

http://researchspace.auckland.ac.nz

ResearchSpace@Auckland

### Copyright Statement

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use:

- Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person.
- Authors control the copyright of their thesis. You will recognise the author's right to be identified as the author of this thesis, and due acknowledgement will be made to the author where appropriate.
- You will obtain the author's permission before publishing any material from their thesis.

To request permissions please use the Feedback form on our webpage. <u>http://researchspace.auckland.ac.nz/feedback</u>

#### General copyright and disclaimer

In addition to the above conditions, authors give their consent for the digital copy of their work to be used subject to the conditions specified on the <u>Library Thesis Consent Form</u> and <u>Deposit Licence</u>.

#### Note : Masters Theses

The digital copy of a masters thesis is as submitted for examination and contains no corrections. The print copy, usually available in the University Library, may contain alterations requested by the supervisor.

# Monitoring and Simulation of the Filling and Post-filling Stages of the Resin Infusion Process

by

Quentin Paul Nicéphore Marc Marie Govignon

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering, The University of Auckland, 2009.





### ABSTRACT

The doctoral research presented in this thesis is focused on the resin infusion moulding process. The resin infusion process is part of the liquid composite moulding family where a dry reinforcement is impregnated with a liquid resin inside a closed mould to form a composite part. The specificity of resin infusion resides in the fact that only one side of the mould is rigid, the cavity being sealed by a vacuum bag. The preform compaction and fluid flow are driven by the pressure difference between the cavity and the ambient pressure. The reinforcement can therefore exhibit through thickness deformation as the resin penetrates the cavity. The aim of the research was to monitor and simulate the process. A number of previous studies have considered the impregnation process, but very little work had focused on the post-filling stage of the process, once the resin inlet is closed and the resin pressure field inside the mould is left to equilibrate.

In the first part of this study, the behaviour of two different fibrous reinforcements was experimentally characterised, and a new model was developed to replicate the compaction behaviour of the reinforcements. This model is based on elastic behaviour, but was able to account for the compaction history of the reinforcement.

A comprehensive monitoring system was designed and built to collect relevant experimental data to be compared with the simulation. This included the development of a mould fitted with sensors, as well as a stereophotogrammetry system which provides full field monitoring of variations in reinforcement properties. This system measures local cavity thickness, allowing calculation of other parameters such as fibre volume fraction and permeability.

A 1D finite element simulation of the resin infusion process is subsequently presented. The simulation covers both the filling and post-filling stages of the process and uses a modified version of Darcy's law to govern the flow of fluid through porous media.

Finally, an investigation of different factors affecting the post-filing is presented through both simulation and experimental evaluations.

### ACKNOWLEDGEMENTS

First and foremost, I would like to thank my wonderful girlfriend Sharelle for all her love and support through my PhD. Thank you for your commitment and patience in putting up with me through the hardest times during this research.

A Maman, Papa, Johana et toute la famille. Merci pour tous vos encouragements ; votre support s'est ressenti jusqu'a l'autre bout du monde. C'est grâce à vous que j'ai pu devenir qui je suis devenu.

Associate Professor Simon Bickerton, thank you for your guidance and feedback. Your advice and attention to detail were invaluable in the development of the experimental setup.

Many thanks also to Dr. Piaras Kelly for your help and guidance in developing the numerical simulation.

My gratitude to Associate Professor John Morris and Mr. Yizhe (John) Lin for their efforts in the development of the stereophotogrammetry system.

I would also like to thank all the technicians who have assisted me during my work – Callum, Jos, Rex and Steve, for their help and the technical knowledge they passed on to me. My appreciation also goes to Professor Debes Bhattacharyya for welcoming me into CACM.

I would also like to acknowledge support of this research by the Foundation for Research, Science and Technology New Zealand through their funding.

Many thanks go to Oliver McGregor for his careful proofreading of this thesis.

Finally a very big thanks to all my friends and colleagues at CACM. Be it by discussing mine or their problems, helping in the coding of macros and programs, or through lunchtime conversation and fun, they have helped in making my study at CACM both intellectually challenging and also very enjoyable and memorable. Cheers Ming, Peter, Sanjeev, Miro, Nikhil, Andrew (both of them), Rehan, Graeme, Tom, Jamie, Gwendal, Erwan and so many others from New Zealand and all over the world.

## **TABLE OF CONTENT**

| Abstract    |                                                       | i        |  |  |
|-------------|-------------------------------------------------------|----------|--|--|
| Acknowle    | edgementsiii                                          |          |  |  |
| Table of C  | ontent                                                | v        |  |  |
| List of Tab | lesix                                                 |          |  |  |
| List of Fig | ures                                                  | <b>x</b> |  |  |
| Chapter 1   | Introduction                                          | 1        |  |  |
| 1.1         | Composite Material                                    | 1        |  |  |
| 1.2         | Description of LCM Processes                          | 4        |  |  |
| 1.3         | Description of the Resin Infusion Process             | 8        |  |  |
| 1.4         | Industrial Application of the Resin Infusion Process  | 10       |  |  |
| 1.5         | Motivation for Numerical Simulation                   | 13       |  |  |
| 1.6         | Goals and Topics of Study                             | 14       |  |  |
| 1.7         | Thesis Outline                                        | 15       |  |  |
| Chapter 2   | Literature Review                                     | 17       |  |  |
| 2.1         | Experimental Monitoring of the Resin Infusion Process | 18       |  |  |
| 2.2         | Theory of the Resin Infusion Process                  | 21       |  |  |
|             | 2.2.1 Continuity Equations                            | 21       |  |  |
|             | 2.2.2 Flow Equations                                  | 24       |  |  |
| 2.3         | Reinforcement Characterisation                        | 25       |  |  |
|             | 2.3.1 Reinforcement Compaction Behaviour              | 26       |  |  |
|             | 2.3.2 Reinforcement Permeability                      | 33       |  |  |

| 2.4       | Nume   | rical Simulation                                | 39  |
|-----------|--------|-------------------------------------------------|-----|
|           | 2.4.1  | Compaction Behaviour                            | 39  |
|           | 2.4.2  | Flow Front Tracking                             | 42  |
|           | 2.4.3  | Resin Infusion Simulation                       | 44  |
|           | 2.4.4  | Post Filling                                    | 45  |
| 2.5       | Modif  | ied Darcy's Law                                 | 46  |
| 2.6       | Concl  | usion                                           | 48  |
| Chapter 3 | Ma     | terial Characterisation                         | 51  |
| 3.1       | Mater  | ials                                            | 52  |
| 3.2       | Reinfo | prcement Compaction                             | 54  |
|           | 3.2.1  | Introduction                                    | 54  |
|           | 3.2.2  | Experimental Setup                              | 55  |
|           | 3.2.3  | Results                                         | 64  |
|           | 3.2.4  | Stress/Fibre Volume Fraction Relationship       | 69  |
| 3.3       | Reinfo | prcement Permeability                           | 75  |
|           | 3.3.1  | Experimental Setup                              | 75  |
|           | 3.3.2  | Results                                         | 79  |
|           | 3.3.3  | Permeability/Fibre Volume Fraction Relationship | 81  |
| 3.4       | Fluid  | Behaviour                                       | 82  |
|           | 3.4.1  | Resin Cure Kinetics                             | 82  |
|           | 3.4.2  | Viscosity Measurement                           | 83  |
| 3.5       | Concl  | usion                                           | 86  |
| Chapter 4 | Re     | sin Infusion Monitoring                         | 89  |
| 4.1       | Devel  | opment of the Experimental Setup                | 90  |
|           | 4.1.1  | Moulds design                                   | 90  |
|           | 4.1.2  | Monitoring Fluid Flow Rate                      | 95  |
| 4.2       | Monit  | oring Laminate Thickness Variation              | 96  |
|           | 4.2.1  | Review of Previously Applied Methods            | 96  |
|           | 4.2.2  | Theory of Stereophotogrammetry                  | 99  |
|           | 4.2.3  | Development of the Setup                        | 104 |
| 4.3       | Prelin | ninary Experimental Observations                | 112 |
|           | 4.3.1  | Influence of Fluid Viscosity                    | 113 |
|           | 4.3.2  | Influence of Preform Length                     | 117 |
|           | 4.3.3  | Other Factors Influencing the Repeatability     | 119 |

| 4.4       | Analy  | sis of a Sample Resin Infusion Experiment | 120   |
|-----------|--------|-------------------------------------------|-------|
|           | 4.4.1  | Experimental Parameters                   | 120   |
|           | 4.4.2  | Flow Front Progression                    | 122   |
|           | 4.4.3  | Flow Rate into the Preform                | 123   |
|           | 4.4.4  | Laminate Properties                       | 124   |
|           | 4.4.5  | Fluid Pressure                            | 128   |
| 4.5       | Concl  | usion                                     | 133   |
| Chapter 5 | Nu     | merical Simulation                        | 135   |
| 5.1       | Galer  | kin Finite Element method                 | 135   |
|           | 5.1.1  | Approximation of the Variables            | 136   |
|           | 5.1.2  | Formulation Process                       | 137   |
|           | 5.1.3  | Implicit Solution Method                  | 138   |
|           | 5.1.4  | Boundary Conditions                       | 139   |
| 5.2       | RTM S  | Simulation                                | 139   |
|           | 5.2.1  | Solution Method                           | 139   |
|           | 5.2.2  | Material Data                             | 142   |
|           | 5.2.3  | Results                                   | 143   |
| 5.3       | I/CM S | Simulation                                | 147   |
|           | 5.3.1  | Solution Method                           | 147   |
|           | 5.3.2  | Results                                   | 150   |
| 5.4       | Resin  | Infusion Simulation                       | 153   |
|           | 5.4.1  | Solution Method                           | 153   |
|           | 5.4.2  | Boundary Conditions                       | 157   |
|           | 5.4.3  | Meshing and the Floating Node             | 160   |
|           | 5.4.4  | Influence of the Compaction Model         | 161   |
|           | 5.4.5  | Modified Darcy's Law                      | 168   |
| 5.5       | Conve  | ergence and Efficiency of the Simulation  | 173   |
| 5.6       | Simul  | ation Interface                           | 176   |
| 5.7       | Simul  | ation Results                             | 177   |
| 5.8       | Discu  | ssion                                     | 182   |
| 5.9       | Concl  | usion                                     | 183   |
| Chapter 6 | Val    | idation of the Simulation and Cases Stu   | dy186 |
| 6.1       | Plan c | of Experiments                            | 186   |
| 6.2       | Exper  | imental Procedure                         | 187   |

| 6.3        | Repea | atability                           | 190 |
|------------|-------|-------------------------------------|-----|
| 6.4        | Chop  | ped Strand Mat                      | 193 |
|            | 6.4.1 | Standard Experiment                 | 193 |
|            | 6.4.2 | Change of Post-filling Pressure     | 201 |
|            | 6.4.3 | Use of a "Brake" Material           | 206 |
|            | 6.4.4 | Clamping the Inlet Early            | 211 |
|            | 6.4.5 | Discussion                          | 216 |
| 6.5        | Conti | nuous Filament Mat                  | 217 |
|            | 6.5.1 | Standard Experiment                 | 217 |
|            | 6.5.2 | Change of Post-filling Pressure     | 227 |
|            | 6.5.3 | Use of a "Brake" Material           | 233 |
|            | 6.5.4 | Clamping the Inlet Early            | 239 |
|            | 6.5.5 | Discussion                          | 243 |
| 6.6        | Concl | usion                               | 244 |
| Chapter 7  | Со    | nclusion and Future Work            | 246 |
| 7.1        | Concl | usion                               | 246 |
| 7.2        | Recor | mmendation for Future Work          | 248 |
| Chapter 8  | Re    | ferences                            | 250 |
| Appendix / | A P   | ost filling mould                   | A1  |
| Appendix   | B D   | evelopment of the Solution Method . | B1  |
| Appendix   | C F   | low front tracking code             | C1  |

## **LIST OF TABLES**

| Table 3-1: Plan of experiments for the compaction tests.                | 63      |
|-------------------------------------------------------------------------|---------|
| Table 3-2: Parameters for the CSM reinforcement                         | 71      |
| Table 3-3: Parameters for the CFM reinforcement                         | 72      |
| Table 3-4: $\alpha$ value for the re-compaction of both reinforcements  | 73      |
| Table 3-5: Target volume fraction for the permeability tests            | 79      |
| Table 3-6: Parameters of the permeability equation for the two reinforc | ements. |
|                                                                         | 82      |
| Table 4-1: Plan of experiment for viscosity study                       | 114     |
| Table 4-2: Fill time comparison for different fluid viscosity.          | 114     |
| Table 4-3: Fill time for infusion with three different lengths.         | 117     |
| Table 5-1: Material parameters for the RTM simulation.                  | 145     |
| Table 5-2: Material parameters for the I/CM simulation.                 | 151     |
| Table 5-3: Fill time for the three different compaction models          | 163     |
| Table 5-4: Coefficients of Prada's Equation.                            | 170     |
| Table 6-1: Comparison of the fill time for all experiments.             | 190     |
|                                                                         |         |

## **LIST OF FIGURES**

| Figure 1-1: A formula 1 car uses a significant amount of composite materials.    | 2  |
|----------------------------------------------------------------------------------|----|
| Figure 1-2: Racing bicycles make use of the high stiffness to weight ratio of    |    |
| carbon fibre composites.                                                         | 3  |
| Figure 1-3: The Airbus A350 (left) and the New Zealand made Furio (right) are    | е  |
| examples of increased use of composites in the aeronautical industry             | 4  |
| Figure 1-4: Steps in the RTM process                                             | 5  |
| Figure 1-5: Steps in the RTM/Light process                                       | 6  |
| Figure 1-6: Steps in the I/CM process                                            | 7  |
| Figure 1-7: Steps in the RI process                                              | 9  |
| Figure 1-8: Domain of application of the resin Infusion process (source ASM      |    |
| [3])                                                                             |    |
| Figure 1-9: Infusion of the hull of a 68ft motor yacht                           |    |
| Figure 1-10: Manufacturing of a wind turbine blade by the RI process             |    |
| Figure 2-1: Diagram of one-dimensional flow through porous media                 |    |
| Figure 2-2: Schematics of the compaction apparatus used by Robitaille [54]       |    |
| Figure 2-3: Reinforcement compaction and permeability measurement setup          | as |
| used by Umer [61].                                                               |    |
| Figure 2-4: Example of reinforcement relaxation from [68]                        |    |
| Figure 2-5: Effect of cyclic compaction on the reinforcement. From [59]          |    |
| Figure 2-6: Compaction test setup as used by Yuexin et al. [66]                  |    |
| Figure 2-7: Schematics of the compaction setup by Yenilmez [39].                 |    |
| Figure 2-8: Example of the creep effect when maintaining constant compaction     |    |
|                                                                                  | 33 |
| Figure 2-9: Apparatus for measuring a) the in-plane permeability, b) the through | -  |
| thickness permeability. From Trevino et al. [60].                                |    |
| Figure 2-10: Sensor plate of the set-up by Hoes et al. [75].                     |    |
| Figure 2-11: Schematics of the permeability measurement setup developed b        |    |
| Nedanov [76]                                                                     |    |
| Figure 2-12: Schematic diagram of the setup used by Buntain in [24]              |    |
| Figure 2-13: Schematics of the set-up by Scholz [80].                            |    |
| Figure 2-14: Schematics of the FINE mesh refinement process                      |    |
| Figure 3-1: Chopped strand mat (left) and continuous filament mat (right) with   |    |
| close up view provided at centre.                                                |    |
| Figure 3-2: Compaction characterisation setup.                                   | 56 |

| Figure 3-3: 3D CAD model of the spherical alignment unit, assembled view or         | ו   |
|-------------------------------------------------------------------------------------|-----|
| the left and cross section of the exploded view on the right                        | 57  |
| Figure 3-4: Cutting press with the cutting blade and a sample of CFM                | 58  |
| Figure 3-5: Schematic description of the experimental compaction                    |     |
| characterisation program.                                                           | 60  |
| Figure 3-6: Reinforcement compaction state at the completion of the filling         |     |
| stage                                                                               | 62  |
| Figure 3-7: Comparison of the compaction traces of the different CSM                |     |
| specimens; a) during the first dry compaction; b) during the dry unloading;         |     |
| c) during the second dry compaction; d) during the wet unloading.                   | 65  |
| Figure 3-8: Wet re-compaction traces for the CSM series.                            |     |
| Figure 3-9: Comparison of the compaction traces of the different CFM                | 00  |
| specimens; a) during the first dry compaction; b) during the dry unloading;         | c)  |
| during the second dry compaction; d) during the wet unloading.                      |     |
| Figure 3-10: Wet re-compaction traces for the CFM series                            |     |
|                                                                                     |     |
| Figure 3-11: Example fitting of experimental compaction trace. The application      |     |
| of three curves is compared to application of a single power law curve              |     |
| Figure 3-12: Example of the re-compaction model as applied to the CFM               |     |
| Figure 3-13: Schematic of the permeability measurement setup.                       |     |
| Figure 3-14: Bowl and top platen used for the permeability measurements             |     |
| Figure 3-15: Sample geometry for the permeability experiments                       |     |
| Figure 3-16: Results of the CSM permeability experiments.                           |     |
| Figure 3-17: Results of the CFM permeability experiments.                           |     |
| Figure 3-18: Rheometer used for the fluid characterisation tests                    | 83  |
| Figure 3-19: Measured relation between shear stress and strain rate for the         |     |
| various test fluids.                                                                | 85  |
| Figure 3-20: Variation of the viscosity as a function of the temperature for the    |     |
| various test fluids.                                                                | 86  |
| Figure 4-1: Resin Infusion monitoring setup on the temperature controlled tab       | le. |
|                                                                                     | 90  |
| Figure 4-2: Schematic description of the temperature controlled table               | 92  |
| Figure 4-3 : Details of the 60x30 Light aluminium extrusion profile                 |     |
| Figure 4-4: Drawing of the mould designed for a more accurate post-filling          |     |
| study.                                                                              | 93  |
| Figure 4-5: Detail of the connection at the inlet and vent of the post-filling stud |     |
| mould.                                                                              | -   |
| Figure 4-6: Mass balance used to measure the flow rate into the preform             |     |
| Figure 4-7: Example of laminate thickness measurement using laser gauges;           |     |
| experimental setup and b) results.                                                  |     |
| Figure 4-8: Example of points registration on a pair of a) left and b) right        | 30  |
|                                                                                     |     |
| images                                                                              |     |
|                                                                                     |     |
|                                                                                     |     |
| Figure 4-10: Schematic description of the cameras setup                             |     |
| Figure 4-11: Details of the Aluminium extrusion profiles: a) 60x60; and b) 30x      |     |
|                                                                                     |     |
| Figure 4-12: Mounting plate for the cameras                                         | 07  |
| Figure 4-13: Detail of the camera mounted in place 1                                |     |
| Figure 4-14: Schematics of the data acquisition setup 1                             |     |
| Figure 4-15: Stereophotogrammetry calibration rig 1                                 | 10  |

| Figure 4-16: Evaluation of the stereophotogrammetry over a flat stationary               | 111 |
|------------------------------------------------------------------------------------------|-----|
| plate                                                                                    |     |
| Figure 4-17: Evaluation of the stereophotogrammetry on an angled plate 1                 |     |
| Figure 4-18: Schematic representation of the lay-up for testing the influence of         |     |
| fluid viscosity                                                                          |     |
| Figure 4-19: Fluid pressure near the inlet as a function of the injection time for       |     |
| four different fluids                                                                    |     |
| Figure 4-20: Fluid pressure near the inlet as a function of the relative injection       |     |
| time for four different fluids, the dashed line representing the end of filling 1        |     |
| Figure 4-21: Schematic representation of the lay-up for testing the influence of         |     |
| the preform length 1                                                                     |     |
| Figure 4-22: Fluid pressure near the inlet as a function of the relative injection       |     |
| time for three different preform lengths1                                                |     |
| Figure 4-23: Fluid pressure near the inlet as a function of the relative injection       | 1   |
| time for three different preform lengths1                                                | 19  |
| Figure 4-24: Evolution of the flow front during the RI experiment1                       |     |
| Figure 4-25: Flow rate into the cavity during the RI experiment1                         |     |
| Figure 4-26: Map of laminate thickness at four instants during the RI process.           |     |
| Just prior to filling (t=0 s); b) when flow front reaches half of the preform (t=34      |     |
| s); c) at the end of filling (t=1187 s); and d) at the end of post-filling (t=12000 s    |     |
|                                                                                          |     |
| Figure 4-27: Evolution over time of the thickness along the length of the                |     |
| preform, averaged across the width of the mould                                          | 25  |
| Figure 4-28: Evolution over time of the $V_f$ along the length of the preform,           |     |
| averaged across the width of the mould1                                                  | 26  |
| Figure 4-29: Evolution over time of the permeability along the length of the             |     |
| preform, averaged across the width of the mould                                          | 27  |
| Figure 4-30: Evolution of the fluid pressure along the preform during a RI               |     |
| experiment                                                                               | 28  |
| Figure 4-31: Pressure distribution along the preform at different time during            |     |
| post-filling                                                                             | 29  |
| Figure 4-32: Evolution of the fluid pressure (a) and laminate thickness (b) ove          |     |
| the different pressure transducers during the RI experiment                              |     |
| Figure 4-33: Comparison of the compaction model with the compaction                      | 0.  |
| behaviour observed during the RI experiment1                                             | 133 |
| Figure 5-1: Flow chart of the RTM simulation1                                            |     |
| Figure 5-2: Evolution of the calculated flow front for the RTM case                      |     |
| Figure 5-3: Pressure distribution during the RTM process with constant injecti           |     |
| pressure                                                                                 |     |
| Figure 5-4: Flow chart of the I/CM simulation                                            |     |
| Figure 5-5: Evolution of the calculated flow front for the I/CM case                     |     |
|                                                                                          | JZ  |
| Figure 5-6: Pressure distribution during the I/CM process with constant compaction speed | 52  |
| Figure 5-7: Flow chart of the RI simulation1                                             |     |
|                                                                                          | 00  |
| Figure 5-8: Calculation of the flow rates inside the inlet tube and into the             |     |
| preform to determine the inlet pressure                                                  |     |
| Figure 5-9: Schematic diagram of the use of the floating node                            | 01  |
| Figure 5-10: Simulated flow front progression using the three different power            |     |
| laws 1                                                                                   | 63  |

| Figure 5-11: Simulated of pressure profile for the wet unloading and wet                                                                               |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| compaction models.                                                                                                                                     | 164 |
| Figure 5-12: Evolution of the local $V_f$ at 5 points along the laminate during the                                                                    |     |
| simulation<br>Figure 5-13: Evolution of the fluid pressure at 5 points along the laminate duri                                                         |     |
| the RI simulation.                                                                                                                                     |     |
| Figure 5-14: Evolution of the local Vf at 5 points along the laminate during the                                                                       |     |
|                                                                                                                                                        |     |
| RI simulation<br>Figure 5-15: Evolution of the fluid pressure at 5 points along the laminate dur                                                       |     |
| the RI simulation.                                                                                                                                     |     |
| Figure 5-16: Threshold pressure gradient as a function of the fluid mobility.                                                                          |     |
| Figure 5-17: $V_f$ traces obtained through the simulation using Prada's Equation                                                                       |     |
| Figure 5-18: Pressure traces obtained through the simulation using Prada's                                                                             | 172 |
| Equation.                                                                                                                                              | 173 |
| Figure 5-19: Convergence test for the simulation; a) predicted fill time, and b)                                                                       |     |
| computation time                                                                                                                                       |     |
| Figure 5-20: Evolution over time along the length of the preform of: a) the                                                                            |     |
| laminate thickness; b) the V <sub>f</sub> ; c) the permeability; and d) the fluid pressure 1                                                           | 178 |
| Figure 5-21: Evolution of the fluid pressure (a), and laminate thickness (b), at                                                                       |     |
| the location of the five pressure transducers                                                                                                          | 180 |
| Figure 5-22: Pressure profile along the length of the preform at various instan                                                                        |     |
| of the filling and post-filling                                                                                                                        |     |
| Figure 5-23: Evolution of the resin flow rate into the laminate                                                                                        | 181 |
| Figure 5-24: a) Fluid pressure; b) resin speed; and c) reinforcement<br>displacement. In the case of consolidation under a flexible bladder (from [144 | (1) |
|                                                                                                                                                        |     |
| Figure 6-1: Preform infused on the "post-filling" mould.                                                                                               |     |
| Figure 6-2: Comparison of the fluid pressure during the two repeats of the                                                                             |     |
| standard experiment. a) For CSM and b) for CFM.                                                                                                        | 191 |
| Figure 6-3: Evolution of the fill time as a function of fluid viscosity                                                                                | 192 |
| Figure 6-4: Fluid pressure traces for the two standard RI experiments using                                                                            |     |
| CSM reinforcement.                                                                                                                                     | 194 |
| Figure 6-5: Laminate thickness traces for the two standard RI experiments                                                                              | 405 |
| using CSM reinforcement.                                                                                                                               |     |
| Figure 6-6: Pressure (a) and thickness (b) profiles at various instances during the standard infusion 1                                                |     |
| Figure 6-7: Pressure (a) and thickness (b) traces of the simulation of the                                                                             | 190 |
| standard infusion with CSM reinforcement                                                                                                               | 198 |
| Figure 6-8: Pressure profile along the preform during the simulation of the                                                                            | 100 |
| standard experiment with CSM reinforcement.                                                                                                            | 199 |
| Figure 6-9: Comparison of the pressure traces between experiment and                                                                                   |     |
| simulation                                                                                                                                             | 200 |
| Figure 6-10: Pressure (a), and thickness (b) traces for the CSM infusion                                                                               |     |
| experiment with a higher post-filling pressure                                                                                                         |     |
| Figure 6-11: Pressure profile at various instants during the CSM infusion with                                                                         |     |
| higher post-filling pressure.                                                                                                                          |     |
| Figure 6-12: Pressure (a) and thickness (b) traces for the simulation of the CS                                                                        |     |
| infusion with change of post-filling pressure                                                                                                          | 205 |

| Figure 6-13: Pressure (a), and thickness (b) traces for the CSM infusion<br>experiment with a brake material                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 6-14: Pressure profile at various instants during the "brake" experiment. 209                                                                   |
| Figure 6-15: Pressure (a) and thickness (b) traces for the simulation of the CSM infusion with use of a brake material                                 |
| Figure 6-16: Pressure profiles for the simulation of the "brake' infusion                                                                              |
| experiment where the inlet was clamped early                                                                                                           |
| Figure 6-19: Compaction behaviour of the CSM reinforcement at P1 for the four infusion scenarios                                                       |
| Figure 6-20: Fluid pressure traces for the two standard RI experiments using CFM reinforcement                                                         |
| Figure 6-21: Laminate thickness traces for the two standard RI experiments using CFM reinforcement                                                     |
| Figure 6-22: Pressure (a) and thickness (b) profiles at various instances during the standard experiment with CFM reinforcement                        |
| Figure 6-23: Pressure (a) and thickness (b) traces of the simulation of the standard infusion with CFM reinforcement.                                  |
| Figure 6-24: Compaction behaviour of the CFM reinforcement during the standard experiment                                                              |
| presented in [145]                                                                                                                                     |
| experiment with a higher post-filling pressure                                                                                                         |
| reinforcement                                                                                                                                          |
| infusion with a change of post-filling pressure                                                                                                        |
| experiment with a brake material                                                                                                                       |
| reinforcement                                                                                                                                          |
| infusion with use of a brake material                                                                                                                  |
| experiment where the inlet was clamped early                                                                                                           |
| infusion with the inlet clamped early. 242<br>Figure 6-34: Compaction behaviour of the CFM reinforcement at P1 for the four<br>infusion scenarios. 244 |
|                                                                                                                                                        |