The stable solution described

by Wardrop is obtained when all travellers for an OD pair experience the same

minimal travel time (and the unused paths have travel time greater or equal

to that of used paths), as no one has an incentive to change to another route

– we call this stable solution a solution of the TA problem. This problem is an

equilibrium problem, and we refer to it as SEQ from now on. We denote this

formulation by SEQ, as it is a scalar equilibrium problem, not to be confused

with the vector equilibria that will be discussed later. The problem is also

known as User Equilibrium (UE). Wardrop’s description of SEQ is cast into

mathematical terms as follows.

Definition 4.2.3 The feasible vector f ∗ ∈ K is called equilibrium flow if and

only if

(SEQ) ∀w ∈ W ,∀r, s ∈ Rw cr(f
∗) < cs(f

∗)⇒ f ∗s = 0. (4.3)

It is typically assumed that car drivers in a road network can be modelled

by taking Wardrop’s first principle as behavioural basis. Drivers behave in a

selfish way in finding a route that is fastest among all their alternative choices.
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The solution of the TA equilibrium problem is obtained as a feasible solution

satisfying SEQ. Finding such a solution is not trivial, as a solution of SEQ can

only be derived analytically for very simple problems. It can be shown that

SEQ is equivalent to other problems, for which solution algorithms are known,

see Sections 4.2.2 and 4.2.3.

When a solution satisfies SEQ, it follows that on all used paths for an OD

pair w, drivers experience the same minimal travel time ηw, whereas the travel

time on all unused paths is at least as high. When f ∗ satisfies SEQ, there exist

minimal driving times ηw for each w ∈ W such that the following holds for all

OD pairs w ∈ W and any path r ∈ Rw:

cr(f
∗) = ηw if f ∗r > 0,

cr(f
∗) = ηw if f ∗r = 0.

(4.4)

For completeness, we mention the capacitated version of SEQ (some remarks

on capacitated SEQ can be found in Patriksson 1994). It is assumed that arc

flow must lie between some lower and upper limit l, u ∈ Rm. The new set of

feasible arc flow vectors becomes K̂A = {f ∈ Rm : ∃f ∈ KA such that l 5 f 5
u}, and the set of feasible path flow vectors becomes K̂ = {f ∈ Rρ : ∃f ∈
K̂A such that f = Φf}.

Definition 4.2.4 The feasible vector f ∗ ∈ K̂ is called capacitated equilibrium

flow if and only if

(SEQC) ∀w ∈ W ,∀r, s ∈ Rw cr(f
∗) < cs(f

∗)⇒ f ∗s = ls or f ∗r = ur.

4.2.2 Optimisation Problem Formulation

It was first published by Beckmann et al. (1956) that the SEQ problem (4.3)

can, under certain assumptions, be equivalently solved via the optimisation

problem

min
∑
a∈A

fa∫
0

ca(v)dv

s.t. f ∈ KA,
(4.5)
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given additive path cost functions. This equivalence as well as existence of

a solution of (4.5) is guaranteed by making the assumptions that for all OD

pairs w ∈ W it holds that |Rw| = 1, dw = 0, and that the arc travel time

function ca is positive, continuous, and separable (Patriksson 1994). Instead

of assuming separable functions, it suffices to assume that the functions ca are

symmetric, i.e. that the Jacobian matrix∇c is symmetric, see Nagurney (1993).

Uniqueness of the (arc flow) solution follows from the additional assumptions

that ∀w ∈ W dw > 0 and that ca(fa) are strictly increasing (for example

Patriksson 1994). It is a reasonable assumption that travel time increases

with increasing flow on an arc, as more travellers mean more congestion and

thus a longer time to traverse the arc.

Remark 4.2.1 Only uniqueness of arc flows can be guaranteed, but not unique-

ness of path flows (Patriksson 1994).

4.2.3 Variational Inequality Formulation

Other equivalent formulations of (4.3) are based on variational inequality (VI)

formulations. Nagurney (1993) shows the applicability of variational inequali-

ties within many different subject areas, and there is a chapter on TA and its

equilibrium formulation SEQ. A VI that represents SEQ can be formulated in

terms of path flow and in terms of arc flow.

Definition 4.2.5 The path-based variational inequality problem is the prob-

lem of finding flow f ∗ ∈ K that satisfies

(VIp) c(f ∗)>(h− f ∗) = 0 ∀h ∈ K.

There is also an arc-based VI formulation. The flow f
∗ ∈ KA is a solution to

the arc-based variational inequality problem if and only if

(VIa) c(f
∗
)>(h− f ∗) = 0 ∀h ∈ KA.

Smith (1979) shows that VIp and VIa are equivalent if the path costs are

additive (then the total cost c(f ∗) = c(f
∗
) remains unchanged as it does not
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matter whether it is calculated via path flows or via arc flows). The arc-based

formulation VIa, however, may be advantageous as it only requires one variable

per arc, rather than one variable per path – and there can be many more paths

than arcs in a network. SEQ and VIp / VIa are equivalent as stated in the

following theorem:

Theorem 4.2.1 (Smith 1979) A vector f ∈ K satisfies SEQ if and only if

it satisfies VIp. When cost functions are additive, a vector f ∈ KA satisfies

SEQ if and only if it satisfies VIa. Existence of a solution is guaranteed by the

additional assumption that the respective cost function c or c is continuous.

In Patriksson (1994) stronger assumptions for the equivalence of SEQ and

VIp (and VIa) are made, namely the assumption that ∀w ∈ W it holds that

|Rw| = 1, dw = 0, and that ca(f) is a positive, continuous function. The

stronger assumptions are necessary as the relation is proved via the corre-

sponding optimisation formulation, which requires stronger assumptions.

Both VI formulations are more general than the optimisation formulation (4.5)

as there are less underlying assumptions on arc cost functions: for VI the

functions c(f), c(f) may depend on the flow in the entire network. As such

a VI formulation is very general (and equivalent to SEQ), it is often given

as definition of the traffic assignment equilibrium problem (e.g. Oettli 2001)

instead of the definition of SEQ (Definition (4.3)).

4.2.4 Solving Single-Objective Traffic Assignment

There is a multitude of algorithms dedicated to solving TA, by solving one of

its re-formulations SEQ, VIp/VIa, or the optimisation problem (4.5). We give

a quick introduction to some of the most common basic algorithms here. Pa-

triksson (1994) introduces many algorithms to solve TA and gives the historic

context of their development.
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Algorithm 10 All-or-Nothing Assignment

1: input: Graph (V ,A), constant arc cost vector c, set of OD pairs W , and
demand d.

2: Set f = 0.
3: for all w ∈ W do
4: Identify shortest path r ∈ Rw.
5: fr = dw /∗ Assign all flow dw to this path ∗/
6: end for
7: f = Φf
8: output: Arc flow vector f and path flow vector f .

All-or-Nothing Assignment

The most basic TA problem arises when all travel time functions ca have

constant values, which corresponds to a road network in which there is no

congestion. In this case, all travellers for an OD pair w simply travel along

the shortest path(s) connecting their origin to their destination. To solve this

simple TA problem, one assigns the whole demand dw for each w ∈ W to

the shortest path(s) in Rw. This process is known as All-or-nothing (AON)

Assignment, summarised in Algorithm 10. AON assignment is a common

building block for many TA algorithms, as explained below.

General Iterative Solution Approach

When travel times ca are not constant, however, every additional traveller on

a path (or arc) may affect the travel time on this path (or arc) and also on

other paths. Generally solution algorithms for TA are of iterative nature. An

initial AON assignment of arc flows f
0

is created by assigning all demand for

OD pair w to the shortest path(s) r ∈ Rw based on fixed travel time derived

from zero flow on all arcs. Travel times are updated using the new arc flows

and another AON assignment is performed giving arc flow h. Next, the new

solution f
i+1

is obtained as a convex combination of the current solution, h,

and the previous one, f
i
. This process continues iteratively until a convergence

criterion is satisfied. The general iterative approach is described in Algorithm

11.

The general iterative scheme in Algorithm 11 is based on arc flow. Although

shortest paths are calculated for every AON assignment, it is not necessary to
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Algorithm 11 General Iterative Approach for Solving SEQ

1: input: Graph (V ,A), arc cost functions c, set of OD pairsW , and demand
d.

2: Calculate fixed arc travel times c(0).

3: Perform AON assignment yielding arc flow vector f
0
.

4: i = 0
5: while Convergence criterion not satisfied do
6: Calculate fixed times c(f i).
7: Perform AON assignment yielding arc flow vector h.

8: Find convex combination f
i+1

= (1− λ)f
i
+ λh with λ ∈ [0; 1].

9: i = i+ 1
10: end while
11: output: Arc flow vector f .

store path flow, it is sufficient to keep track of the cumulative arc flow. This

has the advantage that only m variables, one for each arc, are involved in the

solution algorithm, rather than one for every path.

There are different strategies to obtain a convex combination in Step 8 of

Algorithm 11. Two of them are mentioned here and they give rise to different

well-known solution methods for TA.

Method of Successive Averages

A basic scheme for solving TA, called method of successive averages (MSA),

is obtained by choosing λ = 1
i+1

. MSA can be visualised as initially assigning

all travellers for w to one path and then allowing some of them to switch

to another path according to the new path costs. With each iteration less

travellers have an incentive to switch paths and the solution slowly approaches

equilibrium. Powell and Sheffi (1982) give proof of the convergence of the MSA

approach.

Frank-Wolfe Algorithm

Throughout the literature the most popular approach to solving the optimisa-

tion formulation (4.5) of the TA problem seems to be the Frank-Wolfe (FW)

algorithm. Patriksson (1994) gives a description of the algorithm and its his-

tory. It is assumed that the cost function ca(f) is additive. In the FW al-
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gorithm, the convex combination in Step 8 is determined by choosing λ so

that
∑

a∈A
∫ (1−λ)f

i
a+λha

0
ca(v)dv, i.e. the objective of (4.5), attains its mini-

mum. This means the convex combination of f
i

and h is chosen to optimise

the objective of the optimisation problem.

Path Equilibration Algorithm

Path equilibration is a different algorithmic approach tackling path flow rather

than arc flow. The idea is that, in every iteration, the two paths that are the

least (as discussed below) in equilibrium are selected and flow is shifted between

them.

An initial AON assignment is performed based on arc travel times c(0), after

which times are updated according to the new path flow values. Iteratively,

the shortest path as well as the longest path with positive flow are determined

for every OD pair and equilibrated by shifting parts (or all) of the flow from

the longest path to the shortest one with the aim of making their travel times

equal. Then times are updated and the process repeats until a convergence

criterion is satisfied. Although this is a path-based approach to solving SEQ,

it is not necessary to enumerate all paths: it is sufficient to keep track of all

paths with positive flow from which the longest path is selected, whereas a

shortest path algorithm can be used to identify the current shortest path in

the network. We outline this equilibration algorithm in Algorithm 12. The

algorithm is first described by Dafermos and Sparrow (1969). The idea of

generating new paths (and path variables) as they are needed in a column

generation scheme can be found in Leventhal et al. (1973).

The path equilibration approach allows to monitor convergence by simply com-

paring the highest and lowest cost on paths connecting each OD pair. Once

this difference is sufficiently small, the iterative procedure can be stopped.
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Algorithm 12 Iterative Equilibration Approach for Solving SEQ

1: input: Graph (V ,A), arc cost functions c, set of OD pairsW , and demand
d.

2: Calculate fixed times c(0).
3: Perform AON assignment to obtain path flow vector f .
4: for all w ∈ W do
5: R>

w = {r ∈ Rw : fr > 0} /∗ Initialise set of paths with positive flow ∗/
6: end for
7: while Convergence criterion not satisfied do
8: for all w ∈ W do
9: Calculate constant path costs c(f).

10: Find longest path r ∈ R>
w . /∗ Longest path with positive flow. ∗/

11: Find shortest path s ∈ Rw.
12: Determine σ such that (with hu = fu, u 6= r, s)

cr(h) = cs(h) with hs = fs + σ, hr = fr − σ, and hr = 0, or
cr(h) = cs(h), with hs = fs + σ, hr = fr − σ = 0.

13: fr = fr − σ, fs = fs + σ, and ft, t ∈ Rw \ {r, s} remain unchanged.
14: R>

w = R>
w ∪ {s}.

15: if fr = 0 then
16: R>

w = R>
w \ {r}

17: end if
18: Update path flow vector f .
19: end for
20: end while
21: output: Path flow vector f and arc flow vector f = Φf .

4.3 TA with Explicit Distinction of Two or

More Objectives

In the following, literature on TA where two or more objectives are explic-

itly distinguished is discussed. A straight-forward approach is forming the

weighted sum of the two (or more) objectives. More sophisticated models dis-

tinguish user classes with different weighting factors in each class, or assume

a distribution of weighting factors. There also exist approaches where vari-

able weighting factors are obtained by a non-linear function. We introduce

the different approaches and discuss their properties. In the literature, travel

time and other components of the objectives involved in route choice are often

distinguished. Most frequently, the two objectives travel time and monetary

travel cost are studied, and we denote those particular objectives by ta(f) and

ma(f), respectively.
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4.3.1 Conventional TA with Two or More Objectives

Our aim is modelling the behaviour of network users when faced with route

choice taking into account time as well as a possible (toll) cost on some arcs.

Traditionally, this is modelled by assuming users aim to minimise a linear

combination of time and cost (and often other route choice criteria as well),

e.g. Sheffi (1985). The resulting objective function has the form gca(f) =

αta(f) + ma(f), where ta represents the arc travel time component and ma

represents the monetary component associated with each arc. The function

gca(f) is called the generalised cost function and α > 0 value of time (VOT). Of

course it is also possible to convert the cost component into time, which leads

to a generalised time function gta(f) = ta(f) + ma(f)
α

, again with VOT α > 0.

Similarly, weighting factors for both objectives, ga(f) = ω1ta(f) + ω2ma(f)

with ω1, ω2 > 0, are sometimes used.

It should be noted that, even though the objectives are referred to as time

and toll here, other interpretations are possible. Nagurney et al. (2002b) for

instance include an environmental objective representing emissions. We use

time and cost as representative objectives as they are the main objectives

distinguished throughout the literature. When an article assumes more than

two objectives, they may also be denoted by c1
a(f), . . . , cpa(f).

Clearly, assuming every traveller has the same VOT value, and thus the same

valuation of travel time, is not very realistic. Different studies such as Elias-

son (2000); Leurent (2001) confirm this. More advanced models allow several

classes of users with different VOT values or even assume a VOT distribu-

tion. The resulting models are similar to the single-objective TA discussed

above and are solved with similar algorithms. When considering different user

classes, travel demand diw is given for each user class i and the whole demand

is assigned to all paths that are shortest with respect to the generalised cost

function with VOT class value αi (Nagurney 2000, for example). When a

distribution of α is given, all paths that are optimal for some range of α are

determined. Each of those paths is assigned a share of the total demand dw

according to the distribution of α (Dial 1999a,b; Leurent 1998, for example).
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4.3.2 Literature

Literature on the TA problem with two or more objectives is presented here.

We first discuss literature in which a finite number of user classes is assumed,

then literature that assumes a distribution of weighting factors (or VOT val-

ues). Finally, approaches that assume a non-linear valuation of time or cost are

discussed. The section concludes with a table that summarises the presented

literature.

In the following, if the functions are denoted by ta(f), it is assumed that arc

travel time depends on flow of the whole network, whereas ta(fa) indicates

that the arc travel time functions are separable. If not stated otherwise, path

cost functions are assumed to be additive.

Finite Number of User Classes

We denote by i ∈ I a particular user class. The travel demand for class i

is diw. Class arc flow f
i

a and class path flow f ir are distinguished. In case

of multiple user classes, arc flow fa is obtained as
∑

i∈I f
i

a, and path cost is

derived accordingly.

The approach to bi-objective traffic assignment problems taken in Nagurney

(2000) is assuming a finite number of user classes each with their own weight-

ing factor ωi1, ω
i
2 for the travel time and cost objectives ta(f),ma(f). A known

demand for each OD pair and each user class is assumed. The arising traffic

assignment problem can be cast into a VI. Existence of a solution is shown,

whereas uniqueness of the arising arc flow pattern can be guaranteed under

certain assumptions. The proposed solution algorithm is the modified projec-

tion method (e.g. Nagurney 1993), which can be used to solve any VI with

certain assumptions on the governing functions. The approach is illustrated

using some small numerical examples.

Even though the application studied in Nagurney et al. (2001) is an equilib-

rium problem concerned with (tele-)shopping by considering a finite number of

users making the decision whether to shop at different physical locations or on-

line, the basic network formulation and behavioural principle is that of traffic

assignment. It is assumed that users repeatedly purchase products and want



4.3.2 Literature 153

to minimise their generalised cost for doing so taking into account several ob-

jectives such as time, cost, security, convenience, denoted by c1
a(f), . . . , cpa(f).

Users are divided into classes with known demand and weighting factors for

each objective, the weightings may differ between user classes and also for

every arc in the network.

In Nagurney and Dong (2002) the traffic equilibrium problem with two flow

dependent objectives, ta(f) and ma(f), is considered. The model from Nagur-

ney (2000) is extended to allow each user class to have different weighting

factors on each arc as well as incorporating elastic travel demands. A formu-

lation of equilibrium conditions as well as a VI formulation is given followed

by conditions for existence of a solution and its uniqueness. The problem is

solved with the modified projection method and illustrated by means of small

examples. The paper also contains a table of related literature.

Nagurney et al. (2002a) model decision making between commuting and tele-

commuting, possible applications are working from home compared to com-

muting to work or shopping on-line compared to driving to a shop. To do this,

they consider p different objectives c1
a(f), . . . , cpa(f) which may include cost

and time, but also safety and opportunity cost. Demand may be elastic or fix.

Their former models (Nagurney and Dong 2002; Nagurney et al. 2002a) are

extended to allow weights for each class not only to differ for each arc, but also

to depend on the objective values of this arc. Therefore, the weighting factors

are αia(c
i
a). VI formulations are given, existence and conditions for uniqueness

of solutions are discussed. The proposed solution approach is the modified

projection method to solve the given VIs.

Nagurney et al. (2002b) study a traffic equilibrium problem with three objec-

tives ta(f),ma(f), ea(f), interpreted as time, cost, and environmental (emis-

sion) cost combined into a generalised cost function via class and arc-dependent

weighting factors. Demand is fixed. Equilibrium conditions and a VI formu-

lation are given, a proof of existence is given, as well as one of uniqueness in a

special case. Furthermore, the problem with only two objectives, cost ma(f)

and the environmental component ea given by a fixed emission factor, is stud-

ied. The resulting model is related to an emission pricing scheme and it is

shown how the weighting factor associated with the environmental component

is a measure of how environmentally conscious a user is. A solution algorithm
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(modified projection method) is given.

Huang and Li (2007) study the TA with gta(f) = ta(f) + ma(f)
α

, where some

vehicles are equipped with an “advanced traveller information system” (ATIS).

The VOT factor α is given through a distribution from which a finite number

of user classes, each with fixed value αi, is derived. A logit-based model is

proposed, where route choice depends stochastically on generalised cost with

an additional error term. They distinguish cars with ATIS, that provide their

user with a more accurate idea of the true value of gt represented by an error

term with smaller variance. The authors propose to solve the problem with

MSA. A small numerical example is used to show the results of this model

compared to three other ones (multiple user classes with gt; multiple user

classes with gc; single user class with gt).

User Classes – Criticism

We present an example to illustrate that the assumption that network users

can be divided into different user classes, each with identical weighting factors,

may be a strong behavioural assumption that implicitly excludes viable choices.

Example 4.3.1 Assuming there is only one OD pair we plot the two com-

ponents tr and mr separately for all paths r ∈ Rw, see Figure 4.3. In the

figure we can distinguish dominated and non-dominated objective vectors. In

particular, the non-dominated point z2 is non-supported.

Let path ri ∈ Rw correspond to point zi in the figure. A single VOT value of

β0 for instance would result in all demand for OD pair w being assigned to

path r3 because r3 is the single minimal path for VOT β0 as indicated in the

figure. When several user classes with different VOT values are considered,

flow can only be assigned to paths r1, r3, r4, r5, r6, but no flow will be assigned

to path r2 as it is never an optimal solution for any generalised cost function.

Clearly, the path associated with point z2 should attract some flow as it is

not dominated by any other path, i.e. there is no other point in the figure

that is better in both components than z2. There is no reason why network

users should not choose this path. The assumption that route choice behaviour

can be based on generalised cost, generalised time, or weighted sum is a very

strong behavioural assumption that prohibits the choice of paths that are clearly
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Figure 4.3. All points (tr(f),mr(f)), r ∈ Rw for some f ∈ K and one OD pair
w.

reasonable alternatives.

Distribution of VOT or Weighting Factors

Another common approach is to assume a distribution of the VOT value α in

gt or gc, or the weighting factors in g. Now, paths optimal for different ranges

of values of α or of the weighting factors need to be identified. An appropriate

portion of the total demand is assigned to the identified paths.

Quandt (1967) aims at modelling mode choice. He assumes that the (fixed)

time and cost is known for every transportation mode, and that the mode

choice is based on a probabilistic utility function. The probability that each

mode is chosen is then determined. Quandt explicitly studies the problem with

two modes and two objectives yielding at most two non-dominated points. Fur-

thermore problems with three and four modes and two objectives are studied,

as well as two modes with three objectives.

Schneider (1968) is one of the first to explicitly distinguish (fixed) time t and

cost m as two main components of route choice. The two objectives t and m

are combined into a weighted sum g = ω1t + ω2m. Assuming a distribution

of the two weighting factors, he characterises all relevant paths, namely those

with optimal generalised cost function for a range of ω1, ω2. He further suggests

to derive the portion of all trips using those paths from a distribution of the
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weighting factors.

Dial (1979) also considers the two objectives independently and proposes an

algorithm. Fixed travel time t and cost m are assumed. Firstly, a dichotomic

algorithm (see also Section 1.3.2) to obtain extreme supported solutions of this

BSP problem is introduced. Secondly, Dial proposes how to assign a share of

all trip makers for each OD pair to efficient paths connecting this OD pair,

now assuming a weighted sum g = ω1t + ω2m. For a given value of ω1, ω2,

g becomes optimal for at least one of the extreme efficient paths. In fact,

there is a range of values of ω1, ω2 for which an efficient path is the optimal

choice. Now a probability density function of the ratio ω1/ω2 is used to assign

a portion of demand to each path.

Dafermos (1983) is the first to consider the problem with flow dependent objec-

tives ta(fa) and ma(fa), thus taking congestion effects into account. The gen-

eralised cost function is assumed to be of the form gca = αta(fa)+(1−α)ma(fa)

with α ∈ [0; 1]. The problem can be interpreted as traffic assignment with in-

finitely many user classes. From a corresponding equilibrium formulation, an

equivalent infinite-dimensional VI formulation is derived along with a proof of

the existence of a solution. Uniqueness is established for certain functions t

and m. The approach is demonstrated for a small example.

Leurent (1993) investigates the traffic assignment problem with travel time

ta(fa), fixed travel cost ma, and elastic demand. A generalised time function

gta = ta(fa)+ ma
α

is used as behavioural basis together with a VOT distribution

according to which demand is split between different efficient paths for each OD

pair. Then, a definition of the equilibrium problem with varying travel time

is given, shown to be equivalent to a convex optimisation problem. Existence

of a solution is shown, whereas some assumptions on travel time and demand

functions guarantee uniqueness. Finally, an adaptation of the MSA algorithm

for the solution of this traffic assignment problem is presented together with a

proof of convergence. The paper concludes with a small example.

Marcotte (1995) discusses the usefulness of VIs in four different equilibrium

problems including single-objective TA and TA with two objectives. For the

latter, fixed demand is assumed as well as variable time ta(f), fixed cost ma,

and a generalised time formulation gt(f) with VOT distribution. Previous

formulations (Dafermos 1983; Leurent 1993) are repeated. Marcotte shows how
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the optimisation formulation can be solved with the Frank-Wolfe algorithm,

where the efficient shortest paths are obtained with a parametric shortest path

algorithm (see also Section 2.3.4). Another possible reduction to a convex

optimisation problem is given, which does not require a separable function t,

it suffices that the Jacobian of t is symmetric. It is also shown that, if two

paths between the same OD pair never have the same cost ma, the VI can still

be solved with a slightly modified Frank-Wolfe algorithm.

Leurent (1995) presents another possible solution algorithm for the problem

from Leurent (1993). The procedure is called “Equalisation-by-Transfer” in

one of his later articles. Similar to the path equilibration algorithm (Section

4.2.4) the longest paths with positive flow and shortest paths are identified

for each OD pair, then flow is re-allocated from the longest to the shortest

path with the aim of making their generalised cost equal. An equalisation

algorithm for models with elastic demand appeared in Schittenhelm (1990).

Leurent adapts this algorithm to account for the VOT distribution. Sensitivity

analysis is discussed and a small example is presented.

Leurent (1996) generalises his previous work. Again, time ta(fa) is flow depen-

dent, while cost ma is not. Demand is elastic and upper bound constraints on

arc flows are included in the model. For each OD pair paths with equal cost are

collected in the same class. An equilibrium principle is derived: only classes

with some minimal “impedance”-value can receive a share of flow (which is of

course assigned to the minimum time path within each class). An equivalent

VI is introduced. In the case of symmetric ta, previously introduced algorithms

(MSA, MSA with path enumeration, and path equilibration) are compared ac-

cording to different convergence measures. Path equilibration converges the

fastest. A new algorithm is proposed for TA with capacity constraints. Fur-

thermore, it is investigated how errors in input data are propagated through

the model.

Extending his work from 1979, Dial (1996) presents an algorithm for bi-

objective traffic assignment where both objectives, ta(fa) and ma(fa), may

vary with arc flow. Again, users are assumed to choose their route accord-

ing to the best generalised cost function value gca(f) = αta(fa) + ma(fa),

where VOT values α follow some known distribution. The solution algorithm

is similar to the Franke-Wolfe approach. Iteratively, the bi-objective traffic
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assignment problem for fixed objective values is solved in a sub problem as

described in Dial (1979). A convex combination of the previous solution and

the one obtained by the sub problem forms the new solution. There is no

proof of convergence of this algorithm, but a proof for a simpler version of the

algorithm with flow independent monetary component m is given. The au-

thor illustrates his algorithm with a small 2-arc example and also shows some

computational results for a network with 9 nodes.

Dial (1997) improves his previous algorithms. The sub problem is now solved

by finding efficient shortest path trees for each origin node and loading trips

according to the distribution of α in a more efficient manner. Where the

master problem from Dial (1996) constructs a combination of the current and

previous solution, the new solution is now obtained as convex combination of

all previously obtained solutions. The author finds his improved algorithms

to be more efficient. To show different possible applications of bi-objective

traffic assignment, the author also discusses different pairs of objectives that

model for instance time versus toll cost, expected time versus awareness of

delay, travel time versus risk of being delayed, and time spent on preferred

roads versus time spent on non-preferred roads.

Marcotte and Zhu (1997) consider equilibrium problems with multiple (but

finitely many) user classes as well as a VOT distribution yielding an infinite

dimensional VI formulation. The latter is the main concern of the paper.

Existence of a solution and uniqueness of arc and class arc flow is proved under

certain conditions. A variation of the Frank-Wolfe algorithm is proposed: the

so-called linearisation algorithm to minimise a gap function derived from the

equilibrium problem is given together with different step size rules. Finally, an

application to the traffic assignment problem is given together with two small

test instances.

Leurent (1998) studies the multi-objective traffic assignment problem with ob-

jectives c1(f), . . . , cp(f) and fixed or variable demand. It is assumed that the

first objective is cost, while the p − 1 remaining ones represent other non-

monetary objectives. The objectives are combined in a generalised cost func-

tion using weights ω1, . . . , ωp−1 to transform the p− 1 non-cost objectives into

their cost equivalent. The weights are given by a distribution. Uniqueness

and existence of solutions are discussed and a VI formulation is given. A
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bi-objective example with a two-arc network is used to illustrate the theory.

Existing literature and solution algorithms are also discussed.

VOT Distribution – Criticism

Again, we consider Example 4.3.1. In the following we will discuss the gener-

alised cost function gc only, as gc = αgt implies that gc and gt have the same

solutions. Furthermore, the weighted sum function g = ω1t + ω2m is equiv-

alent to the two previous functions which can be seen by dividing by ω1 and

choosing α = ω2

ω1
. If a VOT distribution is given, every non-dominated point

in Figure 4.3 except for z2 is optimal for at least one value of α. There exist

values β1 > β2 > β3 such that in Figure 4.3 point z1 is optimal for α = β1,

z3 is optimal for β1 5 α 5 β2, z4 is optimal for β2 only, z5 is optimal for

β2 5 α 5 β3, and z6 is optimal for α 5 β3.

Again, point z2 is not optimal for any value of α, and path r2 will therefore

not be assigned any flow. Furthermore, most solution algorithms will also not

assign any flow to path r4, as its objective vector z4 is only optimal for exactly

one value of α. Again there is no reason why no network user should choose

the paths corresponding to points r2 and r4 as they are not dominated.

Non-linear VOT

The following papers assume a non-linear VOT function. It is assumed that

the valuation of time is not actually linear. In practice this means that a small

delay, for example, may not be conceived as grave whereas a long delay may

be very severe – even for someone with a normally low VOT. Non-linear VOT

functions are not additive in general, and the valuation function can only be

applied to the final path travel time. This entails the necessity for models that

differ from those discussed earlier in this section and, accordingly, different

solution approaches.

Gabriel and Bernstein (1997) argue that the assumption of a linear VOT is

not realistic when computing the monetary equivalent of time. The authors

point out that while a travel time of a few minutes more or less does not make

a big difference, a travel time of, for example, 30 minutes can be perceived

as very troublesome (e.g. when commuting to work). Hence, Gabriel and
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Bernstein (1997) assume that the value of time is a non-linear function of path

travel time tr(f). Even though path travel time is assumed to be additive, the

corresponding valuation of time v(tr(f)) is not. It is also assumed that there

is a path-dependent fixed monetary component to take into account costs such

as tolls, which is also not additive (as often the toll from A to C is not equal to

the toll from A to B plus that from B to C). Thus, the studied problems have

a generalised path cost function gcr(f) = v(tr(f)) +λtr(f) +mr with nonlinear

VOT function v, costs λtr(f) proportional to travel time, and path-dependent

monetary costs mr such as tolls. This TA problem must have a formulation

based on path flow as two main components of the cost function, v(tr(f)) and

mr, can only be evaluated on a path-level. It is shown under which conditions

existence and uniqueness of the arising elastic TA problem follow. A solution

algorithm using simplicial decomposition is described in which only a subset

of all paths is generated (using column generation). A solution is obtained

as convex combination of previously generated path flow solutions (master

problem) until it can be guaranteed that the equilibrium solution is obtained.

This is checked within the column generation sub problem: do better solutions

exist in the sub problem, i.e. can paths r with better gcr(f) be found? It is

not necessary to keep track of all path variables within the solution algorithm,

only those with positive flow need to be stored. Only one path is generated at

a time, before the master problem is solved again.

Bernstein and Gabriel (1997) extend their previous simplicial decomposition

approach to allow a column generation scheme that may introduce more than

a single path into the problem. By doing so, the master problem is solved less

frequently. They also allow the nonlinear VOT function to vary for each path.

Numerical tests are presented for a sample network.

Larsson et al. (2002) study a problem similar to the one studied by the previ-

ous authors. Instead of applying a nonlinear VOT function to express time in

terms of cost, however, they transform cost into time, again using a nonlinear

valuation function ṽ(mr). They study the problem with generalised time func-

tion gtr(f) = tr(f)+ṽw(mr), where the valuation function ṽw may vary between

OD pairs. Time tr is assumed additive as well as separable, and path costs

mr are fixed. An equivalent optimisation model can be formulated by combin-

ing the objective (4.5) with the fixed cost component
∑

w∈W
∑

r∈Rw frṽw(mr).

Thus, applying a generalised time function here, the problem is greatly simpli-
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fied compared to previous approaches (Gabriel and Bernstein 1997; Bernstein

and Gabriel 1997) as the fixed toll cost component in the objective function

does not influence the solution of the minimisation problem. The proposed

algorithms are both simplicial decomposition algorithms. In the master prob-

lem an optimal solution based on a restricted set of shortest paths, R ⊂ R,

is obtained. In one approach the master selects an optimal flow solution for

the current set of routes R, whereas in the other one the master selects a new

arc-flow solution as convex combination of previous arc-flow solutions. Due to

the non-additive objective ṽ(mr), the column generation sub problem is solved

by a bi-objective label setting algorithm. Among all generated efficient paths

only a single path is selected and added to the set R, namely the one with

minimal cost gtr(f) = tr(f) + ṽw(mr).

It should be noted that the problems with generalised cost function gc =

v(tr(f)) + mr (similar to Gabriel and Bernstein 1997) and gt(f) = tr(f) +

ṽw(mr) (Larsson et al. 2002) with ṽ = v−1 are not equivalent. Other than in

the case of VOT factors α, it is not possible to simply calculate the “inverse”

valuation as ṽ = v−1.

Literature Table

We summarise the literature discussed in this section in Table 4.1. The main

features of every article are condensed here. The ‘objectives’ studied in the

TA problem follow the same notation as in this whole section. Column ‘how’

stands for the type of generalised cost function, such as VOT (VOT value), W

(weighting factors) combined with distr. (distribution), nonl. (non-linear), and

uc (user classes). Column ‘dem.’ states whether demand is elastic (el.), fix, or

both. Column ‘cap.’ indicates whether a capacitated TA is studied (yes) or

not (no). Column ‘aim’ briefly summarises the main purpose of the paper and

‘algorithm’ describes the solution algorithm used, if applicable. Finally column

‘numerical test’ describes problem instances used when numerical tests were

made (a|b|c stands for the number of centroids a, the number of nodes b, and

the number of arcs c), the number of user classes is also given, if applicable.
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4.4 Bi-objective Traffic Assignment

Before introducing the concept of bi-objective traffic assignment, we briefly

summarise our criticism of the conventional approach.

As mentioned earlier, the conventional approaches may not consider paths “at-

tractive” that have non-supported or non-extreme objective vectors. All prac-

tical papers that present actual solution algorithms are of the generalised cost

type, some considering several user classes, VOT distributions or non-linear

VOT functions. More flexible approaches have been presented that allow a

different weighting for each user class on each arc, or even varying weighting

factors according to the actual arc costs. It may be difficult to correctly esti-

mate the different weighting factors for all user classes on the different arcs,

so practical tests will have to show the viability of these approaches.

In this thesis, we propose another approach that enables modelling of TA

with two (or more) objectives, namely bi-objective (or multi-objective) TA

which allows to consider the objectives separately. With the application to a

TA problem with travel time and toll cost objective in mind, it appears that

those two objectives are perceived very differently and should not simply be

combined by using weighting factors. People often see travel time spent on

the road as well as monetary costs such as petrol and car maintenance costs

as a necessity. Tolls on the other hand are perceived as a nuisance as they

are imposed by an authority. Especially in TA with toll costs it seems that

assuming there exists a generalised cost function is a very strong assumption.

Therefore, we propose to replace the generalised cost function assumption with

a bi-objective approach.

We are able to show that the approach by Larsson et al. (2002), with non-linear

valuation function in the generalised cost function, can be used to solve BEQ

in Section 4.5.1.

Apart from TA with toll costs, we also see other possible areas of application

of bi-objective TA. In the literature, it has been observed that conventional

TA often does not represent traveller behaviour very well, for example during

off-peak time. During off-peak time there is little congestion in a network

and therefore TA assigns the network users for each OD pair to very similar

paths. Observations of the actual traffic during off-peak times show that the
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modelled path choice does not agree with that observed in practice. McNally

(2000, p.49f) states that at off-peak times stochastic TA produces more realistic

results as traffic demand (volume) is spread out across more paths:

[. . . ] for off peak assignments, stochastic assignment is often used,

which tends to assign trips across more paths and thus better re-

flects the observed traffic volumes in un-congested periods [. . . ]

Stochastic assignment models that a user’s perception of the same path can

differ, which is achieved by adding a stochastic error term to the actual path

cost. Therefore, each user may choose a different path that they perceive as

the shortest one, which achieves that the trips associated with each OD pair

w spread out over more of the available paths Rw even though the actual path

cost (without perception error) of some of the paths is non-optimal.

Spreading out trips across paths could also be achieved by a bi-objective (or

multi-objective) TA as this recognises that there is more than one objective

in route choice and that drivers spread out on all available efficient (trade-

off) solutions. While one objective remains travel time, the other objective(s)

would have to be determined to model those other factors that determine route

choice.

In contrast to most literature discussed in the previous section, we give a gen-

eral characterisation of bi-objective traffic assignment that is based on weaker

behavioural assumptions than assuming a linear choice function as discussed

in Section 4.3.2. This definition generalises to the multi-objective case. We

believe that our definitions of bi-objective TA directly extends the idea of

Wardrop’s equilibrium principle to two (or multiple) objectives. According to

Wardrop’s first principle, traffic arranges itself so that all drivers between one

OD pair experience the same minimal travel time. We believe that a natural

extension of this principle means that every driver for an OD pair travels on

minimal paths according to the two (or more) objectives, i.e. on efficient paths:

Definition 4.4.1 Under bi-objective user equilibrium (BUE) conditions traf-

fic arranges itself in such a way that no individual trip maker can improve

either their toll or travel time or both without worsening the other component

by unilaterally switching to another route.
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Similarly, under multi-objective user equilibrium (MUE) conditions traffic ar-

ranges itself in such a way that no individual trip maker can improve at least

one of their p objectives without worsening any of the others by unilaterally

switching to another route.

Note that, similar to Wardrop’s principle (see quote on p. 143), it is again

assumed that travellers all have the same objectives, which are minimised,

and that they have perfect knowledge of the objective vector associated with

each alternative route.

The first introduction of this definition of BUE or MUE is attributed to Chen

and Yen (1993).

In order to formalise the BUE/MUE concept, we need some more notation.

We combine the two objective vectors t,m : Rm 7→ R into the objective matrix

C : Rm 7→ R2×m where the first row of C is C1· = t and the second row of C is

C2· = m. Similarly, if there are p objective vectors c1, . . . , cp they are combined

into the objective matrix C : Rm 7→ Rp×m with rows Ci· = ci. The matrix

C : Rρ 7→ Rp×ρ represents the corresponding matrix of path cost functions. As

we have ci = Φ>ci(f), i = 1, . . . , p, the path and arc cost matrices are related

by C = Φ>C.

4.4.1 Vector Equilibrium, Vector Optimisation, and Vec-

tor Variational Inequality

In this section, we define three different multi-objective problems that are

multi-objective extensions of the corresponding problems in the scalar case

discussed in Section 4.2 (SEQ, the optimisation formulation (4.5), and VI).

Vector Equilibrium Problem

A solution vector h ∈ K satisfies MUE, if all dominated paths have zero flow

and only non-dominated paths may have positive flow. The vector equilib-

rium principle that formalises MUE is given by the following definition. The

function C·r : R 7→ Rp is the p-dimensional path cost function for path r.
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Definition 4.4.2 A flow vector f ∗ ∈ K is said to be in vector equilibrium if

and only if

(VEQ) ∀w ∈ W , ∀r, s ∈ Rw C·s(f
∗) ≥ C·r(f

∗)⇒ f ∗s = 0.

We also denote the corresponding bi-objective problem with p = 2 as BEQ.

The corresponding vector of arc flow is f
∗

= Φf ∗. The weak vector equilibrium

(WVEQ) problem is closely related to VEQ. WVEQ is obtained by replacing

≥ in VEQ by >, i.e. a strict dominance relation between path cost vectors is

considered.

The vector equilibrium problem VEQ, i.e. an equilibrium problem in which

two or more objectives are distinguished, made its first appearance in Chen

and Yen (1993) and is later reconsidered in many other contributions (Yang

and Goh 1997; Goh and Yang 1999; Chen et al. 1999; Yang and Goh 2000;

Khan and Raciti 2005; Yang and Yu 2005; Li et al. 2007, 2008).

Vector Optimisation Problem

A first approach to solving VEQ is to investigate whether VEQ relates to

a multi-objective optimisation problem similar to the single-objective opti-

misation formulation (4.5). We call this multi-objective optimisation problem

vector optimisation problem (VOP) here, as this is the term used in the related

literature. It is assumed that path cost functions are additive.

Definition 4.4.3 By solutions of VOP we mean the set of efficient solutions

of the following multi-objective problem with objective vector z.

min z(f) =


z1(f) =

∑
a∈A

fa∫
0

c1
a(v)dv

...

zp(f) =
∑
a∈A

fa∫
0

cpa(v)dv


s.t. f ∈ KA.

(4.6)

The bi-objective version of VOP is denoted BOP.
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In the literature, the weak version of VOP, denoted by WVOP, has also re-

ceived considerable attention. Here, efficient solutions are replaced by weakly

efficient solutions of the optimisation problem.

Vector Variational Inequality Problem

The multi-objective extension of a VI is known as vector variational inequality

(VVI), first introduced by Gianessi (1980). In the single-objective case, SEQ

can be expressed through a VI, and attempts are made in the related literature

to establish a similar connection between the two problems VEQ and VVI (with

less success).

Definition 4.4.4 Assume K ⊂ Rρ closed and convex, C : K 7→ Rp×ρ is a

matrix-valued function. The vector variational inequality problem is the prob-

lem of finding flow f ∈ K that satisfies

(VVI) C(f)(h− f) � 0,∀h ∈ K.

Or equivalently,

C(f)(h− f) /∈ −Rp≥,∀h ∈ K.

A weak vector variational inequality (WVVI) is obtained by replacing � in the

definition of VVI with ≮, which gives the condition C(f)(h− f) /∈ −Rp>. This

definition of VVI and WVVI appears for example in Yang and Goh (1997).

The existence of solutions of VVI is, for example, discussed in Yang and Goh

(1997); Chen et al. (2005).

In the context of TA, the set K is interpreted as the set of feasible path flow

vectors, ρ is the number of paths in R, and the path cost functions C·r(f) have

p different components for each path r.

Similar to the scalar TA problem, we can define a VVI based on arc flow,

which is the problem of finding f ∈ KA that satisfies

(VVIa) C(f)(h− f) � 0,∀h ∈ KA.

VVI and VVIa are equivalent problems provided that the path cost function
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is additive. This can be shown similar to Smith (1979). We have

C(f)h =
∑
r∈R

Cr(f)hr =
∑
r∈R

(∑
a∈A

Ca(Φf)φar

)
hr

=
∑
a∈A

Ca(f)

(∑
r∈R

hrφar

)
=
∑
a∈A

Ca(f)ha

= C(f)h.

It follows that C(f)(h − f) = C(f)(h − f) and therefore VVI and VVIa are

equivalent for additive path cost functions.

Lee et al. (1998) introduce a scalarised variational inequality problem. For

ξ ∈ Rp=, the flow f ∈ K is a solution to the scalarised variational inequality

problem if and only if:

(V Iξ)

(
p∑
i=1

ξiCi·(f)

)
(h− f) = 0,∀h ∈ K. (4.7)

4.4.2 Literature

The literature on VEQ and related problems is of mainly theoretical nature.

Many articles discuss existence of solutions and attempt to relate VEQ and

WVEQ to other problems such as (W)VVI and (W)VOP. Some articles men-

tion that a possible application of VEQ is in TA, but no actual TA problems

have been solved and no solution algorithms have been proposed.

In the literature, some incorrect results can be found. Some of them have

been reported before, whereas we discuss some new ones. We provide counter

examples to false claims and report on known incorrect results.

Before we discuss the literature on VEQ, VVI, and VOP, we need to introduce

more notation. Given a feasible flow solution f ∈ K, the following denote the

set of (non-dominated) path cost vectors and the set of efficient paths.

Definition 4.4.5 For a feasible f ∈ K, the set of all path cost vectors for OD
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pair w is given by

Zw(f) = {z ∈ Rp : ∃r ∈ Rw with z = C·r(f)} .

We define the set of non-dominated points for an OD pair w ∈ W by

ZwN(f) = {z ∈ Zw(f) : z is non-dominated in Zw(f)} ,

while the corresponding set of efficient paths is

Xw
E (f) = {r ∈ Rw : ∃z ∈ ZwN(f) such that z = C·r(f)} .

Chen and Yen (1993)

The concept of VEQ was first introduced in a report by Chen and Yen (1993).

This report is described in several other articles, but we were unfortunately

unable to obtain a copy of it. After generalising Wardrop’s first principle to

VEQ, existence of solutions and a sufficient condition for VEQ solutions are

established. Furthermore, Theorem 4.4.5 (see also Section 4.4.4) is presented,

where a special VVI and VEQ are shown to be equivalent problems given that

there is only a single efficient solution for each OD pair.

Yang and Goh (1997)

Yang and Goh (1997) apply the VEQ principle to the TA problem with multiple

objectives. They also introduce WVEQ, VVI, WVVI, VOP, and WVOP based

on a closed and convex subset K of Rn. It is assumed that F : K 7→ Rp×n is

a continuously differentiable function. It is shown that a solution of VVI is a

solution of VEQ (as in Theorem 4.4.4), and also that a solution of WVVI is a

solution of WVEQ. They repeat Theorem 4.4.5 (Chen and Yen 1993). In the

remainder of the paper, VVI, WVVI, VOP, and WVOP are related to each

other. A VOP with objective f is derived from the VVI

find x ∈ K, s.t. F (x)(y − x) � 0,∀y ∈ K,
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given that each component Fi·, i = 1, . . . , p of F is separable, by integrating

each of the component functions fi =
∫ x

Fi·(v)dv. It is shown that a solution

of VVI is an efficient solution of the related VOP if the objective function f of

VOP is Rn=-convex, and an example showing that the reverse does not hold is

given. They repeat a theorem from Chen and Yen (1993) which states that a

weakly efficient solution of WVOP is a solution of WVVI, and the converse is

true if the objective function f of WVOP is Rn=-convex. Strict Rn=-convexity

is necessary to conclude that a solution of WVOP also solves VOP. Strict

Rn=-concavity, on the other hand implies that a solution of WVOP also solves

VVI. Therefore, under the same assumption, a solution of VOP is a solution

of VVI (as every solution of VOP is a solution of WVOP). This also seems to

indicate that there can be no equivalence relationship between VOP and VVI,

as convexity and strict concavity cannot be satisfied simultaneously.

Goh and Yang (1999)

Goh and Yang (1999) study VEQ and aim at establishing a link with VOP.

Given a scalarised VIξ with ξ ∈ Rp>, they show that the obtained solution of

VIξ satisfies VEQ. They also propose the re-formulation of VIξ as a paramet-

ric complementarity problem. They show under which conditions a properly

efficient solution of VOP solves VEQ, see also Remark 4.4.1. Furthermore, the

same problems are studied in the case of separable, affine, and monotone arc

cost functions. As shown by Li et al. (2006), only parts of the results in Goh

and Yang (1999) are correct, which we demonstrate in the following.

Goh and Yang (1999) introduce a parametric equilibrium principle:

Definition 4.4.6 (Goh and Yang 1999)

Λ := {λ ∈ Rp : λi = 0,
∑p

i=1 λi = 1}. Let a λ ∈ Λ be given. A path flow vector

f is in λ-equilibrium if for all w ∈ W and for all s ∈ Rw

fs = 0 whenever ∃z ∈ ZwN(f) such that λ>C·s(f) > λ>z.

Goh and Yang propose that if f is a solution of VEQ and if all non-dominated

points lie on the boundary of their convex hull, ZwN(f) ⊂ bd(conv(ZwN(f))),

then there exists λ ∈ Λ such that f is in λ-equilibrium. Note that this does
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not require that all non-dominated points are supported, as a non-supported

point may also lie on the boundary. A restriction to supported points only can

be achieved by considering conv(ZwN(f) + Rp=).

The proposed theorem by Goh and Yang (1999) is incorrect, as shown by Li

et al. (2006). This counterexample contains a non-supported point.

Example 4.4.1 Example by Li et al. (2006) A network with the following

structure is used.

o d

1

2

3

The cost matrix is given as

C(f) =

 6f1 5f2 7f3

3f1 4f2 f3

 .

With the choice of

f ∗ = (2, 2, 2)> and C(f ∗) =

 12 10 14

6 8 2

 ,

solutions C·2(f ∗) and C·3(f ∗) are supported, whereas C·1(f ∗) is non-supported.

Li et al. (2006) show that that f ∗ is not in λ-equilibrium, a contradiction to

Theorem 2.1.(i) by Goh and Yang (1999).

We show that the proposed theorem by Goh and Yang (1999) is still incorrect

when assuming that all points are supported, i.e.ZwN(f) ⊂ bd(conv(ZwN(f) +

Rp=)).

Example 4.4.2 A network with the same structure as Example 4.4.1 is used.

The total demand from o to d is 1000 vehicles, so that the set of feasible path
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flows is given by K =
{
f ∈ R3

= : f1 + f2 + f3 = 1000
}

. Arc cost functions are:

C(f) =

 10
[
1 + 0.15

(
f1
200

)4
]

20
[
1 + 0.15

(
f2
400

)4
]

25
[
1 + 0.15

(
f3
300

)4
]

20 15 0

 .

The first cost component C1· represents travel time, whereas the second one,

C2·, represents a toll. Thus, Route 1 is the fastest route with the highest toll

while Route 3 is toll free and the slowest.

The vector f ∗, defined as follows, is a feasible path flow solution that satisfies

VEQ:

f ∗ = (300, 300, 400)> with C(f ∗) =

 17.59 20.95 36.85

20 15 0

 .

The three objective vectors C·i(f
∗), i = 1, 2, 3 are non-dominated and sup-

ported as they satisfy ZwN(f ∗) ⊂ bd(conv(ZwN(f ∗) + Rp=)). As all three ob-

jective vectors are supported, we can choose λi ∈ Λ such that each one of

λ>i C·i(f
∗), i = 1, 2, 3 solves the problem minz∈ZwN (f∗) λ

>
i z. For any fixed choice

of λ ∈ Λ, at most two of the three objective vectors become optimal. Therefore,

for fixed λ ∈ Λ, the above solution f ∗ is never in λ-equilibrium, a contradiction

to Theorem 2.1.(i) by Goh and Yang (1999).

Li et al. (2006) also provide a correction of Theorem 2.1.(i) by Goh and Yang

(1999) described in the previous section. In order to do so, they give a different

definition of weakened parametric equilibrium:

Definition 4.4.7 A path flow vector f is in weakened parametric equilibrium

if for all w ∈ W and for all s ∈ Rw

hs = 0 whenever ∀λ ∈ Λ,∃z ∈ ZwN(f) such that λ>C·s(f) > λ>z.

Now, Theorem 2.4 in Li et al. (2006) states that whenever f solves VEQ, f

is in weakened parametric equilibrium. Note that they omit the assumption

ZwN(f) ⊂ bd(conv(ZwN(f) + Rp=)). In this case their own Example 4.4.1 serves
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as a counterexample as the non-supported solution C·1(f ∗) does never solve

a problem of the form minz∈ZwN (f∗) λ
>
i z, therefore a solution with f ∗1 > 0 is

never in weakened parametric equilibrium. The theorem can be corrected by

including the assumption ZwN(f) ⊂ bd(conv(ZwN(f) + Rp=)).

Theorem 4.4.1 If a flow f ∈ K solves VEQ and ZwN(f) ⊂ bd(conv(ZwN(f) +

Rp=)), then f is in weakened parametric equilibrium.

It should be noted that incorrectness of Theorem 2.1.(i) in Goh and Yang

(1999) entails incorrectness of Theorems 3.2.(i) and 3.3 (Goh and Yang 1999).

The corresponding Theorems in Yang and Goh (2000, Theorems 4(i),7,9), Chen

et al. (2005, Chapter 6), and Yang and Yu (2005, Proposition 5.2) are also

incorrect.

Chen et al. (1999)

Chen et al. (1999) apply a non-linear scalarisation function, ξea, to a VVI and to

the VEQ principle. They relate the scalarised VEQ to a scalarised VVI. They

also show that solutions satisfying this (non-linear) scalarised VEQ principle

also satisfy VEQ, but unfortunately the converse claim is not true as shown

by Li et al. (2006). We repeat the main points here:

Let K j Rp a closed, convex, and pointed cone, such as K = Rp=. Chen et al.

(1999) propose to link VEQ and VVI via the non-linear scalarisation function

ξea : K 7→ R, which for given e ∈ int(K) and a ∈ Rp is defined as

ξea(y) = min {t ∈ R : y ∈ a+ te−K} .

When K = Rp= with e = (e1, e2, . . . , ep), ξea can be re-written as

ξea(y) = max

{
yi − ai
ei

, 1 5 i 5 p

}
.

The notion of ξea-equilibrium is introduced as follows:

Definition 4.4.8 The path flow vector f ∈ K is said to be in ξea-equilibrium
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if there exist e ∈ int(Rp=) and a ∈ Rp such that

∀w ∈ W , ∀s, t ∈ Rw ξea ◦ C·s(f) > ξea ◦ C·t(f) =⇒ fs = 0.

Chen et al. (1999) propose that a path flow f satisfies (WVEQ) if and only if

f is in ξea-equilibrium for some e ∈ int(Rp=) and a ∈ Rp. This is incorrect, as

explained in Li et al. (2006) on the basis of Example 4.4.1. Li et al. also give

an alternative formulation for weak ξea-equilibrium:

Definition 4.4.9 The path flow vector f ∈ K is said to be in weak ξea-

equilibrium if for any w ∈ W we have

∀s, t ∈ Rw ξeC·t(f) ◦ C·s(f) < 0 =⇒ ft = 0.

With this definition of weak ξea-equilibrium, they obtain the following:

Theorem 4.4.2 A flow f ∈ K satisfies WVEQ if and only if f is in weak

ξea-equilibrium.

Unfortunately, Theorem 4.4.1 as well as 4.4.2 do not seem to give rise to a

solution algorithm, whereas the incorrect versions of the theorems by Goh and

Yang (1999) and Chen et al. (1999) reduced the problem to easily-solvable

scalar equilibrium problems, which can be solved via their related variational

inequality problems.

Yang and Goh (2000)

Yang and Goh (2000) develop the relationship between VVI, VOP, VEQ, their

weak versions, and the scalarised versions based on orderings defined by a

closed convex cone (rather than simply Rp= as in previous papers). Some

results from their previous paper (Goh and Yang 1999) are extended, which are

incorrect as demonstrated earlier. This affects Yang and Goh (2000, Theorems

4(i),7,9).
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Oettli (2001)

Oettli (2001) studies TA in a very general setting that allows for interpretation

as capacitated equilibrium with user classes. He aims to derive a vector equilib-

rium principle from a vector variational inequality and to establish equivalence.

The author takes a different approach to establishing an equivalence relation

between vector variational inequalities and vector equilibria by simply modi-

fying the equilibrium conditions to yield the desired equivalence. Oettli (2001,

p.224) states

But rather the variational equilibrium, which remains invariant if

one passes to the vectorial setting, should be the basic notion, and

the definition of a Wardrop equilibrium must be adapted in each

case.

Unfortunately, it remains unclear to what extent the variational inequalities

(which variational equilibria are defined on) are invariant.

Oettli (2001) introduces an equilibrium problem with multiple classes and

objectives as f ∗ ∈ K satisfying∑
r∈R

Cr(f
∗) (hr − f ∗r ) ∈ R=, ∀h ∈ K, (4.8)

where the vectors hr and fr are column vectors in Rq and Cr(f
∗) is a p × q

matrix. For q = 1 this is VIξ (4.7) with weighting factors ξi = 1. Oettli (2001)

attempts to derive equilibrium conditions that are equivalent to (4.8).

The obtained equilibrium conditions model the problem with capacitated path

flow. The aim is to find f ∈ K that, for any fixed cost vector C̃ = C(f), satisfies

∀w ∈ W , ∀r, s ∈ Rw

C̃r − C̃s ∈ −R≥ ⇒ fs − ls /∈ R> or fr − ur /∈ −R>.
(4.9)

Oettli (2001) derives necessary and sufficient conditions for a solution f ∈ K̂
of equilibrium conditions (4.9) also satisfying (4.8) with fixed cost vector C̃.

While the necessary condition is straight forward, the sufficient condition has

strong assumptions. In Oettli (2001, Proposition 4.3) both necessary and

sufficient conditions are given. Unfortunately, they appear to be contradicting
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when p > 1. In the setting of the paper Y is the space of linear mappings

between X (space of path flow) and Z (objective space). Each cost vector

Cr(f) is such a linear mapping. The convex ordering cone PY of Y is assumed

to be pointed so that PY ∩ (−PY) = {0}. On the other hand, the proposition

assumes that PY ∪ (−PY) = Y . The two assumptions are trivially true for the

single-objective problem with Z = R which makes the space of linear mappings

the set of scalars Y = R, and the ordering cone PY = R=.

If Z = Rp, p > 1 and Y = Rp it is not clear how to find such an ordering cone

with PY ∩ (−PY) = {0} and PY ∪ (−PY) = Y . A cone PY ⊂ Rp is called acute

if and only if its closure is contained by an open half-space H and the origin,

i.e. cl(PY) ⊂ H∪{0}. The cone PY is acute if and only if cl(PY) is pointed, see

Yu (1985). For an acute cone PY we have PY ∪ (−PY) ⊂ H∪ (−H)∪{0} 6= Y .

If the cone PY is closed and pointed, then cl(PY) = PY and therefore it is

also acute. Hence, PY ∪ (−PY) = Y cannot hold. A pointed open cone must

be an open half-space together with the origin or an open subset thereof:

PY j H ∪ {0}. Again PY ∪ (−PY) 6= Y follows. If the cone PY is open, it

represents only weak dominance.

Yang and Yu (2005)

Yang and Yu (2005) show existence of a solution of VVI, relate the problem to

VOP, and present some so-called gap functions. A dynamic traffic equilibrium

is introduced where flow and demand are time dependent. This is extended to

a dynamic vector equilibrium for which sufficient conditions (in terms of VVI

and WVVI) are given. Note that a proposition Yang and Yu (2005, Proposition

5.2) appears to be incorrect, see also the discussion of Goh and Yang (1999).

Konnov (2005)

Konnov (2005) studies VVIs with set-valued functions F . The paper contains

a section on the application of vector equilibrium principles and traffic assign-

ment, where F (x) always takes a single value. After introducing a WVEQ

problem, the corresponding WVVI is presented, a solution of which is always

a solution of WVEQ, and its scalar reformulation is given, formulated as single

WVVI with set-valued function.
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Khan and Raciti (2005)

Khan and Raciti (2005) study a time-dependent vector equilibrium problem,

where flow, capacity constraints, and demand may depend on time. The con-

cept of (weak) vector equilibrium is formulated similar to (W)VEQ in this

thesis. Corresponding vector variational inequalities are also given, solutions

of which are shown to be (weak) vector equilibrium solutions.

Chen et al. (2005)

Chapter 6 of Chen et al. (2005) is on vector network equilibrium problems.

Findings from previous papers are collected in a section on WVEQ, one on

VEQ, and one on dynamic VEQ. It should be noted that some incorrect re-

sults as discussed for Goh and Yang (1999) are included in Chen et al. (2005,

Chapter 6).

Cheng and Wu (2006)

Even though the problem studied in Cheng and Wu (2006) is not exactly what

we are interested in, it is mentioned here as there seem to be several flaws in

the presentation.

Cheng and Wu (2006) formulate a problem where multiple products traverse a

network and each product incurs different multi-objective costs. The products

can also be interpreted as user classes. Initially, the multi-product problem

is considered with a single objective, i.e. p = 1. This means, they consider

a network in which certain goods are produced by suppliers and need to be

shipped to certain destination points. There also are warehouses, i.e. nodes

through which products can be shipped, without staying there. There is a

certain demand for every product. The cost of transporting different products

along an arc may differ. We first need some additional notation. Let q be the

number of different products, then the amount of product j = 1, . . . , q to be

shipped between OD pair w is djw and the flow of product j on arc a is f
j

a.

Similarly, the cost of product j on arc a is cja, and the corresponding cost on

path r is cjr =
∑

a∈r c
j
a.
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Cheng and Wu (2006) define f jr , the flow of product j on path r ∈ Rw, by

f jr = min{f ja : a ∈ r}. (4.10)

Then, they state a flow satisfies the demand if∑
r∈Rw

f jr = djw ∀w ∈ W , j = 1, . . . , q. (4.11)

Considering the following example, this definition does not seems intuitive:

Example 4.4.3 Consider the following network with the amount of flow of

a single product, so q = 1, indicated next to each arc. The demand for this

product between OD pair 1 = (1, 5) is d1
1 = 8, so intuitively satisfied by the arc

flow indicated in the figure.

2

1 3 5

4

3

5

3

3

5 5

For the OD pair (1, 5), there are the following paths: r1 = (1, 2), (2, 3), (3, 5),

r2 = (1, 2), (2, 3), (3, 4), (4, 5), r3 = (1, 3), (3, 5), and r4 = (1, 3), (3, 4), (4, 5).

Evaluating (4.10) for the four paths yields

f 1
r1

= 3, f 1
r2

= 3, f 1
r3

= 3, f 1
r1

= 5,

and therefore (4.11) yields
∑

r∈R1
f 1
r = 14, which does not satisfy d1

1 = 8.

Instead of trying to derive path flow from arc flow as in (4.10), one should

simply introduce a variable for the flow of every product j on every path r. It

is well known that arc flow can be uniquely defined in terms of path flow, but

not vice versa.

The set K now denotes all demand feasible solutions. Cheng and Wu (2006) de-

fine mj
w(f) as minimum path cost of product j between OD pair w, i.e. mj

w =

minr∈Rw c
j
r(f). Both cjr(f) and mj

w(f) are grouped into vectors by cr(f) =
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(c1
r(f), c2

r(f), . . . , cqr(f))
>

and mw(f) = (m1
w(f),m2

w(f), . . . ,mq
w(f))

>
. Subse-

quently, an equilibrium flow pattern is introduced.

A vector v ∈ D is called equilibrium flow pattern if and only if

∀w ∈ W ,∀r ∈ Rw cr(f)−mw(f)

 = 0 if fr ∈ Rq≥,
= 0 if fr = 0.

(4.12)

According to Cheng and Wu (2006, Prop. 2.1), (4.12) is equivalent to the

following:

cr(f)− cs(f) ∈ Rq≥ ⇒ fr = 0 for each w ∈ W and any r, s ∈ Rw. (4.13)

Note that fr = (f 1
r , . . . , f

q
r )> here is the vector of path flow of products 1, . . . , q

on path r. We present a simple example to show that that (4.13) and (4.12)

are not equivalent.

Example 4.4.4 In this example we assume q = 2, W = {1 = (1, 2)} and that

there are exactly two paths connecting the OD pair w = 1, namely r1 = a1 and

r2 = a2. Furthermore we assume d1
1 = 1 and d2

1 = 1.

1 2

a1

a2

For the two paths r1 = a1, r2 = a2 and the two products j = 1, 2 we have the

following costs:

c1
r1

(f) = 10(f 1
a1

+ f 2
a1

) c1
r2

(f) = 7(f 1
a2

+ f 2
a2

)

c2
r1

(f) = 3(f 1
a1

+ f 2
a1

) c2
r2

(f) = 7(f 1
a2

+ f 2
a2

)

Choosing h1
r1

= 0, h2
r1

= 1, h1
r2

= 1, h2
r2

= 0, which is a demand feasible solution,

we obtain

cr1(h) = (10, 3)>, cr2(h) = (7, 7)>, m1(h) = (7, 3)>.
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Clearly, the above solution h is not an equilibrium flow pattern according to

(4.12) as

cr1(h)−m1(h) = (3, 0)> = 0 and cr2(h)−m1(h) = (0, 4)> = 0,

but both hr1 ∈ Rq≥ and hr2 ∈ Rq≥. The vector h does, however, satisfy (4.13)

as both cr1 − cr2 /∈ Rq≥ and cr2 − cr1 /∈ Rq≥. In fact, an equilibrium flow pattern

satisfying (4.12) can only exist if the cost for each product is minimal along the

same path, so if there exists a unique optimal path. In Example 4.4.4 there

exists no feasible solution satisfying the equilibrium flow pattern by Cheng and

Wu.

Cheng and Wu (2006, Theorem 2.1.) state the following: A vector flow f ∗ ∈ K
is an equilibrium pattern flow as in (4.12) if and only if f ∗ is a solution to the

following vector variational inequality:

find f ∗ ∈ K, s.t. c(f ∗)(h− f ∗)> ∈ Rq×q= ∀h ∈ K. (4.14)

For ρ = |R|, the cost matrix is defined as c(f) := (c1(f), . . . , cρ(f)) ∈ Rq×ρ,
and the flow matrix by f := (f1, . . . , fρ) ∈ Rq×ρ, where every cr(f) and fr

is a column vector of class cost and class flow, respectively. Throughout the

proof the term equilibrium pattern flow as defined in (4.13) is used, so we

will show that with this definition, their claim is incorrect. Again, we use the

feasible solution from Example 4.4.4, which satisfies (4.13), and show that the

variational inequality (4.14) is not satisfied:

c(h)(u− h)> =

 10 7

3 7

 u1
r1

u2
r1
− 1

u1
r2
− 1 u2

r2


=

 10u1
r1

+ 7u1
r2
− 7 10u2

r1
− 10 + 7u2

r2

3u1
r1

+ 7u1
r2
− 7 3u2

r1
− 3 + 7u2

r2


Choosing the feasible solution û1

r1
= 1, û2

r1
= 0, û1

r2
= 0, û2

r2
= 1, we obtain:

c(h)(û− h)> =

 3 −3

−4 4

 /∈ Rq×q= .
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More importantly in the context of this thesis, Cheng and Wu (2006) con-

sider the multi-product, multi-objective equilibrium problem defined similar

to (4.13) by extending scalar-valued cost functions to p-dimensional cost vec-

tors for every product j (Cheng and Wu 2006, Def 3.1): A vector f ∗ ∈ K is said

to be an equilibrium pattern flow in the generalised context of the multi-product

supply-demand network equilibrium problem with vector-valued cost function if

and only if

Cr(f
∗)− Cs(f ∗) ∈ Rq×p≥ ⇒ f ∗r = 0 ∀w ∈ W ,∀r, s ∈ Rw. (4.15)

They claim that an equilibrium according to this is equivalent to a ξe-equilibrium

pattern. The function ξe is just ξea, see (4.8), without the a component: Given

a fixed e ∈ Rp>, ξe : Rp → R is defined here by

ξe(y) = min
{
λ ∈ R : y ∈ λe− Rp=

}
∀y ∈ Rp.

The usage of ξe gives rise to the definition of ξe-equilibrium. This was at-

tempted similarly by Chen et al. (1999), and shown to be incorrect by Li et al.

(2006). A vector f ∗ ∈ K is said to be an ξe-equilibrium pattern flow in the

vector valued network equilibrium problem for multiple products if there exists

an e ∈ int(Rp=) such that (Cheng and Wu 2006, Def 3.3):

ξe ◦ Cr(f ∗)− ξe ◦ Cs(f ∗) ∈ Rq≥ ⇒ f ∗r = 0 ∀w ∈ W , ∀r, s ∈ Rw. (4.16)

Despite their attempts to prove the contrary (Cheng and Wu 2006, Theorem

3.1), the two concepts (4.15) and ξe-equilibrium (4.16) are not equivalent. This

can be shown by the same counterexample used by Li et al. (2006).

Li et al. (2006)

Li et al. (2006) show incorrectness of a weighted sum scalarisation by Goh and

Yang (1999) and a scalarisation based on the function ξea by Chen et al. (1999).

Li et al. (2006) give correct re-formulations of those scalarisations, which give

rise to the concept of weakened parametric (weighted sum) equilibrium and

weak ξea-equilibrium.
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Li et al. (2007)

Li et al. (2007) extend the concept of ξea-equilibrium to vector equilibrium

problems with path capacity constraints, elastic demand, and different user

classes. First, a system of VVIs is introduced, a solution of which always

satisfies (W)VEQ. It is shown that a feasible solution is in weak ξea-equilibrium

if and only if it satisfies WVEQ. They also show that a solution satisfying the

original concept of (non-weak) ξea-equilibrium (Chen et al. 1999) does also

satisfy VEQ, but not vice versa. It is furthermore shown that from the above

weak ξea-equilibrium principle a VVI formulations can be derived, which is

equivalent to WVEQ. For the (non-weak) ξea-equilibrium a VVI is derived

that implies WVEQ, but not vice versa.

Li et al. (2008)

Li et al. (2008) aim at relating a capacitated version of VEQ to a special multi-

objective minimum cost flow problem defined in the following. It is assumed

that there are lower and upper bounds l, u on arc flow. From those they derive

limits for path flow on path r by

lr = max{laφar : a ∈ A} and ur = max{uaφar : a ∈ A}. (4.17)

Clearly, this does not guarantee that the resulting arc flow is within the bounds

l, u. The following simple example demonstrates this.

Example 4.4.5 Let the demand for the single OD pair (1, 3) be 2 and the

upper bound for flow on each arc 1, i.e. u = (1, 1, 1, 1). There are three paths,

r1 = a1, a4, r2 = a2, a4, and r3 = a3. According to (4.17), the upper bound for

flow on each path is also 1, i.e. u = (1, 1, 1).

1 2 3

a1

a2

a4

a3
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Clearly, the path flow solution fr1 = 1, fr2 = 1, fr3 = 0 satisfies f 5 u, but the

resulting arc flow has fa4
= 2, which violates the upper bound on arc flow.

Li et al. (2008) formulate the following optimisation problem

min
∑

r∈RC·r(fr)

s.t. l 5 f 5 u∑
r∈Rw fr = dw for all w ∈ W ,

(4.18)

where path cost is assumed to be additive, i.e. C·r(fr) =
∑

a∈AC ·a(fa). Also,

arc costs are assumed to be given by linear functions depending on arc flow.

A feasible f ∗ is in capacitated vector equilibrium if and only if:

∀w ∈ W ,∀r, s ∈ Rw C·s(f
∗) ≥ C·t(f

∗)⇒ f ∗s = ls or f ∗t = ut. (4.19)

Li et al. (2008, Theorem 2.1) claim that an efficient solution of (4.18) always

satisfies (4.19). Within the proof, the assumption that path cost functions are

linear is made (without explicitly stating it), which generally does not follow

from the fact that arc cost functions are linear. In Example 4.4.6 linear arc

costs C ·a(f) do not lead to linear path costs C·r(fr). The next example presents

a network with cost functions where a solution of (4.18) does not satisfy (4.19).

Example 4.4.6 We consider two OD pairs, (1, 3) and (1, 4) each with demand

1. The paths r1 = a1, a3 and r2 = a2, a3 connect the first OD pair and paths

r3 = a1, a4 and r4 = a2, a4 connect the second one. We assume the lower

bounds are zero and upper bounds are uri > 1.

1 2

3

4

a1

a2

a3

a4

We consider cost functions C ·ai = (fai , 1)>; i = 1, 3, 4 and C ·a2 = (2fa2
, 1)>.
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Now the objective in (4.18) is
∑

r∈RC·r(fr) = (2fa1
+ 4fa2

+ 2fa3
+ 2fa4

, 8)>.

Clearly, an efficient solution with minimal first component is fr1 = 1, fr2 =

0, fr3 = 1, fr4 = 0, as this solution avoids the most expensive arc a2. The

corresponding path costs are

C·r1(fr1) = (3, 2)>

C·r2(fr2) = (1, 2)>
and

C·r3(fr3) = (3, 2)>

C·r4(fr4) = (1, 2)>.
(4.20)

For both OD pairs, the equilibrium conditions are violated as there is positive

flow on non-efficient paths r1, r3. Even in the special case of constant path

costs C·r(fr) = C·r, a solution of the optimisation problem does not have to

satisfy the equilibrium conditions: constant path costs mean that the objective

of (4.18) is constant and therefore any feasible solution is optimal, whereas

a solution that satisfies the equilibrium conditions should only use paths with

non-dominated costs.

Li et al. (2008, Theorem 2.1) claim that an efficient solution of (4.19) satisfies

(4.18) when |Rw| 5 2 holds for all w ∈ W . The network given in Example

4.4.6 satisfies those assumptions. The feasible path flow solution hr1 = 2
3
, hr2 =

1
3
, hr3 = 2

3
, hr4 = 1

3
has path cost

C·r1(hr1) = (7
3
, 2)>

C·r2(hr2) = (7
3
, 2)>

and
C·r3(hr3) = (7

3
, 2)>

C·r4(hr4) = (7
3
, 2)>,

(4.21)

and therefore satisfies the equilibrium conditions (4.19). The objective function

value of (4.18) for this solution is (28
3
, 8)>, whereas the objective function value

of feasible solution f in Example 4.4.6 is (8, 8)> ≤ (28
3
, 8)>. Therefore, h is

not an efficient solution of the optimisation problem. It also follows that

Li et al. (2008, Theorem 2.3 and 2.4) are incorrect as they are similar to

the above theorems addressing weak efficiency and weak vector equilibrium.

Also, Li et al. (2008, Proposition 2.1) state that the scalar version of problems

(4.18) and (4.19) are equivalent is incorrect, which can be seen by considering

Example 4.4.6 without the second objective.

Li et al. (2008) generalise (4.19): a feasible f ∗ is in generalised capacitated

vector equilibrium if and only if for all OD pairs w ∈ W and for any positive
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integers n1, n2 with n1 + n2 5 |Rw|:
∑n1

i=1 λiC·si(f
∗
si

) ≥∑n2

j=1 µjC·tj(f
∗
tj

)

⇒ ∃i0 ∈ {1, . . . , n1} f ∗si0 = lsi0 or ∃j0 ∈ {1, . . . , n2} f ∗tj0 = utj0 ,

for all rj, si ∈ Rw and λi, µj > 0, i = 1, . . . , n1, j = 1, . . . , n2 and
∑n1

i=1 λi =

1,
∑n2

j=1 µj = 1. In Li et al. (2008, Theorem 3.1), it is claimed that with this

definition the optimisation problem and the generalised vector equilibrium

problem are equivalent. However, the counter example presented in Example

4.4.6 still applies with n1 = n2 = 1.

Raciti (2008)

Raciti (2008) studies traffic assignment with different user classes as well as

multi-objective cost functions for each of the user classes on each path. The

models initially include capacity constraints, which are later omitted. The

aim is establishing a vector equilibrium principle that is equivalent to a VVI

formulation, similar to the previous work of Oettli (2001). In the following we

present some of the mentioned variational equilibrium concepts and attempt

an economic interpretation similar to Wardrop’s.

Raciti (2008) defines a vector variational equilibrium according to (4.8). Note

that in his paper, Raciti (2008) actually presents problem (4.8) in a more

general framework assuming the space of flows (here Rρ), and the space of

costs (here Rp) are topological vector spaces and also that order relations are

given by ordering cones. In (4.8) and everything that follows, we replace those

general vector spaces by the set of q class flows, Rq, and the cost space by Rp

so that p objectives are considered.

Two other equilibrium concepts are also introduced by Raciti (2008), which

are basically VEQ and WVEQ with additional user classes and the WVEQ

concept is also formulated with capacity constraints on path flow.

Raciti (2008) shows that (4.8) is equivalent to the following equilibrium con-

ditions:

∀i ∈ {1, . . . , p},∀w ∈ W ,∀r, s ∈ Rw

Cj
s(f)i > Cj

r (f)i ⇒ f js = 0, ∀j = 1, . . . , q.
(4.22)
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Entry i of the p-dimensional path cost vector Cj
r (f) for user class j is denoted

by Cj
r (f)i. Therefore, the aim of identifying equilibrium conditions that are

equivalent to a variational inequality formulation is achieved. However, a closer

look at (4.22) reveals that those equilibrium conditions can only be satisfied if

there is exactly one efficient path for every OD pair, i.e. there exists a unique

minimal solution. In this case, however, it is not necessary to consider a vector

equilibrium.

Fixing a product j, (4.22) is a set of scalar VIs for every component i of

the objective vector. For each j, (4.22) represents p scalar VIs, each of which

implies that path flow can only be positive if the ith cost component is minimal

on the corresponding path. So a solution exists only if all components attain

their minimal cost for the same path(s).

Let us show that (4.22) does not have a solution if any OD pair w with positive

demand for a user class j, djw > 0, has more than one non-dominated path cost

vector Cj
r (f) for all f ∈ K. Now, for user class j and for every pair of efficient

paths r, s with Cj
r (f) 6= Cj

s(f), there exist two indices i1, i2 ∈ {1, . . . , p} such

that

Cj
r (f)i1 < Cj

s(f)i1 and Cj
r (f)i2 > Cj

s(f)i2 . (4.23)

From (4.23) and (4.22) we can conclude that

Cj
s(f)i1 > Cj

r (f)i1 ⇒ hjs = 0

Cj
r (f)i2 > Cj

s(f)i2 ⇒ hjr = 0.

Repeating this process for every pair of efficient paths r, s with Cj
r (f) 6= Cj

s(f),

the flow on all those paths must become zero to satisfy (4.22). But then,

demand djw > 0 is not satisfied. Therefore, there exists no feasible solution

satisfying (4.22) whenever there is more than one efficient path per OD pair

w and class j.

This completes our discussion of literature on VEQ and related problems.

In Sections 4.4.3 and 4.4.4 we will collect some known facts on the relation-

ship between VEQ and VOP as well as VEQ and VVI and present some new

insights that help understand what sets VEQ apart from VOP and VVI. Al-

though solution algorithms of the single-objective TA problem take advantage

of equivalent optimisation and VI formulation, this equivalence does not hold
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in the multi-objective case, which will be demonstrated in the two subsequent

sections.

4.4.3 Relationships between VOP and VEQ

Before the relation of VOP and VEQ is discussed, we need to introduce the

term properly efficient solutions for a VOP problem with objective vector

z(f) = (z1(f), . . . , zp(f)).

Definition 4.4.10 (Geoffrion 1968). A feasible solution f
∗

is called properly

efficient, if it is efficient and if there is a real number M > 0 such that for all

i and f ∈ KA for which zi(f) < zi(f
∗
), there exists an index j such that

zi(f
∗
)− zi(f)

zj(f)− zj(f ∗)
5M. (4.24)

Properly efficient solutions are efficient solutions with bounded trade-offs be-

tween the objectives. Properly efficient solutions can be obtained as optimal

solutions of minimisation problems with weighted sum objective, given that all

weights are positive and the functions and underlying feasible set are convex

(Geoffrion 1968, Theorem 2).

Theorem 4.4.3 Every properly efficient solution of the multi-objective op-

timisation problem VOP with convex objectives zi =
∑

a∈A
∫ fa

0
cia(v)dv, i =

1, . . . , p based on positive and continuous functions cia, is a VEQ solution.

Proof For every properly efficient solution f
∗

there exist positive weights

ω1, . . . , ωp such that f
∗

is optimal for the single-objective optimisation problem

min ω1

∑
a∈A

fa∫
0

c1
a(v)dv + . . .+ ωp

∑
a∈A

fa∫
0

cpa(v)dv

s.t. f ∈ KA.
(4.25)
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Problem (4.25) can be re-written as

min
∑
a∈A

fa∫
0

(ω1c
1
a(v) + . . .+ ωpc

p
a(v)) dv.

s.t. f ∈ KA.

This is the equivalent optimisation formulation corresponding to a standard

SEQ problem with arc cost function ω1c
1
a(f)+ . . .+ωpc

p
a(f). This cost function

is positive and continuous as all its components cpa are positive and continuous,

and the weights are positive. At equilibrium all used paths for any OD pair w

have the same minimal generalised cost value, ηw, see also (4.4):

ω1c
1
r(f
∗) + . . .+ ωpc

p
r(f
∗) = ηw if f ∗r > 0,

ω1c
1
r(f
∗) + . . .+ ωpc

p
r(f
∗) = ηw if f ∗r = 0.

(4.26)

If we now assume that there exists a path s ∈ Rw with positive flow f ∗s > 0

that is dominated by another path t ∈ Rw, then

c1
t (f
∗
) 5 c1

s(f
∗
), c2

t (f
∗
) 5 c2

s(f
∗
), . . . , cpt (f

∗
) 5 cps(f

∗
)

holds with at least one strict inequality. From this and ωi > 0 it follows that

ω1c
1
t (f
∗
) + . . .+ ωpc

p
t (f
∗
) < ω1c

1
s(f
∗
) + . . .+ ωpc

p
s(f
∗
),

which contradicts (4.26), and therefore f
∗

satisfies VEQ. �

Remark 4.4.1 Let Ω be an open subset of Rm and h a function differentiable

on Ω. Furthermore, K is a convex subset of Ω. Then, h is convex on K if and

only if its gradient ∇h is monotone, i.e. satisfies

(∇h(x)−∇h(y))> (x− y) = 0, (4.27)

for all x, y ∈ K (Hiriart-Urruty and Lemaréchal 2001, Theorem 4.1.4). There-

fore, Theorem 4.4.3 is valid assuming that each cost function cia is positive,

continuous, monotone, and separable as this implies that the objectives zi are

convex functions. A similar theorem appears in Goh and Yang (1999).
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Remark 4.4.2 A solution with one or more of the weights equal to zero does

not necessarily satisfy VEQ. If, for example, the only two objectives are time

t and cost m, then the solution of SEQ with cost function ω1t + 0 ·m is not

a solution that satisfies BEQ. At equilibrium, all used paths for an OD pair

will have the same travel time, but if the costs for those paths differ from each

other, then BEQ is not satisfied. In BEQ, there should only be flow on the

path with cheapest cost as this path dominates the other paths with same

travel time.

Next, we show that the reverse of Theorem 4.4.3 is not true, even for convex

functions zi. We give an example in which there exists a solution of BEQ, that

cannot be obtained as solutions of a BOP problem even though the objectives

of BOP are convex. We again consider Example 4.4.2. Here solution

f ∗ = (0, 607, 393)> with C(f ∗) =

 19 35.9 36

20 15 0


satisfies BEQ. But there exists a solution h that dominates solution f ∗ in BOP:

h = (117.5, 450, 432.5)> with C(h) =

 19.3 24.8 41.2

20 15 0

 .

The BEQ solution f ∗ is not an efficient solution of BOP (4.6), as the objective

vector z(f ∗) of BOP is dominated by z(h):

z(h) =

 22825.4

9100

 ≤
 24764.4

9105

 = z(f ∗).

In the next section, we explore why the problems VVI and VEQ are signifi-

cantly different by characterising solutions of VVI and showing which solutions

of VEQ cannot be obtained by a VVI.
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4.4.4 Relationships between VVI and VEQ

It is well-known that a solution of VVI also satisfies VEQ, which we repeat here.

Equivalence of VVI and VEQ is established under very strong assumptions,

namely that for each OD pair all efficient paths have the same path cost vector.

We then characterise which properties of VEQ solutions prohibit them from

satisfying VVI. This answers the question whether solving VVI can help us

understand and solve VEQ. Then, we give assumptions which are weaker than

those previously made (in the literature), that guarantee that a solution of

VEQ also solves VVI.

It is well-known that every solution of VVI is a solution of VEQ, as the fol-

lowing theorem confirms. However, the reverse is not true in general.

Theorem 4.4.4 (Yang and Goh 1997) If f ∗ ∈ K is a solution of VVI, then

f ∗ is also a solution of VEQ.

Proof (similar to Yang and Goh 1997) Assume f ∗ satisfies VVI but not

VEQ. Then there exists some w ∈ W with r ∈ Rw, f
∗
r > 0 so that the path

cost vector C·r(f
∗) is dominated by the path cost vector of some path s ∈ Rw,

i.e.

C·s(f
∗) ≤ C·r(f

∗) or C·s(f
∗)− C·r(f ∗) ≤ 0. (4.28)

Choose solution h as

ht =


f ∗t if t 6= r, s

0 if t = r

f ∗s + f ∗r if t = s

It follows that h ∈ K as demand for OD pair w is still satisfied. As f ∗ satisfies

VVI:

C(f ∗)(h− f ∗) =
∑
w∈W

∑
t∈Rw

C·t(f
∗)(ht − f ∗t )

= C·r(f
∗)(hr − f ∗r ) + C·s(f

∗)(hs − f ∗s )

= f ∗r︸︷︷︸
>0

(C·s(f
∗)− C·r(f ∗))︸ ︷︷ ︸
≤0 by (4.28)

≤ 0.
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The latter implies that f ∗ does not satisfy VVI, a contradiction.

�

Every solution of VVI is a solution of VEQ. Chen and Yen (1993) show the

following equivalence provided that the set ZwN(f) is singleton, i.e. |ZwN(f)| = 1,

for all w ∈ W .

Theorem 4.4.5 (attributed to Chen and Yen 1993) Let ZwN(f) be singleton

for all w ∈ W. If f ∈ K satisfies VEQ, then f satisfies the following modified

VVI:

C(f)(h− f) � 0,∀h ∈ K. (4.29)

Therefore, equivalence of the modified VVI in (4.29) and VEQ is established.

Unfortunately, the singleton assumption renders this equivalence worthless. If

for each OD pair there is always a single path that is optimal for each of the

two or more objectives, we do not have to consider a multi-objective problem

at all. At the end of this section we give a variation of Theorem 4.4.5 that has

weaker assumptions for a solution of VEQ also being a solution of VVI.

Lee et al. (1998) show how the sets of solutions of VVI, WVVI, and VIξ are

related. They give a proof of the following theorem, where the set of solutions

of VVI (WVVI, VIξ) is denoted by sol(VVI) (sol(WVVI), sol(VIξ)):

Theorem 4.4.6 The following properties hold:⋃
ξ∈Rp>

sol(VIξ) ⊂ sol(VVI) ⊂ sol(WVVI) =
⋃
ξ∈Rp≥

sol(VIξ)

Theorem 4.4.6 shows that all solutions of VVI can be obtained by applying

a weighted sum scalarisation of the objectives
∑p

i=1 ξiCi·(f). It appears that

this gives a first indication that VVI is not suitable to solve VEQ. We em-

phasised previously that the definition of VEQ does not make any behavioural

assumptions such as combining the different objectives into a weighted sum

generalised cost function. This indicates that path cost vectors C·r that are

not optimal for a generalised cost function with some weighting factors can-

not be included (i.e. have positive fr) into a solution of VVI. We confirm this
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Figure 4.4. Points zs and zt are supported, zr is one of the non-supported
points “between” them.

conjecture in the following.

Theorem 4.4.6 shows that sol(VVI) is a subset of the solutions of WVVI,

which in turn can be obtained via sol(VI)ξ when ξ varies over ξ ∈ Rp= \ {0}.
This indicates that VVI and WVVI do not permit solutions in which for some

w ∈ W one of the efficient paths is non-supported. We first give a proof of this

result for p = 2 and then extend it to p = 2.

Theorem 4.4.7 Assume p = 2, f is a solution of VEQ and there exists w ∈
W such that the set of non-dominated points for w, ZwN(f), contains at least

one non-supported point zr with corresponding path r ∈ Rw such that zr =

C·r(f) and fr > 0 (C·r(f) denotes column r of the path cost matrix). Then f

does not solve VVI.

Proof As indicated in Figure 4.4, we choose path indices s and t to define

the neighbouring supported points of zr = (C1r(f), C2r(f)). Index s is chosen

so that zs = (C1s(f), C2s(f)) is a supported point in ZwN(f) with maximal value

C1s(f) < C1r(f). Similarly, index t is chosen so that zt = (C1t(f), C2t(f)) is a

supported point in ZwN(f) with minimal value C1t(f) > C1r(f).

As zr is a non-supported non-dominated point and zs, zt are neighbouring
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supported non-dominated points, we have

C1s(f) < C1r(f) < C1t(f) and C2s(f) > C2r(f) > C2t(f) (4.30)

and for slopes mst and mrt we have mrt < mst:

mst =
C2s(f)− C2t(f)

C1s(f)− C1t(f)
>
C2r(f)− C2t(f)

C1r(f)− C1t(f)
= mrt. (4.31)

We proceed by constructing h ∈ K such that C(f)(h − f) ∈ −R2
≥. Let path-

flow vector h be given as

hu = fu for u 6= r, s, t

hs = fs + aµ

hr = fr − µ
ht = ft + (1− a)µ,

(4.32)

with 0 < a < 1 and 0 < µ 5 fr. As hu − fu = 0 for u 6= r, s, t the LHS of VVI

reduces to

C(f)(h− f) =

 C1s(f)(hs − fs) + C1r(f)(hr − fr) + C1t(f)(ht − ft)
C2s(f)(hs − fs) + C2r(f)(hr − fr) + C2t(f)(ht − ft)


=

 aµC1s(f)− µC1r(f) + (1− a)µC1t(f)

aµC2s(f)− µC2r(f) + (1− a)µC2t(f)

 .

To show that f does not satisfy VVI, i.e. C(f)(h − f) ∈ −R2
≥, it suffices to

show that a and µ exist so that

aµC1s(f)− µC1r(f) + (1− a)µC1t(f) = 0 (4.33)

and aµC2s(f)− µC2r(f) + (1− a)µC2t(f) < 0. (4.34)

From (4.33) a = C1r(f)−C1t(f)
C1s(f)−C1t(f)

follows and (4.30) implies that 0 < a < 1. With

this choice of a, it remains to verify that (4.34) holds. For the LHS of (4.34),
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we have

aC2s(f)− C2r(f) + (1− a)C2t(f)

= a(C2s(f)− C2t(f)) + (C2t(f)− C2r(f))

=
C1r(f)− C1t(f)

C1s(f)− C1t(f)
(C2s(f)− C2t(f)) + (C2t(f)− C2r(f))

=
C2s(f)− C2t(f)

C1s(f)− C1t(f)︸ ︷︷ ︸
<0

(C1r(f)− C1t(f))︸ ︷︷ ︸
<0︸ ︷︷ ︸

>0

+(C2t(f)− C2r(f))

=

∣∣∣∣C2s(f)− C2t(f)

C1s(f)− C1t(f)

∣∣∣∣ |C1r(f)− C1t(f)|+ (C2t(f)− C2r(f))

<
C2r(f)− C2t(f)

C1r(f)− C1t(f)
(C1r(f)− C1t(f)) + (C2t(f)− C2r(f)) = 0,

as (4.31) implies
∣∣∣C2s(f)−C2t(f)
C1s(f)−C1t(f)

∣∣∣ < ∣∣∣C2r(f)−C2t(f)
C1r(f)−C1t(f)

∣∣∣. Therefore (4.34) is true when

choosing a = C1r(f)−C1t(f)
C1s(f)−C1t(f)

, and any 0 < µ 5 fr, we obtain a feasible h ∈ K as

defined in (4.32) such that (4.33) and (4.34) hold, therefore f does not satisfy

VVI. �

Even when there are only supported objective vectors in a solution of VEQ,

this solution might not be a solution of VVI as we show next.

Theorem 4.4.8 Assume p = 2, f is a solution of VEQ and there exists w ∈
W such that the set of non-dominated points for w, ZwN(f), contains at least

three supported points zr, zs, zt that are not optimal for a weighted sum problem

with the same weighting factor. Furthermore, we assume for the paths r, s, t ∈
Rw that zu = C·u(f) and fu > 0, u = r, s, t (C·u(f) denotes column u of the

path cost matrix). Then f does not solve VVI.

Proof The proof is similar to that of Theorem 4.4.7 above. The situation

is illustrated in Figure 4.5.

Again, we have relationship (4.30), i.e. supported non-dominated solutions are

in some order. For the slopes we have mst < mrt and therefore

mst =
C2t(f)− C2s(f)

C1t(f)− C1s(f)
<
C2t(f)− C2r(f)

C1t(f)− C1r(f)
= mrt. (4.35)
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Figure 4.5. Points zs, zt, and zr are supported, but do not lie on the same face
of bd(conv(ZwN(f))).

We proceed by constructing h ∈ K such that C(f)(h − f) ∈ −R2
≥. Let path-

flow vector h be given as

hu = fu for u 6= r, s, t

hs = fs − aµ
hr = fr + µ

ht = ft − (1− a)µ,

(4.36)

with appropriate choice of 0 < a < 1 and µ > 0, which we will comment on

later. As hu − fu = 0 for u 6= r, s, t the LHS of VVI reduces to

C(f)(h− f) =

 −aµC1s(f) + µC1r(f)− (1− a)µC1t(f)

−aµC2s(f) + µC2r(f)− (1− a)µC2t(f)

 .

To show that f does not satisfy VVI, i.e. C(f)(h − f) ∈ −R2
≥, it suffices to

show that a and µ exist so that

−aµC1s(f) + µC1r(f)− (1− a)µC1t(f) = 0 (4.37)

and − aµC2s(f) + µC2r(f)− (1− a)µC2t(f) < 0. (4.38)

From (4.37) we conclude a = C1t(f)−C1r(f)
C1t(f)−C1s(f)

and 0 < a < 1 by (4.30). It remains
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to verify that (4.38) holds for this choice of a:

−aC2s(f) + C2r(f)− (1− a)C2t(f)

= a(C2t(f)− C2s(f)) + (C2r(f)− C2t(f))

=
C1t(f)− C1r(f)

C1t(f)− C1s(f)
(C2t(f)− C2s(f)) + (C2r(f)− C2t(f))

=
C2t(f)− C2s(f)

C1t(f)− C1s(f)
(C1t(f)− C1r(f)) + (C2r(f)− C2t(f))

(4.35)
<

C2t(f)− C2r(f)

C1t(f)− C1r(f)
(C1t(f)− C1r(f)) + (C2r(f)− C2t(f)) = 0

Therefore (4.38) is true when choosing a = C1t(f)−C1r(f)
C1t(f)−C1s(f)

. It remains to choose

µ so that h is feasible. As fs, ft > 0, by choosing µ 5 min
{
fs
a
, ft

1−a

}
, we obtain

a feasible h ∈ K as defined in (4.36) such that (4.37) and (4.38) hold, therefore

f does not satisfy VVI. �

Solutions of VEQ that satisfy the assumptions of Theorems 4.4.7 and 4.4.8 do

exist. For instance, in Example 4.4.2 we consider a network in which the first

cost function is the travel time, which increases with traffic flow. The second

cost function, however, is given by toll cost, which we assume to be independent

of traffic flow, so it remains constant. Here, non-supported solutions may occur

as well as more than two supported solutions, which are not optimal for the

same weighting factors.

In Example 4.4.2 the solution f̂ has three supported points, whereas solution

f ∗ has a non-supported point. Clearly both solutions satisfy VEQ as there is

only flow on efficient paths. This is illustrated in Figure 4.6.

f̂ = (300, 300, 400)> with C(f̂) =

 17.59 20.95 36.85

20 15 0


f ∗ = (300, 400, 300)> with C(f ∗) =

 17.59 23.00 28.75

20 15 0


In the following Theorems 4.4.7 and 4.4.8 are extended for p > 2.

Theorem 4.4.9 Assume p = 2, f is a solution of VEQ and there exists w ∈
W such that the set of non-dominated points for w, ZwN(f), contains at least
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Figure 4.6. Example for solutions of VEQ: objective vectors of all three differ-
ent paths of solution f̂ and f ∗.

one non-supported point zr with corresponding path r ∈ Rw such that zr =

C·r(f) and fr > 0 (C·r(f) denotes column r of the path cost matrix). Then f

does not solve VVI.

Proof We know that conv(ZwN(f)) is a polyhedron. All supported solutions

lie on the boundary of conv(ZwN(f)+Rp=), whereas the non-supported solutions

lie in the interior of conv(ZwN(f) + Rp=). We need to establish that the non-

supported solution zr is dominated by (at least) one point on a face of the

polyhedron. This point on the face is, however, infeasible for the problem of

finding shortest paths with given costs C(f).

The set ZwN(f) is discrete and finite, therefore conv(ZwN(f)) is a compact set.

A set Z is called Rp=-compact if for all z ∈ Z the section (z − Rp=) ∩ Z is

compact (Ehrgott 2005, Definition 2.13). The set ZN of all non-dominated

points of Z is called externally stable if for each z ∈ Z \ ZN there is ẑ ∈ ZN
such that z ∈ ẑ + Rp=, i.e. for every non-dominated point z there is always a

point ẑ that dominates z (Ehrgott 2005, Definition 2.20).

Clearly, conv(ZwN(f)) is a Rp=-compact set. As conv(ZwN(f)) ⊂ Rp= is nonempty

and Rp=-compact, Theorem 2.21 in Ehrgott (2005) implies that conv(ZwN(f))

is externally stable.
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Figure 4.7. Illustration of the situation described in Theorem 4.4.9 for p = 3.

Therefore, the point zr is dominated by some point on one of the faces of

conv(ZwN(f)), we call this face the face associated with zr and we denote by

d(zr) the point that dominates zr. The distance between d(zr) and zr is

‖d(zr) − zr‖ > 0 as zr is non-supported. Every face is defined by a set of

supported extreme points zs1 = C·s1(f), . . . , zsq = C·sq(f) ∈ ZwN(f) with q = 2.

The point d(zr) can be obtained as a convex combination of zs1 , . . . , zsq . For

an illustration in case p = 3, refer to Figure 4.7.

Along the lines of the proof of Theorem 4.4.7, we construct a feasible solution

h 6= f so that the VVI condition is violated. Choose

hu = fu for u 6= s1, . . . , sq, r (4.39)

hs1 = fs1 + a1µ
... =

...

hsq = fsq + aqµ

hr = fr − µ,

for some 0 5 a1, . . . , aq with
∑

i=1,...,q ai = 1 and 0 < µ 5 fr. Solution h is

feasible as for OD pair w a flow of µ is removed from path r and re-distributed

to paths s1, . . . , sq. As hu−fu = 0 for u 6= s1, . . . , sq, r the LHS of VVI reduces
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to

C(f)(h− f) =


a1µC1s1(f) + . . .+ aqµC1sq(f)− µC1r(f)

a1µC2s1(f) + . . .+ aqµC2sq(f)− µC2r(f)
...

a1µCps1(f) + . . .+ aqµCpsq(f)− µCpr(f)


= µ (a1z

s1 + . . .+ aqz
sq − zr)

As the point d(zr) can be expressed as a convex combination of zs1 , . . . , zsq ,

factors 0 5 a1, . . . , aq 5 1 can be chosen so that d(zr) = a1z
s1 + . . . + aqz

sq

and
∑

i=1,...,q ai = 1, which simplifies the previous equation to

C(f)(h− f) = µ (d(zr)− zr) . (4.40)

The vector d = zr − d(zr) is in Rp≥ as zr is dominated by d(zr). Replacing zr

by d(zr) + d in (4.40) yields

C(f)(h− f) = µ (d(zr)− (d(zr) + d))

= − µ︸︷︷︸
>0

d︸︷︷︸
∈Rp≥

∈ −Rp≥.

�

Theorem 4.4.10 Assume p = 2, f is a solution of VEQ and there exists

w ∈ W such that the set of non-dominated points for w, ZwN(f), contains at

least p + 1 extreme supported points zs1, . . . , zsp , zr with corresponding paths

s1, . . . , sp, r ∈ Rw such that zu = C·u(f) and fu > 0, u = s1, . . . , sp, r (by

C·u(f) we mean column u of the path cost matrix). Furthermore, assume the

objective vectors zs1 , . . . , zsp lie on the same facet of conv(ZwN) and all points

are optimal for exactly one common weighting factor ξ ∈ Λ (there may exist

weighting factors for which some of the vectors are optimal, but only a unique

common one). If the solution zr is not optimal for this weighting factor ξ, then

f does not solve VVI.

Proof The objective vectors zs1 , . . . , zsp lie on the same facet F of conv(ZwN)

and all are optimal for exactly one common weighting factor ξ ∈ Λ. Therefore,
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Figure 4.8. Illustration of the situation described in Theorem 4.4.10 for p = 3.

we have ξ>zs1 = . . . = ξ>zsp and ξ>zr > ξ>zsi , i = 1, . . . , p.

The points zs1 , . . . , zsp generate a hyperplane H of dimension p− 1 in Rp (as

ξ ∈ Λ with ξ>zs1 = . . . = ξ>zsp is unique). The point zr is dominated by a

point d(zr) in H, but not in F (as zr is supported). As the point zr does not lie

in the hyperplane, It follows that there exists d ∈ Rp≥ such that zr = d(zr) +d.

A p − 1 dimensional simplex is obtained by conv({zs1 , . . . , zsp}). The point

d(zr) does not lie within this simplex (as ξ>zr > ξ>zsi , i = 1, . . . , p), i.e. it

cannot be obtained as a convex combination of zs1 , . . . , zsp . We choose one

of the vertices zsi of the simplex and then obtain a cone Ci = {z ∈ Rp : z =

zsi+a1(zs1−zsi)+. . .+ai−1(zsi−1−zsi)+ai+1(zsi+1−zsi) . . .+ap(zsp−zsi), aj =
0} with apex zsi . The corresponding opposite cone −Ci is obtained by only

allowing coefficients aj 5 0. Now d(zr) lies within at least one of the cones

Ci,−Ci, i = 1, . . . , p. Without loss of generality we now assume that d(zr) ∈ C1.

For an illustration of C1 and −C1 in case p = 3, refer to Figure 4.7. We can

write

d(zr) = zs1 + a2(zs2 − zs1) + . . .+ ap(z
sp − zs1)

= (1− a2 − . . .− ap)zs1 + a2z
s2 + . . .+ apz

sp . (4.41)

Along the lines of the proof of Theorem 4.4.8, we construct a feasible solution
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h 6= f so that the VVI condition is violated. Choose

hu = fu for u 6= s1, . . . , sp, r

hr = fr − µ,
hs1 = fs1 + (1− a2 − . . .− ap)µ
hs2 = fs2 + a2µ

... =
...

hsp = fsp + apµ

for some 0 5 a2, . . . , ap and 0 < µ 5 min
{
fr,

fs1
|1−a2−...−ap|

}
. Note that a2 +

. . .+ ap > 1 as d(zr) does not lie within the simplex, so it cannot be obtained

as a convex combination. Solution h is feasible as for OD pair w a flow of

µ is removed from paths r and s1 and re-distributed to paths s2, . . . , sp. As

hu − fu = 0 for u 6= s1, . . . , sp, r the LHS of VVI reduces to

C(f)(h− f) = µ((1− a2 − . . .− ap)zs1 + a2z
s2 + . . .+ apz

sp − zr),

where the details of this step are analogous to the corresponding step in the

proof of Theorem 4.4.9. Using (4.41) and zr = d(zr) + d, we obtain

C(f)(h− f) = µ(d(zr)− zr)
= − µ︸︷︷︸

>0

d︸︷︷︸
∈Rp≥

∈ −Rp≥,

which confirms that f is not a solution of VVI. �

Remark 4.4.3 We suspect that it is possible to drop the assumption that

points zs1 , . . . , zsp must lie on the same facet in Theorem 4.4.10. We believe

that it may be possible to show a version of this theorem based on the assump-

tion that there exist p+1 points that are not all optimal for the same weighting

factor ξ ∈ Λ. However, we are not able to give a proof of this situation.

To summarise, we established that VVI does not yield any solutions with

positive flow on non-supported efficient paths in Theorem 4.4.9. Furthermore,

solutions with positive flow on at least p efficient paths that are not optimal
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for the same weighting factor (so they do not lie on the same face in objective

space) cannot be obtained, see Theorem 4.4.10. VVI only provides solutions

that can be obtained by using a single weighting factor (for every OD pair)

and therefore has no advantage over solving the problem with a generalised

cost function with single VOT, as discussed in Section 4.3.2.

We can now state under which conditions we can obtain equivalence of VEQ

and VVI.

Theorem 4.4.11 Assume that f ∈ K is a solution of VEQ. Also assume

there exists ξ ∈ Λ ∩ R> so that for each w ∈ W among all the efficient paths

r ∈ Xw
E (f) there is only positive flow on those paths r with weighted cost value

ξ>C·r(f) equal to Cmin = min{ξ>C·r(f) : r ∈ Xw
E (f)}, i.e. those paths with

minimal weighted cost. Then f is a solution of VVI.

Proof We have to show that f is a solution of VVI. First observe that the

assumptions imply the following

∀w ∈ W ,∀r, s ∈ Rw ξ>C·r(f) < ξ>C·s(f)⇒ fs = 0.

Therefore, SEQ is satisfied for the single-objective cost function ξ>C. Equiv-

alence of SEQ and VIp (Theorem 4.2.1) implies that f also satisfies

(ξ>C(f)) · (h− f) = 0 ∀h ∈ K.

The latter can be re-written as VIξ:(
p∑
i=1

ξiCi·(f)

)
(h− f) = 0 ∀h ∈ K.

As f satisfies VIξ with ξ ∈ R> it follows by Theorem 4.4.6 that f is a solution

of VVI. �

Remark 4.4.4 Note that ξ needs to be identical for all w ∈ W . Also, the

assumptions of Theorem 4.4.11 do not require that all non-dominated points

ZwN(f) lie on the boundary of the convex hull bd(conv(ZwN(f) + Rp=)) – it is

sufficient that no efficient path with objective vector lying in the interior of
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conv(ZwN(f) + Rp=) has positive flow.

Remark 4.4.5 Clearly, the assumptions of Theorem 4.4.11 are weaker than

those of Theorem 4.4.5, and no modification of the VVI is required. With VEQ

and VVI defined as in this thesis (and throughout the related literature), it

appears that Theorem 4.4.11 is the strongest link between VEQ and VVI that

can be established. This is because we know from Theorem 4.4.6 that all f that

satisfy VVI can be obtained by solving VIξ with varying parameter ξ ∈ Rp≥.

In particular, the value of ξ must be equal for all w.

In conclusion, we have seen that, although a VVI solution is always a VEQ

solution, solutions of VVI have very limited structural properties. They can-

not have non-supported efficient paths and also no efficient paths that solve

different weighted sum problems. One motivation for studying VEQ is that

no assumptions on a linear choice function are made. Solving VEQ by obtain-

ing solutions of VVI only, however, implicitly makes these assumptions which

renders the approach through VVI unsuitable for our purposes.

4.5 Solving Bi-objective Traffic Assignment

In this section we extend some solution algorithms that are well-known for the

standard (single-objective) TA to the bi-objective case. We do not present a

proof of the convergence of the given algorithms but show how to observe that

an equilibrium solution has been found for the bi-objective path equilibration

algorithm in Section 4.5.3. It is, in general, easy to confirm convergence of a

TA equilibrium algorithm when path flow variables are used throughout the

algorithm. Convergence can be checked by simply confirming that positive

flow exists only on efficient paths. When only aggregate arc flow variables are

used, the determination of convergence criteria is not straight-forward in the

bi-objective case. For single-objective TA, the objective of the optimisation

formulation (4.5) can be used to measure convergence. Unfortunately there is

no obvious extension of this approach to the bi- or multi-objective case. In this

section, we discuss only the case of BEQ, and comment on a possible extension

to VEQ at the end of the section.
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Figure 4.9. The 5× 5 grid network.

The proposed heuristic algorithms are implemented in the C programming

language. We use a small network to illustrate the results obtained by the

different algorithms. Unless noted otherwise, results are based on performing

1000 iterations.

The network used to illustrate the output of the heuristics has a grid structure

similar to the ones in Dial (1999a,b). Tests are performed on a 25-node network

with grid structure as shown in Figure 4.9. The arcs are un-tolled except for

the central ones highlighted green in the figure. Each tolled arc has the same

toll of $5. We consider a single OD pair w = (1, 25) with a travel demand

of 4000. All arcs have similar length, a value that varies around 5 km with a

minimum of 4.6 km, a maximum of 5.3 km, and an average of 4.98 km. The

speed limit on un-tolled roads is 30 km/h, whereas it is 55 km/h on tolled

roads. Every arc a has a travel time ta given by the so-called BPR function

(Bureau of Public Roads 1964) of the form

ta = t
0
a

(
1 + α

(
fa
ka

)β)
, (4.42)

where t
0
a is the free-flow travel time when there is no traffic on the road, and
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Figure 4.10. Single-objective TA: user equilibrium solution with time objective.

ka is the practical capacity of the road. In our grid instance it is assumed that

the practical capacity is 2000 on un-tolled roads and 1300 on tolled roads.

The free flow travel time for each arc in the network is derived by dividing the

arc’s length by its free-flow speed. The function parameters α, β are chosen as

α = 0.15, β = 4.

We explain the output format based on the user equilibrium solution obtained

for the TA problem with a single objective, namely travel time. The solution

is obtained using the path equilibration algorithm (Algorithm 12 on page 150).

Arc flow results are shown in Figure 4.10. Above each arc, in brackets, is the

travel time of each arc (in hours), the toll is omitted from this figure. In the

following, there will be two values in the brackets as we consider bi-objective

TA problems. The first number is travel time (hours) and the second one is

toll cost. Below the arc is the amount of traffic flow traversing the arc. The

amount of flow is also visualised by the thickness of the arcs. All arcs missing

from the figure have zero traffic flow. In transportation planning an important
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measure of congestion is the ratio of arc flow and practical capacity fa
ka

. When

this ratio exceeds 1, the arc is clearly congested, which is indicated in the figure

by red arcs – the darker the red, the higher the ratio.

Figure 4.10 shows that the fastest arcs are congested as the toll is not taken

into account by the solution algorithm. This leads to highly congested arcs

in the centre of the network, whereas most other arcs are not used at all or

receive only a small amount of flow.

4.5.1 Bi-objective Traffic Assignment and Non-linear

VOT

BEQ can be solved by applying one of the solution approaches proposed for the

TA problem with generalised cost function with non-linear weighting function

as discussed in Section 4.3.2. We assume the first objective is a travel time

objective and the second one is a fixed cost objective. We are able to establish

the equivalence of BEQ and a scalar equilibrium problem SEQ with generalised

cost function that has a non-linear weighting function as proposed in Larsson

et al. (2002). They consider the two objectives travel time and travel cost.

Path travel cost is assumed fix and converted into an equivalent time value via

a non-linear weighting function vw for each OD pair w. The arising generalised

time objective has the form

gtr(f) = C1r(f) + vw(C2r),

for r ∈ Rw. They then formulate the non-linear scalar equilibrium according

to Wardrop’s principle as

(nlSEQ) ∀w ∈ W ,∀s ∈ Rw fs > 0⇒ gts(f) = min
r∈Rw

{
gtr(f)

}
,

which is equivalent to the formulation SEQ presented earlier. This non-linear

scalar equilibrium can equivalently be written as

∀w ∈ W ,∀r, s ∈ Rw gtr(f) < gts(f)⇒ fs = 0.

Under the assumptions that vw is increasing and non-negative, and C2· = 0
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and fix, as well as the assumptions that the flow-dependent component C1·(f)

is positive, continuous, and separable, they establish equivalence of nlSEQ and

the following optimisation problem, similar to (4.5).

min
∑
a∈A

fa∫
0

C1a(x)dx+
∑
w∈W

∑
r∈Rw

vw(C2r)fr

s.t. f ∈ K
f = Φf.

(4.43)

Next, we establish equivalence between BEQ and nlSEQ. We show that for

every solution (f
∗
, f ∗) of BEQ, we can derive a function vw such that (f

∗
, f ∗)

also solves nlSEQ. On the other hand, we show that a solution (f
∗
, f ∗) of

nlSEQ with given vw is also a solution of BEQ. Note that in order to establish

equivalence, we need to assume that the functions vw are strictly increasing.

This is necessary to guarantee that there are no weakly efficient paths in the

BEQ solution.

Theorem 4.5.1 If (f
∗
, f ∗) is a solution of BEQ with fixed second objective

C2· = 0, then there exists a strictly increasing, non-negative function v such

that the vector (f
∗
, f ∗) is a solution of nlSEQ.

Proof Assume (f
∗
, f ∗) solves BEQ. Without loss of generality, choose one

OD pair w ∈ W . Xw
E (f ∗) is the set of efficient paths. There may be equivalent

efficient paths with identical path cost vectors. All distinct path cost vectors

can be sorted by increasing first component and they are indexed accordingly:

C1s11(f
∗
) = . . . = C1s1m1

(f
∗
) < . . . < C1sn1(f

∗
) = . . . = C1snmn (f

∗
)

C2s11 = . . . = C2s1m1
> . . . > C2sn1 = . . . = C2snmn .

(4.44)

BEQ implies that there can only be positive flow on efficient paths. For (f
∗
, f ∗)

to be a solution of nlSEQ, we need to construct vw such that gts11(f
∗) =

gts12(f
∗) = . . . = gtsnmn (f ∗) = minr∈Rw{gtr(f ∗)}. With T > C1sn1(f

∗), we

can choose vw as piecewise linear function through the following points

(0, 0), (C2sn1 , T − C1sn1(f
∗)), . . . , (C2s21 , T − C1s21(f

∗)), (C2s11 , T − C1s11(f
∗)),
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Figure 4.11. Constructing vw from efficient solutions.

the last segment of the function goes through points (C2s11 , T −C1s11(f
∗)) and

(C2s11 + 1, T −C1s11(f
∗) + 1) to infinity. We define the function only for values

= 0 as it is assumed that C2· = 0. Note that if C2sn1 = 0, point (0,0) can

be omitted. This function vw is strictly increasing and non-negative. The

construction of vw is illustrated in Figure 4.11. With the above choice of vw,

we obtain gts11(f
∗) = gts12(f

∗) = . . . = gtsnmn (f ∗) = T , so all efficient paths have

identical generalised costs. It remains to verify that their generalised cost is

also minimal.

Choose a non-efficient path s ∈ Rw \ Xw
E (f ∗). The path cost vector of s is

dominated by that of an efficient path si1. There are two cases:

• C1si1(f
∗) 5 C1s(f

∗) and C2si1 < C2s. It follows that T = gtsi1(f
∗) =

C1si1(f
∗) + vw(C2si1) < C1s(f

∗) + vw(C2s) = gts(f
∗) as vw strictly increas-

ing.

• C1si1(f
∗) < C1s(f

∗) and C2si1 5 C2s. It clearly follows that T =

gtsi1(f
∗) < gts(f

∗).

The generalised path cost vector of any non-efficient path s ∈ Rw \ Xw
E (f ∗)

always has a higher value than T , and therefore (f
∗
, f ∗) also solves nlSEQ.

�

Theorem 4.5.2 If the vector (f
∗
, f ∗) is a solution of nlSEQ with fixed second

objective C2· = 0 and strictly increasing, non-negative function vw then (f
∗
, f ∗)
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is a solution of BEQ.

Proof Assume (f
∗
, f ∗) solves nlSEQ. Without loss of generality, choose

one OD pair w ∈ W . Let Rmin
w (f ∗) be the set of paths for which gt attains its

minimum:

Rmin
w (f ∗) = argminr∈Rw

{
gtr(f

∗)
}
.

For all paths in Rmin
w (f ∗), gt has the same minimal value. Paths in Rmin

w (f ∗)

are also the only paths that may have positive flow. Whenever C1si(f
∗) =

C1sj(f
∗), i 6= j it follows that vw(C2si) = vw(C2sj) and therefore C2si = C2sj as

vw is strictly increasing. We assume the paths are indexed as in (4.44) with

increasing first component, therefore their second component is decreasing.

For BEQ to be satisfied we need to show that the paths s11, s12, . . . , snmn

are efficient. Assume there exists a path s ∈ Rw \ {s11, s12, . . . , snmn} that

dominates path(s) si1, . . . , simi (they all have the same objective vector). We

distinguish the following two cases

• C1s(f
∗) 5 C1si1(f

∗) and C2s < C2si1 . It follows that gts(f
∗) = C1s(f

∗) +

vw(C2s) < C1si1(f
∗) + vw(C2si1) = gtsi1(f

∗) as vw is strictly increasing.

• C1s(f
∗) < C1si1(f

∗) and C2s 5 C2si1 . Again, gts(f
∗) < gtsi1(f

∗) follows.

gts(f
∗) < gtsi1(f

∗) is a contradiction to all gtsij(f
∗) having minimal value. So a

path s that dominates any of the paths s11, s12, . . . , snmn does not exist. Fur-

thermore, the paths s11, s12, . . . , snmn do not dominate one another by (4.44).

Therefore, (f
∗
, f ∗) solves BEQ as there is only flow on efficient paths. �

Given such a function vw, we can solve our bi-objective TA problem with the

solution approach proposed in Larsson et al. (2002). The only difficulty is

determining a good function vw. When a BEQ solution is given, vw can be

easily derived. It is, however, unclear how to derive vw without any a priori

knowledge of the structure of the non-dominated path cost vectors one may

obtain at certain levels of flow.

In the following, we propose several heuristic approaches to solve BEQ. We

assume that the bi-objective cost function consists of a travel time component

t and a monetary cost component m which may be fixed or flow dependent.

It is also assumed that path flow is additive.
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Algorithm 13 MSA method for solving BEQ

1: input: Graph (V ,A), arc cost functions C = (t,m), set of OD pairs W ,
and demand d.

2: Calculate fixed arc costs C(0).
3: Identify efficient paths.

4: Assign flow to efficient paths yielding path flow vector f
0
.

5: i = 0
6: while Convergence criterion not satisfied do
7: Calculate fixed arc costs C(f i).
8: Identify efficient paths.
9: Assign flow to efficient paths yielding path flow vector h.

10: Compute new arc flow f
i+1

=
(
1− 1

i+1

)
f
i
+ 1

i+1
h.

11: i = i+ 1
12: end while
13: output: Arc flow vector f .

4.5.2 Method of Successive Averages (MSA)

MSA is a basic algorithm to solve TA, and its formulation does not require

any equivalence relationship with an optimisation problem or a VI.

In order to extend the MSA method to a solution algorithm for BEQ as in

Algorithm 13, we need to replace the single-objective AON assignment (where

for each OD pair all flow is assigned to the minimal path) by some bi-objective

counterpart. Assuming fixed arc costs (initially based on zero traffic flow), the

set of efficient paths is determined using any known bi-objective shortest path

algorithm as discussed in Chapter 2.

Now the question is which portion of the total demand for each OD pair to

assign to each of the efficient paths. A great degree of liberty lies in this step

as there are many different ways to split the total flow for an OD pair between

the efficient paths. To obtain a good solution, we believe that a realistic

assignment method applied in each iteration of MSA will yield an overall good

solution of the TA problem. With a correctly calibrated assignment setup, it

should be possible to closely model the true situation. We propose different

assignment strategies in the following, but it is of course possible to develop

many more reasonable strategies. This solution approach for bi-objective TA

is heuristic.
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Equal Share Assignment

A first assignment strategy that comes to mind is equal share (EQS) assign-

ment. Here, the total demand for each OD pair is split up evenly between

all efficient paths. The path flow vector h is constructed as follows in every

iteration: let rw1 , . . . , r
w
kw

be the efficient paths for OD pair w at the current

cost level C(f i). We also assume that the objective vectors associated with

the paths are distinct. Then, for every OD pair w, h is obtained as

hs =

 0 if s 6= rw1 , . . . , r
w
kw

dw
kw

if s ∈ {rw1 , . . . , rwkw}.

Finally the arc flow vector is obtained as h = Φh.

When there are equivalent paths among rw1 , . . . , r
w
kw

, they can be separated

into groups of paths with same objective vector

trw11(f
i) = . . . = trw1l1

(f i) < . . . < trwk1(f
i) = . . . = trwklk

(f i)

mrw11
(f i) = . . . = mrw1l1

(f i) > . . . > mrwk1
(f i) = . . . = mrwklk

(f i)

Now each group with equal objective vector is assigned a fraction of the total

demand dw, namely dw
kw

. The path flow vector h is obtained by splitting this

between the number of equivalent paths:

hs =

 0 if s 6= rw11, . . . , r
w
klk

1
lι
· dw
kw

if s = rwικ.

EQS has some obvious disadvantages. A main one is that the actual values of

the objective vectors do not influence the assignment at all. For example, the

cheapest cost path is always efficient, even though it may have excessively long

travel time. In reality, this path may not be chosen but it is treated just like all

other paths in the case of EQS assignment. Therefore, EQS assignment may

not be realistic, particularly when efficient solutions with very large values in

one objective are present (the problematic ones are often the lex(1, 2) and the

lex(2, 1)-best solutions).

The heuristic approach MSA with EQS assignment is applied to the grid net-
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Figure 4.12. Non-dominated path cost vectors in first four iterations of MSA
with EQS assignment.
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Figure 4.13. MSA with EQS assignment for 5× 5 grid network.
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work instance. Figure 4.12 shows the non-dominated path cost vectors ob-

tained in the first four iterations of MSA. A fifth of the total travel demand

is assigned to the paths corresponding to one of the non-dominated points in

each iteration. The resulting arc flows, after 1000 iterations, are shown in

Figure 4.13. It appears that it is not necessary to perform 1000 iterations.

In fact, after 50 iterations, the resulting flow pattern is very similar to that

observed after 1000 iterations. Although it does not seem necessary to perform

1000 iterations, we do so anyway as even 1000 iterations run quickly, in less

than one second, for this small instance. As mentioned earlier, the travel time

(hours) and toll ($) can be found in brackets above each arc, whereas the arc

flow is below the arc.

Cost per Unit Time Saving

Another assignment method is called cost per unit time saving (CTS). Here,

all efficient paths are compared to the cheapest one. In decision space, the

slope of the lines obtained by connecting the objective vector of the cheapest

path to all others indicates the cost per unit time saving – a steep slope means

that the price paid for saving a unit of time is higher than when the slope is

less steep. Given a distribution of CTS values, flow can be assigned to efficient

paths. We explain this by means of the setup from Example 4.3.1, see Figure

4.14. The non-dominated path costs vectors zi in the figure are associated

with paths ri.

We denote by m56 the slope between points z6 and z5, by m46 the slope between

points z6 and z4, etc. Given a CTS distribution the number of users on each

efficient path can be determined. Users who are willing to pay more than m16

to save one time unit, all choose path r1. Users willing to pay between m16 and

m26, choose path r2, and so forth for paths r3, r4, r5. Finally, the remaining

users, who are not willing to pay at least m56, choose path r6. Similarly to

EQS assignment, this approach can be extended to the case when there are

equivalent efficient paths that have the same path cost vector.

The slopes are not necessarily increasing as in Figure 4.14. Figure 4.15 shows

an example where m46 is larger than m36 and m26. Also, the efficient paths

with distinct objective vectors z̃2 and z̃3 have the same slope, therefore they

are each assigned half of the portion of network users with CTS between m25



4.5.2 Method of Successive Averages (MSA) 217

non-dominated

t

m

z1

z3

z4

z5

z6

z2

b

b

b

b

b

b

b
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Figure 4.15. Another example for
CTS assignment.

and m45.

Procedure 6 outlines this assignment procedure for a given probability density

function g when all efficient paths have distinct path cost vectors and also all

resulting slopes are distinct. This procedure is easily adapted to deal with

equivalent efficient paths and non-distinct slopes. Note that S is defined as

S(x) =
∫ x

0
g(v)dv.

An advantage of CTS assignment over EQS assignment is that it does matter

what the actual non-dominated path values are. If, for example, the cost of

path r1 is large, only few users choose this path. Compared to conventional

weighted-sum approaches, CTS assignment enables the assignment of flow to

non-supported paths (the one with cost vector z2 in Figure 4.14) as well as

non-extreme supported paths (the one with cost vector z3 in Figure 4.14).

On the other hand, CTS does not take into account the total path cost values.

It is not necessarily true that a user who is willing to pay $0.8 to save 2 minutes

of travel time, would pay $8 to save 20 minutes and vice versa.

To demonstrate the solution algorithm we choose the share of flow to assign

to each path based on a uniform distribution of CTS values according to the

probability density function

g(x) =

 1
b−a a 5 x 5 b

0 otherwise.
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Figure 4.16. MSA with CTS assignment based on uniform distribution with
a = 60, b = 70 for 5× 5 grid network.
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Figure 4.17. MSA with CTS assignment based on uniform distribution with
a = 60, b = 90 5× 5 grid network.
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Figure 4.18. Non-dominated path cost vectors in first four iterations of MSA
with CTS assignment as in Figure 4.17.
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Procedure 6 CTS Assignment

1: input: Efficient paths rw1 , . . . , r
w
kw

for each OD pair w ∈ W , feasible solu-
tion f ∈ K, demand dw, and probability density function g of CTS-value
τ .

2: The path with maximum travel time for OD pair w path is rwmax.
3: for all w ∈ W do
4: for all rwl 6= rwmax do

5: τwrl =

∣∣∣∣mrwl (f)−mrwmax
(f)

trw
l

(f)−trwmax
(f)

∣∣∣∣ /∗ Calculate CTS value τwrl ∗/
6: Rank values of τw: denote by τw(1) the lowest and by τw(kw−1) the highest

value.
7: end for
8: for all l = 1, . . . , kw − 2 do

9: h(l) =
[
S
(
τw(l+1)

)
− S

(
τw(l)

)]
· dw /∗ Assign share of flow to each

efficient path ∗/
10: end for
11: hrmax =

[
S
(
τw(1)

)]
· dw /∗ Assign share of flow to cheapest path ∗/

12: h(kw−1) =
[
1− S

(
τw(n−1)

)]
·dw /∗ Assign share of flow to most expensive

path ∗/
13: hr = 0, r ∈ Rw \ {rw1 , . . . , rwkw} /∗ No flow on non-efficient paths ∗/
14: end for
15: output: Components of path flow vector corresponding to OD pair w.

Again, 1000 iterations of the CTS assignment algorithm were performed. In

Figure 4.16 a uniform distribution with a = 60, b = 70 is assumed, whereas in

Figure 4.17 we assume a = 60, b = 90. In the first case, the CTS values that

receive a positive share of flow are fairly low with b = 70, this is reflected in

Figure 4.16 by less usage of tolled arcs when compared to Figure 4.17 with

b = 90. For the solution from Figure 4.17, we show efficient path cost vectors

for the first four iterations in Figure 4.18 and corresponding slopes between the

non-dominated point corresponding to the fastest path and the other ones. In

this example, the obtained CTS values initially range between 63.1 and 84.2.

Reference Point Assignment

Reference point (RPT) assignment works by defining a reference point in de-

cision space for each OD pair w that acts as an attractor, a point to which

the network users are attracted. The attractiveness of each non-dominated

path cost vector is determined by its distance to the reference point while also
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taking into account the distance of all other points to the reference point. The

smaller this attractiveness measure, the higher the share of users on the corre-

sponding path and vice versa. The reference point also serves as an indicator of

a reasonable solution, which allows to identify paths whose travel time or cost

is too far from what is reasonable and that should therefore not be assigned

any flow or at least not much flow.

Different attractiveness measures are possible, each more or less sensitive to

the difference in path cost vectors and their distance to the reference point.

We present three possible ways of calculating the share of demand dw that

is assigned to each efficient path rw1 , . . . , r
w
kw

. Again, we initially assume that

there are no equivalent paths and that all path cost vectors are distinct. Denote

the reference point for OD pair w by zw and the Euclidean distance between

point zj and the reference point zw by dwj = d(zj, zw). The share of flow

on efficient path rwl is swl . The first method to compute swl is a sum-based

approach

swl =

∑kw
j=1 d

w
j − dwl

(kw − 1)
∑kw

j=1 d
w
j

. (4.45)

Alternatively, we may compute swl by following a sum of squares approach

swl =

∑kw
j=1(dwj )2 − (dwl )2

(kw − 1)
∑kw

j=1(dwj )2
. (4.46)

Finally, we suggest computing swl by a product approach

swl =

∏
j 6=l d

w
j∑kw

j1=1

(∏
j2 6=j1 d

w
j2

) . (4.47)

We compare the different methods of calculating the share of flow for an ex-

ample with just five non-dominated path cost vectors. The reference point is

located in different positions in objective space, as indicated in the three parts

of Figure 4.19. Each non-dominated path cost vector in the figure is numbered

and point number j represents path rj, whereas the reference point is labelled

by P . The resulting shares are calculated in Table 4.2.

It becomes apparent how the location of P changes the shares for each path. It

appears that when calculating shares with the sum method (4.45), the shares
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(a) (b) (c)

Figure 4.19. Different positions of reference point P for RPT assignment.

Table 4.2. Share calculated by different methods in RPT assignment.

Reference point as in path shares calculated according to
Figure 4.19 sum (4.45) sum of squares (4.46) product (4.47)

(a)

r1 0.16 0.11 0.1
r2 0.21 0.23 0.24
r3 0.21 0.22 0.22
r4 0.21 0.22 0.23
r5 0.21 0.22 0.22

(b)

r1 0.19 0.19 0.13
r2 0.23 0.24 0.43
r3 0.21 0.23 0.21
r4 0.19 0.19 0.13
r5 0.17 0.15 0.10

(c)

r1 0.13 0.06 0.06
r2 0.20 0.22 0.14
r3 0.21 0.23 0.17
r4 0.23 0.24 0.29
r5 0.23 0.25 0.35
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of all paths are of similar magnitude. This is less true for the sum of squares

method (4.46) and the product method (4.47) appears to assign much higher

shares to paths with cost vector close to P . The appropriate method to calcu-

late shares within the RPT approach needs to be determined depending on the

TA problem to be solved and the characteristics of network users. The RPT

approach can be extended to the case of equivalent paths by just splitting the

demand to be assigned between all paths with the same path cost vector. An

extension of the RPT approach to include several reference points to allow

for different locations that attract network users is also imaginable. Further-

more, weighting factors for the two objectives can be included to ensure the

objectives are balanced. For example when time is measured in seconds and

monetary cost is measured in dollars then the distance measure should not be

biased by the fact that points are hundreds of seconds apart, whereas the costs

differ only by a few dollars.

The choice of a different reference point influences the amount of flow on the

paths. For the grid instance we illustrate how the choice of the reference point’s

location influences the resulting arc flow. We choose two different reference

points and obtain a solution using MSA with RPT assignment where (4.47) is

used to calculate the share of flow that is assigned to every path.

Choosing the point (1.2, 3) with long travel time and small toll costs should

cause preference of longer and cheaper paths. Consequently, there should be

relatively little flow on tolled arcs. We observe this behaviour in Figure 4.20.

Placing the reference point at (1.0, 13), on the other hand, favours faster and

more expensive paths. The resulting arc flow solution is illustrated in Figure

4.22.

In Figures 4.21 and 4.23 the behaviour of path cost vectors during the first four

iterations of MSA with RPT assignment is illustrated. The reference point is

included in both figures.

Area of Domination

Every non-dominated path cost vector dominates part of the objective space.

This gives rise to another potential assignment approach denoted by area of

domination (ADO). A survey of road users can be conducted asking every user
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Figure 4.20. MSA with RPT assignment where the reference point is (1.2, 3)
and shares are calculated according to (4.47).
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Figure 4.21. Non-dominated path cost vectors in first four iterations of MSA
with RPT assignment and reference point (1.2, 3).
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Figure 4.22. MSA with RPT assignment where the reference point is (1, 13)
and shares are calculated according to (4.47).
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Figure 4.23. Non-dominated path cost vectors in first four iterations of MSA
with RPT assignment and reference point (1, 13).
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Figure 4.24. Different user ideal points and non-dominated path cost vectors.

the question “How much travel time do you spend at the moment, how much

would you (realistically) want to save and how much money are you prepared

to pay for it?”. Then every road user can be represented by their own ideal

point in objective space. Such a road user would select any of the paths with

cost vector dominating their ideal point.

Figure 4.24 shows five different non-dominated path cost vectors zj for one OD

pair, each associated with an efficient path rj together with the ideal points

of three different road users. Clearly, user 1 will choose path r2 as this path is

both faster and cheaper than the user’s ideal. User 2 has the choice between

two paths as both paths r3 and r4 are faster and cheaper than his ideal. User

3 has an ideal that cannot be achieved by any of the options available – this

user could either choose the fastest path with cost less than that of their ideal

or choose the closest path to the ideal.

From this observation we can devise an ADO assignment method. Given

a two-dimensional density function in decision space derived from the user

survey, portions of the demand can be assigned to the different efficient paths

as indicated in Figure 4.25. The yellow rectangles are each dominated by

exactly one non-dominated point, therefore the share corresponding to the

demand arising in this area is assigned to the corresponding efficient path(s).

The red rectangles are dominated by two different non-dominated points and

the arising demand should be split between the two. The blue rectangles are

dominated by three points, and therefore upcoming demand from this area

should be split between the corresponding three efficient paths. This process
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Figure 4.26. Area that is not domi-
nated by points z1, . . . , z5.

continues until, in the figure, the orange area is reached that is dominated by

all non-dominated points.

It can be expected that most demand occurs in the yellow areas of Figure 4.25,

as network users would not want to pay large amounts of money to save just

a little time. Therefore, the orange area should have hardly any users’ ideal

points. It remains to decide how to assign users with ideal points that are not

dominated by any non-dominated path cost vector such as the one represented

by a green plus in Figures 4.24 and 4.26. One can assign a portion of those

users to the fastest path with cost less than that of their ideal, as mentioned

above. This is illustrated in Figure 4.26: users with ideal point in the light-

gray area at the top of the graph would choose path r1, users with ideal point

in the darker gray area just below the previous one would choose path r2,

etc. Finally, users with ideal point in the dark gray area at the bottom of

the graph would choose path r5. Alternatively, users can be assigned to their

closest non-dominated path cost vector.

Let g(x, y) be the probability density function that represents network users’

ideal points such that
∫∞

0

∫∞
0
g(u, v)dudv = 1. Then the share of users in a

certain rectangle B = [x1;x2]× [y1; y2] is S(B) =
∫ x2

x1

∫ y2
y2
g(u, v)dudv, where the

upper limits may be ∞. We want to calculate the portion of demand dw that

is assigned to each efficient path rw1 , . . . , r
w
kw

with non-dominated path cost

vectors z1,w, . . . , zkw,w. Again, we initially assume that there are no equivalent
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paths and that all path cost vectors are distinct. We also assume that the

paths are numbered so that

z1,w
1 < z2,w

1 < . . . < zkw,w1 and z1,w
2 > z2,w

2 > . . . > zkw,w2 .

From the non-dominated points z1,w, . . . , zkw,w, kw rectangles B1
1, . . . ,B1

kw
are

derived that are dominated by only one non-dominated point:

B1
1 = [z1,w

1 ; z2,w
1 ]× [z1,w

2 ;∞)

B1
2 = [z2,w

1 ; z3,w
1 ]× [z2,w

2 ;1,w2 ]

B1
3 = [z3,w

1 ; z4,w
1 ]× [z3,w

2 ;2,w2 ]
...

B1
kw

= [zkw,w1 ;∞)× [zkw,w2 ; zkw−1,w
2 ]

(4.48)

Similarly, kw−1 rectangles B2
1, . . . ,B2

kw
that are dominated by two neighbouring

non-dominated points can be formulated. This process continues until the final

rectangle Bkw1 = [zkw,w1 ;∞)×[z1,w
2 ;∞) is defined that is dominated by all points

z1,w, . . . , zkw,w. The rectangles are also marked in Figure 4.27.
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The share of demand on each path arising from dominated user ideal points is

srwj = S(B1
j ) +

1

2

min{kw−1,j}∑
i=max{1,j−1}

S(B2
i ) +

1

3

min{kw−2,j}∑
i=max{1,j−2}

S(B3
i ) + . . .+

1

kw
S(Bkw1 ).

(4.49)

We need to add the share for paths with non-dominated user ideal points. For

simplicity, we assume that all network users choose the fastest path with lower

cost than their user ideal among paths rw1 , . . . , r
w
kw

, if their ideal point is not

dominated by a point z1,w, . . . , zkw,w. Then, the rectangle B̂j is the rectangular

area that represents users choosing path rwj :

B̂1 = [0; z1,w
1 ]× [z1,w

2 ;∞)

B̂2 = [0; z2,w
1 ]× [z2,w

2 ; z1,w
2 ]

B̂3 = [0; z3,w
1 ]× [z3,w

2 ; z2,w
2 ]

...

B̂kw−1 = [0; zkw−1,w
1 ]× [zkw−1,w

2 ; zkw−2,w
2 ],

and finally B̂kw = [0; zkw,w1 ]× [zkw,w2 ; zkw−1,w
2 ]∪ [0;∞)× [0; zkw,w2 ], see also Figure

4.28. This leads to shares

ŝrwj = S(Bj). (4.50)

By combining (4.49) and (4.50) the path flow for efficient paths rw1 , . . . , r
w
kw

becomes

hrwj =
(
srwj + ŝrwj

)
dw.

For all other paths r ∈ Rw \ {rw1 , . . . , rwkw} hr = 0.

In order to run MSA with ADO assignment for the grid network, we need a

probability density function or a distribution of users. Instead, we divide the

area of the objective space that contains the non-dominated path cost vectors

into a grid. For every cell of the grid, we assume there is a certain number of

network users whose ideal points lie within this cell. Figure 4.29 shows how

many users choose each ideal point, indicated by the height of the bar in the

cell. This data can be obtained as a the result of a survey of network users

who are asked to state their ideal point for a trip in the grid network instance.

The resulting arc flow solution is shown in Figure 4.30.
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Figure 4.29. Possible distribution of users for ADO assignment.
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Figure 4.30. MSA with ADO assignment based on distribution from Figure
4.29. Solving 5× 5 grid network.

Assignment Based on Non-linear Valuation Function

When a non-linear valuation function vw is given as in Section 4.5.1, the single-

objective MSA approach can be used as introduced above. One can again

perform AON assignment, by identifying the shortest path for each w with

respect to gt(f) and assigning all demand dw to it.

Due to the non-linear component of gt that evaluates path cost, it is necessary

to use a bi-objective shortest path algorithm to obtain all efficient paths with

non-dominated path cost vectors (tr,mr). Then, the generalised time is com-

puted as gtr = tr+vw(mr) and the minimal path is identified. As an alternative

to assigning all flow to the cheapest path, one might consider assigning flow to

the first few cheapest paths to potentially obtain faster convergence of MSA.
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Comparison of Different Assignment Methods

Clearly, EQS is a very simple assignment method that is not expected to be

very useful in practice. Assigning equal portions of travel demand to each

efficient path in the network no matter what the actual path costs are, cannot

be a very realistic approach.

CTS overcomes this disadvantage by introducing the ratio between additional

travel cost (compared to the cheapest solution) and saved travel time into the

assignment process. Only the ratio but not the absolute costs and times are

included, which may overestimate the number of users on very expensive paths.

A difficulty here is finding an appropriate distribution of the CTS values.

ADO is similar to CTS in requiring the distribution of user ideal points that

indicate how much time a user would like to spend when travelling to their

destination and how much they are prepared to pay for it. Compared to

CTS, this may present an advantage as absolute values are included in the

assignment process and network users can give upper bounds on how much

money they are prepared to spend.

From a practical point of view, a distribution of CTS values and a distribution

of user ideal points needed for ADO assignment similar to the one shown in

Figure 4.29 can be obtained through a network user survey. Similar surveys

are common practice in transportation planning.

RPT allows to select a single reference point as an attractor. However, this can

be modified to use more than one reference point. Paths close to this point are

more attractive than those far away and should therefore obtain more flow. We

presented three different measures of distance to this point that allow stronger

and weaker influence of the location of the point and all non-dominated path

cost vectors on the portion of total travel demand that is assigned to each

path. An advantage of RPT over CTS and ADO is that a reference point is

easily selected, but it is not clear how to select a point to model certain user

behaviour. If network user surveys show certain trends in preference, such as

clusters of similar user preference, a reference point could be selected for each

of those clusters.

Only practical tests can show how realistic the above assignment methods are,

and how practical they are to use.
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Other Assignment Methods

There are numerous other assignment methods one can think of. Each of them

potentially leads to a different BEQ solution. This makes the BEQ approach

highly adaptable to any kind of real-world situation - a correctly calibrated

model can lead to any kind of equilibrium solution that satisfies BEQ, and can

therefore model the behaviour of road users in different situations accurately.

Whichever assignment method is used, its calibration to ensure that reality is

modelled as accurately as possible, remains difficult.

4.5.3 Bi-objective Path Equilibration

The idea of path equilibration (Section 4.2.4) can also be extended to BEQ.

As this is a path flow based method, the obtained path flow variables can be

used to check that an obtained solution is actually an equilibrium solution

as explained above. We assume that we have two objectives, namely flow

dependent time t and a fixed cost function m.

In the single-objective case, the essence of path equilibration is to find the

current shortest path for each OD pair and the longest with positive flow.

Then flow is re-distributed between them until they have identical costs or the

longer path has zero flow. Translating this to a bi-objective setting means that

efficient paths are identified and one of the non-efficient paths with positive

flow. Among all paths with positive flow, the one with largest distance from

the efficient paths can be selected, but other selection criteria are possible as

well. Having selected such a non-efficient path, the task is to re-distribute flow

from the non-efficient path to the efficient ones (or at least to one of them)

until the longest path is efficient or has flow zero. Unlike the single-objective

case, there are multiple ways of re-distributing flow, which we discuss in the

following.

We base this discussion on several examples. Consider the situation in Figure

4.31. There are four non-dominated points z1, . . . , z4 corresponding to efficient

paths r1, . . . , r4 for some OD pair w. Point z̃ is dominated with corresponding

non-efficient path r̃. Assume that fr̃ > 0. This is a situation one may face in

bi-objective path equilibration: there is positive flow on a non-efficient path
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Figure 4.31. Non-dominated path
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Figure 4.32. New path cost vec-
tors resulting from feasible flow re-
distribution.

that should be re-distributed to efficient paths. As we assume the path costs

mr, r ∈ Rw are fixed, only path travel time t changes as path flow changes.

In particular, path flow tri(f) increases when increasing fri , whereas path flow

tr̃(f) decreases as fr̃ decreases. A possible resulting change is depicted in

Figure 4.32. Due to the fixed monetary costs, path objective vectors move

horizontally.

Given the flow change indicated in Figure 4.32 is feasible, it achieves the goal of

making the formerly non-efficient path r̃ efficient. Unlike the single-objective

case, it is not clear how much of the flow on path r̃ should be re-distributed.

The re-distribution indicated in Figure 4.33 is also feasible and it is unclear

which one is preferable. A reasonable re-distribution should ensure that the

point z̃ becomes non-dominated, therefore the point needs to move into the

red rectangle indicated in Figure 4.34. Of course, the rectangle may change as

flow is assigned to paths r3 and r4, which is disregarded in the figure.

A different situation arises if point z̃ has the same monetary cost as one of the

non-dominated points zi, see Figure 4.35. A sensible re-distribution of flow

seems to be one that makes the travel time on paths r3 and z̃ equal, for the

results of a possible flow re-distribution see Figure 4.36.

It is apparent that there is a lot of flexibility in the flow re-distribution step.
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Assume there is a feasible path flow vector f that does not satisfy VEQ mean-

ing that there exists w ∈ W and a non-efficient path r̃ ∈ Rw with positive flow

fr̃ > 0. One has to decide on a feasible flow re-distribution onto the efficient

paths r1, . . . , rk of flow 0 < σ 5 fr̃ of the form

hr =


fr if r /∈ {r̃, r1, . . . , rk}
fr − σ if r = r̃

fr + ωiσ if r = ri, i = 1 . . . , k,

with ωi = 0,
∑k

i=1 ωi = 1. The re-distribution of flow should make point z̃ non-

dominated, but otherwise it is very flexible. Possible re-distribution strategies,

which means determining values for all ωi, include

• Re-distribute flow equally to all efficient paths, i.e. choose ωi = 1
k
.

• Add flow only to paths with objective vector close to point z̃. In Figure

4.36 those would be paths r2, r3, r4, whereas in Figure 4.34 flow would

be re-distributed to paths r3, r4.

• In a situation where the monetary cost of z̃ is equal to that of some other

non-dominated point zi only move flow to path ri. Using this rule, it

cannot be guaranteed that flow can be re-distributed to make point z̃
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Figure 4.36. New path cost vec-
tors resulting from feasible flow re-
distribution.

non-dominated as the re-distribution may equate the costs of z̃ and zi

and at the same time render the two points dominated.

There are also different strategies to determine how much flow to re-distribute,

including

• Re-distribute all flow, σ = fr̃.

• In a situation where the monetary cost of z̃ is equal to that of some other

non-dominated point zi move as much flow as necessary to make points

zi and z̃ coincide or flow on r̃ is zero.

• If the monetary cost of z̃ is not equal to that of any other non-dominated

point zi, the goal is to make r̃ efficient. One could move z̃ to be just

non-dominated, so that z̃ + ε is dominated when a small value of ε ∈ R2

is added to z̃. Conversely, one could move the point as far as possible

while ensuring that it does not dominate its neighbouring non-dominated

points.

• If the monetary cost of z̃ is not equal to that of any other non-dominated

point zi, one could aim at moving point z̃ depending on the position of

its neighbouring non-dominated points zi and zi+1. Then, z̃ could move
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as far as possible while it does not dominated its neighbours, but z̃ + ε

does dominated at least one of the neighbours. Alternatively, the aim

could be to move z̃ to obtain a travel time of tr̃ = 1
2

(tzi − tzi+1), assuming

tzi > tzi+1 . Any other fraction is also possible.

When a non-linear valuation function vw is given as in Section 4.5.1, the single-

objective approach for path equilibration can be used as it is. Firstly, the

shortest path r with respect to generalised time gt and the longest one s with

positive flow are identified. Then flow is moved from path s to path r until

their generalised time gt becomes equal or until there is no more flow on path

s, whichever comes first.

As discussed earlier, it is necessary to find all efficient paths first and then to

compute their generalised time value gtr = tr + vw(mr). Instead of re-assigning

flow only between the shortest and the longest path, one can re-assign flow

from the longest to several shortest paths in order to obtain faster convergence

of the method.

We make a basic implementation of bi-objective path equilibration. In each

iteration, the efficient paths are identified. Then the non-efficient path r̃ (with

positive flow), whose path travel time has largest distance d from that of any

non-dominated point, is selected. Flow is re-distributed from path r̃ to the

current efficient paths with the aim of reducing the travel time on path r̃ by

d (or reducing flow on r̃ to zero). The flow that is removed from path r̃ is re-

distributed in equal shares between the efficient paths. This path equilibration

runs until it can be guaranteed that a BUE solution is obtained. We stop

the algorithm when the maximal distance d between the cost vector of a non-

efficient path with positive flow and a non-dominated point is less than 0.00005.

The BUE solution obtained depends on the initial assignment of flow. We

implement two different initial assignment procedures. The solution shown in

Figure 4.37 is based on an initial EQS assignment, i.e. flow is split equally

between the efficient paths. The solution in Figure 4.38 is based on initially

assigning all the flow to the fastest path, this yields a solution with higher

usage of tolled arcs.
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Figure 4.37. Path Equilibration, initially assigning equal portions of flow to
all efficient paths.

4.6 Conclusions on Bi-objective Traffic Assign-

ment

The study of the traffic assignment (TA) problem that explicitly deals with at

least two objective functions has taken two general lines of approach. On the

one hand, there is the practical approach where the problem is reduced to the

single-objective TA by combining the two (or more) objectives into a gener-

alised cost function. We are able to highlight some shortcomings of approaches

that assume such a generalised cost function. On the other hand, vector equi-

librium (VEQ) problems have been studied from a theoretical point of view.

The traffic assignment problem with multiple criteria has been identified as

an application of VEQ, but no attempt has been made to actually solve the

problem using VEQ.
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Figure 4.38. Path Equilibration, initially assigning all flow to the fastest effi-
cient path.

In this chapter, we first present theoretical aspects of VEQ. It is well-known

that the single-objective equilibrium problem is equivalent to a variational in-

equality problem and an optimisation problem (with the assumptions outlined

in Section 4.2.2). Throughout the literature attempts are made to show a

similar equivalence between VEQ and the corresponding vector variational in-

equality (VVI) and vector optimisation problems (VOP) but it has been found

that there exists no equivalence relation between the respective problems. Our

efforts to build on previous research on VEQ, VVI, VOP, and related prob-

lems were complicated by many erroneous statements in published articles as

discussed in Section 4.4.2.

In the literature, attempts have been made to exploit the fact that a solution

of VVI is a solution of VEQ. In this thesis we are able to characterise the

structural properties of VVI solutions. Compared to a VEQ solution, the

solution of a VVI has a very restricted structure. This fact indicates that
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the whole diversity of VEQ solutions cannot be obtained via VVI. In fact, it

appears that although a VVI can have many solutions, each one of them could

also be characterised by a single-objective VI with generalised cost function

(or weighted sum cost function).

To summarise, the single-objective TA problem with generalised cost function

will yield a single solution. As an alternative solution approach for TA, VVI

has many solutions, but they are still based on generalised cost functions and

could also be obtained by solving TA with different weighting factors. VEQ on

the other hand has many solutions that are not restricted to being obtainable

via a generalised cost formulation as solutions may contain non-supported

paths and multiple paths that are not optimal for the same weighting factor.

Therefore, multi-objective TA has solutions that cannot be found by repeatedly

solving the conventional single-objective TA, thus considering multi-objective

TA enriches the scope of attainable solutions greatly.

We also present several heuristic solution algorithms for the bi-objective TA

problem, which can easily be extended to the multi-objective problem. Our

algorithms are extensions of algorithms for the single-objective TA problem,

for which convergence can be shown. We hope to be able to show convergence

of our algorithms in the future. At the moment, we see the proposed heuristics

as a first step towards more general and more realistic solution approaches for

bi-objective TA. We propose different algorithms, but without classifying them

for their applicability and usefulness in solving a real-life problem. This is an

important aspect of further studies. The quality of the approaches will be

assessed by applying the proposed models for user behaviour in road networks

and comparing the resulting traffic flows with behaviour observed in real life.

From a practical point of view, it may not be necessary to restrict consider-

ations to a single final solution. The fact that VEQ permits many solutions

can be beneficial in the analysis of a road network. The bi- or multi-objective

nature of the problem reflects the diversity of route choice decisions made in

real life, and it is widely acknowledged that there is not one best route to

choose. As a result, there exist different plausible traffic volumes. By consid-

ering VEQ, we permit many final solutions to the bi- or multi-objective TA

problem, each representing different possible traffic volumes on roads. Instead

of generating only a single solution of multi-objective TA, many solutions can
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be generated, which represent a range of different possible outcomes. With

respect to tolling, for example, the model may yield a range of feasible tolling

revenues – giving decision makers a much broader picture of what may hap-

pen than just presenting a single scenario. Especially when large scale tolling

schemes are introduced in a region for the first time, as would be the case in

New Zealand, this may prove valuable as network user behaviour cannot be

observed to calibrate a model.
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and M. Labbé, editors, Transportation Planning, pages 19–31. Kluwer, 2002.

G.M. Lee, D.S. Kim, B.S. Lee, and N.D. Yen. Vector variational inequality

as a tool for studying vector optimization problems. Nonlinear Analysis, 34:

745–765, 1998.

H. Lee and P.S. Pulat. Bicriteria network flow problems. European Journal

of Operational Research, 51:1190126, 1991.

H. Lee and P.S. Pulat. Bicriteria network flow problems: Integer case. Euro-

pean Journal of Operational Research, 66(1):148–157, 1993.

F. Leurent. Route choice and urban tolling: the Prado-Carénage tunnel in

Marseille. Recherche Transports Sécurité, 71:21–23, 2001.
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A. Löbel. MCF version 1.3 - a network simplex implementation. Avail-

able for academic use free of charge via WWW at http://www.zib.de/

Optimization/Software/Mcf/, 2004.

P. Marcotte. Advantages and drawbacks of variational inequalities formula-

tions. In F. Gianessi and A. Maugeri, editors, Variational Inequalities and

Network Equilibrium Problems, pages 179–194. Plenum Press, 1995.

P. Marcotte and D.L. Zhu. Equilibria with infinitely many differrentiated

classes of customersl. In M.J. Ferris and J.-S. Pang, editors, Complementarity

and Variational Problems–State of the Art, Proceedings of the International

Conference on Complementarity Problems. siam, 1997.

E.Q.V. Martins. On a multicriteria shortest path problem. European Journal

of Operational Research, 16:236–245, 1984.
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